20047066111 A2 | IV YO0 0 000

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
5 August 2004 (05.08.2004)

AT Y00 OO

(10) International Publication Number

WO 2004/066111 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/000698

(22) International Filing Date: 12 January 2004 (12.01.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/346,238 16 January 2003 (16.01.2003) US

(71) Applicant (for all designated States except US): SUN MI-
CROSYSTEMS, INC. [US/US]; 4150 Network Circle,
Santa Clara, CA 95054 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DE JONG, Eduard,
K. [/GB]; 9 Warwick Road, Redland, Bristol B56 6HE
(GB).

(74) Agent: RITCHIE, David, B.; Thelen Reid & Priest LLP,
P.O. Box 640640, San Jose, CA 95164-0640 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: USING A DIGITAL FINGERPRINT TO COMMIT LOADED DATA IN A DEVICE

3800

Method
Fingerprint

Method
Fingerprint

3804

3808

Method
Fingerprint

Method
Flngerprint

e)
tethod Methad

Method
Fingerprint

Method
Fingerprint

i

Method
Wethod | — Thethod
I a] I A
Method

Fingerprint

Method
Fingerprint
Method
Fingerprint
Method
Fingerprint
3820

Mathod

3818

Method
Fingerprint

' Method IL Methad lemnd‘I
F
Method
Fingewprint

Method
Fingemprint

Method
Fingerprint
Wethod
Fingesprint

3826

Class Class
Fingerprint i

4

y

Package
Fingerprint

3828

3816

Load
Fingemprint

N wm |

3824

), [,)

3830

Package
Fingerprint

(57) Abstract: Committing data loaded on a device includes computing a program unit storage commitment fingerprint over a
program unit if the program unit is finally loaded in a non-volatile memory on the device, associating the program unit storage
commitment fingerprint with the program unit and storing the program unit storage commitment fingerprint.

WO 2004/066111 PCT/US2004/000698

SPECIFICATION

TITLE OF INVENTION
USING A DIGITAL FINGERPRINT TO COMMIT LOADED DATA IN A DEVICE

Cross Reference to Related Applications

[0001] This application is related to the following:

U.S. Patent Application Serial No. 10/346,581 filed January 16, 2003 in the name
of inventor Eduard de Jong, entitled “System for Communicating Program Data Between
a First Device and a Second Device”, commonly assigned herewith.

U.S. Patent Application Serial No. 10/346,230, filed January 1‘6, 2003 in the
name of inventor Eduard de Jong, entitled “Signing Program Data Payload Sequence in
Program Loading”, commonly assigned herewith.

U.S. Patent Application Serial No. 10/346,586, filed January 16, 2003 in the
name of inventor Eduard de Jong, entitled “Ordering Program Data for Loading on a
Device”, commonly assigned herewith.

U.S. Patent Application Serial No. 10/346,227, filed January 16, 2003 in the
name of inventor Eduard de Jong, entitled “Optimized Representation of Data Type
Information in Program Verification”, commonly assigned herewith.

U.S. Patent Application Serial No. 10/346,243, filed January 16, 2003 in the
name of inventor Eduard de Jong, entitled “Run Time Code Integrity Checks”,
commonly assigned herewith.

U.S. Patent Application Serial No. 10/346,579, filed January 16, 2003 in the
name of inventor Eduard de Jong, entitled “Linking of Virtual Methods”, commonly
assigned herewith.

FIELD OF THE INVENTION
[0002] The present invention relates to the field of computer science. More particularly,
the present invention relates to using a digital fingerprint to commit loaded data in a

device.

WO 2004/066111 PCT/US2004/000698

BACKGROUND OF THE INVENTION

[0003] Figure 1 is a block diagram that illustrates a typical mechanism for
communicating program data between a host computer and a smart card. Smart cards
110 typically communicate with other computers 100 via APDUs (Application Protocol
Data Units). The APDU protocol is specified in International Standard ISO/IEC 7816-3.
An APDU includes either a command 115 or a response 120 message. A smart card 110
receives a command APDU 115 from a host computer 100, executes the instruction
specified in the command 115 and replies to the host computer 100 with a response
APDU 120. Command APDUs 115 and response APDUs 120 are exchanged alternately
between a card 110 and a host computer 100.

[0004] According to the APDU protocol, APDU messages comprise two structures.
One structure is used by a host application on a loading terminal to send commands to
the card. The other structure is used by the card to send responses back to the host
application. The former is referred to as the command APDU (C-APDU) and the latter
is referred to as the response APDU (R-APDU). Their structures are illustrated in FIGS.
2A and 2B, respectively. Some C-APDU components are optional.

[0005] Java Card™ technology enables programs written in the Java™ programming
language to run on smart cards and other resource-constrained devices. Java Card™
technology is described in Z. Chen, Java Card™ Technology for Smart Cards (2000).

[0006] Tuining now to FIG. 3, a block diagram that illustrates loading a converted
applet (CAP) file is presented. The Java Card™ Virtual Machine (JCVM) comprises an
on-card portion that includes the Java Card™ bytecode interpreter 345 and an off-card
portion called a converter 310. Taken together, the interpreter 345 and the converter 310
implement all the virtual machine functions, including loading Java™ class files 300 and
executing them with a particular set of semantics. The converter 310 loads and pre-
processes the class files 300 that comprise a Java Card™ program that may be structured
in one or more packages and produces a CAP (converted applet) file 350. The CAP file
1350 is then loaded on a Java Card™ technology-enabled smart card 330 and executed by

the interpreter 345. The CAP file 350 includes an executable binary representation of the

WO 2004/066111 PCT/US2004/000698

classes in a Java™ package 350. The Java Card™ interpreter 345 provides runtime

support of the Java™ language execution model.

[0007] In Java Card™ technology, the mechanisms to download and install a CAP file
350 are embodied in a unit called the installer 340. The Java Card™ installer 340 resides
within the card 330. It cooperates with an off-card installation program 320. The off-
card installation program 320 transmits the executable binary and possibly other data in a
CAP file 350 to the installer 340 running on the card 330 via a loading terminal 325.

The installer 340 writes the binary into the smart card memory, links it with the other
classes that have already been placed on the card 330 and creates and initializes any data
structures that are used internally by the Java Card™ runtime environment. An optional
on-card verifier 335 performs bytecode verification of downloaded code before the

downloaded code is interpreted by bytecode interpreter 345.

[0008] The APDU protocol limits the size of the payload or data field (reference
numeral 240 of FIG. 2) to a small number of bytes (typically less than 128) determined
by the restricted size of RAM. Data structures larger than the limitation must be split
among the payload portion of multiple APDUs. This splitting is typically performed
without regard to the data content. For example, a particular APDU may contain a
portion of one data structure and a portion of another data structure. This is explained in

more detail below, with reference to FIG. 4.

[0009] Turning now to FIG. 4, a flow diagram that illustrates loading a CAP file from
the perspective of a loading terminal is presented. At 400, a CAP file is received. At
405, the CAP file and associated authentication data is split amongst multiple APDUS.
At 410, the APDUs are transmitted to the target smart card according to the APDU

protocol.

[0010] Turning now to FIG. 5, a flow diagram that illustrates loading a CAP file from
the perspective of a smart card is presented. At 500, the CAP file is reassembled in the
smart card. At 505, the reassembled CAP file is decrypted. At 510, the decrypted CAP
file data is authenticated. In another solution, the CAP file is authenticated and then
decrypted. In yet another solution, the CAP file is communicated without encryption.
At 515, the content of the authenticated CAP file is installed on the smart card.

WO 2004/066111 PCT/US2004/000698

[0011] Turning now to FIG. 6, a flow diagram that illustrates reassembling a CAP file in
a smart card is presented. At 600, an APDU is received. At 605, the APDU is stored in
a persistent mutable memory such as an EEPROM (electrically erasable programmable
read-only memory). Alternatively, the APDU payload is not stored in a persistent
mutable memory. At 610, receipt of the APDU is acknowledged. At615,a
determination is made regarding whether another APDU needs to be processed.

Additional APDUs are processed beginning at 600.

[0012] Turning now to FIG. 7, a block diagram that illustrates modifying a stored
program having link data to resolve static references is presented. Card memory 700
represents card memory before using embedded link data (704, 712, 728) to link
executable code segments (702, 706, 708, 710, 712, 716, 718, 720, 722, 724, 726, 728,
732). Card memory 750 represents card memory after the embedded link data (704, 712,
728) has been used to link executable code segments (702, 706, 708, 710, 712, 716, 718,
720, 722, 724, 726, 728, 732). Referring to card memory 700, method “A1A” code 702
calls method “A1C” 708, method “A2A” code 712 calls method “B1A” 720 and method
“B2A” code 728 calls method “B1D” 726. Method “A1A” link data 704 comprises an
indication of how to resolve the reference to method “A1C” 708. Method “A1A” link
data 704 may additionally comprise an indication of how method “A1A” code 702 must
be modified. Likewise, method “A2A” link data 714 comprises an indication of how to
resolve the reference to method “B1A” 720. Method “A2A” link data 714 may
additionally comprise an indication of how method “A2A” code 712 must be modified.
Additionaﬂy, method “B2A” link data 730 compfises an indication of how to resolve the
reference to method “B1D” 726. Method “B2A” link data 730 may additionally
comprise an indication of how method “B2A” code 728 must be modified. Referring to
card memory 750 of FIG. 7, symbolic references to called methods have been replaced

with the addresses of the called methods and the link data is not stored.

