Title: A PYRAZOLO [4,5-E] PYRIMIDINE DERIVATIVE AND ITS USE TO TREAT DIABETES AND OBESITY

Abstract: (2S)-2-{1-(2,6-dichlorophenyl)pyrazolo[4,5-c]pyrimidin-4-yl}oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide is useful in the treatment or prevention of a disease or medical condition mediated through glucokinase (GLK or GK), leading to a decreased glucose threshold for insulin secretion.
A PYRAZOL[4,5-E]PYRIMIDINE DERIVATIVE AND ITS USE TO TREAT DIABETES AND OBESITY

The present invention relates to (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide which is useful in the treatment or prevention of a disease or medical condition mediated through glucokinase (GLK or GK). GK Activators (GKAs) are known to activate GK in the pancreatic β-cell leading to a decreased glucose threshold for insulin secretion. In addition GKAs activate hepatic GK thereby stimulating hepatic glucose uptake and suppressing hepatic glucose output. The net pharmacological effect of GKAs is to lower blood glucose levels. Therefore, such compounds may have utility in the treatment of Type 2 diabetes and obesity. The invention also relates to pharmaceutical compositions comprising said compounds and to methods of treatment of diseases mediated by GLK using said compounds.

The biology of glucokinase and the mechanisms by which GKAs might deliver potential therapeutic benefit in Type 2 diabetes have been extensively reviewed in the literature (see for example Matschinsky FM et al. (2006) Diabetes 55: 1-12, Leighton B, Atkinson A, Coghlann MP (2005) Biochemical Society Transactions 33: 371-374 and “Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics.” Frontiers in Diabetes vol 16, eds. Matschinsky FM and Magnuson MA, Karger (Basel) 2005). In the pancreatic β-cell and liver parenchymal cells the main plasma membrane glucose transporter is GLUT2. Under physiological glucose concentrations the rate at which GLUT2 transports glucose across the membrane is not rate limiting to the overall rate of glucose uptake in these cells. The rate of glucose uptake is limited by the rate of phosphorylation of glucose to glucose-6-phosphate (G-6-P), which is catalysed by glucokinase (GLK). GLK has a high (6-10mM) Km for glucose and is not inhibited by physiological concentrations of G-6-P. GLK expression is limited to a few tissues and cell types, most notably pancreatic β-cells and liver cells (hepatocytes). In these cells GLK activity is rate limiting for glucose utilisation and therefore regulates the extent of glucose induced insulin secretion and hepatic glycogen synthesis. These processes are critical in the maintenance of whole body glucose homeostasis and both are dysfunctional in diabetes.
In one sub-type of diabetes, Maturity-Onset Diabetes of the Young Type 2 (MODY-2), the diabetes is caused by GLK loss of function mutations. Hyperglycaemia in MODY-2 patients results from defective glucose utilisation in both the pancreas and liver. Defective glucose utilisation in the pancreas of MODY-2 patients results in a raised threshold for glucose stimulated insulin secretion. Conversely, rare activating mutations of GLK reduce this threshold resulting in familial hyperinsulinism. In addition to the reduced GLK activity observed in MODY-2 diabetics, hepatic glucokinase activity is also decreased in type 2 diabetics. Importantly, global or liver selective overexpression of GLK prevents or reverses the development of the diabetic phenotype in both dietary and genetic models of the disease. Moreover, acute treatment of type 2 diabetics with fructose improves glucose tolerance through stimulation of hepatic glucose utilisation. This effect is believed to be mediated through a fructose induced increase in cytosolic GLK activity in the hepatocyte by the mechanism described below.

GLK and the K_{ATP} channel are expressed in neurones of the hypothalamus, a region of the brain that is important in the regulation of energy balance and the control of food intake. These neurones have been shown to express orectic and anorectic neuropeptides and have been assumed to be the glucose-sensing neurones within the hypothalamus that are either inhibited or excited by changes in ambient glucose concentrations. The ability of these neurones to sense changes in glucose levels is defective in a variety of genetic and experimentally induced models of obesity. Intracerebroventricular (icv) infusion of glucose analogues, that are competitive inhibitors of glucokinase, stimulate food intake in lean rats. In contrast, icv infusion of glucose suppresses feeding. Thus, small molecule activators of GLK may decrease food intake and weight gain through central effects on GLK. Therefore, GLK activators may be of therapeutic use in treating eating disorders, including obesity, in addition to diabetes. The hypothalamic effects will be additive or synergistic to the effects of the same compounds acting in the liver and/or pancreas in normalising glucose homeostasis, for the treatment of Type 2 diabetes. Thus the GLK system can be described as a potential “Diabesity” target (of benefit in both Diabetes and Obesity).

GLK is also expressed in specific entero-endocrine cells where it is believed to control the glucose sensitive secretion of the incretin peptides GIP (glucose-dependent insulino tropic polypeptide) and GLP-1 (Glucagon-Like Peptide-1) from gut K-cells and L-
cells respectively. Therefore, small molecule activators of GLK may have additional beneficial effects on insulin secretion, b-cell function and survival and body weight as a consequence of stimulating GIP and GLP-1 secretion from these entero-endocrine cells.

N-(Thiazolyl)-2-[(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)thio]acetamide is disclosed in Phosphorus, Sulfur and Silicon, vol 178, 2003, pp1795-1805 which is concerned with antimicrobial activity of related compounds. Similar compounds are also known from commercially available Chemical Libraries.

