wo 2014/039210 A 1[I I NPF V000 00 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

—~

International Bureau
9 (10) International Publication Number
(43) International Publication Date ./ WO 201 4 /039210 Al

13 March 2014 (13.03.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 15/76 (2006.01) G06T 1/60 (2006.01) kind of national protection available): AE, AG, AL, AM,
GO6T 1/20 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) Tnt tional Apolication Number BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: PCT/US2013/054340 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
9 August 2013 (09.08.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
-) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(26) Publication Language: English IN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(30) Priority Data:

13/602,958 4 September 2012 (04.09.2012)

ZW.

ys (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except SA, US): GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
MIREPLICA TECHNOLOGY, LLC [US/US]; 606 Co- UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU, TJ,
quina Lane, Austin, Texas 78746 (US).

(72) Inventor; and

(71) Applicant : JOHNSON, William, M. [US/US]; 606 Co-

quina Lane, Austin, Texas 78746 (US).

(74) Agents: LETTANG, Mollie, E. et al.; Datfer McDaniel,
LLP, P.O. Box 684908, Austin, Texas 78768-4908 (US).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

(54) Title: PROCESSOR, SYSTEM, AND METHOD FOR EFFICIENT, HIGH-THROUGHPUT PROCESSING OF TWO-DI-
MENSIONAL, INTERRELATED DATA SETS

714

Tile Interconnect

712 ~{ Remote
Access

710~

Partitioned

Data

Memory
(DMEM)

708
\ Banked

704 \ Register File
706 ~
I~

702 :
700 \ Region State | Functional

Decode

Units

1-Pipe

Jegng-|

Fig. 7

(57) Abstract: Systems, processors and methods are disclosed for organizing
processing datapaths to perform operations in parallel while executing a
single program. Each datapath executes the same sequence of instructions,
using a novel instruction sequencing method. Each datapath is implemented
through a processor having a data memory partitioned into identical regions.
A master processor fetches instructions and conveys them to the datapath
processors. All processors are connected serially by an instruction pipeline,
such that instructions are executed in parallel datapaths, with execution in
each datapath offset in time by one clock cycle from execution in adjacent
datapaths. The system includes an interconnection network that enables full
sharing of data in both horizontal and vertical dimensions, with the effect of
coupling any datapath to the memory of any other datapath without adding
processing cycles in common usage. This approach enables programmable
visual computing with throughput approaching that of hardwired solutions.

WO 2014/039210 PCT/US2013/054340

PROCESSOR, SYSTEM, AND METHOD FOR EFFICIENT, HIGH-THROUGHPUT
PROCESSING OF TWO-DIMENSIONAL, INTERRELATED DATA SETS

BACKGROUND

[0001] Many applications involve two-dimensional data sets. Visual processing applications are
one example. The term “visual processing” as used herein refers to a general class of processing of
image and video picture elements (“pixels”) and related data. This includes applications such as
enhancing images and converting pixels formats, motion detection and tracking, and identifying
features or objects in either still-image or video frames. Other applications involving data that can
be expressed in two-dimensional sets include modeling of physical quantities such as forces or
electromagnetic fields. Three-dimensional data sets can in some cases be represented in two-
dimensions, such as by projection or transformation into a two-dimensional plane, or as multiple
adjacent two-dimensional data sets. Prior-art solutions have taken one of two forms: 1)
programmable solutions using a processing core, or 2) hardwired (or hardware-configurable)
solutions using hardware logic gates. The distinction between these options is that programmable
solutions are flexible and can be readily improved and adapted to various applications, though with
very low performance relative to hardwired solutions, whereas hardwired solutions can readily
meet performance requirements, though are very difficult to design, maintain, and improve to meet
new requirements.

[0002] It is desirable to have solutions that combine the advantages of programmable and
hardwired processing without the corresponding disadvantages. Consider, as an example, the case
of visual processing applications. The term “visual computing” as used herein refers to a
programmable approach, based on a computing architecture that is specifically targeted to visual
processing, in contrast to using a general-purpose processor. Though many examples of visual-
computing solutions exist, all have a fundamental limitation in capability. This limitation becomes
particularly acute with state-of-the art sensor and display resolutions, and with increasing frame
rates in frames per second.

[0003] To understand the nature of this limitation, it is first necessary to understand the typical
requirements of visual processing. Fig. 1 illustrates some typical stages for processing a still image
in a digital camera. The input from the sensor 100 contains red, green, and blue pixel values, or
data elements, in a Bayer mosaic (this format contains twice as much green information as red and

blue because of the sensitivity of the eye to green information). Processing performs quality

WO 2014/039210 PCT/US2013/054340

enhancement and format conversion, producing YUV data 108 that can be used to create standard
image formats such as JPEG (YUV are three pixels of luminance and chrominance information).
Though a Bayer pattern is shown in this example, there are many non-standard, proprietary formats
that typically are vendor-specific. This is one motivation for programmable solutions, so that
various formats can be processed by a common solution.

[0004] Pixel processing typically produces a pixel value at a given location based on
neighboring pixel values. For example, the noise reduction stage 104 is based on comparing the
value of a given pixel to the values of pixels, of the same format, in its local neighborhood. If the
value is above or below some threshold of a value predicted by averaging neighboring pixel
values, this is considered to be due to noise, such as lens impurities or sensor defects. In this case,
the pixel value is replaced by the predicted value. Other processing stages, such as white balance
stage 106, typically use the same approach of considering neighboring pixel values. Black level
adjustment 102 is an exception, because it simply subtracts known offsets from each pixel value to
compensate for drift in pixel values from zero for purely dark input.

[0005] This approach to processing causes input and output relationships between processing
stages such as that shown in Fig. 2. This example assumes that an output pixel depends on a
neighboring region of pixels, such that a central pixel depends on two columns of pixels to the
right and left and two rows of pixels above and below: the total input region is a block of pixels
that is 5 pixels wide and 5 pixels high (5x5), with the output corresponding to the central pixel in
this block. In this example, assuming that processing stages shown in Fig. 1 are numbered
sequentially, a 9x9 input region 200 to processing stage N results in a 5x5 output region 202,
which becomes the input to processing stage N+1, and this 5x5 region in turn generates a single
pixel 204 as the output of stage N+1.

[0006] Regions of pixels that are required as input, but which do not have any corresponding
output, are referred to as aprons. Apron requirements cause the size of the result region of a
processing stage to be smaller than the input region, and this reduction is larger the more complex,
and therefore higher-quality, the processing. Higher quality requires a larger number of processing
stages and a larger number of apron pixels used at each stage to produce output.

[0007] The operation of typical prior-art visual-processing hardware is illustrated in Fig. 3, with
processing stages corresponding to those in Fig. 2. The input to stage N is provided by memory

buffer 300. This buffer retains sufficient context to satisfy apron requirements, with input being

WO 2014/039210 PCT/US2013/054340

provided one set of pixels at a time, where a set of pixels in this example is a set of four pixels such
as the four pixels 302. Each set of input pixels is sufficient to generate one set of output pixels,
because input of the set of pixels that fills the buffer satisfies the apron requirements for the pixels
in the center of the buffer. For example, input of pixel set 302 fills the buffer to satisfy the apron
requirements for pixel set 304 centered in the 5x5 region having 5 sets of 4 pixels in each direction.
Scanning hardware 306 accesses pixels in this 5x5 region, providing input to operation hardware
308 for stage N. Scanning hardware is required because each input set is at a different location
within the image, and the relative locations in buffer 300 of the pixels required for stage N changes
with each input set. Correspondingly, the output of stage N is processed by merging hardware 310,
which writes the output of stage N for multiple input pixel sets into buffer 312 in a way that
preserves results written into this buffer from operations on previously-scanned pixel sets. Buffer
312 is shown offset to clarify the relative positions of the pixels in this buffer with respect to the
pixels in buffer 300. The output enabled by pixels 302 updates the pixels 314 in buffer 312,
enabling input to stage N+1 for the region of pixels 316 in buffer 312.

[0008] The configuration of hardware shown in Fig. 3 cannot be replicated by a software
program, because all of the hardware processing stages operate concurrently (upon pixels at
different locations along the scan line), whereas software programs execute one instruction at a
time and cannot control the concurrent operations. Each hardware stage is hardwired, or has
limited hardwired configurations, to operate concurrently with other stages. The throughput of
these stages is typically one set of pixels every processing cycle, so, for example, hardware that
operates at 450 mega-Hertz can provide a throughput of 450 mega-pixels per cycle, which is
required for state-of-the art sensors, which provide input of 30 mega-pixels per frame at a rate of
15 frames per second. However, because the stages are hardwired, the solution is inflexible.

[0009] Programmable solutions overcome this inflexibility. However, because program
execution is serial in nature, programs generate a set of outputs only some number of sequential
processing steps, or cycles, after input. The number of cycles is determined by the number of
processing stages and the complexity of the operations performed at each stage, and is typically on
the order of 1000-2000 cycles. Thus, a programmable solution operating at 450 mega-Hertz would
provide throughput of at most 0.45 mega-pixels per second, far below the throughput of hardware.
[0010] To improve the throughput of programmable visual processing, the program must process

and output a large number of pixels at each processing stage. For example, a program that requires

WO 2014/039210 PCT/US2013/054340

1000 cycles to execute can match the throughput of hardware processing if it produces 1000 sets of
pixels of output for each set of input pixels. However, because of apron requirements, the input
required to produce this output is much larger than 1000 sets of inputs, except in a hypothetical
ideal case illustrated in Fig. 4. In this conceptual illustration, there are a number of processing
datapaths 402 equal to the width in pixels of the entire image, operating on data in a memory 400
that is also of this width. Each datapath can access a horizontal region of this memory sufficient
for apron access in the horizontal direction, for example two pixels to the right and left for a 5x5
region, and the data is organized into buffers whose depth, in number of lines, is sufficient for
apron access in the vertical direction, for example 5 lines deep for a 5x5 region.

[0011] Input is provided to this ideal solution an entire scan-line at a time, discarding the oldest
scan-line. These lines are represented by horizontal lines 404 in memory 400, labeled in this
example with corresponding pixel colors in a Bayer format. Pixels of like format (color) must be
in separate buffers, because the program performs the same operations on all pixels at the same
time, and these must be of the same format for correct results. The program executes, taking the
required number of cycles, and produces a number of pixels proportional to the number of
datapaths, which must be on the order of a few thousand to match the throughput of hardware. It
should be understood that this example is for illustration only. Operating this many datapaths
simultaneously is physically impossible, and would be prohibitively expensive in any case.

[0012] Physical limitations restrict the number of datapaths in a typical implementation, with a
resulting typical organization shown in Fig. 5. The conceptual memory and datapath bank of Fig.
4 is partitioned into datapath banks 510-516 and memory segments 500-506 corresponding to a
number of datapaths that can reasonably be implemented, typically either 32 or 64. However,
operating these datapath banks over the entire span of a program, from input to output, causes an
unacceptable loss in the effectiveness of execution, represented by the shaded grey regions marked
“x” that represent the loss of effective output resulting from the apron requirements at each
processing stage. For example, if there are 10 processing stages, each requiring a 5x5 region of
input to each stage, the datapath banks each lose 4 pixels of effective context, in the horizontal
direction, at each stage. This causes output at the last stage to be 40 pixels narrower than the input,
which, in the case of a 64 datapaths, causes the output to be only 24 pixels wide, meaning that the
parallel datapaths are only 38% (24/64) effective. To avoid this, it would be required to share data

in memories 500-506 between datapath banks 510-516. However, this is not possible because it

WO 2014/039210 PCT/US2013/054340

cannot be guaranteed that the datapaths perform the same operations at the same time, and thus it is
not possible to guarantee that data is valid when accessed by a datapath from another memory that
is not local to the datapath.