[0013] Unfortunately, storing the re-created CAP file in a persistent mutable memory
and then processing the CAP file contents to create linked executable code requires a

significant amount of available memory and is time consuming.

WO 2004/066111 PCT/US2004/000698

[0014] Accordingly, a need exists in the prior art for a method and apparatus for
communicating program data between a host computer and a smart card that is relatively
efficient. A further need exists for such a solution that is relatively secure. Yet another

need exists for such a solution that detects when program data has been tampered with.

SUMMARY OF THE INVENTION

[0015] Committing data loaded on a device includes computing a program unit storage
commitment fingerprint over a program unit if the program unit is finally loaded in a
non-volatile memory on the device, associating the program unit storage commitment
fingerprint with the program unit and storing the program unit storage commitment

fingerprint.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The accompanying drawings, which are incorporated into and constitute a part of
this specification, illustrate one or more embodiments of the present invention and,
together with the detailed description, serve to explain the principles and
implementations of the invention.

In the drawings:

FIG. 1 is a block diagram that illustrates a typical mechanism for communicating

program data between a host computer and a smart card.

FIG. 2A is a block diagram that illustrates a typical Command Application Protocol Data
Unit (C-APDU).

FIG. 2B is a block diagram that illustrates a typical Response Application Protocol Data
Unit (R-APDU).

FIG. 3 is a block diagram that illustrates loading a converted applet (CAP) file.

WO 2004/066111 PCT/US2004/000698

FIG. 4 is a flow diagram that illustrates loading a CAP file from the perspective of a

loading terminal.

FIG. 5 is a flow diagram that illustrates loading a CAP file from the perspective of a

smart card.
FIG. 6 is a flow diagram that illustrates reassembling a CAP file in a smart card.

FIG. 7 is a block diagram that illustrates modifying a stored program having link data to

resolve static references.

FIG. 8 is a block diagram of a computer system suitable for implementing aspects of the

present invention.

FIG. 9 is a block diagram that illustrates a system for communicating program data
between a host computer and a smart card in accordance with one embodiment of the

present invention.

FIG. 10 is a high level flow diagram that illustrates communicating program data from a
host computer to a smart card in accordance with one embodiment of the present

invention.

FIG. 11 is a low level flow diagram that illustrates communicating program data from a
host computer to a smart card in accordance with one embodiment of the present

invention.

FIG. 12 is a flow diagram that illustrates a method for communicating program data from
a host computer to a loading terminal from the perspective of a host computer in

accordance with one embodiment of the present invention.

FIG. 13 is a block diagram that illustrates partitioning a CAP file into one or more

logical APDUs in accordance with one embodiment of the present invention.

WO 2004/066111 PCT/US2004/000698

FIG. 14 is a flow diagram that illustrates a method for using program unit type map

information in accordance with one embodiment of the present invention.

FIG. 15A is a block diagram that illustrates a CAP file comprising package-structured
data.

FIG. 15B is a use diagram corresponding to the program within the CAP file of FIG.
15A.

FIG. 15C is a block diagram that illustrates the CAP file of FIG. 15A ordered based upon
the use diagram of FIG. 15B in accordance with one embodiment of the present

invention.

FIG. 16 is a flow diagram that illustrates a method for ordering program units for
optimized verification and linking in accordance with one embodiment of the present

invention.

FIG. 17A is a block diagram that illustrates a CAP file comprising package-structured
data.

FIG. 17B is a use diagram corresponding to the program within the CAP file of FIG.
17A.

FIG. 17C is a block diagram that illustrates the CAP file of FIG. 17A ordered based upon
the use diagram of FIG. 17B in accordance with one embodiment of the present

invention..

FIG. 18 is a flow diagram that illustrates a method for disassembling a CAP file into one

or more logical APDUs in accordance with one embodiment of the present invention.

FIG. 19 is a flow diagram that illustrates a method for disassembling a CAP file into one
or more logical APDUs including APDUSs comprising verification data in accordance

with one embodiment of the present invention.

WO 2004/066111 PCT/US2004/000698

FIG. 20A is a flow diagram that illustrates a method for computing an authentication
fingerprint over an APDU data stream where verification APDUsS are included in the

fingerprint in accordance with one embodiment of the present invention.

FIG. 20B is a flow diagram that illustrates a method for computing an authentication
fingerprint over an APDU data stream where verification APDUs are excluded from the

fingerprint in accordance with one embodiment of the present invention.

FIG. 21 is a flow diagram that illustrates a method for communicating program data from
a host computer to a loading terminal from the perspective of a loading terminal in

accordance with one embodiment of the present invention.

FIG. 22 is a flow diagram that illustrates a method for disassembling an augmented CAP
file into one or more logical APDUs in accordance with one embodiment of the present

invention.

FIG. 23 is a flow diagram that illustrates a method for disassembling an augmented CAP
file including verification data into one or more logical APDUs including APDUs
comprising verification data in accordance with one embodiment of the present

invention.

FIG. 24 is a flow diagram that illustrates a method for disassembling an augmented CAP
file not including verification data into one or more logical APDUs including APDUs
comprising verification data in accordance with one embodiment of the present

invention.

FIG. 25 is a flow diagram that illustrates a method for disassembling an augmented CAP
file into one or more logical APDUs including APDUSs comprising link data in

accordance with one embodiment of the present invention.

FIG. 26 is a flow diagram that illustrates a method for disassembling an augmented CAP
file including verification data into one or more logical APDUs including APDUs
comprising verification data and APDUs comprising link data in accordance with one

embodiment of the present invention.

WO 2004/066111 PCT/US2004/000698

FIG. 27 is a flow diagram that illustrates a method for disassembling an augmented CAP
file not including verification data into one or more logical APDUs including APDUSs
comprising verification data and APDUs comprising link data in accordance with one

embodiment of the present invention.

FIG. 28 is a flow diagram that illustrates a method for creating one or more method link

APDUs in accordance with one embodiment of the present invention.

FIG. 29 is a flow diagram that illustrates a method for communicating program data from
a loading terminal to a smart card from the perspective of a smart card in accordance

with one embodiment of the present invention.

FIG. 30 is a flow diagram that illustrates a method for communicating program data from
a loading terminal to a smart card from the perspective of a smart card using an
authentication fingerprint that is a HMAC in accordance with one embodiment of the

present invention.

FIG. 31 is a flow diagram that illustrates a method for performing load initialization in

accordance with one embodiment of the present invention.

FIG. 32 is a flow diagram that illustrates a method for processing a logical APDU stream

in accordance with one embodiment of the present invention.

FIG. 33 is a flow diagram that illustrates a method for computing an authentication

fingerprint in accordance with one embodiment of the present invention.

FIG. 34 is a flow diagram that illustrates a method for processing a logical APDU in

accordance with one embodiment of the present invention.

FIG. 35 is a block diagram that illustrates data structures for linking a program including

virtual methods in accordance with one embodiment of the present invention.

WO 2004/066111 PCT/US2004/000698

FIG. 36 is a block diagram that illustrates modifying a stored program having link data to

resolve dynamic references in accordance with one embodiment of the present invention.

FIG. 37 is a flow diagram that illustrates modifying a stored program having link data to

resolve dynamic references in accordance with one embodiment of the present invention.

FIG. 38 is a block diagram that illustrates a hierarchy of program unit commitment

fingerprints in accordance with one embodiment of the present invention.

FIG. 39 is a block diagram that illustrates a data structure including program code and
program unit commitment fingerprints in accordance with one embodiment of the

present invention.

FIG. 40 is a block diagram that illustrates a data structure including program code and a
load storage commitment fingerprint in accordance with one embodiment of the present

invention.

FIG. 41 is a flow diagram that illustrates a method for using a program unit commitment
fingerprint to determine whether a program unit may be used, in accordance with one

embodiment of the present invention. .

FIG. 42 is a flow diagram that illustrates a method for determining whether stored

program unit data is valid in accordance with one embodiment of the present invention.
FIG. 43 is a block diagram that illustrates a smart card configured to ensure a called
method has been verified prior to execution in accordance with one embodiment of the

present invention.

FIG. 44 is'a flow diagram that illustrates a method for ensuring a called method has been

verified prior to execution in accordance with one embodiment of the present invention.