WO98/35944 discloses that compounds of formula R¹R²N-C(O)-C(R³)(R⁴)-X-R⁵ in which R¹-R⁵ are each individually selected from a wide range of substituents and X is oxygen or sulfur are useful in treating bulimia and obesity by virtue of their activity at the NPY receptor antagonists. R⁵ may be 1H-pyrazolo[3,4-d]pyrimidin-4-yl or 4-aminopyrazolo[3,4-d]pyrimidin-6-yl. Specific compounds exemplified are N-(4-cyclohexylphenyl)-2-(1H-pyrazolo[3,4-d]pyrimidin-4-ylsulfanyl) acetamide, N-(4-benzoylephenyl)-2-(1H-pyrazolo[3,4-d]pyrimidin-4-ylsulfanyl) acetamide, 2-(4-amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylsulfanyl)-N-(4-cyclohexylphenyl) acetamide and 2-(4-amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylsulfanyl)-N-(4-benzoylephenyl) acetamide.

Thus, according to the first aspect of the invention there is provided the compound (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide or a pharmaceutically acceptable salt thereof.

In another aspect there is provided (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide.

It is also to be understood that certain compounds may exist in tautomeric forms and that the invention also relates to any and all tautomeric forms of the compounds of the invention which activate GLK. It will be understood that compounds described in their pyrimidinol form may also be described as the pyrimidineone tautomer and vice versa. This implies nothing about the actual relative proportions of the two in physical samples.

It is also to be understood that the compound of the invention and salts thereof can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which activate GLK.

In one embodiment of the invention is provided a compound of the invention, in an alternative embodiment are provided pharmaceutically-acceptable salts of the compound of
the invention, in a further alternative embodiment are provided in-vivo hydrolysable esters of the compound of the invention, and in a further alternative embodiment are provided pharmaceutically-acceptable salts of in-vivo hydrolysable esters of the compound the invention.

The compound of the invention is named as a pyrazolo[4,5-e]pyrimidin-4-yl compound. It will be understood by those skilled in the art that the compound may also be named as a pyrazolo[3,4-d]pyrimidin-4-yl compound.

The compounds of the invention may be administered in the form of a pro-drug. A pro-drug is a bioprecursor or pharmaceutically acceptable compound being degradable in the body to produce a compound of the invention (such as an ester or amide of a compound of the invention, particularly an in-vivo hydrolysable ester). Various forms of prodrugs are known in the art. For examples of such prodrug derivatives, see:

c) H. Bundgaard, Chapter 5 “Design and Application of Prodrugs”, by H. Bundgaard p. 113-191 (1991);
d) H. Bundgaard, Advanced Drug Delivery Reviews, 8, 1-38 (1992);
e) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); and

The contents of the above cited documents are incorporated herein by reference.

Examples of pro-drugs are as follows. An in-vivo hydrolysable ester of a compound of the invention containing a hydroxy group is, for example, a pharmaceutically-acceptable ester which is hydrolysed in the human or animal body to produce the parent alcohol. An in-vivo hydrolysable ester of a compound of the invention containing a hydroxy group includes inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and α-acyloxyalkyl ethers and related compounds which as a result of the in-vivo hydrolysis of the ester breakdown to give the parent hydroxy group.

Examples of α-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxy-methoxy. A selection of in-vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoxyl, phenylacetyl and substituted benzoxy and
phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxyacetyl.

A suitable pharmaceutically-acceptable salt of a compound of the invention is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, methanesulphonic, benzenesulphonic, citric or maleic acid. In one aspect, a suitable acid-addition salt may be one with hydrochloric, sulphuric, methanesulphonic or citric acid.

A further feature of the invention is a pharmaceutical composition comprising the compound of the invention as defined above, or a pharmaceutically-acceptable salt thereof, together with a pharmaceutically-acceptable diluent or carrier.

According to another aspect of the invention there is provided the compound of the invention or a pharmaceutically-acceptable salt thereof for use as a medicament.

According to another aspect of the invention there is provided the compound of the invention or a pharmaceutically-acceptable salt thereof as defined above for use as a medicament for treatment of a disease mediated through GLK, in particular type 2 diabetes.

Further according to the invention there is provided the use of the compound of the invention or a pharmaceutically-acceptable salt thereof in the preparation of a medicament for treatment of a disease mediated through GLK, in particular type 2 diabetes.

The compound is suitably formulated as a pharmaceutical composition for use in this way.

According to another aspect of the present invention there is provided a method of treating GLK mediated diseases, especially diabetes, by administering an effective amount of the compound of the invention or a pharmaceutically-acceptable salt thereof to a mammal in need of such treatment.

Specific diseases which may be treated by a compound or composition of the invention include: blood glucose lowering in Type 2 Diabetes Mellitus without a serious risk of hypoglycaemia (and potential to treat type 1), dyslipidemia, obesity, insulin resistance, metabolic syndrome X, impaired glucose tolerance.
As discussed above, thus the GLK system can be described as a potential “Diabetes” target (of benefit in both Diabetes and Obesity). Thus, according to another aspect of the invention there is provided the use of the compound of the invention or a pharmaceutically-acceptable salt thereof, in the preparation of a medicament for use in the combined treatment or prevention, particularly treatment, of diabetes and obesity.

According to another aspect of the invention there is provided the use of the compound of the invention or a pharmaceutically-acceptable salt thereof, in the preparation of a medicament for use in the treatment or prevention of obesity.

According to a further aspect of the invention there is provided a method for the combined treatment of obesity and diabetes by administering an effective amount of the compound of the invention or a pharmaceutically-acceptable salt thereof, to a mammal in need of such treatment.