[0013] The prior art addresses the aforementioned problem of reduction in output data in
partitioned datapaths by performing only a single processing stage at a time, rather than all stages
in series, as illustrated in Fig. 6. After a given stage N, the output of stage N is written in a system
data-movement operation to a global shared memory 600. Following this, data is read in a system
data-movement operation back into the memories local to the datapaths (500-506 in Fig. 5). This
read-back operation can be used to minimize data loss for the interior data banks by overlapping
the portions of a scan line that are read into the data banks. Repeating the data elements near the
end of one data bank at the beginning of the adjacent bank provides the apron needed for each data
bank and eliminates data loss at the boundary. The loss of data per processing stage is only that
caused by the outer ends of the scan line, for example 4 pixels. This loss is a much smaller
proportion of the datapath width than if all processing stages are executed, so the effectiveness of
parallel execution is 60/64=94%. However, additional cycles are required to copy the outputs of
stage N and the inputs of stage N+1, and these cycles add to the effective execution time and also
limit the throughput.

[0014] In both of the examples just presented, there is a fundamental throughput limitation for a
programmable visual-computing solution. This is caused either by the ineffectiveness of parallel
operations caused by inability to share data to meet apron requirements, or by additional cycles
required to re-form the shared context in a global memory.

[0015] The above discussion illustrates the difficulty of efficient software processing when an
operation to be performed on one element of a data set requires access to one or more other
clements of the data set--i.c., when the elements in the data set are interrelated, at least with respect
to a given operation. Hardware implementations of the operation can handle this situation
efficiently by repeatedly acquiring the required input elements through a scanning process. It
would be desirable to have an efficient approach to software implementation of operations on

interrelated elements in two-dimensional data sets.

WO 2014/039210 PCT/US2013/054340

SUMMARY
[0016] The problems noted above can be successfully addressed by systems, processors and
methods for organizing processing datapaths to perform an arbitrarily large number of operations
in parallel, executing a single program. These datapaths can be based on any instruction-set
architecture. Each datapath executes the same sequence of instructions, using a novel instruction
sequencing method, and the datapaths have the effect of executing synchronously regardless of
their number. The system includes an interconnection network that enables full sharing of data in
both horizontal and vertical dimensions, with the effect of coupling any datapath to the memory of
any other datapath without adding processing cycles in common usage. This approach enables
programmable visual computing with throughput approaching that of hardwired solutions.
[0017] In an embodiment of a data processing system as described herein, at least two data
memories are arranged side-by-side along a first direction, with each data memory partitioned
along a second direction, substantially perpendicular to the first direction, into at least two regions
of identical size. The system also includes data allocation circuitry adapted to store digitally
coded data representing elements of a two-dimensional array into successive adjacent memory
locations within a first region of the first data memory. The data stored into the first region may
represent a first sequence of a predetermined number of adjacent elements along a first dimension
of the array.
[0018] The data allocation circuitry is further adapted to store data representing sequences
adjacent to the first sequence, along the second dimension of the array, into successive adjacent
memory locations of respective regions of the data memories adjacent to the first region. The data
1s stored such that the number of adjacent sequences represented by data stored in regions of the
first data memory is the same as the number of regions in the first data memory. In addition, the
data stored in the regions of the second data memory represents the same number of adjacent
sequences, and sequences represented by data stored in corresponding regions of adjacent data
memories are displaced along the second dimension of the array by a number of elements equal to
the number of regions in the first data memory
[0019] In an embodiment, the data processing system also includes instruction routing circuitry
adapted to order execution of identical instructions upon data at corresponding addresses in
adjacent data memories, where execution of the same instruction is offset by one clock cycle for

cach adjacent data memory along the first direction. The system may also include at least two

WO 2014/039210 PCT/US2013/054340

instruction execution units coupled to the respective at least two data memories. The instruction
execution units are adapted to receive and execute instructions for operations on the elements
represented by the data stored in the respective data memory. The data processing system may
further include a master processor unit coupled to all of the instruction execution units. The master
processor unit is adapted to store, fetch and distribute instructions for operations on the elements
represented by the data stored in the data memories.

[0020] Another embodiment of a data processing system includes at least two identical data
processors, where each data processor includes a data memory partitioned into at least two
identical regions and remote access logic for handling data access requests between data
processors. The system also includes a master processor adapted to convey a program instruction
to a first one of the at least two identical data processors, where the instruction is conveyed for
execution using data in one of the regions of the data memory of the first data processor. The
system also includes an instruction pipeline connecting the master processor and the data
processors in series, and a data processor interconnect structure having a multiplexer
corresponding to each of the identical data processors. The output of each multiplexer is coupled
to an input of the remote access logic for each of the data processors, and outputs from the remote
access logic of each of a local group of the data processors form inputs to each multiplexer. In a
further embodiment of this data processing system, the number of data processors in the local
group is the same as the number of inputs handled by each of the multiplexers, and each of the
multiplexers has a single output. In another embodiment of the system, the interconnect structure
also includes an additional remote access multiplexer for each local group of data processors,
where the remote access multiplexer has a single output and the same number of inputs as the
number of data processors in the local group. The outputs from the remote access logic of each of
the data processors in the local group are connected to the inputs of the remote access multiplexer.
[0021] An embodiment of a data processor described herein, which may be referred to as a “tile
processor,” includes a data memory partitioned into at least two regions of identical size, wherein
the number of regions is a power of two, an instruction buffer for receiving program instructions,
processor logic adapted to execute the program instructions using data stored in the regions of the
data memory, and remote access circuitry adapted to use a horizontal address component to specify
the route of a data access request between the data processor and any of a group of additional

interconnected data processors. In a further embodiment, the data processor may include region

WO 2014/039210 PCT/US2013/054340

state logic for storing an identifier of a subgroup of program instructions being executed by the
data processor. In addition, the region state logic may store an indication of which regions of the
data memory contain data used in executing a subgroup of program instructions. Such a subgroup
of program instructions may end with an instruction requiring movement of data between the data
memory and a memory location external to the data memory, and may be referred to herein as a
“task interval.” In still another embodiment, the data processor may include instruction routing
circuitry adapted to decode an instruction fetched from the instruction buffer and simultaneously
convey the instruction to an instruction buffer of an adjacent data processor.

[0022] A different embodiment of a data processor, which may be referred to herein as a “master
tile processor,” includes an instruction memory for storing program instructions to be executed,
instruction routing circuitry adapted to decode an instruction fetched from the instruction memory
and simultaneously convey the instruction to an instruction buffer of an adjacent data processor,
and execution control circuitry adapted to repeatedly convey a subgroup of instructions to the
adjacent data processor, for execution using data stored in respective successive regions of a
partitioned data memory in the adjacent data processor. In a further embodiment, the data
processor may also include a control memory adapted to store, for each data element written to one
of the regions of the partitioned data memory, an indicator of which subgroup of instructions
executed the write of the data element.

[0023] In addition to data processors and data processing systems, data processing methods are
contemplated herein. The methods may be implemented by program instructions using techniques
known to those of ordinary skill in the art. An embodiment of a method of program execution by a
master processor includes fetching a first instruction from an instruction memory in the master
processor and conveying the first instruction to an instruction buffer of a first data processor
coupled to the master processor, where the first data processor is one of at least two data processors
coupled to the master processor, and each data processor includes a data memory partitioned into a
number of identical regions. The method further includes determining whether execution of the
first instruction by the first data processor requires movement of data between the data memory of
the first data processor and the data memory of a different data processor. If execution of the first
instruction does not require movement of data between the first data processor and a different data

processor, the method includes continuing to fetch and convey to the instruction buffer subsequent

WO 2014/039210 PCT/US2013/054340

instructions, until determining that a conveyed instruction requires movement of data between data
Processors.

[0024] A further embodiment of a method of program execution by a master processor includes,
upon determining that execution of the conveyed instruction does require movement of data
between the first data processor and a different data processor, retrieving the first instruction, and
conveying the first instruction to the instruction buffer of the first data processor, for execution
using data in a consecutive adjacent region of the data memory of the first data processor. For
cach adjacent region of the data memory in the first data processor, the method continues with
conveyance of a sequence of instructions ranging from the first instruction through the instruction
requiring movement of data between data processors, for execution using data stored in the
respective region.

[0025] An embodiment of a method of program execution by a data processor includes receiving
a program instruction in the instruction buffer, decoding the program instruction and
simultaneously conveying the instruction to an instruction buffer of an adjacent identical data
processor, and executing the program instruction using data in a first region of the data memory.
The method further includes determining whether execution of the instruction requires movement
of data between the data memory of the data processor and a data memory of a different data
processor. If execution of the instruction does not require movement of data between the data
processor and a different data processor, the method includes continuing to execute subsequent
instructions received in the instruction buffer using data in the same region of the data memory,
until determining that an executed instruction requires movement of data between data processors.
[0026] A further embodiment of a method of program execution by a data processor includes,
upon determining that an executed instruction does require movement of data between the data
processor and a different data processor, applying execution of the next instruction received to data
stored in the next adjacent region of the data memory. For each adjacent region of the data
memory, the method includes execution of a sequence of instructions ending with the instruction
requiring movement of data between data processors, where the execution uses data stored in the
respective region.

[0027] A method for storage of data into partitioned regions of a data memory is also
contemplated herein, where the data represents elements of a two-dimensional array. An

embodiment of the method includes storing data representing a sequence of a predetermined

WO 2014/039210 PCT/US2013/054340

number of adjacent elements along a first dimension of the array into corresponding successive
adjacent memory locations of a first region of the data memory. The method further includes
storing data representing adjacent sequences, along a second dimension of the array, of the
predetermined number of elements into corresponding successive adjacent memory locations of
successive adjacent regions of the data memory. The number of adjacent sequences, including the
first sequence, represented by data stored in regions of the first data memory is the same as the
number of regions in the first data memory. In an embodiment, the first sequence and adjacent
sequences are portions of respective columns of the two-dimensional array. In a further
embodiment, the first sequence and adjacent sequences are entire respective columns of the array.
In an additional embodiment, the method further includes storing additional adjacent sequences
into corresponding successive adjacent memory locations of successive adjacent regions in
additional partitioned data memories. In such an embodiment, the data memories are all are
arranged side by-side along a direction substantially perpendicular to a direction along which the
data memories are partitioned into regions.

[0028] The systems, processors and methods described herein are applicable to programmable
image and vision processing that efficiently employ up to 4096 datapaths operating in parallel.
The processors preferably execute a sequential program written in a high-level language.
Datapaths may be allocated in the granularity of a single datapath, depending on application
requirements. In an embodiment, the techniques described herein can be adopted to any existing
instruction set and C++ compiler. The datapaths may implement full sharing of visual data, across
any span of an image or video frame, with an effect analogous to fully interconnected, point-to-
point links supporting zero-cycle latency and full coherency. Computation can also include global

shared data, lookup tables, and histograms, shared across all datapaths.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The following detailed description of various disclosed embodiments makes reference to
the accompanying drawings in which:

[0030] Fig. 1 shows a typical still-image processing pipeline;

[0031] Fig. 2 shows the relative input and output context for image processing;

[0032] Fig. 3 shows a typical hardware processing pipeline;

[0033] Fig. 4 shows an ideal, but infeasible, programmable solution;

10

WO 2014/039210 PCT/US2013/054340

[0034] Fig. 5 illustrates the difficulty of parallel visual processing;

[0035] Fig. 6 shows prior-art approaches to parallel visual processing;

[0036] Fig. 7 shows selected components of a two-dimensional array processor, or “tile
processor;”

[0037] Fig. 8 shows a local group of tile processors;

[0038] Fig. 9 shows the organization of a tile interconnect routing unit;

[0039] Fig. 10 shows the organization of routing units into routing layers;

[0040] Fig. 11 shows the tile interconnect routing hierarchy;

[0041] Fig. 12 shows partitioning configurations of data memories within tile processors;

[0042] Fig. 13A shows the mapping of a scan-line of pixel data to data memories partitioned into
4 regions;

[0043] Fig. 13B shows the mapping of a two-dimensional array of pixel data to the data
memories of Fig. 13A.

