US 20090225220A1

a2y Patent Application Publication o) Pub. No.: US 2009/0225220 A1

a9 United States

van der Laan et al.

43) Pub. Date: Sep. 10, 2009

(54) SYSTEM AND METHOD FOR COMPRESSING
VIDEO BY ADJUSTING TILE SIZE BASED ON
DETECTED INTRAFRAME MOTION OR
SCENE COMPLEXITY

(76) Inventors: Roger van der Laan, Menlo Park,

CA (US); Stephen G. Perlman,

Palo Alto, CA (US)

Correspondence Address:

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
LLP

1279 OAKMEAD PARKWAY

SUNNYVALE, CA 94085-4040 (US)

1) 12/359,233

(22)

Appl. No.:
Filed: Jan. 23, 2009
Related U.S. Application Data

(63) Continuation of application No. 11/999.462, filed on

Dec. 5, 2007, which is a continuation-in-part of appli-
cation No. 10/315,460, filed on Dec. 10, 2002.

Data Rate 1}

Rated Max

Publication Classification

(51) Int.CL

HO4N 7/12 (2006.01)
(52) US.Cl oooooioooioroeeree, 348/416.1; 348/E07.045
(57) ABSTRACT

A system and method are described below for encoding inter-
active low-latency video using interframe coding. For
example, one embodiment of a computer-implemented
method for performing video compression comprises: detect-
ing motion or high scene complexity within a sequence of
images occurring at different regions within the sequence of
images; logically subdividing each of the sequence of images
into a plurality of tiles, each tile having a size selected based
on the amount of motion detected in a region in which the tile
is positioned; and encoding one or more of the tiles within
each image of the sequence of images using a first compres-
sion format and encoding the remainder of the tiles within
each image of the sequence of images using a second com-
pression format.

Available Max
Data Rate

Data Rate
301

-~
~—.
.....

Required
Data Rate
303

v

Time (t)

Patent Application Publication

Hard Drive
103

Sep. 10, 2009 Sheet 1 of 38 US 2009/0225220 A1

101

SDTV/HDTV/Monitor
Optical 102
Media . .
104 CPUIGPU
110
Network
Connection
105
y Game
Controller
o099 106
FIG. 1

(Prior Art)

US 2009/0225220 A1

Sep. 10,2009 Sheet 2 of 38

Patent Application Publication

L2 821A8(] Induy)

\ogp
J/A@

I
i
i
|
somaq Ao | !
"
!

%Ws

907
JousB)y|

uonoy
9B\ J0 Od | Jajjoquo)

.t 0re
_ _ , O8PIA aoInag Bunsoy
! fouajet-mo
xog doj-jeg . >
: ¢ 994 uonduosqng
I
[AAA '
ALGH Jo Jouop ; ¢ Ayefoy| sioor| |iuaog
\ |
21114 ! —
_ uI[) S0YO BWIOH | 0ze
112 Sesiwaid 198 ' siadojanaq
..........................] uonedlddy
10 aules)

US 2009/0225220 A1

Sep. 10,2009 Sheet 3 of 38

Patent Application Publication

\
-~
]
444

ALQH J0 Jojuopy

11Z sasiwaid Jasq

201A9Q IO
oo

7
rd

9B 10 Dd

xoq do}-jeg

| 19jj0u0)

uonoy 90¢

A

\
S0

Jusl|) 82O swoy

03pIA
fousje-mo

¢ 834 uonduosgng

e

01z

30IM88 Bunsoy

Bunsoy

sj00]

jusjuo)

0ZZ
siadojaneq
uoneayddy
10 3uwies)

US 2009/0225220 A1

Sep. 10,2009 Sheet 4 of 38

Patent Application Publication

(1) swiy

g ‘b4

e

- -
-

-y
- -

€0t

ajey ejeq

palinbay

-

——————
-

-

211%

ajey eleq
XeWw a|qejieay

v

ajey ejeq
Xep pejey

ajey eleqg

US 2009/0225220 A1

Sep. 10,2009 Sheet 5 of 38

Patent Application Publication

' " .
!
_ TS _ _ 5o
! Glyiuaid ' i
" 99UJ0) 10 BWOH m m shewy qivy
- —
_ UoIssaIdw008q |et—i " OV v
I H } -
) 03pIA Aouaie|-moT " 0lr . :o_wwwMEo.o O3PIA | | .
" — ' Jowayy " je-Mmo7 X114
“ ey ! " —— . W
1 01607 1! ~o ! 5 90V
! leubig N T~ _ Skeubis joquog 9
" _ozmoo ! uogoauuog ! G0y =~ ——
. | SO \ sjeubis joquo T coy
. ! 10 3WOH ! . J Slanag
! 90y | ! _
I m_mcm_m ! i am | m—
| [|
| ! ! Inag Bupsoy
" “ “
' ¥4 2 _ .
" Somaq indu | ! 1Z 2a1nag Bunsoy
i 227 ALQH 10 Jojuop e Rt 3
- .
' TiZsesmwaigiesn

4% Ol

\Zb 90BJI3]U| SUIIOMOY @
aoineg 1ndu (9v “69) Jejnje) @

US 2009/0225220 A1

19N30SURY| JB3Q14 @
pos— aMn e I JoAIgOSuRI| XENIM @
SullieMod @ | Wopow 15Q/3iqe) e
M e ! |
22h ALGH ousize | (7 "
w iy | Tor 60%
m J0 Jojuopw sl m— . “ .—oww " Bupnoy
5to ‘1OMO — Wy !
< LoNenoy ated T | Lo 19O T PR I
2 fiemany | ‘300 Jawaiu] 'l wop 7%
= NVM NYM [(A1) 4
n t jeuan ‘.ﬂ. Jossal WO | JoAIBg
2 " 1| - 99piA
K 11Z sesiwaid sespy 1 "
S _ ! 01Z 2wses Bunsoy
=3
A —
5
s sieubig SGh >
g |ojuoy) SWy~
2 e _ . o] Bunnoy seyuan Janeg
S - ~—> — —re— p—
£ — s 194 1214 e |
- 8sh Swj~ SwezZ-0L~ swigg-~ 75h _ %
2 Swg-|~ Gugnoy dSl Jesn lswajy SWg-|~ | SWgy-~
E uoissaidwiossy sesiwaLg Jesp uossasdwon uopenduwon
2 O3PIA | 03pIA ‘aurely
=3
«
g
=
[~W

US 2009/0225220 A1

Sep. 10,2009 Sheet 7 of 38

Patent Application Publication

69Y
$321A8(Indu) yloojanig

$3sSe|9 pasennys r QU/ @

-
P

8%

ALQH/QS Jo Joyuop

(poojenig
9%

| (uonosuuo Jaweyuy)
J8uiBy3
\ J3AQ samoy

€9
(ALQH Vs
j1ojuop of) 5o
Indino _S_ME\ TETTY)
\Wwﬂ INQH 01 j8way3
saniqeden
Aedsig

US 2009/0225220 A1

Sep. 10,2009 Sheet 8 of 38

Patent Application Publication

6%
$801A3Q Indu) gSn 10 Yooyenig

8Ly
ALQH/QS 0 Jojuop

W

Py Ol

Ljoojanig

\\

3T
ALQGH
j1oyuop 0}
0lpNY/0apIA
——

—_—
1744
saniiqede)
Aeidsig

SIy
Jualy

0BU3)U| eIBUSE)

Vi

e - ————————

ugy

iy
uofYauL0Y)

oW
Y ———p

US 2009/0225220 A1

Sep. 10,2009 Sheet 9 of 38

Patent Application Publication

06¥ INQH @rmeme

¥9¥ septiqeden

68y . »s.a v
ndino SILOA 09 414
ojpny sossasduiodsq tpoojenig
opny
L 2
18y 98y
Inding (voz'H 8e)
£8y

oy b1y

Aeydsiq

==$ ndd a0

$

iy

66y
1emog
18y
BPOW| |y, L6P
lowoy3 Bweyy

US 2009/0225220 A1

Sep. 10, 2009 Sheet 10 of 38

Patent Application Publication

v b1y

96¥ 8Sn

(1}

114
asn

Jyooien|g

H

66¢

“

M

t

86y

JBMO Guuvam 19M0d Q

S6v ossels Bojeuy St ,_w.s sewwwa.a
no _ummn_n__uumu
PP YNITSOL @mmmed 0PV oipny
€61 08pIA Y
SHSOCLIO?) s 98P
Z67 0OPIN-S gy hsouo (492 H B'0)
LEY 1MIAQ G oepiA sossaiduicoeq
0BY INOH @ 0PA
#9% senigede)
Aeidsiq

24
asspey)
jeweygy

ey L6V
1ewetn3

M 08P sng ~ >

214 8%
NdD j05u0n HIAM

gly

ysel4

(e soud)
S b1y

US 2009/0225220 A1

owel/seiigy o6 63

® ~— — —~~
z £L5 Zis LIS
S . awely swei4 swery
m pessaidwon passasdwio) passaidwon
o [7 3
S
(g\]
s
: C
&
0Zs
= 21601
(=] .
E £0S 205 10S voissaiduiod
-~ ewel4 awely swely
£ passasdwooun passaidwooun passaidwooun
=
S
: — ——— v
B Swes/g 006 63
<
g
=
[~ ™

US 2009/0225220 A1

Sep. 10, 2009 Sheet 12 of 38

Patent Application Publication

(e soud)
e9 ‘b4
129 049
(a3 091~) (a4 91~) o (@0 ‘o
DI %L sweing | e (9 91-~) X 91~) (G 091~)
OEN._& d QEE& d QEN._H- |
b
h [
195 09s €0S
) 20S
oﬁm._“_ aweiq | ... awei4 awel4 w.ﬂ%m
passaiduiooun | | pessaidwooun passaidwosupn passasdwooun passaidwooun
N—
4 K

aweLd/gy 006 63

029
21607
uoissaidwo)

US 2009/0225220 A1

Sep. 10, 2009 Sheet 13 of 38

Patent Application Publication

q9 614

vZ9
| 9y meg
weang ospip

129

ejey ejeq
Xepy s|qejieny

€29 ssweu4 | 1o}
paJinbay ajey eteq

ajey ejeq
XeN pajey

aey eeq

US 2009/0225220 A1

Sep. 10, 2009 Sheet 14 of 38

Patent Application Publication

() awiy

a9 ‘B4

ve9

| _— 9eyeEeg

weans oapip

129

/

9€9
yeed
awelq ¢

N\

!

z29
Y €1eq mMe
xe
Wolereny o0
sweiq 4

/

£€9 seweiy | 10j
painbay ejey ejeq

8jey vjeq
Xe pajey

9y ejeq

US 2009/0225220 A1

Sep. 10,2009 Sheet 15 of 38

Patent Application Publication

e/ bi4
oLL €12 2iL L
sweld y aweiq y swelq Y sweid Y
mr&vwlnwlw—& m—er&mwQN—& mwn_vwn_nelwr& mplv—&mr&NFn_
:n-ow& a& w& _.wn_e_,n_ a& w& erowl w& o& :lor& an_ w&
u& o& m& vn— hn_ m& m& vn_ ‘\.n_ w& m& vﬂ h& en— ml v&
n_ N& p& cn_ nn_ N_ —n_ o& n& Nﬁ_ J c& n& N& —& o_

Qﬂ -
st|viieL]zt stivtje|a] (stinlelal (s]nfafz] “eeed
o6 |8 bjorie (e (forje|s]| |ujole|g| Aousermo
tlols|v]| Ljojs|v| |elols|y IRERERE /
elz|i]o elz|rlof| felz]i]o elzlido /

092 gL z0L boL /// ww%m_w._.
awel4 awes4 awel4 awei4
passaidwosun passaidwoosun passasdwooun passasdwooun

US 2009/0225220 A1

Sep. 10, 2009 Sheet 16 of 38

Patent Application Publication

q/ b1y
08. €€ ZeL
swei4 y swelq y swel4 y oswmw by
ya 9 S
d|%|°d |*d ‘d [°d |°d | "d ‘d 1% |5d | "4 ‘d 1% |%d |’
NI
d|{%d|'d]|% fd|%d| " |% ®d % |'d | %]
A
/[pov
uoissaidwon
03pIA
tlofsiv| Llols [y Ltlols]y Lloals]y Kouare-mon
el{z|itlo elzlti]o B A I mmp,oV
0L £2L
L S9Jl
mmo:mmi awel awe. mﬁﬂwu / mmm..&._.
passaidwooun passaidwosun pessaidwosun passasdwooun

8 b1y

US 2009/0225220 A1

Zi8

sweiq y bi8

swesq Y

508 | 08

Sep. 10,2009 Sheet 17 of 38

208 vov
........... awesy 08 uoissaidwod)

........... swely 08piA
passaidwosun passasdwooun Aouaye-mon

Sweid/gy 006 “6°3

Patent Application Publication

US 2009/0225220 A1

Sep. 10, 2009 Sheet 18 of 38

Patent Application Publication

eg b1y

Zr8 ey

megyeed Xz T mmm=e- N i e e a —.

po

US 2009/0225220 A1

q6 614

Sep. 10, 2009 Sheet 19 of 38

Patent Application Publication

168 966 $66 £66 66 b
86
swi yuiy . (1e9d xy) own yux ewn X (Yeod xz) cwpuwy owp Wy o Hur
“ < -~ « — -
186 986 €86 £86 286
186
0} swes4 gaweld | gowesg gceweld | zowery | | ewesy
pessaid) pessaid | pessasd pessaid | posseud | possesd
-wo) won “Wwo) -woy oy -won
6.6 846 146 vi6
posouy pauouB} paioufy pasoub)
1414
‘ uoissaidwo)
0.8 698 896 198 o
996 6§98 96 €96 4 -
0l swesy | gowely | goweid | sowesd | goweld | Gowely | poumiy | gowery | z e.ww.u_ ! M_NME >u:£m‘_ .

passasd | posseyd | posseud | pessesd | passeud possaid | pessaid | pessaid
passeud assond
-wooun { -wooury | -wooun | -wooun | -woouny | -wooun | -wooun “uooun | -wooun mzooc:

-—
Puod9s ;09/1

US 2009/0225220 A1

Sep. 10, 2009 Sheet 20 of 38

Patent Application Publication

I¥8 ey
eleQ yeed

Zv6 o1y
B1eQ Yeod XZ

£v6 oy
ejeq Jesd x§

96 ey
eleq yeed Xy

a6 B14

.

£56
eod xz
peuspeld
556
ead xp
peuene;.y

e . — . Tl e . T e Wl o Sl i S ot T P e e i T s Y A T —— T W — s — . . Ll — - o ——— —

b

vte

p— N,

weang oepiA

LA]

Xe siqelieAy

US 2009/0225220 A1

Sep. 10, 2009 Sheet 21 of 38

Patent Application Publication

(senL g 1o sep) | “69)

US 2009/0225220 A1

Sep. 10, 2009 Sheet 22 of 38

Patent Application Publication

qo} ‘b4

YoV
uoisseldwor) 0apIA

fouaye-mo

k

0101
2160 Bupjoed a1

US 2009/0225220 A1

Sep. 10, 2009 Sheet 23 of 38

Patent Application Publication

oy} ‘Bi4
7 Z |
...... \\ ZLLL oipnY \ OLLE OIpPNY
/na: bLLL
03d 034
qiL ‘b4 ZoL
| geueid
- N
...... . ‘7
& €OLL OIL | X \& 0044 ®iLL |
voLL | /
8p0Y) UORIDLIOD) (533) mmvm%nw s : 1011
Jo1A oiE uonsLI0Y
d piemio 8yl | ou3 premiod eji| d A&wmw_mh_mwcwu“wﬂﬁo
er} by
sawelq-
kf‘u_ d
2 - ™
...... \\\‘ PO RN o @ 00LL 8iLL |
¥0L1 :v 47
apon UoRIBUOD (D34) spon) uonosuon

Jowu3 premiod a1 |

Joug piemiod ey |

US 2009/0225220 A1

Sep. 10, 2009 Sheet 24 of 38

Patent Application Publication

pLL B4

ZZi 1 sieubis jonuo) § 0zZL1 sieubis joquo)

/—.NZ.

J3d

US 2009/0225220 A1

Sep. 10, 2009 Sheet 25 of 38

Patent Application Publication

ZL ‘B4

‘a4 {%d|°d|"d

90zZ1
sweld

pesseidwod)

() sy

-] Pl i
20D

Lot llog 0oy My ey sy o
anD

<o ea sa =g s ey oz

b=

100

ettt el el e 1oy soz
a0

< St S-S S S e rout
8400

< -2t e L eg o ey ey ot
0i0D

P NP NP | IS TSP IS | AP L T PR zozL
_ 8100

A, aﬂu. on“ ON-- Oﬂ D-l.-- aﬂ-- an.-- adr (11742
Qo)

00z} _
$Nd0 8:00-penD (BN

L}j9]|S|¢
€l2Zitl]o
S0Z)
awel4
passesdwonun

Patent Application Publication Sep. 10, 2009 Sheet 26 of 38 US 2009/0225220 A1

Hosting
Service
1300

FIG. 13a

Patent Application Publication Sep. 10, 2009 Sheet 27 of 38 US 2009/0225220 A1

HS 5

HS 6

-Ev—
H{ 28
X =z
L
(o)
™
o
Li
[op]
(/0]
X

HS 1

HS 2

US 2009/0225220 A1

Sep. 10, 2009 Sheet 28 of 38

Patent Application Publication

1244
#ana(induy

B

¢y MLOH
10 JOYUO}

pL Ol

8aeya)u) suIUAMOd @
(ov “6'8) enye) @

uoissaidwodaq Saswald Jasn

03pIA

JonjosuRI] 19G14 @
MmN e ! JBAIBISURI) XBNIM @
supeMode 1 wepop ISQ/IGED @
HM o ! . !
owogze |~ _
Siy ¥ Wy IJ.I..Y_ 607
wain - " ._oww ' Bunnoy
ey 'Jamo — fws I
h wniRoy feled O g TR T sommmul| !
femang | | NYM ‘2010 lewa) NYM “ @ %
' [eaua) (] {05SAICWO)) [jariag
“ 1] O8pIA
TIZ sestueq sos _ o _ “
20IA18Q ¥
ssedig falioqu| | 0LZ 20mag Bunsoy
f
S ~
—]
Gy
SWy ~
- Bugnoy ssyuan senieg
— 257 Sy ey _
a5y suw)~ SWGZ-0)~ Swzz- - & | =
Swg-4~ Bunnoy dstJesn jowisu} SWg-|~ SWg|- |~

uoissaidwio) uopendwon

O3PIA

awes4

US 2009/0225220 A1

Sep. 10, 2009 Sheet 29 of 38

Patent Application Publication

St Bi4
© 0sSL smol dnoug Joppue segng Aeleq T
: 10} OIPNY/09,
| } OIPNY/OaPIA 1St
i o layng Aeje
: ¢ leneg | a
m 3 g eweo/ddy |*
m 350 2| o2
; 83| 5| 32
m 3|83 3|8z . S SISk ey Qv
" sg| 2| &% . < |
m 2103 Q| Eg . o [bost
: 5 S E 8 E £ oiyjel) Jewsely]
i oos) e O mm— 3 £3 E| punoquj
1ouea jeusejul o g | 7> 21 x
' punoqino m SLINETS 2
“ T
m o 3 = * TISL ABlY Qivy
H] ®
s 1254 *
" jeneg |
4 ™! swegyddy [* | =P
e L1S1 Avury Qivy
olzoopeg Bunsoyy T TTTTTITIITRT e essse oo SRt LTS R
10 Wwewipoqus3 Jejue) Jaaleg

US 2009/0225220 A1

Sep. 10, 2009 Sheet 30 of 38

Patent Application Publication

5/ v 2
. SHYIM3IIA 089 ‘gINVD 0B NI SHAAY M SPL < SIVIS
» BHIHSRHAT N T e A TANVD < 2UIHSITBNG

X

HIAGIVY GINOL U3NIOT LS INO0Y 'YW AGaNE YNOA N3V FNHA0ud AW

ALINNANOD wm_Om._.%d Sdil SMIN /zmoz_u{

INIING AN SIAON mz:&m dOLYSAA ININO ez{qo mzsrﬂD
A \

/
091 008t co9l

US 2009/0225220 A1

Sep. 10, 2009 Sheet 31 of 38

Patent Application Publication

-
7

~
[
\\\

CMIACNOr BIBMEIA Od folhcionsngtied R

yIHSNENd

INVD HNOA GINIOF 15N 3NDOY 'UN AGANE BINOA UNTTY FN40ud AN

ALINNWINOD SIDALVULS ® SdIL SM3N HIAONIS X(O

ANIINCG AW

STAOW ININO dODISIC INIINO DNINVD WZJX Fa

\
00.1

Patent Application Publication Sep. 10, 2009 Sheet 32 of 38 US 2009/0225220 A1

B |
et

> MY PROFILE > BUDDIES

FIG. 18

1801
/
RANNG > 573 AUDIENCE > 2,503 IEEERIUEET JHOT
|1} -

///////;/II/’ 1,7 Tj:

i //-]
// // //—'-
.....__—HJ/ //-—-_\

1800
\

US 2009/0225220 A1

Sep. 10, 2009 Sheet 33 of 38

Patent Application Publication

N—
==
/

_ — .
Uf. _FAAQ%NQ_H/H..J) .uﬁ//

Tt saippng
66 :Bupuey

: vz ;pedeid swen
= 80/10 ‘soulg Jequiopy
IAVAHILSYW Uokeld

~a_

T S

i
“\\“\Uu

TILL
=
T

1OH [IREEISTIEIN €052 < IONIIANY €16 < ONDINVY

s3i1aang €

IUIOUD AN €

M CINVO < 2HIHSIIBND < SIWVD

/
1081

US 2009/0225220 A1

Sep. 10, 2009 Sheet 34 of 38

Patent Application Publication

0¢ Ol

Noow

1002 0002
\ /

*ﬂ/

D)0 J0 Ou) P emen) o 2104 ydeap Aepoy
Bured |3 STOUTU) K1) JBQ G PESIN0) NOK
WY iliL oL uer Bunspopiny

) TRI00N 118 oS B

Jenok 108 nok pue) uo saumeB thog g

Mg 0¥ 01 Uer gouosuIged e
<SINIBHOD

X

~ .
_:<omw><.€ .~r<~<:j.xb

4

\ Weezih Ojuer sanyerdoow
Kupo; uetwennoy Bupas xxgouy

, Md0¥Z 0FUSP o ap esdnod

‘o Ament) juxd0y 1 ABp0) RIGUEUINOL

woys Luer yody

< mumv(mm N <SNILITING

<HDLVYM <1033 I <HDLIVAA A._.owqwm <HOIVM uwamw «<10313% <HOLVM <1313
Pt
-~ ~7
s o <7 4
" 3
e Y 2 £\
Youi " Aaany 4
SO0 QUoU AQ e 108 " NOA DIREY 590G TSR f
$AnG pug wwos ows Duned nok aioum S) S ‘moms "eyey D 5 ABE SHQ JO PUS B Ty
E!&:Sﬁﬂa_ 184 WY ¥4 LODOVY ED rﬂ&!&ﬂ»gg
\.Q ~ 8 SINIWOW N3L 04 { INVO I
! \tl \“;
i NS C E— ZHIHSIIENC < SINVD
\\ 0 - = \ z " INVO LNTHUNO
3 £ = \: - YNVLNOW ‘NYWSZOG * NOILYIO
N 12 <30V
CUINSE A/@u:m_.x 'SANVYN VL 'SSV HON
b INYD ZINVD

|
\ N N\ [/ Sdio ovua N son

<QUVYZYHTIM

\ 1N0907 TWQR0 1 dQ8 | >§€.wm§&ﬁ>§ 1 S2URIOAVS | W3LSAS ACONS | SIOVESIA | T1408d | INOH

u..g Pﬁza@o \ SAOAUVHIS 9 SdlL

SM3aN /zwcz_h_ ANVD

ng K\m_>o_z INIINO dOLISIA 3ININO Oz_v«A/mz:zo Ay

4
€00

N
S002

US 2009/0225220 A1

Sep. 10, 2009 Sheet 35 of 38

Patent Application Publication

< oy
< ybiey < Bjeway

< JB1BAY UR 10816Q

|

J0L0JU] JBLRRGT BUOIS < JOUBIXT JBAJIS JOIMa < | purig JeD) AW

"JBD JOYIOUR piyg C

*suoRdo JnoA esooy)
"BALD 1G] [eTIA B YL | puRLg SR "L

FNH0Ud AN ALINOWWNGOD SUDALVULS ¥ Sdlk SMIaN Y3ONI3 INVO

ANIINO AN SIIAOW INIINO

dODISIAINIINO ONIIYD INIINO /)

Patent Application Publication Sep. 10, 2009 Sheet 36 of 38 US 2009/0225220 A1

Fig. 22

Patent Application Publication Sep. 10, 2009 Sheet 37 of 38 US 2009/0225220 A1

Geall TNz
U IRV e N 1 =2
== =2~ X9 3|3
y L / =y - 22 IS
’f‘@ 1“"} g:’ l@&:g“#fﬁzl ou Lg'
=0 [L ez o] BRI [
sl || P | RS T =
UK\ Nl Gl ST
A ST N 2K -
p |M}:_Q.z‘) q—q;:,.n ;-//"ﬂa:z | =
E ‘13(« — l ')V"\p‘f‘\\L— 5,0) \4\ Fété
@ == Re [N 7170 [
NS = 1
(5| IAZIE G
qE: P E] IR \ £ K w
g 'II.‘:§3l|” {\L’]ﬁ\ \‘¢ \r\" +}/ I ,g &)
g IS bl _}i \|| / z
= ,)
g - S S zg ’f = i(] © ——
g F< 11 - n-,c»faé,':i 33 '|" | T
§§'///°‘ * =2 AN L
ol a ‘
RS R
5|3 ?& | 5% | ”‘ﬂ ’u.!ﬁgi l«%
1k |
w]
gl =z
=3
1.
= .ét 0 -
IR HEHL
A R I L
@] 3 _ﬂAAAAAAAAAAAAAAAA

US 2009/0225220 A1

Sep. 10, 2009 Sheet 38 of 38

Patent Application Publication

¥z By -

(sdaqny) poads uonoauuo)

0L 09 05 o € 4

i a A " L

(sekginG' | ‘Aousle) swpoLDSa #G)
awl] peo abed

abed aaj| |1} Spuo29g

puooss |>

US 2009/0225220 Al

SYSTEM AND METHOD FOR COMPRESSING
VIDEO BY ADJUSTING TILE SIZE BASED ON
DETECTED INTRAFRAME MOTION OR
SCENE COMPLEXITY

RELATED APPLICATION

[0001] This application is a continuation of application Ser.
No. 11/999,462 filed on Dec. 5, 2007 entitled “System For
Collaborative Conferencing Using Streaming Interactive
Video” which is a continuation-in-part (CIP) application of
Ser. No. 10/315,460 filed Dec. 10, 2002 entitled, “APPARATUS
AND METHOD FOR WIRELESS VIDEO GAMING”, which is
assigned to the assignee of the present CIP application.

TECHNICAL FIELD

[0002] The present disclosure relates generally to the field
of data processing systems that improve a users’ ability to
manipulate and access audio and video media.

BACKGROUND

[0003] Recorded audio and motion picture media has been
an aspect of society since the days of Thomas Edison. At the
start of the 207 century there was wide distribution of
recorded audio media (cylinders and records) and motion
picture media (nickelodeons and movies), but both technolo-
gies were still in their infancy. In the late 1920s motion
pictures were combined with audio on a mass-market basis,
followed by color motion pictures with audio. Radio broad-
casting gradually evolved into a largely advertising-sup-
ported form of broadcast mass-market audio media. When a
television (TV) broadcast standard was established in the
mid-1940s, television joined radio as a form of broadcast
mass-market media bringing previously recorded or live
motion pictures into the home.

[0004] By the middle ofthe 20th century, a large percentage
of US homes had phonograph record players for playing
recorded audio media, a radio to receive live broadcast audio,
and a television set to play live broadcast audio/video (A/V)
media. Very often these 3 “media players” (record player,
radio and TV) were combined into one cabinet sharing com-
mon speakers that became the “media center” for the home.
Although the media choices were limited to the consumer, the
media “ecosystem” was quite stable. Most consumers knew
how to use the “media players” and were able to enjoy the full
extent of their capabilities. At the same time, the publishers of
the media (largely the motion picture and televisions studios,
and the music companies) were able to distribute their media
both to theaters and to the home without suffering from wide-
spread piracy or “second sales”, i.e., the resale of used media.
Typically publishers do not derive revenue from second sales,
and as such, it reduces revenue that publishers might other-
wise derive from the buyer of used media for new sales.
Although there certainly were used records sold during the
middle of the 20 century, such sales did not have a large
impact on record publishers because, unlike a motion picture
or video program—which is typically watched once or only a
few times by an adult—a music track may be listened to
hundreds or even thousands of times. So, music media is far
less “perishable” (i.e., it has lasting value to an adult con-
sumer) than motion picture/video media. Once a record was
purchased, ifthe consumer liked the music, the consumer was
likely to keep it a long time.

Sep. 10, 2009

[0005] From the middle of the 20? century through the
present day, the media ecosystem has undergone a series of
radical changes, both to the benefit and the detriment of
consumers and publishers. With the widespread introduction
of'audio recorders, especially cassette tapes with high-quality
stereo sound, there certainly was a higher degree of consumer
convenience. But it also marked the beginning of what is now
a widespread practice with consumer media: piracy. Cer-
tainly, many consumers used the cassette tapes for taping
their own records purely for convenience, but increasingly
consumers (e.g., students in a dormitory with ready access to
each others’ record collections) would make pirated copies.
Also, consumers would tape music played over the radio
rather than buying a record or tape from the publisher.

[0006] The advent of the consumer VCR led to even more
consumer convenience, since now a VCR could be set to
record a TV show which could be watched at a later time, and
it also led to the creation of the video rental business, where
movies as well as TV programming could be accessed on an
“on demand” basis. The rapid development of mass-market
home media devices since the mid-1980s has led to an
unprecedented level of choice and convenience for the con-
sumer, and also has led to a rapid expansion of the media
publishing market.

[0007] Today, consumers are faced with a plethora of media
choices as well as a plethora of media devices, many of which
are tied to particular forms of media or particular publishers.
An avid consumer of media may have a stack of devices
connected to TVs and computers in various rooms of the
house, resulting in a “rat’s nest” of cables to one or more TV
sets and/or personal computers (PCs) as well as a group of
remote controls. (In the context of the present application, the
term “personal computer” or “PC” refers to any sort of com-
puter suitable forus in the home or office, including a desktop,
a Macintosh® or other non-Windows computers, Windows-
compatible devices, UNIX variations, laptops, etc.) These
devices may include a video game console, VCR, DVD
player, audio surround-sound processor/amplifier, satellite
set-top box, cable TV set-top box, etc. And, for an avid
consumer, there may be multiple similar-function devices
because of compatibility issues. For example, a consumer
may own both a HD-DVD and a Blu-ray DVD player, or both
a Microsoft Xbox® and a Sony Playstation® video game
system. Indeed, because of incompatibility of some games
across versions of game consoles, the consumer may own
both an XBox and a later version, such as an Xbox 360®.
Frequently, consumers are befuddled as to which video input
and which remote to use. Even after a disc is placed into the
correct player (e.g., DVD, HD-DVD, Blu-ray, Xbox or Play-
station), the video and audio input is selected for that the
device, and the correct remote control is found, the consumer
is still faced with technical challenges. For example, in the
case of a wide-screen DVD, the user may need to first deter-
mine and then set the correct aspect ratio on his TV or monitor
screen (e.g., 4:3, Full, Zoom, Wide Zoom, Cinema Wide,
etc.). Similarly, the user may need to first determine and then
set the correct audio surround sound system format (e.g.,
AC-3, Dolby Digital, DTS, etc.). Often times, the consumer is
unaware that they may not be enjoying the media content to
the full capability of their television or audio system (e.g.,
watching a movie squashed at the wrong aspect ratio, or
listening to audio in stereo rather than in surround sound).