According to another aspect of the invention there is provided a compound the compound of the invention or a pharmaceutically-acceptable salt thereof as defined above for use as a medicament for treatment or prevention, particularly treatment of obesity.

According to a further aspect of the invention there is provided a method for the treatment of obesity by administering an effective amount of the compound of the invention or a pharmaceutically-acceptable salt thereof, to a mammal in need of such treatment.

Compounds of the invention may be particularly suitable for use as pharmaceuticals, for example because of favourable physical and/or pharmacokinetic properties and/or toxicity profile.

The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing). Dosage forms suitable for oral use are preferred.
The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.

Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal tract, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.

Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic
acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavouring and preservative agents.

Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.

The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butandiol.
Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.

For further information on formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.

The size of the dose for therapeutic or prophylactic purposes of a compound of the invention will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.

In using a compound of the invention for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.5 mg to 75 mg per kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous administration, a dose in the range, for example, 0.5 mg to 30 mg per kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.5 mg to 25 mg per kg body weight will be used. Oral administration is however preferred.

The elevation of GLK activity described herein may be applied as a sole therapy or in combination with one or more other substances and/or treatments for the indication
being treated. In another aspect the invention provides a pharmaceutical combination comprising a compound of the invention and another pharmacologically active substance particularly wherein the other pharmacologically active substance is a medicament for the treatment of type 2 diabetes or obesity or a related condition.

Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment. Simultaneous treatment may be in a single tablet or in separate tablets. For example in the treatment of diabetes mellitus, chemotherapy may include the following main categories of treatment:

1) Insulin and insulin analogues;

2) Insulin secretagogues including sulphonylureas (for example glibenclamide, glipizide), prandial glucose regulators (for example repaglinide, nateglinide);

3) Agents that improve incretin action (for example dipeptidyl peptidase IV inhibitors e.g. saxagliptin, sitagliptin, vildagliptin or alogliptin and GLP-1 agonists);

4) Insulin sensitising agents including PPARgamma agonists (for example pioglitazone and rosiglitazone), and agents with combined PPARalpha and gamma activity;

5) Agents that modulate hepatic glucose balance (for example metformin, fructose 1, 6 bisphosphatase inhibitors, glycogen phosphorylase inhibitors, glycogen synthase kinase inhibitors);

6) Agents designed to reduce the absorption of glucose from the intestine (for example acarbose);

7) Agents that prevent the reabsorption of glucose by the kidney (SGLT inhibitors for example dapagliflozin);

8) Agents designed to treat the complications of prolonged hyperglycaemia (for example aldose reductase inhibitors);

9) Anti-obesity agents (for example sibutramine and orlistat);

10) Anti-dyslipidaemia agents such as, HMG-CoA reductase inhibitors (eg statins); PPARα agonists (fibrates, eg gemfibrozil); bile acid sequestrants (cholestyramine); cholesterol absorption inhibitors (plant stanols, synthetic inhibitors); bile acid absorption inhibitors (IBATi) and nicotinic acid and analogues (niacin and slow release formulations);
11) Antihypertensive agents such as, β blockers (eg atenolol, inderal); ACE inhibitors (eg lisinopril); Calcium antagonists (eg nifedipine); Angiotensin receptor antagonists (eg candesartan), α antagonists and diuretic agents (eg furosemide, benzthiazide);

12) Haemostasis modulators such as, antithrombotics, activators of fibrinolysis and antiplatelet agents; thrombin antagonists; factor Xa inhibitors; factor VIIa inhibitors); antiplatelet agents (eg aspirin, clopidogrel); anticoagulants (heparin and Low molecular weight analogues, hirudin) and warfarin;

13) Agents which antagonise the actions of glucagon; and

14) Anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (eg. aspirin) and steroidal anti-inflammatory agents (eg. cortisone).

A compound of the invention, or a salt thereof, may be prepared by any process known to be applicable to the preparation of such compounds or structurally related compounds. Functional groups may be protected and de-protected using conventional methods. For examples of protecting groups such as amino and carboxylic acid protecting groups (as well as means of formation and eventual deprotection), see T.W. Greene and P.G.M. Wuts, “Protective Groups in Organic Synthesis”, Second Edition, John Wiley & Sons, New York, 1991.

Processes for the synthesis of compounds of the invention are provided as a further feature of the invention. Thus, according to a further aspect of the invention there is provided a process for the preparation of (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide comprising de-protecting a compound of formula A

```
```

or a salt thereof in which Prot represents a hydroxy protecting group.
Examples of hydroxy protecting groups include methyl, t-butyl, lower alkenyl groups (e.g. allyl); lower alkanoyl groups (e.g. acetyl); lower alkoxy carbonyl groups (e.g. t-butoxycarbonyl); lower alkenyloxy carbonyl groups (e.g. allyloxy carbonyl); aryl lower alkoxy carbonyl groups (e.g. benzoxycarbonyl, p-methoxycarbonyl, o-nitrobenzoxycarbonyl, p-nitrobenzoyloxycarbonyl); tri lower alkyl/arylsilyl groups (e.g. trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl); tetrahydropryan-2-yl; aryl lower alkyl groups (e.g. benzyl) groups; and triaryl lower alkyl groups (e.g. triphenylmethyl).

