
JP 5266250 B2 2013.8.21

10

20

(57)【特許請求の範囲】
【請求項１】
　システム内でファイルオブジェクトのデータを識別する方法であって、
　論理ブロックに分割されたシステム論理アドレス空間を管理するステップと、
　１つ以上の前記論理ブロックの中で前記ファイルオブジェクトの各々に一意なアドレス
を割り当てるステップであって、前記論理ブロックは２つ以上のファイルオブジェクトの
アドレスを各々収容できる、一意なアドレスを割り当てるステップと、
　単一のファイルオブジェクトが割り当てられていて第２のファイルオブジェクトのデー
タをも収容する論理ブロックの数を制限するステップと、
　を含む方法。
【請求項２】
　請求項１記載の方法において、
　前記ファイルオブジェクトのデータを追加的に提供し、かつメモリシステムとの接続に
適した外部インターフェイスで前記システム論理アドレス空間を利用するホストシステム
において、前記方法を遂行するステップをさらに含む方法。
【請求項３】
　請求項１記載の方法において、
　外部供給元から前記ファイルオブジェクトのデータを追加的に受信し、かつ不揮発性デ
ータ蓄積媒体とのインターフェイスとしてメモリシステムの中で前記システム論理アドレ
ス空間を利用する前記メモリシステムにおいて、前記方法を遂行するステップをさらに含

(2) JP 5266250 B2 2013.8.21

10

20

30

40

50

む方法。
【請求項４】
　請求項１記載の方法において、
　第１のインターフェイスを通じてホストに取り外し可能な状態で接続されることに適し
、かつメモリシステムに取り外し可能な状態で接続されることに適した処理装置にて、前
記方法を遂行するステップをさらに含み、前記メモリシステムは前記処理装置との第２の
インターフェイスで前記システム論理アドレス空間を利用する方法。
【請求項５】
　請求項１～４のいずれか記載の方法において、
　論理ブロックの数を制限するステップは、単一のデータファイルオブジェクトのアドレ
スが書き込まれていて第２のファイルオブジェクトのアドレスをも収容する論理ブロック
の数を所定の最大数に制限するステップを含む方法。
【請求項６】
　請求項５記載の方法において、
　前記所定の最大数は、２である方法。
【請求項７】
　再プログラミングに先立ちまとめて消去できるメモリセルブロックを有するタイプの不
揮発性メモリシステムとの接続に適したインターフェイスを通じて、ホストシステムがフ
ァイルオブジェクトのデータを転送する方法であって、
　論理ブロックに分割された論理アドレス空間をインターフェイスで管理するステップと
、
　１つ以上の前記論理ブロックの中で前記ファイルオブジェクトの各々に含まれるデータ
のアドレスを指定するステップであって、前記論理ブロックは２つ以上のファイルオブジ
ェクトを各々収容できるが、単一ファイルオブジェクトのアドレスで部分的にしか満たさ
れていない論理ブロックの数を少なくとも１つの事前設定制限未満に制限し、前記部分的
に満たされたブロックに１つ以上の別のファイルオブジェクトのアドレスが書き込まれる
ようにする、データのアドレスを指定するステップと、
　を含む方法。
【請求項８】
　請求項７記載の方法において、
　前記論理アドレス空間の前記論理ブロックのサイズを、前記ホストシステムとの接続に
適したメモリシステムの各メモリセルブロックと同じデータ蓄積容量にそれぞれがなるよ
うに構成するステップをさらに含む方法。
【請求項９】
　請求項７記載の方法において、
　１つ以上の前記論理ブロックにおける各ファイルオブジェクトのデータのアドレスは、
前記ホストが前記インターフェイスを通じて前記ファイルオブジェクトのデータを送信す
るときに指定される方法。
【請求項１０】
　データの再プログラミングに先立ちまとめて消去できるメモリセルブロックを有する不
揮発性メモリシステムで、ファイルオブジェクトのデータを蓄積する方法であって、
　論理アドレス空間は、各メモリセルブロックの特性に一致する少なくとも１つの特性を
各々が有する論理ブロックに分割され、
　各ファイルオブジェクトのデータのアドレスは、１つ以上の前記論理ブロックの中で割
り当てられ、前記論理ブロックは、２つ以上のファイルオブジェクトのデータのアドレス
を各々収容できるが、ある特定の単一ファイルオブジェクトのアドレスに加え別のファイ
ルオブジェクトのアドレスをも収容する論理ブロックの数を制限し、かつ
　前記論理ブロックのアドレスは、前記メモリシステムの中でメモリセルブロックのアド
レスにマップされる方法。
【請求項１１】

(3) JP 5266250 B2 2013.8.21

10

20

30

40

50

　請求項１０記載の方法において、
　特定のファイルオブジェクトのデータにアドレスを割り当てることは、特定のファイル
オブジェクトのアドレスで部分的にしか満たされていない論理ブロックの数を所定の数に
制限することを含む方法。
【請求項１２】
　請求項１１記載の方法において、
　前記所定の数は、２である方法。
【請求項１３】
　請求項１０記載の方法において、
　少なくとも１つの一致する特性は、各論理ブロックのデータ蓄積容量が、各メモリセル
ブロックのデータ蓄積容量と同じであることを含む方法。
【請求項１４】
　請求項１０記載の方法において、
　少なくとも１つの一致する特性は、
　　各論理ブロックのデータ蓄積容量が、各メモリセルブロックのデータ蓄積容量と同じ
であることと、
　　各論理ブロックが、データの書き込みのため、前記メモリセルブロックの複数のペー
ジと同じデータ蓄積容量を有する複数のページに分割されることと、
　　各論理ブロックの最下位ページアドレスが、各メモリセルブロックの第１のページに
マップされることと、
　を含む方法。
【請求項１５】
　再プログラミングに先立ちまとめて消去できるメモリセル単位を有するタイプの不揮発
性メモリシステムとの接続に適したインターフェイスを通じて、ホストシステムがファイ
ルオブジェクトのデータを転送する方法であって、
　論理ブロックに分割された論理アドレス空間をインターフェイスで管理するステップと
、
　各ブロック内でアドレスが指定されたファイルデータの構造に基づき、１セットの複数
の論理ブロックタイプを指定するステップと、
　各ファイルのアドレスを蓄積する１つ以上の論理ブロックのタイプの組み合わせに基づ
き、１セットの複数の許容ファイル状態を指定するステップと、
　前記論理ブロック内でアドレスが指定された各データファイルのファイル状態の記録を
管理するステップと、
　単一ファイルのデータのアドレスを、前記記録における前記単一ファイルの現在状態に
従い選択される１タイプの論理ブロックに指定するステップと、
　を含む方法。
【請求項１６】
　請求項１５記載の方法において、
　複数の指定データブロックタイプは、ただ１つのファイルのアドレスを単独の論理ブロ
ックに蓄積する第１の複数のタイプと、２つ以上のファイルのアドレスを単独の論理ブロ
ックに蓄積する第２の複数のタイプとを含み、前記許容ファイル状態により、単一のファ
イルのアドレスを指定できる前記第２の複数のタイプの最大ブロック数を制限する方法。
【発明の詳細な説明】
【技術分野】
【０００１】
　本願は、一般的にはデータを蓄積し、接続されたホスト装置とデータをやり取りする、
再プログラム可能な半導体フラッシュメモリ等の不揮発性メモリシステムの操作に関し、
より具体的にはそこでのデータファイルオブジェクトの管理に関する。
【背景技術】
【０００２】

(4) JP 5266250 B2 2013.8.21

10

20

30

40

50

　初期世代の商用フラッシュメモリシステムでは、矩形のメモリセルアレイが、標準ディ
スクドライブセクタのデータ量、すなわち５１２バイトを各々が蓄積する多数のセルグル
ープに分割されていた。さらに通常ならば、誤り訂正符号（ＥＣＣ）を蓄積するため、そ
してことによるとユーザデータ、および／またはこれを蓄積するメモリセルグループに、
関係する他のオーバーヘッドデータを蓄積するため、一定量のデータ、例えば１６バイト
が、各グループに加わる。それぞれのグループには、まとめて消去できる最低数のメモリ
セルがある。つまり、１データセクタ、さらにオーバーヘッドデータが含まれる場合はオ
ーバーヘッドデータを蓄積するメモリセル数が事実上の消去単位となる。米国特許第５，
６０２，９８７号（特許文献１）および第６，４２６，８９３号（特許文献２）には、こ
の種のメモリシステムの例が記載されている。フラッシュメモリの特徴として、メモリセ
ルにデータを再度プログラムするには事前にそのメモリセルを消去する必要がある。
【０００３】
　フラッシュメモリシステムは多くの場合、パーソナルコンピュータやカメラ等、様々な
ホストと取り外し可能な状態で接続するメモリカードやフラッシュドライブの形で提供さ
れるが、ホストシステムの中に埋め込まれることもある。ホストは通例、メモリへデータ
を書き込む場合に、メモリシステムの連続する仮想アドレス空間の中でセクタ、クラスタ
、あるいはその他のデータ単位に一意な論理アドレスを割り当てる。ホストは、ディスク
オペレーティングシステム（ＤＯＳ）のように、メモリシステムの論理アドレス空間の中
のアドレスでデータを読み書きする。メモリシステム内のコントローラは、ホストから受
け取った論理アドレスを、メモリアレイの中でデータを実際に蓄積する物理アドレスに翻
訳し、これらのアドレス翻訳の経緯を把握する。メモリシステムのデータ蓄積容量は少な
くとも、メモリシステム向けに設定される論理アドレス空間全体にわたってアドレスが指
定されるデータの量に相当する。
【０００４】
　後続世代のフラッシュメモリシステムでは、消去単位のサイズが複数セクタのデータを
十分に蓄積するメモリセルブロックまで拡大した。メモリシステムが接続されたホストシ
ステムでセクタ等の小さな最小単位でデータのプログラミングや読み出しが行われるとし
ても、フラッシュメモリの１消去単位には多数のセクタが蓄積される。ホストが論理セク
タのデータで更新や差し替えを行うときに、ブロックの中で何セクタかのデータが用済み
になることは一般的なことである。ブロックに蓄積されたデータに上書きを行うには事前
にブロック全体を消去しなければならないため、新規データや更新データは通常、それを
受け入れる容量が残っている別の消去済みブロックに蓄積される。この過程で元のブロッ
クには用済みデータが残り、メモリ内の貴重なスペースを取ることになる。しかし、この
ブロックの中に有効データが残っていると、このブロックを消去するわけにはいかない。
【０００５】
　そこでメモリ蓄積容量の有効利用を図るため、部分的に満たされたブロックの有効デー
タを消去済みブロックにコピーすることによってこれを整理統合または回収するのが一般
的であり、こうすることでデータのコピー元にあたるブロックは消去でき、その全蓄積容
量を再利用できる。データをコピーしてブロック内のデータセクタを論理アドレス順に整
理するのも望ましく、こうすることでデータの読み出し速度と読み出しデータをホストへ
転送する速度が上がる。そのようなデータコピーがあまりにも頻繁に行われると、メモリ
システムの動作性能が低下するおそれがある。これは特に、メモリの蓄積容量が、システ
ムの論理アドレス空間を通じてホストによってアドレスが割り当てられるデータの量と大
差ない場合、つまりよくある場合で、メモリシステムの動作に影響する。この場合は、ホ
ストプログラミングコマンドの実行に先立ちデータの整理統合または回収が必要になる。
その結果、プログラミングの時間が長引く。
【０００６】
　一定の半導体領域に蓄積できるデータのビット数を増やすため、ブロックのサイズはメ
モリシステムの世代交代を通じて拡大している。２５６以上のデータセクタを蓄積するブ
ロックが一般的になりつつある。加えてデータのプログラミングと読み出しにあたって並

(5) JP 5266250 B2 2013.8.21

10

20

30

40

50

列度を高めるため、異なるアレイまたはサブアレイからなる２つ、４つ、またはそれ以上
のブロックがしばしばメタブロックとして論理的にリンクされる。そのような大容量操作
単位には、メモリシステムを効率的に操作するという課題がともなう。
【先行技術文献】
【特許文献】
【０００７】
【特許文献１】米国特許第５，６０２，９８７号
【特許文献２】米国特許第６，４２６，８９３号
【特許文献３】米国公開特許出願第２００６／００３１５９３号
【特許文献４】米国特許第５，５７０，３１５号
【特許文献５】米国特許第５，７７４，３９７号
【特許文献６】米国特許第６，０４６，９３５号
【特許文献７】米国特許第６，３７３，７４６号
【特許文献８】米国特許第６，４５６，５２８号
【特許文献９】米国特許第６，５２２，５８０号
【特許文献１０】米国特許第６，７７１，５３６号
【特許文献１１】米国特許第６，７８１，８７７号
【特許文献１２】米国公開特許出願第２００３／０１４７２７８号
【特許文献１３】米国特許第６，９２５，００７号
【特許文献１４】米国特許第６，７６３，４２４号
【特許文献１５】米国公開特許出願第２００５／０１４４３５８号
【特許文献１６】米国特許第７，１３９，８６４号
【特許文献１７】米国公開特許出願第２００５／０１４１３１３号
【特許文献１８】米国公開特許出願第２００５／０１４１３１２号
【特許文献１９】米国公開特許出願第２００５／０１６６０８７号
【特許文献２０】米国公開特許出願第２００５／０１４４３６５号
【特許文献２１】米国公開特許出願第２００６／０１６１７２２号
【特許文献２２】米国公開特許出願第２００６／０１５５９２１号
【特許文献２３】米国公開特許出願第２００６／０１５５９２２号
【特許文献２４】米国公開特許出願第２００６／０１５５９２０号
【特許文献２５】米国公開特許出願第２００５／０１４４３５７号
【特許文献２６】米国公開特許出願第２００５／０１４４３６３号
【特許文献２７】米国公開特許出願第２００５／０１４４３６７号
【特許文献２８】米国特許出願第１０／８９７，０４９号
【特許文献２９】米国特許出願第１１／０２２，３６９号
【特許文献３０】米国特許出願第１１／２５９，４２３号
【特許文献３１】米国特許出願第１１／３１２，９８５号
【発明の概要】
【０００８】
　前に相互参照した特許出願では、ホストから提供されるデータファイルオブジェクトを
フラッシュメモリに直接蓄積するメモリシステムが説明されている。これは、「背景技術
」の欄で前述したホストとメモリシステムとのインターフェイスに連続論理アドレス空間
が存在する現在の大部分の商用システムと異なる。「ＬＢＡインターフェイス」の場合は
通常、個々のデータファイルオブジェクトのデータが多数のメモリセルブロックに存在す
る。メモリシステムは、通常ならば多数のデータセクタからなるクラスタでホストから提
供されるファイルオブジェクトのデータを、個々のデータファイルオブジェクトに対応付
けることをしない。ホストは、ＬＢＡインターフェイスの中で有効データに現在割り当て
られていない未使用論理アドレスを、蓄積のためにメモリシステムへ提供されるデータに
割り当てるだけである。メモリシステムは、自身が効率よく作動するようにメモリセルブ
ロックを割り当て受信データを蓄積するが、クラスタがどのデータファイルオブジェクト

(6) JP 5266250 B2 2013.8.21

10

20

30

40

50

のものなのかは認識しない。その結果、通常は個々のファイルオブジェクトのデータが断
片化され、多数の異なるメモリセルブロックに蓄積される。
【０００９】
　他方、前に相互参照した特許出願の多くでは、メモリシステムがＬＢＡインターフェイ
スを通さずホストから直接データファイルオブジェクトを受け取るため、メモリシステム
は自身の性能を上げるように個々のファイルデータをメモリセルブロックに割り振ること
ができる。例えばデータがどのファイルのものなのかが分かるなら、メモリシステムはい
ずれか１つのデータファイルの蓄積に使うメモリセルブロックの数を制限できる。具体的
に、メモリシステムはある１つのファイルオブジェクトのデータのほかに別のファイルオ
ブジェクトのデータをも収容するメモリセルブロックの数を制限できる。その結果、ファ
イルデータの断片化は制御できる。このため、共通ブロックに蓄積された別のファイルの
データが削除されたり修正されたりするときに生じる用済みデータ領域の再生にあたって
、共通ブロックから別の場所に移すことになる有効ファイルデータの量は最小限に抑えら
れる。その結果、フラッシュメモリシステムの寿命にわたって性能と耐久性が大幅に向上
する。
【００１０】
　メモリシステムの代わりにホストでダイレクトデータファイル管理システムを実装する
場合も、そのような性能・耐久性の向上を実現することができる。ホストとメモリシステ
ムとの間には引き続きＬＢＡインターフェイスが存在する。しかし、クラスタのファイル
データをこの単一連続論理アドレス空間に割り振るのではなく、メモリシステム内の物理
ブロックに対応するこの空間内の論理アドレスブロックにファイルデータを割り振る。フ
ラッシュメモリシステムの中で、物理メモリセルブロックに対して実施される、前に相互
参照した特許出願のファイルデータ管理手法は、ホストの中で、ホスト／メモリシステム
インターフェイスの論理アドレス空間の中で連続するアドレスの論理ブロックに対して実
施される。この場合のメモリシステムは、現在商業的に普及しているＬＢＡインターフェ
イスを備える従来のメモリシステムでよい。メモリシステムで作動するダイレクトデータ
ファイルシステムによって、２つ以上のファイルのデータを収容する物理メモリセルブロ
ック数が制限されるように、ホストの中で作動するダイレクトデータファイル管理システ
ムによって、２つ以上のファイルのデータを収容する論理ブロック数は制限できる。物理
メモリセルブロックにおける個々のファイルオブジェクトデータの断片化も同様に減少す
るが、これは物理メモリセルブロックにマップされる論理アドレス空間のブロックを管理
することによって達成する。
【００１１】
　ＬＢＡインターフェイスの論理ブロックは、好ましくはデータ蓄積容量等が共通するメ
モリシステムの物理ブロックにマップされる。具体的に、ホストのダイレクトデータファ
イルシステムにとっては、ホストによって構成される論理ブロックが、メモリシステムの
中でダイレクトデータファイルシステムが作動した場合の物理ブロックと同様に映る。物
理メモリブロックの特性、すなわち通常ホストに提供されない情報は、メモリシステムの
初期化のときにメモリシステムからホストに提供できる。そして、ホストは連続論理アド
レス空間を、物理メモリのブロックに特性が一致するブロックに構成し、その後、それら
の論理ブロックの中のアドレスにデータを書き込む。
【００１２】
　代案として、ダイレクトデータファイルシステムをホストで実装する代わりにメモリシ
ステムで操作し、前述したのと同様に、メモリシステムのＬＢＡインターフェイスの連続
アドレス空間にわたって論理ブロックを設定することもできる。このダイレクトデータフ
ァイル操作は、メモリシステムの一部であっても、前に相互参照した特許出願で説明され
た例とは異なる。先行出願の例のように、メモリシステムのバックエンドを操作してＬＢ
Ａインターフェイスに代わってメモリシステムでファイルデータを受け付ける代わりに、
メモリシステムのＬＢＡインターフェイスの手前にダイレクトデータファイルシステムを
追加し、これを前述したのと同じ要領で、あたかもホストのＬＢＡインターフェイスの手