[0044] Fig. 14 shows the mapping of a scan-line of pixel data to data memories partitioned into 8
regions;

[0045] Fig. 15 shows the mapping of a scan-line of pixel data to data memories partitioned into
16 regions;

[0046] Figs. 16A, 16B, 16C, 16D, and 16E shows how the tile interconnect routing is
determined;

[0047] Fig. 17A shows the organization of the master tile processor;

[0048] Fig. 17B shows an exemplary task interval executed by the processor described herein;
[0049] Figs. 17C and 17D illustrate a method of program execution by the master tile processor;
[0050] Fig. 17E illustrates a method of program execution by a tile processor;

[0051] Figs. 18A and 18B show how instruction sequencing avoids delays due to latency;
[0052] Figs. 19A, 19B, 19C, and 19D shows the timing of interconnect routes;

[0053] Fig. 20 shows an example of a dependency graph; and

[0054] Fig. 21 shows the timing of dependency resolution avoiding delays.

11

WO 2014/039210 PCT/US2013/054340

DETAILED DESCRIPTION

[0055] Certain terms are used throughout the following description and claims that refer to
particular system components. As one skilled in the art will appreciate, companies may refer to a
component by different names. This document does not intend to distinguish between components
that differ in name but not function. In the following discussion and in the claims, the terms
“including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to
mean “including, but not limited to... .” Also, the term “couple” or “couples” is intended to mean
either an indirect or direct electrical connection. Thus, if a first device couples to a second device,
that connection may be through a direct electrical connection, or through an indirect electrical
connection via other devices and connections.

[0056] The following discussion is directed to various embodiments of the systems, processors,
and methods described herein. Although one or more of these embodiments may be preferred, the
embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the
disclosure, including the claims. In addition, one skilled in the art will understand that the
following description has broad application, and the discussion of any embodiment is meant only
to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure,
including the claims, is limited to that embodiment.

[0057] Fig. 7 shows selected components of the basic processing element for a visual tile: the
term “tile” refers to a rectilinear region, or two-dimensional array, of pixels in a frame, that is
either 4, 8, or 16 pixels wide and up to 256 pixels high. Each processing element, or tile processor,
operates on a unique tile of pixels, with adjacent tiles mapped to adjacent tile processors. This
mapping is described further below following a description of the basic processor organization.
Although tile processing is described herein mainly for image processing applications, it should be
understood that the disclosed embodiments are believed to be suitable for any applications
involving data processing of two-dimensional data sets, particularly two-dimensional interrelated
data sets.

[0058] The tile processor 701 has many components in common with a conventional processor,
with the notable exception of having no instruction memory and no instruction fetch logic. The
depiction of Fig. 7 is intended to illustrate the non-conventional components of tile processor 701,
and is shaped so as to ease the depiction in Fig. 8 of grouping of multiple tile processors 701. The

arrangement of components of tile processor 701 may not reflect all interconnections between the

12

WO 2014/039210 PCT/US2013/054340

components. Except as stated otherwise herein, tile processor 701 includes the components of a
conventional processor (including, for example, power supplies), interconnected in the manner of a
conventional processor as is known in the art.

[0059] Instead of using conventional instruction memory and instruction fetch logic, tile
processor 701 uses instructions that are fetched by a master tile processor, described below, and
distributed using an instruction pipeline composed of serial instruction buffer, or I-Buffer, registers
700 that couple all tile processors to the same sequence of instructions. I-Buffer registers are
double-buffered, so that any stall that interrupts processing at the local tile processor need
propagate only to the tile processor providing the next instruction. For multiple stall cycles, the
stall is propagated by the adjacent processor to the next processor, and so on. The style of
instruction fetch avoids using a global signal to control stalling, which would not permit operating
a large number of tile processors at a high frequency, because of delays in propagating this signal.
[0060] Instructions received in I-Buffer 700 are decoded by decode logic 702, and operations are
performed on the contents of registers in banked register-file 708 by functional units 706, using
loads and stores to fetch operands and write results into partitioned data memory 710 (DMEM).
These are conventional processor features that will be familiar to one skilled in the art. Novel
features of the tile processor include the region state logic 704, the register-file banking mechanism
708, the data-memory partitioning mechanism 710, remote access logic 712, tile interconnect
network 714, and combinations of these. Network 714 is not shown as a discrete hardware block
because it represents a fully connected network that couples all tile processors to the DMEM of all
other tile processors. These components are described in detail below in the context of the system
organization.

[0061] Fig. 8 diagrams the tile interconnect for a local group of 4 tile processors, each organized
as shown in Fig. 7. The remote access logic 712 of each tile processor couples to local access
interconnect 800, which routes requests from any of the 4 tile processors to any of the others in a
single cycle. The remote access logic 802 concurrently determines whether any request is not
directed to a processor in the local group, and presents any such request to non-local tile
interconnect 804, which couples this non-local request to the ultimate destination. Local access
interconnect 800, remote access logic 802, and non-local tile interconnect 804 are specific levels of

interconnect network 714 shown in Fig. 7.

13

WO 2014/039210 PCT/US2013/054340

[0062] The construction of embodiments of the local access interconnect 800 and remote-access
logic 802 is detailed in Fig. 9. For clarity, only the remote access logic 712 of each of the
interconnected tile processors is shown in Fig. 9. The local access interconnect is implemented by
multiplexers (MUXs) 900-906, particularly by the first four inputs labeled 800 for cach MUX. As
can be seen in the figure, this fully couples a request or response from any tile processor to any
other tile processor in the group. The remote access interconnect 802 is implemented by MUX
908, which couples an outgoing non-local request or response to the non-local tile interconnect,
and by the fifth input to MUXs 900-906, which couples an incoming non-local request or response
from the non-local tile interconnect to the destination processor in the local group. Together,
MUXs 900-908 constitute a routing unit 910, which can route 4 local requests and one non-local
request in a cycle. In the embodiment of Figs. 8 and 9, the four tile processors in the local group of
Fig. 8 correspond to the four inputs of remote access multiplexer 908 in Fig. 9.

[0063] Continuing in Fig. 10 with the embodiment of Figs. 8 and 9, routing units 910 are
combined hierarchically into a routing layer 1004. The routing layer includes 5 identical instances
of routing unit 910, with 4 instances routing local and non-local accesses (requests or responses) as
shown in Fig. 9, referred to as a routing level, and a fifth instance routing the 4 non-local accesses
from the first 4 instances, referred to as a next routing level. This next level, in turn, can couple
accesses from the first level to another of the routing units at the first level, analogous to a local
request, or can determine that the access should be coupled to some higher routing layer. These
non-local accesses at the next layer are placed in access buffers 1000 and 1002: buffer 1000 buffers
outgoing accesses, and buffer 1002 buffers incoming accesses. Registers 1000 and 1002 are
double-buffered, analogous to I-Buffer registers 700 shown in Fig. 7, so that stalls need only be
propagated one more level rather than globally.

[0064] As illustrated by Fig. 10, the configuration of routing layer 1004 can route 16 accesses
local to the routing layer, and one access non-local to the routing layer, in a single cycle. Although
it might seem that the non-local bandwidth is insufficient given so many possible local accesses, it
should be appreciated that, because of the I-Buffer registers 700, tile processors execute the
corresponding access instructions offset by a cycle, and so present their accesses to the routing
level one at a time. The demand for access routes is therefore evenly distributed in time.

[0065] Fig. 11 illustrates how routing units 910 in the embodiment of Figs. 8-10 are structured to

implement fully-coupled access between any pair of tile processors. The combination of local

14

WO 2014/039210 PCT/US2013/054340

interconnect 1100, level 1 interconnect 1102, and level 1 access buffer 1104 includes 256 instances
of the routing layer 1004. This includes 1024 instances (“1024x”) of routing unit 910 for the local
routing, 256 instances (“256x’’) of routing unit 910 for the level 1 interconnect, and 256 instances
of access buffers 1000 and 1002 for non-local accesses to and from the level 1 interconnect.
Correspondingly, the combination of level 2 interconnect 1106, level 3 interconnect 1108, and the
level 3 access buffer 1110 includes 16 instances of routing layer 1004, with the number of
instances of routing unit 910 (for interconnects 1106 and 1108) and access buffers 1000 and 1002
(for buffer 1110) shown in the figure. The top level, combining level 4 interconnect 1112, level 5
interconnect 1114, and level 5 access buffer 1116, includes a single instance of routing unit 1004.
A non-local request at level 5 is directed either to system interface 1120 for coupling data to the
rest of the system, or to global table random-access memory (RAM) 1118 for coupling data in
tables that are shared by all tile processors. This RAM 1118 stores global parameters, lookup
tables, and histograms for recording the frequency of various data values, for example to record the
overall brightness of an image.

[0066] It should be understood that Figs. 8-11 illustrate just one embodiment of the hierarchical
interconnect routing configuration used by the two-dimensional data processing systems described
herein. The routing configuration is hierarchical and multiplexer-based, so that a particular tile
processor can be selected using a tile processor index having an appropriate number of bits, as
discussed further below. Details such as the number of interconnect levels employed and size of
the multiplexers (i.e., number of multiplexer inputs), however, may be varied by one of skill in the
art based on cost and/or performance requirements of a particular application. Other
modifications and enhancements may also be employed by one of ordinary skill in the art. For
example, multiple copies of routing units and/or buffers may be included at selected points in the
routing configuration, to widen datapaths and reduce contention.

[0067] As should be understood from the exemplary embodiment of Fig. 11, the tile interconnect
comprised of routing and buffering units 1100-1116 implements full coupling of accesses from any
tile processor to the DMEM of any other tile processor. Since each routing layer consists of two
levels of multiplexing between access buffers, transfers over this interconnect are generally not
timing-critical. This interconnect timing tolerance is one component of an implementation that
supports distributed visual processing across a large number of tiles. Other components include: 1)

a mechanism to address and route accesses across the interconnect; 2) a mechanism to avoid the

15

WO 2014/039210 PCT/US2013/054340

latency of the interconnect, in number of cycles, from slowing the execution of tile programs; and
3) a coherency mechanism to ensure that accessed data is correct, which requires both that a value
is not accessed unless it has been validly computed, and that the value is not over-written before it
is accessed by all processors that require it. These three components are discussed in turn below.
[0068] The basis for addressing and routing over the tile interconnect is the partitioning of the
DMEM 710 shown in Fig. 7. Three exemplary configurations of this partitioning are shown
conceptually in Fig. 12. DMEM 710 is partitioned into regions of identical size, for example using
a base address register setting for accesses relative to a given region. Each region contains a
vertical set of pixels in a tile (i.e., a column of pixels in a two-dimensional array), and adjacent
regions comprise the horizontal dimension of a tile (along a row of a two-dimensional array).
Programs operate within a single region at a time, but repeat sequentially through the regions, and
therefore horizontally across the tile. The number of regions is a power of two, corresponding to
the width of the tile, and in the embodiments of Fig. 12 the regions are numbered sequentially with
hexadecimal numbers: configuration 1200 has 4 regions, numbered 0-3; configuration 1202 has 8
regions, numbered 0-7; and configuration 1204 has 16 regions, numbered 0-F. Depending on the
memory requirements of the program, there can be additional memory not required to be allocated
to regions. This memory can comprise a common spill/fill area 1206 used by all programs for
temporary values: this avoids duplicating this memory in all regions.