10

WO 2004/066111 PCT/US2004/000698

DETAILED DESCRIPTION

[0017] Embodiments of the present invention are described herein in the context of
using a digital fingerprint to commit loaded data in a device. Those of ordinary skill in
the art will realize that the following detailed description of the present invention is
illustrative only and is not intended to be in any way limiting. Other embodiments of the
present invention will readily suggest themselves to such skilled persons having the
benefit of this disclosure. Reference will now be made in detail to implementations of
the present invention as illustrated in the accompanying drawings. The same reference
indicators will be used throughout the drawings and the following detailed description to

refer to the same or like parts.

[0018] In the interest of clarity, not all of the routine features of the implementations
described herein are shown and described. It will, of course, be appreciated that in the
development of any such actual implementation, numerous implementation-specific
decisions must be made in order to achieve the developer’s specific goals, such as
compliance with application- and business-related constraints, and that these specific
goals will vary from one implementation to another and from one developer to another.
Moreover, it will be appreciated that such a development effort might be complex and
time-consuming, but would nevertheless be a routine undertaking of engineering for

those of ordinary skill in the art having the benefit of this disclosure.

[0019] In accordance with one embodiment of the present invention, the components,
process steps, and/or data structures may be implemented using various types of
operating systems (OS), computing platforms, firmware, computer programs, computer
languages, and/or general-purpose machines. The method can be run as a programmed
process running on processing circuitry. The processing circuitry can take the form of
numerous combinations of processors and operating systems, or a stand-alone device.
The process can be implemented as instructions executed by such hardware, hardware
alone, or any combination thereof. The software may be stored on a program storage

device readable by a machine.

[0020] In addition, those of ordinary skill in the art will recognize that devices of a less

general purpose nature, such as hardwired devices, field programmable logic devices

11

WO 2004/066111 PCT/US2004/000698

(FPLDs), including field programmable gate arrays (FPGAs) and complex
programmable logic devices (CPLDs), application specific integrated circuits (ASICs),
or the like, may also be used without departing from the scope and spirit of the inventive

concepts disclosed herein.

[0021] In accordance with one embodiment of the present invention, the method may be
implemented on a data processing computer such as a personal computer, workstation
computer, mainframe computer, or high performance server running an OS such as
Solaris® available from Sun Microsystems, Inc. of Santa Clara, California, Microsoft®
Windows® XP and Windows® 2000, available from Microsoft Corporation of
Redmond, Washington, or various versions of the Unix operating system such as Linux
available from a number of vendors. The method may also be implemented on a
multiple-processor system, or in a computing environment including various peripherals
such as input devices, output devices, displays, pointing devices, memories, storage
devices, media interfaces for transferring data to and from the processor(s), and the like.
In addition, such a computer system or computing environment may be networked

locally, or over the Internet.

[0022] In the context of the present invention, the term “network™ includes local area
networks, wide area networks, the Internet, cable television systems, telephone systems,
wireless telecommunications systems, fiber optic networks, ATM networks, frame relay
networks, satellite communications systems, and the like. Such networks are well known

in the art and consequently are not further described here.

[0023] In the context of the present invention, a hash function % is commutative if 4(x,y)
= h(y,x) for all x and y. In other words, the result of the hash function is independent of

the argument order.

[0024] In the context of the present invention, the term “fingerprint” is defined as the
result of a function that identifies or detects one or more changes in a byte sequence. By
way of example, a fingerprint may comprise a non-commutative hash of an arbitrary byte
sequence or a non-commutative hash of a sequence of one or more byte sequences. As a

further example, a fingerprint may comprise a CRC (cyclic redundancy code), a message

12

WO 2004/066111 PCT/US2004/000698

digest, or the like. Such functions are described in Knuth, D. The Art of Computer
Programming, Volume 2: Seminumerical Methods, Chapter 5. Addison Wesley, 1981.

[0025] In the context of the present invention, the term “authentication code” is defined
as a digital signature, or a Message Authentication Code (MAC) using a block cipher.
By way of example, an authentication code may be generated using the DES algorithm
(Federal Information Processing Standards Publication 46-3, Data Encryption Standard
(DES), October 25, 1999; Federal Information Processing Standards Publication 197,
Advanced Encryption Standard (AES), November 26, 2001), the Rijndael algorithm (J.
Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm Submission,
September 3, 1999), or the like. An authentication code produced as a result of a keyed

hash function is an example of an authentication code that is also a fingerprint.

[0026] In the context of the present invention, a keyed hash-based message
authentication code (HMAC) is defined as a MAC that uses a cryptographic key in
conjunction with a hash function. A HMAC is both a fingerprint and a MAC.

[0027] In the context of the present invention, the term “authenticated fingerprint” is

defined as an authentication code based at least in part on a fingerprint.

[0028] In the context of the present invention, the term “authentication fingerprint” is

defined as a fingerprint used to create an authenticated fingerprint.

[0029] In the context of the present invention, the term “session” or “user session” is
defined as a period that begins when a user inserts a secure portable device such as a
smart card or the like into a communications device such as a loading terminal or card
acceptance device (CAD), and ends when the secure portable device is removed from the
communications device. A “session ID” is used to describe an identifier that uniquely
identifies such a session. One or more session ID may be used to uniquely identify the

same session.

[0030] In the context of the present invention, the term “package-structured data” is

defined as executable code using Java™.-like naming conventions for references to

13

WO 2004/066111 PCT/US2004/000698

external program units. By way of example, the Java™ naming convention for an

external class includes a package name followed by the class name.

[0031] In the context of the present invention, the term “verification APDU” is defined
as an APDU comprising a command and verification data. The verification data is

located within the data field (reference numeral 240 of FIG. 2) of the APDU.

[0032] In the context of the present invention, the term “link APDU” is defined as an
APDU comprising a command and link data. The link data is located within the data
field (reference numeral 240 of FIG. 2) of the APDU.

[0033] In the context of the present invention, the term “program unit” is defined as an
identifiable unit of program behavior. A higher-level program unit may include one or
more lower-level program units. For example, a Java™ class may include one or more

method.

[0034] Figure § depicts a block diagram of a computer system 800 suitable for
implementing aspects of the present invention. As shown in FIG. 8, computer system
800 includes a bus 802 which interconnects major subsystems such as a central processor
804, a system memory 806 (typically RAM), an input/output (I/O) controller 808, an
external device such as a display screen 810 via display adapter 812, serial ports 814 and
816, a keyboard 818, a fixed disk drive 820, a floppy disk drive 822 operative to receive
a floppy disk 824, and a CD-ROM player 826 operative to receive a CD-ROM 828.
Many other devices can be connected, such as a pointing device 830 (e.g., a mouse)
connected via serial port 814 and a modem 832 connected via serial port 816. Modem
832 may provide a direct connection to a server via a telephone link or to the Internet via
a POP (point of presence). Alternatively, a network interface adapter 834 may be used to
interface to a local or wide area network using any network interface system known to

those skilled in the art (e.g., Ethernet, xDSL, AppleTalk™).

[0035] Many other devices or subsystems (not shown) may be connected in a similar
manner. Also, it is not necessary for all of the devices shown in FIG. 8 to be present to
practice the present invention, as discussed below. Furthermore, the devices and

subsystems may be interconnected in different ways from that shown in FIG. 8. The

14

WO 2004/066111 PCT/US2004/000698

operation of a computer system such as that shown in FIG. 8 is readily known in the art
and is not discussed in detail in this application, so as not to overcomplicate the present
discussion. Code to implement the present invention may be operably disposed in
system memory 806 or stored on storage media such as fixed disk 820, floppy disk 824
or CD-ROM 828.

Signature Protocol for Card Loading

[0036] Turning now to FIG. 9, a block diagram that illustrates a system for
communicating program data between a host computer and a smart card in accordance
with one embodiment of the present invention is presented. System 900 comprises a host
computer 910, a loading terminal 985 and a smart card 950. Host computer 910
comprises an off-card installer 915 for augmenting a CAP file 980 comprising package-
structured data 905 to create an augmented CAP file 920 comprising the package-
structured-data 925, an authentication fingerprint 940, one or more loading terminal
authentication codes 930 and one or more target smart card authentication codes 935.
Augmented CAP file 920 may also comprise verification data 945 that verifies CAP file
content. Authentication fingerprint 940 is computed over the payload portion of logical
APDUs derived from the package-structured data 925. Logical APDUs are illustrated in
more detail below with reference to FIG. 13. As explained in more detail below, the
similarity of the processes used by host computer 910, loading terminal 985 and target
smart card 950 to compute an authentication fingerprint guarantees that if the APDU
payload remains the same, the same authentication fingerprint will be generated
regardless of the entity performing the computation. Conversely, if the APDU payload
changes between when each entity performs the computation, a different fingerprint will

be generated, signaling a change in the payload.

[0037] According to one embodiment of the present invention, one or more of loading
terminal authentication codes 930 and target smart card authentication codes 935 are
based at least in part on authentication fingerprint 940. According to another
embodiment of the present invention, the authentication fingerprint 940 comprises a
keyed hash-based message authentication code (HMAC). According to another

embodiment of the present invention, one or more of loading terminal authentication

15

WO 2004/066111 PCT/US2004/000698

codes 930 and target smart card authentication codes 935 comprise a digital signature

computed over augmented CAP file 920, without regard to logical APDUs.