(7) JP 5266250 B2 2013.8.21

10

20

30

40

50

前にあるかのごとく、操作することができる。そのようなメモリシステムにＬＢＡインタ
ーフェイスとファイルオブジェクトインターフェイスの両方を設け、両タイプのインター
フェイスのうち、いずれか一方のインターフェイスしかないホストと通信することもでき
る。これは特に、様々なタイプのホスト装置に取り外し可能な状態で接続するように作ら
れたメモリカードの場合に便利である。
【００１３】
　さらなる代案として、処理能力を持つ取り外し可能なマザーカードに前述したダイレク
トデータファイルシステムを設け、ダイレクトファイル機能はなくともダイレクトデータ
ファイルインターフェイスはあるホストに、ダイレクトファイル機能を追加することもで
きる。ホストに接続されたマザーカードはその出力でＬＢＡインターフェイスを提供し、
カードの出力には、ＬＢＡインターフェイスを備える標準的なメモリカードを取り外し可
能な状態で接続できる。
【００１４】
　この後に続く本発明の代表的な例の説明には本発明のさらなる態様と利点と特徴が記載
されているが、この説明は添付の図面と併せて解釈するべきものである。
【００１５】
　ここで参照する特許、特許出願、記事、書籍、仕様書、その他の出版物、文書、事物は
どれも、あらゆる目的のためにその全体が本願明細書において参照により援用されている
。援用する出版物、文書、または事物のいずれかと本願明細書の本文との間で用語の定義
または使用に矛盾や食い違いがある場合は、本願明細書における用語の定義または使用が
優先するものとする。
【図面の簡単な説明】
【００１６】
【図１】ホストおよび接続された不揮発性メモリシステムを概略的に示す。
【図２】図１の不揮発性メモリとして使用されるフラッシュメモリシステム例のブロック
図である。
【図３】図２のシステムに使用できるメモリセルアレイの代表的な回路図である。
【図４】図２のシステムの物理メモリ編制例を示す。
【図５】図４の物理メモリの一部分の拡大図を示す。
【図６】図４および図５の物理メモリの一部分のさらなる拡大図を示す。
【図７Ａ】再プログラム可能なメモリシステムを操作する３通りの方法の内のひとつを示
し、対比する。
【図７Ｂ】再プログラム可能なメモリシステムを操作する３通りの方法の内のひとつを示
し、対比する。
【図７Ｃ】再プログラム可能なメモリシステムを操作する３通りの方法の内のひとつを示
し、対比する。
【図８Ａ】図７Ａ、図７Ｂ、および図７Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストシステムとのインターフェイスを示
し、対比する。
【図８Ｂ】図７Ａ、図７Ｂ、および図７Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストシステムとのインターフェイスを示
し、対比する。
【図８Ｃ】図７Ａ、図７Ｂ、および図７Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストシステムとのインターフェイスを示
し、対比する。
【図９Ａ】図８Ａ、図８Ｂ、および図８Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストとのインターフェイスを示し、対比
する。
【図９Ｂ】図８Ａ、図８Ｂ、および図８Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストとのインターフェイスを示し、対比

(8) JP 5266250 B2 2013.8.21

10

20

30

40

50

する。
【図９Ｃ】図８Ａ、図８Ｂ、および図８Ｃにそれぞれ見られる再プログラム可能なメモリ
システムを操作する３通りの方法のひとつと、ホストとのインターフェイスを示し、対比
する。
【図１０】図９Ｃの手法の遂行にあたって使用できる論理－物理ブロックマッピングの一
例を示す。
【図１１】図９Ｃおよび図１０に示す手法の遂行にあたってパラメータを設定するための
ホストおよびメモリシステム間のやり取りを示す。
【図１２】ダイレクトデータファイルシステムの動作サイクルを示す。
【図１３Ａ】ファイルデータを書き込む４例中のひとつを示す。
【図１３Ｂ】ファイルデータを書き込む４例中のひとつを示す。
【図１３Ｃ】ファイルデータを書き込む４例中のひとつを示す。
【図１３Ｄ】ファイルデータを書き込む４例中のひとつを示す。
【図１４Ａ】一連の単一データファイル書き込みを示す。
【図１４Ｂ】一連の単一データファイル書き込みを示す。
【図１４Ｃ】一連の単一データファイル書き込みを示す。
【図１４Ｄ】一連の単一データファイル書き込みを示す。
【図１４Ｅ】一連の単一データファイル書き込みを示す。
【図１５】図１４Ｅのブロックを再生した結果を示す。
【図１６Ａ】様々なブロックタイプの組み合わせで蓄積されるデータファイルの例を示す
。
【図１６Ｂ】様々なブロックタイプの組み合わせで蓄積されるデータファイルの例を示す
。
【図１６Ｃ】様々なブロックタイプの組み合わせで蓄積されるデータファイルの例を示す
。
【図１６Ｄ】様々なブロックタイプの組み合わせで蓄積されるデータファイルの例を示す
。
【図１７】具体例に従い許容ファイル状態を提示する表である。
【図１８】プログラムデータに基づく許容ファイル状態遷移を示す状態図である。
【図１９】図１８に見られるファイル状態遷移を説明する表である。
【図２０】用済みデータに基づく許容ファイル状態遷移を示す状態図である。
【図２１】図２０に見られるファイル状態遷移を説明する表である。
【図２２】再生ブロックに基づく許容ファイル状態遷移を示す状態図である。
【図２３】図２２に見られるファイル状態遷移を説明する表である。
【図２４】データファイルと論理ブロックとの整合の一実施形態を示す。
【図２５】図２４のデータ整合の実施形態で、様々な状況のもとでのアクティブブロック
割り当てを示す表である。
【図２６】データファイルと論理ブロックとの整合の代替の実施形態を示す。
【図２７】図２６のデータ整合の実施形態で、様々な状況のもとでのアクティブブロック
割り当てを示す表である。
【図２８Ａ】ブロック再生操作の例を示す。
【図２８Ｂ】ブロック再生操作の例を示す。
【図２８Ｃ】ブロック再生操作の例を示す。
【図２８Ｄ】ブロック再生操作の例を示す。
【図２９】再生操作を一般的な用語で説明するフローチャートである。
【図３０】典型的なパーシャルメモリセルブロックに蓄積されるデータのタイプを示す。
【図３１】図２９のフローチャートの１ステップを遂行する具体的な実施形態の詳細を提
示する。
【図３２】図２９のフローチャートの同じステップを実行する代替の実施形態の詳細を提
示する。

(9) JP 5266250 B2 2013.8.21

10

20

30

40

50

【図３３】別の実施形態で２つのブロックリストに入るブロックタイプを明らかにする表
である。
【発明を実施するための形態】
【００１７】
フラッシュメモリシステムの概説
　一般的なフラッシュメモリシステムを図１～図６との関係で説明する。そのようなシス
テムで本発明の様々な態様を実装できる。図１のホストシステム１は、フラッシュメモリ
２の中にデータを蓄積し、このフラッシュメモリからデータを引き出す。フラッシュメモ
リはホストの中に埋め込むこともできるが、メモリ２はより一般的なカードの形で図に示
され、このカードは、機械的および電気的コネクタの嵌合部分３および４を通じて取り外
し可能な状態でホストへ接続される。例えばコンパクトフラッシュ（ＣＦ）、マルチメデ
ィアカード（ＭＭＣ）、セキュアデジタル（ＳＤ）、ミニＳＤ、メモリスティック、スマ
ートメディア、トランスフラッシュカード等、様々なフラッシュメモリカードが現在市販
されている。これらのカードはいずれも、それぞれの規格化された仕様に従い特有の機械
的および／または電気的インターフェイスを備えているが、それぞれに内蔵されたフラッ
シュメモリシステムはよく似ている。これらのカードはいずれも、本願の出願人であるサ
ンディスク　コーポレイションから入手できる。また、サンディスク　コーポレイション
は、Ｃｒｕｚｅｒという商標のもとで一連のフラッシュドライブを提供し、このフラッシ
ュドライブはユニバーサルシリアルバス（ＵＳＢ）プラグを備える小型の手持ち式メモリ
システムで、これをホストのＵＳＢ差込口に差し込むことによりホストと接続する。これ
らのメモリカードとフラッシュドライブはコントローラを内蔵し、このコントローラがホ
ストと連係し、内蔵されたフラッシュメモリの動作を制御する。
【００１８】
　そのようなメモリカードやフラッシュドライブを使用するホストシステムは数多くあり
様々である。ここにはパーソナルコンピュータ（ＰＣ）、ラップトップをはじめとするポ
ータブルコンピュータ、携帯電話機、個人用携帯情報端末（ＰＤＡ）、デジタル静止画カ
メラ、デジタル動画カメラ、ポータブルオーディオプレイヤ等が含まれる。ホストは通常
ならば１種類以上のメモリカードまたはフラッシュドライブのための一体化された差込口
を内蔵するが、メモリカードを差し込むアダプタが必要なものもある。
【００１９】
　図１のホストシステム１は、メモリ２に関する限り、回路とソフトウェアとの組み合わ
せからなる２つの主要部分を備えるとみなすことができる。それらはアプリケーション部
５と、メモリ２と連係するドライバ部６である。例えばパーソナルコンピュータの場合、
アプリケーション部５はプロセッサを含み、ワープロ、グラフィック、コントロール等、
一般的なアプリケーションソフトウェアを実行する。カメラや携帯電話機等、専ら１組の
機能を遂行する専用ホストシステムの場合、アプリケーション部５は、カメラを操作しな
がら写真を撮影したり蓄積したりするソフトウェアや、携帯電話機を操作しながら電話を
かけたり受けたりするソフトウェアを含む。
【００２０】
　図１のメモリシステム２はフラッシュメモリ７と回路８とを含み、この回路はカードが
接続されるホストと連係しながらデータをやり取りし、メモリ７を制御する。コントロー
ラ８は通常、データのプログラミングと読み出しのときにホスト１によって使用されるデ
ータの論理アドレスとメモリ７の物理アドレスとの変換を行う。
【００２１】
　図２を参照すると、図１の不揮発性メモリ２として使用できる典型的なフラッシュメモ
リシステムの回路を説明する。システムコントローラは通常、システムバス１３沿いに１
つ以上の集積回路メモリチップと並列に接続される単一集積回路チップ１１上に実装され
、図２にはただひとつのそのようなメモリチップ１５が示されている。図に示されたバス
１３は、データを搬送する１セットの導体１７と、メモリアドレスのためのセット１９と
、制御および状態信号のためのセット２１とを含む。代わりに、これらの３つの機能で１

(10) JP 5266250 B2 2013.8.21

10

20

30

40

50

セットの導体を時分割共用することもできる。さらに、２００４年８月９日に出願された
「Ring Bus Structure and It's Use in Flash Memory Systems 」という米国特許出願第
１０／９１５，０３９号（米国公開特許出願第２００６／００３１５９３号）（特許文献
３）で説明されているリングバス等、これとは別のシステムバス構成を使用できる。
【００２２】
　典型的なコントローラチップ１１は、インターフェイス回路２５を通じてシステムバス
１３と連係する独自の内部バス２３を有する。このバスへ通常接続される主要機能には、
プロセッサ２７（マイクロプロセッサ、マイクロコントローラ等）と、システムの初期化
（「ブート」）コードを収容する読み出し専用メモリ（ＲＯＭ）２９と、主にメモリとホ
ストとの間で転送されるデータをバッファするために使われるランダムアクセスメモリ（
ＲＡＭ）３１とがあり、コントローラを通じてメモリとホストの間を行き来するデータで
誤り訂正符号（ＥＣＣ）を計算し検査する回路３３をバス２３へ接続することもできる。
コントローラを通過するデータを符号化し復号化する専用回路３４を盛り込むこともでき
る。そのような符号化には圧縮やセキュリティ暗号化等があるが、ほとんどのデータ変換
はこのやり方で果たすことができる。専用回路３３および３４を使用する場合は、ファー
ムウェア制御のもとでプロセッサ２７によって実行されるアルゴリズムが、これらの回路
によって実行される。コントローラバス２３は回路３５を通じてホストシステムと連係し
、メモリカードに内蔵される図２のシステムの場合に、コネクタ４の一部をなすカードの
外部接点３７を通じて果たされる。クロック３９はコントローラ１１の他のコンポーネン
トに接続され、それらのコンポーネントによって利用される。
【００２３】
　メモリチップ１５と、システムバス１３に接続される他のメモリチップは通常、複数の
サブアレイまたはプレーンに編制されたメモリセルアレイを含み、簡潔を図るために２つ
のそのようなプレーン４１および４３が図に示されているが、これよりも多いプレーン、
例えば４つ、または８つのプレーンを代わりに使用することもできる。あるいは、チップ
１５のメモリセルアレイはプレーンに分割しない場合もある。しかし、分割するなら、各
プレーンは互いに独立して作動する独自の列制御回路４５および４７を有する。回路４５
および４７は、システムバス１３のアドレス部１９からそれぞれのメモリセルアレイのア
ドレスを受け取り、それらを復号化して１つ以上のビット線４９および５１をアドレスす
る。ワード線５３は、アドレスバス１９で受け取るアドレスに応じて行制御回路５５によ
りアドレスされる。ソース電圧制御回路５７および５９もそれぞれのプレーンに接続し、
ｐウェル電圧制御回路６１および６３も同様である。メモリチップ１５が単一のメモリセ
ルアレイを有し、２つ以上のそのようなチップがシステムに存在する場合は、前述したマ
ルチプレーンチップにおけるプレーンまたはサブアレイと同様に各チップのアレイを操作
することができる。
【００２４】
　データは、システムバス１３のデータ部１７に接続されたデータ入出力回路６５および
６７を通じてプレーン４１および４３を出入りする。回路６５および６７は、それぞれの
列制御回路４５および４７を介してプレーンへ接続する線６９および７１を通じてそれぞ
れのプレーンのメモリセルにデータをプログラムし、メモリセルからデータを読み出すた
めにある。
【００２５】
　コントローラ１１はデータをプログラムするため、データを読み出すため、消去するた
め、様々なハウスキーピング作業に対処するため、メモリチップ１５の動作を制御するが
、各々のメモリチップもコントローラ１１からのコマンドを実行してそのような機能を遂
行する制御回路を内蔵する。インターフェイス回路７３はシステムバス１３の制御・状態
部２１へ接続する。コントローラからのコマンドは状態マシン７５へ提供され、この状態
マシンは、これらのコマンドを実行するために他の回路を制御する。制御線７７～８１は
、状態マシン７５を図２に見られるこれらの他の回路に接続する。状態マシン７５からの
状態情報は線８３に沿ってインターフェイス７３へ伝達され、バス部２１に沿ってコント

(11) JP 5266250 B2 2013.8.21

10

20

30

40

50

ローラ１１へ送信される。
【００２６】
　現在はメモリセルアレイ４１および４３のＮＡＮＤアーキテクチャが好まれているが、
ＮＯＲ等、これとは別のアーキテクチャを代わりに使用することもできる。ＮＡＮＤフラ
ッシュメモリと、メモリシステムの一部としてのこれの動作の例は、米国特許第５，５７
０，３１５号（特許文献４）、第５，７７４，３９７号（特許文献５）、第６，０４６，
９３５号（特許文献６）、第６，３７３，７４６号（特許文献７）、第６，４５６，５２
８号（特許文献８）、第６，５２２，５８０号（特許文献９）、第６，７７１，５３６号
（特許文献１０）、および第６，７８１，８７７号（特許文献１１）と米国公開特許出願
第２００３／０１４７２７８号（特許文献１２）とで参照できる。
【００２７】
　図２のメモリシステムのメモリセルアレイ４１の一部分にあたる図３の回路図に、ＮＡ
ＮＤアレイの例を示す。多数のグローバルビット線が提供されるが、説明を簡潔にするた
め、図２には４つのそのような線９１～９４だけが示されている。これらのビット線のう
ちの１ビット線と基準電位との間には、いくつかの直列接続メモリセルストリング９７～
１０４が接続される。メモリセルストリング９９を代表としてとりあげ、ストリング両端
の選択トランジスタ１１１および１１２には複数の電荷蓄積メモリセル１０７～１１０が
直列で接続される。１ストリングの選択トランジスタが通電すると、そのビット線と基準
電位との間でこのストリングが接続される。そして、そのストリングの中で一度に１つの
メモリセルのプログラミングか読み出しが行われる。
【００２８】
　数あるメモリセルストリングの１メモリセルの電荷蓄積素子にわたって図３のワード線
１１５～１１８が延在し、ゲート１１９および１２０は、ストリングの末端にある選択ト
ランジスタの状態を制御する。共通のワード線およびコントロールゲート線１１５～１２
０を共用するメモリセルストリングが、まとめて消去されるメモリセルのブロック１２３
を形成する。このセルからなるブロックは、一度に物理的に消去できる最小数のセルを収
容する。ワード線１１５～１１８のうちの１ワード線沿いの１行のメモリセルが一度にプ
ログラムされる。通常、ＮＡＮＤアレイの行は規定の順序でプログラムされ、この場合は
、アース等の共通電位へ接続されたストリングの末端に最も近いワード線１１８沿いの行
から始まる。次にワード線１１７沿いのメモリセル行がプログラムされ、ブロック１２３
の全体を通じて同様に進む。最後にワード線１１５沿いの行がプログラムされる。
【００２９】
　第２のブロック１２５も類似し、そのメモリセルストリングは第１のブロック１２３の
ストリングと同じグローバルビット線へ接続されているが、ワード線とコントロールゲー
ト線は異なる。ワード線とコントロールゲート線は、行制御回路５５によって適切な作動
電圧まで駆動される。図２のプレーン１および２等、２つ以上のプレーンまたはサブアレ
イがシステムに存在する場合は、それらの間に延在する共通のワード線を１つのメモリア
ーキテクチャで使用する。代わりに、３つ以上のプレーンまたはサブアレイが存在して共
通のワード線を共用することもある。これとは別のメモリアーキテクチャでは、各プレー
ンまたはサブアレイのワード線を別々に駆動する。
【００３０】
　前に参照したいくつかのＮＡＮＤ特許および公開特許出願で説明されているように、３
つ以上の検出可能な電荷レベルを各電荷蓄積素子または領域に蓄積することにより、２ビ
ット以上のデータを各々蓄積するようメモリシステムを操作できる。メモリセルの電荷蓄
積素子は一般的には導電性フローティングゲートだが、米国特許第６，９２５，００７号
（米国特許１３）で説明されている非導電性誘電性電荷捕獲材であってもよい。
【００３１】
　図４は、以降のさらなる説明で一例として使用するフラッシュメモリセルアレイ７（図
１）の編制を概念的に示すものである。４つのメモリセルプレーンまたはサブアレイ１３
１～１３４は、１つの集積メモリセルチップ上に存在することもあれば、２つのチップ（