[0069] To clarify the mapping of pixels to regions, Fig. 13A, Fig. 14, and Fig. 15 show the
mapping of adjacent pixels in a scan-line to corresponding regions in adjacent tiles for
configurations 1200, 1202, and 1204, respectively. A number of pixels in a tile are mapped to the
corresponding number of regions, so that the horizontal dimension is partially mapped vertically
within DMEM 710 of each tile processor. It should be understood that the vertical dimension of
the frame is mapped directly within each region so that, for example, pixels at the same horizontal
location, but in the vertical direction, are within the same region. This mapping of two-
dimensional pixel data is shown in Fig. 13B. Execution is parallel between pixel tiles, but serial
within each tile, as discussed further below.

[0070] Creating an access between regions involves two addressing steps, one using an index to
specify the horizontal location of a pixel, and a second using an index to specify the vertical
location. One skilled in the art will recognize that this form of addressing is performed identically

to the addressing used to access two-dimensional arrays in single processors. Conventionally,

16

WO 2014/039210 PCT/US2013/054340

these two index dimensions are combined into a one-dimensional address, by multiplying one
index by one of the two array dimensions (either number of rows or number of columns), and
adding the second index. The final result is added to a base address for the array. The reason for
this is that the two-dimensional array is allocated to a sequential set of addresses in a linear
memory. By contrast, in the processors described herein, these address components remain
separate. The horizontal index locates a tile and a column location within the tile, corresponding to
a region, and the vertical index locates a memory location within the region, relative to the base
address of the region and the location of the pixel values within the region.

[0071] The horizontal index alone is used to route accesses over the tile interconnect. Figs. 16A,
16B, 16C, 16D, and 16E provide examples of how this index is interpreted to perform this routing
in the case of the routing configuration embodiment of Figs. 8-11. In Fig. 16A, the horizontal, or
column, index is represented by 16-bit value 1606. This value is interpreted as shown by index
1600 in Fig. 16B, index 1602 in Fig. 16C, or index 1604 in Fig. 16D, depending on whether the
region configuration is 1200, 1202, or 1204 in Fig. 12, respectively. In each case, a number of
least-significant bits is used to select a region number, with the number of bits being sufficient to
select all regions configured: 2, 3, or 4 bits for 4, 8, or 16 regions respectively. Region index 1610
in Fig. 16B therefore has 2 bits, region index 1612 in Fig. 16C has 3 bits, and region index 1614 in
Fig. 16D has 4 bits.

[0072] The next 12 more-significant bits in each horizontal index form target processor index
1616. Target processor index 1616 identifies one of the 4096 tile processors connected by the
routing configuration of Figs. 8-11, since adjacent tile processors correspond to adjacent tiles of
pixels (this can result in one or two bits in the horizontal index being unused, as shown for
horizontal indexes 1600 and 1602). For example, the leftmost tile in a frame corresponds to tile
processor 0, the next tile to tile processor 1, and so on. These 12 bits form the target tile processor
number, and directly determine the route of an access over the tile interconnect, as shown by the
breakdown of this field for horizontal index 1608 in Fig. 16E. Target processor index 1616
includes six 2-bit routing level fields 1618 corresponding to routing levels, with higher significance
bits corresponding to higher routing levels, labeled “local,” “L.1,” etc. in the figure. At any level,
the 2-bit field 1618 forms the MUX selects for the local access interconnect, corresponding to
MUX inputs 800 for MUXs 900-906 in Fig. 9. Two-bit fields are sufficient for addressing the four
inputs of MUXs 900-906, but more bits would be required for embodiments using larger

17

WO 2014/039210 PCT/US2013/054340

multiplexers. The more significant bits, relative to any 2-bit field 1618, are used to decode, in
remote access logic 802 shown in Figs. 8 and 9, whether the access is local or non-local. For
example, the first four tiles from the leftmost position have zeros in all fields L1-L5. If any of
these fields is non-zero, the access is non-local to this group: in this case, the L1 field is used by the
level 1 routing for its local access interconnect, if the access is within its hierarchy, as determined
by fields L2-L5 having zero values. If any of the fields L2-L5 is non-zero, the access is non-local
to level 1, and it is presented to the level 1 access buffer 1000 shown in Fig. 10.

[0073] It should be understood that this process continues, using successively higher-order fields
of the target tile processor number, to route accesses throughout the hierarchy shown in Fig. 11, up
to and including level 5 interconnect 1114. At this level, the type of instruction that initiated the
access is used to distinguish an access that is local to level 5, which is identified by an access to
any other tile processor, or that is non-local to level 5, which is identified by an access to the global
table RAM 1118 or system interface 1120. This indication of instruction type is implemented
through a separate signal from the horizontal index, using any of the signaling methods known to
those of ordinary skill in the art of processor design.

[0074] Returning to the case of tile processor access requests, once the target tile processor index
is routed to the interconnect level having a routing unit that can access the target tile processor, no
more decoding is required for the access request, and the bits in the routing level fields function as
inputs to the multiplexer at the corresponding routing level. In this manner, access requests are
routed from higher levels to lower levels of the hierarchy. For example, a local route at level 5
uses the “L5” bits in horizontal index 1608 to form the MUX selects corresponding to MUX inputs
800 for MUXs 900-906 in Fig. 9 (with the understanding that this routing unit 910 is the routing
unit for level 5 instead of for a local group as shown in the figure). This couples the access to the
level 4 routing unit as a remote access input, and at that point the “L4” bits in 1608 select which
one of the MUX inputs, corresponding to the remote access inputs in remote access logic 802 in
Fig. 9, are selected to level 3. This couples the access to the selected incoming access buffer 1002,
shown in Fig. 10, for level 3, which is one of the 16 instances of access buffer 1110 in Fig. 11. At
that point, the process continues using successively lower-order fields of the target tile processor
number, to route accesses throughout the hierarchy to the ultimate destination tile processor. At
that tile processor, the region number selects the base address for the access, which is added to the

vertical index of the access to access data in DMEM. Store accesses write data accompanying the

18

WO 2014/039210 PCT/US2013/054340

access into the DMEM. Load accesses are accompanied by a return index, identifying the tile
processor and region that performed the access. The addressed data is read from DMEM, and
returned to the source of the access, using the routing process just described. Data received at the
source of the access is written into banked register file 708, shown in Fig. 7, specifically into the
register identified by the original load instruction, and into a specific register bank associated with
the source region. The banked register file includes an identical set of registers for each region,
used independently by region, so the load data is written into a register unique to that region.
[0075] Having described the tile interconnect addressing and routing mechanism, and turning
now to the performance issues raised by the latency of load accesses over this interconnect, it will
be obvious to one skilled in the art that the number of cycles taken for the access request to traverse
the tile interconnect, in addition to the number of cycles taken for the data response to traverse the
tile interconnect, is much greater than that of a conventional load, which is typically one cycle.
These cycles delay the execution of any instruction that requires the data accessed by the load, by
approximately the same number of cycles. Because these loads are relatively frequent, likely on
the order of 20% of all instructions, an additional 5 cycles would double the number of cycles
taken by the program. This represents a significant degradation, avoided in the systems described
herein by introducing a novel form of instruction sequencing that places a wide separation in time
between a load instruction and any subsequent instruction that depends on data accessed by the
load operation.

[0076] This instruction sequencing is implemented by a master tile processor 1701, shown in
Fig. 17A connected to a first instance of tile processor 701. The first of tile processors 701 is in
turn connected to the next tile processor, in the manner shown in Fig. 8, and continuing through the
entirety of the interconnected tile processor group. For the routing configuration shown in Figs. 8-
11, this would include up to 4096 tile processors in all. A sequence of instructions executed by
master tile processor 1701, called a task interval, is shown in Fig. 17B. The un-numbered
components of tile processor 701 are the same as for other tile processors shown in Fig. 7;
numbered components are unique to the master tile processor. These include: instruction memory
(IMEM) 1700, instruction fetch logic 1702, program counter (PC) MUX 1704, instruction MUX
1706, a register for storing a first task instruction 1710, and a register for storing the PC of a
second task instruction 1712.

19

WO 2014/039210 PCT/US2013/054340

[0077] In the task interval instruction sequence of Fig. 17B, the first task instruction 1714 is to
be loaded into first task instruction register 1710. The program counter value for second task
instruction 1716 is for loading into second PC task instruction register 1712. Instruction execution
by master tile processor 1701 and its associated tile processor array is described in more detail in
connection with the flowcharts of Figs. 17C and 17D.

[0078] The flowchart of Figs. 17C and 17D illustrates an embodiment of a process of program
execution by master tile processor 1701. To begin a program, the instruction fetch logic 1702
fetches the first instruction of the program (step 1720 in Fig. 17C), selecting the “Branch PC” input
to MUX 1704 and applying the address of the first instruction (this is conventional operation for
any processor). The instruction MUX 1706 selects the instruction accessed from IMEM 1700 to
the I-Buffer register of the first tile processor (step 1722 of Fig. 17C), where it is decoded and
executed. Execution by the tile processors 701 is described in more detail below in connection
with the flowchart of Fig. 17E. At the same time the instruction is decoded, it is also conveyed to
the I-Buffer of the next adjacent tile processor, which in turn decodes it and also conveys it to the
next adjacent processor. In this manner, all tile processors execute the same sequence of
instructions, but offset by a cycle in each successive tile processor.

[0079] When this first instruction is placed into the I-Buffer, it is placed at the same time into the
first task instruction register 1710 (step 1724 of Fig. 17C). On the next cycle, the instruction fetch
logic 1702 selects the next incremental PC, “PC+1,” at PC MUX 1704, accessing the next
sequential instruction (step 1726 of Fig. 17C) while the first is decoded and conveyed to the
adjacent tile processor. At the end of this cycle, the value for “PC+1” is placed into the second
task instruction PC register 1712 (step 1728 of Fig. 17C). The second instruction is also sent to the
I-Buffer register of the first tile processor for execution (step 1730 of Fig. 17C). The combination
of the instruction stored in register 1710 and the PC stored in register 1712 permits the instruction
fetch logic 1702 to restart the execution of the task interval by selecting register 1710 at MUX
1706 into the I-Buffer and, on the next cycle, selecting register 1712 as the PC for the next
instruction to be fetched.

[0080] The end of a task interval is defined by an instruction that requires a remote access that is
intended to be performed using the tile interconnect, including accesses between regions, and
system and table accesses at level 5. This is indicated as “Inst M” in Fig. 17B. The master tile

processor detects such instructions during the decode cycle (decision block 1732 of Fig. 17C), and,

20

WO 2014/039210 PCT/US2013/054340

if such an instruction is detected (“yes” result of block 1732), this is indicated to the instruction
fetch logic, causing it to select register 1710 as the next instruction, which restarts the task interval
with the first instruction. This corresponds to steps 1744 and 1746 of the portion of the flowchart
shown in Fig. 17D, On the next cycle, register 1712 is used to access the second instruction in the
task interval (step 1748 of Fig. 17D), and from that point execution is sequential until execution
again reaches the final instruction in the interval, at which point the task interval is executed again.
This execution corresponds to the “no” branch of decision block 1732 in Fig. 17C, including steps
1734, 1736, and 1738 of Fig. 17D.