Methods appropriate for removal of hydroxy protecting groups include, for example, nucleophilic displacement, acid-, base-, metal- or enzymically-catalysed hydrolysis, catalytic hydrogenolysis/hydrogenation or photolytically for groups such as o-nitrobenzoxycarbonyl. Silyl groups may be removed with fluoride ions for example using tetrabutylammonium fluoride in a solvent, for example an ether e.g. tetrahydrofuran or an alkanoic acid for example acetic acid, at a temperature from 0 °C to the boiling point of the solvent or more particularly in the range 5 °C -35 °C. Silyl groups may be removed with acids for example mineral acids e.g hydrochloric acid or alkylsulfonic acids for example methanesulfonic acid or arylsulfonic acids for example benzenesulfonic acid. For example, methylether protecting groups for hydroxy groups may be removed by trimethylsilyl iodide. A tert-butyl ether protecting group for a hydroxy group may be removed by treatment with an acid, for example hydrochloric acid in methanol.

Certain intermediates used to prepare the compound of the invention are believed to be novel and are herein claimed as a further embodiment of the present invention. In another aspect the present invention provides a compound of formula A. Particularly Prot represents a tri lower alkyl/arylsilyl groups (e.g. trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl).

In particular in further embodiment of the present invention is provided (S)-3-(3-(tert-butyldimethylsilyloxy)azetidin-1-yl)-2-(1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(5-methylpyrazin-2-yl)propanamide.

The following examples are for illustration purposes and are not intended to limit the scope of this application. Each exemplified compound represents a particular and independent aspect of the invention. In the following non-limiting Examples, unless otherwise stated:
(i) evaporations were carried out by rotary evaporation under reduced pressure and work-up procedures were carried out after removal of residual solids such as drying agents by filtration;

(ii) operations were carried out at room temperature, that is in the range 18-25°C and under an atmosphere of an inert gas such as argon or nitrogen;

(iii) yields are given for illustration only and are not necessarily the maximum attainable;

(iv) the structures of the end-products of the Examples were confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques; proton magnetic resonance chemical shift values were measured on the delta scale and peak multiplicities are shown as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad; q, quartet; quin, quintet; sextet

(v) intermediates were not generally fully characterised and purity was assessed by thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), infra-red (IR) or NMR analysis;

(vi) flash chromatography was carried out on silica unless otherwise stated;

(vii) Enantiomeric excesses (ee’s) were determined by HPLC using a chiral stationary phase such as Chiralcel OJ or Chiralpak AD-H and / or by NMR using an appropriate chiral shift reagent such as (1S)-[1,1'-binaphthalene]-2,2'-diol (CAS 18531-99-2) or (1R)-[1,1'-binaphthalene]-2,2'-diol (CAS 18531-94-7).

Abbreviations

- ACN: Acetonitrile
- n-BuLi: n-Butyllithium
- m-CPBA: 3-Chloroperbenzoic acid
- DCM: Dichloromethane
- DIPEA: Di-iso-propylethylamine
- DMAP: 4-Di(methylamino)pyridine
- DMF: N,N-Dimethylformamide
- DMSO: dimethylsulfoxide
- EtOAc: Ethyl acetate
- EtOH: Ethanol
- FMOC: 9-Fluorenylmethyl carbamate
IPA Isopropyl alcohol
LHMDS Lithium bis(trimethylsilyl)amide
MeOH Methanol
TBDMSCI tert-Butyldimethylsilyl chloride
THF Tetrahydrofuran
ESI Electrospray ionisation
rt Room temperature
cat Catalytic
ece Enantiomeric excess
HPLC High performance liquid chromatography
EDCI 1-(3-Dimethylaminopropyl)-2-ethylcarbodiimide hydrochloride
rel vols relative volumes
equiv molar equivalents

Example 1: (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide

A solution of tetrabutylammonium fluoride (1 M in THF) (0.61 mL, 0.61 mmol) was added in one portion to a stirred solution of (S)-3-(3-(tert-butyldimethylsilyloxy)azetidin-1-yl)-2-(1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl oxy)-N-(5-methylpyrazin-2-yl)propanamide (Intermediate BB3) (385 mg, 0.61 mmol) in tetrahydrofuran (15 mL). The resulting solution was stirred at ambient temperature for 30 minutes. The reaction mixture was quenched with saturated ammonium chloride solution (10 mL), and diluted with water (20 mL) and ethyl acetate (70 mL). The organic layer was separated and the aqueous layer extracted with ethyl acetate (70 mL). The combined organics were dried (MgSO₄), filtered and evaporated. The crude product was purified by flash silica chromatography, eluting with 0 to 10% methanol in ethyl acetate, to afford the product (197 mg, 62.5%, 99.4% ee). ¹H NMR (400 MHz, CDCl₃) δ 2.54 (3H, s), 3.19 - 3.24 (3H,
m), 3.30 - 3.35 (1H, m), 3.88 - 3.93 (2H, m), 4.53 - 4.58 (1H, m), 5.93 - 5.96 (1H, m), 7.43 - 7.47 (1H, m), 7.52 - 7.55 (2H, m), 8.13 (1H, d), 8.41 (1H, s), 8.59 (1H, s), 9.42 (1H, d), 9.81 (1H, s); m/z (ES\(^+\)) (M+H\(^+\)) = 515; HPLC \(t_R=\) 1.58 min.

Amorphous (S)-2-(1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide (1700 mg) was heated in refluxing t-butyl methyl ether (800 mL) for 30 minutes. The suspension was filtered, and the filtrate then reduced to a volume of approximately 100 mL. This solution was stirred overnight allowing the temperature to return to ambient. A solid was filtered off and was then dried under vacuum at 60°C for 4 days to give crystalline (S)-2-(1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide (1121 mg).