(12) JP 5266250 B2 2013.8.21

10

20

30

40

50

各チップ上に２プレーンずつ）または４つの別々のチップ上に存在することもある。具体
的な配置は以降の論述にとって重要ではない。勿論、システムに存在するプレーンの数は
これに限らず、例えば１、２、８、１６またはそれ以上のプレーンが存在することもある
。プレーン１３１～１３４に位置するブロック１３７、１３８、１３９、１４０等、プレ
ーンは図４にて矩形で表示されたメモリセルブロックにそれぞれ分割される。各プレーン
には何十、何百ものブロックが存在し得る。前述したように、メモリセルのブロックは消
去の単位であって、物理的にまとめて消去できる最小数のメモリセルである。しかし、並
列性を高めるためには、これよりも大きいメタブロック単位でブロックを操作する。メタ
ブロックは、各プレーンの１ブロックを論理的にリンクすることによって形成される。４
つのブロック１３７～１４０によって１つのメタブロック１４１が形成される様子が図に
示されている。通常ならば、１メタブロック内の全てのセルをまとめて消去する。ブロッ
ク１４５～１４８からなる第２のメタブロック１４３に見られるように、メタブロックを
形成するブロックの各プレーンにおける相対位置は同じでなくてもよい。システム性能を
高めるため、通常は全てのプレーンにまたがって延在するメタブロックが好ましいが、別
々のプレーンにある１ブロック、２ブロック、または３ブロックのいずれかまたは全部か
ら動的にメタブロックを形成しながらメモリシステムを操作することもできる。この場合
は、１回のプログラミング操作で蓄積するデータ量にメタブロックのサイズをより近づけ
ることが可能となる。
【００３２】
　操作上の目的から、各ブロックはさらに図５に示すようにメモリセルページに分割され
る。例えばブロック１３１～１３４のメモリセルは、それぞれ８つのページＰ０～Ｐ７に
分割されている。代わりに、１６、３２、またはそれ以上のメモリセルページが各ブロッ
クに存在することもある。ページはブロックの中でデータをプログラムし読み出す単位で
あり、一度にプログラムされる最少量のデータを収容する。図３のＮＡＮＤアーキテクチ
ャでは、ブロックの中でワード線沿いのメモリセルからページが形成される。しかし、メ
モリシステム動作の並列性を高めるため、２つ以上のブロックにあるページをメタページ
として論理的にリンクすることもできる。図５には、４つのブロック１３１～１３４の各
ブロックにつき１物理ページからなるメタページ１５１が示されている。例えばメタペー
ジ１５１は４つのブロックのページＰ２を含んでいるが、メタページのページは必ずしも
各ブロック内で同じ相対位置を占めるとは限らない。システム性能を高めるためには、全
４つのプレーンにわたって最大量のデータを並行してプログラムし読み出すのが望ましい
が、別々のプレーンにあるブロックの１ページ、２ページ、または３ページのいずれかま
たは全部からメタページを形成しながらメモリシステムを操作することもできる。この場
合は、並列処理のデータ量に応じたプログラミング操作と読み出し操作が可能になるほか
、メタページの一部にデータがプログラムされずに残る事態は少なくなる。
【００３３】
　図５に示す複数プレーンの物理ページからなるメタページは、それらの複数プレーンの
ワード線行沿いのメモリセルを含む。１ワード線行の全セルを同時にプログラムするより
は、２つ以上のインターリーブされたグループでそれらを交互にプログラムするほうが一
般的であり、各グループは、（単一ブロック内の）１ページのデータか（複数ブロックに
またがる）１メタページのデータを蓄積する。交互のメモリセルを一度にプログラムする
ことにより、データレジスタやセンス増幅器を含むひとまとまりの周辺回路をビット線ご
とに用意する必要はなくなり、それらの回路は隣接するビット線で時分割共用する。こう
することで周辺回路に要する基板スペースを節約し、行沿いのメモリセル実装密度を増す
ことができる。さもなくば、行沿いの全セルを同時にプログラムしてメモリシステムから
最大限の並列性を引き出すのが望ましい。
【００３４】
　図３を参照すると、行沿いの互い違いのメモリセルへのデータの同時プログラミングを
最も簡便に果たすには、ＮＡＮＤストリングの少なくとも一端に沿って２行の選択トラン
ジスタ（図示せず）を、図に示された１行の代わりに、提供する。この場合、一方の行の

(13) JP 5266250 B2 2013.8.21

10

20

30

40

50

選択トランジスタは、１つの制御信号に応じてブロック内の互い違いのストリングをそれ
ぞれのビット線へ接続し、他方の行の選択トランジスタは、別の制御信号に応じて介在す
る互い違いのストリングをそれぞれのビット線へ接続する。その結果、メモリセルの各行
には２ページ分のデータが書き込まれる。
【００３５】
　各論理ページのデータ量は通常、整数にして１セクタ数以上のデータであり、各セクタ
は慣例上５１２バイトのデータを収容する。図６は、２セクタ１５３および１５５分のペ
ージまたはメタページデータからなる論理データページを示す。各セクタは通常、５１２
バイトのユーザまたはシステムデータを収容する部分１５７と、部分１５７のデータに関
係する、またはこれを蓄積する物理ページまたはブロックに関係する、オーバーヘッドデ
ータのため、さらなるバイト数１５９とを含む。オーバーヘッドデータのバイト数は通常
ならば１６バイトであり、セクタ１５３および１５５の各々につき合計５２８バイトにな
る。オーバーヘッド部分１５９には、プログラミング中にデータ部分１５７から算出され
るＥＣＣ、その論理アドレス、ブロックが消去され再プログラムされた回数の経験カウン
ト、１つ以上の制御フラグ、作動電圧レベル、および／またはその他に加え、そのような
オーバーヘッドデータ１５９から算出されるＥＣＣを収容できる。あるいは、オーバーヘ
ッドデータ１５９またはこれの一部分を別のブロックの異なるページに蓄積することもで
きる。
【００３６】
　メモリの並列性が高まるにつれメタブロックのデータ蓄積容量は増し、その結果、デー
タページおよびメタページのサイズも増す。データページは３セクタ以上のデータを収容
することがある。１データページ内に２セクタ、そして各メタページにつき２データペー
ジで、１メタページのセクタ数は４セクタになる。したがって、各メタページで２，０４
８バイトのデータを蓄積することになる。これは高度な並列性であり、行内のメモリセル
数の増加にともないさらに高めることができる。このような理由から、ページおよびメタ
ページ内のデータ量を増やすためにフラッシュメモリの幅は拡大されつつある。
【００３７】
　前述した物理的に小さい再プログラム可能な不揮発性メモリカードおよびフラッシュド
ライブは市販され、データ蓄積容量は５１２メガバイト（ＭＢ）、１ギガバイト（ＧＢ）
、２ＧＢ、４ＧＢおよびそれ以上になる。
【００３８】
ファイルオブジェクト操作手法
論理ブロック（ＬＢＡ）メモリ／ホストインターフェイスによる操作
　図７Ａ、図８Ａ、および図９Ａには、ホストおよびメモリシステム間の一般的な論理イ
ンターフェイスがそれぞれ異なる形式で示されている。ホストによって生成されるデータ
ファイルには、通常ならばマルチセクタデータからなるクラスタの単位で連続システムア
ドレス空間（ＬＢＡインターフェイス）の論理アドレスがホストによって割り振られる。
そして、メモリシステムはこれらの論理アドレスを認識し、データが実際に蓄積されるメ
モリセルブロックの物理アドレスにマップする。
【００３９】
　具体的に図９Ａを参照すると、連続する論理アドレス空間１６１には、メモリシステム
に蓄積される全データにアドレスを提供するにあたって十分な大きさがある。通常、ホス
トアドレス空間はデータクラスタの単位に分割される。ホストシステムではいくつかのデ
ータセクタを収容するように各クラスタを設計でき、４～６４セクタあたりが一般的であ
る。標準的なセクタは５１２バイトのユーザデータに加え、オプションとして何バイトか
のオーバーヘッドデータ、通常ならば１６バイトのオーバーヘッドデータを、収容し、全
部で５２８バイトになる。
【００４０】
　図９Ａは、ホストと、メモリカードやフラッシュドライブに見られる大容量メモリシス
テムとの間の最も一般的なインターフェイスを示す。ホストで扱うデータファイルは、ホ

(14) JP 5266250 B2 2013.8.21

10

20

30

40

50

ストによって実行されるアプリケーションソフトウェアかファームウェアプログラムによ
って生成または使用される。「ファイル」または「ファイルオブジェクト」は、何らかの
用途または目的のためにホストにより所定の実体として認識されるひとまとまりのデータ
を意味する。ファイルオブジェクトのデータはひとつの単位として扱われる。ワープロフ
ァイルのデータはその一例であり、コンピュータ支援設計（ＣＡＤ）ソフトウェアの描画
ファイルのデータもこれにあたり、主にＰＣ、ラップトップコンピュータ等、一般的なコ
ンピュータホストに見られる。ｐｄｆ形式文書のデータもそのようなファイルである。フ
ァイルオブジェクトのデータはアプリケーションプログラムの実行中にホストによって生
成されるか、別のところで生成されてホストに提供される。静止画デジタルビデオカメラ
は写真ごとにデータファイルを生成し、メモリカードに蓄積する。携帯電話機は、電話帳
等、内蔵メモリカード上のファイルからデータを利用する。ＰＤＡは、住所ファイル、カ
レンダーファイル等、数通りのファイルのデータを蓄積し使用する。そのような用途にお
いては、ホストを操作するソフトウェアがメモリカードに内蔵されることもある。
【００４１】
　図９Ａの例では、３つのファイル１、２、および３が作成されたものとして示されてい
る。ホストシステムで実行するアプリケーションプログラムは、整頓された１組のデータ
として各ファイルを作成し、一意な名前かその他の参照符によってこれを識別する。ファ
イル１には、別のファイルにまだ割り振られていない十分な使用可能な論理アドレス空間
がホストによって割り当てられる。ファイル１は、一連の使用可能な論理アドレス範囲が
割り当てられた状態で図に示されている。このほかに、通常ならばホストオペレーティン
グソフトウェアのための特定のアドレス範囲等、特定の目的のためにアドレス範囲が割り
振られ、それらは、たとえホストがデータに論理アドレスを割り当てるときにまだ使われ
ていなくとも、データの蓄積には使われない。
【００４２】
　図９Ａに見られるように、ホストは後ほどファイル２が作成されるときにも同様に、論
理アドレス空間１６１の中の２つの別々の隣接アドレス範囲を割り当てる。隣接する論理
アドレスをファイルに割り当てる必要はなく、既に他のファイルに割り振られているアド
レス範囲の間にあるアドレスの断片であってもよい。この例はさらに、ホストによって作
成されたもうひとつのファイル３に、ファイル１および２やその他のデータにまだ割り振
られていないホストアドレス空間の別の部分を割り振る様子を示している。
【００４３】
　ホストは、ファイルアロケーションテーブル（ＦＡＴ）を管理することによってメモリ
論理アドレス空間を絶えず把握し、ホストが様々なホストファイルに割り当てる論理アド
レスは、このファイルアロケーションテーブルの中で管理する。通常、ＦＡＴテーブルは
不揮発性メモリとホストメモリに蓄積され、新しいファイルが蓄積されるとき、他のファ
イルが削除されるとき、ファイルが修正されるとき等に、ホストによって頻繁に更新され
る。ホストは、例えばホストファイルが削除されるときにＦＡＴテーブルを更新すること
によって削除ファイルに割り振られていた論理アドレスを解除し、それらの論理アドレス
が別のデータファイルに使用できることを明らかにする。
【００４４】
　ホストは、ファイルの蓄積にあたってメモリシステムコントローラが選択する物理位置
を考慮しない。典型的なホストは、その論理アドレス空間と、ホストが種々のファイルに
割り振った論理アドレスを、認識するにすぎない。他方、メモリシステムは、典型的なＬ
ＢＡホスト／カードインターフェイスを通じて、論理アドレス空間のうちのデータが書き
込まれた部分だけを認識し、特定のホストファイルへ割り振られる論理アドレスは認識せ
ず、ホストファイルの数すら認識しない。メモリシステムコントローラは、データの蓄積
や引き出しのためにホストから提供される論理アドレスを、ホストデータを蓄積するフラ
ッシュメモリセルアレイの中の一意な物理アドレスに変換する。ブロック１６３は、メモ
リシステムコントローラによって管理される論理－物理アドレス変換の作業テーブルを表
している。

(15) JP 5266250 B2 2013.8.21

10

20

30

40

50

【００４５】
　メモリシステムコントローラは、高度なシステム性能を維持しながらメモリアレイ１６
５のブロックおよびメタブロックの中でデータファイルを蓄積するようにプログラムされ
る。この例では４つのプレーンまたはサブアレイが使われている。データは好ましくは、
各プレーンのブロックから形成されたメタブロック全体にわたってシステムが許す最大限
の並列度でプログラムされ、読み出される。通常は、メモリコントローラによって使用さ
れるオペレーティングファームウェアおよびデータを蓄積する予約ブロックとして、少な
くとも１つのメタブロック１６７が割り振られる。ホストオペレーティングソフトウェア
やホストＦＡＴテーブル等の蓄積のため、別のメタブロック１６９または複数のメタブロ
ックを割り振ることができる。物理蓄積容量のほとんどはデータファイルの蓄積用として
残る。しかし、メモリコントローラは、様々なファイルオブジェクトの中で受信データが
ホストによってどのように割り振られているかを認識しない。通常、メモリコントローラ
がホストとのやり取りを通じて知ることは、ホストによって特定の論理アドレスに書き込
まれるデータが対応する物理アドレスに蓄積されるということだけであって、これはコン
トローラの論理－物理アドレステーブル１６３によって管理される。
【００４６】
　典型的なメモリシステムにおいて、アドレス空間１６１の中でデータを蓄積するのとは
別に数ブロック分の蓄積容量を余分に用意する。メモリの寿命の中で別のブロックが故障
した場合に代用される冗長ブロックとして、これらの余分のブロックを１つ以上用意する
ことができる。当初メタブロックに割り当てられていた欠陥ブロックのための冗長ブロッ
クを代用する等、個々のメタブロックにおけるブロックの論理的分類は通常、様々な理由
から変化する。消去済みブロックのプールでは通例、メタブロック１７１等、１つ以上の
追加ブロックを保守する。コントローラはホストがメモリシステムにデータを書き込むと
きに、ホストによって割り当てられた論理アドレスを、消去済みブロックプールにあるメ
タブロック内の物理アドレスに変換する。そして、論理アドレス空間１６１の中でデータ
蓄積に使われていないほかのメタブロックは消去され、以降のデータ書き込み操作のとき
に使用するために消去済みプールのブロックとして指定される。
【００４７】
　特定のホスト論理アドレスに蓄積されたデータは、当初の蓄積データが用済みになると
新規データによって頻繁に上書きされる。これに応じてメモリシステムコントローラは新
規データを消去済みブロックに書き込み、論理アドレスのデータを蓄積する新たな物理ブ
ロックを明らかにするためにこれらの論理アドレスに関し論理－物理アドレステーブルを
変更する。そして、それらの論理アドレスのところで当初のデータを収容するブロックは
消去され、新規データの蓄積に使えるようになる。書き込みが始まるときに消去ブロック
プールの消去済みブロックに十分な蓄積容量がない場合は、データ書き込み操作を完了す
る前にこのような消去を頻繁に行わなければならない。このため、システムのデータプロ
グラミング速度が損なわれるおそれがある。メモリコントローラは通常、ある特定の論理
アドレスにあるデータがホストによって用済みとされていることを、ホストがそれと同じ
論理アドレスに新しいデータを書き込むときになって初めて知る。したがって、メモリの
ブロックの多くは、そのような無効データを暫くの間蓄積することがある。
【００４８】
　集積回路メモリチップの領域を効率よく運用するため、商用メモリシステムに使われる
ブロックとメタブロックのサイズは拡大している。その結果、データ書き込みの大半で蓄
積されるデータの量はメタブロックの蓄積容量に満たなく、多くの場合、ブロックの蓄積
容量にすら満たない。メモリシステムコントローラは通常、新規データを消去済みプール
のメタブロックへ誘導するため、メタブロックには埋まらない部分が生じる。新規データ
が別のメタブロックに蓄積されたデータの更新にあたる場合は、その別のメタブロックで
論理アドレスが新規データメタページの論理アドレスと隣接する残りの有効データメタペ
ージもまた、望ましくは論理アドレスの順序で新しいメタブロックにコピーする。古いメ
タブロックは他の有効データメタページを保持することがある。その結果、メタブロック