[0081] Each repeated task interval is distinguished by being executed using a different set of
data, using a unique region of DMEM and a unique bank of registers in the register file, starting
with region 0 and progressing with sequentially numbered regions. In the embodiment of Figs.
17C and 17D, this execution over sequential regions is effected by incrementing a region counter
when the end of a task interval is reached (step 1740 of Fig. 17C). This effectively iterates the task
interval horizontally across the tile, which is required for correct operation because the program
must be executed at every horizontal location. This iteration continues until the task interval
completes in the highest numbered region in the configuration (decision block 1742 in Fig. 17C).
At that point, “PC+1” is selected at MUX 1704 (step 1752 in Fig. 17C) and instruction execution
proceeds sequentially at the instruction “Next1.” This is the beginning of the next task interval,
and the process of setting registers 1710 and 1712 repeats so that this task interval also can be
restarted when the end of the interval is detected. This style of instruction sequencing continues to
the end of the program (“yes” branch of decision block 1750 in Fig. 17C). Steps 1754 through
1762 in Fig. 17C implement an embodiment of the coherency mechanism discussed further below.
[0082] Because the master tile processor determines the instruction sequence for all tile
processors, all tile processors execute the same iteration across regions. This iteration over regions
lengthens the program execution time, but not in a way that decreases throughput, because the
additional cycles are distributed over additional results. For example, iteration over 4 regions
produces 4 sets of intermediate results, having the same throughput of a single iteration of the
program (4/4=1).

[0083] However, this iteration has the beneficial effect of widely separating a load over the tile
interconnect from a use of the data accessed by the load, as illustrated in Fig. 18 A. The figure

represents the execution of two task intervals, task interval 1800 (“a”) and task interval 1802 (“b”).

21

WO 2014/039210 PCT/US2013/054340

All intervals 1800 are the same sequence of instructions, as are intervals 1802, and so are
numbered the same. As already described, these task intervals are repeated across all regions (4
regions in this example), and across two adjacent tile processors “N”” and “N+1,” with time
progressing vertically in the figure. Execution of the task interval in different regions is identified
as “a-0” through “a-4” and “b-0” through “b-3,” representing execution in regions 0-3 in each tile
processor. Execution of the same task interval in adjacent tile processors is offset by one cycle due
to the distribution of instructions via I-Buffers 700, Fig. 7. Task interval 1800 ends with a remote
load (“load”) that defines the end of a task interval. Task interval 1802 begins with an instruction
that uses the data loaded (“use”).

[0084] Fig. 18A provides a spatial representation of adjacent tile processors and their respective
data memory regions. A time-based representation of the same instruction executions, as shown in
Fig. 18B, may also be helpful. In Fig. 18B, the y-axis shows the region of a tile processor’s data
memory that instructions are being executed in, while the x-axis shows clock cycles. The upper
plot is for a tile processor N, and the lower plot for an adjacent tile processor N+1. The plotted
diagonal line represents moving through a task interval 1800 of 4 instructions while acting upon
the appropriate data in region 0 of the data memory of the tile processor, then executing the same
set of instructions in regions 1, 2, and 3 of the data memory sequentially. When the “load’
instruction at the end of task interval 1800 is executed in all 4 regions, the next set of instructions
(task interval 1802) begins executing back in region 0. The same sequence occurs for tile
processor N+1, except that it is one clock cycle behind the execution in tile processor N. Fig. 18B
assumes that for this embodiment each instruction requires one clock cycle, and that there are no
clock cycles associated with beginning execution in a new region of the data memory, or with
beginning execution of a new set of instructions.

[0085] The task intervals in the embodiment of Figs. 18A and 18B are 4 instructions long.
Actual task intervals are typically longer, but software optimization can ensure that task intervals
have a minimum length, such as 4 instructions long. This is possible because a compiler can
determine the types of instructions that end task intervals, and perform code motion optimizations
that cause the task interval to contain a desired number of instructions. As can be seen from the
figure, use of task intervals at least 4 instructions long separates a remote load from the use by at
least 12 cycles (4 cycles in each of 3 other regions). This is illustrated by interval 1804 in Fig.

18B, representing the time between execution of a load instruction in region 0 of tile processor N

22

WO 2014/039210 PCT/US2013/054340

and use of the loaded data during subsequent instruction execution in the same region. Thus, if the
load operation completes in 12 cycles, there is no delay in instruction execution for the instruction
that uses this data. It should also be clear that the time available increases with the number of
regions, so that, with 8 regions, the load can complete in 28 cycles (4x7), and, with 16 regions, it
can complete in 60 cycles (4x15).

[0086] To illustrate that the timing shown in Fig. 18, which represents a worst case minimum in
terms of the required access latency for execution of task intervals that are 4 instructions long, is
sufficient to prevent remote accesses from delaying program execution, Fig. 19 shows the number
of cycles required for various routing paths through the tile interconnect. The number of cycles
required depends on the level of interconnect required to perform the routing, including the cycles
to route the request to the target tile processor, the cycle to access DMEM at that target, and the
cycles to route the data response. Fig. 19A shows the sequence 1900 of cycles needed for an
access that can be routed over the local and level 1 interconnect: from the time the load is executed
in cycle 1, one cycle is taken for each of the following: local and level 1 request route, DMEM
access, local and level 1 response route, and register write. As the register is written, the data can
also bypass the register file and be used for execution, so only three intervening instructions are
required in cycles 2-4, inclusive, to avoid delaying program execution. Sequence 1902 in Fig. 19B
is for an access that can be routed over the level 2 and level 3 interconnect, adding 4 cycles over
those required by sequence 1900 to traverse the additional levels, for a total of 7 intervening
instructions required to avoid delay.

[0087] Sequence 1904 in Fig. 19C is for a global RAM access, which includes routing over level
4 and level 5, also adding 4 cycles over the number in sequence 1900 and requiring 7 intervening
instructions. Finally, sequence 1906 in Fig. 19D is for the worst case of needing all levels to route
both request and response. This adds 4 cycles over those required by sequence 1902 and requires
11 intervening instructions to avoid delay. Since iteration of task interval execution across tile
processor data memory regions provides at least 12 intervening instructions, as can be seen from
Fig. 18, and since 11 are required for the operation of Fig. 19D, the access can be performed using
the tile interconnect without delaying program execution due to latency even in the worst case. If
more regions are used, the timing is less critical, because this provides even more intervening

instructions: 28 for 8 regions and 60 for 16 regions.

23

WO 2014/039210 PCT/US2013/054340

[0088] Turning now to the issue of coherencys, it is not sufficient to be able to route accesses
over the tile interconnect and to prevent the latency of a load access from delaying program
execution. The execution of tile processors is offset by the I-Buffers and by iteration across
regions. There must be some mechanism to ensure that data accessed by a load is the data that
would be written by the store most recently preceding the load in serial instruction execution, and
not some earlier store or a store that follows the load. In other words, the requested data must not
only arrive in time to be used in the requesting operation, but it must be the correct data. This
hypothetical serial sequence of stores and loads must be effectively reconstructed by a coherency
mechanism even though tile execution is not serial.

[0089] The operation of the coherency mechanism can be described by a dependency graph, an
example of which is shown in Fig. 20. In the graph, data in memory is represented by blocks
2000-2004: blocks 2000 and 2002 represent data in system memory, and block 2004 represents
data retained in the tile processor DMEM. The graph nodes (circles) 2006-2016 represent
instruction operations (this is conventional notation for dependency graphs). Instruction inputs are
represented by incoming arrows at the top of a node, labeled “use,” and output is defined by an
outgoing arrow at the bottom of a node, labeled “def” (for “define a value”). An arrow from one
node to the next is an arc, and indicates that the result value defined by the outgoing arrow is used
as an input operand value for the incoming arrow: the arc defines a dependency between the result
and operand values.

[0090] All tile processors execute the same instruction sequence, so the dependency graph is the
same for all processors: only the data values are different. Fig. 20 shows three tile processors,
labeled N, M, and P, which are not necessarily adjacent and can contain data located anywhere
along the horizontal dimension of an image frame (or other two-dimensional array). This
emphasizes that the dependency graph can cross any span of tile processors, illustrating the nature
of the problem to be addressed by the coherency mechanism. Some dependency arcs are local to
the tile processor, such as the arcs in tile processor N from node 2006 to 2012, from 2010 to 2012,
and from 2012 to 2016. Other arcs are non-local, such as from node 2014 in execution by tile
processor M to node 2016 in execution by tile processor N, and from node 2008 in execution by
tile processor P to node 2010 in execution by tile processor N. This example focuses on the
dependencies of tile processor N for clarity, but it should be understood that all tile processors in

the embodiment of Fig. 20 would have dependencies corresponding to those numbered.

24

WO 2014/039210 PCT/US2013/054340

[0091] An observation essential in understanding the coherency mechanism is to recognize that a
defining instruction for a remotely-accessed value occurs within the same task interval for every
tile processor and region, because this instruction defines the end of the interval, and every region
executes the same instruction sequence. Furthermore, since every task interval sequentially
follows a previous task interval, task intervals can be identified using a counter that increases when
a task interval has executed in all regions, starting with the value 0 at the beginning of a program.
This is referred to as the task ID for the task interval.

[0092] Another observation essential in understanding the coherency mechanism is that visual
data, since it is shared, has two properties that apply to any shared data, even for the simple case, in
a single-processor system, of data shared between the processor and a peripheral device. The first
of these properties is that the data is written only once (“write-once”) during an iteration of a
program, analogous to data being written only once during serial output to a peripheral. Without
this property, it would be impossible to share data between iterations, which is required for sharing
data in the vertical dimension (since program iteration is in the vertical dimension). For example,
if the memory location containing retained data 2004 in Fig. 20 were written twice, only the value
of the second write would be preserved for subsequent iterations, and the first cannot be shared
correctly with subsequent iterations. This is supported by typical processing pipelines (see, e.g.,
the process of Fig. 1), because data is buffered between processing stages, and is written by one
stage as output and read by another as input. The second property is that shared data is volatile,
meaning that data values must be reflected in DMEM and cannot be communicated between
instructions via processor registers only, analogous to the requirement that output data to a
peripheral must be written to the peripheral.

[0093] The write-once property ensures that there is only one value defined in the dependency
graph for any number of uses. Furthermore, the volatile property ensures that there is a store in
every tile processor and every region corresponding to each defined value, even though the defined
values are different. Taken together with the fact that these stores are performed in a uniquely
numbered task interval, the following must apply: any arc in the dependency graph can be uniquely
identified by task ID, there is one and only one store instruction with this task ID, and every
processor has the same task ID for the same corresponding store instruction even though it is

executed many times across tile processors and regions.

25

WO 2014/039210 PCT/US2013/054340

[0094] Turning back to Fig. 17, the master tile processor contains a scalar control RAM 1708
which was not previously described. Also, turning back to Fig. 7, each tile processor contains
region state logic 704 which was not previously described. Scalar control RAM 1708 (with
associated control logic 1714) and region state logic 704 together implement the coherency
protocol. The scalar control RAM contains scalar data associated with visual data (or other two-
dimensional data elements). In an embodiment of the system described herein, the visual data is
represented by objects in the C++ programming language, and these objects contain both scalar
information, such as the dimensions of the object and addressing variables, as well as vector
information that is the visual data representing pixels and related data. Scalar information is
contained only in the scalar control RAM of the master tile processor; vector information is
distributed across the DMEM of the tile processors. The relationship between the two is that the
scalar data includes an address pointer to the visual data, in the DMEM of all regions, representing
an offset from the base address of each region.