[0008] Increasingly, Internet-based media devices have
been added to the stack of devices. Audio devices like the

US 2009/0225220 Al

Sonos® Digital Music system stream audio directly from the
Internet. Likewise, devices like the Slingbox™ entertainment
player record video and stream it through a home network or
out through the Internet where it can be watched remotely on
a PC. And Internet Protocol Television (IPTV) services offer
cable TV-like services through Digital Subscriber Line (DSL)
or other home Internet connections. There have also been
recent efforts to integrate multiple media functions into a
single device, such as the Moxi® Media Center and PCs
running Windows XP Media Center Edition. While each of
these devices offers an element of convenience for the func-
tions that it performs, each lacks ubiquitous and simple access
to most media. Further, such devices frequently cost hundreds
of dollars to manufacture, often because of the need for
expensive processing and/or local storage. Additionally, these
modern consumer electronic devices typically consume a
great deal of power, even while idle, which means they are
expensive over time and wasteful of energy resources. For
example, a device may continue to operate if the consumer
neglects to turn it off or switches to a different video input.
And, because none of the devices is a complete solution, it
must be integrated with the other stack of devices in the home,
which still leaves the user with a rat’s nest of wires and a sea
of remote controls.

[0009] Furthermore, when many newer Internet-based
devices do work properly, they typically offer mediain amore
generic form than it might otherwise be available. For
example, devices that stream video through the Internet often
stream just the video material, not the interactive “extras” that
often accompany DVDs, like the “making of” videos, games,
or director’s commentary. This is due to the fact that fre-
quently the interactive material is produced in a particular
format intended for a particular device that handles interac-
tivity locally. For example, each of DVD, HD-DVDs and
Blu-ray discs have their own particular interactive format.
Any home media device or local computer that might be
developed to support all of the popular formats would require
alevel of sophistication and flexibility that would likely make
it prohibitively expensive and complex for the consumer to
operate.

[0010] Adding to the problem, if a new format were intro-
duced later in the future the local device may not have the
hardware capability to support the new format, which would
mean that the consumer would have to purchase an upgraded
local media device. For example, ifhigher-resolution video or
stereoscopic video (e.g., one video stream for each eye) were
introduced at a later date, the local device may not have the
computational capability to decode the video, or it may not
have the hardware to output the video in the new format (e.g.,
assuming stereoscopy is achieved through 120 fps video syn-
chronized with shuttered glasses, with 60 fps delivered to
each eye, if the consumer’s video hardware can only support
60 fps video, this option would be unavailable absent an
upgraded hardware purchase).

[0011] The issue of media device obsolescence and com-
plexity is a serious problem when it comes to sophisticated
interactive media, especially video games.

[0012] Modern video game applications are largely divided
into four major non-portable hardware platforms: Sony Play-
Station® 1, 2 and 3 (PS1, PS2, and PS3); Microsoft Xbox®
and Xbox 360®; and Nintendo Gamecube® and Wii™; and
PC-based games. Each of these platforms is different than the
others so that games written to run on one platform usually do
not run on another platform. There may also be compatibility

Sep. 10, 2009

problems from one generation of device to the next. Even
though the majority of software game developers create soft-
ware games that are designed independent of a particular
platform, in order to run a particular game on a specific
platform a proprietary layer of software (frequently called a
“game development engine”) is needed to adapt the game for
use on a specific platform. Each platform is sold to the con-
sumer as a “console” (i.e., a standalone box attached to a TV
or monitor/speakers) or it is a PC itself. Typically, the video
games are sold on optical media such as a Blu-ray DVD,
DVD-ROM or CD-ROM, which contains the video game
embodied as a sophisticated real-time software application.
As home broadband speeds have increased, video games are
becoming increasingly available for download.

[0013] The specificity requirements to achieve platform-
compatibility with video game software is extremely exacting
due to the real-time nature and high computational require-
ments of advanced video games. For example, one might
expect full game compatibility from one generation to the
next of video games (e.g., from XBox to XBox 360, or from
Playstation 2 (“PS2”) to Playstation 3 (“PS3”), just as there is
general compatibility of productivity applications (e.g.,
Microsoft Word) from one PC to another with a faster pro-
cessing unit or core. However, this is not the case with video
games. Because the video game manufacturers typically are
seeking the highest possible performance for a given price
point when a video game generation is released, dramatic
architectural changes to the system are frequently made such
that many games written for the prior generation system do
not work on the later generation system. For example, XBox
was based upon the x86-family of processors, whereas XBox
360 was based upon a PowerPC-family.

[0014] Techniques can be utilized to emulate a prior archi-
tecture, but given that video games are real-time applications,
it is often unfeasible to achieve the exact same behavior in an
emulation. This is a detriment to the consumer, the video
game console manufacturer and the video game software
publisher. For the consumer, it means the necessity of keeping
both an old and new generation of video game consoles
hooked up to the TV to be able to play all games. For the
console manufacturer it means cost associated with emula-
tion and slower adoption of new consoles. And for the pub-
lisher it means that multiple versions of new games may have
to be released in order to reach all potential consumers—not
only releasing a version for each brand of video game (e.g.,
XBox, Playstation), but often a version for each version of a
given brand (e.g., PS2 and PS3). For example, a separate
version of Electronic Arts’ “Madden NFL 08” was developed
for XBox, XBox 360, PS2, PS3, Gamecube, Wii, and PC,
among other platforms.

[0015] Portable devices, such as cellular (“cell”) phones
and portable media players also present challenges to game
developers. Increasingly such devices are connected to wire-
less data networks and are able to download video games.
But, there are a wide variety of cell phones and media devices
in the market, with a wide range of different display resolu-
tions and computing capabilities. Also, because such devices
typically have power consumption, cost and weight con-
straints, they typically lack advanced graphics acceleration
hardware like a Graphics Processing Unit (“GPU”), such as
devices made by NVIDIA of Santa Clara, Calif. Conse-
quently, game software developers typically develop a given
game title simultaneously for many different types of portable

US 2009/0225220 Al

devices. A user may find that a given gametitle is not available
for his particular cell phone or portable media player.

[0016] In the case of home game consoles, hardware plat-
form manufacturers typically charge a royalty to the software
game developers for the ability to publish a game on their
platform. Cell phone wireless carriers also typically charge a
royalty to the game publisher to download a game into the cell
phone. In the case of PC games, there is no royalty paid to
publish games, but game developers typically face high costs
due to the higher customer service burden to support the wide
range of PC configurations and installation issues that may
arise. Also, PCs typically present less barriers to the piracy of
game software since they are readily reprogrammable by a
technically-knowledgeable user and games can be more eas-
ily pirated and more easily distributed (e.g., through the Inter-
net). Thus, for a software game developer, there are costs and
disadvantages in publishing on game consoles, cell phones
and PCs.

[0017] For game publishers of console and PC software,
costs do not end there. To distribute games through retail
channels, publishers charge a wholesale price below the sell-
ing price for the retailer to have a profit margin. The publisher
also typically has to pay the cost of manufacturing and dis-
tributing the physical media holding the game. The publisher
is also frequently charged a “price protection fee” by the
retailer to cover possible contingencies such as where the
game does not sell, or if the game’s price is reduced, or if the
retailer must refund part or all of the wholesale price and/or
take the game back from a buyer. Additionally, retailers also
typically charge fees to publishers to help market the games in
advertising flyers. Furthermore, retailers are increasingly
buying back games from users who have finished playing
them, and then sell them as used games, typically sharing
none of the used game revenue with the game publisher.
Adding to the cost burden placed upon game publishers is the
fact that games are often pirated and distributed through the
Internet for users to download and make free copies.

[0018] As Internet broadband speeds have been increasing
and broadband connectivity has become more widespread in
the US and worldwide, particularly to the home and to Inter-
net “cafes” where Internet-connected PCs are rented, games
are increasingly being distributed via downloads to PCs or
consoles. Also, broadband connections are increasingly used
for playing multiplayer and massively multiplayer online
games (both of which are referred to in the present disclosure
by the acronym “MMOG”). These changes mitigate some of
the costs and issues associated with retail distribution. Down-
loading online games addresses some of the disadvantages to
game publishers in that distribution costs typically are less
and there are little or no costs from unsold media. But down-
loaded games are still subject to piracy, and because of their
size (often many gigabytes in size) they can take a very long
time to download. In addition, multiple games can fill up
small disk drives, such as those sold with portable computers
or with video game consoles. However, to the extent games or
MMOGs require an online connection for the game to be
playable, the piracy problem is mitigated since the user is
usually required to have a valid user account. Unlike linear
media (e.g., video and music) which can be copied by a
camera shooting video of the display screen or a microphone
recording audio from the speakers, each video game experi-
ence is unique, and can not be copied using simple video/
audio recording. Thus, even in regions where copyright laws
are not strongly enforced and piracy is rampant, MMOGs can

Sep. 10, 2009

be shielded from piracy and therefore a business can be sup-
ported. For example, Vivendi SA’s “World of Warcraft”
MMOG has been successfully deployed without suffering
from piracy throughout the world. And many online or
MMOG games, such as Linden Lab’s “Second Life” MMOG
generate revenue for the games’ operators through economic
models built into the games where assets can be bought, sold,
and even created using online tools. Thus, mechanisms in
addition to conventional game software purchases or sub-
scriptions can be used to pay for the use of online games.
[0019] While piracy can be often mitigated due to the
nature of online or MMOGs, online game operator still face
remaining challenges. Many games require substantial local
(i.e., in-home) processing resources for online or MMOGs to
work properly. If auser has a low performance local computer
(e.g., one without a GPU, such as a low-end laptop), he may
not be able to play the game. Additionally, as game consoles
age, they fall further behind the state-of-the-art and may not
be able to handle more advanced games. Even assuming the
user’s local PC is able to handle the computational require-
ments of a game, there are often installation complexities.
There may be driver incompatibilities (e.g., if a new game is
downloaded, it may install a new version of a graphics driver
that renders a previously-installed game, reliant upon an old
version of the graphics driver, inoperable). A console may run
out of local disk space as more games are downloaded. Com-
plex games typically receive downloaded patches over time
from the game developer as bugs are found and fixed, or if
modifications are made to the game (e.g., if the game devel-
oper finds that a level of the game is too hard or too easy to
play). These patches require new downloads. But sometimes
not all users complete downloading of all the patches. Other
times, the downloaded patches introduce other compatibility
or disk space consumption issues.

[0020] Also, during game play, large data downloads may
be required to provide graphics or behavioral information to
the local PC or console. For example, if the user enters a room
in a MMOG and encounters a scene or a character made up of
graphics data or with behaviors that are not available on the
user’s local machine, then that scene or character’s data must
be downloaded. This may result in a substantial delay during
game play if the Internet connection is not fast enough. And,
if the encountered scene or character requires storage space or
computational capability beyond that of the local PC or con-
sole, it can create a situation where the user can not proceed in
the game, or must continue with reduced-quality graphics.
Thus, online or MMOG games often limit their storage and/or
computational complexity requirements. Additionally, they
often limit the amount of data transfers during the game.
Online or MMOG games may also narrow the market of users
that can play the games.

[0021] Furthermore, technically-knowledgeable users are
increasingly reverse-engineering local copies of games and
modifying the games so that they can cheat. The cheats maybe
as simple as making a button press repeat faster than is
humanly possible (e.g., so as to shoot a gun very rapidly). In
games that support in-game asset transactions the cheating
can reach a level of sophistication that results in fraudulent
transactions involving assets of actual economic value. When
an online or MMOGs economic model is based on such asset
transactions, this can result in substantial detrimental conse-
quences to the game operators.

[0022] The cost of developing a new game has grown as
PCs and consoles are able to produce increasingly sophisti-

US 2009/0225220 Al

cated games (e.g., with more realistic graphics, such as real-
time ray-tracing, and more realistic behaviors, such as real-
time physics simulation). In the early days of the video game
industry, video game development was a very similar process
to application software development; that is, most of the
development cost was in the development of the software, as
opposed to the development of the graphical, audio, and
behavioral elements or “assets”, such as those that may be
developed for a motion picture with extensive special effects.
Today, many sophisticated video game development efforts
more closely resemble special effects-rich motion picture
development than software development. For instance, many
video games provide simulations of 3-D worlds, and generate
increasingly photorealistic (i.e., computer graphics that seem
as realistic as live action imagery shot photographically)
characters, props, and environments. One of the most chal-
lenging aspects of photorealistic game development is creat-
ing a computer-generated human face that is indistinguish-
able from a live action human face. Facial capture
technologies such Contour™ Reality Capture developed by
Mova of San Francisco, Calif. captures and tracks the precise
geometry of a performer’s face at high resolution while it is in
motion. This technology allows a 3D face to be rendered on a
PC or game console that is virtually indistinguishable from a
captured live action face. Capturing and rendering a “photo-
real” human face precisely is useful in several respects. First,
highly recognizable celebrities or athletes are often used in
video games (often hired at a high cost), and imperfections
may be apparent to the user, making the viewing experience
distracting or unpleasant. Frequently, a high degree of detail
is required to achieve a high degree of photorealism—requir-
ing the rendering of a large number of polygons and high-
resolution textures, potentially with the polygons and/or tex-
tures changing on a frame-by-frame basis as the face moves.

[0023] When high polygon-count scenes with detailed tex-
tures change rapidly, the PC or game console supporting the
game may not have sufficient RAM to store enough polygon
and texture data for the required number of animation frames
generated in the game segment. Further, the single optical
drive or single disk drive typically available on a PC or game
console is usually much slower than the RAM, and typically
can not keep up with the maximum data rate that the GPU can
accept in rendering polygons and textures. Current games
typically load most of the polygons and textures into RAM,
which means that a given scene is largely limited in complex-
ity and duration by the capacity of the RAM. In the case of
facial animation, for example, this may limit a PC or a game
console to either a low resolution face that is not photoreal, or
to a photoreal face that can only be animated for a limited
number of frames, before the game pauses, and loads poly-
gons and textures (and other data) for more frames.

[0024] Watching a progress bar move slowly across the
screen as a PC or console displays a message similar to
“Loading. .. ” is accepted as an inherent drawback by today’s
users of complex video games. The delay while the next scene
loads from the disk (“‘disk” herein, unless otherwise qualified,
refers to non-volatile optical or magnetic media, as well non-
disk media such as semiconductor “Flash” memory) can take
several seconds or even several minutes. This is a waste of
time and can be quite frustrating to a game player. As previ-
ously discussed, much or all of the delay may be due to the
load time for polygon, textures or other data from a disk, but
it also may be the case that part of the load time is spent while
the processor and/or GPU in the PC or console prepares data

Sep. 10, 2009

for the scene. For example, a soccer video game may allow
the players to choose among a large number of players, teams,
stadiums and weather conditions. So, depending on what
particular combination is chosen, different polygons, textures
and other data (collectively “objects”) may be required for the
scene (e.g., different teams have different colors and patterns
on their uniforms). It may be possible to enumerate many or
all of the various permutations and pre-compute many or all
of'the objects in advance and store the objects onthe diskused
to store the game. But, if the number of permutations is large,
the amount of storage required for all of the objects may be
too large to fit on the disk (or too impractical to download).
Thus, existing PC and console systems are typically con-
strained in both the complexity and play duration of given
scenes and suffer from long load times for complex scenes.

[0025] Another significant limitation with prior art video
game systems and application software systems is that they
are increasingly using large databases, e.g., of 3D objects
such as polygons and textures, that need to be loaded into the
PC or game console for processing. As discussed above, such
databases can take a long time to load when stored locally on
a disk. Load time, however, is usually far more severe if the
database is stored a remote location and is accessed through
the Internet. In such a situation it may take minutes, hours, or
even days to download a large database. Further, such data-
bases are often created a great expense (e.g., a 3D model of a
detailed tall-masted sailing ship for use in a game, movie, or
historical documentary) and are intended for sale to the local
end-user. However, the database is at risk of being pirated
once it has been downloaded to the local user. In many cases,
a user wants to download a database simply for the sake of
evaluating it to see if it suits the user’s needs (e.g., if a 3D
costume for a game character has a satisfactory appearance or
look when the user performs a particular move). A long load
time can be a deterrent for the user evaluating the 3D database
before deciding to make a purchase.

[0026] Similar issues occur in MMOGs, particularly as
games that allow users to utilize increasingly customized
characters. For a PC or game console to display a character it
needs to have access to the database of 3D geometry (poly-
gons, textures, etc.) as well as behaviors (e.g., if the character
has a shield, whether the shield is strong enough to deflect a
spear or not) for that character. Typically, when a MMOG is
first played by a user, a large number of databases for char-
acters are already available with the initial copy of the game,
which is available locally on the game’s optical disk or down-
loaded to a disk. But, as the game progresses, if the user
encounters a character or object whose database is not avail-
able locally (e.g., if another user has created a customized
character), before that character or object can be displayed, its
database must be downloaded. This can result in a substantial
delay of the game.

[0027] Given the sophistication and complexity of video
games, another challenge for video game developers and
publishers with prior art video game consoles, is that it fre-
quently takes 2 to 3 years to develop a video game at a cost of
tens of millions of dollars. Given that new video game con-
sole platforms are introduced at a rate of roughly once every
five years, game developers need to start development work
on those games years in advance of the release of the new
game console in order to have video games available concur-
rently when the new platform is released. Several consoles
from competing manufactures are sometimes released around
the same time (e.g., within a year or two of each other), but

US 2009/0225220 Al

what remains to be seen is the popularity of each console, e.g.,
which console will produce the largest video game software
sales. For example, in a recent console cycle, the Microsoft
XBox 360, the Sony Playstation 3, and the Nintendo Wii were
scheduled to be introduced around the same general time-
frame. But years before the introductions the game develop-
ers essentially had to “place their bets” on which console
platforms would be more successful than others, and devote
their development resources accordingly. Motion picture pro-
duction companies also have to apportion their limited pro-
duction resources based on what they estimate to be the likely
success of a movie well in advance of the release of the movie.
Given the growing level of investment required for video
games, game production is increasingly becoming like
motion picture production, and game production companies
routinely devote their production resources based on their
estimate of the future success of a particular video game. But,
unlike they motion picture companies, this bet is not simply
based on the success of the production itself; rather, it is
predicated on the success of the game console the game is
intended to run on. Releasing the game on multiple consoles
at once may mitigate the risk, but this additional effort
increases cost, and frequently delays the actual release of the
game.

[0028] Application software and user environments on PCs
are becoming more computationally intensive, dynamic and
interactive, not only to make them more visually appealing to
users, but also to make them more useful and intuitive. For
example, both the new Windows Vista™ operating system
and successive versions of the Macintosh® operating system
incorporate visual animation effects. Advanced graphics
tools such as Maya™ from Autodesk, Inc., provide very
sophisticated 3D rendering and animation capability which
push the limits of state-of-the-art CPUs and GPUs. However,
the computational requirements of these new tools create a
number of practical issues for users and software developers
of such products.

[0029] Since the visual display of an operating system (OS)
must work on a wide range of classes of computers—includ-
ing prior-generation computers no longer sold, but still
upgradeable with the new OS—the OS graphical require-
ments are limited to a large degree by a least common
denominator of computers that the OS is targeted for, which
typically includes computers that do not include a GPU. This
severely limits the graphics capability of the OS. Further-
more, battery-powered portably computers (e.g., laptops)
limit the visual display capability since high computational
activity in a CPU or GPU typically results in higher power
consumption and shorter battery life. Portable computers
typically include software that automatically lowers proces-
sor activity to reduce power consumption when the processor
is not utilized. In some computer models the user may lower
processor activity manually. For example, Sony’s VGN-
SZ280P laptop contains a switch labeled “Stamina” on one
side (for low performance, more battery life) and “Speed” on
the other (for high performance, less battery life). An OS
running on a portable computer must be able to function
usably even in the event the computer is running at a fraction
of'its peak performance capability. Thus, OS graphics perfor-
mance often remains far below the state-of-the-art available
computational capability.

[0030] High-end computationally-intense applications like
Maya are frequently sold with the expectation that they will
be used on high-performance PCs. This typically establishes

Sep. 10, 2009

a much higher performance, and more expensive and less
portable, least common denominator requirement. As a con-
sequence, such applications have a much more limited target
audience than a general purpose OS (or general purpose pro-
ductivity application, like Microsoft Office) and typically sell
in much lower volume than general purpose OS software or
general purpose application software. The potential audience
is further limited because often times it is difficult for a
prospective user to try out such computationally-intense
applications in advance. For example, suppose a student
wants to learn how to use Maya or a potential buyer already
knowledgeable about such applications wants to try out Maya
before making the investment in the purchase (which may
well involve also buying a high-end computer capable of
running Maya). While either the student or the potential buyer
could download, or get a physical media copy of, a demo
version of Maya, if they lack a computer capable of running
Mayarto its full potential (e.g., handling a complex 3D scene),
then they will be unable to make an fully-informed assess-
ment of the product. This substantially limits the audience for
such high-end applications. It also contributes to a high sell-
ing price since the development cost is usually amortized
across a much smaller number of purchases than those of a
general-purpose application.

[0031] High-priced applications also create more incentive
for individuals and businesses to use pirated copies of the
application software. As a result, high-end application soft-
ware suffers from rampant piracy, despite significant efforts
by publishers of such software to mitigate such piracy
through various techniques. Still, even when using pirated
high-end applications, users cannot obviate the need to invest
in expensive state-of-the-art PCs to run the pirated copies. So,
while they may obtain use of a software application for a
fraction of its actual retail price, users of pirated software are
still required to purchase or obtain an expensive PC in order to
fully utilize the application.

[0032] The same is true for users of high-performance
pirated video games. Although pirates may get the games at
fraction oftheir actual price, they are still required to purchase
expensive computing hardware (e.g., a GPU-enhanced PC, or
ahigh-end video game console like the XBox 360) needed to
properly play the game. Given that video games are typically
a pastime for consumers, the additional cost for a high-end
video game system can be prohibitive. This situation is worse
in countries (e.g., China) where the average annual income of
workers currently is quite low relative to that of the United
States. As a result, a much smaller percentage of the popula-
tion owns a high-end video game system or a high-end PC. In
such countries, “Internet cafes”, in which users pay a fee to
use a computer connected to the Internet, are quite common.
Frequently, such Internet cafes have older model or low-end
PCs without high performance features, such as a GPU,
which might otherwise enable players to play computation-
ally-intensive video games. This is a key factor in the success
of games that run on low-end PCs, such as Vivendi’s “World
of Warcraft” which is highly successful in China, and is
commonly played in Internet cafes there. In contrast, a com-
putationally-intensive game, like “Second Life is much less
likely to be playable on a PC installed in a Chinese Internet
café. Such games are virtually inaccessible to users who only
have access to low-performance PCs in Internet cafes.

[0033] Barriers also exist for users who are considering
purchasing a video game and would first like to try out a
demonstration version of the game by downloading the demo

US 2009/0225220 Al

through the Internet to their home. A video game demo is
often a full-fledged version of the game with some features
disabled, or with limits placed on the amount of game play.
This may involve a long process (perhaps hours) of down-
loading gigabytes of data before the game can be installed and
executed on either a PC or a console. In the case of a PC, it
may also involve figuring out what special drivers are needed
(e.g., DirectX or OpenGL drivers) for the game, downloading
the correct version, installing them, and then determining
whether the PC is capable of playing the game. This latter step
may involve determining whether the PC has enough process-
ing (CPU and GPU) capability, sufficient RAM, and a com-
patible OS (e.g., some games run on Windows XP, but not
Vista). Thus, after a long process of attempting to run a video
game demo, the user may well find out that the video game
demo can’t be possibly played, given the user’s PC configu-
ration. Worse, once the user has downloaded new drivers in
order to try the demo, these driver versions may be incom-
patible with other games or applications the user uses regu-
larly on the PC, thus the installation of a demo may render
previously operable games or applications inoperable. Not
only are these barriers frustrating for the user, but they create
barriers for video game software publishers and video game
developers to market their games.

[0034] Another problem that results in economic ineffi-
ciency has to do with the fact that given PC or game console
is usually designed to accommodate a certain level of perfor-
mance requirement for applications and/or games. For
example, some PCs have more or less RAM, slower or faster
CPUs, and slower or faster GPUs, if they have a GPUs at all.
Some games or applications make take advantage of the full
computing power of a given PC or console, while many
games or applications do not. If a user’s choice of game or
application falls short of the peak performance capabilities of
the local PC or console, then the user may have wasted money
on the PC or console for unutilized features. In the case of a
console, the console manufacturer may have paid more than
was necessary to subsidize the console cost.

[0035] Another problem that exists in the marketing and
enjoyment of video games involves allowing a user to watch
others playing games before the user commits to the purchase
of'that game. Several prior art approaches exist for the record-
ing of video games for replay at a later time. For example,
U.S. Pat. No. 5,558,339 teaches recording game state infor-
mation, including game controller actions, during “game-
play” in the video game client computer (owned by the same
or different user). This state information can be used at a later
time to replay some or all of the game action on a video game
client computer (e.g., PC or console). A significant drawback
to this approach is that for a user to view the recorded game,
the user must possess a video game client computer capable
of playing the game and must have the video game applica-
tion running on that computer, such that the gameplay is
identical when the recorded game state is replayed. Beyond
that, the video game application has to be written in such a
way that there is no possible execution difference between the
recorded game and the played back game.

[0036] Forexample, game graphics are generally computed
on a frame-by-frame basis. For many games, the game logic
sometimes may take shorter or longer than one frame time to
compute the graphics displayed for the next frame, depending
on whether the scene is particularly complex, or if there are
other delays that slow down execution (e.g., on a PC, another
process may be running that takes away CPU cycles from the

Sep. 10, 2009

game applications). In such a game, a “threshold” frame that
is computed in slightly less than one frame time (say a few
CPU clock cycles less) can eventually occur. When that same
scene is computed again using the exact same game state
information, it could easily take a few CPU clock cycles more
than one frame time (e.g., if an internal CPU bus is slightly out
of phase with the an external DRAM bus and it introduces a
few CPU cycle times of delay, even if there is no large delay
from another process taking away milliseconds of CPU time
from game processing). Therefore, when the game is played
back the frame gets calculated in two frame times rather than
a single frame time. Some behaviors are based on how often
the game calculates a new frame (e.g., when the game
samples the input from the game controllers). While the game
is played, this discrepancy in the time reference for different
behaviors does not impact game play, but it can result in the
played-back game producing a different result. For example,
if a basketball’s ballistics are calculated at a steady 60 fps rate,
but the game controller input is sampled based on rate of
computed frames, the rate of computed frames may be 53 fps
when the game was recorded, but 52 fps when the game is
replayed, which can make the difference between whether the
basketball is blocked from going into the basket or not, result-
ing in a different outcome. Thus, using game state to record
video games requires very careful game software design to
ensure that the replay, using the same game state information,
produces the exact same outcome.

[0037] Another prior art approach for recording video
game is to simply record the video output of a PC or video
game system (e.g., to a VCR, DVD recorder, or to a video
capture board on a PC). The video then can be rewound and
replayed, or alternatively, the recorded video uploaded to the
Internet, typically after being compressed. A disadvantage to
this approach is that when a 3D game sequence is played
back, the user is limited to viewing the sequence from only the
point of view from which the sequence was recorded. In other
words, the user cannot change the point of view of the scene.

[0038] Further, when compressed video of arecorded game
sequence played on a home PC or game console is made
available to other users through the Internet, even if the video
is compressed in real-time, it may be impossible to upload the
compressed video in real-time to the Internet. The reason why
is because many homes in the world that are connected to the
Internet have highly asymmetric broadband connections
(e.g., DSL and cable modem typically have far higher down-
stream bandwidth than upstream bandwidth). Compressed
high resolution video sequences often have higher band-
widths than the upstream bandwidth capacity of the network,
making them impossible to upload in real-time. Thus, there
would be a significant delay after the game sequence is played
(perhaps minutes or even hours) before another user on the
Internet would be able to view the game. Although this delay
is tolerable in certain situations (e.g., to watch a game player’s
accomplishments that occurred at a prior time), it eliminates
the ability to watch a game live (e.g., a basketball tournament,
played by champion players) or with “instant replay” capa-
bility as the game is played live.

[0039] Another prior art approach allows a viewer with a
television receiver to watch video games live, but only under
the control of the television production crew. Some television
channels, in both the US and in other countries provide video
game viewing channels, where the television viewing audi-
ence is able to watch certain video game users (e.g., top-rated
players playing in tournaments) on video game channels.

US 2009/0225220 Al

This is accomplished by having the video output of the video
game systems (PCs and/or consoles) fed into the video dis-
tribution and processing equipment for the television chan-
nel. This is not unlike when the television channel is broad-
casting a live basketball game in which several cameras
provide live feeds from different angles around the basketball
court. The television channel then is able to make use of their
video/audio processing and effects equipment to manipulate
the output from the various video game systems. For
example, the television channel can overlay text on top of the
video from a video game that indicates the status of different
players (just as they might overlay text during a live basket-
ball game), and the television channel can overdub audio
from a commentator who can discuss the action occurring
during the games. Additionally, the video game output can be
combined with cameras recording video of the actual players
of the games (e.g., showing their emotional response to the
game).

[0040] One problem with this approach is that such live
video feeds must be available to the television channel’s video
distribution and processing equipment in real-time in order
for it to have the excitement of a live broadcast. As previously
discussed, however, this is often impossible when the video
game system is running from the home, especially if part of
the broadcast includes live video from a camera that is cap-
turing real-world video of the game player. Further, in a
tournament situation, there is a concern that an in-home
gamer may modify the game and cheat, as previously
described. For these reasons, such video game broadcasts on
television channels are often arranged with players and video
game systems aggregated at a common location (e.g., at a
television studio or in an arena) where the television produc-
tion equipment can accept video feeds from multiple video
game systems and potentially live cameras.

[0041] Although such prior art video game television chan-
nels can provide a very exciting presentation to the television
viewing audience that is an experience akin to a live sporting
event, e.g., with the video game players presented as “ath-
letes”, both in terms of their actions in the video game world,
and in terms of their actions in the real world, these video
game systems are often limited to situations where players are
in close physical proximity to one another. And, since televi-
sion channels are broadcasted, each broadcasted channel can
only show one video stream, which is selected by the televi-
sion channel’s production crew. Because of these limitations
and the high cost of broadcast time, production equipment
and production crews, such television channels typically only
show top-rated players playing in top tournaments.

[0042] Additionally, a given television channel broadcast-
ing a full-screen image of a video game to the entire television
viewing audience shows only one video game at a time. This
severely limits a television viewer’s choices. For example, a
television viewer may not be interested in the game(s) shown
at a given time. Another viewer may only be interested in
watching the game play of a particular player that is not
featured by the television channel at a given time. In other
cases, a viewer may only be interested in watching a how an
expert player handles a particular level in a game. Still other
viewers may wish to control the viewpoint that a video game
is seen from, which is different from that chosen by the
production team, etc. In short, a television viewer may have a
myriad of preferences in watching video games that are not
accommodated by the particular broadcast of a television
network, even if several different television channels are

Sep. 10, 2009

available. For all of the aforementioned reasons, prior art
video game television channels have significant limitations in
presenting video games to television viewers.