(16) JP 5266250 B2 2013.8.21

10

20

30

40

50

のいずれかのメタページのデータはいずれ用済み、無効となり、同じ論理アドレスにより
異なるメタブロックに書き込まれる新規データで差し替えられる。
【００４９】
　論理アドレス空間１６１の全体にわたってデータ蓄積のための十分な物理メモリ空間を
維持するため、データの圧縮または整理統合（ガーベッジコレクション）を定期的に行っ
てブロックを再生し、消去済みブロックのプールに加える。メタブロックの中でデータセ
クタをできる限り論理アドレスと同じ順序に保つことも望ましく、こうすることで連続す
る論理アドレスでデータの読み出し効率が上がる。そこで通常は、この目的のためにもデ
ータの圧縮とガーベッジコレクションが行われる。米国特許第６，７６３，４２４号（特
許文献１４）には、部分的ブロックデータ更新を受け取るときのメモリ管理とメタブロッ
ク使用の態様がいくつか記載されている。
【００５０】
　データ圧縮では通常、メタブロックから有効データメタページを全て読み出して別のブ
ロックに書き込み、その過程で無効データを含むメタページは無視する。また、有効デー
タを含むメタページは、好ましくはそこに蓄積されたデータの論理アドレスの順序に一致
する物理アドレス順に配置する。無効データを収容するメタページは新しいメタブロック
へコピーされないため、新しいメタブロックに占めるメタページの数は古いメタブロック
に占めるメタページの数を下回ることになる。そして、古いブロックを消去し、消去済み
ブロックプールへ加えて新規データの蓄積に使えるようにする。この整理統合によって得
られる追加メタページ容量は、ほかのデータの蓄積に役立てることができる。
【００５１】
　ガーベッジコレクションのときには、２つ以上のメタブロックから論理アドレスが隣接
するかほぼ隣接する有効データのメタページが回収され、別のメタブロック、通常ならば
消去済みブロックプールのメタブロックに書き換えられる。当初の２つ以上のメタブロッ
クから全ての有効データメタページをコピーすると、先々の使用に向けてそれらを消去で
きる。別々のブロックに蓄積されたファイルの断片化が増すにつれ、データの整理統合や
ガーベッジコレクションの回数も増える。
【００５２】
　データの整理統合とガーベッジコレクションには時間がかかり、ホストからのコマンド
の実行に先立ちデータの整理統合やガーベッジコレクションを行う必要がある場合は特に
メモリシステムの性能に影響する。メモリシステムコントローラは通常、そのような操作
をできるだけバックグラウンドで行うようスケジュールを組むが、これらの操作の実行に
あたっては、コントローラは操作が完了するまでビジー状態信号をホストに提供しなけれ
ばならない。ホストコマンドの実行が遅れる一例として、ホストがメモリに書き込もうと
する全データの蓄積にあたって十分な消去済みメタブロックが消去済みブロックプールに
ない場合は、事前にデータの整理統合かガーベッジコレクションで１つ以上のメタブロッ
クから有効データを片づける必要があり、その後にメタブロックを消去する。これまで、
そのような混乱を最小限に抑えるためにメモリ制御の管理に注意が払われてきた。そのよ
うな手法が、２００３年１２月３０日に出願された「Management of Non-Volatile Memor
y Systems Having Large Erase Blocks 」という米国特許出願第１０／７４９，８３１号
（米国公開特許出願第２００５／０１４４３５８号）（特許文献１５）、２００３年１２
月３０日に出願された「Non-Volatile Memory and Method with Block Management Syste
m 」という米国特許出願第１０／７５０，１５５号（米国特許第７，１３９，８６４号）
（特許文献１６）、２００４年８月１３日に出願された「Non-Volatile Memory and Meth
od with Memory Planes Alignment 」という米国特許出願第１０／９１７，８８８号（米
国公開特許出願第２００５／０１４１３１３号）（特許文献１７）、２００４年８月１３
日に出願された「Non-Volatile Memory and Method with Non-Sequential Update Block
Management」という米国特許出願第１０／９１７，８６７号（米国公開特許出願第２００
５／０１４１３１２号）（特許文献１８）、２００４年８月１３日に出願された「Non-Vo
latile Memory and Method with Phased Program Failure Handling 」という米国特許出

(17) JP 5266250 B2 2013.8.21

10

20

30

40

50

願第１０／９１７，８８９号（米国公開特許出願第２００５／０１６６０８７号）（特許
文献１９）、２００４年８月１３日に出願された「Non-Volatile Memory and Method wit
h Control Data Management 」という米国特許出願第１０／９１７，７２５号（米国公開
特許出願第２００５／０１４４３６５号）（特許文献２０）、２００４年１２月１６日に
出願された「Scratch Pad Block 」という米国特許出願第１１／０１６，２８５号（米国
公開特許出願第２００６／０１６１７２２号）（特許文献２１）、２００５年７月２７日
に出願された「Non-Volatile Memory and Method with Multi-Stream Update Tracking」
という米国特許出願第１１／１９２，２２０号（米国公開特許出願第２００６／０１５５
９２１号）（特許文献２２）、２００５年７月２７日に出願された「Non-Volatile Memor
y and Method with Improved Indexing for Scratch Pad and Update Blocks 」という米
国特許出願第１１／１９２，３８６号（米国公開特許出願第２００６／０１５５９２２号
）（特許文献２３）、および２００５年７月２７日に出願された「Non-Volatile Memory
and Method with Multi-Stream Updating 」という米国特許出願第１１／１９１，６８６
号（米国公開特許出願第２００６／０１５５９２０号）（特許文献２４）で数多く説明さ
れている。
【００５３】
　非常に大きな消去ブロックを持つメモリアレイの動作を効率的に制御するには、書き込
み操作のときに蓄積されるデータセクタの数をメモリのブロックの容量に一致させ、ブロ
ックの境界に揃えることがひとつの課題となる。それには、ホストからの新規データの蓄
積に使うメタブロックを最大ブロック数未満で構成し、メタブロック全体を埋め尽くすま
でには至らない一定量のデータを蓄積するようにする方法がある。適応メタブロックの使
用は、２００３年１２月３０日に出願された「Adaptive Metablocks 」という米国特許出
願第１０／７４９，１８９号（米国公開特許出願第２００５／０１４４３５７号）（特許
文献２５）で説明されている。データブロック間の境界とメタブロック間の物理的境界の
整合は、２００４年５月７日に出願された「Data Boundary Management」という米国特許
出願第１０／８４１，１１８号（米国公開特許出願第２００５／０１４４３６３号）（特
許文献２６）と、２００４年１２月１６日に出願された「Data Run Programming」という
米国特許出願第１１／０１６，２７１号（米国公開特許出願第２００５／０１４４３６７
号）（特許文献２７）で説明されている。
【００５４】
　メモリコントローラでは、ホストによって不揮発性メモリに蓄積されるＦＡＴテーブル
のデータをメモリシステムの効率的作動に役立てることもできる。例えば、論理アドレス
の解除によりホストによってデータが用済みと識別されたことを知るのに役立てる。メモ
リコントローラは、通常ならばホストがその論理アドレスに新規データを書き込むことか
ら知るデータが用済みと識別されたことを、事前に知ることにより、そのような無効デー
タを収容するブロックの消去スケジュールを組むことができる。これは、２００４年７月
２１日に出願された「Method and Apparatus for Maintaining Data in Non-Volatile Me
mory Systems」という米国特許出願第１０／８９７，０４９号（特許文献２８）で説明さ
れている。このほかの手法として、ホストがメモリに新規データを書き込むパターンを監
視することにより、ある特定の書き込み操作が単一のファイルか否かを推定し、複数のフ
ァイルである場合にはファイル間の境界がどこにあるかを推定する。２００４年１２月２
３日に出願された「FAT Analysis for Optimized Sequential Cluster Management」とい
う米国特許出願第１１／０２２，３６９号（特許文献２９）では、このタイプの手法の使
用が説明されている。
【００５５】
　メモリシステムを効率よく操作するには、ホストによって各ファイルのデータに割り当
てられる論理アドレスについて、コントローラができるだけ多くのことを知るのが望まし
い。そうすればコントローラは、ファイルの境界が分からなければ多数のメタブロックに
散在することになるデータファイルを、１つのメタブロックまたは１群のメタブロックに
蓄積することができる。その結果、データの整理統合操作やガーベッジコレクション操作

(18) JP 5266250 B2 2013.8.21

10

20

30

40

50

の回数と複雑さが抑えられる。結果的にメモリシステムの性能は向上する。しかし、前述
したように、ホスト／メモリインターフェイスが論理アドレス空間１６１（図９Ａ）を含
む場合に、メモリコントローラがホストデータファイル構造について多くを知ることは困
難である。
【００５６】
ダイレクトデータファイル操作
　図７Ｂ、図８Ｂ、および図９Ｂに見られるホストと大量データ蓄積用メモリシステムと
の各種インターフェイスは、論理アドレス空間の使用を解消する。代わりにホストは、一
意なファイルＩＤ（またはその他の一意な参照符）とファイル内でのデータ単位（バイト
等）によるオフセットアドレスとによって各ファイルのデータを論理的にアドレスする。
これらのアドレスはメモリシステムコントローラへ直接提供され、メモリシステムコント
ローラは、各ホストファイルのデータの物理的な蓄積位置について独自のテーブルを管理
する。これは前に相互参照した特許出願の主題にあたる操作である。このファイルインタ
ーフェイスは、図２～図６との関係で前述したものと同じメモリシステムで実装できる。
図７Ｂ、図８Ｂ、および図９Ｂのファイル本位インターフェイスと図７Ａ、図８Ａ、およ
び図９ＡのＬＢＡインターフェイスとの主な違いは、メモリシステムがホストシステムと
通信しファイルデータを蓄積する方法にある。
【００５７】
　図８Ｂのファイル本位インターフェイスと図８ＡのＬＢＡインターフェイスとを比較し
た場合、図８Ａの論理アドレス空間とホストによって保守されるＦＡＴテーブルは図８Ｂ
に存在しない。メモリシステムにとっては、ファイル番号とファイル内でのデータオフセ
ットによってホスト生成データファイルが識別される。そして、メモリシステムは、ファ
イルをメモリセルアレイの物理ブロックに直接マップする。
【００５８】
　ダイレクトデータファイル蓄積法で新規データファイルをメモリにプログラムする場合
は、メモリセルの消去済みブロックにデータが書き込まれ、この書き込みはこのブロック
内の最初の物理位置から始まって残りの位置を順次進んでいく。データは、ファイルにお
けるこのデータのオフセット順序にかかわりなく、ホストからの受信順序に沿ってプログ
ラムされる。プログラミングは、ファイルの全データがメモリへ書き込まれるまで続く。
ファイル内のデータ量が１メモリブロックの容量を上回る場合は、最初のブロックが一杯
になった時点で第２の消去済みブロックでプログラミングが継続する。第２のメモリブロ
ックは第１のメモリブロックと同様にプログラムされ、最初の位置からファイルの全デー
タが蓄積されるか、第２のブロックが一杯になるまで続く。ファイルのデータが残ってい
る場合は、３番目以降のブロックにプログラムする。１ファイルのデータを蓄積する複数
のブロックまたはメタブロックが物理的または論理的に隣り合っているとは限らない。説
明を平易にするため、ここで用いる用語「ブロック」は別段の断りがない限り、システム
でメタブロックを使用するか否かに応じて、ブロック消去単位か多重ブロック「メタブロ
ック」を指すものとする。
【００５９】
　図９Ｂを参照すると、ファイル１、２、および３の識別情報とファイル内でのデータオ
フセットはメモリコントローラへ直接引き渡される。この論理アドレス情報はメモリコン
トローラ機能１７３によってメモリ１６５のメタブロックおよびメタページの物理アドレ
スに翻訳される。ファイルデータは図９Ａの論理アドレス空間１６１にマップされない。
【００６０】
フラッシュ最適化ファイルシステムの原理
　図７Ｃ、図８Ｃ、および図９Ｃは、図７Ｂ、図８Ｂ、および図９Ｂのダイレクトデータ
ファイル手法に図７Ａ、図８Ａ、および図９Ａに見られるタイプのＬＢＡインターフェイ
スを組み合わせたオペレーティングシステムを、それぞれ異なる形式で示すものである。
図７Ｃの「フラッシュ最適化ファイルシステム」の動作は図７Ｂの「ダイレクトファイル
蓄積バックエンドシステム」と基本的に同じだが、ファイルデータは図７Ｃに見られるＬ

(19) JP 5266250 B2 2013.8.21

10

20

30

40

50

ＢＡインターフェイスの連続アドレス空間の中で論理ブロックにマップされ、図７Ｂに見
られるＮＡＮＤフラッシュの物理メモリセルブロックにはマップされない。図７ＣのＬＢ
Ａインターフェイスと「ＬＢＡ－物理バックエンドシステム」は、図７Ａのシステムと共
通している。図７Ｃのシステムでは、ＬＢＡインターフェイスの前にダイレクトファイル
－ブロックアドレス割り当てが行われるが、ＮＡＮＤフラッシュメモリの物理ブロックで
はなく、ＬＢＡインターフェイスの連続アドレス空間に含まれる論理ブロックアドレスを
扱う。
【００６１】
　図８Ｃには同じ発想が異なる形式で示されている。ホストによって生成されるデータフ
ァイルは、蓄積装置の論理アドレス空間に含まれる論理ブロックアドレスに割り当てられ
る。次に、論理アドレス空間の論理ブロックが従来どおりメモリコントローラによって物
理蓄積媒体のブロックにマップされる。図８Ｃには、ホストとメモリシステムとでこれら
の機能を分割した場合の２通りの区分が描かれている。図のホスト１から分かるように、
第１の実施形態ではホストの中でファイルを論理ブロックアドレスに割り振る。この場合
のメモリ１は従来のメモリカードやその他の装置であって、ホストのＬＢＡインターフェ
イスと接続するＬＢＡインターフェイスを備える。これとは別に、図８Ｃのホスト２は、
データファイルの識別情報とファイル内でのデータオフセットをメモリシステムとやり取
りする。これらのファイルを論理ブロックアドレスに割り振るダイレクトデータファイル
機能は、メモリ２の中で実行される。
【００６２】
　図８Ｃのメモリ２は、メモリカードやフラッシュドライブをはじめとする小型ポータブ
ル装置の形が最も一般的で、蓄積装置の論理アドレス空間との外部接点を提供することに
よってＬＢＡインターフェイスを追加することもできる。さらなる代案として、ファイル
を論理ブロックアドレスに割り振る機能はマイクロプロセッサを内蔵するマザーカードで
実行することもできる。この場合のマザーカードはホスト２と取り外し可能な状態で接続
し、メモリ１はマザーカードと取り外し可能な状態で接続する。
【００６３】
　図９Ｃには、ファイルオブジェクトのデータを論理アドレス空間にマップする手法が異
なる形式で示されている。機能１７３’は各ファイルのデータを、一意なファイル識別子
とファイル内でのデータオフセットアドレスとからなる各論理アドレスと併せて、受信す
る。これらのファイルアドレスは、機能１７３’によって連続論理アドレス空間１６１の
論理ブロックに含まれるアドレスに変換される。物理メモリでブロックとメタブロックの
どちらの単位を使用するかに応じ、各論理ブロックのアドレス範囲はメモリアレイ１６５
のブロックかメタブロックのデータ蓄積容量と同じになるように設定する。図９Ｃの機能
１７３’は図９Ｂの機能１７３と基本的に同じだが、図９Ｃではアドレス空間１６１の論
理ブロックにファイルをマップするのに対し、図９Ｂではファイルをメモリセルアレイ１
６５に直接マップする。次に、論理アドレスブロックは図９Ｃの機能１６３によってメモ
リアレイ１６５に翻訳されるが、これは図９Ａと基本的に同じである。機能１６３は、前
に述べた米国特許第７，１３９，８６４号（特許文献１６）や米国公開特許出願第２００
５／０１４１３１３号（特許文献１７）、第２００５／０１４１３１２号（特許文献１８
）、第２００５／０１６６０８７号（特許文献１９）、第２００５／０１４４３６５号（
特許文献２０）、および第２００６／０１６１７２２号（特許文献２１）で説明されてい
るもの等、従来のフラッシュメモリオペレーティングシステムであってよい。
【００６４】
　図９Ｃでは、アドレス空間１６１の各論理ブロックのアドレスが２つ以上のファイルの
データにまたがることがあることに気づく。各ファイルのデータに２つ以上の論理ブロッ
クにまたがってアドレスが割り当てられることもある。例えば、データファイル２および
３には２つ以上の論理ブロックにまたがってアドレスが割り当てられている。論理ブロッ
クは２つの異なるファイルのデータを収容することもあり、図９Ｃの論理ブロック２はそ
の例である。しかし、好ましくは、ある１のファイルのデータと他の何らかのファイルの

(20) JP 5266250 B2 2013.8.21

10

20

30

40

50

データを収容する論理ブロックの数には１つ以上の制限を設ける。制限は状況によって異
なる。具体例として、ファイルのデータをアドレス空間１６１のいくつかの論理ブロック
に割り振る場合に、いずれか１つのファイルが別のファイルのデータと共有する論理ブロ
ックを２ブロックまでにする。ファイルオブジェクトのデータに論理ブロックアドレスを
割り当てるときにこの制約を順守するには、ファイルデータで部分的にしか満たされてい
ない論理ブロックの数を制限する。
【００６５】
　この制約により、例えば他のファイルのデータが用済みになった場合に必要となるデー
タ再配置量は少なくなる。通常、このような場合には別ファイルの用済みデータを含むブ
ロックから別のブロックへファイルの有効データをコピーする。ある特定のファイルが別
のファイルのデータと共有するブロックの数を制限することにより、このようなデータコ
ピー操作の頻度は低くなる。その結果、メモリシステムの性能は向上する。
【００６６】
　図１０を参照すると、論理ブロックと物理ブロックの両方でファイルデータの割り振り
が示されている。例示するため、物理メモリセルブロックの例１９１は４つのページ１９
５～１９９に分割されているが、実際のシステムでは通常ブロック当たりのページ数がこ
れよりも多くなる。各ページは複数セクタのデータを蓄積する。ブロックの中では通常、
１９５～１９９の順序で一度に１ページずつデータをプログラムする。メタブロックを使
用するメモリシステムの場合はブロック１９１がメタブロックとなり、ページ１９５～１
９９はメタページになる。
【００６７】
　物理ブロック１９１にマップされるのは、論理アドレス空間１６１の論理ブロック１９
３である。論理ブロック１９３のデータ蓄積容量は物理ブロック１９１と同じに設定され
、物理ブロック１９１と同数のページ２０１～２０４に分割され、各論理ページのデータ
蓄積容量は物理ページ１９５～１９９のそれぞれと同じである。つまり、好ましくは、論
理アドレス空間の粒度が物理メモリページまたはメタページのデータ蓄積容量に等しくな
るようにする。論理ブロック１９３の中では、物理ブロック１９１にデータページを書き
込むのと同じ順序で論理ページのアドレスをデータに割り当てる。論理ブロック１９３の
第１のページ２０１の先頭におけるデータの書き込みは、物理ブロック１９１の第１のペ
ージ１９５の先頭で始まるようにする。
【００６８】
　このような論理・物理機能の連携を保つには、ファイル－論理ブロック翻訳を行うホス
トが相手方にあたるメモリの物理的特性を知る必要がある。例えばメタブロックを使用す
るメモリシステムでは、以下のパラメータによってこれらの特性が決まる。
　１．蓄積データのセクタ数による物理ページサイズ
　２．ともにリンクされ各メタページを形成するページ数によるメタページサイズ
　３．１メタブロック当たりのページ数
　４．物理メタブロックの第１のページへマップされる最下位論理アドレス
【００６９】
　ホストはこの情報をもとに論理アドレス空間１６１の論理ブロック構造を構成し、図１
０に示すように作動することができる。ホストに埋め込まれたメモリ等、ある特定のホス
トで使用するメモリが１種類だけならば、ただひとつのホスト論理アドレス空間構成を管
理するだけでよい。しかし、物理的特性がそれぞれ異なるポータブルメモリ装置が取り外
し可能な状態でホスト装置に接続される場合のほうが一般的であり、実際にはホスト装置
も様々である。そこで、接続先にあたる特定のポータブルメモリ装置の物理ブロック構成
に論理ブロック構成を適合させるための機能をホストの中に用意する。それには、前述し
たメモリパラメータのデータをメモリ装置そのものに蓄積し、ホストで読み出されるよう
にする。通常、論理ブロックに対応する物理ブロックはメモリシステムのコントローラに
よって変更されるが、ホストがこれを知ることはなく、論理ブロックへのファイルデータ
のアドレス割り当てには影響しない。