<table>
<thead>
<tr>
<th>Angle 2-Theta (2θ)</th>
<th>Intensity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.297</td>
<td>100.0</td>
</tr>
<tr>
<td>15.433</td>
<td>88.2</td>
</tr>
<tr>
<td>12.175</td>
<td>78.8</td>
</tr>
<tr>
<td>19.607</td>
<td>77.2</td>
</tr>
<tr>
<td>22.653</td>
<td>77.0</td>
</tr>
<tr>
<td>19.955</td>
<td>72.9</td>
</tr>
<tr>
<td>27.095</td>
<td>72.7</td>
</tr>
<tr>
<td>27.141</td>
<td>72.1</td>
</tr>
<tr>
<td>15.766</td>
<td>70.8</td>
</tr>
<tr>
<td>16.021</td>
<td>67.8</td>
</tr>
</tbody>
</table>
Example 1: (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-
hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide. Alternative Method

5 a) A solution of 4-chloro-1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine
(Intermediate BA3) (16.34g) in THF (80 mL) was added drop-wise over 30 mins to a
stirred mixture of (S)-3-(3-(tert-butyl dimethylsilyloxy)azetidin-1-yl)-2-hydroxy-N-(5-
methylpyrazin-2-yl)propanamide (Intermediate BB2) (20.00g), THF (80.0 mL) and
aqueous sodium hydroxide solution (11.56mL, 50%). The mixture was stirred for 90 mins
and then tert-butyl methyl ether (80.0 mL) and water (80.0 mL) were added. The lower
aqueous layer was separated off and the organic layer was washed with water (80.0 mL).
The organic layer was washed with a solution of potassium hydrogen phosphate (9.50g)
in water (80mL) and then finally with water (80.0mL). The organic layer was concentrated
under reduced pressure at 50 °C until approximately 50 ml remained. THF (160.0 mL) was
added and then the solution was concentrated under reduced pressure at 25 °C until
approximately 50 ml remained. THF (160.0 mL) was added. A solution of methanesulfonic
acid (5.24g) in THF (80.00 mL) was added drop-wise over 30 minutes to the residual
solution with stirring. The precipitate was collected by filtration, washed with THF and
then dried to give (S)-3-(3-(tert-butyl dimethylsilyloxy)azetidin-1-yl)-2-(1-(2,6-
dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(5-methylpyrazin-2-
yl)propanamide mesylate. Alternatively this product was isolated as the hydrochloride salt
or as the benzenesulfonate salt. These salts could be reacted with their corresponding acids,
for example hydrochloric acid or benzenesulfonic acid, respectively, instead of
methanesulfonic acid.

20 b) A mixture of (S)-3-(3-(tert-butyl dimethylsilyloxy)azetidin-1-yl)-2-(1-(2,6-
dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(5-methylpyrazin-2-
yl)propanamide mesylate (16.5g), THF (50.00 mL), water (20.0 mL) and methanesulfonic
acid (2.62g) was stirred for 19 hours at ambient temperature. tert-Butyl methyl ether (40.0 mL) was added followed by the dropwise addition of a solution of potassium carbonate (3.77g) in water (20.0mL) over 20 mins with stirring. The aqueous phase was removed and the organic phase was washed with water (20.0 mL) then evaporated under reduced pressure at 50 °C. THF (80 mL) was added to the residue and then removed by evaporation under reduced pressure. This process was repeated. THF (20.0 mL) was added to the residue followed by tert-butyl methyl ether (60.0 ml). The mixture was filtered then stirred whilst cyclohexane (50.0 mL) was added dropwise. The solid was collected by filtration and washed with a mixture tert-butyl methyl ether (50.0 mL) and cyclohexane (50.0 mL) and dried to give (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide in an overall yield for steps a) and b) of 69%.

PREPARATION OF INTERMEDIATES

Intermediate AD3: Methyl (2S)-3-[3-(tert-butyl-dimethylsilyl)oxyazetidin-1-yl]-2-hydroxypropanoate

![Intermediate AD3 structure]

3-(tert-butyldimethylsilyloxy)azetidine (Intermediate AD4) (11.0 g, 58.71 mmol) and (S)-methyl oxirane-2-carboxylate (5.99 g, 58.71 mmol) were dissolved in butyronitrile (75 mL) and heated to 100 °C for 90 minutes. Reaction turns from colourless to yellow during the period of heating. The resulting mixture was cooled and evaporated. The crude product was purified by flash silica chromatography, elution gradient 0 to 5% MeOH in EtOAc to afford the product (9.6g, 56%). 1H NMR (400 MHz, CDCl₃) δ 0.04 (6H, s), 0.85 (9H, s), 2.71 - 2.79 (2H, m), 2.87 - 2.95 (2H, m), 3.58 - 3.68 (2H, m), 3.75 (3H, s), 4.10 - 4.12 (1H, m), 4.35 - 4.39 (1H, t) (OH signal not observed).

The procedure may also be carried out in an analogous manner using azetidin-3-yloxy-tert-butyl-dimethylsilane and diphenylmethane (1:1) (Intermediate AD5).