[0038] According to embodiments of the present invention, a logical program unit
APDU may be followed and/or preceded by one or more APDUs that provide
verification information (verification APDU) and/or linking information (link APDU).
The verification data may be embedded in the CAP file. Alternatively, the verification
data may be computed by the loading terminal. If verification data is included in the
CAP file, it may be used to compute an authentication fingerprint. Linking data may
also be computed by the loading terminal. Linking data may be based on data obtained
from the card, data obtained from the Web, data in the CAP file, or any combination
thereof.

[0039] Still referring to FIG. 9, loading terminal 985 is configured to receive the
augmented CAP file 920, create one or more logical APDUs from package-structured
data 925, authenticate the CAP file based at least in part on the loading terminal
authentication code 930, create one or more APDUs comprising a selected target smart
card authentication code 935 and the authentication fingerprint 940, and communicate

the one or more APDUs to target smart card 950.

[0040] According to one embodiment of the present invention, host computer 910
communicates an augmented CAP file without verification data. According to another
embodiment of the present invention, host computer 910 communicates an augmented

CAP file having verification data.

[0041] According to one embodiment of the present invention, loading terminal 985
receives an augmented CAP file 920 without verification data, computes verification
data and creates one or more verification APDUs. According to another embodiment of
the present invention, loading terminal 985 receives an augmented CAP file 920 with
verification data and creates one or more verification APDUs. According to another
embodiment of the present invention, loading terminal 985 computes link data and

creates one or more link APDUE.

16

WO 2004/066111 PCT/US2004/000698

[0042] According to one embodiment of the present invention, smart card 950
comprises a secure portable device such as a Java Card™ technology-enabled smart

card, or the like.

[0043] According to one embodiment of the present invention, smart card 950
comprises a CDMA technology-enabled smart card. CDMA technology-enabled smart
cards are described in Smart Card Stage I Description, Version 1.1, CDMA
Development Group - Smart Card Team Document (May 22, 1996).

[0044] According to another embodiment of the present invention, smart card 950
comprises a SIM (Subscriber Identity Module card) card. The term “SIM card”
describes the smart card used in GSM (Global System for Mobile Communications)
mobile telephones. The SIM includes the subscriber's personal cryptographic identity
key and other information such as the current location of the phone and an address book
of frequently called numbers. The SIM is described in Digital cellular
telecommunications system (phase 2+),; Specification of the Subscriber Identity Module
— Mobile Equipment (SIM — ME) interface, ETSI, GSM 11.11 version 7.4.0, Release
1998.

[0045] According to another embodiment of the present invention, smart card 950
comprises a WIM (Wireless Interface Module). A WIM is a smart card in a WAP
(Wireless Application Protocol) phone. It is described in Wireless Identity Module Part:
Security, WAP-260-WIM-20010712-a , Wireless Application Protocol Forum, July 12,
2001. ‘

[0046] According to another embodiment of the present invention, smart card 950
comprises a USIM (Universal Subscriber Identity Module). A USIM is a smart card for
a 3GPP (3rd Generation Partnership Préj ect) mobile phone. It is described in 3rd
Generation Partnership Project; Technical Specification Terminals; USIM and IC card
requirements, Release 4, 3GPP TS 21.111 V4.0.0 (2001-03).

[0047] According to another embodiment of the present invention, smart card 950
comprises a UIM (User Identity Module). A UIM is a smart card for a 3GPP Project 2
(3GPP2) mobile phone. The term “R-UIM?” is used when the smart card is removable.

17

WO 2004/066111 PCT/US2004/000698

A UIM is a super set of the SIM and allows CDMA (Code Division Multiple Access)-
based cellular subscribers to roam across geographic and device boundaries. The R-UIM
is described in a specification issued by the 3rd Generation Partnership Project 2
(3GPP2) and entitled 3rd Generation Partnership Project 2; Removable User Identity
Module (R-UIM) for cdma2000 Spread Spectrum Systems, 3GPP2 C.S0023-0, June 9,
2000.

[0048] The above description regarding various mobile phone technologies is not
intended to be limiting in any way. Those of ordinary skill in the art will recognize that

other user devices may be used.

[0049] Turning now to FIG. 10, a high level flow diagram that illustrates
communicating program d;czta from a host computer to a smart card in accordance with
one embodiment of the present invention is presented. At 1020 an augmented CAP file
is prepared. The augmented CAP file may comprise package-structured data and an
authentication fingerprint computed over an APDU data stream comprising the package-
structured data. Alternatively, the augmented CAP file may comprise package-structured
data and at least one authentication code based at least in part on the authentication

fingerprint.

[0050] According to one embodiment of the present invention, preparing an augmented
CAP file (1020) is preceded by determining a loading order of program elements for
optimized verification and linking (1015). The load order used in 1015 may be used in
1020 to determine the order of logical APDUS in the computation of the authentication
fingerprint. In a Java™ environment, the loading order for one or more classes, methods
in classes or fields in methods is determined. The program elements may be ordered
based at least in part on a use graph of the program in the CAP file. The “use” of a
method may comprise, by way of example, calling the method. The “use” of a field may
comprise, by way of example, accessing the field. The program elements may also be
ordered based at least in part on type map information defined for the program. Type
maps are explained in more detail below with reference to FIG. 14. Ordering program

elements is explained in more detail below with reference to FIGS. 15A-15C.

18

WO 2004/066111 PCT/US2004/000698

[0051] Still referring to FIG. 10, at 1025 the augmented CAP file is communicated to a
loading terminal. At 1030, the loading terminal receives the augmented CAP file and
initializes loading of an applet. At 1035, authenticated applet code is loaded on a target
smart card. At 1040, applets are initialized. At 1045, a proof of loading received from
the target smart card is processed to determine and record whether the load was

successful.

[0052] Still referring to FIG. 10, smart card 1050 receives a load request from the
loading terminal. At 1055, the smart card processes logical APDUs received from the
loading terminal. The processing includes computing an authentication fingerprint over
the APDU payload. At 1060, initialization data received from the loading terminal is
used to initialize the smart card. At 1065, a proof of loading is sent to the loading

terminal.

[0053] Turning now to FIG. 11, a low level flow diagram that illustrates communicating
program data from a host computer to a smart card in accordance with one embodiment
of the present invention. Figure 11 provides more detail for FIG. 10. More particularly,
reference numerals 1106-1116, 1118-1136 and 1140-1150 of FIG. 11 correspond with
reference numerals 1020-1025, 1030-1045 and 1050-1065 of FIG. 10, respectively. At
1106, a host computer disassembles a CAP file into logical data units, and the logical
data units are partitioned into one or more APDUs. At 1108, an authentication
fingerprint is computed over the APDU data stream, as described below with reference
to FIGS. 20A and 20B. At 1110, one or more loading terminal authentication codes are
created. At 1112, one or more target smart card authentication codes are created. At
1114, the CAP file is augmented with the authentication codes, fingerprint, or both. At

1116, the augmented CAP file is communicated to a loading terminal.

[0054] Still referring to FIG. 11, at 1118 the loading terminal receives a load request
including the augmented CAP file, an applet ID (AID) or the like, initialization
instructions and initialization data. The term “AID” is defined by International
Standards Organization (ISO) Standard ISO-IEC 7816-3. At 1120, loading of the applet
is initiated. The initiating may include'separating any authentication codes and
fingerprint from the augmented CAP file and obtaining linking information. Optionally,

at 1121 a loading order of program elements for optimized verification and linking is

19

WO 2004/066111 PCT/US2004/000698

determined. The loading order of program elements may be determined as described
with respect to reference numeral 1015 of FIG. 10. Alternatively, the order may be
determined from an indicator stored in an augmented CAP file. At 1122, the augmented
CAP file is disassembled into one or more logical APDUs. At 1124, the augmented CAP
file is authenticated based on a loading terminal authentication code. At 1126, a target
authentication code is selected from the target smart card authentication codes in the
augmented CAP file based upon the target smart card. At 1128, one or more logical
APDUs are communicated to the target smart card. At 1130, the fingerprint or
authentication code based on a fingerprint is sent to the smart card. At 1132, the target
smart card authentication code is sent to the smart card. At 1134, initialization
instructions and load data are sent to the target smart card. At 1136 a proof of loading is

received from the target smart card.

[0055] According to embodiments of the present invention, processes 1122 and 1124 are
performed before processes 1126, 1128 and 1130. However, the order of processes

1126, 1128 and 1130 with respect to one another may be changed.