(21) JP 5266250 B2 2013.8.21

10

20

30

40

50

【００７０】
　図１１は、これらのパラメータデータを不揮発性蓄積領域２０９に収容するメモリ装置
２０７を示すものであり、ホスト２１１は相互接続バス２１３を通じてこれにアクセスす
る。ホストがこれらのパラメータを読み出す方法は数多くある。一例として、ベンダー固
有のコマンドを設定し、これをメモリ装置２０７の初期化中にホスト２１１からメモリ装
置へ発行する。作動したメモリ装置２０７は、蓄積されたパラメータ値をホストへ返す。
もうひとつの例として、メモリ装置２０７がホスト２１１からの既存標準コマンドに応じ
てホストへ返す既存フィールドの未使用部分に、これらのパラメータを盛り込むこともで
きる。ドライブ識別コマンドはそのようなコマンドの一例である。
【００７１】
代表的なフラッシュ最適化ファイルシステム
　この節では、個々のファイルを連続論理アドレス空間の論理ブロックにマップする手法
の代表的な実施例をさらに詳しく説明する。この手法のいくつかの態様は、基本的に同じ
機能である図７Ｃの「フラッシュ最適化ファイルシステム」と、図８Ｃの「論理ブロック
アドレスへのファイルの割り振り」と、図９Ｃの「ファイル／オフセット－論理アドレス
変換」１７３’との関係で既に説明している。
【００７２】
　論理ブロックアドレスへのファイルマッピングについてこの節で説明する内容の大半は
、前に相互参照した特許出願で説明されている物理メモリセルブロックアドレスにファイ
ルをマップする手法と同じ手法を利用する。主な違いは、相互参照した先行特許出願に説
明されているように、データファイルをそのまま物理メモリブロックにマップしてＬＢＡ
インターフェイスを回避する代わりに、例えばホスト装置により、ＬＢＡインターフェイ
スにまたがってファイルマッピングを行うことにある。先行出願の物理メモリブロックマ
ッピング手法を応用し、ＬＢＡアドレス空間の論理ブロックにデータファイルオブジェク
トをマップすることも可能であり、ここではその例をいくつか説明する。
【００７３】
　ファイルオブジェクトの論理的マッピングに関するここでの説明では、ＬＢＡインター
フェイスのブロックにデータが「書き込まれる」、または「プログラムされる」と言う。
当然ながら、これらの論理ブロックは物理メモリブロックと違って実際にはデータを蓄積
しないため、これは特定の論理ブロックに対してデータのアドレスを指定することを意味
する。同様に、データが割り振られていない論理ブロックのことを「消去済み」と言う。
「消去済み」論理ブロックはデータのアドレスがない論理ブロックであり、完全に空いて
いてデータのアドレスを割り当てることができる。「部分的に消去済み」の論理ブロック
もあり、これはその論理ブロックの一部分が空いていて、データのさらなるアドレスを受
け付け可能であることを意味する。
【００７４】
フラッシュ最適化ファイルシステムの一般的動作
　メモリに新規のデータファイルをプログラムするときには空いている論理ブロックにデ
ータが書き込まれ、この書き込みはこのブロック内の最初の位置から始まって残りの位置
を順次進んでいく。データは、ファイルにおけるこのデータのオフセット順序にかかわり
なく、ホストからの受信順序に沿って論理ブロック内にプログラムされる。プログラミン
グは、ファイルの全データが書き込まれるまで続く。ファイル内のデータ量が１論理ブロ
ックの容量を上回る場合は、最初のブロックが一杯になった時点で第２の空の（消去済み
）ブロックでプログラミングを継続する。第２の論理ブロックは第１の論理ブロックと同
様にプログラムされ、最初の位置からファイルの全データが割り振られるか、第２のブロ
ックが一杯になるまで続く。ファイルのデータが残っている場合は、３番目以降のブロッ
クにプログラムする。１ファイルのデータを蓄積する複数の論理ブロックまたはメタブロ
ックが隣り合っているとは限らない。説明を平易にするため、ここで用いる用語、論理「
ブロック」は別段の断りがない限り、システムでメタブロックを使用するか否かに応じて
、メモリシステムにおける物理ブロックの最小消去単位と同じ容量を持つ論理ブロックか

(22) JP 5266250 B2 2013.8.21

10

20

30

40

50

、通常まとめて消去される多重ブロック物理メタブロックに対応する多重ブロック論理「
メタブロック」を指すものとする。
【００７５】
　図１２は、フラッシュ最適化ファイルシステムの全体的な働きを示す。個々の論理ブロ
ックは３つの状態のいずれか１つにあるとみなすことができる。３つの状態とは、消去済
みブロック６４１と、有効ファイルデータを蓄積し再生可能な容量がないブロック６４３
と、ある程度の有効ファイルデータのほかに再生可能な容量もあるブロック６４５であっ
て、ブロック６４５の場合は、そこにある未プログラム（消去済み）ページおよび／また
は用済み（無効）データから容量を再生できる。機能６４７によって消去済み論理ブロッ
クへデータが書き込まれると、プログラムされたブロックに再生可能な容量が残るか否か
に応じて当該ブロックはカテゴリ６４３か６４５のブロックになる。機能６４９に表示さ
れているようにファイルが削除されると、ファイルデータを収容しているブロック６４３
は再生可能な容量を持つブロック６４５に変わる。機能６５０で再生可能なブロックから
別のブロックへデータをコピーした後には、ブロック６４５の未使用蓄積容量が機能６５
１によって再生され、その結果、ブロックは消去済みブロック６４１の状態に戻り、新た
にデータを書き込むことができる。
【００７６】
　図１３Ａを参照すると、論理アドレス空間に対するデータファイルの書き込みが示され
ている。この例のデータファイル１８１は、垂直の実線間に広がる１ブロックまたはメタ
ブロック１８３の蓄積容量より大きい。このため、データファイル１８１の部分１８４は
第２のブロック１８５にも書き込まれる。これらの論理ブロックはアドレスが隣接するも
のとして図に示されているが、必ずしも隣接するとは限らない。ファイル１８１のデータ
はホストから受信されるにつれ書き込まれ、最終的にはファイルの全データが論理アドレ
ス空間へ書き込まれる。図１３Ａの例で、データ１８１はファイルの最初のデータである
。
【００７７】
　メモリシステムで蓄積データを管理し追跡するには、可変サイズのデータグループを使
用するのが好ましい。つまり、所定の順序につなげて完全なファイルを形成する複数のデ
ータグループとしてファイルのデータを蓄積する。ホストからのデータストリームを書き
込むときに、ファイルデータの論理オフセットアドレスやデータを割り振る論理アドレス
空間に途切れが生じると、新たなデータグループが始まる。例えば、ファイルのデータに
よってあるひとつの論理ブロックが一杯になり、別のブロックへの書き込みが始まると、
そのような途切れが論理アドレス空間に生じる。これを示す図１３Ａでは、第１のブロッ
ク１８３が第１のデータグループで満たされ、ファイルの残りの部分１８４は第２のデー
タグループとして第２のブロック１８５に蓄積されている。第１のデータグループは（Ｆ
０，Ｄ０）で表すことができ、Ｆ０はデータファイルの先頭の論理オフセットであり、Ｄ
０は論理ブロック１８３の中でファイルが始まる位置である。第２のデータグループは（
Ｆ１，Ｄ１）で表され、Ｆ１は第２のブロック１８５の先頭に蓄積されるデータのファイ
ルオフセットであり、Ｄ１は第２のブロックの先頭の論理アドレスである。
【００７８】
　ホスト－メモリインターフェイスを通じて転送されるデータの量は、データのバイト数
か、データのセクタ数か、他の何らかの粒度で表すことができる。ホストは通常、ファイ
ルのデータをバイト粒度で定義するが、論理アドレスインターフェイスを通じて大容量メ
モリシステムと通信するときには、それぞれ５１２バイトのセクタか複数のセクタからな
るクラスタにバイトをまとめる。これはメモリシステム動作を簡略化するために通常行わ
れていることである。ここで説明するファイル本位のホスト－メモリインターフェイスで
は別のデータ単位を使うこともできるが、通常は本来のホストファイルのバイト粒度が好
ましい。つまり、データのオフセットや長さ等は、セクタやクラスタ等ではなく、データ
の最小分解単位であるバイト単位で表すのが好ましい。そうすれば、ここで説明する手法
によりフラッシュメモリの蓄積容量をより有効利用できる。

(23) JP 5266250 B2 2013.8.21

10

20

30

40

50

【００７９】
　図１３Ａのやり方で論理アドレス空間に書き込まれた新規ファイルは、ファイルインデ
ックステーブル（ＦＩＴ）の中で（Ｆ０，Ｄ０）、（Ｆ１，Ｄ１）の順に並ぶ一連のデー
タグループインデックス項目によって表される。つまり、ホストシステムは、ある特定の
ファイルにアクセスする際にこのファイルのファイルＩＤやその他の識別情報を生成し、
次にＦＩＴにアクセスし、このファイルを構成するデータグループを識別する。メモリシ
ステムの操作を簡便にするため、各データグループの長さ＜ｌｅｎｇｔｈ＞をそれぞれの
項目に盛り込むこともできる。
【００８０】
　図１３Ａのファイルがホストによって開いた状態に保たれている間は、好ましくは書き
込みポインタＰも維持し、そのファイルとしてホストから受信するさらなるデータの書き
込みにあたって論理アドレスを指定できるようにする。ファイルの新規データは、当該フ
ァイルにおける新規データの論理位置にかかわりなく、論理ブロックの中ではファイルの
末尾に書き込まれる。メモリシステムでは一度に複数のファイル、例えば４つのファイル
または５つのファイルを開いておくことができ、ファイルごとに書き込みポインタＰを維
持する。ファイルごとの書き込みポインタは、論理ブロックにおけるファイルの位置を指
し示すものである。既にシステムの開放ファイル数制限に達しているときに、ホストシス
テムで新たなファイルを開く場合は、開いているファイルのいずれか１つを先に閉じ、そ
の後に新たなファイルを開く。
【００８１】
　図１３Ｂは、既に図１３Ａで書き込まれ引き続き開いているファイルの末尾にホストが
データを付け加える様子を示している。ホストシステムによってファイルの末尾に追加さ
れたデータ１８７が見られるが、これも第２のブロック１８５の中、このファイルのデー
タの末尾に、書き込まれる。追加されたデータはデータグループ（Ｆ１，Ｄ１）の一部に
なり、既存のデータグループ１８４と追加データ１８９との間にファイルや論理アドレス
の途切れはないため、データグループ（Ｆ１，Ｄ１）のデータが増えたことになる。した
がって、ＦＩＴの中では引き続きファイル全体が一連のインデックス項目（Ｆ０，Ｄ０）
、（Ｆ１，Ｄ１）で表される。ポインタＰのアドレスも蓄積された追加データの末尾のア
ドレスに変更される。
【００８２】
　図１３Ｃには、既に図１３Ａで書き込まれたファイルへデータブロック１９１を挿入す
る例が示されている。ホストはデータ１９１をファイルの中に挿入しているが、フラッシ
ュ最適化ファイルシステムは、書き込み済みファイルデータの末尾にあたる位置１９３に
挿入データを付け加える。開いているファイルの中にデータを挿入する場合でもファイル
のデータを論理順に書き換える必要はないが、後ほどホストがファイルを閉じた後にバッ
クグラウンドで書き換えを行うこともできる。挿入データは第２の論理ブロック１８５の
中に完全に収まるため、新しい単独グループ（Ｆ１，Ｄ３）を形成する。しかし、この挿
入により図１３Ａの以前のデータグループ（Ｆ０，Ｄ０）は２つのグループ、すなわち挿
入箇所の前のグループ（Ｆ０，Ｄ０）と挿入箇所の後ろのグループ（Ｆ２，Ｄ１）とに分
かれる。なぜなら、ファイルデータに途切れが生じると、例えば挿入箇所の先頭Ｆ１と挿
入箇所の末端Ｆ２で途切れが生じると、新たなデータグループを形成する必要があるため
である。グループ（Ｆ３，Ｄ２）は、論理アドレスＤ２が第２のブロック１８５の先頭に
なった結果である。グループ（Ｆ１，Ｄ３）とグループ（Ｆ３，Ｄ２）は同じ論理ブロッ
クの中にあるが、そこに蓄積されたデータのファイルオフセットは途切れているために別
扱いになる。ＦＩＴの中では挿入が行われたファイルが（Ｆ０，Ｄ０）、（Ｆ１，Ｄ３）
、（Ｆ２，Ｄ１）、（Ｆ３，Ｄ２）の順に並んだデータグループインデックス項目によっ
て表される。図１３Ａ、図１３Ｂ、および図１３Ｃの例では、既存ファイルや新規ファイ
ルの新規データ書き込みにともない、論理ブロックアドレスによって表されるデータが用
済みになっていないことに気づく。
【００８３】

(24) JP 5266250 B2 2013.8.21

10

20

30

40

50

　図１３Ｃに示された既存ファイルへのデータ挿入とは別に、データが挿入されたときに
ホストによってファイルが別個のファイルとして書き換えられることもある。この別個の
ファイルはメモリシステムによって新規ファイルとして扱われる。古いファイルがホスト
によって削除されると、これに応じてシステムは古いファイルに割り当てられた論理アド
レス空間を再生し、そのデータは用済みになる。
【００８４】
　図１３Ｄに示すもうひとつの例では、図１３Ａのやり方で当初書き込まれたデータの一
部分が更新される。データファイルの一部分１９５が更新される様子が見られる。更新に
よりファイル全体を書き換えるのではなく、書き込み済みのデータにファイルの更新部分
１９７を付け加えている。そして、書き込み済みのデータ部分１９９は用済みになる。更
新後のファイルはシステムＦＩＴの中で（Ｆ０，Ｄ０）、（Ｆ１，Ｄ３）、（Ｆ２，Ｄ１
）、（Ｆ３，Ｄ２）の順序に並んだデータグループインデックス項目によって表される。
図１３Ａで１つだったデータグループ（Ｆ０，Ｄ０）は図１３Ｄにおいても更新部分の前
と、更新部分と、更新部分の後ろとに分割される。用済みデータで占められたアドレス空
間１９９は再生するのが望ましいが、これはファイルデータの書き込みの一部として行う
のではなく、後で行ったほうが好ましい。再生を後で行うことにより、通常ならばファイ
ルの蓄積にともなうデータグループ数が少なくなる。
【００８５】
　可変長データグループの取り扱いをさらに例示するため、同一ファイルが関係する一連
の書き込み操作を図１４Ａ～図１４Ｅに順次示す。図１４Ａに見られるように、当初のフ
ァイルデータＷ１はまず、連続アドレス空間の２つの論理ブロックに書き込まれる。ファ
イルは２つのデータグループによって画定され、第１のグループは論理ブロックの先頭か
ら始まり、第２のグループは論理ブロック境界の後ろになる。ここで図１４Ａのファイル
は、一連のデータグループインデックス項目（Ｆ０，Ｄ０）、（Ｆ１，Ｄ１）によって表
される。
【００８６】
　図１４Ｂでは、図１４Ａで書き込んだファイルデータがホストによって更新される。更
新ファイルデータＵ１は以前のグループ（Ｆ１，Ｄ１）のすぐ後ろに書き込まれ、前回の
更新データは用済みになる。図１４Ａの以前のグループ（Ｆ０，Ｄ０）は図１４Ｂの修正
されたグループ（Ｆ０，Ｄ０）まで短縮し、以前のグループ（Ｆ１，Ｄ１）はグループ（
Ｆ４，Ｄ２）まで短縮する。更新データは論理ブロックの境界に重なっているために２つ
のグループ（Ｆ２，Ｄ３）および（Ｆ３，Ｄ４）に書き込まれる。そのデータの一部は第
３の論理ブロックに蓄積される。このときファイルは、一連のデータグループインデック
ス項目（Ｆ０，Ｄ０）、（Ｆ２，Ｄ３）、（Ｆ３，Ｄ４）、（Ｆ４，Ｄ２）によって表さ
れる。
【００８７】
　図１４Ｃでは図１４Ｂのファイルがホストによってさらに修正され、新規ファイルデー
タＩ１が挿入される。挿入データは論理ブロックの境界に重なっているため、新規データ
Ｉ１は、図１４Ｃの新規グループ（Ｆ５，Ｄ６）および（Ｆ６，Ｄ７）として、論理ブロ
ックにおいて図１４Ｂの以前のグループ（Ｆ４，Ｄ２）のすぐ後ろに書き込まれる。第４
の論理ブロックが使われている。新規データＩ１の挿入のため、図１４Ｂの以前のグルー
プ（Ｆ０，Ｄ０）は図１４Ｃで短縮グループ（Ｆ０，Ｄ０）および（Ｆ７，Ｄ５）に分割
される。このときファイルは一連のデータグループインデックス項目（Ｆ０，Ｄ０）、（
Ｆ５，Ｄ６）、（Ｆ６，Ｄ７）、（Ｆ７，Ｄ５）、（Ｆ８，Ｄ３）、（Ｆ９，Ｄ４）、（
Ｆ１０，Ｄ２）によって表される。
【００８８】
　図１４Ｃのデータファイルに対するさらなる修正を示す図１４Ｄでは、ファイルの末尾
に新規データＷ２を付け加えている。新規データＷ２は、図１４Ｄの新規グループ（Ｆ１
１，Ｄ８）として図１４Ｃの以前のグループ（Ｆ１０，Ｄ２）のすぐ後ろに書き込まれる
。このときファイルは、一連のデータグループインデックス項目（Ｆ０，Ｄ０）、（Ｆ５