Intermediate AD4: Azetidin-3-yloxy-tert-butyl-dimethylsilane

![Intermediate AD4 structure]
A solution of tert-butylchlorodimethylsilane (12.01 g, 79.69 mmol) in DCM (20 mL) was added dropwise to a stirred solution of azetidin-3-ol hydrochloride (CAS no. 18621-18-6) (8.73 g, 79.69 mmol) and anhydrous N-ethyl-N-isopropylpropan-2-amine (34.1 mL, 199.22 mmol) in DCM (20 mL) cooled to 10°C, over a period of 2 minutes under nitrogen. The resulting solution was stirred at ambient temperature for 20 hours. The reaction mixture was concentrated, diluted with EtOAc (75 mL), and washed sequentially with saturated NaHCO$_3$ (25 mL), water (20 mL), and saturated brine (20 mL). The organic layer was dried (MgSO$_4$), filtered and evaporated to afford the product (11.1 g, 74%). 1H NMR (400 MHz, CDCl$_3$) δ 0.04 (6H, s), 0.87 (9H, m), 2.80 (1H, s), 3.57 - 3.61 (2H, m), 3.67 - 3.71 (2H, m), 4.57 - 4.64 (1H, m).

Intermediate AD5: Azetidin-3-yloxy-tert-butyl-dimethylsilane and diphenylmethane (1:1)

\[
\begin{align*}
\text{Intermediate AD6: (1-Benzhydrylazetidin-3-yloxy-tert-butyl-dimethylsilane} \end{align*}
\]

1-benzhydryl-3-(tert-butyldimethylsilyloxy)azetidine (Intermediate AD6) (3.12 g, 8.82 mmol) and palladium on carbon (0.3 g, 0.28 mmol) in methanol (60 mL) were stirred under an atmosphere of hydrogen at ambient temperature for 18 hours. The reaction mixture was filtered and concentrated to a colourless liquid, 3-(tert-butyldimethylsilyloxy)azetidine compound with diphenylmethane (1:1) (3.02 g, 96%). This was used without further purification. 1H NMR (400 MHz, CDCl$_3$) δ 0.00 (6H, s), 0.84 (9H, s), 3.52 - 3.58 (2H, m), 3.61 - 3.67 (2H, m), 3.95 (2H, s), 4.55 - 4.63 (1H, m), 7.12 - 7.27 (10H, m), 7.64 (1H, s).

Intermediate AD6: (1-Benzhydrylazetidin-3-yloxy-tert-butyl-dimethylsilane

Tert-Butyldimethylsilyl chloride (1.524 g, 10.11 mmol) was added to 1-benzhydrylazetidin-3-ol (CAS no. 18621-17-5) (2.2 g, 9.19 mmol) and imidazole (1.565 g, 22.98 mmol) in DCM (46.0 mL) at r.t. under nitrogen. The resulting solution was stirred at r.t. for 3 hours. The reaction mixture was quenched with water, poured onto a phase separator and
evaporated to afford the product (3.66 g, 113 %). 1H NMR (400 MHz, CDCl₃) δ 0.00 (6H, s), 0.85 (9H, s), 2.81 (2H, s), 3.52 (2H, s), 4.35 (1H, s), 4.40 - 4.49 (1H, m), 7.08 - 7.43 (10H, m); m/z (ES⁺) (M+H)⁺ = 354.55; HPLC tᵣ = 2.04 min.

Intermediate BA3: 4-chloro-1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine

![Chemical structure](image)

Phosphorus oxychloride (7.96 mL, 85.38 mmol) was added to 1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-ol (**Intermediate BA4**) (1.2 g, 4.27 mmol). The resulting solution was stirred at 100 °C for 20 hours. LCMS showed reaction was complete. The reaction mixture was evaporated. Ice/water and then EtOAc were added. The organic layer was separated and the aqueous layer re-extracted with EtOAc. The combined organics were washed with water, dried (MgSO₄) and concentrated to give the product (1.110 g, 87 %) which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.58 (3H, m), 8.45 (1H, s), 8.82 (1H, s); m/z (ES⁺) (M+H)⁺ = 299; HPLC tᵣ = 2.77 min.

Intermediate BA4: 1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-ol

![Chemical structure](image)

Concentrated sulfuric acid (1.297 mL, 24.34 mmol) was added to a stirred solution of 5-amino-1-(2,6-dichlorophenyl)-1H-pyrazole-4-carbonitrile (**Intermediate BA5**) (5.6 g, 22.13 mmol) in formic acid (35 mL). The resulting solution was stirred at 100 °C for 24 hours. The reaction was allowed to cool to room temperature and evaporated to ~half volume, water (100 mL) added and stirred for 1 hour. The formed precipitate was filtered off, washed well with water and dried overnight in a vacuum over P₂O₅ to afford the product (4.07 g, 65.4 %) which was used without further purification. ¹H NMR (400 MHz, DMSO) δ 7.65 - 7.69 (1H, m), 7.75 - 7.78 (2H, m), 8.09 (1H, d), 8.41 (1H, s), 12.44 (1H, s); m/z (ES⁻) (M-H)⁻ = 279; HPLC tᵣ = 1.41 min.
Intermediate BA5: 5-amino-1-(2,6-dichlorophenyl)-1H-pyrazole-4-carbonitrile

(2,6-Dichlorophenyl)hydrazine hydrochloride (5 g, 23.42 mmol) was partitioned between
EtOAc (100 mL) and NaOH (2M, aq) (40 mL). The organic layer separated and washed
with water (50 mL), brine (50 mL), dried (MgSO₄), filtered and concentrated. The
resultant oil was suspended in methanol (50 mL) under nitrogen at -5°C. 2-
(Ethoxymethylene)malononitrile (2.86 g, 23.42 mmol) added portion-wise over 5 mins and
the mixture stirred at 0°C for 30 mins. The reaction mixture was allowed to warm to room
temperature and then heated at reflux under nitrogen for 2 hours. The reaction mixture was
allowed to cool and evaporated to dryness to afford the product (5.60 g, 94 %) which was
used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 4.47 (2H, s), 7.43 - 7.47
(1H, m), 7.51 - 7.53 (2H, m), 7.73 (1H, s); m/z (ES⁺) (M+H)⁺ = 253; HPLC tᵣ = 1.62 min.
Alternatively the product was obtained by concentrating the reaction mixture to half
volume and allowing the product to crystallise.