[0043] Another drawback of prior art video games systems
and application software systems is that they are complex,
and commonly suffer from errors, crashes and/or unintended
and undesired behaviors (collectively, “bugs™). Although
games and applications typically go through a debugging and
tuning process (frequently called “Software Quality Assur-
ance” or SQA) before release, almost invariably once the
game or application is released to a wide audience in the field
bugs crop up. Unfortunately, it is difficult for the software
developer to identify and track down many of the bugs after
release. It can be difficult for software developers to become
aware of bugs. Even when they learn about a bug, there may
only be a limited amount of information available to them to
identify what caused the bug. For example, a user may call up
a game developer’s customer service line and leave amessage
stating that when playing the game, the screen started to flash,
then changed to a solid blue color and the PC froze. That
provides the SQA team with very little information useful in
tracking down a bug. Some games or applications that are
connected online can sometimes provide more information in
certain cases. For example, a “watchdog” process can some-
times be used to monitor the game or application for
“crashes”. The watchdog process can gather statistics about
the status of the game or applications process (e.g., the status
of the stack, of the memory usage, how far the game or
applications has progressed, etc.) when it crashes and then
upload that information to the SQA team via the Internet. But
in a complex game or application, such information can take
a very long time to decipher in order to accurately determine
what the user was doing at the time of the crash. Even then, it
may be impossible to determine what sequence of events led
to the crash.

[0044] Yet another problem associated with PCs and game
consoles is that they are subject to service issues which
greatly inconvenience the consumer. Service issues also
impact the manufacturer of the PC or game console since they
typically are required to send a special box to safely ship the
broken PC or console, and then incur the cost of repair if the
PC or console is in warranty. The game or application soft-
ware publisher can also be impacted by the loss of sales (or
online service use) by PCs and/or consoles being in a state of
repair.

[0045] FIG. 1 illustrates a prior art video gaming system
such as a Sony Playstation® 3, Microsoft Xbox 360®, Nin-
tendo Wii™, Windows-based personal computer or Apple
Macintosh. Each of these systems includes a central process-
ing unit (CPU) for executing program code, typically a
graphical processing unit (GPU) for performing advanced
graphical operations, and multiple forms of input/output
(I/0) for communicating with external devices and users. For
simplicity, these components are shown combined together as
a single unit 100. The prior art video gaming system of FIG.
1 also is shown including an optical media drive 104 (e.g., a
DVD-ROM drive); a hard drive 103 for storing video game
program code and data; a network connection 105 for playing
multi-player games, for downloading games, patches, demos
or other media; a random access memory (RAM) 101 for
storing program code currently being executed by the CPU/
GPU 100; a game controller 106 for receiving input com-
mands from the user during gameplay; and a display device
102 (e.g., a SDTV/HDTYV or a computer monitor).

US 2009/0225220 Al

[0046] The prior art system shown in FIG. 1 suffers from
several limitations. First, optical drives 104 and hard drives
103 tend to have much slower access speeds as compared to
that of RAM 101. When working directly through RAM 101,
the CPU/GPU 100 can, in practice, process far more polygons
per second than is possible when the program code and data is
read directly off of hard drive 103 or optical drive 104 due to
the fact that RAM 101 generally has much higher bandwidth
and does not suffer from the relatively long seek delays of disc
mechanisms. But only a limited amount of RAM is provided
in these prior art systems (e.g., 256-512 Mbytes). Therefore,
a“Loading . . . ” sequence in which RAM 101 is periodically
filled up with the data for the next scene of the video game is
often required.

[0047] Some systems attempt to overlap the loading of the
program code concurrently with the gameplay, but this can
only be done when there is a known sequence of events (e.g.,
if a car is driving down a road, the geometry for the approach-
ing buildings on the roadside can be loaded while the car is
driving). For complex and/or rapid scene changes, this type of
overlapping usually does not work. For example, in the case
where the user is in the midst of a battle and RAM 101 is
completely filled with data representing the objects within
view at that moment, if'the user moves the view rapidly to the
left to view objects that are not presently loaded in RAM 101,
a discontinuity in the action will result since there not be
enough time to load the new objects from Hard Drive 103 or
Optical Media 104 into RAM 101.

[0048] Another problem with the system of FIG. 1 arises
due to limitations in the storage capacity of hard drives 103
and optical media 104. Although disk storage devices can be
manufactured with a relatively large storage capacity (e.g., 50
gigabytes or more), they still do not provide enough storage
capacity for certain scenarios encountered in current video
games. For example, as previously mentioned, a soccer video
game might allow the user to choose among dozens of teams,
players and stadiums throughout the world. For each team,
each player and each stadium a large number of texture maps
and environment maps are needed to characterize the 3D
surfaces in the world (e.g., each team has a unique jersey, with
each requiring a unique texture map).

[0049] One technique used to address this latter problem is
for the game to pre-compute texture and environment maps
once they are selected by the user. This may involve a number
of computationally-intensive processes, including decom-
pressing images, 3D mapping, shading, organizing data struc-
tures, etc. As a result, there may be a delay for the user while
the video game is performing these calculations. On way to
reduce this delay, in principle, is to perform all of these
computations—including every permutation of team, player
roster, and stadium—when the game was originally devel-
oped. The released version of the game would then include all
of'this pre-processed data stored on optical media 104, or on
one or more servers on the Internet with just the selected
pre-processed data for a given team, player roster, stadium
selection downloaded through the Internet to hard drive 103
when the user makes a selection. As a practical matter, how-
ever, such pre-loaded data of every permutation possible in
game play could easily be terabytes of data, which is far in
excess of the capacity of today’s optical media devices. Fur-
thermore, the data for a given team, player roster, stadium
selection could easily be hundreds of megabytes of data or
more. With a home network connection of, say, 10 Mbps, it

Sep. 10, 2009

would take longer to download this data through network
connection 105 than it would to compute the data locally.
[0050] Thus, the prior art game architecture shown in FIG.
1 subjects the user to significant delays between major scene
transitions of complex games.

[0051] Another problem with prior art approaches such as
that shown in FIG. 1 is that over the years video games tend to
become more advanced and require more CPU/GPU process-
ing power. Thus, even assuming an unlimited amount of
RAM, video games hardware requirements go beyond the
peak level of processing power available in these systems. As
aresult, users are required to upgrade gaming hardware every
few years to keep pace (or play newer games at lower quality
levels). One consequence of the trend to ever more advanced
video games is that video game playing machines for home
use are typically economically inefficient because their cost is
usually determined by the requirements of the highest perfor-
mance game they can support. For example, an XBox 360
might be used to play a game like “Gears of War”, which
demands a high performance CPU, GPU, and hundreds of
megabytes of RAM, or the XBox 360 might be used to play
Pac Man, a game from the 1970s that requires only kilobytes
of RAM and a very low performance CPU. Indeed, an XBox
360 has enough computing power to host many simultaneous
Pac Man games at once.

[0052] Video games machines are typically turned off for
most of the hours of a week. According to a July 2006 Nielsen
Entertainment study of active gamers 13 years and older, on
average, active gamers spend fourteen hours/week playing
console video games, or just 12% of the total hours in a week.
This means that the average video game console is idle 88%
of the time, which is an inefficient use of an expensive
resource. This is particularly significant given that video
game consoles are often subsidized by the manufacturer to
bring down the purchase price (with the expectation that the
subsidy will be earned back by royalties from future video
game software purchases).

[0053] Video game consoles also incur costs associated
with almost any consumer electronic device. For instance, the
electronics and mechanisms of the systems need to be housed
in an enclosure. The manufacturer needs to offer a service
warranty. The retailer who sells the system needs to collect a
margin on either the sale of the system and/or on the sale of
video game software. All of these factors add to the cost of the
video game console, which must either be subsidized by the
manufacturer, passed along to the consumer, or both.

[0054] In addition, piracy is a major problem for the video
game industry. The security mechanisms utilized on virtually
every major video gaming system have been “cracked” over
the years, resulting in unauthorized copying of video games.
For example, the Xbox 360 security system was cracked in
July 2006 and users are now able to download illegal copies
online. Games that are downloadable (e.g., games for the PC
or the Mac) are particularly vulnerable to piracy. In certain
regions of the world where piracy is weakly policed there is
essentially no viable market for standalone video game soft-
ware because users can buy pirated copies as readily as legal
copies for a tiny fraction of the cost. Also, in many parts of the
world the cost of a game console is such a high percentage of
income that even if piracy were controlled, few people could
afford a state-of-the-art gaming system.

[0055] In addition, the used game market reduces revenue
for the video game industry. When a user has become tired of
a game, they can sell the game to a store which will resell the

US 2009/0225220 Al

game to other users. This unauthorized but common practice
significantly reduces revenues of game publishers. Similarly,
a reduction in sales on the order of 50% commonly occurs
when there is a platform transition every few years. This is
because users stop buying games for the older platforms when
they know that the newer version platform is about to be
released (e.g., when Playstation 3 is about to be released,
users stop buying Playstation 2 games). Combined, the loss of
sales and increased development costs associated with the
new platforms can have a very significant adverse impact on
the profitability of game developers.

[0056] New game consoles are also very expensive. The
Xbox 360, the Nintendo Wii, and the Sony Playstation 3 all
retail for hundreds of dollars. High powered personal com-
puter gaming systems can cost up to $8000. This represents a
significant investment for users, particularly considering that
the hardware becomes obsolete after a few years and the fact
that many systems are purchased for children.

[0057] One approach to the foregoing problems is online
gaming in which the gaming program code and data are
hosted on a server and delivered to client machines on-de-
mand as compressed video and audio streamed over a digital
broadband network. Some companies such as G-Cluster in
Finland (now a subsidiary of Japan’s SOFTBANK Broadme-
dia) currently provide these services online. Similar gaming
services have become available in local networks, such as
those within hotels and offered by DSL and cable television
providers. A major drawback of these systems is the problem
of latency, i.e., the time it takes for a signal to travel to and
from the game server, which is typically located in an opera-
tor’s “head-end”. Fast action video games (also known as
“twitch” video games) require very low latency between the
time the user performs an action with the game controller and
the time the display screen is updated showing the result of
the user action. Low latency is needed so that the user has the
perception that the game is responding “instantly”. Users may
be satisfied with different latency intervals depending on the
type of game and the skill level of the user. For example, 100
ms of latency may be tolerable for a slow casual game (like
backgammon) or a slow-action role playing game, but in a
fast action game a latency in excess of 70 or 80 ms may cause
the user to perform more poorly in the game, and thus is
unacceptable. For instance, in a game that requires fast reac-
tion time there is a sharp decline in accuracy as latency
increases from 50 to 100 ms.

[0058] When a game or application server is installed in a
nearby, controlled network environment, or one where the
network path to the user is predictable and/or can tolerate
bandwidth peaks, it is far easier to control latency, both in
terms of maximum latency and in terms of the consistency of
the latency (e.g., so the user observes steady motion from
digital video streaming through the network). Such level of
control can be achieved between a cable TV network head-
end to a cable TV subscriber’s home, or from a DSL central
office to DSL subscriber’s home, or in a commercial office
Local Area Network (LAN) environment from a server or a
user. Also, it is possible to obtain specially-graded point-to-
point private connections between businesses which have
guaranteed bandwidth and latency. But in a game or applica-
tion system that hosts games in a server center connected to
the general Internet and then streams compressed video to the
user through a broadband connection, latency is incurred
from many factors, resulting in severe limitations in the
deployment of prior art systems.

Sep. 10, 2009

[0059] Inatypical broadband-connected home, a user may
have a DSL or cable modem for broadband service. Such
broadband services commonly incur as much as a 25 ms
round-trip latency (and at times more) between the user’s
home and the general Internet. In addition, there are round-
trip latencies incurred from routing data through the Internet
to a server center. The latency through the Internet varies
based on the route that the data is given and the delays it incurs
asitis routed. In addition to routing delays, round-trip latency
is also incurred due to the speed of light traveling through the
optical fiber that interconnects most of the Internet. For
example, for each 1000 miles, approximately 22 ms is
incurred in round-trip latency due to the speed of light
through the optical fiber and other overhead.

[0060] Additional latency can occur due to the data rate of
the data streamed through the Internet. For example, if a user
has DSL service that is sold as “6 Mbps DSL service”, in
practice, the user will probably get less than 5 Mbps of down-
stream throughput at best, and will likely see the connection
degrade periodically due to various factors such as congestion
during peak load times at the Digital Subscriber Line Access
Multiplexer (DSLAM). A similar issue can occur reducing a
the data rate of a cable modem is used for a connection sold as
“6 Mbps cable modem service” to far less than that, if there is
congestion in the local shared coaxial cable looped through
the neighborhood, or elsewhere in the cable modem system
network. If data packets at a steady rate of 4 Mbps are
streamed as one-way in User Datagram Protocol (UDP) for-
mat from a server center through such connections, if every-
thing is working well, the data packets will pass through
without incurring additional latency, but if there is congestion
(or other impediments) and only 3.5 Mbps is available to
stream data to the user, then in a typical situation either
packets will be dropped, resulting in lost data, or packets will
queue up at the point of congestion, until they can be sent,
thereby introducing additional latency. Different points of
congestion have different queuing capacity to hold delayed
packets, so in some cases packets that can’t make it through
the congestion are dropped immediately. In other cases, sev-
eral megabits of data are queued up and eventually be sent.
But, in almost all cases, queues at points of congestion have
capacity limits, and once those limits are exceeded, the
queues will overflow and packets will be dropped. Thus, to
avoid incurring additional latency (or worse, loss of packets),
it is necessary to avoid exceeding the data rate capacity from
the game or application server to the user.

[0061] Latency is also incurred by the time required to
compress video in the server and decompress video in the
client device. Latency is further incurred while a video game
running on a server is calculating the next frame to be dis-
played. Currently available video compression algorithms
suffer from either high data rates or high latency. For
example, motion JPEG is an intraframe-only lossy compres-
sion algorithm that is characterized by low-latency. Each
frame of video is compressed independently of each other
frame of video. When a client device receives a frame of
compressed motion JPEG video, it can immediately decom-
press the frame and display it, resulting in very low latency.
But because each frame is compressed separately, the algo-
rithm is unable to exploit similarities between successive
frames, and as a result intraframe-only video compression
algorithms suffer from very high data rates. For example, 60
fps (frames per second) 640x480 motion JPEG video may
require 40 Mbps (megabits per second) or more of data. Such

US 2009/0225220 Al

high data rates for such low resolution video windows would
be prohibitively expensive in many broadband applications
(and certainly for most consumer Internet-based applica-
tions). Further, because each frame is compressed indepen-
dently, artifacts in the frames that may result from the lossy
compression are likely to appear in different places in suc-
cessive frames. This can results in what appears to the viewer
as a moving visual artifacts when the video is decompressed.

[0062] Other compression algorithms, such as MPEG2,
H.264 or VC9 from Microsoft Corporation as they are used in
prior art configurations, can achieve high compression ratios,
but at the cost of high latency. Such algorithms utilize inter-
frame as well as intraframe compression. Periodically, such
algorithms perform an intraframe-only compression of a
frame. Such a frame is known as a key frame (typically
referred to as an “I” frame). Then, these algorithms typically
compare the I frame with both prior frames and successive
frames. Rather than compressing the prior frames and suc-
cessive frames independently, the algorithm determines what
has changed in the image from the I frame to the prior and
successive frames, and then stores those changes as what are
called “B” frames for the changes preceding the I frame and
“P” frames for the changes following the I frame. This results
in much lower data rates than intraframe-only compression.
But, ittypically comes at the cost of higher latency. An I frame
is typically much larger than a B or P frame (often 10 times
larger), and as a result, it takes proportionately longer to
transmit at a given data rate.

[0063] Consider, for example, a situation where the I
frames are 10x the size of B and P frames, and there are 29 B
frames+30 P frames=59 interframes for every single I
intraframe, or 60 frames total for each “Group of Frames”
(GOP). So, at 60 fps, there is 1 60-frame GOP each second.
Suppose the transmission channel has a maximum data rate of
2 Mbps. To achieve the highest quality video in the channel,
the compression algorithm would produce a 2 Mbps data
stream, and given the above ratios, this would result in 2
Megabits (Mb)/(59+10)=30,394 bits per intraframe and 303,
935 bits per I frame. When the compressed video stream is
received by the decompression algorithm, in order for the
video to play steadily, each frame needs to decompressed and
displayed at a regular interval (e.g., 60 fps). To achieve this
result, ifany frame is subject to transmission latency, all of the
frames need to be delayed by at least that latency, so the
worst-case frame latency will define the latency for every
video frame. The I frames introduce the longest transmission
latencies since they are largest, and an entire [frame would
have to be received before the [frame could be decompressed
and displayed (or any interframe dependent on the I frame).
Given that the channel data rate is 2 Mbps, it will take 303,
935/2 Mb=145 ms to transmit an I frame.

[0064] An interframe video compression system as
described above using a large percentage of the bandwidth of
the transmission channel will be subject to long latencies due
to the large size of an I frame relative to the average size of a
frame. Or, to put it another way, while prior art interframe
compression algorithms achieve a lower average per-frame
data rate than intraframe-only compression algorithms (e.g.,
2 Mbps vs. 40 Mbps), they still suffer from a high peak
per-frame data rate (e.g., 303,935%60=18.2 Mbps) because of
the large [frames. Bear in mind, though that the above analy-
sis assumes that the P and B frames are all much smaller than
the I frames. While this is generally true, it is not true for
frames with high image complexity uncorrelated with the

Sep. 10, 2009

prior frame, high motion, or scene changes. In such situa-
tions, the P or B frames can become as large as I frames (if a
P or B frame gets larger than an I frame, a sophisticated
compression algorithm will typically “force” an I frame and
replace the P or B frame with an [frame). So, I frame-sized
data rate peaks can occur at any moment in a digital video
stream. Thus, with compressed video, when the average video
data rate approaches data rate capacity of the transmission
channels (as is frequently the case, given the high data rate
demands for video) the high peak data rates from I frames or
large P or B frames result in a high frame latency.

[0065] Of course, the above discussion only characterizes
the compression algorithm latency created by large B, P or |
frames in a GOP. If B frames are used, the latency will be even
higher. The reason why is because before a B frame can be
displayed, all ofthe B frames after the B frame and the I frame
must be received. Thus, in a group of picture (GOP) sequence
such as BBBBBIPPPPPBBBBBIPPPPP, where there are 5 B
frames before each I frame, the first B frame can not be
displayed by the video decompressor until the subsequent B
frames and I frame are received. So, if video is being streamed
at60 fps (i.e., 16.67 ms/frame), before the first B frame can be
decompressed, five B frames and the I frame will take
16.67*6=100 ms to receive, no matter how fast the channel
bandwidth is, and this is with just 5 B frames. Compressed
video sequences with 30 B frames are quite common. And, at
a low channel bandwidth like 2 Mbps, the latency impact
caused by the size of the I frame is largely additive to the
latency impact due to waiting for B frames to arrive. Thus, on
a 2 Mbps channel, with a large number of B frames it is quite
easy to exceed 500 ms of latency or more using prior art video
compression technology. If B frames are not used (at the cost
of a lower compression ratio for given quality level), the B
frame latency is not incurred, but the latency caused by the
peak frame sizes, described above, is still incurred.

[0066] The problem is exacerbated by very the nature of
many video games. Video compression algorithms utilizing
the GOP structure described above have been largely opti-
mized for use with live video or motion picture material
intended for passive viewing. Typically, the camera (whether
a real camera, or a virtual camera in the case of a computer-
generated animation) and scene is relatively steady, simply
because if the camera or scene moves around too jerkily, the
video or movie material is (a) typically unpleasant to watch
and (b) if it is being watched, usually the viewer is not closely
following the action when the camera jerks around suddenly
(e.g., if the camera is bumped when shooting a child blowing
out the candles on a birthday cake and suddenly jerks away
from the cake and back again, the viewers are typically
focused on the child and the cake, and disregard the brief
interruption when the camera suddenly moves). In the case of
a video interview, or a video teleconference, the camera may
beheld in a fixed position and not move at all, resulting in very
few data peaks at all. But 3D high action video games are
characterized by constant motion (e.g., consider a 3D racing,
where the entire frame is in rapid motion for the duration of
the race, or consider first-person shooters, where the virtual
camera is constantly moving around jerkily). Such video
games can result in frame sequences with large and frequent
peaks where the user may need to clearly see what is happen-
ing during those sudden motions. As such, compression arti-
facts are far less tolerable in 3D high action video games.

US 2009/0225220 Al

Thus, the video output of many video games, by their nature,
produces a compressed video stream with very high and
frequent peaks.

[0067] Given that users of fast-action video games have
little tolerance for high latency, and given all of the above
causes of latency, to date there have been limitations to server-
hosted video games that stream video on the Internet. Further,
users of applications that require a high degree of interactivity
suffer from similar limitations if the applications are hosted
on the general Internet and stream video. Such services
require a network configuration in which the hosting servers
are set up directly in a head end (in the case of cable broad-
band) or the central office (in the case of Digital Subscriber
Lines (DSL)), or within a LAN (or on a specially-graded
private connection) in a commercial setting, so that the route
and distance from the client device to the server is controlled
to minimize latency and peaks can be accommodated without
incurring latency. LANs (typically rated at 100 Mbps-1 Gbps)
and leased lines with adequate bandwidth typically can sup-
port peak bandwidth requirements (e.g., 18 Mbps peak band-
width is a small fraction of a 100 Mbps LAN capacity).
[0068] Peak bandwidth requirements can also be accom-
modated by residential broadband infrastructure if special
accommodations are made. For example, on a cable TV sys-
tem, digital video traffic can be given dedicated bandwidth
which can handle peaks, such as large I frames. And, on a
DSL system, a higher speed DSL, modem can be provisioned,
allowing for high peaks, or a specially-graded connection can
provisioned which can handle a higher data rates. But, con-
ventional cable modem and DSL infrastructure attached to
the general Internet have far less tolerance for peak band-
width requirements for compressed video. So, online services
that host video games or applications in server centers a long
distance from the client devices, and then stream the com-
pressed video output over the Internet through conventional
residential broadband connections suffer from significant
latency and peak bandwidth limitations—particularly with
respect to games and applications which require very low
latency (e.g., first person shooters and other multi-user, inter-
active action games, or applications requiring a fast response
time).

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] The present disclosure will be understood more
fully from the detailed description that follows and from the
accompanying drawings, which however, should not be taken
to limit the disclosed subject matter to the specific embodi-
ments shown, but are for explanation and understanding only.

[0070] FIG. 1 illustrates an architecture of a prior art video
gaming system.
[0071] FIGS. 2a-b illustrate a high level system architec-

ture according to one embodiment.

[0072] FIG. 3 illustrates actual, rated, and required data
rates for communication between a client and a server.
[0073] FIG. 4a illustrates a hosting service and a client
employed according to one embodiment.

[0074] FIG. 45 illustrates exemplary latencies associated
with communication between a client and hosting service.

[0075] FIG. 4¢ illustrates a client device according to one
embodiment.
[0076] FIG. 4d illustrates a client device according to

another embodiment.
[0077] FIG. 4e illustrates an example block diagram of the
client device in FIG. 4c.

Sep. 10, 2009

[0078] FIG. 4fillustrates an example block diagram of the
client device in FIG. 44d.

[0079] FIG. 5 illustrates an example form of video com-
pression which may be employed according to one embodi-
ment.

[0080] FIG. 6a illustrates an example form of video com-
pression which may be employed in another embodiment.
[0081] FIG. 65 illustrates peaks in data rate associated with
transmitting a low complexity, low action video sequence.
[0082] FIG. 6c¢ illustrates peaks in data rate associated with
transmitting a high complexity, high action video sequence.
[0083] FIGS. 7a-b illustrate example video compression
techniques employed in one embodiment.

[0084] FIG. 8 illustrates additional example video com-
pression techniques employed in one embodiment.

[0085] FIGS. 9a-c illustrate example techniques employed
in one embodiment for alleviating data rate peaks.

[0086] FIGS. 10a-54 illustrate one embodiment which effi-
ciently packs image tiles within packets.

[0087] FIGS. 11a-d illustrate embodiments which employ
forward error correction techniques.

[0088] FIG. 12 illustrates one embodiment which uses
multi-core processing units for compression.

[0089] FIGS. 13a-b illustrate geographical positioning and
communication between hosting services according to vari-
ous embodiments.

[0090] FIG. 14 illustrates exemplary latencies associated
with communication between a client and a hosting service.
[0091] FIG. 15 illustrates an example hosting service server
center architecture.

[0092] FIG. 16 illustrates an example screen shot of one
embodiment of a user interface which includes a plurality of
live video windows.

[0093] FIG. 17 illustrates the user interface of FIG. 16
following the selection of a particular video window.

[0094] FIG. 18 illustrates the user interface of FIG. 17
following zooming of the particular video window to full
screen size.

[0095] FIG. 19 illustrates an example collaborative user
video data overlaid on the screen of a multiplayer game.
[0096] FIG. 20 illustrates an example user page for a game
player on a hosting service.

[0097] FIG. 21 illustrates an example 3D interactive adver-
tisement.
[0098] FIG. 22 illustrates an example sequence of steps for

producing a photoreal image having a textured surface from
surface capture of a live performance.

[0099] FIG. 23 illustrates an example user interface page
that allows for selection of linear media content.

[0100] FIG. 24 is a graph that illustrates the amount of time
that elapses before the web page is live versus connection
speed.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0101] In the following description specific details are set
forth, such as device types, system configurations, commu-
nication methods, etc., in order to provide a thorough under-
standing of the present disclosure. However, persons having
ordinary skill in the relevant arts will appreciate that these
specific details may not be needed to practice the embodi-
ments described.

[0102] FIGS. 2a-b provide a high-level architecture of two
embodiments in which video games and software applica-
tions are hosted by a hosting service 210 and accessed by

US 2009/0225220 Al

client devices 205 at user premises 211 (note that the “user
premises” means the place wherever the user is located,
including outdoors if using a mobile device) over the Internet
206 (or other public or private network) under a subscription
service. The client devices 205 may be general-purpose com-
puters such as Microsoft Windows- or Linux-based PCs or
Apple, Inc. Macintosh computers with a wired or wireless
connection to the Internet either with internal or external
display device 222, or they may be dedicated client devices
such as a set-top box (with a wired or wireless connection to
the Internet) that outputs video and audio to a monitor or TV
set 222, or they may be mobile devices, presumably with a
wireless connection to the Internet.

[0103] Any ofthese devices may have their own user input
devices (e.g., keyboards, buttons, touch screens, track pads or
inertial-sensing wands, video capture cameras and/or
motion-tracking cameras, etc.), or they may use external
input devices 221 (e.g., keyboards, mice, game controllers,
inertial sensing wand, video capture cameras and/or motion
tracking cameras, etc.), connected with wires or wirelessly.
As described in greater detail below, the hosting service 210
includes servers of various levels of performance, including
those with high-powered CPU/GPU processing capabilities.
During playing of a game or use of an application on the
hosting service 210, a home or office client device 205
receives keyboard and/or controller input from the user, and
then it transmits the controller input through the Internet 206
to the hosting service 210 that executes the gaming program
code in response and generates successive frames of video
output (a sequence of video images) for the game or applica-
tion software (e.g., if the user presses a button which would
direct a character on the screen to move to the right, the game
program would then create a sequence of video images show-
ing the character moving to the right). This sequence of video
images is then compressed using a low-latency video com-
pressor, and the hosting service 210 then transmits the low-
latency video stream through the Internet 206. The home or
office client device then decodes the compressed video
stream and renders the decompressed video images on a
monitor or TV. Consequently, the computing and graphical
hardware requirements of the client device 205 are signifi-
cantly reduced. The client 205 only needs to have the pro-
cessing power to forward the keyboard/controller input to the
Internet 206 and decode and decompress a compressed video
stream received from the Internet 206, which virtually any
personal computer is capable of doing today in software on its
CPU (e.g., a Intel Corporation Core Duo CPU running at
approximately 2 GHz is capable of decompressing 720 p
HDTYV encoded using compressors such as H.264 and Win-
dows Media VC9). And, in the case of any client devices,
dedicated chips can also perform video decompression for
such standards in real-time at far lower cost and with far less
power consumption than a general-purpose CPU such as
would be required for a modern PC. Notably, to perform the
function of forwarding controller input and decompressing
video, home client devices 205 do not require any specialized
graphics processing units (GPUs), optical drive or hard
drives, such as the prior art video game system shown in FIG.
1.

[0104] As games and applications software become more
complex and more photo-realistic, they will require higher-
performance CPUs, GPUs, more RAM, and larger and faster
disk drives, and the computing power at the hosting service
210 may be continually upgraded, but the end user will not be

Sep. 10, 2009

required to update the home or office client platform 205
since its processing requirements will remain constant for a
display resolution and frame rate with a given video decom-
pression algorithm. Thus, the hardware limitations and com-
patibility issues seen today do not exist in the system illus-
trated in FIGS. 24-b.

[0105] Further, because the game and application software
executes only in servers in the hosting service 210, there never
is a copy of the game or application software (either in the
form of optical media, or as downloaded software) in the
user’s home or office (“office” as used herein unless otherwise
qualified shall include any non-residential setting, including,
schoolrooms, for example). This significantly mitigates the
likelihood of a game or application software being illegally
copied (pirated), as well as mitigating the likelihood of a
valuable database that might be use by a game or applications
software being pirated. Indeed, if specialized servers are
required (e.g., requiring very expensive, large or noisy equip-
ment) to play the game or application software that are not
practical for home or office use, then even if a pirated copy of
the game or application software were obtained, it would not
be operable in the home or office.

[0106] In one embodiment, the hosting service 210 pro-
vides software development tools to the game or application
software developers (which refers generally to software
development companies, game or movie studios, or game or
applications software publishers) 220 which design video
games so that they may design games capable of being
executed on the hosting service 210. Such tools allow devel-
opers to exploit features of the hosting service that would not
normally be available in a standalone PC or game console
(e.g., fastaccess to very large databases of complex geometry
(“geometry” unless otherwise qualified shall be used herein
to refer to polygons, textures, rigging, lighting, behaviors and
other components and parameters that define 3D datasets)).
[0107] Different business models are possible under this
architecture. Under one model, the hosting service 210 col-
lects a subscription fee from the end user and pays a royalty to
the developers 220, as shown in FIG. 2a. In an alternate
implementation, shown in FIG. 25, the developers 220 col-
lects a subscription fee directly from the user and pays the
hosting service 210 for hosting the game or application con-
tent. These underlying principles are not limited to any par-
ticular business model for providing online gaming or appli-
cation hosting.

[0108] Compressed Video Characteristics

[0109] As discussed previously, one significant problem
with providing video game services or applications software
services online is that of latency. A latency of 70-80 ms (from
the point a input device is actuated by the user to the point
where a response is displayed on the display device) is at the
upper limit for games and applications requiring a fast
response time. However, this is very difficult to achieve in the
context of the architecture shown in FIGS. 2q and 25 dueto a
number of practical and physical constraints.

[0110] Asindicated in FIG. 3, when a user subscribes to an
Internet service, the connection is typically rated by a nomi-
nal maximum data rate 301 to the user’s home or office.
Depending on the provider’s policies and routing equipment
capabilities, that maximum data rate may be more or less
strictly enforced, but typically the actual available data rate is
lower for one of many different reasons. For example, there
may be too much network traffic at the DSL central office or
on the local cable modem loop, or there may be noise on the

US 2009/0225220 Al

cabling causing dropped packets, or the provider may estab-
lish a maximum number of bits per month per user. Currently,
the maximum downstream data rate for cable and DSL ser-
vices typically ranges from several hundred Kilobits/second
(Kbps) to 30 Mbps. Cellular services are typically limited to
hundreds of Kbps of downstream data. However, the speed of
the broadband services and the number of users who sub-
scribe to broadband services will increase dramatically over
time. Currently, some analysts estimate that 33% of US
broadband subscribers have a downstream data rate of 2 Mbps
or more. For example, some analysts predict that by 2010,
over 85% of US broadband subscribers will have a datarate of
2 Mbps or more.