[0095] This provides a mechanism for associating stores, which define values in the dependency
graph, with loads that use these values. When a visual object is written by a store, this store is first
performed in region 0 of the first tile processor. Concurrently with writing the visual vector data
(which is a scalar in this region, one of many values in the vector), the master tile processor writes
a task ID variable of the object in the scalar control RAM 1708: this variable is unique to each
instance of an object, and records the task ID of the task interval that performs the store to the
object. Because the store will be executed in all regions of the DMEM before execution of any
subsequent instruction using the stored data, this writing of the task ID can be performed just once,
after the store is executed in the final region of the DMEM. This process is shown by steps 1760
and 1762 in the embodiment of Fig. 17C. When a visual object is read by a load, the master tile
processor reads this task ID variable, and associates it with the load instruction that is distributed to
all tile processors and executed in all regions. This association of a load instruction with its task ID
is done for each remote load instruction, as implemented by steps 1754 through 1758 in the
embodiment of Fig. 17C.

[0096] In the tile processors, the region state logic 704 maintains two values: one that identifies
the current task ID of the instructions being executed, and another that contains binary values
indicating which regions have completed the corresponding task interval. A flowchart illustrating

an embodiment of a process for program execution by a tile processor is shown in Fig. 17E. While

26

WO 2014/039210 PCT/US2013/054340

decoding an incoming instruction from the I-buffer, the tile processor also conveys the instruction
to the I-buffer of the adjacent tile processor (steps 1782 and 1784 of Fig. 17E). The tile processor
executes the incoming instructions until a remote access instruction causes the end of a task
interval (shown in steps 1768 and 1770). When a task interval completes in a region of the
DMEM, a record is kept of which regions the task interval has completed in (step 1772). In the
embodiment of Fig. 17E, a task ID counter is used in keeping this record. Execution of the same
task interval is then repeated in subsequent regions of the DMEM (steps 1774, 1776, 1768, and
1770), until the task interval has been executed in all regions (decision block 1776). At this point
the next instructions received from the master tile processor will be for the next task interval,
which is again executed over all regions.

[0097] The coherency requirement in the tile processors is maintained by a separate process of
handling remote requests from the remote interconnect. The criterion for a load meeting the
coherency requirement is that, at the tile processor and region that is the target of the load, the
region must have completed the task interval corresponding to the task ID associated with the load.
This is indicated by comparing the task ID of the load to the task ID completed by the region: the
task ID of the region must be greater than or equal to the task ID associated with the load. Since
this is the task ID of the task interval that performed the store, this criterion ensures that the target
region has executed beyond the point of the store, and that the region has been written with the
correct value.

[0098] Ifthis criterion is not met, the access is held in the target tile processor until it is met,
possibly creating an eventual stall. This stall can delay execution, but rarely does. This can be
seen by the example in Fig. 21. This diagram is similar to Fig. 18A, but shows the execution of
three tasks across 9 tile processors and 4 regions. Task interval 2100 (the same for all tile
processors, though shown only for tile processor N+8 for clarity) ends with a store that defines data
values. Task interval 2102 ends in a load that reads the values. Task interval 2104 (shown only
for region 0 in this example) begins with a use of the loaded value. Task intervals are shown to a
scale assuming 4 instructions in each interval. Because the adjacent tile processors execute the
same instructions one cycle apart, in the embodiment of Fig. 21 tile processor N+4 begins task
interval 2100 four cycles later than tile processor N, so that tile processor N+4 begins execution in
its region 0 at the same time that tile processor N+1 begins execution in its region 1. The arrows

labeled “L4/L5” and “L2/L3” represent dependency arcs for loads that traverse level 4 and level 5

27

WO 2014/039210 PCT/US2013/054340

of the tile interconnect, and loads that traverse level 2 and level 3, respectively. (Even though the
nine tile processors are adjacent, accesses between them could require multiple levels of
interconnect if the group of processors crosses a boundary between local groups of processors.)
The arcs represent the maximum span of access that results in no delay in execution. This span is
22 regions for an L4/L5 route, and 34 regions for an L2/L.3 route. Although not shown on the
figure for clarity, a local and level 1 route can span up to 64 regions. These spans correspond to
apron access of 22, 34, and 64 pixels respectively, which is much higher than typically required for
visual processing. It should also be appreciated that this span typically is much larger, because
stores, loads, and uses of load data typically are separated by many more instructions than shown
in the figure. Furthermore, this span is much higher for configurations with 8 or 16 regions.

[0099] The systems, processors, and methods described herein provide coupling of visual data
between tile processors, instruction sequencing to avoid performance degradation due to latency of
load accesses, and a coherency mechanism that also typically avoids performance degradation due
to data dependencies. The description provided herein is meant to be illustrative of the principles
and various embodiments of the present invention. Numerous variations and modifications will
become apparent to those skilled in the art once the above disclosure is fully appreciated. It is

intended that the following claims be interpreted to embrace all such variations and modifications.

28

WO 2014/039210 PCT/US2013/054340

WHAT IS CLAIMED IS:

1. A data processing system, comprising:
at least two data memories arranged side-by-side along a first direction, each data memory
partitioned along a second direction into at least two regions of identical size,
wherein the number of regions is a power of two, and wherein the second direction
is substantially perpendicular to the first direction;
data allocation circuitry adapted to:
receive digitally-coded data representing elements of a two-dimensional array;
store, into successive adjacent memory locations within a first region of a first data
memory, data representing a first sequence of a predetermined number of
adjacent clements along a first dimension of the array; and
store, into corresponding successive adjacent memory locations of respective
adjacent regions of the data memories, data representing adjacent
sequences, along the second dimension of the array, of the predetermined
number of adjacent elements along the first dimension of the array, wherein
the number of adjacent sequences, including the first sequence, represented
by data stored in regions of the first data memory is the same as the number
of regions in the first data memory, and wherein data stored in the regions
of the second data memory represents the same number of adjacent
sequences, and wherein sequences represented by data stored in
corresponding regions of adjacent data memories are displaced along the
second dimension of the array by a number of elements equal to the number
of regions in the first data memory;
instruction routing circuitry adapted to order execution of identical instructions upon data at
corresponding addresses in adjacent data memories, wherein execution of the same
instruction is offset by one clock cycle for each adjacent data memory along the
first direction;
at least two instruction execution units coupled to the respective at least two data memories

and adapted to receive from the instruction routing circuitry and execute

29

WO 2014/039210 PCT/US2013/054340

instructions for operations on the elements represented by the data stored in the
respective data memory; and

a master processor unit coupled via the instruction routing circuitry to all of the instruction
execution units; wherein the master processor unit is adapted to store, fetch and
distribute instructions for operations on the elements represented by the data stored

in the data memories.

2. The data processing system of claim 1, wherein the first sequence and adjacent sequences comprise

portions of respective columns of the array.

3. The data processing system of claim 1, wherein the number of regions in each data memory is four,
the number of adjacent sequences represented by data stored in each data memory is four, and sequences
represented by data stored in corresponding regions of adjacent data memories are displaced by four

elements along the second dimension of the array.

4. The data processing system of claim 1, wherein the number of regions in each data memory is
eight, the number of adjacent sequences represented by data stored in each data memory is eight, and
sequences represented by data stored in corresponding regions of adjacent data memories are displaced by

eight elements along the second dimension of the array.

5. The data processing system of claim 1, wherein the number of regions in each data memory is
sixteen, the number of adjacent sequences represented by data stored in each data memory is sixteen, and
sequences represented by data stored in corresponding regions of adjacent data memories are displaced by

sixteen elements along the second dimension of the array.
6. The data processing system of claim 1, wherein the elements of the data structure are of
varying type consistent with a format used to represent the array, and wherein data stored in corresponding

relative memory locations within different regions represents elements of the same type.

7. The data processing system of claim 6, wherein the elements of the array comprise image pixel

values.

30

WO 2014/039210 PCT/US2013/054340

8. The data processing system of claim 1, wherein the elements of the array comprise values of a
physical quantity.
9. A data processor, comprising:

a data memory partitioned into at least two regions of identical size, wherein the number of
regions is a power of two;

an instruction buffer for receiving program instructions;

processor logic adapted to execute the program instructions using data stored in the regions
of the data memory; and

remote access circuitry adapted to use a horizontal address component to specify the route
of a data access request between the data processor and any of a group of additional

interconnected data processors.

10. The data processor of claim 9, further comprising region state logic for storing an identifier of a

subgroup of program instructions being executed by the data processor.

11. The data processor of claim 10, wherein the region state logic is further adapted for storing an
indication of which regions of the data memory contain data used in executing a subgroup of program

instructions.

12. The data processor of claim 10, wherein the subgroup of program instructions comprises a task
interval ending with an instruction requiring movement of data between the data memory and a memory

location external to the data memory.
13. The data processor of claim 9, further comprising instruction routing circuitry adapted to decode an

instruction fetched from the instruction buffer and simultaneously convey the instruction to an instruction

buffer of an adjacent data processor.

31

WO 2014/039210 PCT/US2013/054340

14. A data processor, comprising:
an instruction memory for storing program instructions to be executed,;
instruction routing circuitry adapted to decode an instruction fetched from the instruction
memory and simultaneously convey the instruction to an instruction buffer of an
adjacent data processor; and
execution control circuitry adapted to repeatedly convey a subgroup of instructions to the
adjacent data processor, for execution using data stored in respective successive

regions of a partitioned data memory in the adjacent data processor.

15. The data processor of claim 14, wherein the subgroup of program instructions comprises a task
interval ending with an instruction requiring movement of data between the data memory and a memory

location external to the data memory.

16. The data processor of claim 14, further comprising a control memory adapted to store, for each
data element written to one of the regions of the partitioned data memory, a respective indicator of the

subgroup of instructions that executed the write of the data element.

17. A data processing system, comprising:

at least two identical data processors, each data processor including a data memory
partitioned into at least two identical regions and remote access logic for handling
data access requests between data processors;

a master processor adapted to convey a program instruction to a first data processor of the
at least two identical data processors for execution using data in one of the regions
of the data memory of the first data processor;

an instruction pipeline connecting the master processor and the data processors in series;
and

a data processor interconnect structure including a multiplexer corresponding to each of the
identical data processors, wherein an output of each multiplexer is coupled to an
input of the respective remote access logic of each data processor, and wherein
outputs from the respective remote access logic of a local group of the data

processors form inputs to each multiplexer.

32

WO 2014/039210 PCT/US2013/054340

18. The system of claim 17, wherein the number of data processors in the local group is the same as
the number of inputs handled by each of the multiplexers, and wherein each of the multiplexers has a

single output.

19. The system of claim 18, wherein the interconnect structure further includes an additional remote
access multiplexer for each local group of data processors, the remote access multiplexer having a single
output and the same number of inputs as the number of data processors in the local group, and wherein the
outputs from the respective remote access logic of the local group of data processors are connected to the

inputs of the remote access multiplexer.

20. A method for storage of data into partitioned identical regions of a data memory, wherein the data
represents elements of a two-dimensional array, the method comprising:
storing data representing a sequence of a predetermined number of adjacent elements along
a first dimension of the array into corresponding successive adjacent memory
locations of a first region of the data memory;
storing data representing adjacent sequences, along a second dimension of the array, of the
predetermined number of elements into corresponding successive adjacent memory
locations of successive adjacent regions of the data memory, wherein the number of
adjacent sequences, including the first sequence, represented by data stored in
regions of the first data memory is the same as the number of regions in the first

data memory.

21. The method of claim 20, wherein the first sequence and adjacent sequences comprise portions of

respective columns of the array.