(25) JP 5266250 B2 2013.8.21

10

20

30

40

50

，Ｄ６）、（Ｆ６，Ｄ７）、（Ｆ７，Ｄ５）、（Ｆ８，Ｄ３）、（Ｆ９，Ｄ４）、（Ｆ１
０，Ｄ２）、（Ｆ１１，Ｄ８）によって表される。
【００８９】
　開いたファイルに対する第２の更新を示す図１４Ｅでは、図１４Ｄのファイルに更新フ
ァイルデータＵ２を書き込んでいる。図１４Ｅでは更新データＵ２が図１４Ｄの以前のグ
ループ（Ｆ１１，Ｄ８）のすぐ後ろに書き込まれ、前の更新データは用済みになる。図１
４Ｅでは図１４Ｄの以前のグループ（Ｆ９，Ｄ４）が修正されたグループ（Ｆ９，Ｄ４）
まで短縮し、以前のグループ（Ｆ１０，Ｄ２）は完全に用済みとなり、以前のグループ（
Ｆ１１，Ｄ８）は短縮して新たなグループ（Ｆ１４，Ｄ９）を形成する。更新データは図
１４Ｅの新規グループ（Ｆ１２，Ｄ１０）および（Ｆ１３，Ｄ１１）に書き込まれ、論理
ブロック境界に重なる。ここで第５の論理ブロックがファイルに必要になる。このときフ
ァイルは一連のデータグループインデックス項目（Ｆ０，Ｄ０）、（Ｆ５，Ｄ６）、（Ｆ
６，Ｄ７）、（Ｆ７，Ｄ５）、（Ｆ８，Ｄ３）、（Ｆ９，Ｄ４）、（Ｆ１２，Ｄ１０）、
（Ｆ１３，Ｄ１１）、（Ｆ１４，Ｄ９）によって表される。
【００９０】
　各ファイルのデータのオフセットは、これまで説明したファイルの作成や修正の後に、
好ましくは連続する正しい論理順序に保たれる。例えばファイルの中にデータを挿入する
操作の一部としてホストによって提供される挿入データのオフセットは、挿入箇所の直前
のオフセットから連続し、ファイル内の既存データは、挿入後に挿入データの分だけ増加
する。既存ファイルの更新にあたってはほとんどの場合、既存ファイルの特定のアドレス
範囲内にあるデータがほぼ同量の更新データで差し替えられるため、通常はファイルのそ
れ以外のデータのオフセットを差し替える必要はない。
【００９１】
　このようにして蓄積されるデータの粒度または分解能は、ホストのものと同じに保つこ
とができる。例えばホストアプリケーションが１バイト粒度でファイルデータを書き込む
なら、そのデータは論理ブロックの中でも１バイト粒度で表される。そして、データグル
ープの中でのデータの位置と量はバイト数単位になる。つまり、ホストアプリケーション
ファイルの中で個別にアドレスされるオフセット単位のデータは、フラッシュメモリに蓄
積されたときにもファイルの中で個別にアドレスされる。論理ブロックの中にある同一フ
ァイルのデータグループ境界は、ＦＩＴの中で最も近いバイトオフセット単位かその他の
ホストオフセット単位まで指定される。同様に、論理ブロックの中にある異なるファイル
のデータグループ境界はホストオフセット単位で指定される。
【００９２】
　ここで使用する用語「セクタ」は、大きなブロックメモリでＥＣＣが関わる蓄積データ
の単位を意味する。つまり、セクタは、メモリシステムのコントローラによって誤り訂正
符号が生成されデータとともに蓄積される場合に、フラッシュメモリを行き来するデータ
の最小転送単位である。物理メモリに言及する場合の「ページ」は、ブロック内の１単位
のメモリセルを意味する。ページは最小のプログラミング単位である。論理ブロック内の
論理「ページ」は、物理ページと同量のデータを収容する。用語「メタページ」は、完全
並列メタブロックのページを意味する。メタページは最大のプログラミング単位である。
【００９３】
　図１４Ｂおよび図１４Ｅでは、更新コマンドの結果としてファイルによって占められる
論理アドレス空間がファイルのデータ量を上回っていることが分かる。これは、更新によ
って差し替えられたデータの論理アドレスが残っているためである。そこで、用済みにな
った無効データを取り除いてファイルのデータをより小さい論理アドレス空間に整理統合
（ガーベッジコレクション）することが強く望まれる。それによって、ほかのデータに使
える論理アドレス空間が増える。
【００９４】
　図１４Ｂおよび図１４Ｅのファイルデータ更新に加え、図１４Ｃのデータ挿入によって
ファイルデータのアドレス順序がずれることにも気づく。つまり、更新や挿入が行われる

(26) JP 5266250 B2 2013.8.21

10

20

30

40

50

とファイルの末尾に追加されるが、ほとんどの場合、更新や挿入の位置はファイルの中で
ある。図１４Ｂ、図１４Ｃ、および図１４Ｅの例がこれに該当する。そこで、ファイル内
のオフセット順序に合わせて論理アドレス空間にまたがるファイルデータを並べ替えるの
が望ましい。こうすれば、ページやブロックを順次読み出すときにファイルデータがオフ
セット順に提供され、蓄積データの読み出し速度が向上する。ファイルの断片化も極力抑
えることができる。しかし、読み出し効率を上げるファイルデータの並べ替えでも、メモ
リシステムの性能にとっては、ファイルデータの整理統合ほどには重要ではなく、ファイ
ルデータの整理統合なら、場合によっては別のデータのアドレスのための１つ以上の論理
ブロックを開放することができる。ファイルデータの並べ替えを単独で行うとオーバーヘ
ッドの増加に見合うほどのメリットが得られないため、通常は並べ替えを単独で行うこと
はないが、ガーベッジコレクション操作の一部として行えばオーバーヘッドの増加は皆無
かごく僅かですむ。
【００９５】
　図１４Ｅのファイルには、２つのデータ更新Ｕ１およびＵ２が行われたことによって用
済みのデータグループ（灰色の部分）がある。このファイルに割り振られた論理アドレス
空間の量がファイルのサイズを大きく上回っていることは、図１４Ｅから明らかである。
したがって、ガーベッジコレクションが妥当である。図１５は、図１４Ｅのデータファイ
ルでガーベッジコレクションを行った結果を示すものである。ガーベッジコレクションの
前には５論理ブロック近くのアドレス空間（図１４Ｅ）を占めていたファイルが、ガーベ
ッジコレクションの後には３ブロック強以内（図１５）で収まっている。ガーベッジコレ
クション操作の一部として、当初の書き込み論理ブロックから別の消去済み論理ブロック
へデータをコピーした後に、当初のブロックを消去する。ファイル全体でガーベッジコレ
クションを行う場合は、ファイル内でのデータの論理オフセット順序と同じ論理順序でデ
ータを別のブロックにコピーできる。例えば更新Ｕ１およびＵ２と挿入Ｉ１はガーベッジ
コレクション（図１５）の後に、ホストファイル内での順序と同じ順序で蓄積される。
【００９６】
　また、ファイル単位のガーベッジコレクションでは通常、別の新しいデータグループが
整理統合されているファイルの中で形成される。図１５の場合は、一連の新規データグル
ープインデックス項目（Ｆ０，Ｄ１２）、（Ｆ１，Ｄ１３）、（Ｆ２，Ｄ１４）、（Ｆ３
，Ｄ１５）によってファイルが表される。データグループの数は、図１４Ｅに見られるフ
ァイルの状態より遥かに少ない。ファイルデータをコピーした各ブロックにつきデータグ
ループが１つずつある。ＦＩＴは、ファイルを形成する新たなデータグループを反映する
ため、ガーベッジコレクション操作の一部として更新される。
【００９７】
　図１４Ｅの状態でファイルデータを保持するブロックの再生は、同じファイルのデータ
を蓄積する複数のブロックではなくブロックごとに個別に行われる。例えばある一時点で
再生操作の候補となるアドレス空間のブロックのうち、有効データ量が最も少ないブロッ
クが図１４Ｅの第２のブロック００２なら、そこにある１データグループを別の消去済み
ブロックにコピーする。新しいブロックには１つのデータグループ（Ｆ８，Ｄ１６）が入
り、ブロックの残りの部分は新規データを書き込める消去済み容量である。この消去済み
容量は、図１４Ｅでデータを蓄積していたブロックから再生されたものである。このとき
ファイルは、このファイルを構成するデータグループの一連のインデックス項目（Ｆ０，
Ｄ０）、（Ｆ５，Ｄ６）、（Ｆ６，Ｄ７）、（Ｆ７，Ｄ５）、（Ｆ８，Ｄ１６）、（Ｆ９
，Ｄ４）、（Ｆ１２，Ｄ１０）、（Ｆ１３，Ｄ１１）、（Ｆ１４，Ｄ９）によって表され
る。図１４Ｅに見られる他のブロックは再生操作の条件をそれぞれが満たすまで変化しな
い。
【００９８】
ファイルブロック管理
　論理ブロックのタイプは、そこに蓄積されたファイルデータの構造に基づいて認識され
る。連続アドレス空間の中でアドレスを持つ各ファイルは、数ある状態のいずれか１つを

(27) JP 5266250 B2 2013.8.21

10

20

30

40

50

とり、各ファイルの状態は、ファイルデータを蓄積するブロックの数とタイプによって決
まる。ファイルデータの書き込みにあたっては、好ましくはファイルの現在状態とある状
態から別の状態に至る許容遷移とを規制することにより、ある特定のファイルのデータの
ほかに１つ以上の別のファイルのデータも含むブロックの数を制限する。これにより論理
ブロックの有効利用を促進し、新規データやコピーデータの受け付けにあたって十分な消
去済みブロックを確保するために後ほど行われる再生操作の頻度を抑える。
【００９９】
　この例で認識され、ファイルデータを収容する、論理ブロックの主なタイプは次のとお
りである。
・「ファイルブロック」は完全にプログラムされ、１ファイルの有効データを意味する。
ある程度の用済みデータのアドレスを含むこともある。
・「プログラムブロック」は部分的にプログラムされ、単独ファイルのみの有効データを
意味する。このブロックにはある程度の消去済み容量が残っている。ある程度の用済みデ
ータのアドレスを含むこともある。
・「共通ブロック」は部分的にプログラムされ、２ファイル以上の有効データを意味する
。ある程度の消去済み容量が残っている。ある程度の用済みデータのアドレスを含むこと
もある。
・「フル共通ブロック」は完全にプログラムされ、２ファイル以上の有効データを意味す
る。ある程度の用済みデータを意味することもある。
【０１００】
　ブロックタイプにはこのほかに「消去済みブロック」があり、このブロックにはデータ
アドレスがなく、その全容量をデータの受け付けに使用できる。ＬＢＡインターフェイス
の論理アドレス空間がデータアドレスで満たされているかほぼ満たされている場合は通常
、使用中の論理ブロックで使われていない容量を絶えず再生しながら所定の最小消去済み
ブロック数のプールを維持する。
【０１０１】
　「フラクタルブロック」は、プログラムブロックと、共通ブロックと、フル共通ブロッ
クとを指す総称である。ファイルのフラクタルブロックの中には、ある１つのファイルの
有効データのほかに、プログラムされていない蓄積容量か、別のファイルの有効データか
、その両方がある。ここで説明する手法の第１の目的は、ファイルデータを受け付けるよ
う指定されたアクティブブロックのタイプを管理しながら、アドレス空間の中でフラクタ
ルブロックの数を最小限に抑えることにある。これにより、所定の最小消去済み論理ブロ
ック数を維持するために論理アドレス空間で行われるガーベッジコレクションやデータの
整理統合（ブロック再生操作）の回数を抑える。プログラム済みブロックで未使用容量の
断片を再生するときにデータの内部コピーにかかる時間が短くなるため、メモリにデータ
を書き込む速度も向上する。
【０１０２】
　ここでは各種ブロックを総称するためにさらに別の用語を使用する。
・「パーシャルブロック」はある程度の未プログラム容量と、１ファイル以上の有効デー
タのアドレスを含み、ある程度の用済みデータを意味することがある。例えば、プログラ
ムブロックや共通ブロックがパーシャルブロックにあたる。
・「用済みブロック」は、ある程度の用済みデータのアドレスを含むファイルブロックま
たはフル共通ブロックである。用済みブロックには消去済み容量がなく、有効データと用
済みデータの両方を意味する。
・「無効ブロック」の中に有効データはない。無効ブロックは少なくともある程度の用済
みデータのアドレスを含むほか、消去済み容量を含むこともあるが、有効データは意味し
ない。
【０１０３】
　図１６Ａ～図１６Ｄは、前に定義したタイプの論理ブロックの使用例を示す。図１６Ａ
では、ファイルＡのデータによってブロック６６１および６６３が満たされ、第３のブロ

(28) JP 5266250 B2 2013.8.21

10

20

30

40

50

ック６６５は部分的に満たされている。データは左から右にかけてこの例の各ブロックに
書き込まれ、まずはブロック６６１を満たし、次にブロック６６３を満たし、その後ブロ
ック６６５の一部分に書き込まれる。ブロック６６５の残りの部分はプログラムされてい
ない消去済み容量であって、さらなるデータを蓄積できる。前述した定義によるとブロッ
ク６６１および６６３はファイルブロックであり、ブロック６６５はプログラムブロック
である。ブロック６６５には、プログラムポインタＰのところから新規のデータが書き込
まれる。ポインタＰはブロックへのデータの書き込みにともない左から右へ進み、常にブ
ロックの中で次に使用できる蓄積位置を指し示す。プログラムされていない消去済み容量
を持つ各ブロックでは、それが現在アクティブであろうとなかろうと、そのようなポイン
タを管理し、ブロックに書き込まれる他のデータの論理アドレスを常に把握できるように
する。
【０１０４】
　図１６Ｂの例にあるブロック６６９は、現在のファイルＡのデータとある程度の未プロ
グラム容量のほかに、別のファイルＢのデータを収容しているため、共通ブロックである
。新規のデータは、ファイルＡの末尾、プログラムポインタＰが表示されているところか
ら、ブロック６６９に書き込まれる。ブロック６６９はファイルＡにとってのアクティブ
ブロックである。ファイルＢにとってのアクティブブロックになることもあり、その場合
は、ファイルＡまたはＢのいずれかの追加データをプログラムポインタＰのところに書き
込むことができる。あるいは、これとは別のブロック（図示せず）がファイルＢにとって
のアクティブブロックになることもある。
【０１０５】
　消去済みブロックではなく、既に別のファイルのデータを収容しているパーシャルブロ
ックの消去済み容量にファイルデータを直接書き込めば、このような未プログラム容量を
上手に利用することができる。これは特に、ブロック全体の容量に満たない既知量のファ
イルデータを書き込む場合に有益である。それには既存のパーシャルブロックを探査し、
既知量の書き込みデータにフィットする消去済み容量を見つける。データのページ（メタ
ブロックを使用する場合はメタページ）数を、パーシャルブロック内の未プログラム容量
のページ数に比較する。このやり方でプログラムブロックの未使用消去済み領域がプログ
ラムされると、そのプログラムブロックは共通ブロックに変わる。
【０１０６】
　図１６Ｃでは、ファイルブロック６６１と、ブロック６７１の一部分と、ブロック６７
３の一部分とにファイルＡが蓄積されている。２つのファイルＡおよびＢのデータで満た
されているブロック６７１はフル共通ブロックである。図１６Ａのブロック６６５と同様
、ブロック６７３はプログラムブロックである。ファイルにとってのアクティブブロック
はブロック６７３であり、ポインタＰは、ブロック６７３の中で未使用容量の位置を指し
示し、追加のデータはこの位置から書き込まれることになる。
【０１０７】
　図１６Ｄの例では、フル共通ブロック６７１の一部分と共通ブロック６７５にファイル
Ａが書き込まれている。ブロック６７５の中には第３のファイルＣのデータがある。ポイ
ンタＰはアクティブブロック６７５で未使用部分の先頭を指し示し、追加のデータはここ
に書き込まれることになる。
【０１０８】
　図１６Ａ～図１６Ｄの例では、数通りのブロックを例示するために複数のブロックに蓄
積されたファイルＡのデータが示されているが、ファイルは多くの場合、これよりも少な
いブロックに、ことによると１ブロックに、蓄積できるほど小さい。ここで説明する手法
はそのような小さなファイルにも適用できる。大きなファイルが４ブロック以上にわたっ
てページを占めることもある。
【０１０９】
　論理ブロック６６５、６６９、６７１、６７３、および６７５がフラクタルブロックで
あることに気づく。いずれか１ファイルのデータを含むフラクタルブロックがあると、そ

(29) JP 5266250 B2 2013.8.21

10

20

30

40

50

の中にある未使用容量を再生する必要が高まってシステム性能に悪影響がおよぶため、そ
のようなフラクタルブロックの数は最小限に抑えるのが望ましい。パーシャル論理ブロッ
ク６６５、６６９、６７３、および６７５には未使用の消去済み容量があるが、まだ書き
込まれていないファイルデータの量が分かっていて、その既知量がこれらのブロックのう
ちの１つの未使用容量に一致しない限り、ホストからこの領域に新規データをそのまま書
き込むのは効率的でない。ほとんどの場合、ホストから到来するファイルデータの量は分
からないため、これらの断片的容量が容易に埋まることはない。そこでメモリ容量を有効
利用するには、再生操作のときに別のブロックから未使用領域へデータを移す必要がある
。ブロック６６９、６７１、および６７５には２ファイル以上のデータが入っているため
、それらのファイルのいずれか１つが削除されたり、共通ブロックに蓄積されているデー
タが用済みになったりする場合はデータ再生を行い、用済みデータのアドレスで占められ
たブロックの容量を再生することになる。
【０１１０】
　そこで、時間のかかるデータ再生操作の回数を減らすには、ある特定のファイルのデー
タを一度に蓄積するフラクタルブロックの数を１、２等の数にする。許容フラクタルブロ
ック数の決定にあたっては、フラクタルブロックを使用する場合の利点とそれらを使用す
ることの好ましくない影響とでバランスをとる。ここで説明する具体例では、１ファイル
のデータを蓄積できるフラクタルブロックを２ブロックまでとする。これに応じて、ファ
イルデータの蓄積にあたって新規アクティブブロックを指定するプロセスには制約がかか
る。各ファイルには１組の許容ファイル状態のいずれか１つを割り当てるが、これはファ
イルのデータを蓄積するブロックのタイプによって決まる。既存のブロックが一杯になる
等、ある特定のファイルのデータを受け付けるための新規のアクティブブロックを指定す
る必要がある場合、アクティブブロックに指定されるブロックのタイプはファイルの状態
に左右され、多くの場合はそれ以外の要因にも左右される。
【０１１１】
　図１７の表には、ある特定の実施例でファイルデータを収容するフラクタルブロックの
組み合わせによる７通りの許容ファイル状態００～２０の定義が記載されている。どの許
容ファイル状態でもデータを蓄積できるのは２フラクタルブロックまでである。ファイル
データを蓄積するファイルブロックの数に制限はない。ファイルのアクティブブロックと
して使用するブロックの選択にあたっては、ファイルの状態をプロパティとして使用する
。再生ブロックは一時的なものであって、その中にあるファイルデータはファイル状態の
判断に寄与しないため、再生ブロックとして選ばれたブロックはフラクタルブロックとし
て扱わない。装置内に存在する全ファイルの状態を監視し、ファイルデータインデックス
情報と併せてＦＩＴに記録する。記録されたファイルの状態は状態遷移のたびに更新され
る。
【０１１２】
　ファイル状態遷移は、それらがプログラムデータに関係する状態遷移か、用済みデータ
に関係する状態遷移か、再生ブロックの選択に関係する状態遷移かによって、３つの部類
に細分される。図１８の状態図には、保留のデータプログラミング操作か完了したデータ
プログラミング操作に基づく許容ファイル状態遷移が描かれている。図１７の表に記載さ
れたファイル状態識別番号を囲む円により、７通りのファイル状態が示されている。
　図１８の状態遷移ラベルの意味は次のとおりである。
　Ａ－ファイルのアクティブブロックとして消去済みブロックが割り当てられる。
　Ｂ－パーシャルブロックが満杯になった。
　Ｃ－ファイルのアクティブブロックとしてパーシャルブロックが割り当てられる。
　Ｄ－このファイルのパーシャルブロックが別のファイルのアクティブブロックとして割
り当てられる。
　Ｅ－アクティブブロックとして割り当てられた消去済みブロックに対しデータ遷移が行
われる。
　Ｆ－アクティブブロックとして割り当てられたパーシャルブロックに対しデータ遷移が