[0111] Asindicated in FIG. 3, the actual available max data
rate 302 may fluctuate over time. Thus, in a low-latency,
online gaming or application software context it is sometimes
difficult to predict the actual available data rate for a particular
video stream. If the data rate 303 required to sustain a given
level of quality at given number of frames-per-second (fps) at
a given resolution (e.g., 640x480@ 60 fps) for a certain
amount of scene complexity and motion rises above the actual
available max data rate 302 (as indicated by the peak in FIG.
3), then several problems may occur. For example, some
internet services will simply drop packets, resulting in lost
data and distorted/lost images on the user’s video screen.
Other services will temporarily buffer (i.e., queue up) the
additional packets and provide the packets to the client at the
available data rate, resulting in an increase in latency—an
unacceptable result for many video games and applications.
Finally, some Internet service providers will view the increase
in data rate as a malicious attack, such as a denial of service
attack (a well known technique user by hackers to disable
network connections), and will cut off the user’s Internet
connection for a specified time period. Thus, the embodi-
ments described herein take steps to ensure that the required
data rate for a video game does not exceed the maximum
available data rate.

[0112] Hosting Service Architecture

[0113] FIG. 4a illustrates an architecture of the hosting
service 210 according to one embodiment. The hosting ser-
vice 210 can either be located in a single server center, or can
be distributed across a plurality of server centers (to provide
for lower latency connections to users that have lower latency
paths to certain server centers than others, to provide for load
balancing amongst users, and to provide for redundancy in
the case one or more server centers fail). The hosting service
210 may eventually include hundreds of thousands or even
millions of servers 402, serving a very large user base. A
hosting service control system 401 provides overall control
for the hosting service 210, and directs routers, servers, video
compression systems, billing and accounting systems, etc. In
one embodiment, the hosting service control system 401 is
implemented on a distributed processing Linux-based system
tied to RAID arrays used to store the databases for user
information, server information, and system statistics. In the
foregoing descriptions, the various actions implemented by
the hosting service 210, unless attributed to other specific
systems, are initiated and controlled by the hosting service
control system 401.

[0114] The hosting service 210 includes a number of serv-
ers 402 such as those currently available from Intel, IBM and
Hewlett Packard, and others. Alternatively, the servers 402
can be assembled in a custom configuration of components,
or can eventually be integrated so an entire server is imple-

Sep. 10, 2009

mented as a single chip. Although this diagram shows a small
number of servers 402 for the sake of illustration, in an actual
deployment there may be as few as one server 402 or as many
as millions of servers 402 or more. The servers 402 may all be
configured in the same way (as an example of some of the
configuration parameters, with the same CPU type and per-
formance; with or without a GPU, and if with a GPU, with the
same GPU type and performance; with the same number of
CPUs and GPUs; with the same amount of and type/speed of
RAM; and with the same RAM configuration), or various
subsets of the servers 402 may have the same configuration
(e.g., 25% of the servers can be configured a certain way, 50%
a different way, and 25% yet another way), or every server
402 may be different.

[0115] In one embodiment, the servers 402 are diskless,
i.e., rather than having its own local mass storage (be it optical
or magnetic storage, or semiconductor-based storage such as
Flash memory or other mass storage means serving a similar
function), each server accesses shared mass storage through
fast backplane or network connection. In one embodiment,
this fast connection is a Storage Area Network (SAN) 403
connected to a series of Redundant Arrays of Independent
Disks (RAID) 405 with connections between devices imple-
mented using Gigabit Ethernet. As is known by those of skill
in the art, a SAN 403 may be used to combine many RAID
arrays 405 together, resulting in extremely high bandwidth—
approaching or potentially exceeding the bandwidth available
from the RAM used in current gaming consoles and PCs.
And, while RAID arrays based on rotating media, such as
magnetic media, frequently have significant seek-time access
latency, RAID arrays based on semiconductor storage can be
implemented with much lower access latency. In another
configuration, some or all of the servers 402 provide some or
all of their own mass storage locally. For example, a server
402 may store frequently-accessed information such as its
operating system and a copy of a video game or application on
low-latency local Flash-based storage, but it may utilize the
SAN to access RAID Arrays 405 based on rotating media
with higher seek latency to access large databases of geom-
etry or game state information on a less frequent bases.

[0116] Inaddition, in one embodiment, the hosting service
210 employs low-latency video compression logic 404
described in detail below. The video compression logic 404
may be implemented in software, hardware, or any combina-
tion thereof (certain embodiments of which are described
below). Video compression logic 404 includes logic for com-
pressing audio as well as visual material.

[0117] Inoperation, while playing a video game or using an
application at the user premises 211 via a keyboard, mouse,
game controller or other input device 421, control signal logic
413 on the client 415 transmits control signals 406a-b (typi-
cally in the form of UDP packets) representing the button
presses (and other types of user inputs) actuated by the user to
the hosting service 210. The control signals from a given user
are routed to the appropriate server (or servers, if multiple
servers are responsive to the user’s input device) 402. As
illustrated in FIG. 44, control signals 406a may be routed to
the servers 402 via the SAN. Alternatively or in addition,
control signals 4065 may be routed directly to the servers 402
over the hosting service network (e.g., an Ethernet-based
local area network). Regardless of how they are transmitted,
the server or servers execute the game or application software
in response to the control signals 406a-b. Although not illus-
trated in FIG. 4a, various networking components such as a

US 2009/0225220 Al

firewall(s) and/or gateway(s) may process incoming and out-
going traffic at the edge of the hosting service 210 (e.g.,
between the hosting service 210 and the Internet 410) and/or
at the edge of the user premises 211 between the Internet 410
and the home or office client 415. The graphical and audio
output of the executed game or application software—i.e.,
new sequences of video images—are provided to the low-
latency video compression logic 404 which compresses the
sequences of video images according to low-latency video
compression techniques, such as those described herein and
transmits a compressed video stream, typically with com-
pressed or uncompressed audio, back to the client 415 over
the Internet 410 (or, as described below, over an optimized
high speed network service that bypasses the general Inter-
net). Low-latency video decompression logic 412 on the cli-
ent 415 then decompresses the video and audio streams and
renders the decompressed video stream, and typically plays
the decompressed audio stream, on a display device 422
Alternatively, the audio can be played on speakers separate
from the display device 422 or not at all. Note that, despite the
fact that input device 421 and display device 422 are shown as
free-standing devices in FIGS. 24 and 25, they may be inte-
grated within client devices such as portable computers or
mobile devices.

[0118] Home or office client 415 (described previously as
home or office client 205 in FIGS. 24 and 26) may be a very
inexpensive and low-power device, with very limited com-
puting or graphics performance and may well have very lim-
ited or no local mass storage. In contrast, each server 402,
coupled to a SAN 403 and multiple RAIDs 405 can be an
exceptionally high performance computing system, and
indeed, if multiple servers are used cooperatively in a paral-
lel-processing configuration, there is almost no limit to the
amount of computing and graphics processing power that can
be brought to bear. And, because of the low-latency video
compression 404 and low-latency video compression 412,
perceptually to the user, the computing power of the servers
402 is being provided to the user. When the user presses a
button on input device 421, the image on display 422 is
updated in response to the button press perceptually with no
meaningful delay, as if the game or application software were
running locally. Thus, with a home or office client 415 that is
avery low performance computer or just an inexpensive chip
that implements the low-latency video decompression and
control signal logic 413, a user is provided with effectively
arbitrary computing power from a remote location that
appears to be available locally. This gives users the power to
play the most advanced, processor-intensive (typically new)
video games and the highest performance applications.

[0119] FIG. 4c¢ shows a very basic and inexpensive home or
office client device 465. This device is an embodiment of
home or office client 415 from FIGS. 4a and 4b. It is approxi-
mately 2 inches long. It has an Ethernet jack 462 that inter-
faces with an Ethernet cable with Power over Ethernet (PoE),
from which it derives its power and its connectivity to the
Internet. It is able to run Network Address Translation (NAT)
within a network that supports NAT. In an office environment,
many new Ethernet switches have PoE and bring PoE directly
to a Ethernet jack in an office. It such a situation, all that is
required is an Ethernet cable from the wall jack to the client
465. Ifthe available Ethernet connection does not carry power
(e.g.,in ahome with a DSL or cable modem, but no PoE), then

Sep. 10, 2009

there are inexpensive wall “bricks” (i.e., power supplies)
available that will accept an unpowered Ethernet cable and
output Ethernet with PoE.

[0120] The client 465 contains control signal logic 413 (of
FIG. 4a) that is coupled to a Bluetooth wireless interface,
which interfaces with Bluetooth input devices 479, such as a
keyboard, mouse, game controller and/or microphone and/or
headset. Also, one embodiment of client 465 is capable of
outputting video at 120 fps coupled with a display device 468
able to support 120 fps video and signal (typically through
infrared) a pair of shuttered glasses 466 to alternately shutter
one eye, then the other with each successive frame. The effect
perceived by the user is that of a stereoscopic 3D image that
“jumps out” of the display screen. One such display device
468 that supports such operation is the Samsung HL.-T5076S.
Since the video stream for each eye is separate, in one
embodiment two independent video streams are compressed
by the hosting service 210, the frames are interleaved in time,
and the frames are decompressed as two independent decom-
pression processes within client 465.

[0121] The client 465 also contains low latency video
decompression logic 412, which decompresses the incoming
video and audio and output through the HDMI (High-Defi-
nition Multimedia Interface), connector 463 which plugs into
an SDTV (Standard Definition Television) or HDTV (High
Definition Television) 468, providing the TV with video and
audio, or into a monitor 468 that supports HDMI. Ifthe user’s
monitor 468 does not support HDMI, then an HDMI-to-DVI
(Digital Visual Interface) can be used, but the audio will be
lost. Under the HDMI standard, the display capabilities (e.g.
supported resolutions, frame rates) 464 are communicated
from the display device 468, and this information is then
passed back through the Internet connection 462 back to the
hosting service 210 so it can stream compressed video in a
format suitable for the display device.

[0122] FIG. 4d shows a home or office client device 475
that is the same as the home or office client device 465 shown
in FIG. 4¢ except that is has more external interfaces. Also,
client 475 can accept either PoE for power, or it can run off of
an external power supply adapter (not shown) that plugs in the
wall. Using client 475 USB input, video camera 477 provides
compressed video to client 475, which is uploaded by client
475 to hosting service 210 for use described below. Built into
camera 477 is a low-latency compressor utilizing the com-
pression techniques described below.

[0123] In addition to having an Ethernet connector for its
Internet connection, client 475 also has an 802.11g wireless
interface to the Internet. Both interfaces are able to use NAT
within a network that supports NAT.

[0124] Also, in addition to having an HDMI connector to
output video and audio, client 475 also has a Dual Link DVI-I
connector, which includes analog output (and with a standard
adapter cable will provide VGA output). It also has analog
outputs for composite video and S-video.

[0125] For audio, the client 475 has left/right analog stereo
RCA jacks, and for digital audio output it has a TOSLINK
output.

[0126] Inaddition to a Bluetooth wireless interface to input
devices 479, it also has USB jacks to interface to input
devices.

US 2009/0225220 Al

[0127] FIG. 4e shows one embodiment of the internal
architecture of client 465. Either all or some of the devices
shown in the diagram can be implemented in an Field Pro-
grammable Logic Array, an custom ASIC or in several dis-
crete devices, either custom designed or off-the-shelf.
[0128] Ethernet with PoE 497 attaches to Ethernet Interface
481. Power 499 is derived from the Ethernet with PoE 497 and
is connected to the rest of the devices in the client 465. Bus
480 is a common bus for communication between devices.
[0129] Control CPU 483 (almost any small CPU, suchas a
MIPS R4000 series CPU at 100 MHz with embedded RAM is
adequate) running a small client control application from
Flash 476 implements the protocol stack for the network (i.e.
Ethernet interface) and also communicates with the Hosting
Service 210, and configures all of the devices in the client
465. It also handles interfaces with the input devices 469 and
sends packets back to the hosting service 210 with user con-
troller data, protected by Forward Error Correction, if neces-
sary. Also, Control CPU 483 monitors the packet traffic (e.g.
if packets are lost or delayed and also timestamps their
arrival). This information is sent back to the hosting service
210 so that it can constantly monitor the network connection
and adjust what it sends accordingly. Flash memory 476 is
initially loaded at the time of manufacture with the control
program for Control CPU 483 and also with a serial number
that is unique to the particular Client 465 unit. This serial
number allows the hosting service 210 to uniquely identify
the Client 465 unit.

[0130] Bluetooth interface 484 communicates to input
devices 469 wirelessly through its antenna, internal to client
465.

[0131] Video decompressor 486 is a low-latency video
decompressor configured to implement the video decompres-
sion described herein. A large number of video decompres-
sion devices exist, either off-the-shelf; or as Intellectual Prop-
erty (IP) of'a design that can be integrated into an FPGA or a
custom ASIC. One company offering IP for an H.264 decoder
is Ocean Logic of Manly, NSW Australia. The advantage of
using [P is that the compression techniques used herein do not
conform to compression standards. Some standard decom-
pressors are flexible enough to be configured to accommodate
the compression techniques herein, but some can not. But,
with IP, there is complete flexibility in redesigning the
decompressor as needed.

[0132] The output of the video decompressor is coupled to
the video output subsystem 487, which couples the video to
the video output of the HDMI interface 490.

[0133] The audio decompression subsystem 488 is imple-
mented either using a standard audio decompressor that is
available, or it can be implemented as IP, or the audio decom-
pression can be implemented within the control processor
483 which could, for example, implement the Vorbis audio
decompressor.

[0134] The device that implements the audio decompres-
sion is coupled to the audio output subsystem 489 that couples
the audio to the audio output of the HDMI interface 490
[0135] FIG. 4f'shows one embodiment ofthe internal archi-
tecture of client 475. As can be seen, the architecture is the
same as that of client 465 except for additional interfaces and
optional external DC power from a power supply adapter that
plugs in the wall, and if so used, replaces power that would
come from the Ethernet PoE 497. The functionality that is in
common with client 465 will not be repeated below, but the
additional functionality is described as follows.

Sep. 10, 2009

[0136] CPU 483 communicates with and configures the
additional devices.

[0137] WiFi subsystem 482 provides wireless Internet
access as an alternative to Ethernet 497 through its antenna.
WiFi subsystems are available from a wide range of manu-
facturers, including Atheros Communications of Santa Clara,
Calif.

[0138] USB subsystem 485 provides an alternative to Blue-
tooth communication for wired USB input devices 479. USB
subsystems are quite standard and readily available for
FPGAs and ASICs, as well as frequently built into off-the-
shelf devices performing other functions, like video decom-
pression.

[0139] Video output subsystem 487 produces a wider range
of'video outputs than within client 465. In addition to provid-
ing HDMI 490 video output, it provides DVI-1 491, S-video
492, and composite video 493. Also, when the DVI-1 491
interface is used for digital video, display capabilitics 464 are
passed back from the display device to the control CPU 483
so that it can notify the hosting service 210 of the display
device 478 capabilities. All of the interfaces provided by the
video output subsystem 487 are quite standard interfaces and
readily available in many forms.

[0140] Audio output subsystem 489 outputs audio digitally
through digital interface 494 (S/PDIF and/or TOSLINK) and
audio in analog form through stereo analog interface 495.
[0141] Round-Trip Latency Analysis

[0142] Of course, for the benefits of the preceding para-
graph to be realized, the round trip latency between a user’s
action using input device 421 and seeing the consequence of
that action on display device 420 should be no more than
70-80 ms. This latency must take into account all of the
factors in the path from input device 421 in the user premises
211 to hosting service 210 and back again to the user premises
211 to display device 422. FIG. 454 illustrates the various
components and networks over which signals must travel, and
above these components and networks is a timeline that lists
exemplary latencies that can be expected in a practical imple-
mentation. Note that FIG. 454 is simplified so that only the
critical path routing is shown. Other routing of data used for
other features of the system is described below. Double-
headed arrows (e.g., arrow 453) indicate round-trip latency
and a single-headed arrow (e.g., arrow 457) indicate one-way
latency, and “~” denote an approximate measure. It should be
pointed out that there will be real-world situations where the
latencies listed can not be achieved, but in a large number of
cases in the US, using DSL and cable modem connections to
the user premises 211, these latencies can be achieved in the
circumstances described in the next paragraph. Also, note
that, while cellular wireless connectivity to the Internet will
certainly work in the system shown, most current US cellular
data systems (such as EVDO) incur very high latencies and
would not be able to achieve the latencies shown in FIG. 45.
However, these underlying principles may be implemented
on future cellular technologies that may be capable of imple-
menting this level of latency.

[0143] Starting from the input device 421 at user premises
211, once the user actuates the input device 421, auser control
signal is sent to client 415 (which may be a standalone device
such a set-top box, or it may be software or hardware running
in another device such as a PC or a mobile device), and is
packetized (in UDP format in one embodiment) and the
packet is given a destination address to reach hosting service
210. The packet will also contain information to indicate

US 2009/0225220 Al

which user the control signals are coming from. The control
signal packet(s) are then forwarded through Firewall/Router/
NAT (Network Address Translation) device 443 to WAN
interface 442. WAN interface 442 is the interface device
provided to the user premises 211 by the User’s ISP (Internet
Service Provider). The WAN interface 442 may be a Cable or
DSL modem, a WiMax transceiver, a Fiber transceiver, a
Cellular data interface, a Internet Protocol-over-powerline
interface, or any other of many interfaces to the Internet.
Further, Firewall/Router/NAT device 443 (and potentially
WAN interface 442) may be integrated into the client 415. An
example of this would be a mobile phone, which includes
software to implement the functionality of home or office
client 415, as well as the means to route and connect to the
Internet wirelessly through some standard (e.g., 802.11g).

[0144] WAN Interface 442 then routes the control signals to
what shall be called herein the “point of presence” 441 for the
user’s Internet Service Provider (ISP) which is the facility that
provides an interface between the WAN transport connected
to the user premises 211 and the general Internet or private
networks. The point of presence’s characteristics will vary
depending upon nature of the Internet service provided. For
DSL, it typically will be a telephone company Central Office
where a DSLAM is located. For cable modems, it typically
will be a cable Multi-System Operator (MSO) head end. For
cellular systems, it typically will be a control room associated
with cellular tower. But whatever the point of presence’s
nature, it will then route the control signal packet(s) to the
general Internet 410. The control signal packet(s) will then be
routed to the WAN Interface 441 to the hosting service 210,
through what most likely will be a fiber transceiver interface.
The WAN 441 will then route the control signal packets to
routing logic 409 (which may be implemented in many dif-
ferent ways, including Ethernet switches and routing serv-
ers), which evaluates the user’s address and routes the control
signal(s) to the correct server 402 for the given user.

[0145] The server 402 then takes the control signals as input
for the game or application software that is running on the
server 402 and uses the control signals to process the next
frame of the game or application. Once the next frame is
generated, the video and audio is output from server 402 to
video compressor 404. The video and audio may be output
from server 402 to compressor 404 through various means. To
start with, compressor 404 may be built into server 402, so the
compression may be implemented locally within server 402.
Or, the video and/or audio may be output in packetized form
through a network connection such as an Ethernet connection
to a network that is either a private network between server
402 and video compressor 404, or a through a shared network,
such as SAN 403. Or, the video may be output through a video
output connector from server 402, such as a DVI or VGA
connector, and then captured by video compressor 404. Also,
the audio may be output from server 402 as either digital
audio (e.g., through a TOSLINK or S/PDIF connector) or as
analog audio, which is digitized and encoded by audio com-
pression logic within video compressor 404.

[0146] Once video compressor 404 has captured the video
frame and the audio generated during that frame time from
server 402, then video compressor will compress the video
and audio using techniques described below. Once the video
and audio is compressed it is packetized with an address to
send it back to the user’s client 415, and it is routed to the
WAN Interface 441, which then routes the video and audio
packets through the general Internet 410, which then routes

Sep. 10, 2009

the video and audio packets to the user’s ISP point of presence
441, which routes the video and audio packets to the WAN
Interface 442 at the user’s premises, which routes the video
and audio packets to the Firewall/Router/NAT device 443,
which then routes the video and audio packets to the client
415.

[0147] The client 415 decompresses the video and audio,
and then displays the video on the display device 422 (or the
client’s built-in display device) and sends the audio to the
display device 422 or to separate amplifier/speakers or to an
amplifier/speakers built in the client.

[0148] For the user to perceive that the entire process just
described is perceptually without lag, the round-trip delay
needs be less than 70 or 80 ms. Some of the latency delays in
the described round-trip path are under the control of the
hosting service 210 and/or the user and others are not. None-
theless, based on analysis and testing of a large number of
real-world scenarios, the following are approximate measure-
ments.

[0149] The one-way transmission time to send the control
signals 451 is typically less than 1 ms, the roundtrip routing
through the user premises 452 is typically accomplished,
using readily available consumer-grade Firewall/Router/
NAT switches over Ethernet in about 1 ms. User ISPs vary
widely in their round trip delays 453, but with DSL and cable
modem providers, we typically see between 10 and 25 ms.
The round trip latency on the general Internet 410 can vary
greatly depending on how traffic is routed and whether there
are any failures on the route (and these issues are discussed
below), but typically the general Internet provides fairly opti-
mal routes and the latency is largely determined by speed of
light through optical fiber, given the distance to the destina-
tion. As discussed further below, we have established 1000
miles as a roughly the furthest distance that we expectto place
a hosting service 210 away from user premises 211. At 1000
miles (2000 miles round trip) the practical transit time for a
signal through the Internet is approximately 22 ms. The WAN
Interface 441 to the hosting service 210 is typically a com-
mercial-grade fiber high speed interface with negligible
latency. Thus, the general Internet latency 454 is typically
between 1 and 10 ms. The one-way routing 455 latency
through the hosting service 210 can be achieved in less than 1
ms. The server 402 will typically compute a new frame for a
game or an application in less than one frame time (which at
60 fpsis 16.7 ms) so 16 ms is a reasonable maximum one-way
latency 456 to use. In an optimized hardware implementation
of'the video compression and audio compression algorithms
described herein, the compression 457 can be completed in 1
ms. In less optimized versions, the compression may take as
much as 6 ms (of course even less optimized versions could
take longer, but such implementations would impact the over-
all latency of the round trip and would require other latencies
to be shorter (e.g., the allowable distance through the general
Internet could be reduced) to maintain the 70-80 ms latency
target). The round trip latencies of the Internet 454, User ISP
453, and User Premises Routing 452 have already been con-
sidered, so what remains is the video decompression 458
latency which, depending on whether the video decompres-
sion 458 is implemented in dedicated hardware, or if imple-
mented in software on a client device 415 (such as a PC or
mobile device) it can vary depending upon the size of the
display and the performance of the decompressing CPU.
Typically, decompression 458 takes between 1 and 8 ms.

US 2009/0225220 Al

[0150] Thus, by adding together all of the worst-case laten-
cies seen in practice, we can determine the worst-case round
trip latency that can be expected to be experience by a user of
the system shown in FIG. 4a. They are: 1+1+25+22+1+16+
6+8=80 ms. And, indeed, in practice (with caveats discussed
below), this is roughly the round trip latency seen using
prototype versions of the system shown in FIG. 4a, using
off-the-shelf Windows PCs as client devices and home DSL
and cable modem connections within the US. Of course,
scenarios better than worst case can result in much shorter
latencies, but they can not be relied upon in developing a
commercial service that is used widely.

[0151] To achieve the latencies listed in FIG. 4b over the
general Internet, requires the video compressor 404 and video
decompressor 412 from FIG. 44 in the client 415 to generate
a packet stream which very particular characteristics, such
that the packet sequence generated through entire path from
the hosting service 210 to the display device 422 is not subject
to delays or excessive packet loss and, in particular, consis-
tently falls with the constraints of the bandwidth available to
the user over the user’s Internet connection through WAN
interface 442 and Firewall/Router/NAT 443. Further, the
video compressor must create a packet stream which is suf-
ficiently robust so that it can tolerate the inevitable packet loss
and packet reordering that occurs in normal Internet and
network transmissions.

[0152] Low-Latency Video Compression

[0153] To accomplish the foregoing goals, one embodi-
ment takes a new approach to video compression which
decreases the latency and the peak bandwidth requirements
for transmitting video. Prior to the description of these
embodiments, an analysis of current video compression tech-
niques will be provided with respect to FIG. 5 and FIGS. 6a-b.
Of course, these techniques may be employed in accordance
with underlying principles if the user is provided with suffi-
cient bandwidth to handle the data rate required by these
techniques. Note that audio compression is not addressed
herein other than to state that it is implemented simulta-
neously and in synchrony with the video compression. Prior
art audio compression techniques exist that satisfy the
requirements for this system.

[0154] FIG. 5 illustrates one particular prior art technique
for compressing video in which each individual video frame
501-503 is compressed by compression logic 520 using a
particular compression algorithm to generate a series of com-
pressed frames 511-513. One embodiment of this technique is
“motion JPEG” in which each frame is compressed according
to a Joint Pictures Expert Group (JPEG) compression algo-
rithm, based upon the discrete cosine transform (DCT). Vari-
ous different types of compression algorithms may be
employed, however, while still complying with these under-
lying principles (e.g., wavelet-based compression algorithms
such as JPEG-2000).

[0155] One problem with this type of compression is that it
reduces the data rate of each frame, but it does not exploit
similarities between successive frames to reduce the data rate
of'the overall video stream. For example, as illustrated in FIG.
5, assuming a frame rate of 640x480x24 bits/
pixel=640%480%24/8/1024=900 Kilobytes/frame (KB/
frame), for a given quality of image, motion JPEG may only
compress the stream by a factor of 10, resulting in a data
stream of 90 KB/frame. At 60 frames/sec, this would require
a channel bandwidth of 90 KB*8 bits*60 frames/sec=42.2
Mbps, which would be far too high bandwidth for almost all

Sep. 10, 2009

home Internet connections in the US today, and too high
bandwidth for many office Internet connections. Indeed,
given that it would demand a constant data stream at such a
high bandwidth, and it would be just serving one user, even in
an office LAN environment, it would consume a large per-
centage of a 100 Mbps Ethernet LAN’s bandwidth and
heavily burden Ethernet switches supporting the LAN. Thus,
the compression for motion video is inefficient when com-
pared with other compression techniques (such as those
described below). Moreover, single frame compression algo-
rithms like JPEG and JPEG-2000 that use lossy compression
algorithms produce compression artifacts that may not be
noticeable in still images (e.g., an artifact within dense foliage
in the scene may not appear as an artifact since the eye does
not know exactly how the dense foliage should appear). But,
once the scene is in motion, an artifact can stand out because
the eye detects that the artifact changed from frame-to-frame,
despite the fact the artifact is in an area of the scene where it
might not have been noticeable in a still image. This results in
the perception of “background noise” in the sequence of
frames, similar in appearance to the “snow” noise visible
during marginal analog TV reception. Of course, this type of
compression may still be used in certain embodiments
described herein, but generally speaking, to avoid back-
ground noise in the scene, a high data rate (i.e., a low com-
pression ratio) is required for a given perceptual quality.

[0156] Other types of compression, such as H.264, or Win-
dows Media VC9, MPEG2 and MPEGH4 are all more efficient
at compressing a video stream because they exploit the simi-
larities between successive frames. These techniques all rely
upon the same general techniques to compress video. Thus,
although the H.264 standard will be described, but the same
general principles apply to various other compression algo-
rithms. A large number of H.264 compressors and decom-
pressor are available, including the x264 open source soft-
ware library for compressing H.264 and the FFmpeg open
source software libraries for decompressing H.264.

[0157] FIGS. 6a and 65 illustrate an exemplary prior art
compression technique in which a series of uncompressed
video frames 501-503, 559-561 are compressed by compres-
sion logic 620 into a series of “I frames™ 611, 671; “P frames”
612-613; and “B frames” 670. The vertical axis in FIG. 6a
generally signifies the resulting size of each of the encoded
frames (although the frames are not drawn to scale). As
described above, video coding using I frames, B frames and P
frames is well understood by those of skill in the art. Briefly,
an I frame 611 is a DCT-based compression of a complete
uncompressed frame 501 (similar to a compressed JPEG
image as described above). P frames 612-613 generally are
significantly smaller in size than I frames 611 because they
take advantage of the data in the previous I frame or P frame;
that is, they contain data indicating the changes between the
previous I frame or P frame. B frames 670 are similar to that
of P frames except that B frames use the frame in the follow-
ing reference frame as well as potentially the frame in the
preceding reference frame.

[0158] Forthe following discussion, it will be assumed that
the desired frame rate is 60 frames/second, that each I frame
is approximately 160 Kb, the average P frame and B frame is
16 Kb and that a new I frame is generated every second. With
this set of parameters, the average data rate would be: 160
Kb+16 Kb*59=1.1 Mbps. This data rate falls well within the
maximum data rate for many current broadband Internet con-
nections to homes and offices. This technique also tends to

US 2009/0225220 Al

avoid the background noise problem from intraframe-only
encoding because the P and B frames track differences
between the frames, so compression artifacts tend not to
appear and disappear from frame-to-frame, thereby reducing
the background noise problem described above.

[0159] One problem with the foregoing types of compres-
sion is that although the average data rate is relatively low
(e.g., 1.1 Mbps), a single I frame may take several frame times
to transmit. For example, using prior art techniques a 2.2
Mbps network connection (e.g., DSL or cable modem with
2.2 Mbps peak of max available data rate 302 from FIG. 3a)
would typically be adequate to stream video at 1.1 Mbps with
a 160 Kbps I frame each 60 frames. This would be accom-
plished by having the decompressor queue up 1 second of
video before decompressing the video. In 1 second, 1.1 Mb of
data would be transmitted, which would be easily accommo-
dated by a 2.2 Mbps max available data rate, even assuming
that the available data rate might dip periodically by as much
as 50%. Unfortunately, this prior art approach would result in
a 1-second latency for the video because of the 1-second
video buffer at the receiver. Such a delay is adequate for many
prior art applications (e.g., the playback of linear video), but
is far too long a latency for fast action video games which
cannot tolerate more than 70-80 ms of latency.

[0160] If an attempt were made to eliminate the 1-second
video buffer, it still would not result in an adequate reduction
in latency for fast action video games. For one, the use of B
frames, as previously described, would necessitate the recep-
tion of all of the B frames preceding an I frame as well as the
I frame. If we assume the 59 non-I frames are roughly split
between P and B frames, then there would be at least 29 B
frames and an I frame received before any B frame could be
displayed. Thus, regardless of the available bandwidth of the
channel, it would necessitate a delay of 29+1=30 frames of
Yeo™ second duration each, or 500 ms of latency. Clearly that
is far too long.

[0161] Thus, another approach would be to eliminate B
frames and only use I and P frames. (One consequence of this
is the data rate would increase for a given quality level, but for
the sake of consistency in this example, let’s continue to
assume that each [frame is 160 Kb and the average P frame is
16 Kb in size, and thus the data rate is still 1.1 Mbps) This
approach eliminates the unavoidable latency introduced by B
frames, since the decoding of each P frame is only reliant
upon the prior received frame. A problem that remains with
this approach is that an I frame is so much larger than an
average P frame, that on a low bandwidth channel, as is
typical in most homes and in many offices, the transmission of
the I frame adds substantial latency. This is illustrated in FIG.
6b. The video stream data rate 624 is below the available max
data rate 621 except for the I frames, where the peak data rate
required for the I frames 623 far exceeds the available max
data rate 622 (and even the rated max data rate 621). The data
rate required by the P frames is less than the available max
data rate. Even if the available max data rate peaks at 2.2
Mbps remains steadily at its 2.2 Mbps peak rate, it will take
160 Kb/2.2 Mb=71 ms to transmit the I frame, and if the
available max data rate 622 dips by 50% (1.1 Mbps), it will
take 142 ms to transmit the I frame. So, the latency in trans-
mitting the I frame will fall somewhere in between 71-142
ms. This latency is additive to the latencies identified in FIG.
45b, which in the worst case added up to 70 ms, so this would
result in a total round trip latency of 141-222 ms from the
point the user actuates input device 421 until an image

Sep. 10, 2009

appears on display device 422, which is far too high. And if
the available max data rate dips below 2.2 Mbps, the latency
will increase further.