[0056] Still referring to FIG. 11, at 1140 the target smart card receives a load request
from the loading terminal and performs load initialization. The load initialization may
include receiving the fingerprint or authentication code based on a fingerprint that was
sent at 1130. At 1142, logical APDUs received from the loading terminal are processed.
The processing includes computing an authentication fingerprint over the logical APDU
payload. The processing may also include receiving the fingerprint or authentication
code based on a fingerprint that was sent at 1130. At 1144, the received content is
authenticated based on the target smart card authentication code. The authenticating may
include reéeiving the fingerprint or authentication code based on a fingerprint that was
sent at 1130. At 1146, the received content is committed to memory on the smart card if
the received fingerprint and the computed fingerprint matches, and if the received
content is properly authenticated. At 1148, initialization data received from the loading
terminal is used to initialize the card. At 1150, a proof of loading is sent to the loading

terminal.

[0057] Alternatively, the processes illustrated in FIGS. 10 and 11 may performed

without using loading terminal authentication codes and/or target smart card

20

WO 2004/066111 PCT/US2004/000698

authentication codes. The decision to use or not use authentication codes may be based
at least in part on a level of trust in host computer 1100, loading terminal 1105 and/or
smart card 1110. By way of example, if the loading terminal is trusted, the processes
illustrated in FIGS. 10 and 11 may be performed without a loading terminal
authentication code. Thus if a card issuer uses its own terminals to update a card, a
terminal authentication code is not needed since the card issuer can trust terminals which
the issuer controls. But if a third party terminal at a point of sale remote from the card
issuer is used to update the card and the card has been in the possession of a user, a
terminal authentication code may be needed because the card issuer may have little if any
control over the terminal. Similarly, if the target smart cafd is frusted, the processes
illustrated in FIGS. 10 and 11 may be performed without a target smart card

authentication code.

[0058] Additionally, those of ordinary skill in the art will recognize that other

mechanisms for creating a terminal authentication code may be used.

[0059] According to one embodiment of the present invention, the host computer 1100

and the loading terminal 1105 comprise the same device.
Host Computer

[0060] Turning now to FIG. 12, a flow diagram that illustrates a method for
communicating program data from a host computer to a loading terminal from the
perspective of a host computer in accordance with one embodiment of the present
invention is presented. Figure 12 provides more detail for reference numerals 1015-1025
of FIG. 10 and reference numerals 1106-1116 of FIG. 11. At 1200, a CAP file is
received. At 1205, the CAP file is disassembled into one or more logical APDUs. At
1210, an authentication fingerprint is computed over the APDU data stream.
Alternatively, the authentication fingerprint may be computed upon creation of a logical
APDU (i.e. as part of the CAP file disassembly process 1205). At 1215, the CAP file is
augmented to include the authentication fingerprint, at least one data authentication code
based at least in part on the authentication fingerprint, or any combination thereof. At

1220, the augmented CAP file is communicated to a loading terminal.

21

WO 2004/066111 PCT/US2004/000698

[0061] Turning now to FIG. 13, a block diagram that illustrates partitioning a CAP file
into one or more logical APDUs in accordance with one embodiment of the present
invention is presented. Figure 13 provides more detail for reference numeral 1205 of
FIG. 12. CAP file 1300 is partitioned into one or more APDUs comprising package
definition data 1305 for any package in the CAP file. Package definition data may
comprise a package identifier. A class within a package is partitioned into one or more
APDUs comprising class definition data 1310 for any class in the package. Class
definition data may comprise, by way of example, a class identifier, a base class
identifier and one or more interface identifiers. For any method in a class, the method is
partitioned into one or more APDUs comprising method definition data 1315 and one or
more APDUs comprising method code data 1320. For any field in a class, the field is
partitioned into one or more APDUs comprising field definition data 1325. For static
fields, the fields are also partitioned into one or more APDUs comprising field

initialization data 1330.

[0062] Method definition data 1315 may comprise, by way of example, a method
identifier, a return type identifier, one or more parameter type identifiers and one or more
throwable exception type identifiers. Method code data 1320 may comprise, by way of
example, executable bytecodes. Field definition data 1325 may comprise, by way of
example, a field count, and a field type identifier for each field included in the field
count. Field initialization data 1330 may comprise, by way of example, data used to

initialize constant data.

[0063] According to embodiments of the present invention, one or more APDUs
comprising verification data may be associated with a program unit such a package, a
class or a method, or the like. The verification information is computed off-card by a
host computer or a loading terminal, and loaded onto the card for use at load time, and
possibly for use during program execution. The one or more verification APDUs may be
inserted in the APDU data stream before the corresponding logical program unit APDUs.
The one or more verification APDUs may also be inserted in the APDU data stream after
the corresponding logical program unit APDUs. The verification data includes
information for use in predicting program behavior during execution. Verification data
may include, by way of example, primitive data type information such as bounds on

values belonging to a particular data type. Verification data may also include program

22

WO 2004/066111 PCT/US2004/000698

stack state information, such as the data type of entries on the program stack during
simulated execution of the associated method code. The program stack state information

may also include one or more reference to classes which are composite data types.

[0064] According to one embodiment of the present invention, class verification APDUs
supplement verification data in the method verification APDUs for methods in a
particular class. Such class verification APDUs may be used, by way of example, when
a particular load order results in incomplete verification information availability when

performing a per-method verification.

[0065] According to another embodiment of the present invention, package verification
APDUs supplement verification data in the class verification APDUS for classes in a
particular package. Such package verification APDUs may be used, by way of example,
when a particular load order results in incomplete verification information availability

when performing a per-class verification.

Type Map Information

[0066] According to another embodiment of the present invention, verification -
information is condensed using one or more type maps. The one or more type maps refer
to sets of types that are relevant to a particular program unit. The one or more type maps
refer to the data type of entries on an operand stack or in a register file during simulated
execution of the corresponding code. The type maps allow optimization of verification
by using relatively smaller numbers to refer to predefined sets of types as the types used
in the corresponding code. This provides a relatively condensed representation of the
types that need to be checked during verification of a program unit. This is explained in

more detail below, with reference to FIG. 14.

[0067] Turning now to FIG. 14, a flow diagram that illustrates a method for using
program unit type map information in accordance with one embodiment of the present
invention is presented. At 1400, a program unit is received. Using Java™ technology as
an example, a method, class or package is received. At 1405, the types used by the
program unit are determined. At 1410, a mapping for the types is created. At 1415, the

23

WO 2004/066111 PCT/US2004/000698

program unit mapping information is used in verification information for the program

unit.

[0068] According to one embodiment of the present invention, program unit type map
information is used to represent all type information in a program unit. According to
another embodiment of the present invention, program unit type map information is used
to represent a subset of type information in a program unit. By way of example, a type

map may be used to represent the most-used types in the program unit.

[0069] According to one embodiment of the present invention, a type map comprises a
bitmap, each bit of the type map representing a particular data type. By way of example,
a 16-bit type map may be used to represent 16 types.

[0070] According to another embodiment of the present invention, type map
information for a lower-level program unit is cumulative with respect to type map
information for a higher-level program unit. By way of example, a package-level 4-bit
type map may be used to represent the 16 most-used types in a package. A class-level 4-
bit type map may be used to represent the 16 most-used types in a class, exclusive of the
16 types represented by the package-level type map. As a further example, a bitmapped
package-level 4-bit type map may be used to represent the 4 most-used types in a
package. A bitmapped class-level 4-bit type may be used to represent the 4 most-used
types in a class, exclusive of the 4 types represented by the package level type map.

[0071] According to one embodiment of the present invention, a trailer APDU indicates
the last APDU associated with a program unit. According to another embodiment of the
present invention, a header APDU precedes one or more APDUSs associated with a
program unit and defines the expected sequence of logical program unit APDUs to

follow.
Program Element Order

[0072] Figures 15A — 17C illustrate determining the order of program elements in a
CAP file in accordance with one embodiment of the present invention. Figures 15A —

17C provide more detail for reference numeral 1015 of FIG. 10 and reference numeral

24

WO 2004/066111 PCT/US2004/000698

1121 of FIG. 11. Figure 15A illustrates a CAP file before ordering, FIG. 15B illustrates
a use graph of the program elements in the CAP file of FIG. 15A and FIG. 15C
illustrates the ordering of program elements in the original CAP file based at least in part
on the use graph of FIG. 15B. According to one embodiment of the present invention,
the original CAP file is ordered based at least in part on the corresponding use graph.
The ordered file is communicated to the target device. According to another
embodiment of the present invention, the original CAP file is modified to include an
order indicator that indicates the load order for the CAP file content. The modified CAP
file is communicated to the target device. According to another embodiment of the
present invention, the original CAP file and an order indicator that indicates the load

order for the CAP file content are communicated to the target device.