(30) JP 5266250 B2 2013.8.21

10

20

30

40

50

行われる。
【０１１３】
　ほとんどの状態遷移は、ブロックが割り当てられるかブロックが満杯になるときに自動
的に生起する。しかし、定義した状態遷移によっては、ある１つのブロックから別のブロ
ックにかけてのデータ再配置をともなうものもある。データの再配置は１回の連続操作で
行われ、このデータ再配置が完了した場合に限り状態遷移が生起したとみなされる。この
ような遷移を「データ遷移」という。図１９の表は、図１８の状態図を参照しながら許容
状態遷移の詳細を伝えるものである。
【０１１４】
　書き込みデータの長さが分かっている場合は、アクティブブロックとしてパーシャルブ
ロックを割り当てることができる。この場合は、装置内のパーシャルブロック群から「最
適」なパーシャルブロックを選ぶ。「最適」とは、既知量の書き込みデータが有効利用で
きる消去済み容量を有するパーシャルブロックのことである。「最適」パーシャルブロッ
クが存在しなければ、「最大」パーシャルブロックを代わりに選ぶ場合もある。これは、
使用可能な未使用容量が最も大きいパーシャルブロックである。
【０１１５】
　図２０は状態図であり、用済みデータに基づくファイル状態遷移を示すものである。フ
ァイルの状態遷移は、当該ファイルのデータを収容するフラクタルブロックの中で１ファ
イルの全データが用済みになるときに起こる。用済みになったデータのファイルは当該フ
ァイルとは限らない。データは４つのイベントのいずれか１つによって用済みとなる。
　１．ファイルがホストによって削除される。
　２．ファイル内のデータがホストによって削除される。
　３．書き込み済みのファイルデータがホストによって更新される。
　４．再生操作中にファイルデータが再配置される。
　図２０の状態遷移ラベルの意味は次のとおりである。
　Ｇ－パーシャルブロックの中でこのファイルの全データが用済みになった。
　Ｈ－フル共通ブロックの中でこのファイルの全データか他の全てのファイルの全データ
が用済みになった。
　Ｉ－パーシャルブロックの中で他の全てのファイルの全データが用済みになった。
【０１１６】
　図２１の表は、図２０に描かれた用済みデータに基づくファイル状態遷移の詳細を伝え
るものである。これらの経緯でデータが用済みになると、用済みデータが入っているブロ
ックのタイプが変化し、それにともないファイル状態も変化する。
【０１１７】
　再生ブロックとして選ばれたブロックは、そこにデータを蓄積するファイルにとってフ
ラクタルブロックでなくなる。その結果、図２２の状態図に示すファイル状態遷移が起こ
る。図２２の状態遷移ラベルの意味は次のとおりである。
　Ｊ－パーシャルブロックが再生ブロックとして選ばれる。
　Ｋ－フル共通ブロックが再生ブロックとして選ばれる。
【０１１８】
　再生ブロックの選択に基づくファイル状態遷移の詳細を図２３の表に示す。
　連続論理アドレス空間の論理ブロックにファイルデータを揃えるには２通りの方法があ
る。前に相互参照した特許出願で説明されている物理メモリセルブロック上で作動するダ
イレクトデータファイルシステムの場合は、好ましくは新規ファイルの先頭を消去済みメ
モリセルブロックの先頭に揃える。図２４に示すように、ダイレクトデータファイルシス
テムで論理ブロックを扱う場合にもこれは可能である。３つのファイルＡ、Ｂ、およびＣ
が論理ブロック１～７に蓄積された状態で描かれている。図２４から分かるように、これ
らのファイルのいずれか１つで全てのデータが書き込まれると、ファイルの最終部分はパ
ーシャルブロックのごく一部分を占めることになる。
【０１１９】

(31) JP 5266250 B2 2013.8.21

10

20

30

40

50

　　図２５の表には、ファイルデータを蓄積するアクティブブロックとして割り当てる論
理ブロックのタイプを判断するための基準が記載されている。記載されているように、こ
れは現行のファイル状態（図１７の表で規定）とプログラムするデータの全般状況に左右
される。この基準をもとに割り当てケースのいずれか１つが選ばれても、ブロックの有無
に応じて、図２５の右列に記載された一定の候補からブロックタイプを絞りこまなければ
ならない。例えば割り当てケースＢの場合に、長さが既知のデータを受け付けるブロック
として第１候補に登るのはパーシャルブロックである。そこで、まずはこの既知量のデー
タを蓄積するにあたって丁度いい使用可能（消去済み）な容量を持つパーシャルブロック
を探す。これが見つからなければ、未プログラム領域が最も大きいパーシャルブロックの
有無を確認する。これがなければ、第３の候補として完全に未使用の（消去済み）ブロッ
クがデータを受け付けるブロックとして指定され、この例の割り当てケースＢの場合、既
知量の書き込みデータはブロック全体を満杯にする量には満たないため、このブロックは
パーシャルブロックになる。
【０１２０】
　図２４のファイルＡ、Ｂ、またはＣ等で、最初に書き込まれたときと同じ状態を保つフ
ァイルが削除される場合は、それとは無関係のファイルのデータで再配置を行う必要はな
い。しかし、再生操作によってパーシャルブロックにある１ファイルのデータを別ファイ
ルのデータと整理統合した場合に当該ファイルが削除されると、ただひとつのブロックで
別ファイルのデータの再配置が必要になる。例えば、ブロック２のファイルＡのデータが
ブロック７にあるファイルＣのデータと整理統合された後に、ファイルＡかファイルＣが
削除されると、ただひとつのブロックで、すなわちブロック７で、データの再配置が必要
になる。
【０１２１】
　ブロック再生は、ファイルデータの書き込みプロセスと交互に行われるプロセスであっ
て、再生の対象となるブロックから別の場所に有効データを移し、このブロック（未使用
と指定されたもの全容量）を消去することによってブロック内の未使用容量を再生する。
ブロックが再生の対象として選ばれる理由には次の２つがある。
　１．ファイルの削除か更新によってブロック内のデータが用済みになる、または
　２．ブロックが未プログラム容量を持つパーシャルブロックである。
新規ファイルデータの書き込み速度を一定に保つため、再生プロセスにあてる時間はでき
るだけ一定であることが好ましい。ファイル書き込みプロセスで発生し再生プロセスで処
理しなければならないパーシャルブロックの数は予測できないため、これを果たすのは困
難である。
【０１２２】
　図２４に見られるファイル－ブロックマッピング方式には、最新の書き込みファイルデ
ータを収容するパーシャルブロックが、再生操作のコピー元ブロックかコピー先ブロック
に選択されるまで存続するという利点がある。このため、ファイルが先に削除され、共通
ブロックの中にある当該ファイルのデータや無関係ファイルのデータで再配置を行わずに
すむ見込みが高くなる。なぜなら、ファイルのデータはそのファイル専用のブロックに収
容されるためである。再生操作が不要ならばデータをコピーする時間も不要となり、メモ
リシステム動作の効率が上がる。
【０１２３】
　図２４のマッピング方式の欠点として、通常は書き込みが行われる各ファイルにつきパ
ーシャルブロックが１つずつ作成されるため、使用可能な未プログラム（消去済み）容量
の再生にあたっては多数のパーシャルブロックでデータの整理統合が通常必要になる。さ
らに、図２４のマッピング方式だと、物理メモリを管理するメモリコントローラが新たな
消去済みブロック容量を再生するために部分的に書き込まれたブロックのデータを自動的
に整理統合する場合に、時間のかかるデータコピーが大量に発生することになる。このた
め、図２６の代替マッピング方式の実施が望ましい場合もある。この方式の第１の特徴と
して、新規ファイルの先頭のデータはパーシャルブロック内に既に存在する無関係ファイ

(32) JP 5266250 B2 2013.8.21

10

20

30

40

50

ルのデータと隣接する。ほとんどの場合、１ファイルの全データが書き込まれると、その
最終書き込みデータはパーシャルブロックのごく一部分を占めることになるが、これは一
時的である。パーシャルブロックの未プログラム領域は、完了したファイルに隣接して書
き込まれる新規ファイルデータによって直ちに埋まる。
【０１２４】
　図２７の表には、データの書き込みにあたって図２６の方式を実施した場合のアクティ
ブブロック割り当てが記載されている。図２７の表では、新規ファイルの場合と既存ファ
イルの場合を分けて説明するため、図２５の表に記載された割り当てケースＡが割り当て
ケースＡ１およびＡ２に差し替えられている。
【０１２５】
　図２６では通常、ファイルの先頭とファイルの末尾のデータでブロックが無関係ファイ
ルのデータと共有され、１ファイルが削除されると２つのブロックでデータの再配置が必
要になる。例えばファイルＢが削除されると、ブロック２から別の場所にファイルＡのデ
ータを移し、ブロック３から別の場所にファイルＣのデータを移すことになる。次にブロ
ック２および３を消去し、消去済み（未使用）ブロックのプールに加えることができ、プ
ールのブロックには後ほど別のデータを書き込むことができる。
【０１２６】
　図２６のファイル－ブロックマッピング方式には、部分的にプログラムされたブロック
をためこまずにすむという利点がある。書き込みが行われる新規ファイルのデータの先頭
はパーシャルブロックの中に既に存在する無関係ファイルのデータと隣接するため、最新
の書き込みファイルデータを含むパーシャルブロックが長時間にわたって存続することは
なく、装置に存在するパーシャルブロックの数はごく僅かになる。その結果、再生操作で
パーシャルブロックのデータを整理統合する機会が少なくなるほか、一定の再生レートを
設定し、新規ファイルデータの書き込みで一定の速度を維持することが可能となる。
【０１２７】
　しかし、図２６のマッピング方式には、ファイルが削除されるときに無関係ファイルの
データで再配置が必要になる見込みが高くなるほか、毎回の再配置で移動するデータ量が
増えるという欠点がある。図２６の方式には、再生操作でパーシャルブロックのデータを
整理統合する頻度を抑えるという図２４の方式を凌ぐ利点があっても、その利点は、ファ
イルが削除されるときの再配置データ増大という欠点によって帳消しになる。
【０１２８】
ブロック容量の再生
　前述したように、新規データ蓄積のためのブロックにおける未使用容量再生はブロック
管理の一部として行われる。これは、メモリシステムに蓄積されたデータ量がメモリシス
テムの容量を遥かに下回る場合は特に問題にならないが、メモリシステムはデータで一杯
の状態を想定して設計されることが好ましい。これは、未使用容量を再生しながら、用済
みデータだけを含むブロックと、有効データのほかにある程度の用済みデータおよび／ま
たは未書き込みページを持つ他のブロックを処理することを意味する。目標は、メモリシ
ステムの蓄積容量をできるだけ余すところなく利用すると同時に、システム性能への悪影
響を最小限に抑えることにある。
【０１２９】
　再生操作の対象として指定されたブロック（コピー元ブロック）に有効データがある場
合は、その有効データを蓄積するにあたって十分な未使用（消去済み）容量を持つ１つ以
上のブロック（コピー先ブロック）に有効データをコピーする。このコピー先ブロックは
、前述したブロック管理手法に従って選択する。コピー元ブロックに蓄積された各ファイ
ルデータは別のブロックへコピーされ、このコピー先ブロックは、前述したようにファイ
ルの状態とその他の要因に基づいて選択する。再生操作の一部として各種ファイル間で行
われるデータコピーの例を図２８Ａ～図２８Ｄに示す。
【０１３０】
　図２８Ａには、２つのパーシャルブロック６８１および６８３に対する再生操作が例示

(33) JP 5266250 B2 2013.8.21

10

20

30

40

50

されている。ブロック６８１はファイルＡの有効データを蓄積するほか、データを蓄積し
ない消去済み容量も持つプログラムブロックである。ファイルＡの状態しだいで決まる再
生操作のひとつとして、ブロック６８１にあるファイルＡのデータは別のパーシャルブロ
ック６８５の使用可能な消去済み容量にコピーされ、パーシャルブロック６８５の中には
既に別のファイルＢのデータが入っているため、このパーシャルブロックは共通ブロック
になる。ＦＩＴの中ではブロック６８１のデータグループが参照されなくなり、このブロ
ックは用済みブロックとして記録される。ブロック６８１に蓄積されていたときのファイ
ルＡは、プログラムブロック状態等、いずれか１つの状態（図１７参照）をとっていた。
その後このデータは別のフラクタルブロックへ移されるが、ファイルの書き込みは最大の
２フラクタルブロック以内にとどまる。ファイルＡはブロック６８５へコピーされた後、
共通ブロックにファイルデータが蓄積されることを含む、いずれか１つの状態（図１７参
照）に遷移するが、これは別のファイルデータを蓄積するブロックのタイプしだいで決ま
る。
【０１３１】
　図２８Ａのブロック６８３は共通ブロックであり、そこに蓄積されたファイルＣおよび
Ｄのデータがプログラムブロック６８７の消去済み容量にコピーされることによって再生
され、このコピーによってファイルＥのデータが入っているプログラムブロック６８７は
共通ブロックになる。そして、ブロック６８３のファイルＣおよびＤのデータは用済みに
なり、ブロックそのものも用済みになる。データはある１つの共通ブロックから別の共通
ブロックへ移されたため、ファイルＣおよびＤの状態は変化していない。しかし、ファイ
ルＥの状態は変化している。これとは別に、ファイルＣおよびＤのデータをそれぞれ別々
のブロックへ移すこともでき、必ずしも共通ブロックの空き領域にコピーする必要はない
。そこでこれらのファイルの状態が別の状態に遷移する可能性もある。
【０１３２】
　図２８Ｂには、ブロックの例６８９および６９１に対する再生操作が示されている。こ
れらのブロックはいずれも有効データと用済みデータの両方で埋まっているため、用済み
ブロックである。ブロック６８９はファイルＦのデータを収容するファイルブロックであ
って、その一部分は用済みで、残りの部分は有効である。これは例えばファイルＦの更新
のときに、ファイルの既存データと同じ論理オフセットを持つ新規データがファイルの末
尾のアドレスに書き込まれると生じ、既存データは用済みになる。この例では、ファイル
Ｇのデータが入っているプログラムブロック６９３の消去済み容量にファイルＦのデータ
がコピーされることによって、ブロック６９３のタイプは共通ブロックに変化する。これ
とは別に、ファイルＦの有効データを消去済みブロックに書き込むこともでき、書き込ま
れたブロックはプログラムブロックになる。
【０１３３】
　図２８Ｂのブロック６９１は、ファイルＨの無効データとファイルＩの有効データを収
容するフル共通ブロックである。この例では、ブロック６９１からファイルＩの有効デー
タを消去済みブロック６９５にコピーしている。この場合、ブロック６９５はプログラム
ブロックになる。これとは別に、別のファイルのデータが入っているパーシャルブロック
で適切なものが見つかるならば、そのパーシャルブロックにファイルＩのデータを書き込
むこともできる。コピー先ブロックは、再生操作のときのファイルＩの状態しだいで決ま
る。
【０１３４】
　図２８Ａおよび図２８Ｂに見られる４つの再生操作の具体例の結果、２つのパーシャル
ブロックに蓄積されたデータは１つにまとまり、２ブロックのうちの一方には用済みデー
タだけが残る。それらのブロックは無効ブロックになる。元のブロック６８１、６８３、
６８９、および６９１は図２８Ｃのように消去され、全領域が再生される。消去済みブロ
ックは、無効ブロックを再生した結果である。
【０１３５】
　図２８Ｄは、ファイルＪのデータを蓄積するファイルブロック６９７の例を示す。ホス