[0162] Note also that there generally are severe conse-
quences to “jamming” an ISP with peak data rate 623 that are
far in excess of the available data rate 622. The equipment in
different ISPs will behave differently, but the following
behaviors are quite common among DSL and cable modem
ISPs when receiving packets at much higher data rate than the
available data rate 622: (a) delaying the packets by queuing
them (introducing latency), (b) dropping some or all of the
packets, (c¢) disabling the connection for a period of time
(most likely because the ISP is concerned it is a malicious
attack, such as “denial of service” attack). Thus, transmitting
a packet stream at full data rate with characteristics such as
those shown in FIG. 654 is not a viable option. The peaks 623
may be queued up at the hosting service 210 and sent at a data
rate below the available maximum data rate, introducing the
unacceptable latency described in the preceding paragraph.
[0163] Further, the video stream data rate sequence 624
shown in FIG. 65 is a very “tame” video stream data rate
sequence and would be the sort of data rate sequence that one
would expect to result from compressing the video from a
video sequence that does not change very much and has very
little motion (e.g., as would be common in video teleconfer-
encing where the cameras are in a fixed position and have
little motion, and the objects, in the scene, e.g., seated people
talking, show little motion).

[0164] The video stream data rate sequence 634 shown in
FIG. 6c¢ is a sequence typical to what one would expect to see
from video with far more action, such as might be generated
in a motion picture or a video game, or in some application
software. Note that in addition to the I frame peaks 633, there
are also P frame peaks such as 635 and 636 that are quite large
and exceed the available max data rate on many occasions.
Although these P frame peaks are not quite as large as the |
frame peaks, they still are far too large to be carried by the
channel at full data rate, and as with the I frame peaks, they P
frame peaks must be transmitted slowly (thereby increasingly
latency).

[0165] On a high bandwidth channel (e.g., a 100 Mbps
LAN, or a high bandwidth 100 Mbps private connection) the
network would be able to tolerate large peaks, such as I frame
peaks 633 or P frame peaks 636, and in principle, low latency
could be maintained. But, such networks are frequently
shared amongst many users (e.g., in an office environment),
and such “peaky” data would impact the performance of the
LAN, particularly if the network traffic was routed to a private
shared connection (e.g., from a remote data center to an
office). To start with, bear in mind that this example is of a
relatively low resolution video stream of 640x480 pixels at 60
fps. HDTV streams of 1920x1080 at 60 fps are readily
handled by modern computers and displays, and 2560x1440
resolution displays at 60 fps are increasingly available (e.g.,
Apple, Inc.’s 30" display). A high action video sequence at
1920x1080 at 60 fps may require 4.5 Mbps using H.264
compression for a reasonable quality level. If we assume the
1 frames peak at 10x the nominal data rate, that would result
in 45 Mbps peaks, as well as smaller, but still considerable, P
frame peak. If several users were receiving video streams on
the same 100 Mbps network (e.g., a private network connec-
tion between an office and data center), it is easy to see how
the peaks from several users’ video stream could happen to
align, overwhelming the bandwidth of the network, and

US 2009/0225220 Al

potentially overwhelming the bandwidth of the backplanes of
the switches supporting the users on the network. Even in the
case of a Gigabit Ethernet network, if enough users had
enough peaks aligned at once, it could overwhelm the net-
work or the network switches. And, once 2560x1440 resolu-
tion video becomes more commonplace, the average video
stream data rate may be 9.5 Mbps, resulting in perhaps a 95
Mbps peak data rate. Needless to say, a 100 Mbps connection
between a data center and an office (which today is an excep-
tionally fast connection) would be completely swamped by
the peak traffic from a single user. Thus, even though [LANs
and private network connections can be more tolerant of
peaky streaming video, the streaming video with high peaks
is not desirable and might require special planning and
accommodation by an office’s I'T department.

[0166] Of course, for standard linear video applications
these issues are not a problem because the data rate is
“smoothed” at the point of transmission and the data for each
frame below the max available data rate 622, and a buffer in
the client stores a sequence of I, P and B frames before they
are decompressed. Thus, the data rate over the network
remains close to the average data rate of the video stream.
Unfortunately, this introduces latency, even if B frames are
not used, that is unacceptable for low-latency applications
such as video games and applications require fast response
time.

[0167] One prior art solution to mitigating video streams
that have high peaks is to use a technique often referred to as
“Constant Bit Rate” (CBR) encoding. Although the term
CBR would seem to imply that all frames are compressed to
have the same bit rate (i.e., size), what it usually refers to is a
compression paradigm where a maximum bit rate across a
certain number of frames (in our case, 1 frame) is allowed. For
example, in the case of FIG. 6c¢, if a CBR constraint were
applied to the encoding that limited the bit rate to, for
example, 70% of the rated max data rate 621, then the com-
pression algorithm would limit the compression of each of the
frames so that any frame that would normally be compressed
using more than 70% of the rated max data rate 621 would be
compressed with less bits. The result of this is that frames that
would normally require more bits to maintain a given quality
level would be “starved” of bits and the image quality of those
frames would be worse than that of other frames that do not
require more bits than the 70% of the rate max data rate 621.
This approach can produce acceptable results for certain
types of compressed video where there (a) little motion or
scene changes are expected and (b) the users can accept
periodic quality degradation. A good example of a CBR-
suited application is video teleconferencing since there are
few peaks, and if the quality degrades briefly (for example, if
the camera is panned, resulting in significant scene motion
and large peaks, during the panning there may not be enough
bits for high-quality image compression, which could result
in degraded image quality), it is acceptable for most users.
Unfortunately, CBR is not well-suited for many other appli-
cations which have scenes of high complexity or a great deal
of motion and/or where a reasonably constant level of quality
is required.

[0168] The low-latency compression logic 404 employed
in one embodiment uses several different techniques to
address the range of problems with streaming low-latency
compressed video, while maintaining high quality. First, the
low-latency compression logic 404 generates only I frames
and P frames, thereby alleviating the need to wait several

Sep. 10, 2009

frame times to decode each B frame. In addition, as illustrated
in FIG. 7a, in one embodiment, the low-latency compression
logic 404 subdivides each uncompressed frame 701-760 into
a series of “tiles” and individually encodes each tile as either
an I frame or a P frame. The group of compressed [frames and
P frames are referred to herein as “R frames” 711-770. In the
specific example shown in F1G. 7a, each uncompressed frame
is subdivided into a 4x4 matrix of 16 tiles. However, these
underlying principles are not limited to any particular subdi-
vision scheme.

[0169] In one embodiment, the low-latency compression
logic 404 divides up the video frame into a number of tiles,
and encodes (i.e., compresses) one tile from each frame as an
I frame (i.e., the tile is compressed as if it is a separate video
frame of Yi6™ the size of the full image, and the compression
used for this “mini” frame is I frame compression) and the
remaining tiles as P frames (i.e., the compression used for
each “mini” 6™ frame is P frame compression). Tiles com-
pressed as [frames and as P frames shall be referred to as “I
tiles” and “P tiles”, respectively. With each successive video
frame, the tile to be encoded as an I tile is changed. Thus, in
a given frame time, only one tile of the tiles in the video frame
is an I tile, and the remainder of the tiles are P tiles. For
example, in FIG. 7a, tile 0 of uncompressed frame 701 is
encoded as I tile I, and the remaining 1-15 tiles are encoded as
P tiles P, through P, ; to produce R frame 711. In the next
uncompressed video frame 702, tile 1 of uncompressed frame
701 is encoded as I tile I, and the remaining tiles 0 and 2
through 15 are encoded as P tiles, P, and P, through P, ,, to
produce R frame 712. Thus, the I tiles and P tiles for tiles are
progressively interleaved in time over successive frames. The
process continues until an R tile 770 is generated with the last
tile in the matrix encoded as an I tile (i.e., I,5). The process
then starts over, generating another R frame such as frame 711
(i.e., encoding an [tile for tile 0) etc. Although not illustrated
in FIG. 7a, in one embodiment, the first R frame of the video
sequence of R frames contains only I tiles (i.e., so that sub-
sequent P frames have reference image data from which to
calculate motion). Alternatively, in one embodiment, the star-
tup sequence uses the same I tile pattern as normal, but does
not include P tiles for those tiles that have not yet been
encoded with an I tile. In other words, certain tiles are not
encoded with any data until the first I tile arrives, thereby
avoiding startup peaks in the video stream data rate 934 in
FIG. 9a, which is explained in further detail below. Moreover,
as described below, various different sizes and shapes may be
used for the tiles while still complying with these underlying
principles.

[0170] The video decompression logic 412 running on the
client 415 decompresses each tile as if it is a separate video
sequence of small [and P frames, and then renders each tile to
the frame buffer driving display device 422. For example, |,
and P, from R frames 711 to 770 are used to decompress and
render tile 0 of the video image. Similarly, I, and P, from R
frames 711 to 770 are used to reconstruct tile 1, and so on. As
mentioned above, decompression of I frames and P frames is
well known in the art, and decompression of I tiles and P tiles
can be accomplished by having a multiple instances of a video
decompressor running in the client 415. Although multiply-
ing processes would seem to increase the computational bur-
den on client 415, it actually does not because the tile them-
selves are proportionally smaller relative to the number of

US 2009/0225220 Al

additional processes, so the number of pixels displayed is the
same as if there were one process and using conventional full
sized I and P frames.

[0171] This R frame technique significantly mitigates the
bandwidth peaks typically associated with I frames illustrated
in FIGS. 65 and 6c¢ because any given frame is mostly made
up of P frames which are typically smaller than I frames. For
example, assuming again that atypical I frame is 160 Kb, then
the I tiles of each of the frames illustrated in FIG. 7a would be
roughly %16 of this amount or 10 Kb. Similarly, assuming that
a typical P frame is 16 Kb, then the P frames for each of the
tiles illustrated in FIG. 7a may be roughly 1 Kb The end result
is an R frame of approximately 10 Kb+15%1 Kb=25 Kb. So,
each 60-frame sequence would be 25 Kb*60=1.5 Mbps. So,
at 60 frames/second, this would require a channel capable of
sustaining a bandwidth of 1.5 Mbps, but with much lower
peaks due to I tiles being distributed throughout the 60-frame
interval.

[0172] Note that in previous examples with the same
assumed data rates for I frames and P frames, the average data
rate was 1.1 Mbps. This is because in the previous examples,
anew I frame was only introduced once every 60 frame times,
whereas in this example, the 16 tiles that make up an I frame
cycle through in 16 frames times, and as such the equivalent
of'an I frame is introduced every 16 frame times, resulting in
a slightly higher average data rate. In practice, though, intro-
ducing more frequent I frames does not increase the data rate
linearly. This is due to the fact that a P frame (or a P tile)
primarily encodes the difference from the prior frame to the
next. So, if the prior frame is quite similar to the next frame,
the P frame will be very small, if the prior frame is quite
different from the next frame, the P frame will be very large.
But because a P frame is largely derived from the previous
frame, rather than from the actual frame, the resulting
encoded frame may contain more errors (e.g., visual artifacts)
than an I frame with an adequate number of bits. And, when
one P frame follows another P frame, what can occur is an
accumulation of errors that gets worse when there is a long
sequence of P frames. Now, a sophisticated video compressor
will detect the fact that the quality of the image is degrading
after a sequence of P frames and, if necessary, it will allocate
more bits to subsequent P frames to bring up the quality or, if
it is the most efficient course of action, replace a P frame with
an I frame. So, when long sequences of P frames are used
(e.g., 59 P frames, as in prior examples above) particularly
when the scene has a great deal of complexity and/or motion,
typically, more bits are needed for P frames as they get further
removed from an I frame.

[0173] Or, to look at P frames from the opposite point of
view, P frames that closely follow an I frame tend to require
less bits than P frames that are further removed from an I
frame. So, in the example shown in FIG. 7a, no P frame is
further than 15 frames removed from an I frame that precedes
it, where as in the prior example, a P frame could be 59 frames
removed from an [frame. Thus, with more frequent I frames,
the P frames are smaller. Of course, the exact relative sizes
will vary based on the nature of the video stream, but in the
example of FIG. 7a, if an I tile is 10 Kb, P tiles on average,
may be only 0.75 kb in size resulting in 10 Kb+15%0.75
Kb=21.25 Kb, or at 60 frames per second, the data rate would
be 21.25 Kb*60=1.3 Mbps, or about 16% higher data rate
than a stream with an I frame followed by 59 P frames at 1.1
Mbps. Once, again, the relative results between these two
approaches to video compression will vary depending up on

Sep. 10, 2009

the video sequence, but typically, we have found empirically
that using R-frames require about 20% more bits for a given
level of quality than using I/P frame sequences. But, of
course, R frames dramatically reduce the peaks which make
the video sequences usable with far less latency than I/P
frame sequences.

[0174] R frames can be configured in a variety of different
ways, depending upon the nature of the video sequence, the
reliability of the channel, and the available data rate. In an
alternative embodiment, a different number of tiles is used
than 16 in a 4x4 configuration. For example 2 tiles may be
used in a 2x1 or 1x2 configuration, 4 tiles may be used in a
2x2, 4x1 or 1x4 configuration, 6 tiles may be used in a 3x2,
2x3, 6x1 or 1x6 configurations or 8 tiles may be used in a 4x2
(as shown in FIG. 7b), 2x4, 8x1 or 1x8 configuration. Note
that the tiles need not be square, nor must the video frame be
square, or even rectangular. The tiles can be broken up into
whatever shape best suits the video stream and the application
used.

[0175] In another embodiment, the cycling of the I and P
tiles is not locked to the number of tiles. For example, in an
8-tile 4x2 configuration, a 16-cycle sequence can still be used
as illustrated in FIG. 7b. Sequential uncompressed frames
721,722,723 are each divided into 8 tiles, 0-7 and each tile is
compressed individually. From R frame 731, only tile 0 is
compressed as an [tile, and the remaining tiles are com-
pressed as Ptiles. For subsequent R frame 732 all of the 8 tiles
are compressed as P tiles, and then for subsequent R frame
733, tile 1 is compressed as an [tile and the other tiles are all
compressed as P tiles. And, so the sequencing continues for
16 frames, with an I tile generated only every other frame, so
the last I tile is generated for tile 7 during the 15 frame time
(notshown in FIG. 7b) and during the 16” frame time R frame
780 is compressed using all P tiles. Then, the sequence begins
again with tile 0 compressed as an I tile and the other tiles
compressed as P tiles. As in the prior embodiment, the very
first frame of the entire video sequence would typically be all
I tiles, to provide a reference for P tiles from that point
forward. The cycling of I tiles and P tiles need not even be an
even multiple of the number oftiles. For example, with 8 tiles,
each frame with an I tile can be followed by 2 frames with all
P tiles, before another I tile is used. In yet another embodi-
ment, certain tiles may be sequenced with I tiles more often
than other tiles if, for example, certain areas of the screen are
known to have more motion requiring from frequent I tiles,
while others are more static (e.g., showing a score for a game)
requiring less frequent I tiles. Moreover, although each frame
is illustrated in FIGS. 7a-b with a single I tile, multiple I tiles
may be encoded in a single frame (depending on the band-
width of the transmission channel). Conversely, certain
frames or frame sequences may be transmitted with no I tiles
(i.e., only P tiles).

[0176] The reason the approaches of the preceding para-
graph works well is that while not having I tiles distributed
across every single frame would seem to be result in larger
peaks, the behavior of the system is not that simple. Since
each tile is compressed separately from the other tiles, as the
tiles get smaller the encoding of each tile can become less
efficient, because the compressor of a given tile is not able to
exploit similar image features and similar motion from the
other tiles. Thus, dividing up the screen into 16 tiles generally
will result in a less efficient encoding than dividing up the
screen into 8 tiles. But, if the screen is divided into 8 tiles and
it causes the data of a full I frame to be introduced every 8

US 2009/0225220 Al

frames instead of every 16 frames, it results in a much higher
data rate overall. So, by introducing a full I frame every 16
frames instead of every 8 frames, the overall data rate is
reduced. Also, by using 8 larger tiles instead of 16 smaller
tiles, the overall data rate is reduced, which also mitigates to
some degree the data peaks caused by the larger tiles.

[0177] Inanother embodiment, the low-latency video com-
pression logic 404 in FIGS. 7a and 75 controls the allocation
of bits to the various tiles in the R frames either by being
pre-configured by settings, based on known characteristics of
the video sequence to be compressed, or automatically, based
upon an ongoing analysis of the image quality in each tile. For
example, in some racing video games, the front ofthe player’s
car (which is relatively motionless in the scene) takes up a
large part of the lower half of the screen, whereas the upper
half of the screen is entirely filled with the oncoming road-
way, buildings and scenery, which is almost always in motion.
Ifthe compression logic 404 allocates an equal number of bits
to eachtile, then the tiles on the bottom half of the screen (tiles
4-7) in uncompressed frame 721 in FIG. 75, will generally be
compressed with higher quality than tiles than the tiles in the
upper half ofthe screen (tiles 0-3) in uncompressed frame 721
in FIG. 7b. If this particular game, or this particular scene of
the game is known to have such characteristics, then the
operators of the hosting service 210 can configure the com-
pression logic 404 to allocate more bits to the tiles in the top
of the screen than to tiles at the bottom of the screen. Or, the
compression logic 404 can evaluate the quality of the com-
pression of the tiles after frames are compressed (using one or
more of many compression quality metrics, such as Peak
Signal-To-Noise Ratio (PSNR)) and if it determines that over
a certain window of time, certain tiles are consistently pro-
ducing better quality results, then it gradually allocates more
bits to tiles that are producing lower quality results, until the
various tiles reach a similar level of quality. In an alternative
embodiment, the compressor logic 404 allocates bits to
achieve higher quality in a particular tile or group of'tiles. For
example, it may provide a better overall perceptual appear-
ance to have higher quality in the center of the screen than at
the edges.

[0178] Inoneembodiment, to improve resolution of certain
regions of the video stream, the video compression logic 404
uses smaller tiles to encode areas of the video stream with
relatively more scene complexity and/or motion than areas of
the video stream with relatively less scene complexity and/or
motion. For example, as illustrated in FIG. 8, smaller tiles are
employed around a moving character 805 in one area of one
R frame 811 (potentially followed by a series of R frames
with the same tile sizes (not shown)). Then, when the char-
acter 805 moves to a new area of the image, smaller tiles are
used around this new area within another R frame 812, as
illustrated. As mentioned above, various different sizes and
shapes may be employed as “tiles” while still complying with
these underlying principles.

[0179] While the cyclic I/P tiles described above substan-
tially reduce the peaks in the data rate of a video stream, they
do not eliminate the peaks entirely, particularly in the case of
rapidly-changing or highly complex video imagery, such as
occurs with motion pictures, video games, and some applica-
tion software. For example, during a sudden scene transition,
a complex frame may be followed by another complex frame
that is completely different. Even though several I tiles may
have preceded the scene transition by only a few frame times,
they don’t help in this situation because the new frame’s

Sep. 10, 2009

material has no relation to the previous I tiles. In such a
situation (and in other situations where even though not
everything changes, much of the image changes), the video
compressor 404 will determine that many, if not all, of the P
tiles are more efficiently coded as [tiles, and what results is a
very large peak in the data rate for that frame.

[0180] As discussed previously, it is simply the case that
with most consumer-grade Internet connections (and many
office connections), it simply is not feasible to “jam” data that
exceeds the available maximum data rate shown as 622 in
FIG. 6¢, along with the rated maximum data rate 621. Note
that the rated maximum data rate 621 (e.g., “6 Mbps DSL”) is
essentially a marketing number for users considering the
purchase of an Internet connection, but generally it does not
guarantee a level of performance. For the purposes of this
application, it is irrelevant, since our only concern is the
available maximum data rate 622 at the time the video is
streamed through the connection. Consequently, in FIGS. 9a
and 9c¢, as we describe a solution to the peaking problem, the
rated maximum data rate is omitted from the graph, and only
the available maximum data rate 922 is shown. The video
stream data rate must not exceed the available maximum data
rate 922.

[0181] To address this, the first thing that the video com-
pressor 404 does is determine a peak data rate 941, whichis a
data rate the channel is able to handle steadily. This rate can be
determined by a number of techniques. One such technique is
by gradually sending an increasingly higher data rate test
stream from the hosting service 210 to the client 415 in FIGS.
4a and 4b, and having the client provide feedback to the
hosting service as to the level of packet loss and latency. As
the packet loss and/or latency begins to show a sharp increase,
that is an indication that the available maximum data rate 922
is being reached. After that, the hosting service 210 can
gradually reduce the data rate of the test stream until the client
415 reports that for a reasonable period of time the test stream
has been received with an acceptable level of packet loss and
the latency is near minimal. This establishes a peak maximum
data rate 941, which will then be used as a peak data rate for
streaming video. Over time, the peak data rate 941 will fluc-
tuate (e.g., if another user in a household starts to heavily use
the Internet connection), and the client 415 will need to con-
stantly monitor it to see whether packet loss or latency
increases, indicating the available max data rate 922 is drop-
ping below the previously established peak data rate 941, and
if so the peak data rate 941. Similarly, if over time the client
415 finds that the packet loss and latency remain at optimal
levels, it can request that the video compressor slowly
increases the data rate to see whether the available maximum
dataratehas increased (e.g., if another user in a household has
stopped heavy use of the Internet connection), and again
waiting until packet loss and/or higher latency indicates that
the available maximum data rate 922 has been exceeded, and
again a lower level can be found for the peak data rate 941, but
one that is perhaps higher than the level before testing an
increased data rate. So, by using this technique (and other
techniques like it) a peak data rate 941 can be found, and
adjusted periodically as needed. The peak data rate 941 will
establishes the maximum data rate that can be used by the
video compressor 404 to stream video to the user. The logic
for determining the peak data rate may be implemented at the
user premises 211 and/or on the hosting service 210. At the
user premises 211, the client device 415 performs the calcu-
lations to determine the peak data rate and transmits this

US 2009/0225220 Al

information back to the hosting service 210; at the hosting
service 210, a server 402 at the hosting service performs the
calculations to determine the peak data rate based on statistics
received from the client 415 (e.g., packet loss, latency, max
data rate, etc).

[0182] FIG. 94 shows an example video stream data rate
934 that has substantial scene complexity and/or motion that
has been generated using the cyclic I/P tile compression tech-
niques described previously and illustrated in FIGS. 7a, 76
and 8. The video compressor 404 has been configured to
output compressed video at an average data rate that is below
the peak data rate 941, and note that, most of the time, the
video stream data rate remains below the peak data rate 941.
A comparison of data rate 934 with video stream data rate 634
shown in FIG. 6¢ created using I/P/B or I/P frames shows that
the cyclic I/P tile compression produces a much smoother
data rate. Still, at frame 2x peak 952 (which approaches 2x
the peak data rate 942) and frame 4x peak 954 (which
approaches 4x the peak data rate 944), the data rate exceeds
the peak data rate 941, which is unacceptable. In practice,
even with high action video from rapidly changing video
games, peaks in excess of peak data rate 941 occur in less than
2% of frames, peaks in excess of 2x peak data rate 942 occur
rarely, and peaks in excess of 3x peak data rate 943 occur
hardly ever. But, when they do occur (e.g., during a scene
transition), the data rate required by them is necessary to
produce a good quality video image.

[0183] Oneway tosolve this problem is simply to configure
the video compressor 404 such that its maximum data rate
output is the peak data rate 941. Unfortunately, the resulting
video output quality during the peak frames is poor since the
compression algorithm is “starved” for bits. What results is
the appearance of compression artifacts when there are sud-
den transitions or fast motion, and in time, the user comes to
realize that the artifacts always crop up when there is sudden
changes or rapid motion, and they can become quite annoy-
ing.

[0184] Although the human visual system is quite sensitive
to visual artifacts that appear during sudden changes or rapid
motion, it is not very sensitive to detecting a reduction in
frame rate in such situations. In fact, when such sudden
changes occur, it appears that the human visual system is
preoccupied with tracking the changes, and it doesn’t notice if
the frame rate briefly drops from 60 fps to 30 fps, and then
returns immediately to 60 fps. And, in the case of a very
dramatic transition, like a sudden scene change, the human
visual system does not notice if the frame rate drops to 20 fps
oreven 15 fps, and then immediately returns to 60 fps. So long
as the frame rate reduction only occurs infrequently, to a
human observer, it appears that the video has been continu-
ously running at 60 fps.

[0185] This property of the human visual system is
exploited by the techniques illustrated in FIG. 95. A server
402 (from FIGS. 4a and 4b) produces an uncompressed video
output stream at a steady frame rate (at 60 fps in one embodi-
ment). A timeline shows each frame 961-970 output each
Yeo™ second. Each uncompressed video frame, starting with
frame 961, is output to the low-latency video compressor 404,
which compresses the frame in less than a frame time, pro-
ducing for the first frame compressed frame 1 981. The data
produced for the compressed frame 1 981 may be larger or
smaller, depending upon many factors, as previously
described. Ifthe data is small enough that it can be transmitted
to the client 415 in a frame time (Y40 second) or less at the

Sep. 10, 2009

peak data rate 941, then it is transmitted during transmit time
(xmittime) 991 (the length of the arrow indicates the duration
of the transmit time). In the next frame time, server 402
produces uncompressed frame 2 962, it is compressed to
compressed frame 2 982, and it is transmitted to client 415
during transmit time 992, which is less than a frame time at
peak data rate 941.

[0186] Then, in the next frame time, server 402 produces
uncompressed frame 3 963. When it is compressed by video
compressor 404, the resulting compressed frame 3 983 is
more data than can be transmitted at the peak data rate 941 in
one frame time. So, it is transmitted during transmit time (2x
peak) 993, which takes up all of the frame time and part of the
next frame time. Now, during the next frame time, server 402
produces another uncompressed frame 4 964 and outputs it to
video compressor 404 but the data is ignored and illustrated
with 974. This is because video compressor 404 is configured
to ignore further uncompressed video frames that arrive while
it is still transmitting a prior compressed frame. Of course
client 415’s video decompressor will fail to receive frame 4,
but it simply continues to display on display device 422 frame
3 for 2 frame times (i.e., briefly reduces the frame rate from 60
fps to 30 fps).

[0187] For the next frame 5, server 402 outputs uncom-
pressed frame 5 965, is compressed to compressed frame 5
985 and transmitted within 1 frame during transmit time 995.
Client 415’s video decompressor decompresses frame 5 and
displays it on display device 422. Next, server 402 outputs
uncompressed frame 6 966, video compressor 404 com-
presses it to compressed frame 6 986, but this time the result-
ing data is very large. The compressed frame is transmitted
during transmit time (4x peak) 996 at the peak data rate 941,
but it takes almost 4 frame times to transmit the frame. During
the next 3 frame times, video compressor 404 ignores 3
frames from server 402, and client 415°s decompressor holds
frame 6 steadily on the display device 422 for 4 frames times
(i.e., briefly reduces the frame rate from 60 fps to 15 fps).
Then finally, server 402 outputs frame 10 970, video com-
pressor 404 compresses it into compressed frame 10 987, and
it is transmitted during transmit time 997, and client 415’s
decompressor decompresses frame 10 and displays it on dis-
play device 422 and once again the video resumes at 60 fps.
[0188] Note that although video compressor 404 drops
video frames from the video stream generated by server 402,
it does not drop audio data, regardless of what form the audio
comes in, and it continues to compress the audio data when
video frames are dropped and transmit them to client 415,
which continues to decompress the audio data and provide the
audio to whatever device is used by the user to playback the
audio. Thus audio continues unabated during periods when
frames are dropped. Compressed audio consumes a relatively
small percentage of bandwidth, compared to compressed
video, and as result does not have a major impact on the
overall data rate. Although it is not illustrated in any of the
data rate diagrams, there is always data rate capacity reserved
for the compressed audio stream within the peak data rate
941.

[0189] Theexamplejustdescribedin FIG. 95 was chosento
illustrate how the frame rate drops during data rate peaks, but
what it does not illustrate is that when the cyclic I/P tile
techniques described previously are used, such data rate
peaks, and the consequential dropped frames are rare, even
during high scene complexity/high action sequences such as
those that occur in video games, motion pictures and some

US 2009/0225220 Al

application software. Consequently, the reduced frame rates
are infrequent and brief, and the human visual system does
not detect them.

[0190] If the frame rate reduction mechanism just
described is applied to the video stream data rate illustrated in
FIG. 9a, the resulting video stream data rate is illustrated in
FIG. 9c¢. In this example, 2x peak 952 has been reduced to
flattened 2x peak 953, and 4x peak 955 has been reduced to
flattened 4x peak 955, and the entire video stream data rate
934 remains at or below the peak data rate 941.

[0191] Thus, using the techniques described above, a high
action video stream can be transmitted with low latency
through the general Internet and through a consumer-grade
Internet connection. Further, in an office environment on a
LAN (e.g., 100 Mbs Ethernet or 802.11g wireless) or on a
private network (e.g., 100 Mbps connection between a data
center an offices) a high action video stream can be transmit-
ted without peaks so that multiple users (e.g., transmitting
1920x1080 at 60 fps at 4.5 Mbps) can use the LAN or shared
private data connection without having overlapping peaks
overwhelming the network or the network switch backplanes.
[0192] Data Rate Adjustment

[0193] Inoneembodiment, the hosting service 210 initially
assesses the available maximum data rate 622 and latency of
the channel to determine an appropriate data rate for the video
stream and then dynamically adjusts the data rate in response.
To adjust the data rate, the hosting service 210 may, for
example, modify the image resolution and/or the number of
frames/second of the video stream to be sent to the client 415.
Also, the hosting service can adjust the quality level of the
compressed video. When changing the resolution of the video
stream, e.g., from a 1280x720 resolution to a 640x360 the
video decompression logic 412 on the client 415 can scale up
the image to maintain the same image size on the display
screen.

[0194] Inone embodiment, in a situation where the channel
completely drops out, the hosting service 210 pauses the
game. In the case of a multiplayer game, the hosting service
reports to the other users that the user has dropped out of the
game and/or pauses the game for the other users.

[0195] Dropped or Delayed Packets

[0196] Inone embodiment, if data is lost due to packet loss
between the video compressor 404 and client 415 in FIG. 4a
or 4b, or due to a packet being received out of order that
arrives too late to decompress and meet the latency require-
ments of the decompressed frame, the video decompression
logic 412 is able to mitigate the visual artifacts. In a streaming
1/P frame implementation, ifthere is a lost/delayed packet, the
entire screen is impacted, potentially causing the screen to
completely freeze for a period of time or show other screen-
wide visual artifacts. For example, if a lost/delayed packet
causes the loss of an I frame, then the decompressor will lack
a reference for all of the P frames that follow until a new I
frame is received. If a P frame is lost, then it will impact the P
frames for the entire screen that follow. Depending on how
long it will be before an I frame appears, this will have a
longer or shorter visual impact. Using interleaved I/P tiles as
shown in FIGS. 7a and 75, a lost/delayed packet is much less
likely to impact the entire screen since it will only affect the
tiles contained in the affected packet. If each tile’s data is sent
within an individual packet, then if a packet is lost, it will only
affect one tile. Of course, the duration of the visual artifact
will depend on whether an 1 tile packet is lost and, if a P tile
is lost, how many frames it will take until an I tile appears.

Sep. 10, 2009

But, given that different tiles on the screen are being updated
with I frames very frequently (potentially every frame), even
if one tile on the screen is affected, other tiles may not be.
Further, if some event cause a loss of several packets at once
(e.g., spike in power next to a DSL line that briefly disrupts the
data flow), then some of the tiles will be affected more than
others, but because some tiles will quickly be renewed with a
new I tile, they will be only briefly affected. Also, with a
streaming I/P frame implementation, not only are the I frames
the most critical frame, but the I frames are extremely large,
so if there is an event that causes a dropped/delayed packet,
there is a higher probability that an I frame will be affected
(i.e., if any part of an I frame is lost, it is unlikely that the I
frame can be decompressed at all) than a much smaller I tile.
For all of these reasons, using I/P tiles results in far fewer
visual artifacts when packets are dropped/delayed than with
I/P frames.