22. The method of claim 21, wherein the first sequence and adjacent sequences comprise entire

respective columns of the array.
23. The method of claim 20, further comprising storing additional adjacent sequences into

corresponding successive adjacent memory locations of successive adjacent regions in additional

partitioned data memories, where all of the data memories are arranged side by-side with the data memory

33

WO 2014/039210 PCT/US2013/054340

along a direction substantially perpendicular to a direction along which the data memories are partitioned

into regions.

24. A method of program execution by a master processor coupled to at least two data processors,
wherein each data processor includes a data memory partitioned into a number of identical regions, said
method comprising:
fetching a first instruction from an instruction memory in the master processor;
conveying the first instruction to an instruction buffer of a first data processor of the at least
two data processors, for execution using data in a first region of the data memory of
the first data processor;
determining whether execution of the first instruction by the first data processor requires
movement of data between the data memory of the first data processor and the data
memory of a different data processor; and
if execution of the first instruction does not require movement of data between the first data
processor and a different data processor, continuing to fetch and convey to the
instruction buffer subsequent instructions until determining that a conveyed

instruction requires said movement of data between data processors.

25. The method of claim 24, further comprising:

upon determining that execution of the conveyed instruction does require movement of
data between the first data processor and a different data processor, retrieving the
first instruction, and conveying the first instruction to the instruction buffer of the
first data processor, for execution using data in a consecutive adjacent region of the
data memory of the first data processor; and

repeating, for each adjacent region of the data memory in the first data processor,
conveyance of a sequence of instructions ranging from the first instruction through
the instruction requiring said movement of data between data processors, for

execution using data stored in the respective region.

34

WO 2014/039210 PCT/US2013/054340

26. A method of program execution by a data processor coupled to at least one identical data processor
and to a master processor, wherein the data processor includes an instruction buffer and a data memory
partitioned into at least two identical regions, the method comprising:
receiving a program instruction in the instruction buffer;
simultaneously decoding the program instruction and conveying the instruction to an
instruction buffer of an adjacent identical data processor;
executing the program instruction using data in a first region of the data memory;
determining whether execution of the instruction requires movement of data between the
data memory of the data processor and a data memory of a different data processor;
and
if execution of the instruction does not require movement of data between the data
processor and a different data processor, continuing to execute subsequent
instructions received in the instruction buffer using data in the same region of the
data memory, until determining that an executed instruction requires access to said

movement of data between data processors.

27. The method of claim 26, further comprising:
upon determining that an executed instruction does require movement of data between the
data processor and a different data processor, applying execution of the next
instruction received to data stored in the next adjacent region of the data memory;
and
repeating, for each adjacent region of the data memory, execution of a sequence of
instructions ending with the instruction requiring said movement of data between

data processors, where the execution uses data stored in the respective region.

35

PCT/US2013/054340

WO 2014/039210

1/28

| ‘Bi

801
mding ANA

mwh..%hﬂ.n“um 8asyeyug aoueyuy HaauoD
asie 1senuon abpx3 ANA-89Y
uoidaLIoD Buipuag Aeiry
elesy 894 a3l 40103
901 P 201
aouejeg uononpsy wswsnipy
UYAA BSI0N [ane7 }oeig

(o e) o) e,) [M)

induj 1efeg

WO 2014/039210 PCT/US2013/054340

2/28
pa
)
o)
[asi hosd
B z
3 ~—
o T
o =z =3
? =
o =
s O
w0
N
J --l ‘III: .
N N Sa ko2
N Li.
<t
<
N

202

200

PCT/US2013/054340

WO 2014/039210

3/28

- B

do
L+N 20ey8

vie

¢ ‘b1

V] 2%

AAAA

A

‘r
-

ueosg

layng

obio

80¢

Jsyng

WO 2014/039210 PCT/US2013/054340

4/28

Fig. 4
Fig. 5

Datapaths

Memory
Datapaths

s

-
X

506 \
T T
516

514

Width of image frame
504 \
T

o~ =
o R~
< L=
HEER== o4
oy : F
/ e B O
nn =
o [zl A
=
m G ono.

500 \
I
510

|
a—
]
—
-
-
 anea
—
]
1
—
sooa
mane
—
—
——
-
anmac
mane
—
o——
o—"
o’
mane
inane
sven
‘seen
—-—
-
-
—
ooe
—
—
—
—
‘nan
1
ese
—
—
-
1
—
eese
1
—
—
o
‘—
‘mane
1
]
w—
—
-
==
-
wese
-
o——
—
mos
-
i~
-
—
——
ooa
mnee
—
—
—
—
1
mane
—
3
—"
—
o
3
 soen
aneex
——
—
—
3
1
—
—
oo
‘—
=y
-
.se
—
-~
—
-
-
oo
anna
-~
-
-~
—
‘mase
—
—
w—
 ——
e
‘anan
—
wese
—
 s——
—
3
1
ese
oo
—
-
—
man
wess
oon
——
-
—
-
—
‘sowac
—
fo—
—
ane
-
—
—
.
—
mass
nan
-
——
 oven
—
 —
e
wese
masn
1
—
—
1
—_
—
]
-t
-
—
..
‘soea
o——
-~
—
ma—
—
nn
wese
wens

404

WO 2014/039210 PCT/US2013/054340

5/28

Datapaths

Fig. 6

U]

ELTHTTR T

Global
Shared
Memory

LTI

Input

Stage N
Output
Stage N+1

HHHIHHIHnn

PCT/US2013/054340

WO 2014/039210

6/28

/. 'bi4

10

)
B Lo
adid-| m
sHun apooe(g _Vﬂ
feuoouny | syeig ucibey / 201 00Z
m/// 501 /
2l 1918168y
: 14473
payueg /
80L
(W3INa)
Aoway
eled [™So01L
pauonied
SS800Y
aowsy ™\ ZLl

108UU0sIRU 8IL

147

g ‘b4

PCT/US2013/054340

7/28

WO 2014/039210

004 001
T]) o}
» £ e £l b £l Lo o1 [DE—
@ @ o o
4 ¥ 2
SPUN 2p0o3(SUUN 2poIs fiile FPOTISC SPUN 2po3R(
{euchiound imeis uoibay / feuoiound syeie :o_mmm/ 202 fBuonound ieyeig commmm/ 202 feuonung isyeig co_mmm/ rA174
aji4 1a1s8ibay / .—u Siid 1218108y / .VON 3)14 Jeysibay / .—uch 3li4 191510ay / .VON
paxueg payueg payueg 4 paxueg
/ 90 \ 904
804 80.
(Wana) (AIING) WIana NZING)
Ao AIOLUSA Ajowaiy L Alowe
Bled e1ed 2. e1eg
pauciiled pauoinied pauonied oLz pauoiied
A% rAYA
500y \ / $SQ00Y $8200Y \ / 500
SRy SJ0UW9H SI0WoH " sjowey
) & &
¥ % %
1o8UU0IBIU| 85200y [B207 /

B
z N 008
21607 sss00y

S10WBY / 208

$

vo8

JOBUUODIBIU| B1) [BI0T-UON

e areirAThen,

PCT/US2013/054340

cki FAYA FA WA kL
ISEHTY SSO00Y S5800Y ceo0oy
sj0WsY SjoLLay DJOLUSY oDy

8/28

WO 2014/039210

‘ ‘ y “
=== e mm ke ,--------------m-------------------T---.W ;
... T TEEEE TR

f

NG ss900Y
BI0WDY

W} ssanoy
slouiay

PCT/US2013/054340

WO 2014/039210

9728

0} 614

dsayboy dsoyboy

dsoy/hoey dsapboy

dsayboy » » dsaxiboy deopbey ﬁ’ w deoyibey
; T ‘o R N
r g 3 3 v $ K x
WUy Bugney U Bunoy
deopyboy dsoybay 4 / 016 \ dsoyboy dsoyboy
dsoybey * 4 dsay/bey dosybey 4] dsexitboy
B e N s A o
¢ » _‘ ¥ r |
yun Bugnoy e e R Bugnoy
: M 016 016 ;
3 3 ¢
. 1upy Bugnoy
016~

2001 ST R

[t T e 0001

T

$001 Jode Bunnoy

PCT/US2013/054340

WO 2014/039210

11 B4

10728

(51055920.d 3L 960%) sdnoJ) |20 ¥Z0L

(016 3un Bunnoy jo sadueisul FZOL) 016 XPZOL 118207

0o0LL

016 X95¢ -1

coLL 2001 ‘0001 X96Z :(gL1) 1oung L1

A\

voLL X¥9 127
90LL \ X9} 167

80LL “ Xgl :de

oLLL Xp 1
NFvF\AHHV\mJ
vrrr\\\\\mWJ

wrrv,////
Ny - aoealu|

a|qel [eqo|D : wajsAs

PCT/US2013/054340

WO 2014/039210

11728

A E

T

{/Inds
UOWILIOD

Qe [N OO 00 O < 00| O] Ol

suoifay 9y

0zl

liyAlds
UQUILLIOD

L

Nl T 0| ©

0

suoibay g

[A1TA"

lsfids
U0

0

suoibay ¥

ooci

WO 2014/039210 PCT/US2013/054340

12728

v
1200

7z
1200

e
1200

7
1200

sgan-line

>
1200

/
H
/
H
e
adjacent tile processors

P
1200

7
1200

RtV AaatS.
A— ol ® i:"““"“w-w» o e 2 [i
\\\ oI B & & 8! @

'7
1200

N”""’Mm..

Fig. 13A

e

P

e

four scan-lines

WO 2014/039210

; ewjilesionive
i l“[t" A N
| mellesineies

§t=l'ﬂlntil""""~°--

sesess—

ssfesfsaize—d

DT

siffasizs

:MEQEEssw”

f

nn{;]u. e w
p- 00'.0 P T

;;;;;;;;;;;;;;;;;;;

.i

......

13@Ea

fee ioo] o s 2“.",,“.«*"
swiovioe . ®

PCT/US2013/054340

Fig. 13B

(88 |
2%
]
[1]
”

1200

1200

sslsfssas o

.’1”1"
oellanisa 28 ey

k
H
I

1200

“ .ﬂ U.