[0073] Turning now to FIG. 16, a flow diagram that illustrates a method for ordering
program units for optimized verification and linking in accordance with one embodiment
of the present invention is presented. At 1600, a program including multiple program
units targeted to a device such as a smart card or the like is received. At 1605, a use
graph of the program is obtained. At 1610, the program units are ordered to create an
ordered program. The ordering is based at least in part on the use graph obtained at

1605. At 1615, the ordered program is communicated to the device.

[0074] According to one embodiment of the present invention, a “depth-first” approach
for ordering program elements is followed. Using FIGS. 15A-15C as an example,
method A.B.C (1540) is the main method and it calls method A.B.A (1542). Method
A.B.A (1542) calls method A.B.B (1544) first and method A.A.B (1546) second.
Neither method A.B.B (1544) nor method A.A.B (1546) calls other methods. Method
A.B.C (1540) also calls method A.A.A.(1548), followed by method A.A.C (1550).
Following the use graph of FIG. 15B, and proceeding in a depth-first, left-to-right
manner, the resulting order is: A.B.B (1544), A.A.B (1546), AB.A (1542), AL AA
(1548), A.A.C (1550), A.B.C (1540). This is the order reflected in the ordered package
illustrated in FIG. 15C.

[0075] Figures 17A — 17C illustrate détermining the order CAP file content based on a
use diagram to create a more flattened ordered CAP file. Figures 17A — 17C are similar
to FIGS. 15A — 15C except that the ordered CAP file 1502 of FIG. 15C retains the class

25

WO 2004/066111 PCT/US2004/000698

structure of the original CAP file 1500, whereas the ordered CAP file 1702 of FIG. 17C
has been flattened and thus does not retain the original class structure in the CAP file
1700. Figure 17A illustrates a CAP file comprising package-structured data. Figure 17B
illustrates a use diagram corresponding to the program within the CAP file of FIG. 17A.
Figure 17C illustrates the CAP file of FIG. 17A ordered based upon the use diagram of

FIG. 17B in accordance with one embodiment of the present invention.

[0076] As shown in FIG. 17C, the first-used method is method A.B.B 1754. The use of
method A.B.B 1754 requires class A.B data 1724 and class A.B fields 1726, so this
informatjon is placed before method A.B.B 1728 in the ordered CAP file 1702. The
next-used method is method A.A.B 1756. The use of method A.A.B 1756 requires class
A.A data 1730 and class A.A fields 1733. Since the required class and field data does
not occur earlier in the ordered CAP file, the required class and field data is placed
before method A.A.B 1734 in the ordered CAP file 1702. Placement of succeeding
methods in the ordered CAP file 1702 proceeds according to the order of use, without
regard to which class a method belongs to. In the present example, no further class or
field data needs to be loaded because class and field data for the only two classes present
in the original CAP file 1700 has already been placed in the ordered CAP file 1702.

[0077] The program elements and use graph shown in FIGS. 15A — 17C are for
purposes of illustration only. Those of ordinary skill in the art will recognize a use graph
may be used to represent the use of other portions of a program. By way of example, a
use graph may also represent the use of fields or other program constructs. Additionally,
portions of a program from different packages may be ordered in a fashion similar to that
shown in FIG. 17C, with package data for a particular package being positioned in the
resulting file before any program units of the package. Also, those of ordinary skill in
the art will recognize that many combinations of program elements and calling

relationships between those program elements are possible.

[0078] According to another embodiment of the present invention, APDUs are
arbitrarily ordered, with each APDU including context information. By way of example,
an APDU Amay include information identifying the APDU contents as the fourth method
of the second class. Including context information in an APDU facilitates loading all

static data first (all the fields, classes and names) and then loading all the methods,

26

WO 2004/066111 PCT/US2004/000698

ensuring information used by the methods for use in verification and linking is available

first,

[0079] According to one embodiment of the present invention, a host computer inserts
an ordering indicator in an augmented CAP file containing program data. A loading
terminal uses the ordering indicator to determine the ordering of APDUs created as a
result of the CAP file disassembly process. According to one embodiment of the present
invention, the ordering indicator is based at least in part on a use graph of the program.
By way of example, type map information may be loaded relatively late in the loading
process, thus minimizing the amount of memory required. Alternatively, type map
information may be loaded relatively early in the loading process, thus increasing the
probability that the type information will be resident on the card when the types are

referenced.

[0080] According to one embodiment of the present invention, one or more field
definition APDUs 1325 and field initialization APDUs 1330 corresponding to a
particular class are processed before any corresponding method definition APDU 1315
or method code APDU 1320 of the class.

CAP File Disassembly

[0081] Figures 18 and 19 are flow diagrams that illustrate disassembling a CAP file into
logical APDUs from the perspective of a host computer in accordance with embodiments
of the present invention. Figure 18 illustrates disassembling a CAP file that does not
include verification data and FIG. 19 iliustrates disassembling a CAP file that includes

verification data.

[0082] Turning now to FIG. 18, a flow diagram that illustrates a method for
disassembling a CAP file into logical APDUs in accordance with one embodiment of the
present invention is presented. The process illustrated within box 1800 is performed per
package. At 1805, one or more package definition APDUs comprising package
definition data are created for a package. The process illustrated within box 1810 is
performed per class. At 1815, one or more class definition APDUs comprising class

definition data are created for a class. At 1820, one or more field definition APDUs

27

WO 2004/066111 PCT/US2004/000698

comprising field definition data are created for the class. The process illustrated within
box 1825 is performed per method. At 1835, one or more method definition APDUs
comprising method definition data are created for a method. At 1840, one or more code
APDUs comprising the method code are created for the method. At 1830, one or more

data initialization APDUs are created.

[0083] According to embodiments of the present invention, verification data may be
created for program units. The verification data may be created for program units such
as packages, classes, methods, or the like, or any combination thereof, As mentioned
previously, the verification data for a program unit may be inserted in an APDU stream
before the corresponding program unit code APDU or program unit definition APDU. In
one embodiment, the verification data is inserted immediately before the corresponding
program unit code APDU or program unit definition APDU. Alternatively, the
verification data for a program unit may be inserted in an APDU stream after the
corresponding program unit code APDU or program unit definition APDU. In one
embodiment, the verification data is inserted immediately after the corresponding
program unit code APDU or program unit definition APDU. This is explained in more
detail below with reference to FIG. 19.

[0084] Turning now to FIG. 19, a flow diagram that illustrates a method for
disassembling a CAP file into logical APDUs including APDUs comprising verification
data in accordance with one embodiment of the present invention is presented. Figure 19
is similar to FIG. 18, except that verification data is included in FIG. 19 at reference
numerals 1940, 1945 and 1955. The process illustrated within box 1900 is performed
per package. At 1905, one or more package definition APDUs comprising package
definition data are created for a package. The process illustrated within box 1910 is
performed per class. At 1915, one or more class definition APDUs comprising class
definition data are created for a class. At 1920, one or more field definition APDUs
comprising field definition data are created for the class. The process illustrated within
box 1925 is performed per method. At 1930, one or more method definition APDUs
comprising method definition data are created for a method. At 1935, one or more code
APDUs comprising the method code are created for the method. At 1940, one or more
method verification APDUs comprising method verification data are created for a

method. At 1945, one or more class verification APDUs comprising class verification

28

WO 2004/066111 PCT/US2004/000698

data are created for a class. At 1950, one or more data initialization APDUs are created.
At 1955, one or more package verification APDUs comprising package verification data

are created for a package.

[0085] According to embodiments of the present invention, one or more verification
APDUs are inserted into the APDU stream before and/or after the corresponding one or
more code or definition APDUs. Using FIG. 19 as an example, one or more package
verification APDUs may be inserted into the APDU stream (1955) after inserting the
corresponding one or more package definition APDUs (1905). Alternatively, one or
more package verification APDUs may be inserted into the APDU stream before
inserting the corresponding one or more package definition APDUs. Similarly, one or
more class verification APDUs may be inserted into the APDU stream (1945) after
inserting the corresponding one or more class definition APDUs (1915). Alternatively,
one or more class verification APDUs may be inserted into the APDU stream before
inserting the corresponding one or more class definition APDUs. As a further example,
one or more method verification APDUs may be inserted into the APDU stream (1940)
after inserting the corresponding one or more method definition APDUs (1930).
Alternatively, one or more method verification APDUs may be inserted into the APDU
stream before inserting the corresponding one or more method definition APDUs. A
verification APDU that precedes or succeeds the corresponding one or more code or

definition APDUs may comprise, by way of example, one or more type maps.

[0086] Figures 20A and 20B are flow diagrams that illustrate methods for computing an
authentication fingerprint over an APDU data stream in accordance with embodiments of
the present invention. Figures 20A and 20B provide more detail for reference numeral
1108 of FIG. 11. Figure 20A illustrates computing an authentication fingerprint when
verification APDUs are used to determine the authentication fingerprint. Figure 20B
illustrates computing an authentication fingerprint when verification APDUs are not used
to determine the authentication fingerprint. The process illustrated by FIGS. 20A and
20B are the same processes used by a loading terminal (reference numerals 1128 and
1130 of FIG. 11) and by a target smart card (reference numeral 1142 of FIG. 11) to

compute an authentication fingerprint, as described below.