[0197] One embodiment attempts to reduce the effect of
lost packets by intelligently packaging the compressed tiles
within the TCP (transmission control protocol) packets or
UDP (user datagram protocol) packets. For example, in one
embodiment, tiles are aligned with packet boundaries when-
ever possible. FIG. 10a illustrates how tiles might be packed
within a series of packets 1001-1005 without implementing
this feature. Specifically, in FIG. 10a, tiles cross packet
boundaries and are packed inefficiently so that the loss of a
single packet results in the loss of multiple frames. For
example, if packets 1003 or 1004 are lost, three tiles are lost,
resulting in visual artifacts.

[0198] By contrast, FIG. 105 illustrates tile packing logic
1010 for intelligently packing tiles within packets to reduce
the effect of packet loss. First, the tile packing logic 1010
aligns tiles with packet boundaries. Thus, tiles T1, T3, T4, T7,
and T2 are aligned with the boundaries of packets 1001-1005,
respectively. The tile packing logic also attempts to fit tiles
within packets in the most efficient manner possible, without
crossing packet boundaries. Based on the size of each of the
tiles, tiles T1 and T6 are combined in one packet 1001; T3 and
T5 are combined in one packet 1002; tiles T4 and T8 are
combined in one packet 1003; tile T8 is added to packet 1004;
and tile T2 is added to packet 1005. Thus, under this scheme,
a single packet loss will result in the loss of no more than 2
tiles (rather than 3 tiles as illustrated in FIG. 10a).

[0199] One additional benefit to the embodiment shown in
FIG. 1054 is that the tiles are transmitted in a different order in
which they are displayed within the image. This way, if adja-
cent packets are lost from the same event interfering with the
transmission it will affect areas which are not near each other
on the screen, creating a less noticeable artifacting on the
display.

[0200] One embodiment employs forward error correction
(FEC) techniques to protect certain portions of the video
stream from channel errors. As is known in the art, FEC
techniques such as Reed-Solomon and Viterbi generate and
append error correction data information to data transmitted
over a communications channel. If an error occurs in the
underlying data (e.g., an I frame), then the FEC may be used
to correct the error.

[0201] FEC codes increase the data rate of the transmis-
sion; so ideally, they are only used where they are most
needed. If data is being sent that would not result in a very
noticeable visual artifact, it may be preferable to notuse FEC
codes to protect the data. For example, a P tile that immedi-
ately precedes an I tile that is lost will only create a visual

US 2009/0225220 Al

artifact (i.e., on tile on the screen will not be updated) for Veo™
of'second on the screen. Such a visual artifact is barely detect-
able by the human eye. As P tiles are further back from an I
tile, losing a P tile becomes increasingly more noticeable. For
example, ifa tile cycle pattern is an I tile followed by 15 P tiles
before an [tile is available again, then if the P tile immediately
following an I tile is lost, it will result in that tile showing an
incorrect image for 15 frame times (at 60 fps, that would be
250 ms). The human eye will readily detect a disruption in a
stream for 250 ms. So, the further back a P tile is from a new
I tile (i.e., the closer a P tiles follows an I tile), the more
noticeable the artifact. As previously discussed, though, in
general, the closer a P tile follows an I tile, the smaller the data
for that P tile. Thus, P tiles following I tiles not only are more
critical to protect from being lost, but they are smaller in size.
And, in general, the smaller the data is that needs to be
protected, the smaller the FEC code needs to be to protect it.
[0202] So, as illustrated in FIG. 11a, in one embodiment,
because of the importance of I tiles in the video stream, only
Itiles are provided with FEC codes. Thus, FEC 1101 contains
error correction code for I tile 1100 and FEC 1104 contains
error correction code for I tile 1103. In this embodiment, no
FEC is generated for the P tiles.

[0203] In one embodiment illustrated in FIG. 115 FEC
codes are also generated for P tiles which are most likely to
cause visual artifacts if lost. In this embodiment, FECs 1105
provide error correction codes for the first 3 P tiles, but not for
the P tiles that follow. In another embodiment, FEC codes are
generated for P tiles which are smallest in data size (which
will tend to self-select P tiles occurring the soonest after an [
tile, which are the most critical to protect).

[0204] Inanother embodiment, rather than sending an FEC
code with a tile, the tile is transmitted twice, each time in a
different packet. If one packet is lost/delayed, the other packet
is used.

[0205] In one embodiment, shown in FIG. 11¢, FEC codes
1111 and 1113 are generated for audio packets, 1110 and
1112, respectively, transmitted from the hosting service con-
currently with the video. It is particularly important to main-
tain the integrity of the audio in a video stream because
distorted audio (e.g., clicking or hissing) will result in a
particularly undesirable user experience. The FEC codes help
to ensure that the audio content is rendered at the client
computer 415 without distortion.

[0206] Inanother embodiment, rather than sending an FEC
code with audio data, the audio data is transmitted twice, each
time in a different packet. If one packet is lost/delayed, the
other packet is used.

[0207] In addition, in one embodiment illustrated in FIG.
11d, FEC codes 1121 and 1123 are used for user input com-
mands 1120 and 1122, respectively (e.g., button presses)
transmitted upstream from the client 415 to the hosting ser-
vice 210. This is important because missing a button press or
a mouse movement in a video game or an application could
result in an undesirable user experience.

[0208] Inanother embodiment, rather than sending an FEC
code with user input command data, the user input command
data is transmitted twice, each time in a different packet. If
one packet is lost/delayed, the other packet is used.

[0209] In one embodiment, the hosting service 210
assesses the quality of the communication channel with the
client 415 to determine whether to use FEC and, if so, what
portions of the video, audio and user commands to which
FEC should be applied. Assessing the “quality” of the channel

Sep. 10, 2009

may include functions such as evaluating packet loss, latency,
etc, as described above. If the channel is particularly unreli-
able, then the hosting service 210 may apply FEC to all of |
tiles, P tiles, audio and user commands. By contrast, if the
channel is reliable, then the hosting service 210 may apply
FEC only to audio and user commands, or may notapply FEC
to audio or video, or may not use FEC at all. Various other
permutations of the application of FEC may be employed
while still complying with these underlying principles. In one
embodiment, the hosting service 210 continually monitors
the conditions of the channel and changes the FEC policy
accordingly.

[0210] In another embodiment, referring to FIGS. 4a and
4b, when a packet is lost/delayed resulting in the loss of tile
data or if, perhaps because of a particularly bad packet loss,
the FEC is unable to correct lost tile data, the client 415
assesses how many frames are left before a new I tile will be
received and compares it to the round-trip latency from the
client 415 to hosting service 210. If the round-trip latency is
less than the number of frames before a new I tile is due to
arrive, then the client 415 sends a message to the hosting
service 210 requesting a new I tile. This message is routed to
the video compressor 404, and rather than generating a P tile
for the tile whose data had been lost, it generates an I tile.
Given that the system shown in FIGS. 4a and 46 is designed
to provide a round-trip latency that is typically less than 80
ms, this results in a tile being corrected within 80 ms (at 60
fps, frames are 16.67 ms of duration, thus in full frame times,
80 ms latency would result in a corrected a tile within 83.33
ms, which is 5 frame times—a noticeable disruption, but far
less noticeable than, for example, a 250 ms disruption for 15
frames). When the compressor 404 generates suchan I tile out
ofits usual cyclic order, if the I tile would cause the bandwidth
of that frame to exceed the available bandwidth, then the
compressor 404 will delay the cycles of the other tiles so that
the other tiles receive P tiles during that frame time (even if
one tile would normally be due an I tile during that frame),
and then starting with the next frame the usual cycling will
continue, and the tile that normally would have received an |
tile in the preceding frame will receive an [tile. Although this
action briefly delays the phase of the R frame cycling, it
normally will not be noticeable visually.

[0211] Video and Audio Compressor/Decompressor
Implementation
[0212] FIG. 12 illustrates one particular embodiment in

which a multi-core and/or multi-processor 1200 is used to
compress 8 tiles in parallel. In one embodiment, a dual pro-
cessor, quad core Xeon CPU computer system running at 2.66
GHz or higher is used, with each core implementing the open
source x264 H.264 compressor as an independent process.
However, various other hardware/software configurations
may be used while still complying with these underlying
principles. For example, each of the CPU cores can be
replaced with an H.264 compressor implemented in an
FPGA. In the example shown in FIG. 12, cores 1201-1208 are
used to concurrently process the I tiles and P tiles as eight
independent threads. As is well known in the art, current
multi-core and multi-processor computer systems are inher-
ently capable of multi-threading when integrated with multi-
threading operating systems such as Microsoft Windows XP
Professional Edition (either 64-bit or the 32-bit edition) and
Linux.

[0213] Inthe embodimentillustrated in FIG. 12, since each
of'the 8 cores is responsible for just one tile, it operates largely

US 2009/0225220 Al

independently from the other cores, each running a separate
instantiation of x264. A PCI Express x1-based DVI capture
card, such as the Sendero Video Imaging IP Development
Board from Microtronix of Oosterhout, The Netherlands is
used to capture uncompressed video at 640x480, 800x600, or
1280x720 resolution, and the FPGA on the card uses Direct
Memory Access (DMA) to transfer the captured video
through the DVI bus into system RAM. The tiles are arranged
in a 4x2 arrangement 1205 (although they are illustrated as
square tiles, in this embodiment they are of 160x240 resolu-
tion). Each instantiation of x264’s is configured to compress
one of the 8 160x240 tiles, and they are synchronized such
that, after an initial I tile compression, each core enters into a
cycle, each one frame out of phase with the other, to compress
one I tile followed by seven P tiles, and illustrated in FIG. 12.
[0214] Each frame time, the resulting compressed tiles are
combined into a packet stream, using the techniques previ-
ously described, and then the compressed tiles are transmitted
to a destination client 415.

[0215] Althoughnotillustrated in FIG. 12, if the data rate of
the combined 8 tiles exceeds a specified peak data rate 941,
then all 8x264 processes are suspended for as many frame
times as are necessary until the data for the combined 8 tiles
has been transmitted.

[0216] In one embodiment, client 415 is implemented as
software on a PC running 8 instantiations of FFmpeg. A
receiving process receives the 8 tiles, and each tile is routed to
an FFmpeg instantiation, which decompresses the tile and
renders it to an appropriate tile location on the display device
422.

[0217] The client 415 receives keyboard, mouse, or game
controller input from the PC’s input device drivers and trans-
mits it to the server 402. The server 402 then applies the
received input device data and applies it to the game or appli-
cation running on the server 402, which is a PC running
Windows using an Intel 2.16 GHz Core Duo CPU. The server
402 then produces a new frame and outputs it through its DVI
output, either from a motherboard-based graphics system, or
through a NVIDIA 8800GTX PCI card’s DVI output.
[0218] Simultaneously, the server 402 outputs the audio
produced by game or applications through its digital audio
output (e.g., S/PDIF), which is coupled to the digital audio
input on the dual quad-core Xeon-based PC that is imple-
menting the video compression. A Vorbis open source audio
compressor is used to compress the audio simultaneously
with the video using whatever core is available for the process
thread. In one embodiment, the core that completes com-
pressing its tile first executes the audio compression. The
compressed audio is then transmitted along with the com-
pressed video, and is decompressed on the client 415 using a
Vorbis audio decompressor.

[0219] Hosting Service Server Center Distribution

[0220] Light through glass, such as optical fiber, travels at
some fraction of the speed of light in a vacuum, and so an
exact propagation speed for light in optical fiber could be
determined. But, in practice, allowing time for routing delays,
transmission inefficiencies, and other overhead, we have
observed that optimal latencies on the Internet reflect trans-
mission speeds closer to 50% the speed of light. Thus, an
optimal 1000 mile round trip latency is approximately 22 ms,
and an optimal 3000 mile round trip latency is about 64 ms.
Thus, a single server on one US coast will be too far away to
serve clients on the other coast (which can be as far as 3000
miles away) with the desired latency. However, as illustrated

Sep. 10, 2009

in FIG. 13a, if the hosting service 210 server center 1300 is
located in the center of the US (e.g., Kansas, Nebraska, etc.),
such that the distance to any point in the continental US is
approximately 1500 miles or less, the round trip Internet
latency could be as low as 32 ms. Referring to FIG. 45, note
that although the worst-case latencies allowed for the user ISP
453 is 25 ms, typically, we have observed latencies closer to
10-15 ms with DSL and cable modem systems. Also, FIG. 45
assumes a maximum distance from the user premises 211 to
the hosting center 210 of 1000 miles. Thus, with a typical user
ISP round trip latency of 15 ms used and a maximum Internet
distance of 1500 miles for a round trip latency of 32 ms, the
total round trip latency from the point a user actuates input
device 421 and sees a response on display device 422 is
141415+32+1+16+6+8=80 ms. So, the 80 ms response time
can be typically achieved over an Internet distance of 1500
miles. This would allow any user premises with a short
enough user ISP latency 453 in the continental US to access a
single server center that is centrally located.

[0221] In another embodiment, illustrated in FIG. 135, the
hosting service 210 server centers, HS1-HS6, are strategi-
cally positioned around the United States (or other geographi-
cal region), with certain larger hosting service server centers
positioned close to high population centers (e.g., HS2 and
HS5). In one embodiment, the server centers HS1-HS6
exchange information via a network 1301 which may be the
Internet or a private network or a combination of both. With
multiple server centers, services can be provided at lower
latency to users that have high user ISP latency 453.

[0222] Although distance on the Internet is certainly a fac-
tor that contributes to round trip latency through the Internet,
sometimes other factors come into play that are largely unre-
lated to latency. Sometimes a packet stream is routed through
the Internet to a far away location and back again, resulting in
latency from the long loop. Sometimes there is routing equip-
ment on the path that is not operating properly, resulting in a
delay of the transmission. Sometimes there is a traffic over-
loading a path which introduces delay. And, sometimes, there
is a failure that prevents the user’s ISP from routing to a given
destination at all. Thus, while the general Internet usually
provides connections from one point to another with a fairly
reliable and optimal route and latency that is largely deter-
mined by distance (especially with long distance connections
that result in routing outside of the user’s local area) such
reliability and latency is by no means guaranteed and often
cannot be achieved from a user’s premises to a given desti-
nation on the general Internet.

[0223] Inone embodiment, when a user client 415 initially
connects to the hosting service 210 to play a video game or
use an application, the client communicates with each of the
hosting service server centers HS1-HS6 available upon star-
tup (e.g., using the techniques described above). If the latency
is low enough for a particular connection, then that connec-
tion is used. In one embodiment, the client communicates
with all, or a subset, of the hosting service server centers the
one with the lowest latency connection is selected. The client
may select the service center with the lowest latency connec-
tion or the service centers may identify the one with the
lowest latency connection and provide this information (e.g.,
in the form of an Internet address) to the client.

[0224] If a particular hosting service server center is over-
loaded and/or the user’s game or application can tolerate the
latency to another, less loaded hosting service server center,
then the client 415 may be redirected to the other hosting

US 2009/0225220 Al

service server center. In such a situation, the game or appli-
cation the user is running would be paused on the server 402
at the user’s overloaded server center, and the game or appli-
cation state data would be transferred to a server 402 at
another hosting service server center. The game or applica-
tion would then be resumed. In one embodiment, the hosting
service 210 would wait until the game or application has
either reached a natural pausing point (e.g., between levels in
a game, or after the user initiates a “save” operation in appli-
cation) to do the transfer. In yet another embodiment, the
hosting service 210 would wait until user activity ceases for a
specified period of time (e.g., 1 minute) and then would
initiate the transfer at that time.

[0225] Asdescribed above, in one embodiment, the hosting
service 210 subscribes to an Internet bypass service 440 of
FIG. 14 to attempt to provide guaranteed latency to its clients.
Internet bypass services, as used herein, are services that
provide private network routes from one point to another on
the Internet with guaranteed characteristics (e.g., latency,
data rate, etc.). For example, if the hosting service 210 was
receiving large amount of traffic from users using AT&T’s
DSL service offering in San Francisco, rather than routing to
AT&T’s San Francisco-based central offices, the hosting ser-
vice 210 could lease a high-capacity private data connection
from a service provider (perhaps AT&T itself or another
provider) between the San Francisco-based central offices
and one or more of the server centers for hosting service 210.
Then, if routes from all hosting service server centers HS1-
HS6 through the general Internet to a user in San Francisco
using AT&T DSL result in too high latency, then private data
connection could be used instead. Although private data con-
nections are generally more expensive than the routes through
the general Internet, so long as they remain a small percentage
of the hosting service 210 connections to users, the overall
cost impact will be low, and users will experience a more
consistent service experience.

[0226] Server centers often have two layers of backup
power in the event of power failure. The first layer typically is
backup power from batteries (or from an alternative immedi-
ately available energy source, such a flywheel that is kept
running and is attached to a generator), which provides power
immediately when the power mains fail and keeps the server
center running. If the power failure is brief, and the power
mains return quickly (e.g., within a minute), then the batteries
are all that is needed to keep the server center running. But if
the power failure is for a longer period of time, then typically
generators (e.g., diesel-powered) are started up that take over
for the batteries and can run for as long as they have fuel. Such
generators are extremely expensive since they must be
capable of producing as much power as the server center
normally gets from the power mains.

[0227] In one embodiment, each of the hosting services
HS1-HSS share user data with one another so that if one
server center has a power failure, it can pause the games and
applications that are in process, and then transfer the game or
application state data from each server 402 to servers 402 at
other server centers, and then will notify the client 415 of each
user to direct it communications to the new server 402. Given
that such situations occur infrequently, it may be acceptable
to transfer auser to a hosting service server center which is not
able to provide optimal latency (i.e., the user will simply have
to tolerate higher latency for the duration of the power fail-
ure), which will allow for a much wider range of options for
transferring users. For example, given the time zone differ-

Sep. 10, 2009

ences across the US, users on the East Coast may be going to
sleep at 11:30 PM while users on the West Coast at 8:30 PM
are starting to peak in video game usage. If there is a power
failure in a hosting service server center on the West Coast at
that time, there may not be enough West Coast servers 402 at
other hosting service server centers to handle all of the users.
In such a situation, some of the users can be transferred to
hosting service server centers on the East Coast which have
available servers 402, and the only consequence to the users
would be higher latency. Once the users have been transferred
from the server center that has lost power, the server center
can then commence an orderly shutdown of its servers and
equipment, such that all of the equipment has been shut down
before the batteries (or other immediate power backup) is
exhausted. In this way, the cost of a generator for the server
center can be avoided.

[0228] In one embodiment, during times of heavy loading
of'the hosting service 210 (either due to peak user loading, or
because one or more server centers have failed) users are
transferred to other server centers on the basis of the latency
requirements of the game or application they are using. So,
users using games or applications that require low latency
would be given preference to available low latency server
connections when there is a limited supply.

[0229] Hosting Service Features

[0230] FIG. 15illustrates an embodiment of components of
a server center for hosting service 210 utilized in the follow-
ing feature descriptions. As with the hosting service 210
illustrated in FIG. 2a, the components of this server center are
controlled and coordinated by a hosting service 210 control
system 401 unless otherwise qualified.

[0231] Inboundinternettraffic 1501 from user clients 415is
directed to inbound routing 1502. Typically, inbound internet
traffic 1501 will enter the server center via a high-speed fiber
optic connection to the Internet, but any network connection
means of adequate bandwidth, reliability and low latency will
suffice. Inbound routing 1502 is a system of network (the
network can be implemented as an Ethernet network, a fiber
channel network, or through any other transport means)
switches and routing servers supporting the switches which
takes the arriving packets and routes each packet to the appro-
priate application/game (“app/game”) server 1521-1525. In
one embodiment, a packet which is delivered to a particular
app/game server represents a subset of the data received from
the client and/or may be translated/changed by other compo-
nents (e.g., networking components such as gateways and
routers) within the data center. In some cases, packets will be
routed to more than one server 1521-1525 at a time, for
example, if a game or application is running on multiple
servers at once in parallel. RAID array 1511-1512 are con-
nected to the inbound routing network 1502, such that the
app/game servers 1521-1525 can read and write to the RAID
arrays 1511-1512. Further, aRAID array 1515 (which may be
implemented as multiple RAID arrays) is also connected to
the inbound routing 1502 and data from RAID array 1515 can
be read from app/game servers 1521-1525. The inbound rout-
ing 1502 may be implemented in a wide range of prior art
network architectures, including a tree structure of switches,
with the inbound internet traffic 1501 at its root; in a mesh
structure interconnecting all of the various devices; or as an
interconnected series of subnets, with concentrated traffic
amongst intercommunicating device segregated from con-
centrated traffic amongst other devices. One type of network
configuration is a SAN which, although typically used for

US 2009/0225220 Al

storage devices, it can also be used for general high-speed
data transfer among devices. Also, the app/game servers
1521-1525 may each have multiple network connections to
the inbound routing 1502. For example, a server 1521-1525
may have a network connection to a subnet attached to RAID
Arrays 1511-1512 and another network connection to a sub-
net attached to other devices.

[0232] The app/game servers 1521-1525 may all be con-
figured the same, some differently, or all differently, as pre-
viously described in relation to servers 402 in the embodi-
ment illustrated in FIG. 4a. In one embodiment, each user,
when using the hosting service is typically at least one app/
game server 1521-1525. For the sake of simplicity of expla-
nation, we shall assume a given user is using app/game server
1521, but multiple servers could be used by one user, and
multiple users could share a single app/game server 1521-
1525. The user’s control input, sent from client 415 as previ-
ously described is received as inbound Internet traffic 1501,
and is routed through inbound routing 1502 to app/game
server 1521. App/game server 1521 uses the user’s control
input as control input to the game or application running on
the server, and computes the next frame of video and the audio
associated with it. App/game server 1521 then outputs the
uncompressed video/audio 1529 to shared video compres-
sion 1530. App/game server may output the uncompressed
video via any means, including one or more Gigabit Ethernet
connections, but in one embodiment the video is output via a
DVI connection and the audio and other compression and
communication channel state information is output via a Uni-
versal Serial Bus (USB) connection.

[0233] The shared video compression 1530 compresses the
uncompressed video and audio from the app/game servers
1521-1525. The compression maybe implemented entirely in
hardware, or in hardware running software. There may a
dedicated compressor for each app/game server 1521-1525,
or if the compressors are fast enough, a given compressor can
be used to compress the video/audio from more than one
app/game server 1521-1525. For example, at 60 fps a video
frame time is 16.67 ms. If a compressor is able to compress a
frame in 1 ms, then that compressor could be used to com-
press the video/audio from as many as 16 app/game servers
1521-1525 by taking input from one server after another, with
the compressor saving the state of each video/audio compres-
sion process and switching context as it cycles amongst the
video/audio streams from the servers. This results in substan-
tial cost savings in compression hardware. Since different
servers will be completing frames at different times, in one
embodiment, the compressor resources are in a shared pool
1530 with shared storage means (e.g., RAM, Flash) for stor-
ing the state of each compression process, and when a server
1521-1525 frame is complete and ready to be compressed, a
control means determines which compression resource is
available at that time, provides the compression resource with
the state of the server’s compression process and the frame of
uncompressed video/audio to compress.

[0234] Note that part of the state for each server’s compres-
sion process includes information about the compression
itself, such as the previous frame’s decompressed frame
buffer data which may be used as a reference for P tiles, the
resolution ofthe video output; the quality of the compression;
the tiling structure; the allocation of bits per tiles; the com-
pression quality, the audio format (e.g., stereo, surround
sound, Dolby® AC-3). But the compression process state also
includes communication channel state information regarding

Sep. 10, 2009

the peak data rate 941 and whether a previous frame (as
illustrated in FIG. 95) is currently being output (and as result
the current frame should be ignored), and potentially whether
there are channel characteristics which should be considered
in the compression, such as excessive packet loss, which
affect decisions for the compression (e.g., in terms of the
frequency of I tiles, etc). As the peak data rate 941 or other
channel characteristics change over time, as determined by an
app/game server 1521-1525 supporting each user monitoring
data sent from the client 415, the app/game server 1521-1525
sends the relevant information to the shared hardware com-
pression 1530.

[0235] The shared hardware compression 1530 also pack-
etizes the compressed video/audio using means such as those
previously described, and if appropriate, applying FEC
codes, duplicating certain data, or taking other steps to as to
adequately ensure the ability of the video/audio data stream to
be received by the client 415 and decompressed with as high
a quality and reliability as feasible.

[0236] Some applications, such as those described below,
require the video/audio output of a given app/game server
1521-1525 to be available at multiple resolutions (or in other
multiple formats) simultaneously. If the app/game server
1521-1525 so notifies the shared hardware compression 1530
resource, then the uncompressed video audio 1529 of that
app/game server 1521-1525 will be simultaneously com-
pressed in different formats, different resolutions, and/or in
different packet/error correction structures. In some cases,
some compression resources can be shared amongst multiple
compression processes compressing the same video/audio
(e.g., in many compression algorithms, there is a step
whereby the image is scaled to multiple sizes before applying
compression. If different size images are required to be out-
put, then this step can be used to serve several compression
processes at once). In other cases, separate compression
resources will be required for each format. In any case, the
compressed video/audio 1539 of all of the various resolutions
and formats required for a given app/game server 1521-1525
(be it one or many) will be output at once to outbound routing
1540. In one embodiment the output of the compressed video/
audio 1539 is in UDP format, so it is a unidirectional stream
of packets.

[0237] The outbound routing network 1540 comprises a
series of routing servers and switches which direct each com-
pressed video/audio stream to the intended user(s) or other
destinations through outbound Internet traffic 1599 interface
(which typically would connect to a fiber interface to the
Internet) and/or back to the delay buffer 1515, and/or back to
the inbound routing 1502, and/or out through a private net-
work (not shown) for video distribution. Note that (as
described below) the outbound routing 1540 may output a
given video/audio stream to multiple destinations at once. In
one embodiment this is implemented using Internet Protocol
(IP) multicast in which a given UDP stream intended to be
streamed to multiple destinations at once is broadcasted, and
the broadcast is repeated by the routing servers and switches
in the outbound routing 1540. The multiple destinations of the
broadcast may be to multiple users’ clients 415 via the Inter-
net, to multiple app/game servers 1521-1525 through via
inbound routing 1502, and/or to one or more delay buffers
1515. Thus, the output of a given server 1521-1522 is com-
pressed into one or multiple formats, and each compressed
stream is directed to one or multiple destinations.

US 2009/0225220 Al

[0238] Further, in another embodiment, if multiple app/
game servers 1521-1525 are used simultaneously by one user
(e.g., in a parallel processing configuration to create the 3D
output of a complex scene) and each server is producing part
of the resulting image, the video output of multiple servers
1521-1525 can be combined by the shared hardware com-
pression 1530 into a combined frame, and from that point
forward it is handled as described above as if it came from a
single app/game server 1521-1525.

[0239] Note that in one embodiment, a copy (in at least the
resolution or higher of video viewed by the user) of all video
generated by app/game servers 1521-1525 is recorded in
delay buffer 1515 for at least some number of minutes (15
minutes in one embodiment). This allows each user to
“rewind” the video from each session in order to review
previous work or exploits (in the case of a game). Thus, in one
embodiment, each compressed video/audio output 1539
stream being routed to a user client 415 is also being multi-
casted to a delay bufter 1515. When the video/audio is stored
on a delay buffer 1515, a directory on the delay buffer 1515
provides a cross reference between the network address of the
app/game server 1521-1525 that is the source of the delayed
video/audio and the location on the delay buffer 1515 where
the delayed video/audio can be found.

[0240] Live, Instantly-Viewable, Instantly-Playable
Games
[0241] App/game servers 1521-1525 may not only be used

for running a given application or video game for a user, but
they may also be used for creating the user interface applica-
tions for the hosting service 210 that supports navigation
through hosting service 210 and other features. A screen shot
of one such user interface application is shown in FIG. 16, a
“Game Finder” screen. This particular user interface screen
allows a user to watch 15 games that are being played live (or
delayed) by other users. Each of the “thumbnail” video win-
dows, such as 1600 is a live video window in motion showing
one the video from one user’s game. The view shown in the
thumbnail may be the same view that the user is seeing, or it
may be a delayed view (e.g., if a user is playing a combat
game, a user may not want other users to see where she is
hiding and she may choose to delay any view of her gameplay
by a period of time, say 10 minutes). The view may also be a
camera view of a game that is different from any user’s view.
Through menu selections (not shown in this illustration), a
user may choose a selection of games to view at once, based
on a variety of criteria. As a small sampling of exemplary
choices, the user may select a random selection of games
(such as those shown in FIG. 16), all of one kind of games (all
being played by different players), only the top-ranked play-
ers of a game, players at a given level in the game, or lower-
ranked players (e.g., if the player is learning the basics),
players who are “buddies” (or are rivals), games that have the
most number of viewers, etc.

[0242] Note that generally, each user will decide whether
the video from his or her game or application can be viewed
by others and, if so, which others, and when it may be viewed
by others, whether it is only viewable with a delay.

[0243] The app/game server 1521-1525 that is generating
the user interface screen shown in FIG. 16 acquires the 15
video/audio feeds by sending a message to the app/game
server 1521-1525 for each user whose game it is requesting
from. The message is sent through the inbound routing 1502
or another network. The message will include the size and
format ofthe video/audio requested, and will identify the user

Sep. 10, 2009

viewing the user interface screen. A given user may choose to
select “privacy” mode and not permit any other users to view
video/audio ofhis game (either from his point of view or from
another point of view), or as described in the previous para-
graph, a user may choose to allow viewing of video/audio
from her game, but delay the video/audio viewed. A user
app/game server 1521-1525 receiving and accepting a request
to allow its video/audio to be viewed will acknowledge as
such to the requesting server, and it will also notify the shared
hardware compression 1530 of the need to generate an addi-
tional compressed video stream in the requested format or
screen size (assuming the format and screen size is different
than one already being generated), and it will also indicate the
destination for the compressed video (i.e., the requesting
server). If the requested video/audio is only delayed, then the
requesting app/game server 1521-1525 will be so notified,
and it will acquire the delayed video/audio from a delay
buffer 1515 by looking up the video/audio’s location in the
directory on the delay buffer 1515 and the network address of
the app/game server 1521-1525 that is the source of the
delayed video/audio. Once all of these requests have been
generated and handled, up to 15 live thumbnail-sized video
streams will be routed from the outbound routing 1540 to the
inbound routing 1502 to the app/game server 1521-1525 gen-
erating the user interface screen, and will be decompressed
and displayed by the server. Delayed video/audio streams
may be in too large a screen size, and if so, the app/game
server 1521-1525 will decompress the streams and scale
down the video streams to thumbnail size. In one embodi-
ment, requests for audio/video are sent to (and managed by) a
central “management” service similar to the hosting service
control system of FIG. 4a (not shown in FIG. 15) which then
redirects the requests to the appropriate app/game server
1521-1525. Moreover, in one embodiment, no request may be
required because the thumbnails are “pushed” to the clients of
those users that allow it.

[0244] The audio from 15 games all mixed simultaneously
might create a cacophony of sound. The user may choose to
mix all of the sounds together in this way (perhaps just to get
a sense of the “din” created by all the action being viewed), or
the user may choose to just listen to the audio from one game
at a time. The selection of a single game is accomplished by
moving the yellow selection box 1601 to a given game (the
yellow box movement can be accomplished by using arrow
keys on a keyboard, by moving a mouse, by moving a joy-
stick, or by pushing directional buttons on another device
such as a mobile phone). Once a single game is selected, just
the audio from that game plays. Also, game information 1602
is shown. In the case of this game, for example, the publisher
logo (“EA”) and the game logo, “Need for Speed Carbon”
and an orange horizontal bar indicates in relative terms the
number of people playing or viewing the game at that par-
ticular moment (many, in this case, so the game is “Hot”).
Further “Stats” are provided, indicating that there are 145
players actively playing 80 different instantiations of the
Need for Speed Game (i.e., it can be played either by an
individual player game or multiplayer game), and there are
680 viewers (of which this user is one). Note that these sta-
tistics (and other statistics) are collected by hosting service
control system 401 and are stored on RAID arrays 1511-
1512, for keeping logs of the hosting service 210 operation
and for appropriately billing users and paying publishers who
provide content. Some of the statistics are recorded due to
actions by the service control system 401, and some are

US 2009/0225220 Al

reported to the service control system 401 by the individual
app/game server 1521-1525. For example, the app/game
server 1521-1525 running this Game Finder application
sends messages to the hosting service control system 401
when games are being viewed (and when they are ceased to be
viewed) so that it may update the statistics of how many
games are in view. Some of the statistics are available for user
interface applications such as this Game Finder application.