1200

ot

1200

adjacent tile processors

PCT/US2013/054340

WO 2014/039210

14728

A E

5105859004d 91 wsoelpe

t{\\})}.{i
P ey
rir4q? 2021 FAirA? 20¢L

- Z < Z

\\nm. \NU \m. \M‘

2 fu /3 /%

\M 4 / M \ \m \\ ‘m

/ /s /e /e |

S e AL -

7 £ I Fi

FV] \ V' s \w\ /e \ / /e

\ / £ /7 \xm xw \\m / \\“m

/Y /= aus o SV s

/)AL /7 KL /)AL Y Vi

/7 / Iy e !/

S e ;)Y e y s ;7Y e

[7 / ! /1M \ /3

\\ \\ 7 \ 4 \\ 7 \\ é 7 Mm
/LN e / / 7 /7 N S SN e

7 \oo \. \ i ew /7 M .o \ 4 v\ oe
)T)
/ / \ \A \w wu \ / / M \ A / " / \ M { fe \\ \ \x \u / wu
\ ;l I ik \\ \ f Fw \ / BT / A T
/17 TN “\ /)T)T
.\Mw .m. .m ‘o.Q lm Gm C“m. .m & 'y. .\.\ ’ . ' I 3 L1} .. -l .“ Q\“\ 58 .m .\W >0 ' [} 'w' .VM\ 'ﬁ 13 .w“»w i\. .m‘ .M. w : 3
ﬁ“{iﬁ” s 24 *e B e P @ g 13 oR -e *e &% .I“.?.‘H{ H.{s.”u £ 1] [1 JEE 1 o8 L 1] [2] [1) 2] % -8 o« £ 1) k.t“i.\””\

mc__.ﬁmow

PCT/US2013/054340

WO 2014/039210

15728

Gl ‘B4

\\\

\\

siossenoid 8| Jusoelpe

et
e el s

o

o T _
PR R R R R R RN
[EREE AE N BE Y B F BRI B BE N

w\;i‘ws«
LE Y 3

iéi\a%i
ouj-ueas

PCT/US2013/054340

WO 2014/039210

16728

suoibai g
’ b
Z19} — _uoibay 191 1oquinp 1ossadold o)l yebie] — 2001
€ 4}
g9l b4
suolibai ¥
oo # rywre
oL9L ~— Ho16oY 191 Joquinp lossadold a1 yebie] —~—— .
Z ¢l
v9l bi4
091 Xapu| uwinjodH/jejuoziioy
gl

PCT/US2013/054340

WO 2014/039210

17728

391 b4

819l

#
p19L — uoibey 20 | 11 21 €1 1 §1 . 5001
14 4 4 r4 r4 4 r4
agl b
suoibal g}
9151)
PLgL — uoboy 0191 Iequnp lossadold ajt) 19bie| ~——— 09l
14 r4%

PCT/US2013/054340

18728

WO 2014/039210

1
: 0L | 101 !
1 b ‘
{ b i
1 Vo ;
1 " I "
| 004 __ b |
1 e]
! b b X 1
| : 1 N "
! -~ " !] ASeL sl "
“ “ ! & |
1 SHUN 2POISCT | " " "
“ feuonound laels yorbex /NON. (I oLZL N
! \ Ll 90.1 "
: dled i
1 o4 Je1sifion vo/ " " Y _
1 = UonINSU|
“ paxueg " " / NON—. "
1 b 18U !
i —_—
“ OFN. m " - "
! (30 Fl | iserOdwe / !
" “oeq x PPV AT
1 pouonied ' \ X 1
m m m _oﬁww_o %«MW_\MW_ n 1+0d m
; || iejeog uolonIsul W "
i | P i
= < 7 sdues
i 1 80LL 004} v0Ll '
1
1 1 3 :
_ i

WO 2014/039210 PCT/US2013/054340

19728

Fig. 17B

— 1714
FTnstl; (

i 1716

{/

i

4

L

i

i

i

I

3

PCT/US2013/054340

WO 2014/039210

oC
ol

o~

9L} N

~ B1Ep POIIS
10} UBREIT| Y
JOJILI0D JB1EDS O

Q1 4SE) JUSLING 210G

0oLl

el

2.1 b

AT

794018 B JUSS
18n[HoLoNgsL

Jpeinosxe
Useq UoRonNasUl
198| S8l

| od EmEEoc_ |

vriL 4
oo

<ININd

suoibad Jo Jsgunuy
< 421unoo uoibey

8G.L
yd

pwm:wm; pea|
UM uoEInosse
1o} Jjosasso0id 8|}
0} (| Ms€} pueg

e1ep poped))
404 ()1 43%] W
j04U0D JBBOS

Wil peay

FELL
0} IO

8cs

L

WO)

96t

Jad

SDEC| B JUSS
snl uoponsuy

123Linoo

JUB UL

Zues
10l uononnsuy
AQ palinba
0B 930

uolbal

“

012 WIWA o uoiBal Juauno
UG UOIINOS XS Jo} 10ss500.4d
ol | f0 JsiBal Jaynd-|

O} UORONISUL g PUSS

e

ZL2 1 JasiBalse)
Od pud 03U UOHONISU PUZ IO}
anjea.Jsunos weiboid soejd

A"

Ll

“) 1 /
0siL |)
CO&OS@%CM
Selb . iz uomed
Nnt/ i 1 \ vzl
' 012 WaAWA Jo uoibal _

jeLino Uo uoinoaxa Jo} 10ssaooid 8)
10 18181884 JogNG-| € UORDNUSUL 15} PUBS

*

OLZL se1s1Bel yse)

.ﬂ

¥

Alowistl uononasy
O} HORINASUL 15| UYo}ad

i

e OTLL

PCT/US2013/054340

WO 2014/039210

21/28

gk.ll

SrLl

rril

-

ZiZ L esibay
wod anea D4 peo’

\‘.

OL4L WAWa
1o uolBal JsLnD Uo

UOINI&XS J0) 108890019
Sil1 | Jo JeysiBal seyng
-~} O} UDIIONNS UL 181 pueg

azi b4

OLZE

WIWQ 4o uoiBeu
Walno Uo uoiindoaxs

oy Jossanoid sy

01/} Josibel woy
uononisul s peciay

il
U0 uj

T sl 40 1e1siBel deyng
BELL ~] 0] UCHONASU! pUag
y
N UoReNISU
Tl xeu yope4
geiL 7 3
- D UsUIBIDU|
pesl =] "
ZELL
zelL
Q) Ly 9 u_JO

WO 2014/039210

PCT/US2013/054340

22728
Initialize task ID
counter 1764
4 L~ 1766
1
Initialize region counter
¥
: : 1784
Decode incoming Convey incoming instruction to //
instruction 1782 I-buffer of adjacent tile processor
A
Execute incoming instruction on data 1768
in current region of DMEM 710 //
772
N Remote Store indication
access Y of task 1D Increment /1774
required by completed in » region A
instruction? current region counter
1776
Region counter

Increment

FIG.17E

task 1D
1780

> number of
regions in
DMEM?

PCT/US2013/054340

WO 2014/039210

vgl b

c08l

osn /

o-e

208l

0081

L +N Jossaa0oid a|Il

¢-9

ash

Ny

asn

F'y

asn

OI

2817
peo]
,ﬂ.m
peol
,ﬂ.m
pBo]
/.m
peof

Wi o-e

N 40ss2904d 3jll

008l

WO 2014/039210

PCT/US2013/054340

N Josse004d aji ‘# uoibay

24/28 o0
r
" " @)
@ .~
£ g L
Py
O >
Q
L2 S
O O
................................... i R I
81U N .) N B R N B
LISUL N e i I N | oBkul_ 1§
9B N . ESUEEEE
{asn) G I8y
e N iR N T i KT
CBBUL N I R LU
o s N N | oku L8
=4 - E =V . W i | (sn)Sisuly T
Teesmewul N iR By
YN p. | LBY -
/ 8| 9 1Sy 8
I . W i 9By
Sl o_esu N L (esn) S sUl y
Ty (gl _{peop) syl
(POl P ISUIN o . N B gwu_ | o
ol S EBUL N\l N Rkl ST -
o B N b . _sa oy T
R R Y N el
= .
]
@© B N N E
________________________________ PEOI) ¥ 38Ul
Jodpeonpisu N L » dogmsu g
______ R ir. MU, U S doogwu | 8
______ A). WU S A | dsu
R S 2 - A peoy p 1sul
Jolpeoppasur o N i JEBu o
______ eru o NL _oBy 2
_____ o I T, W RS, 2N
L3807 | l
I l |
o o~ -— o 3] (9] - <

L+N Josseooid i} ‘# ucibay

PCT/US2013/054340

WO 2014/039210

91NoJ €71/¢71

19)sibay $5900Y peo
Z061 I, 17/1e307 15 Hrae| eson Wana 11118307 | A L eaon Anoexg
6 8 9 1 14 S z L
2Inos |/1e20
19)sibay $5800Y peoq
006} — |_2M VUe0T | pama | P07 | anoexg
G 4 £ Z L

apin

PCT/US2013/054340

WO 2014/039210

26 /28

aecl

B4

a1nod ¢

1915169y oo oo | 55899y 50 oo peod
| VR g1 | sw | ever | vmesor | LSRN pueson | eWel | Wl | Wzl | vwieson | cth
£l A} b ol 6 8 L 9 g 4)
9061
ssa0oe ajqey
OB T pson | gvr . s | oo | cmn | euel | vesor POl
vO6L — |__ M wWawa 2Jnvexy
6 8 z b

PCT/US2013/054340

WO 2014/039210

27728

0z '6i4

8P

d0
480
esn esn
. d0
\ B8 3517

430
d0
a5 asn

0l0c

ash osn

#EQ

paeuioy 218G
peuipiey 560
\ paueay
¥00Z
\,/v induy \
USRS wioyshg
Z00Z =, ndigy mduy
Sl wshs waishs nduy wigiuy
o welshg ussIsAg
d 1058920id o] N J05595304d 9jiL N 108592044 S|IL

PCT/US2013/054340

WO 2014/039210

28 /28

12 b4

00
POLE = |son| |00
rez 0-0
_ rr 0o
eq oq| [PEar ssn| (0O 00
c-q| [pEa] |7 00
peo) e-q| [peoi| |2 0-0
z-a| [Pe e-al [P 0 oo oo
Z-q| |reor 507 g-qy {reo oeor| | osn
Nc FN pE0; -9 2-q 0] £-q g\g.
alf [Pl 2-a| [P20l] et \\ £-q
- = of
A il [P T e \\E
peoy annnhy | ol tBe0) - peoy
o-q| [peor| =€/ "-_L\n\ L-q| [peor \m\ ¢4 Z-q
gt R - of| .
= P (o] foea il]
0.10}S 0-qf [pe Fummuan |PEO/
g-e| [0-9 \\8 1-q
el [eos e - peoy
g c-e| jpros| s : 0-d 0-Q b= baww
0.0]5 c-e \J-m.\ _.\.l__." .- Sy i reoy
e 340]S) c-B _EDF‘ il LR 09
-e| [e/os &.\\ - 2105
°° —\N N Nlm 9.10]8 mw € M|N 8.40]S
2.0js| z-el [eos c-e| [eors
L-e| [eoss z-e| [eos c-e
2| o . 04035
. 1-e 8.10]8 ¢e e 2.40]3
2.10J8) L-e| [z-e| [0
g-e| [ews L-e| [esors z-8
o-e ©.40}8 L-e 210]S
o-e 8.40]s L-e 8.40]S
e L oe| foE | [
+ - -
ol oL 9+N o-e| feioss
A Lo oo oe| [prem
\ m__l_l .V+Z Olm S.10]8
oy €N 0-®
eIl <¢*N LN
s v
Sl 3L N

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/054340
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F15/76 GO6T1/20 GO6T1/60
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20607/245123 Al (STUTTARD DAVE [GB] ET 1-24

AL) 18 October 2007 (2007-10-18)

abstract

column 99 - column 109

figure 3
X EP 0 293 700 A2 (EATON CORP [US]; APPLIED 1

INTELLIGENT SYSTEM INC [US] APPLIED
INTELLIGE) 7 December 1988 (1988-12-07)

abstract
column 16, 1ine 25 - column 17, line 20
figure 1
A US 2005/257026 Al (MEEKER WOODROW L [US]) 1
17 November 2005 (2005-11-17)
abstract
D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i . " .
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited ta understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X* document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of ancther citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
6 December 2013 13/12/2013
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040, = .
Fax: (+31-70) 340-3016 Gonzalez Arias, P

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/054340
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007245123 Al 18-10-2007 US 2007245123 Al 18-10-2007
US 2009228683 Al 10-09-2009
EP 0293700 A2 07-12-1988 DE 293700 T1 12-04-1990
DE 3852909 D1 16-03-1995
DE 3852909 T2 12-10-1995
EP 0293700 A2 07-12-1988
JP 2756257 B2 25-05-1998
JP S63316167 A 23-12-1988
us 5129092 A 07-07-1992
US 2005257026 Al 17-11-2005 CN 101084483 A 05-12-2007
EP 1763769 A2 21-03-2007
JP 2007536628 A 13-12-2007
KR 20070039490 A 12-04-2007
US 2005257026 Al 17-11-2005
WO 2005109221 A2 17-11-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