29

WO 2004/066111 PCT/US2004/000698

[0087] Turning now to FIG. 20, a flow diagram that illustrates a method for computing
an authentication fingerprint over an APDU data stream in accordance with one
embodiment of the present invention is presented. Referring to FIG. 20A, at 200 an
authentication fingerprint is initialized. At 2005, a logical APDU is received. At 2010,
the fingerprint is computed over the logical APDU payload. The fingerprint computation
uses the result of the previously computed fingerprint. At 2015, a determination is made
regarding whether another logical APDU remains to be processed. Processing of
additional APDUs continues at 2005.

[0088] Referring to FIG. 20B, at 2020 an authentication fingerprint is initialized. At
2025, a logical APDU is received. At 2030, a determination is made regarding whether
the APDU is a verification APDU. If the APDU is not a verification APDU, the
fingerprint is computed over the logical APDU payload at 2035. The fingerprint
computation uses the result of the previously computed fingerprint. At 2040, a
determination is made regarding whether another logical APDU remains to be processed.

Processing of additional APDUs continues at 2025.
Loading Terminal

[0089] Turning now to FIG. 21, a flow diagram that illustrates a method for
communicating program data from a host computer to a loading terminal from the
perspective of a loading terminal in accordance with one embodiment of the present
invention is presented. Figure 21 provides additional detail for reference numerals 1030-
1045 of FIG. 10 and reference numerals 1118-1136 of FIG. 11. At 2100, an augmented
CAP file is received. At 2105, any authentication codes and fingerprints are separated
from the augmented CAP file. At 2110, linking information is obtained. The linking
information comprises information needed to link methods, such as the card’s present
callable routines and how to reference them. The linking information may be obtained
from an external source. By way of example, a loading terminal may communicate via
the Web with a central repository having knowledge of a particular target smart card’s
linking information. As a further example of obtaining linking information from an
external source, a loading terminal may obtain the information from the target smart card
itself.

30

WO 2004/066111 PCT/US2004/000698

[0090] Still referring to FIG. 21, at 2115 the augmented CAP file is disassembled into
one or more logical APDUs. At 2120, the one or more logical APDUs are
communicated to a smart card and an authentication fingerprint is computed over the
APDU payload. The process in 2115 and 2120 is similar to processes 1205 and 1210 of
FIG. 12 performed by the host computer as described above, as well as the processes
2905 of FIG. 29 and 3005 of FIG. 30 performed by the target smart card as described
below. The similarity of the processes guarantees that if the APDU payload remains the
same, the same authentication fingerprint will be generated regardless of the entity
performing the computation. Conversely, if the APDU payload changes between when
each entity performs the computation, a different fingerprint will be generated, signaling

a change in the payload.

[0091] Still referring to FIG. 21, process 2125 applies when a CAP file optionally
includes an authentication fingerprint. If the CAP file includes an authentication
fingerprint, a determination is made regarding whether the fingerprint extracted from the
augmented CAP file in 2105 matches the fingerprint computed at 2120. If the
fingerprints match, at 2130 a target smart card authentication code appropriate for the
particular target smart card is extracted from the CAP file. At 2135, the fingerprint,
authentication code, or both, are sent to the target smart card. At 2140, initialization
instructions are performed and the resultant data is loaded. At 2145, a proof of loading is
received from the smart card. According to one embodiment of the present invention,

the proof of loading comprises the storage commitment fingerprint.

[0092] As illustrated in FIG. 21, the loading terminal disassembles an augmented CAP
file into logical APDUs (2115) and then computes an authentication fingerprint over the
logical APDU payload upon transmitting the logical APDUs to the target smart card
(2120). Alternatively, the computation of the authentication fingerprint may be
interleaved with the disassembly process (2115). As a further alternative, both the
transmission of APDUs to the target smart card and the computation of the

authentication fingerprint may be interleaved with the disassembly process (2115).

[0093] As mentioned previously, the augmented CAP file received by a loading terminal
may include verification data. The loading terminal may also receive a CAP file without

verification data, compute verification data, create one or more APDUSs containing the

31

WO 2004/066111 PCT/US2004/000698

data and send the one or more APDUs to the target smart card. The determination
regarding whether to include verification data in the authentication fingerprint
computation is based on whether the CAP file received by the loading terminal includes
verification data, and on whether the target smart card requires verification data. If the
received CAP file includes verification data, the authentication fingerprint is additionally
computed over the verification data. If the received CAP file does not include
verification data, the authentication fingerprint is not computed over verification data,
regardless of whether the loading terminal produces verification data that is sent to the

target smart card.

[0094] The loading terminal may also receive a CAP file, compute link data, create one
or more APDUs containing the data and send the one or more APDUs to the target smart
card. Figures 22-27 illustrate methods for disassembling an augmented CAP file into
one or more logical APDUs from the perspective of a loading terminal in accordance
with embodiments of the present invention. Figures 22-27 provide more detail for
reference numeral 2115 of FIG. 21. As mentioned previously, the program elements of
the CAP file to be disassembled may be ordered for optimized verification and linking
(reference numeral 1121 of FIG. 11) prior to the disassembling processes illustrated in
FIGS. 22-27. Figure 22 illustrates disassembling an augmented CAP file into one or
more logical APDUs. Figure 23 illustrates disassembling an augmented CAP file
including verification data into one or more logical APDUs including APDUs
comprising verification data. Figure 24 illustrates disassembling an augmented CAP file
not including verification data into onel or more logical APDUs including APDUs
comprising verification data. Figure 25 illustrates disassembling an augmented CAP file
into one or more logical APDUs including APDUs comprising link data. Figure 26
illustrates disassembling an augmented CAP file including verification data into one or
more logical APDUs including APDUs comprising verification data and APDUs
comprising link data. Figure 27 illustrates disassembling an augmented CAP file not
including verification data into one or more logical APDUs including APDUs

comprising verification data and APDUs comprising link data.

[0095] Turning now to FIG. 22, a flow diagram that illustrates a method for
disassembling an augmented CAP file into one or more logical APDUs in accordance

with one embodiment of the present invention is presented. Figure 22 is similar to the

32

WO 2004/066111 PCT/US2004/000698

process performed by the host computer as illustrated in FIG. 18. The process illustrated
within box 2200 is performed per package. At 2205, one or more package definition
APDUs comprising package definition data are created for a package. The process
illustrated within box 2210 is performed per class. At 2215, one or more class definition
APDUs comprising class definition data are created for a class. At 2220, one or more
field definition APDUs comprising field definition data are created for the class. The
process illustrated within box 2225 is performed per method. At 2230, one or more
method definition APDUs comprising method definition data are created for a method.
At 2235, one or more code APDUSs comprising the method code are created for the

method. At 2240, one or more data initialization APDUs are created.

[0096] Turning now to FIG. 23, a flow diagram that illustrates a method for
disassembling an augmented CAP file including verification data into one or more
logical APDUs including APDUs comprising verification data in accordance with one
embodiment of the present invention is presented. Figure 23 is similar to the process
performed by the host computer as illustrated in FIG. 19. The process illustrated within
box 2300 is performed per package. At 2305, one or more package definition APDUSs
comprising package definition data are created for a package. The process illustrated
within box 2310 is performed per class. At 2315, one or more class definition APDUs
comprising class definition data are created for a class. At 2320, one or more field
definition APDUs comprising field definition data are created for the class. The process
illustrated within box 2325 is performed per method. At 2330, one or more method
definition APDUs comprising method definition data are created for a method. At 2335,
one or more code APDUs comprising the method code are created for the method. At
2340, one or more method verification APDUs comprising method verification data are
created for a method. At 2345, one or more class verification APDUs comprising class
verification data are created for a class. At 2350, one or more data initialization APDUSs
are created. At 2355, one or more package verification APDUs comprising package

verification data are created for a package.

[0097] Turning now to FIG. 24, a flow diagram that illustrates a method for
disassembling an augmented CAP file not including verification data into one or more
logical APDUs including APDUs comprising verification data in accordance with one

embodiment of the present invention is presented. Figure 24 is similar to FIG. 23, except

33

WO 2004/066111 PCT/US2004/000698

that in FIG. 24, verification data is computed (2440, 2445, 2455), whereas in FIG. 23,
verification data used to create one or more verification APDUs (2340, 2345, 2355) is
extracted from the angmented CAP file. The process illustrated within box 2400 is
performed per package. At 2405, one or more package definition APDUs comprising
package definition data are created for a package. The process illustrated within box
2410 is performed per class. At 2415, one or more class definition APDUs comprising
class definition data are created for a class. At 2420, one or more field definition
APDUs comprising field definition data are created for the class. The process illustrated
within box 2425 is performed per method. At 2430, one or more method definition
APDUs comprising method definition data are created for a method. At 2435, one or
more code APDUs comprising the method code are created for the method. At 2440,
method verification data is computed and one or more method verification APDUs
comprising method verification data are created for a method. At 2445, class verification
data is computed and one or more class verification APDUs comprising class verification
data are created for a class. At 2450, one or more data initialization APDUs are created.
At 2455, package verification data is computed and one or more package verification

APDUs comprising package verification data are created for a package.