[0245] Ifthe user clicks an activation button on their input
device, they will see the thumbnail video in the yellow box
zoom up while it remains live to full screen size. This effect is
shown in process in FIG. 17. Note that video window 1700
has grown in size. To implement this effect, the app/game
server 1521-1525 requests from the app/game server 1521-
1525 running the game selected to have a copy of the video
stream for a full screen size (at the resolution of the user’s
display device 422) of the game routed to it. The app/game
server 1521-1525 running the game notifies the shared hard-
ware compressor 1530 that a thumbnail-sized copy of the
game is no longer needed (unless another app/game server
1521-1525 requires such a thumbnail), and then it directs it to
send a full-screen size copy of the video to the app/game
server 1521-1525 zooming the video. The user playing the
game may or may not have a display device 422 that is the
same resolution as that of the user zooming up the game.
Further, other viewers of the game may or may not have
display devices 422 that are the same resolution as the user
zooming up the game (and may have different audio playback
means, €.g., stereo or surround sound). Thus, the shared hard-
ware compressor 1530 determines whether a suitable com-
pressed video/audio stream is already being generated that
meets the requirements of the user requesting the video/audio
stream and if one does exist, it notifies the outbound routing
1540 to route a copy of the stream to the app/game server
1521-1525 zooming the video, and if not compresses another
copy of the video that is suitable for that user and instructs the
outbound routing to send the stream back to the inbound
routing 1502 and the app/game server 1521-1525 zooming
the video. This server, now receiving a full screen version of
the selected video will decompress it and gradually scale it up
to full size.

[0246] FIG. 18 illustrates how the screen looks after the
game has completely zoomed up to full screen and the game
is shown at the full resolution of the user’s display device 422
as indicated by the image pointed to by arrow 1800. The
app/game server 1521-1525 running the game finder applica-
tion sends messages to the other app/game servers 1521-1525
that had been providing thumbnails that they are no longer
needed and messages to the hosting service control server 401
that the other games are no longer being viewed. At this point
the only display it is generating is an overlay 1801 at the top
of the screen which provides information and menu controls
to the user. Note that as this game has progressed, the audi-
ence has grown to 2,503 viewers. With so many viewers, there
are bound to be many viewers with display devices 422 that
have the same or nearly the resolution (each app/game server
1521-1525 has the ability to scale the video for adjusting the
fitting).

[0247] Because the game shown is a multiplayer game, the
user may decide to join the game at some point. The hosting
service 210 may or may not allow the user to join the game for
avariety of reasons. For example, the user may have to pay to
play the game and choose not to, the user may not have
sufficient ranking to join that particular game (e.g., it would

Sep. 10, 2009

not be competitive for the other players), or the user’s Internet
connection may not have low enough latency to allow the user
to play (e.g., there is not a latency constraint for viewing
games, so a game that is being played far away (indeed, on
another continent) can be viewed without latency concerns,
but for a game to be played, the latency must be low enough
for the user to (a) enjoy the game, and (b) be on equal footing
with the other players who may have lower latency connec-
tions). If the user is permitted to play, then app/game server
1521-1525 that had been providing the Game Finder user
interface for the user will request that the hosting service
control server 401 initiate (i.e., locate and start up) an app/
game server 1521-1525 that is suitably configured for playing
the particular game to load the game from a RAID array
1511-1512, and then the hosting service control server 401
will instruct the inbound routing 1502 to transfer the control
signals from the user to the app/game game server now host-
ing the game and it will instruct the shared hardware com-
pression 1530 to switch from compressing the video/audio
from the app/game server that had been hosting the Game
Finder application to compressing the video/audio from the
app/game server now hosting the game. The vertical sync of
the Game Finder app/game service and the new app/game
server hosting the game are not synchronized, and as a result
there is likely to be a time difference between the two syncs.
Because the shared video compression hardware 1530 will
begin compressing video upon an app/game server 1521-
1525 completing a video frame, the first frame from the new
server may be completed sooner than a full frame time of the
old server, which may be before the prior compressed frame
completing its transmission (e.g., consider transmit time 992
of FIG. 94: if uncompressed frame 3 963 were completed half
a frame time early, it would impinge upon the transmit time
992). In such a situation the shared video compression hard-
ware 1530 will ignore the first frame from the new server
(e.g., like Frame 4 964 is ignored 974), and the client 415 will
hold the last frame from the old server an extra frame time,
and the shared video compression hardware 1530 will begin
compressing the next frame time video from the new app/
game server hosting the game. Visually, to the user, the tran-
sition from one app/game server to the other will be seamless.
The hosting service control server 401 will then notify app/
game game server 1521-1525 that had been hosting the Game
Finder to switch to an idle state, until it is needed again.

[0248] The user then is able to play the game. And, what is
exceptional is the game will play perceptually instantly (since
it will have loaded onto the app/game game server 1521-1525
from a RAID array 1511-1512 at gigabit/second speed), and
the game will be loaded onto a server exactly suited for the
game together with an operating system exactly configured
for the game with the ideal drivers, registry configuration (in
the case of Windows), and with no other applications running
on the server that might compete with the game’s operation.
[0249] Also, as the user progresses through the game, each
of the segments of the game will load into the server at
gigabit/second speed (i.e., 1 gigabyte loads in 8 seconds)
from the RAID array 1511-1512, and because of the vast
storage capacity of the RAID array 1511-1512 (since it is a
shared resource among many users, it can be very large, yet
still be cost effective) geometry setup or other game segment
setup can be pre-computed and stored on the RAID array
1511-1512 and loaded extremely rapidly. Moreover, because

US 2009/0225220 Al

the hardware configuration and computational capabilities of
each app/game server 1521-1525 is known, pixel and vertex
shaders can be pre-computed.

[0250] Thus, the game will start up almost instantly, it will
run in an ideal environment, and subsequent segments will
load almost instantly.

[0251] But, beyond these advantages, the user will be able
to view others playing the game (via the Game Finder, pre-
viously described and other means) and both decide if the
game is interesting, and if so, learn tips from watching others.
And, the user will be able to demo the game instantly, without
having to wait for a large download and/or installation, and
the user will be able to play the game instantly, perhaps on a
trial basis for a smaller fee, or on a longer term basis. And, the
user will be able to play the game on a Windows PC, a
Macintosh, on a television set, at home, when traveling, and
even on a mobile phone, with a low enough latency wireless
connection. And, this can all be accomplished without ever
physically owning a copy of the game.

[0252] As mentioned previously, the user can decide not
allow his gameplay to be viewable by others, to allow his
game to be viewable after a delay, to allow his game to be
viewable by selected users, or to allow his game to be view-
ableby all users. Regardless, the video/audio will be stored, in
one embodiment, for 15 minutes in a delay buffer 1515, and
the user will be able to “rewind” and view his prior game play,
and pause, play it back slowly, fast forward, etc., just as he
would be able to do had he been watching TV with a Digital
Video Recorder (DVR). Although in this example, the user is
playing a game, the same “DVR” capability is available if the
user is using an application. This can be helpful in reviewing
prior work and in other applications as detailed below. Fur-
ther, if the game was designed with the capability of rewind-
ing based on utilizing game state information, such that the
camera view can be changed, etc., then this “3D DVR” capa-
bility will also be supported, but it will require the game to be
designed to support it. The “DVR” capability using a delay
buffer 1515 will work with any game or application, limited
of course, to the video that was generated when the game or
application was used, but in the case of games with 3D DVR
capability, the user can control a “fly through” in 3D of a
previously played segment, and have the delay buffer 1515
record the resulting video and have the game state of the game
segment record. Thus, a particular “fly-through” will be
recorded as compressed video, but since the game state will
also be recorded, a different fly-through will be possible at a
later date of the same segment of the game.

[0253] Asdescribed below, users on the hosting service 210
will each have a User Page, where they can post information
about themselves and other data. Among of the things that
users will be able to post are video segments from game play
that they have saved. For example, if the user has overcome a
particularly difficult challenge in a game, the user can
“rewind” to just before the spot where they had their great
accomplishment in the game, and then instruct the hosting
service 210 to save a video segment of some duration (e.g., 30
seconds) on the user’s User Page for other users to watch. To
implement this, it is simply a matter of the app/game server
1521-1525 that the user is using to playback the video stored
in a delay buffer 1515 to a RAID array 1511-1512 and then
index that video segment on the user’s User Page.

[0254] If the game has the capability of 3D DVR, as
described above, then the game state information required for

Sep. 10, 2009

the 3D DVR can also be recorded by the user and made
available for the user’s User Page.

[0255] In the event that a game is designed to have “spec-
tators” (i.e., users that are able to travel through the 3D world
and observe the action without participating in it) in addition
to active players, then the Game Finder application will
enable users to join games as spectators as well as players.
From an implementation point of view, there is no difference
to the hosting system 210 to if a user is a spectator instead of
an active player. The game will be loaded onto an app/game
server 1521-1525 and the user will be controlling the game
(e.g., controlling a virtual camera that views into the world).
The only difference will be the game experience of the user.
[0256] Multiple User Collaboration

[0257] Another feature of the hosting service 210 is the
ability to for multiple users to collaborate while viewing live
video, even if using widely disparate devices for viewing.
This is useful both when playing games and when using
applications.

[0258] Many PCs and mobile phones are equipped with
video cameras and have the capability to do real-time video
compression, particularly when the image is small. Also,
small cameras are available that can be attached to a televi-
sion, and it is not difficult to implement real-time compres-
sion either in software or using one of many hardware com-
pression devices to compress the video. Also, many PCs and
all mobile phones have microphones, and headsets are avail-
able with microphones.

[0259] Such cameras and/or microphones, combined with
local video/audio compression capability (particularly
employing the low latency video compression techniques
described herein) will enable a user to transmit video and/or
audio from the user premises 211 to the hosting service 210,
together with the input device control data. When such tech-
niques are employed, then a capability illustrated in FIG. 19
is achievable: a user can have his video and audio 1900 appear
on the screen within another user’s game or application. This
example is a multiplayer game, where teammates collaborate
in a car race. A user’s video/audio could be selectively view-
able/hearable only by their teammates. And, since there
would be effectively no latency, using the techniques
described above the players would be able to talk or make
motions to each other in real-time without perceptible delay.
[0260] This video/audio integration is accomplished by
having the compressed video and/or audio from a user’s cam-
era/microphone arrive as inbound internet traffic 1501. Then
the inbound routing 1502 routes the video and/or audio to the
app/game game servers 1521-1525 that are permitted to view/
hear the video and/or audio. Then, the users of the respective
app/game game servers 1521-1525 that choose to use the
video and/or audio decompress it and integrate as desired to
appear within the game or application, such as illustrated by
1900.

[0261] The example of FIG. 19 shows how such collabora-
tion is used in a game, but such collaboration can be an
immensely powerful tool for applications. Consider a situa-
tion where a large building is being designed for New York
city by architects in Chicago for a real estate developer based
in New York, but the decision involves a financial investor
who is traveling and happens to be in an airport in Miami, and
a decision needs to be made about certain design elements of
the building in terms of how it fits in with the buildings near
it, to satisfy both the investor and the real estate developer.
Assume the architectural firm has a high resolution monitor

US 2009/0225220 Al

with a camera attached to a PC in Chicago, the real estate
developer has a laptop with a camera in New York, and the
investor has a mobile phone with a camera in Miami. The
architectural firm can use the hosting service 210 to host a
powerful architectural design application that is capable of
highly realistic 3D rendering, and it can make use of a large
database of the buildings in New York City, as well as a
database of the building under design. The architectural
design application will execute on one, or if it requires a great
deal of computational power on several, of the app/game
servers 1521-1525. Each of the 3 users at disparate locations
will connect to the hosting service 210, and each will have a
simultaneous view of the video output of the architectural
design application, but it will be will appropriately sized by
the shared hardware compression 1530 for the given device
and network connection characteristics that each user has
(e.g., the architectural firm may see a 2560x1440 60 fps
display through a 20 Mbps commercial Internet connection,
the real estate developer in New York may see a 1280x720 60
fps image over a 6 Mbps DSL connection on his laptop, and
the investor may see a 320x180 60 fps image over a 250 Kbps
cellular data connection on her mobile phone. Each party will
hear the voice of the other parties (the conference calling will
be handled by any of many widely available conference call-
ing software package in the app/game server(s) 1521-1525)
and, through actuation of a button on a user input device, a
user will be able to make video appear of themselves using
their local camera. As the meeting proceeds, the architects
will be able to show what the build looks like as they rotate it
and fly by it next to the other building in the area, with
extremely photorealistic 3D rendering, and the same video
will be visible to all parties, at the resolution of each party’s
display device. It won’t matter that none of the local devices
used by any party is incapable of handling the 3D animation
with such realism, let alone downloading or even storing the
vast database required to render the surrounding buildings in
New York City. From the point of view of each of the users,
despite the distance apart, and despite the disparate local
devices they simply will have a seamless experience with an
incredible degree of realism. And, when one party wants their
face to be seen to better convey their emotional state, they can
do so. Further, if either the real estate develop or the investor
want to take control of the architectural program and use their
own input device (be it a keyboard, mouse, keypad or touch
screen), they can, and it will respond with no perceptual
latency (assuming their network connection does not have
unreasonable latency). For example, in the case of the mobile
phone, if the mobile phone is connected to a WiFi network at
the airport, it will have very low latency. But if it is using the
cellular data networks available today in the US, it probably
will suffer from a noticeable lag. Still, for most of the pur-
poses of the meeting, where the investor is watching the
architects control the building fly-by or for talking of video
teleconferencing, even cellular latency should be acceptable.
[0262] Finally, at the end of the collaborative conference
call, the real estate developer and the investor will have made
their comments and signed off from the hosting service, the
architectural firm will be able to “rewind” the video of the
conference that has been recorded on a delay buffer 1515 and
review the comments, facial expressions and/or actions
applied to the 3D model of the building made during the
meeting. If there are particular segments they want to save,

Sep. 10, 2009

those segments of video/audio can be moved from delay
buffer 1515 to a RAID array 1511-1512 for archival storage
and later playback.

[0263] Also, from a cost perspective, if the architects only
need to use the computation power and the large database of
New York City for a 15 minute conference call, they need only
pay for the time that the resources are used, rather than having
to own high powered workstations and having to purchase an
expensive copy of a large database.

[0264]

[0265] The hosting service 210 enables an unprecedented
opportunity for establishing video-rich community services
on the Internet. FIG. 20 shows an exemplary User Page for a
game player on the hosting service 210. As with the Game
Finder application, the User Page is an application that runs
on one of the app/game servers 1521-1525. All of the thumb-
nails and video windows on this page show constantly mov-
ing video (if the segments are short, they loop).

[0266] Using a video camera or by uploading video, the
user (whose username is “KILLHAZARD”) is able to post a
video of himself 2000 that other users can view. The video is
stored on a RAID array 1511-1512. Also, when other users
come to KILLHAZARD’s User Page, if KILLHAZARD is
using the hosting service 210 at the time, live video 2001 of
whatever he is doing (assuming he permits users viewing his
User Page to watch him) will be shown. This will be accom-
plished by app/game server 1521-1525 hosting the User Page
application requesting from the service control system 401
whether KILLHAZARD is active and if so, the app/game
server 1521-1525 he is using. Then, using the same methods
used by the Game Finder application, a compressed video
stream in a suitable resolution and format will be sent to the
app/game server 1521-1525 running the User Page applica-
tion and it will be displayed. If a user selects the window with
KILLHAZARD’s live gameplay, and then appropriately
clicks on their input device, the window will zoom up (again
using the same methods as the Game Finder applications, and
the live video will fill the screen, at the resolution of the
watching user’s display device 422, appropriate for the char-
acteristics of the watching user’s Internet connection.

[0267] A key advantage of this over prior art approaches is
the user viewing the User Page is able to see a game played
live that the user does not own, and may very well not have a
local computer or game console capable of playing the game.
It offers a great opportunity for the user to see the user shown
in the User Page “in action” playing games, and it is an
opportunity to learn about a game that the viewing user might
want to try or get better at.

[0268] Camera-recorded or uploaded video clips from
KILLHAZARD’s buddies 2002 are also shown on the User
Page, and underneath each video clip is text that indicates
whether the buddy is online playing a game (e.g., six_shot is
playing the game “Eragon” and MrSnuggles99 is Offline,
etc.). By clicking on amenu item (not shown) the buddy video
clips switch from showing recorded or uploaded videos to live
video of what the buddies who are currently playing games on
the hosting service 210 are doing at that moment in their
games. So, it becomes a Game Finder grouping for buddies. If
a buddy’s game is selected and the user clicks on it, it will
zoom up to full screen, and the user will be able to watch the
game played full screen live.

Video-Rich Community Services

US 2009/0225220 Al

[0269] Again, the user viewing the buddy’s game does not
own a copy of the came, nor the local computing/game con-
sole resources to play the game. The game viewing is effec-
tively instantaneous.

[0270] As previously described above, when a user plays a
game on the hosting service 210, the user is able to “rewind”
the game and find a video segment he wants to save, and then
saves the video segment to his User Page. These are called
“Brag Clips”. The video segments 2003 are all Brag Clips
2003 saved by KILLHAZARD from previous games that he
has played. Number 2004 shows how many times a Brag Clip
has been viewed, and when the Brag Clip is viewed, users
have an opportunity to rate them, and the number of orange
keyhole-shaped icons 2005 indicate how high the rating is.
The Brag Clips 2003 loop constantly when a user views the
User Page, along with the rest of the video on the page. If the
user selects and clicks on one of the Brag Clips 2003, it zooms
up to present the Brag Clip 2003, along with DVR controls to
allow the clip to be played, paused, rewound, fast-forwarded,
stepped through, etc.

[0271] The Brag Clip 2003 playback is implemented by the
app/game server 1521-1525 loading the compressed video
segment stored on a RAID array 1511-1512 when the user
recorded the Brag Clip and decompressing it and playing it
back.

[0272] Brag Clips 2003 can also be “3D DVR” video seg-
ments (i.e., a game state sequence from the game that can be
replayed and allows the user to change the camera viewpoint)
from games that support such capability. In this case the game
state information is stored, in addition to a compressed video
recording of the particular “fly through” the user made when
the game segment was recorded. When the User Page is being
viewed, and all of the thumbnails and video windows are
constantly looping, a 3D DVR Brag Clip 2003 will constantly
loop the Brag Clip 2003 that was recorded as compressed
video when the user recorded the “fly through™ of the game
segment. But, when a user selects a 3D DVR Brag Clip 2003
and clicks on it, in addition to the DVR controls to allow the
compressed video Brag Clip to be played, the user will be able
to click on a button that gives them 3D DVR capability for the
game segment. They will be able to control a camera “fly
through” during the game segment on their own, and, if they
wish (and the user who owns the user page so allows it) they
will be able to record an alternative Brag Clip “fly through” in
compressed video form will then be available to other viewers
of'the user page (either immediately, or after the owner of the
user page has a chance to the review the Brag Clip).

[0273] This 3D DVR Brag Clip 2003 capability is enabled
by activating the game that is about to replay the recorded
game state information on another app/game server 1521-
1525. Since the game can be activated almost instantaneously
(as previously described) it is not difficult to activate it, with
its play limited to the game state recorded by the Brag Clip
segment, and then allow the user to do a “fly through” with a
camera while recording the compressed video to a delay
buffer 1515. Once the user has completed doing the “fly
through” the game is deactivated.

[0274] From the user’s point of view, activating a “fly
through” with a 3D DVR Brag Clip 2003 is no more effort
than controlling the DVR controls of a linear Brag Clip 2003.
They may know nothing about the game or even how to play
the game. They are just a virtual camera operator peering into
a 3D world during a game segment recorded by another.

Sep. 10, 2009

[0275] Users will also be able to overdub their own audio
onto Brag Clips that is either recorded from microphones or
uploaded. Inthis way, Brag Clips can be used to create custom
animations, using characters and actions from games. This
animation technique is commonly known as “machinima”.
[0276] As users progress through games, they will achieve
differing skill levels. The games played will report the accom-
plishments to the service control system 401, and these skill
levels will be shown on User Pages.

[0277] Interactive Animated Advertisements

[0278] Online advertisements have transitioned from text,
to still images, to video, and now to interactive segments,
typically implemented using animation thin clients like
Adobe Flash. The reason animation thin clients are used is
that users typically have little patience to be delayed for the
privilege of have a product or service pitched to them. Also,
thin clients run on very low-performance PCs and as such, the
advertiser can have a high degree of confidence that the inter-
active ad will work properly. Unfortunately, animation thin
clients such as Adobe Flash are limited in the degree of
interactivity and the duration of the experience (to mitigate
download time).

[0279] FIG. 21 illustrates an interactive advertisement
where the user is to select the exterior and interior colors of a
car while the car rotates around in a showroom, while real-
time ray tracing shows how the car looks. Then the user
chooses an avatar to drive the car, and then the user can take
the car for a drive either on a race track, or through an exotic
locale such as Monaco. The user can select a larger engine, or
better tires, and then can see how the changed configuration
affects the ability of the car to accelerate or hold the road.
[0280] Of course, the advertisement is effectively a sophis-
ticated 3D video game. But for such an advertisement to be
playable on a PC or a video game console it would require
perhaps a 100 MB download and, in the case of the PC, it
might require the installation of special drivers, and might not
run at all if the PC lacks adequate CPU or GPU computing
capability. Thus, such advertisements are impractical in prior
art configurations.

[0281] In the hosting service 210, such advertisements
launch almost instantly, and run perfectly, no matter what the
user’s client 415 capabilities are. So, they launch more
quickly than thin client interactive ads, are vastly richer in the
experience, and are highly reliable.

[0282] Streaming Geometry During Real-Time Animation
[0283] RAID array 1511-1512 and the inbound routing
1502 can provide data rates that are so fast and with latencies
so low that it is possible to design video games and applica-
tions that rely upon the RAID array 1511-1512 and the
inbound routing 1502 to reliably deliver geometry on-the-fly
in the midst of game play or in an application during real-time
animation (e.g., a fly-through with a complex database.
[0284] With prior art systems, such as the video game sys-
tem shown in FIG. 1, the mass storage devices available,
particularly in practical home devices, are far too slow to
stream geometry in during game play except in situations
where the required geometry was somewhat predictable. For
example, in a driving game where there is a specified road-
way, geometry for buildings that are coming into view can be
reasonable well predicted and the mass storage devices can
seek in advance to the location where the upcoming geometry
is located.

[0285] But in a complex scene with unpredictable changes
(e.g., in a battle scene with complex characters all around) if

US 2009/0225220 Al

RAM on the PC or video game system is completely filled
with geometry for the objects currently in view, and then the
user suddenly turns their character around to view what is
behind their character, if the geometry has not been pre-
loaded into RAM, then there may be a delay before it can be
displayed.

[0286] In the hosting service 210, the RAID arrays 1511-
1512 can stream data in excess of Gigabit Ethernet speed, and
with a SAN network, it is possible to achieve 10 gigabit/
second speed over 10 Gigabit Ethernet or over other network
technologies. 10 gigabits/second will load a gigabyte of data
in less that a second. In a 60 fps frame time (16.67 ms),
approximately 170 megabits (21 MB) of data can be loaded.
Rotating media, of course, even in a RAID configuration will
still incur latencies greater than a frame time, but Flash-based
RAID storage will eventually be as large as rotating media
RAID arrays and will not incur such high latency. In one
embodiment, massive RAM write-through caching is used to
provide very low latency access.

[0287] Thus, with sufficiently high network speed, and suf-
ficiently low enough latency mass storage, geometry can be
streamed into app/game game servers 1521-1525 as fast as
the CPUs and/or GPUs can process the 3D data. So, in the
example given previously, where a user turns their character
around suddenly and looks behind, the geometry for all of the
characters behind can be loaded before the character com-
pletes the rotation, and thus, to the user, it will seem as it he or
she is in a photorealistic world that is as real as live action.
[0288] As previously discussed, one of the last frontiers in
photorealistic computer animation is the human face, and
because of the sensitivity of the human eye to imperfections,
the slightest error from a photoreal face can result in a nega-
tive reaction from the viewer. FIG. 22 shows how a live
performance captured using Contour™ Reality Capture
Technology (subject of co-pending applications: “Apparatus
and method for capturing the motion of a performer,” Ser. No.
10/942,609, Filed Sep. 15, 2004; “Apparatus and method for
capturing the expression of a performer,” Ser. No. 10/942.413
Filed Sep. 15, 2004; “Apparatus and method for improving
marker identification within a motion capture system,” Ser.
No. 11/066,954, Filed Feb. 25, 2005; “Apparatus and method
for performing motion capture using shutter synchroniza-
tion,” Ser. No. 11/077,628, Filed Mar. 10, 2005; “Apparatus
and method for performing motion capture using a random
pattern on capture surfaces,” Ser. No. 11/255,854, Filed Oct.
20, 2005; “System and method for performing motion capture
using phosphor application techniques,” Ser. No. 11/449,131,
Filed Jun. 7, 2006; “System and method for performing
motion capture by strobing a fluorescent lamp,” Ser. No.
11/449,043, Filed Jun. 7, 2006; “System and method for three
dimensional capture of stop-motion animated characters,”
Ser. No. 11/449,127, Filed Jun. 7, 2006”, each of which is
assigned to the assignee of the present CIP application)
results in a very smooth captured surface, then a high poly-
gon-count tracked surface (i.e., the polygon motion follows
the motion of the face precisely). Finally, when the video of
the live performance is mapped on the tracked surface to
produce a textured surface, a photoreal result is produced.
[0289] Although current GPU technology is able to render
the number of polygons in the tracked surface and texture and
light the surface in real-time, if the polygons and textures are
changing every frame time (which will produce the most
photoreal results) it will quickly consume all the available
RAM of a modern PC or video game console.

Sep. 10, 2009

[0290] Using the streaming geometry techniques described
above, it becomes practical to continuously feed geometry
into the app/game game servers 1521-1525 so that they can
animate photoreal faces continuously, allowing the creation
of video games with faces that are almost indistinguishable
from live action faces.

[0291] Integration of Linear Content with Interactive Fea-
tures
[0292] Motion pictures, television programming and audio

material (collectively, “linear content™ is widely available to
home and office users in many forms. Linear content can be
acquired on physical media, like CD, DVD, HD-DVD and
Blu-ray media. It also can be recorded by DVRs from satellite
and cable TV broadcast. And, it is available as pay-per-view
(PPV) content through satellite and cable TV and as video-
on-demand (VOD) on cable TV.

[0293] Increasingly linear content is available through the
Internet, both as downloaded and as streaming content.
Today, there really is not one place to go to experience all of
the features associated with linear media. For example, DVDs
and other video optical media typically have interactive fea-
tures not available elsewhere, like director’s commentaries,
“making of” featurettes, etc. Online music sites have cover art
and song information generally not available on CDs, but not
all CDs are available online. And Web sites associating with
television programming often have extra features, blogs and
sometimes comments from the actors or creative staff.
[0294] Further, with many motion pictures or sports events,
there are often video games that are released (in the case of
motion pictures) often together with the linear media or (in
the case of sports) may be closely tied to real-world events
(e.g., the trading of players).

[0295] Hosting service 210 is well suited for the delivery of
linear content in linking together the disparate forms of
related content. Certainly, delivering motion pictures is no
more challenging that delivering highly interactive video
games, and the hosting service 210 is able to deliver linear
content to a wide range of devices, in the home or office, or to
mobile devices. FIG. 23 shows an exemplary user interface
page for hosting service 210 that shows a selection of linear
content.

[0296] But, unlike most linear content delivery system,
hosting service 210 is also able to deliver related interactive
components (e.g., the menus and features on DVDs, the inter-
active overlays on HD-DVDs, and the Adobe Flash animation
(as explained below) on Web sites. Thus, the client device 415
limitations no longer introduce limitations as to which fea-
tures are available.

[0297] Further, the hosting system 210 is able to link
together linear content with video game content dynamically,
and in real-time. For example, if a user is watching a Quid-
ditch match in a Harry Potter movie, and decides she would
like to try playing Quidditch, she can just click a button and
the movie will pause and immediately she will be transported
to the Quidditch segment of a Harry Potter video game. After
playing the Quidditch match, another click of a button, and
the movie will resume instantly.

[0298] Withphotoreal graphics and production technology,
where the photographically-captured video is indistinguish-
able from the live action characters, when a user makes a
transition from a Quidditch game in a live action movie to a
Quidditch game in a video game on a hosting service as
described herein, the two scenes are virtually indistinguish-
able. This provides entirely new creative options for directors

US 2009/0225220 Al

of both linear content and interactive (e.g., video game) con-
tent as the lines between the two worlds become indistin-
guishable.

[0299] Utilizing the hosting service architecture shown in
FIG. 14 the control of the virtual camera ina 3D movie can be
offered to the viewer. For example, in a scene that takes place
within a train car, it would be possible to allow the viewer to
control the virtual camera and look around the car while the
story progresses. This assumes that all of the 3D objects
(“assets”) inthe car are available as well as an adequate a level
of computing power capable of rendering the scenes in real-
time as well as the original movie.

[0300] And even for non-computer generated entertain-
ment, there are very exciting interactive features that can be
offered. For example, the 2005 motion picture “Pride and
Prejudice” had many scenes in ornate old English mansions.
For certain mansion scenes, the user may pause the video and
then control the camera to take a tour of the mansion, or
perhaps the surrounding area. To implement this, a camera
could be carried through the mansion with a fish-eye lens as it
keeps track of its position, much like prior art Apple, Inc.
QuickTime VR is implemented. The various frames would
then be transformed so the images are not distorted, and then
stored on RAID array 1511-1512 along with the movie, and
played back when the user chooses to go on a virtual tour.
[0301] With sports events, a live sports event, such as a
basketball game, may be streamed through the hosting ser-
vice 210 for users to watch, as they would for regular TV.
After users watched a particular play, a video game of the
game (eventually with basketball players looking as photo-
real as the real players) could come up with the players
starting in the same position, and the users (perhaps each
taking control of one player) could redo the play to see if they
could do better than the players.

[0302] The hosting service 210 described herein is
extremely well-suited to support this futuristic world because
it is able to bring to bear computing power and mass storage
resources that are impractical to install in a home or in most
office settings, and also it’s computing resources are always
up-to-date, with the latest computing hardware available,
whereas in a home setting, there will always be homes with
older generation PCs and video games. And, in the hosting
service 210, all of this computing complexity is hidden from
the user, so even though they may be using very sophisticated
systems, from the user’s point of view, it is a simple as
changing channels on a television. Further, the users would be
able to access all of the computing power and the experiences
the computing power would bring from any client 415.
[0303] Multiplayer Games

[0304] To the extent the game is a multiplayer game, then it
will be able communicate both to app/game game servers
1521-1525 through the inbound routing 1502 network and,
with a network bridge to the Internet (not shown) with servers
or game machines that are not running in the hosting service
210. When playing multiplayer games with computers on the
general Internet, then the app/game game servers 1521-1525
will have the benefit of extremely fast access to the Internet
(compared to if the game was running on a server at home),
but they will be limited by the capabilities of the other com-
puters playing the game on slower connections, and also
potentially limited by the fact that the game servers on the
Internet were designed to accommodate the least common
denominator, which would be home computers on relatively
slow consumer Internet connections.