(34) JP 5266250 B2 2013.8.21

10

20

30

40

50

トによってファイルＪが削除されるとブロック６９７にあるファイルＪのデータは用済み
になり、場合によっては別のブロックにあるデータも用済みになる。そして、ブロック６
９７は無効になる。無効ブロックの再生によって、システム消去済みブロックプールに消
去済みブロックが提供される。
【０１３６】
　メモリからファイルが削除されると、通常は共通ブロックやフル共通ブロックといった
１つ以上のフラクタルブロックにある当該ファイルのデータも用済みになる。ファイルが
異なる残りの有効データはブロックの蓄積容量に満たなく少量なので、このブロックは再
生操作の対象となる。
【０１３７】
　図２９のフローチャートは再生操作を一般的な言葉で説明するものである。ステップ７
０１に示すように、具体的な実施形態に応じてパーシャル、用済み、および無効ブロック
のリストを１つ以上管理する。このブロックリストは、一手法によると、メモリシステム
の起動時、例えば最初に電力が印加されるときに作成される。リストには、各ブロックの
有効データ量や各ブロックの消去済み容量等、一度に１つの再生ブロックを選択するため
のブロックの他の情報を盛り込むことができる。通常、これらの量はブロックのページ数
単位で表され、メタブロックを使用する場合はメタページ数単位で表される。好適な代替
手法では、これらのリストを不揮発性メモリで管理し、ブロックの状態が変化するたびに
リストにブロックの項目を加えたり、リストのブロックの項目を更新したりする。この手
法では、メモリシステムの初期化のときにブロックを走査しリストを作成する必要はない
。コピーの必要がある有効データが皆無かごく僅かということが再生ブロックとして選ば
れるひとつの特徴となるため、パーシャル、用済み、および無効の全ブロックをリストで
管理する代わりに、有効データが少量で所定の限界量を下回るブロックだけをリストに入
れる方法もある。多くの再生操作で必要となるのは、ある１つのブロックから別のブロッ
クへのデータのコピーであって、それにはかなりの時間がかかるため、通常はコピーの必
要があるデータが少ないブロックから先にコピーを行う。
【０１３８】
　そのようなブロックのリストは、データの書き込み、更新、移動、削除等にともない絶
えず変化する。パーシャル、用済み、無効の中でブロックタイプの変化を招くような変更
があると、図２９のステップ７０１で管理するリストも変化する。そのようなブロックに
蓄積された有効データの量や消去済み容量の変化もブロックリストに記録される。
【０１３９】
　ステップ７０３では、好ましくは再生する次のブロックとして更新済みリストのブロッ
クから１つの再生ブロックを識別する。パーシャルブロックか用済みブロックならば、こ
れが有効データのコピー元となり、そこからコピー先ブロックと呼ばれる別のブロックに
有効データをコピーする。コピー元ブロックの選択に用いるいくつかの具体的な手法は後
述する。
【０１４０】
　図２９の次のステップ７０５では、ホストのコマンドに応じて実行するメモリ操作を考
慮に入れ、今ここで再生操作を実行することが適切か否かを判断する。ホストがアイドル
コマンドやこれに類似するものを発行し、ある程度の期間にわたってメモリシステムによ
る操作の実行を見込まないことを伝えるなら、メモリシステムはフォアグラウンドで再生
操作を含むオーバーヘッド操作を自由に実行できる。ホストがメモリシステムへのデータ
の書き込みやメモリシステムからのデータの読み出しでビジー状態にある場合でも、再生
操作、特にそのデータコピーは、インターリーブ方式でデータの読み書き操作の合間に実
行できる。２００５年１０月２５日に出願されたAlan Sinclair の米国特許出願第１１／
２５９，４２３号（特許文献３０）と２００５年１２月１９日に出願されたAlan Bennett
らの米国特許出願第１１／３１２，９８５号（特許文献３１）では、物理メモリセルブロ
ックのためのインターリーブ操作が説明されている。
【０１４１】

(35) JP 5266250 B2 2013.8.21

10

20

30

40

50

　再生操作を行ってよいことが図２９のステップ７０５で判明した場合のプロセスは、識
別された再生ブロックに有効データが入っているか否かに応じて、さらに有効データが入
っている場合には、２つ以上のファイルの有効データが入っているか否かに応じて、異な
る。パーシャルブロックか用済みブロックなら、必然的に有効データを収容していること
になり、共通ブロックかフル共通ブロックなら、２つ以上のファイルの有効データを収容
していることになる。再生ブロックにおける有効データの有無はステップ７０７で判断す
る。移動の必要がある有効データがある場合は、次のステップ７０９で１ファイルのデー
タを識別し、さらにそのデータを受け付けるコピー先ブロックを識別する。有効データを
含むファイルの全データの蓄積を２フラクタルブロック以下（この例）に保つため、コピ
ー先ブロックは図１７～図１９との関係で前述したプロセスで識別する。そして、ステッ
プ７１１に示すように、コピー元の再生ブロックからコピー先ブロックへの１ファイルの
有効データのコピーを開始する。処理はこれらのデータをコピーした後にステップ７０７
まで戻り、別のファイルのデータが残っているか否かを判断する。残っているなら、その
データのためにステップ７０９および７１１のプロセスを繰り返す。そのコピー先ブロッ
クは、別のファイルのデータのために先に選ばれるブロックとは別に選ばれる。これは、
移動すべきデータがコピー元ブロックにそれ以上存在しないことがステップ７０７で判明
するまで続き、存在しないことが判明する場合は、ステップ７１３に従ってコピー元ブロ
ックを消去できる。次に、消去済みブロックプールの中にこのブロックを入れ、新規デー
タの蓄積に使えるようにする。
【０１４２】
　図２９のステップ７０７に戻り、無効ブロックの場合のようにコピー元ブロックの中に
有効データがなければ、移動すべき有効データもない。このコピー元ブロックは消去する
だけでよい。図２９に見られるように、この場合の処理はステップ７０９および７１１を
迂回する。
【０１４３】
　図２９のプロセスの第１の実施形態では、ステップ７０１でパーシャル、用済み、およ
び無効ブロックからなる単一のリストを管理する。リストの各項目にはブロック内の有効
データ量を盛り込む。ステップ７０３で再生ブロックとしてリストから選ばれるブロック
は、有効データが最も少ないブロックである。無効ブロックには有効データがないため、
リストに無効ブロックが１つでもあるならば、そのブロックが最初に選ばれる。リストに
多数の無効ブロックがあるなら、リストに登録されていた期間が最も長い無効ブロックが
選ばれる。リストに無効ブロックがなければ、有効データ量が最も少ないブロックが再生
ブロックに選ばれる。リスト上の全ブロックから有効データ量が最少のブロックを選ぶこ
とで、再生操作にかかる時間は、あるブロックから別のブロックへコピーするより多くの
有効データがある時よりも短くなる。その結果、メモリにおけるデータの読み書き速度等
、再生操作以外のメモリシステム操作は高速に保たれる。メモリ性能への代償を抑えなが
ら新たに消去されたブロックが手に入ることになる。
【０１４４】
　単一リスト上でフラクタルブロックの有効データ量に基づきコピー元ブロックを選択す
る図２９のプロセスの第１の実施形態には、実装が比較的簡単にすむという利点がある。
しかし、パーシャルブロックの価値を考慮に入れて、このプロセスを改良することもでき
る。パーシャルブロックには消去済み容量があり、そこにはデータを書き込むことができ
るが、用済みブロックと無効ブロックには消去済み容量がない。用済みブロックを新規デ
ータの蓄積に使うには、事前にそこから別のブロックへ有効データを移し、用済みブロッ
クを消去し、新規データの蓄積に使える状態にしなければならない。しかし、パーシャル
ブロックには消去済み容量があって、再生操作のオーバーヘッドを被ることなくデータを
書き込むことができる。例えば、有効データ量が最も少ないという理由だけで、データの
書き込みが可能な消去済み容量を大量に保有するパーシャルブロックを再生するのは得策
でない。
【０１４５】

(36) JP 5266250 B2 2013.8.21

10

20

30

40

50

　したがって、図２９のプロセスの別の実施形態では、パーシャルブロックにある有効デ
ータの量と消去済み容量の両方を踏まえて、コピー元の再生ブロックの候補となるパーシ
ャルブロックを選ぶ。図３０は、パーシャルブロックの中にあるデータの構成要素を示す
。このブロック（またはメタブロック）には、有効データを収容する１つ以上のページ（
またはメタページ）のほかに、データを書き込める１つ以上の消去済みページがある。図
３０の例に見られるように、パーシャルブロックの１つ以上のページには用済みデータが
入ることもある。
【０１４６】
　図２９のこれらのプロセスの実施形態では、好ましくは用済みブロックと無効ブロック
のリストとは別のリストでパーシャルブロックをステップ７０１で管理する。消去済み容
量がごく僅かで（現状ではさほど有用でないことを意味する）、移動を要する有効データ
が少ないパーシャルブロックは、再生操作リストの先頭寄りに移される。そのようなブロ
ックの主な内容は用済みデータになる。逆に、再生ブロックの候補となる見込みが最も低
いのは、大量の消去済み容量があり（データの蓄積に役立つ見込みがあることを意味する
）、移動を要する有効データが大量にあるパーシャルブロックである。消去済み容量があ
るパーシャルブロックを再生しても、用済みブロックを再生した場合と同量の蓄積容量が
論理アドレス空間に追加されるわけではない。役に立つ消去済み容量がなく、コピーを要
する有効データもない無効ブロックは明らかに、再生の対象として最も魅力的なブロック
なのである。
【０１４７】
　図２９の再生ブロック識別ステップ７０３の第２の実施形態では、パーシャルブロック
と、用済みブロックと、無効ブロックのそれぞれに１つずつ、合わせて３通りのリストを
ステップ７０１で管理する。無効ブロックがあるなら、無効ブロックのリストでブロック
がなくなるまでこのリストから再生ブロックを選択する。無効ブロックのリストに特別な
順序はないが、先入れ先出し（ＦＩＦＯ）順にして、リストに登録された期間が最も長い
無効ブロックが最初に選ばれるようにすることも可能である。次に無効ブロックがなけれ
ば、用済みブロックリストにある全ブロックで有効データ量が最も少ないブロックを選ぶ
。
【０１４８】
　ステップ７０３で無効ブロックリストか用済みブロックリストにブロックがなければ、
パーシャルブロックリストのブロックを再生ブロックに選ぶ。有効データ量が最も少ない
パーシャルブロックが選ばれるようにすることもできるが、好ましくは消去済み容量の有
用性が分かる形でパーシャルブロックを格付けする。それには、各パーシャルブロックの
「再生利得」を次のとおり計算する。
　　再生利得＝（Ｓ－ｋＥ）／Ｖ　（１）
式中、Ｓは合計データ蓄積ページ数によるブロックサイズであり、Ｅはデータを書き込め
る消去済み容量のページ数であり、Ｖは別のブロックへ移す必要がある有効データを含む
ページ数である。定数ｋはブロックの消去済み容量の有用性を重み付けするためのもので
あるが、１に設定することもできる。ｋＥの値が増すにつれ再生利得は低下する。Ｖの値
が増す場合も再生利得は低下する。ステップ７０３では、再生利得の値が最も高いパーシ
ャルブロックが再生ブロックとして選ばれる。これとは別の数式で項ＥおよびＶを使って
再生利得を定義し、有効データを保持することのシステム動作にとってのデメリットと消
去済み容量のメリットとでバランスをとることもできる。再生利得はブロックに変化があ
るたびに、例えばブロックの消去済み容量にデータが書き込まれるたびに、計算し、ファ
イルディレクトリやＦＩＴで管理する情報の一部として蓄積することができる。
【０１４９】
　この第２の実施形態を示す図３１は、パーシャルブロックリスト、用済みブロックリス
ト、および無効ブロックリストの３通りのリスト（図２９のステップ７０１で管理）から
再生ブロックを選択（図２９のステップ７０３）する方法を説明するものである。ステッ
プ７２１ではまず、無効ブロックリストに記載されたブロックの有無を判断する。そのよ

(37) JP 5266250 B2 2013.8.21

10

20

30

40

50

うなブロックが多数存在する場合は、リストに登録された期間が最も長いブロックがステ
ップ７２３で再生ブロックに選ばれる。無効ブロックリストにブロックがなければ、ステ
ップ７２５で用済みブロックリストにおける項目の有無を判断する。その際、用済みブロ
ックリストに２つ以上のブロックがある場合は、ステップ７２７で有効データ量が最も少
ないブロックが再生ブロックに選ばれる。用済みブロックリストに項目がないことがステ
ップ７２５で判明する場合は、ステップ７２９でパーシャルブロックリストをあたる。パ
ーシャルブロックリストに２つ以上のブロックがある場合は、再生利得が最も高いブロッ
クが再生ブロックに選ばれる。再生利得では、前述した式（１）を使用する等して、ブロ
ック内の有効データ量と消去済み容量を考慮に入れる。パーシャルブロックリストに何も
なければステップ７２１まで戻り、リストのいずれか１つでブロックが出現するまでプロ
セスを繰り返す。再生ブロックが選択された後、処理は図２９のステップ７０５へ進む。
【０１５０】
　図３２のフローチャートに第３の実施形態を示す。ステップ７４１でも図２９のステッ
プ７０３の実行が始まり、図２９のステップ７０１で管理する無効ブロックリストで項目
を探す。無効ブロックリストに２つ以上の項目がある場合は、図３２のステップ７４３で
最も古いブロックが再生ブロックに選ばれる。無効ブロックリストに項目がなければ、次
のステップ７４５により用済みブロックリストで項目の有無を判断する。項目がある場合
の後続するステップは図３１の実施形態と異なり、パーシャルブロックリストにも１つ以
上の項目がある場合は、用済みブロックリストとパーシャルブロックリストのどちらで再
生ブロックを選べばよいかを判断する。
【０１５１】
　図３２のステップ７４７では、有効データ量が最も少ないブロックを用済みブロックリ
ストで識別する。次に、ステップ７４９でパーシャルブロックリストに１つ以上のブロッ
クが存在するか否かを判断し、存在する場合は、有効データ量が最も少ないブロックをス
テップ７５１で識別する。次のステップ７５３では、用済みブロックリストで識別した１
ブロックとパーシャルブロックリストで識別した１ブロックとで選択を行う。それには、
前と同じ項Ｖ、Ｅ、およびｋを使用し、ステップ７５１でパーシャルブロックリストから
識別したブロックで量（Ｖ＋ｋＥ）を計算する。この量をステップ７４７で用済みブロッ
クリストから識別したブロックの有効データ量Ｖに比較する。パーシャルブロックの量（
Ｖ＋ｋＥ）が用済みブロックのＶを上回るなら、ステップ７５５で用済みブロックが再生
ブロックに選ばれる。しかし、用済みブロックのＶが識別されたパーシャルブロックの量
（Ｖ＋ｋＥ）を上回るなら、ステップ７５７でパーシャルブロックが再生ブロックに選ば
れる。
【０１５２】
　識別されたパーシャルブロックの消去済み容量ｋＥをこのブロックの有効データＶに加
えたものを、識別された用済みブロックの有効データＶのみに比較すると、そのプロセス
は用済みブロックが優先的に選ばれる形に偏る。識別された用済みブロックと同量の有効
データを持つ識別されたパーシャルブロックには、その消去済み容量にデータを蓄積する
という使い道が残っているため、選ばれずに残る。実際は、有効データ量が用済みブロッ
クの有効データ量よりｋＥ少ないパーシャルブロックが選ばれずに残る。
【０１５３】
　図３２のステップ７４５へ戻り、用済みブロックリストに項目がない場合は、パーシャ
ルブロックリストに記載されたブロックの有無をステップ７５９で判断する。ブロックが
なければプロセスはステップ７４１まで戻り、３つのリストのいずれか１つにブロックが
登録されるまで繰り返される。リストに多数のパーシャルブロックがある場合は、ステッ
プ７６１で有効データ量が最も少ないブロックを再生ブロックとして選択する。あるいは
、第２の実施形態（図３１）のステップ７３１との関係で説明したように、再生利得を用
いてパーシャルブロックを選択することもできる。
【０１５４】
　第３の実施形態では使用するリストを２つに絞ることもできる。第１のリストは用済み

(38) JP 5266250 B2 2013.8.21

10

20

ブロックリストで、このリストには、用済みデータを収容し消去済み容量がないブロック
の項目が入る。図３２に見られるように単独の無効ブロックリストを使用するのではなく
、無効ブロックと用済みブロックの両方を１つの「用済み」ブロックリストに入れる。こ
れらのブロックは有効データを収容することもある。リストの各項目にはフィールドがあ
り、このフィールドには該当するブロックの有効データ量を表す値が入る。リストの項目
は、このフィールドの値の順に並べる。その結果、用済みデータがあって有効データはな
いブロック（無効ブロック）は、この第１のリストの先頭に集まる。
【０１５５】
　この第３の実施形態の代案で、第２のリストはパーシャルブロックリストであり、この
リストには、ある程度の消去済み蓄積容量を持つブロックの項目が入る。これらのブロッ
クは有効データを収容することもある。リストの各項目にはフィールドがあり、このフィ
ールドには該当するブロックの有効データ量を表す値が入る。リストの項目は、このフィ
ールドの値の順に並べる。図３２のステップ７５３の手法により、第１または第２のリス
トの先頭からブロック（有効データの量が最も少ないブロック）を選ぶことができる。
【０１５６】
　図３３の表は、この第３の実施形態の修正版による再生操作でパーシャルブロックリス
トと用済みブロックリストに入るブロックタイプの詳細を伝えるものである。パーシャル
ブロックリストに入るブロックは、有効データと消去済み容量の両方を含むブロックであ
る。ブロックに用済みデータがあるかどうかは問題とされない。用済みブロックリストに
入るブロックは、用済みデータを含み、かつ有効データと消去済み容量の両方ではなくい
ずれか一方を含むブロックである。
【０１５７】
結論
　これまで本発明の様々な態様をその代表的な実施形態との関係で説明してきたが、本発
明が添付の特許請求の範囲内で保護を受ける権利があることは理解される。
【図１】 【図２】

(39) JP 5266250 B2 2013.8.21

【図３】 【図４】

【図５】

【図６】

【図７Ａ】

【図７Ｂ】

【図７Ｃ】

(40) JP 5266250 B2 2013.8.21

【図８Ａ】 【図８Ｂ】

【図８Ｃ】 【図９Ａ】

【図９Ｂ】

(41) JP 5266250 B2 2013.8.21

【図９Ｃ】 【図１０】

【図１１】

【図１２】

【図１３Ａ】

【図１３Ｂ】

【図１３Ｃ】

【図１３Ｄ】

(42) JP 5266250 B2 2013.8.21

【図１４Ａ】 【図１４Ｂ】

【図１４Ｃ】 【図１４Ｄ】

(43) JP 5266250 B2 2013.8.21

【図１４Ｅ】 【図１５】

【図１６Ａ】

【図１６Ｂ】

【図１６Ｃ】

【図１６Ｄ】

【図１７】

(44) JP 5266250 B2 2013.8.21

【図１８】 【図１９】

【図２０】 【図２１】

(45) JP 5266250 B2 2013.8.21

【図２２】 【図２３】

【図２４】

【図２５】 【図２６】

(46) JP 5266250 B2 2013.8.21

【図２７】 【図２８Ａ】

【図２８Ｂ】

【図２８Ｃ】

【図２８Ｄ】

【図２９】

【図３０】

【図３１】

(47) JP 5266250 B2 2013.8.21

【図３２】 【図３３】

(48) JP 5266250 B2 2013.8.21

10

フロントページの続き

(72)発明者 ライト，バリー
 イギリス連邦共和国、スコットランド、ＥＨ６　６ＤＥ、エディンバラ、ヘンダーソン　ストリー
 ト、４０　フラット　４

 審査官 田川　泰宏

(56)参考文献 特表２００８－５３０７１０（ＪＰ，Ａ）　　　
 特開平１０－３２６２２７（ＪＰ，Ａ）　　　
 特表２０１０－５１５１６３（ＪＰ，Ａ）　　　
 特表２００９－５０３７４５（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　１２／００　　　　
 Ｇ０６Ｆ　　　３／０６　　　　
 Ｇ０６Ｆ　　１２／０２　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