**Intermediate BB2: (S)-3-(3-(tert-butyldimethylsilyloxy)azetidin-1-yl)-2-hydroxy-N-(5-
methylpyrazin-2-yl)propanamide**

Trimethylaluminium (6.22 mL, 12.44 mmol) was added to 5-methylpyrazin-2-amine
(1.357 g, 12.44 mmol) in anhydrous toluene (20 mL) cooled to 0 °C under nitrogen. The
resulting solution was stirred at 0°C for 10 minutes. (S)-methyl 3-(3-(tert-butyldimethyl-
silyloxy)azetidin-1-yl)-2-hydroxypropanoate (**Intermediate AD3**) (2 g, 6.91 mmol) in
anhydrous toluene (10 mL) was added and the resulting solution was allowed to warm to
room temperature and then heated at 80°C overnight. The reaction was allowed to cool to
room temperature and a solution of Rochelle salt in water (20%, 75ml) was added. The
mixture diluted with water (25 mL) and ethyl acetate (75 mL) and allowed to stir for 2
hours. The organic layer was separated and the aqueous was extracted with ethyl acetate
(75 mL). The combined organics were washed with brine (75 mL), dried (MgSO₄), filtered
and evaporated. The crude product was purified by flash silica chromatography, eluting
with 20 to 50% ethyl acetate in isohexane. This was further purified by flash silica chromatography, eluting with 0 to 10% methanol in dichloromethane, to afford the product (1.50 g, 59.2 %). 1H NMR (400 MHz, CDCl$_3$) δ 0.03 (3H, d), 0.04 (3H, s), 0.87 (9H, q), 2.54 (3H, s), 2.93 (2H, d), 3.09 (2H, q), 3.71 - 3.77 (2H, m), 4.04 (1H, t), 4.46 (1H, t), 8.13 (1H, d), 9.39 (1H, d), 9.81 (1H, s); m/z (ES$^-$) (M+H)$^+$ = 367.34; HPLC t_R = 1.76 min.

Intermediate BB3: (S)-3-(3-(tert-butyldimethylsilyloxy)azetidin-1-yl)-2-(1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(5-methylpyrazin-2-yl)propanamide

![Chemical Structure](image)

Sodium hydride (87 mg, 2.18 mmol) was added to (S)-3-(3-(tert-butyldimethylsilyl-oxo)azetidin-1-yl)-2-hydroxy-N-(5-methylpyrazin-2-yl)propanamide (Intermediate BB2) (400 mg, 1.09 mmol) in anhydrous tetrahydrofuran (15 mL) at 0°C under nitrogen. The resulting solution was stirred at 0°C for 10 minutes and then 4-chloro-1-(2,6-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine (Intermediate BA3) (360 mg, 1.20 mmol) was added. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. The reaction mixture was neutralised with 1M citric acid and then diluted with water (30 mL) and ethyl acetate (50 mL). The organic layer was separated and the aqueous layer re-extracted with ethyl acetate (50 mL). The combined organics were washed with saturated brine (75 mL), dried (MgSO$_4$), filtered and evaporated. The crude product was purified by flash silica chromatography, eluting with 40 to 80% ethyl acetate in isohexane, to afford the product (395 mg, 57.5 %). 1H NMR (400 MHz, CDCl$_3$) δ 0.04 (6H, s), 0.88 (9H, s), 2.54 (3H, s), 3.09 - 3.13 (2H, m), 3.16 - 3.21 (1H, m), 3.29 - 3.34 (1H, m), 3.87 - 3.92 (2H, m), 4.51 (1H, qn), 5.92 - 5.95 (1H, m), 7.43 - 7.47 (1H, m), 7.52 - 7.55 (2H, m), 8.14 (1H, d), 8.41 (1H, s), 8.59 (1H, s), 9.42 (1H, d), 9.96 (1H, s); m/z (ES$^-$) (M+H)$^+$ = 631; HPLC t_R = 2.94 min.
BIOLOGICAL

Tests:
The biological effects of the compounds of the invention may be tested in the following way:

1. **Enzymatic activity**

Enzymatic activity of recombinant human pancreatic GLK may be measured by incubating GLK, ATP and glucose. The rate of product formation may be determined by coupling the assay to a G-6-P dehydrogenase, NADP/NADPH system and measuring the linear increase with time of optical density at 340nm as described in Brocklehurst et al (Diabetes 2004, **53**, 535-541).

The Example of the invention has been found to have the following mean EC₅₀ (µM):

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>EC₅₀ / µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Production of recombinant GLK:

Human GLK was obtained by PCR from human pancreatic mRNA respectively, using established techniques described in Sambrook J, Fritsch EF & Maniatis T, 1989. PCR primers were designed according to the GLK cDNA sequences shown in Tanizawa et al 1991 and Bonthron, D.T. *et al* 1994 (later corrected in Warner, J.P. 1995).