Sep. 10, 2009

[0305] But when a multiplayer game is played entirely
within a hosting service 210 server center, then a world of
difference is achievable. Each app/game game server 1521-
1525 hosting a game for a user will be interconnected with
other app/game game servers 1521-1525 as well as any serv-
ers that are hosting the central control for the multiplayer
game with extremely high speed, extremely low latency con-
nectivity and vast, very fast storage arrays. For example, if
Gigabit Ethernet is used for the inbound routing 1502 net-
work, then the app/game game servers 1521-1525 will be
communicating among each other and communicating to any
servers hosting the central control for the multiplayer game at
gigabit/second speed with potentially only 1 ms of latency or
less. Further, the RAID arrays 1511-1512 will be able to
respond very rapidly and then transfer data at gigabit/second
speeds. As an example, if a user customizes a character in
terms of look and accoutrements such that the character has a
large amount of geometry and behaviors that are unique to the
character, with prior art systems limited to the game client
running in the home on a PC or game console, if that character
were to come into view of another user, the user would have
to wait until a long, slow download completes so that all of the
geometry and behavior data loads into their computer. Within
the hosting service 210, that same download could be over
Gigabit Ethernet, served from a RAID array 1511-1512 at
gigabit/second speed. Even if the home user had an 8 Mbps
Internet connection (which is extremely fast by today’s stan-
dards), Gigabit Ethernet is 100 times faster. So, what would
take a minute over a fast Internet connection, would take less
than a second over Gigabit Ethernet.

[0306] Top Player Groupings and Tournaments

[0307] The Hosting Service 210 is extremely well-suited
for tournaments. Because no game is running in a local client,
there is no opportunity for users to cheat. Also, because of the
ability of the output routing 1540 to multicast the UDP
streams, the Hosting Service is 210 is able to broadcast the
major tournaments to thousands of people in the audience at
once.

[0308] Infact, when there are certain video streams that are
so popular that thousands of users are receiving the same
stream (e.g., showing views of a major tournament), it may be
more efficient to send the video stream to a Content Delivery
Network (CDN) such as Akamai or Limelight for mass dis-
tribution to many client devices 415.

[0309] A similar level of efficiency can be gained when a
CDN is used to show Game Finder pages of top player group-
ings.

[0310] For major tournaments, a live celebrity announcer
can be used to provide commentary during certain matches.
Although a large number of users will be watching a major
tournament, and relatively small number will be playing in
the tournament. The audio from the celebrity announcer can
be routed to the app/game game servers 1521-1525 hosting
the users playing in the tournament and hosting any spectator
mode copies of the game in the tournament, and the audio can
be overdubbed on top of the game audio. Video of a celebrity
announcer can be overlaid on the games, perhaps just on
spectator views, as well.

[0311] Acceleration of Web Page Loading

[0312] The World Wide Web its primary transport protocol,
Hypertext Transfer Protocol (HTTP), were conceived and
defined in an era where only businesses had high speed Inter-
net connections, and the consumers who were online were
using dialup modems or ISDN. At the time, the “gold stan-

US 2009/0225220 Al

dard” for a fast connection was a T1 line which provided 1.5
Mbps data rate symmetrically (i.e., with equal data rate in
both directions).

[0313] Today, the situation is completely different. The
average home connection speed through DSL or cable
modem connections in much of the developed world has a far
higher downstream data rate than a T1 line. In fact, in some
parts of the world, fiber-to-the-curb is bringing data rates as
high as 50 to 100 Mbps to the home.

[0314] Unfortunately, HT'TP was not architected (nor has it
been implemented) to effectively take advantage of these
dramatic speed improvements. A web site is a collection of
files on a remote server. In very simple terms, HTTP requests
the first file, waits for the file to be downloaded, and then
requests the second file, waits for the file to be downloaded,
etc. In fact, HTTP allows for more than one “open connec-
tion”, i.e., more than one file to be requested at a time, but
because of agreed-upon standards (and a desire to prevent
web servers from being overloaded) only very few open con-
nections are permitted. Moreover, because of the way Web
pages are constructed, browsers often are not aware of mul-
tiple simultaneous pages that could be available to download
immediately (i.e., only after parsing a page does it become
apparent that a new file, like an image, needs to be down-
loaded). Thus, files on website are essentially loaded one-by-
one. And, because of the request-and-response protocol used
by HTTP, there is roughly (accessing typical web servers in
the US) a 100 ms latency associated with each file that is
loaded.

[0315] With relatively low speed connections, this does not
introduce much of a problem because the download time for
the files themselves dominates the waiting time for the web
pages. But, as connection speeds grow, especially with com-
plex web pages, problems begin to arise.

[0316] Intheexample shown in FIG. 24, a typical commer-
cial website is shown (this particular website was from a
major athletic shoe brand). The website has 54 files on it. The
files include HTML, CSS, JPEG, PHP, JavaScript and Flash
files, and include video content. A total of 1.5 MBytes must be
loaded before the page is live (i.e., the user can click on it and
begin to use it). There are a number of reasons for the large
number of files. For one thing, it is a complex and sophisti-
cated webpage, and for another, it is a webpage that is
assembled dynamically based on the information about the
user accessing the page (e.g., what country the user is from,
what language, whether the user has made purchases before,
etc.), and depending on all of these factors, different files are
downloaded. Still, it is a very typical commercial web page.
[0317] FIG. 24 shows the amount of time that elapses
before the web page is live as the connection speed grows.
Witha 1.5 Mbps connection speed 2401, using a conventional
web server with a convention web browser, it takes 13.5
seconds until the web page is live. With a 12 Mbps connection
speed 2402, the load time is reduced to 6.5 seconds, or about
twice as fast. But with a 96 Mbps connection speed 2403, the
load time is only reduced to about 5.5 seconds. The reason
why is because at such a high download speed, the time to
download the files themselves is minimal, but the latency per
file, roughly 100 ms each, still remains, resulting in 54
files*100 ms=5.4 seconds of latency. Thus, no matter how fast
the connection is to the home, this web site will always take at
least 5.4 seconds until it is live. Another factor is the server-
side queuing; every HTTP request is added in the back of the
queue, so on a busy server this will have a significant impact

Sep. 10, 2009

because for every small item to get from the web server, the
HTTP requests needs to wait for its turn.

[0318] One way to solve these issues is to discard or rede-
fine HTTP. Or, perhaps to get the website owner to better
consolidate its files into a single file (e.g., in Adobe Flash
format). But, as a practical matter, this company, as well as
many others has a great deal of investment in their web site
architecture. Further, while some homes have 12-100 Mbps
connections, the majority of homes still have slower speeds,
and HTTP does work well at slow speed.

[0319] Onealternative is to host web browsers on app/game
servers 1521-1525, and host the files for the web servers on
the RAID arrays 1511-1512 (or potentially in RAM or on
local storage on the app/game servers 1521-1525 hosting the
web browsers. Because of the very fast interconnect through
the inbound routing 1502 (or to local storage), rather than
have 100 ms of latency per file using HTTP, there will be de
minimis latency per file using HT'TP. Then, instead of having
the user in her home accessing the web page through HTTP,
the user can access the web page through client 415. Then,
even with a 1.5 Mbps connection (because this web page does
not require much bandwidth for its video), the webpage will
be live in less than 1 second per line 2400. Essentially, there
will be no latency before the web browser running on an
app/game server 1521-1525 is displaying a live page, and
there will be no detectable latency before the client 415 dis-
plays the video output from the web browser. As the user
mouses around and/or types on the web page, the user’s input
information will be sent to the web browser running on the
app/game server 1521-1525, and the web browser will
respond accordingly.

[0320] One disadvantage to this approach is if the compres-
sor is constantly transmitting video data, then bandwidth is
used, even if the web page becomes static. This can be rem-
edied by configuring the compressor to only transmit data
when (and if) the web page changes, and then, only transmit
data to the parts of the page that change. While there are some
web pages with flashing banners, etc. that are constantly
changing, such web pages tend to be annoying, and usually
web pages are static unless there is a reason for something to
be moving (e.g., a video clip). For such web pages, it is likely
the case the less data will be transmitted using the hosting
service 210 than a conventional web server because only the
actual displayed images will be transmitted, no thin client
executable code, and no large objects that may never be
viewed, such as rollover images.

[0321] Thus, using the hosting service 210 to host legacy
web pages, web page load times can be reduces to the point
where opening a web page is like changing channels on a
television: the web page is live effectively instantly.

[0322] Facilitating Debugging of Games and Applications
[0323] As mentioned previously, video games and applica-
tions with real-time graphics are very complex applications
and typically when they are released into the field they con-
tain bugs. Although software developers will get feedback
from users about bugs, and they may have some means to pass
back machine state after crashes, it is very difficult to identify
exactly what has caused a game or real-time application to
crash or to perform improperly.

[0324] When a game or application runs in the hosting
service 210, the video/audio output of the game or application
is constantly recorded on a delay buffer 1515. Further, a
watchdog process runs each app/game server 1521-1525
which reports regularly to the hosting service control system

US 2009/0225220 Al

401 that the app/game server 1521-1525 is running smoothly.
If the watchdog process fails to report in, then the server
control system 401 will attempt to communicate with the
app/game server 1521-1525, and if successtul, will collect
whatever machine state is available. Whatever information is
available, along with the video/audio recorded by the delay
buffer 1515 will be sent to the software developer.

[0325] Thus, when the game or application software devel-
oper gets notification of a crash from the hosting service 210,
it gets a frame-by-frame record of what led up to the crash.
This information can be immensely valuable in tracking
down bugs and fixing them.

[0326] Note also, that when an app/game server 1521-1525
crashes, the server is restarted at the most recent restartable
point, and a message is provided to the user apologizing for
the technical difficulty.

[0327] Resource Sharing and Cost Savings

[0328] The system shown in FIGS. 4a and 45 provide a
variety of benefits for both end users and game and applica-
tion developers. For example, typically, home and office cli-
ent systems (e.g., PCs or game consoles) are only in use for a
small percentage of the hours in a week. According to an Oct.
5, 2006 press release by the Nielsen Entertainment “Active
Gamer Benchmark Study” (http://www.prnewswire.com/
cgi-bin/stories.pl ? ACCT=104&STORY=/www/story/10-
05-2006/0004446115&EDATE=) active gamers spend on
average 14 hours a week playing on video game consoles and
about 17 hours a week on handhelds. The report also states
that for all game playing activity (including console, hand-
held and PC game playing) Active Gamers average 13 hours
aweek. Taking into consideration the higher figure of console
video game playing time, there are 24*7=168 hours in a week,
that implies that in an active gamer’s home, a video game
consoleis in use only 17/168=10% of the hours of a week. Or,
90% of the time, the video game console is idle. Given the
high cost of video game consoles, and the fact that manufac-
turers subsidize such devices, this is a very inefficient use of
an expensive resource. PCs within businesses are also typi-
cally used only a fraction of the hours of the week, especially
non-portable desktop PCs often required for high-end appli-
cations such as Autodesk Maya. Although some businesses
operate at all hours and on holidays, and some PCs (e.g.,
portables brought home for doing work in the evening) are
used at all hours and holidays, most business activities tend to
center around 9 AM to 5 PM, in a given business’ time zone,
from Monday to Friday, less holidays and break times (such
as lunch), and since most PC usage occurs while the user is
actively engaged with the PC, it follows that desktop PC
utilization tends to follow these hours of operation. If we were
to assume that PCs are utilized constantly from 9 AM to 5 PM,
5 days aweek, that would imply PCs are utilized 40/168=24%
of the hours of the week. High-performance desktop PCs are
very expensive investments for businesses, and this reflects a
very low level of utilization. Schools that are teaching on
desktop computers may use computers for an even smaller
fraction of the week, and although it varies depending upon
the hours of teaching, most teaching occurs during the day-
time hours from Monday through Friday. So, in general, PCs
and video game consoles are utilized only a small fraction of
the hours of the week.

[0329] Notably, because many people are working at busi-
nesses or at school during the daytime hours of Monday
through Friday on non-holidays, these people generally are
not playing video games during these hours, and so when they

Sep. 10, 2009

do play video games itis generally during other hours, such as
evenings, weekends and on holidays.

[0330] Given the configuration of the hosting service
shown in FIG. 4q, the usage patterns described in the above
two paragraphs result in very efficient utilization of resources.
Clearly, there is a limit to the number of users who can be
served by the hosting service 210 at a given time, particularly
if the users are requiring real-time responsiveness for com-
plex applications like sophisticated 3D video games. But,
unlike a video game console in a home or a PC used by a
business, which typically sits idle most of the time, servers
402 can be re-utilized by different users at different times. For
example, a high-performance server 402 with high perfor-
mance dual CPUs and dual GPUs and a large quantity of
RAM can be utilized by a businesses and schools from 9 AM
to 5 PM on non-holidays, but be utilized by gamers playing a
sophisticated video game in the evenings, weekends and on
holidays. Similarly, low-performance applications can be uti-
lized by businesses and schools on a low-performance server
402 with a Celeron CPU, no GPU (or a very low-end GPU)
and limited RAM during business hours and a low-perfor-
mance game can utilize a low-performance server 402 during
non-business hours.

[0331] Further, with the hosting service arrangement
described herein, resources are shared efficiently among
thousands, if not millions, of users. In general, online services
only have a small percentage of their total user base using the
service at a given time. If we consider the Nielsen video game
usage statistics listed previously, it is easy to see why. Ifactive
gamers play console games only 17 hours of aweek, and if we
assume that the peak usage time for game is during the typical
non-work, non-business hours of evenings (5-12 AM, 7*5
days=35 hours/week) and weekend (8 AM-12 AM, 16%*2=32
hours/week), then there are 35+32=65 peak hours a week for
17 hours of game play. The exact peak user load on the system
is difficult to estimate for many reasons: some users will play
during oft-peak times, there may be certain day times when
there are clustering peaks of users, the peak times can be
affected by the type of game played (e.g., children’s games
will likely be played earlier in the evening), etc. But, given
that the average number of hours played by a gamer is far less
than the number of hours of the day when a gamer is likely to
play a game, only a fraction of the number of users of the
hosting service 210 will be using it at a given time. For the
sake of this analysis, we shall assume the peak load is 12.5%.
Thus, only 12.5% of the computing, compression and band-
width resources are used at a given time, resulting in only
12.5% of the hardware cost to support a given user to play a
given level of performance game due to reuse of resources.

[0332] Moreover, given that some games and applications
require more computing power than others, resources may be
allocated dynamically based on the game being played or the
applications executed by users. So, a user selecting a low-
performance game or application will be allocated a low-
performance (less expensive) server 402, and a user selecting
a high-performance game or applications will be allocated a
high-performance (more expensive) server 402. Indeed, a
given game or application may have lower-performance and
higher-performance sections of the game or applications, and
the user can be switched from one server 402 to another server
402 between sections of the game or application to keep the
user running on the lowest-cost server 402 that meets the
game or application’s needs. Note that the RAID arrays 405,
which will be far faster than a single disk, will be available to

US 2009/0225220 Al

even low-performance servers 402, that will have the benefit
of'the faster disk transfer rates. So, the average cost per server
402 across all of the games being played or applications being
used is much less than the cost of the most expensive server
402 that plays the highest performance game or applications,
yet even the low-performance servers 402, will derive disk
performance benefits from the RAID arrays 405.

[0333] Further, a server 402 in the hosting service 210 may
be nothing more than a PC motherboard without a disk or
peripheral interfaces other than a network interface, and in
time, may be integrated down to a single chip with just a fast
network interface to the SAN 403. Also, RAID Arrays 405
likely will be shared amongst far many more users than there
are disks, so the disk cost per active user will be far less than
one disk drive. All of this equipment will likely reside in a
rack in a environmentally-controlled server room environ-
ment. If a server 402 fails, it can be readily repaired or
replaced at the hosting service 210. In contrast, a PC or game
console in the home or office must be a sturdy, standalone
appliance that has to be able to survive reasonable wear and
tear from being banged or dropped, requires a housing, has at
least one disk drive, has to survive adverse environment con-
ditions (e.g., being crammed into an overheated AV cabinet
with other gear), requires a service warranty, has to be pack-
aged and shipped, and is sold by a retailer who will likely
collect a retail margin. Further, a PC or game console must be
configured to meet the peak performance of the most compu-
tationally-intensive anticipated game or application to be
used at some point in the future, even though lower perfor-
mance games or application (or sections of games or appli-
cations) may be played most of the time. And, if the PC or
console fails, it is an expensive and time-consuming process
(adversely impacting the manufacturer, user and software
developer) to get it repaired.

[0334] Thus, given that the system shown in FIG. 4a pro-
vides an experience to the user comparable to that of a local
computing resource, for a user in the home, office or school to
experience a given level of computing capability, it is much
less expensive to provide that computing capability through
the architecture shown in FIG. 4a.

[0335] Eliminating the Need to Upgrade

[0336] Further, users no longer have to worry about upgrad-
ing PCs and/or consoles to play new games or handle higher
performance new applications. Any game or applications on
the hosting service 210, regardless of what type of server 402
is required for that game or applications, is available to the
user, and all games and applications run nearly instantly (i.e.,
loading rapidly from the RAID Arrays 405 or local storage on
a servers 402) and properly with the latest updates and bug
fixes (i.e., software developers will be able to choose an ideal
server configuration for the server(s) 402 that run(s) a given
game or application, and then configure the server(s) 402 with
optimal drivers, and then over time, the developers will be
able to provide updates, bug fixes, etc. to all copies of the
game or application in the hosting service 210 at once).
Indeed, after the user starts using the hosting service 210, the
user is likely to find that games and applications continue to
provide a better experience (e.g., through updates and/or bug
fixes) and it may be the case that user discovers a year later
that a new game or application is made available on the
service 210 that is utilizing computing technology (e.g., a
higher-performance GPU) that did not even exist a year
before, so it would have been impossible for the user to buy
the technology a year before that would play the game or run

Sep. 10, 2009

the applications a year later. Since the computing resource
that is playing the game or running the application is invisible
to the user (i.e., from the user’s perspective the user is simply
selecting a game or application that begins running nearly
instantly—much as if the user had changed channels on a
television), the user’s hardware will have been “upgraded”
without the user even being aware of the upgrade.

[0337] Eliminating the Need for Backups

[0338] Another major problem for users in businesses,
schools and homes are backups. Information stored in a local
PC or video game console (e.g., in the case of a console, a
user’s game achievements and ranking) can be lost if a disk
fails, or if there is an inadvertent erasure. There are many
applications available that provide manual or automatic back-
ups for PCs, and game console state can be uploaded to an
online server for backup, but local backups are typically
copied to another local disk (or other non-volatile storage
device) which has to be stored somewhere safe and organized,
and backups to online services are often limited because of
the slow upstream speed available through typical low-cost
Internet connections. With the hosting service 210 of FIG. 4a,
the data that is stored in RAID arrays 405 can be configured
using prior art RAID configuration techniques well-known to
those skilled in the art such that if a disk fails, no data will be
lost, and a technician at the server center housing the failed
disk will be notified, and then will replace the disk, which
then will be automatically updated so that the RAID array is
once again failure tolerant. Further, since all of the disk drives
are near one another and with fast local networks between
them through the SAN 403 it is not difficult in a server center
to arrange for all of the disk systems to be backed up on a
regular basis to secondary storage, which can be either stored
atthe server center or relocated offsite. From the point of view
of'the users ot hosting service 210, their data is simply secure
all the time, and they never have to think about backups.
[0339] Access to Demos

[0340] Users frequently want to try out games or applica-
tions before buying them. As described previously, there are
prior art means by which to demo (the verb form of “demo”
means to try out a demonstration version, which is also called
a “demo”, but as a noun) games and applications, but each of
them suffers from limitations and/or inconveniences. Using
the hosting service 210, it is easy and convenient for users to
try out demos. Indeed, all the user does is select the demo
through a user interface (such as one described below) and try
out the demo. The demo will load almost instantly onto a
server 402 appropriate for the demo, and it will just run like
any other game or application. Whether the demo requires a
very high performance server 402, or a low performance
server 402, and no matter what type of home or office client
415 the user is using, from the point of view of the user, the
demo will just work. The software publisher of either the
game or application demo will be able to control exactly what
demo the user is permitted to try out and for how long, and of
course, the demo can include user interface elements that
offer the user an opportunity to gain access to a full version of
the game or application demonstrated.

[0341] Since demos are likely to be offered below cost or
free of charge, some users may try to use demos repeated
(particularly game demos, which may be fun to play repeat-
edly). The hosting service 210 can employ various techniques
to limit demo use for a given user. The most straightforward
approach is to establish a user ID for each user and limit the
number of times a given user ID is allowed to play a demo. A

US 2009/0225220 Al

user, however, may set up multiple user IDs, especially ifthey
are free. One technique for addressing this problem is to limit
the number of times a given client 415 is allowed to play a
demo. If the client is a standalone device, then the device will
have a serial number, and the hosting service 210 can limit the
number of times a demo can be accessed by a client with that
serial number. If the client 415 is running as software on a PC
or other device, then a serial number can be assigned by the
hosting service 210 and stored on the PC and used to limit
demo usage, but given that PCs can be reprogrammed by
users, and the serial number erased or changed, another
option is for the hosting service 210 to keep a record of the PC
network adapter Media Access Control (MAC) address (and/
or other machine specific identifiers such as hard-drive serial
numbers, etc.) and limit demo usage to it. Given that the MAC
addresses of network adapters can be changed, however, this
is not a foolproof method. Another approach is to limit the
number of times a demo can be played to a given IP address.
Although IP addresses may be periodically reassigned by
cable modem and DSL providers, it does not happen in prac-
tice very frequently, and if it can be determined (e.g., by
contacting the ISP) that the IP is in a block of IP addresses for
residential DSL or cable modem accesses, then a small num-
ber of demo uses can typically be established for a given
home. Also, there may be multiple devices at a home behind
a NAT router sharing the same IP address, but typically in a
residential setting, there will be a limited number of such
devices. Ifthe IP address is in a block serving businesses, then
a larger number of demos can be established for a business.
But, in the end, a combination of all of the previously men-
tioned approaches is the best way to limit the number of
demos on PCs. Although there may be no foolproof way that
a determined and technically adept user can be limited in the
number of demos played repeatedly, creating a large number
of barriers can create a sufficient deterrent such that it’s not
worth the trouble most PC users to abuse the demo system,
and rather they use the demos as they were intended to try out
new games and applications.

[0342] Benefits to Schools, Businesses and Other Institu-
tions
[0343] Significant benefits accrue particularly to busi-

nesses, schools and other institutions that utilize the system
shown in FIG. 4a. Businesses and schools have substantial
costs associated with installing, maintaining and upgrading
PCs, particularly when it comes to PCs for running high-
performance applications, such a Maya. As stated previously,
PCs are generally utilized only a fraction of the hours of the
week, and as in the home, the cost of PC with a given level of
performance capability is far higher in an office or school
environment than in a server center environment.

[0344] Inthe case of larger businesses or schools (e.g., large
universities), it may be practical for the IT departments of
such entities to set up server centers and maintain computers
that are remotely accessed via [LAN-grade connections. A
number of solutions exist for remote access of computers over
a LAN or through a private high bandwidth connection
between offices. For example, with Microsoft’s Windows
Terminal Server, or through virtual network computing appli-
cations like VNC, from Real VNC, Ltd., or through thin client
means from Sun Microsystems, users can gain remote access
to PCs or servers, with a range of quality in graphics response
time and user experience. Further, such self-managed server
centers are typically dedicated for a single business or school
and as such, are unable to take advantage of the overlap of

Sep. 10, 2009

usage that is possible when disparate applications (e.g., enter-
tainment and business applications) utilize the same comput-
ing resources at different times of the week. So, many busi-
nesses and schools lack the scale, resources or expertise to set
up a server center on their own that has a LAN-speed network
connection to each user. Indeed, a large percentage of schools
and businesses have the same Internet connections (e.g.,
DSL, cable modems) as homes.

[0345] Yet such organizations may still have the need for
very high-performance computing, either on a regular basis
oron a periodic basis. For example, a small architectural firm
may have only a small number of architects, with relatively
modest computing needs when doing design work, but it may
require very high-performance 3D computing periodically
(e.g., when creating a 3D fly-through of a new architectural
design for a client). The system shown in FIG. 4a is extremely
well suited for such organizations. The organizations need
nothing more than the same sort of network connection that
are offered to homes (e.g., DSL, cable modems) and are
typically very inexpensive. They can either utilize inexpen-
sive PCs as the client 415 or dispense with PCs altogether and
utilize inexpensive dedicated devices which simply imple-
ment the control signal logic 413 and low-latency video
decompression 412. These features are particularly attractive
for schools that may have problems with theft of PCs or
damage to the delicate components within PCs.

[0346] Such an arrangement solves a number of problems
for such organizations (and many of these advantages are also
shared by home users doing general-purpose computing). For
one, the operating cost (which ultimately must be passed back
in some form to the users in order to have a viable business)
can be much lower because (a) the computing resources are
shared with other applications that have different peak usage
times during the week, (b) the organizations can gain access
to (and incur the cost of) high performance computing
resources only when needed, (c) the organizations do nothave
to provide resources for backing up or otherwise maintaining
the high performance computing resources.

[0347] Elimination of Piracy

[0348] Inaddition, games, applications, interactive movies,
etc, can no longer be pirated as they are today. Because game
is executed at the service center, users are not provided with
access to the underlying program code, so there is nothing to
pirate. Even if a user were to copy the source code, the user
would not be able to execute the code on a standard game
console orhome computer. This opens up markets in places of
the world such as China, where standard video gaming is not
made available. The re-sale of used games is also not possible.
[0349] For game developers, there are fewer market discon-
tinuities as is the case today. The hosting service 210 can be
gradually updated over time as gaming requirements change,
in contrast to the current situation where a completely new
generation of technology forces users and developers to
upgrade and the game developer is dependent on the timely
delivery of the hardware platform.

[0350] Streaming Interactive Video

[0351] The above descriptions provide a wide range of
applications enabled by the novel underlying concept of gen-
eral Internet-based, low-latency streaming interactive video
(which implicitly includes audio together with the video as
well, as used herein). Prior art systems that have provided
streaming video through the Internet only have enabled appli-
cations which can be implemented with high latency interac-
tions. For example, basic playback controls for linear video

US 2009/0225220 Al

(e.g. pause, rewind, fast forward) work adequately with high
latency, and it is possible to select among linear video feeds.
And, as stated previously, the nature of some video games
allow them to be played with high latency. But the high
latency (or low compression ratio) of prior art approaches for
streaming video have severely limited the potential applica-
tions of streaming video or narrowed their deployments to
specialized network environments, and even in such environ-
ments, prior art techniques introduce substantial burdens on
the networks. The technology described herein opens the
door for the wide range of applications possible with low-
latency streaming interactive video through the Internet, par-
ticularly those enabled through consumer-grade Internet con-
nections.

[0352] Indeed, with client devices as small as client 465 of
FIG. 4c sufficient to provide an enhanced user experience
with an effectively arbitrary amount of computing power,
arbitrary amount of fast storage, and extremely fast network-
ing amongst powerful servers, it enables a new era of com-
puting. Further, because the bandwidth requirements do not
grow as the computing power of the system grows (i.e.,
because the bandwidth requirements are only tied to display
resolution, quality and frame rate), once broadband Internet
connectivity is ubiquitous (e.g., through widespread low-
latency wireless coverage), reliable, and of sufficiently high
bandwidth to meet the needs of the display devices 422 of all
users, the question will be whether thick clients (such as PCs
or mobile phones running Windows, Linux, OSX, etc.,) or
even thin clients (such as Adobe Flash or Java) are necessary
for typical consumer and business applications.

[0353] The advent of streaming interactive video results in
a rethinking of assumptions about the structure of computing
architectures. An example of this is the hosting service 210
server center embodiment shown in FIG. 15. The video path
for delay buffer and/or group video 1550 is a feedback loop
where the multicasted streaming interactive video output of
the app/game servers 1521-1525 is fed back into the app/
game servers 1521-1525 either in real-time via path 1552 or
after a selectable delay via path 1551. This enables a wide
range of practical applications (e.g. such as those illustrated
in FIGS. 16, 17 and 20) that would be either impossible or
infeasible through prior art server or local computing archi-
tectures. But, as a more general architectural feature, what
feedback loop 1550 provides is recursion at the streaming
interactive video level, since video can be looped back indefi-
nitely as the application requires it. This enables a wide range
of application possibilities never available before.

[0354] Another key architectural feature is that the video
streams are unidirectional UDP streams. This enables effec-
tively an arbitrary degree of multicasting of streaming inter-
active video (in contrast, two-way streams, such as TCP/IP
streams, would create increasingly more traffic logjams on
the networks from the back-and-forth communications as the
number of users increased). Multicasting is an important
capability within the server center because it allows the sys-
tem to be responsive to the growing needs of Internet users
(and indeed of the world’s population) to communicate on a
one-to-many, or even a many-to-many basis. Again, the
examples discussed herein, such as FIG. 16 which illustrates
the use of both streaming interactive video recursion and
multicasting are just the tip of a very large iceberg of possi-
bilities.

[0355] Inone embodiment, the various functional modules
illustrated herein and the associated steps may be performed

Sep. 10, 2009

by specific hardware components that contain hardwired
logic for performing the steps, such as an application-specific
integrated circuit (“ASIC”) or by any combination of pro-
grammed computer components and custom hardware com-
ponents.

[0356] In one embodiment, the modules may be imple-
mented on a programmable digital signal processor (“DSP”)
such as a Texas Instruments’ TMS320x architecture (e.g., a
TMS320C6000, TMS320C5000, . . . etc). Various different
DSPs may be used while still complying with these underly-
ing principles.

[0357] Embodiments may include various steps as set forth
above. The steps may be embodied in machine-executable
instructions which cause a general-purpose or special-pur-
pose processor to perform certain steps. Various elements
which are not relevant to these underlying principles such as
computer memory, hard drive, input devices, have been left
out of the figures to avoid obscuring the pertinent aspects.
[0358] Elements of the disclosed subject matter may also
be provided as a machine-readable medium for storing the
machine-executable instructions. The machine-readable
medium may include, but is not limited to, flash memory,
optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs,
EEPROMSs, magnetic or optical cards, propagation media or
other type of machine-readable media suitable for storing
electronic instructions. For example, the present invention
may be downloaded as a computer program which may be
transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of data signals
embodied in a carrier wave or other propagation medium via
acommunication link (e.g., amodem or network connection).
[0359] It should also be understood that elements of the
disclosed subject matter may also be provided as a computer
program product which may include a machine-readable
medium having stored thereon instructions which may be
used to program a computer (e.g., a processor or other elec-
tronic device) to perform a sequence of operations. Alterna-
tively, the operations may be performed by a combination of
hardware and software. The machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMSs, magnet or optical cards, propagation
media or other type of media/machine-readable medium suit-
able for storing electronic instructions. For example, ele-
ments of the disclosed subject matter may be downloaded as
a computer program product, wherein the program may be
transferred from a remote computer or electronic device to a
requesting process by way of data signals embodied in a
carrier wave or other propagation medium via a communica-
tion link (e.g., a modem or network connection).

[0360] Additionally, although the disclosed subject matter
has been described in conjunction with specific embodi-
ments, numerous modifications and alterations are well
within the scope of the present disclosure. Accordingly, the
specification and drawings are to be regarded in an illustrative
rather than a restrictive sense.

What is claimed is:
1. A computer-implemented method for performing video
compression comprising:
detecting motion within a sequence of images occurring at
different regions within the sequence of images;

US 2009/0225220 Al

logically subdividing each of the sequence of images into a
plurality of'tiles, each tilehaving a size selected based on
the amount of motion detected in a region in which the
tile is positioned; and

encoding one or more of the tiles within each image of the
sequence of images using a first compression format and
encoding the remainder of the tiles within each image of

Sep. 10, 2009

the sequence of images using a second compression
format.

2. The method as in claim 1 wherein the first compression
format comprises intraframe coding.

3. The method as in claim 2 wherein the second compres-
sion format comprises interframe coding.

sk sk sk sk sk