Cloning in Bluescript II vectors

GLK was cloned in *E. coli* using pBluescript II, (Short et al 1998) a recombinant cloning vector system similar to that employed by Yanisch-Perron *C et al* (1985), comprising a colEI-based replicon bearing a polylinker DNA fragment containing multiple unique restriction sites, flanked by bacteriophage T3 and T7 promoter sequences; a filamentous phage origin of replication and an ampicillin drug resistance marker gene.

Transformations

E. Coli transformations were generally carried out by electroporation. 400 mL cultures of strains DH5α or BL21(DE3) were grown in L-broth to an OD 600 of 0.5 and harvested by centrifugation at 2,000g. The cells were washed twice in ice-cold deionised water, resuspended in 1mL 10% glycerol and stored in aliquots at -70°C. Ligation mixes were desalted using Millipore V series™ membranes (0.0025mm) pore size). 40mL of cells were incubated with 1mL of ligation mix or plasmid DNA on ice for 10 minutes in 0.2cm
electroporation cuvettes, and then pulsed using a Gene Pulser™ apparatus (BioRad) at 0.5kVcm⁻¹, 250mF. Transformants were selected on L-agar supplemented with tetracycline at 10mg/mL or ampicillin at 100mg/mL.

Expression

GLK was expressed from the vector pTB375NBSE in E.coli BL21 cells, producing a recombinant protein containing a 6-His tag immediately adjacent to the N-terminal methionine. Alternatively, another suitable vector is pET21(+)DNA, Novagen, Cat number 697703. The 6-His tag was used to allow purification of the recombinant protein on a column packed with nickel-nitrilotriacetic acid agarose purchased from Qiagen (cat no 30250).

(2) Oral Glucose Tolerance Test (OGTT) or Glucose profile

Oral glucose tolerance tests were done on conscious Zucker obese fa/fa rats (age 12-13 weeks or older). The animals were fasted for 2 hours before use for experiments. A test compound or a vehicle was given orally 120 minutes before oral administration of a glucose solution at a dose of 2 g/kg body weight. Blood glucose levels were measured using a Accucheck glucometer from tail bled samples taken at different time points before and after administration of glucose (time course of 60 minutes). A time curve of the blood glucose levels was generated and the area-under-the-curve (AUC) for 120 minutes was calculated (the time of glucose administration being time zero). Percent reduction in glucose excursion was determined using the AUC in the vehicle-control group as zero percent reduction.

For Glucose profile a test compound or vehicle was given 60 minutes before conscious Zucker obese fa/fa rats (age 12-13 weeks or older) entered a dark cycle (12-hours). Blood glucose mevels were measured using a Accuchek glucometer from tail bled samples taken at different time points during the 12-hour dark cycle. A time curve of the blood glucose levels was generated and the area-under-the-curve (AUC) for 12-hours was calculated (the beginning of the dark cycle being time zero). Percent reduction in glucose excursion was determined using the AUC in the vehicle-control group as zero percent reduction.
Claims:

1. (2S)-2-[1-(2,6-Dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide or a pharmaceutically acceptable salt thereof.

2. A compound as claimed in claim 1 which is (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide

3. A compound as claimed in either claim 1 or claim 2 in crystalline form.

4. A pharmaceutical composition comprising a compound as claimed in any one of claims 1 to 3 together with a pharmaceutically acceptable diluent or carrier.

5. A compound as claimed in any one of claims 1 to 3 for use as a medicament.

6. The use of a compound as claimed in any one of claims 1 to 3 for the preparation of a medicament for treatment of type 2 diabetes.

7. A method of treating GLK mediated diseases by administering an effective amount of a compound as claimed in any one of claims 1 to 3 to a mammal in need of such treatment.

8. The method of Claim 7 wherein the GLK mediated disease is type 2 diabetes.

9. A compound according to any one of Claims 1 to 3 or a pharmaceutically-acceptable salt thereof for use as a medicament for the treatment of a disease mediated through GLK.

10. A compound according to claim 9 wherein the disease mediated through GLK is type-2 diabetes.
11. A pharmaceutical combination comprising a compound as claimed in any one of claims 1 to 3 and another pharmacologically active substance.

12. A pharmaceutical combination as claimed in claim 11 wherein the other pharmacologically active substance is a medicament for the treatment of type 2 diabetes.

13. A compound according to claim 9 wherein the disease mediated through GLK is obesity.

14. A process for the preparation of (2S)-2-[1-(2,6-dichlorophenyl)pyrazolo[4,5-e]pyrimidin-4-yl]oxy-3-(3-hydroxyazetidin-1-yl)-N-(5-methylpyrazin-2-yl)propanamide comprising de-protecting a compound of formula A

![Chemical Structure A]

in which Prot represents a hydroxy protecting group.

15. A compound of formula A

![Chemical Structure A]

in which Prot represents a hydroxy protecting group.
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2010/050592

A. CLASSIFICATION OF SUBJECT MATTER
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, CHEM ABS Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006/125958 A1 (ASTRAZENECA AB [SE]; ASTRAZENECA UK LTD [GB]; CAULKETT PETER WILLIAM R) 30 November 2006 (2006-11-30) pages 1,73; example 1</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search
4 May 2010

Date of mailing of the international search report
12/05/2010

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2204, Fax: (+31-70) 340-3016

Authorized officer
Bourghida, E

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008542247 T</td>
</tr>
<tr>
<td>WO 2010015849 A2</td>
<td>11-02-2010</td>
<td>US 2010093757 A1</td>
</tr>
</tbody>
</table>