[0098] Turning now to FIG. 25, a flow diagram that illustrates a method for
disassembling an augmented CAP file into logical one or more APDUs including
APDUs comprising link data in accordance with one embodiment of the present
invention is presented. FIG. 25 is similar to FIG. 22, except that per-method link
APDUs are created (2540) in FIG. 25. The process illustrated within box 2500 is
performed per package. At 2505, one or more package definition APDUs comprising
package definition data are created for a package. The process illustrated within box
2510 is performed per class. At 2515, one or more class definition APDUs comprising
class definition data are created for a class. At 2520, one or more field definition
APDUs comprising field definition data are created for the class. The process illustrated
within box 2525 is performed per method. At 2530, one or more method definition
APDUs comprising method definition data are created for a method. At 2535, one or
more code APDUs comprising the method code are created for the method. At 2540,
per-method link APDUs are created. At 2545, one or more data initialization APDUs are

created.

34

WO 2004/066111 PCT/US2004/000698

[0099] Turning now to FIG. 26, a flow diagram that illustrates a method for
disassembling an augmented CAP file including verification data into one or more
logical APDUs including APDUs comprising verification data and APDUs comprising
link data in accordance with one embodiment of the present invention is presented.
Figure 26 represents the combination of FIGS. 23 and 25. The process illustrated within
box 2600 is performed per package. At 2605, one or more package definition APDUs
comprising package definition data are created for a package. The process illustrated
within box 2610 is performed per class. At 2615, one or more class definition APDUs
comprising class definition data are created for a class. At 2620, one or more field
definition APDUs comprising field definition data are created for the class. The process
illustrated within box 2625 is performed per method. At 2630, one or more method
definition APDUs comprising method definition data are created for a method. At 2635,
one or more code APDUs comprising the method code are created for the method. At
2640, one or more method verification APDUs comprising method verification data are
created for a method. At 2645, per-method link APDUs are created. At 2650, one or
more class verification APDUs comprising class verification data are created for a class.
At 2655, one or more data initialization APDUs are created. At 2660, one or more
package verification APDUs comprising package verification data are created for a

package.

[0100] Turning now to FIG. 27, a flow diagram that illustrates a method for
disassembling an augmented CAP file not including verification data into one or more
logical APDUs including APDUs comprising verification data and APDUSs comprising
link data in accordance with one embodiment of the present invention is presented.
Figure 27 represents the combination of FIGS. 24 and 25. The process illustrated within
box 2700 is performed per package. At 2705, one or more package definition APDUs
comprising package definition data are created for a package. The process illustrated
within box 2710 is performed per class. At 2715, one or more class definition APDUs
comprising class definition data are created for a class. At 2720, one or more field
definition APDUs comprising field definition data are created for the class. The process
illustrated within box 2725 is performed per method. At 2730, one or more method
definition APDUs comprising method definition data are created for a method. At 2735,
one or more code APDUs comprising the method code are created for the method. At

2740, method verification data is computed and one or more method verification APDUs

35

WO 2004/066111 PCT/US2004/000698

comprising method verification data are created for a method. At 2745, per-method link
APDUs are created. At 2750, class verification data is computed and one or more class
verification APDUs comprising class verification data are created for a class. At 2755,
one or more data initialization APDUs are created. At 2760, package verification data is
computed and one or more package verification APDUs comprising package verification

data are created for a package.

[0101] Turning now to FIG. 28, a flow diagram that illustrates a method for creating one
or more method link APDUs in accordance with one embodiment of the present
invention is presented. Figure 28 provides more detail for reference numeral 2540 of
FIG. 25, reference numeral 2645 of FIG. 26 and reference numeral 2745 of FIG. 27. At
2800, verifiable linking instructions are computed based on logical memory layout and
information from the card. The loading terminal may have previously obtained this
information as described above with respect to reference numeral 2110 of FIG. 21. At

2805, a link APDU that includes the verifiable linking instructions is created.
Smart Card

[0102] Turning now to FIG. 29, a flow diagram that illustrates a method for
communicating program data from a loading terminal to a smart card from the
perspective of a smart card in accordance with one embodiment of the present invention
is presented. Figure 29 provides additional detail for reference numerals 1050-1065 of
FI‘G. 10 and reference numerals 1140-1150 of FIG. 11. At 2900, load initialization is
performed. At 2905, one or more logical APDUs are processed to prepare the data in
their data fields for loading. The processing comprises computing an authentication
fingerprint. At2910, an authentication fingerprint APDU is received. Alternatively, the
authentication fingerprint may be received as part of load initialization (2600), or as part
of processing APDUs (2605).

[0103] Still referring to FIG. 29, at 2915 a determination is made regarding whether the
received authentication fingerprint matches the authentication fingerprint computed at
2905. If the received authentication fingerprint does not match the computed
authentication fingerprint, a failure indication is made at 2945. If the received

authentication fingerprint matches the computed authentication fingerprint, a target smart

36

WO 2004/066111 PCT/US2004/000698

card authentication code is received at 2920 and authentication is performed based on the
target smart card authentication code at 2925. At 2930, a determination is made
regarding whether the authentication was successful. If the authentication was
unsuccessful, a failure indication is made at 2945. If the authentication was successful,
the program data is committed to the smart card memory at 2935 and a loading proof is
provided at 2940. The program data may be committed to the smart card memory by
associating the program data with a storage commitment fingerprint computed over the
finally stored program data. According to one embodiment of the present invention, the
loading proof comprises the storage commitment fingerprint. According to another
embodiment of the present invention, the loading proof comprises an authentication code

based at least in part on the storage commitment fingerprint.

[0104] Turning now to FIG. 30, a flow diagram that illustrates a method for
communicating program data from a loading terminal to a smart card from the
perspective of a smart card using an authentication fingerprint that is a HMAC in
accordance with one embodiment of the present invention is presented. Figure 30 is
similar to FIG. 29, except that determinations 2930 and 2915 in FIG. 29 are equivalent to
determination 3015 in FIG. 30. Since a HMAC is both a fingerprint and a message
authentication code, the program data may be committed to the smart card memory when
the received authentication fingerprint matches the computed authentication fingerprint.
At 3000, load initialization is performed. At 3005, one or more logical APDUs are
processed to prepare the data in their déta fields for loading. The processing comprises
computing an authentication fingerprint. At 3010, an authentication fingerprint APDU is
received. Alternatively, the authentication fingerprint may be received as part of load

initialization (2600), or as part of processing APDUs (2605).

[0105] Still referring to FIG. 30, at 3015 a determination is made regarding whether the
received authentication fingerprint matches the authentication fingerprint computed at
3005. If the received authentication fingerprint does not match the computed
authentication fingerprint, a failure indication is made at 3030. If the received
authentication fingerprint matches the computed authentication fingerprint, the program
data is committed to the smart card memory at 3020 and a loading proof is provided at
3025. The program data may be comnﬁtted to the smart card memory by associating the

program data with a storage commitment fingerprint computed over the finally stored

37

WO 2004/066111 PCT/US2004/000698

program data. According to one embodiment of the present invention, the loading proof
comprises the storage commitment fingerprint. According to another embodiment of the
present invention, the loading proof comprises an authentication code based at least in

part on the storage commitment fingerprint.

[0106] Turning now to FIG. 31, a flow diagram that illustrates a method for performing
load initialization in accordance with one embodiment of the present invention is
presented. Figure 31 provides more detail for reference numeral 2900 of FIG. 29 and
reference numeral 3000 of FIG. 30. At 3100, a request for loading is received. At 3105,
the request is authenticated to determine whether the loading process should proceed. At
3110, a determination is made regarding whether the authentication in 3105 was
successful. If the authentication was not successful, the process ends with failure at
3130. If the authentication was successful, at 3115 load parameters are checked to
determine whether the load is capable of succeeding, based on known characteristics of
the card and the program data to be loaded. By way of example, if the card has less
memory than what is required by the program data to be loaded, an indication that the
load will fail is made. Additionally, if the program data to be loaded requires classes that
are not presently on the card and are not part of the program data to be loaded, an
indication that the load will fail is made. At 3120, a determination is made regarding
whether the load is capable of succeeding based upon the result of process 3115. If the
load is capable of succeeding, preparations for loading are made at 3125. Exemplary
preparations include initializing one or more authentication fingerprints and one or more
storage commitment fingerprints. If the load is not capable of succeeding, the loading

process ends with failure at 3130.

[0107] Alternatively, the order of processes 3105 and 3115 may be switched so that
process 3115 is performed before process 3105. However, load initialization ends with

failure 3130 if either of processes 3105 and 3115 fails.

[0108] Turning now to FIG. 32, a flow diagram that illustrates a method for processing
an APDU stream in accordance with one embodiment of the present invention is
presented. Figure 32 provides more detail for reference numeral 2905 of FIG. 29 and
reference numeral 3005 of FIG. 30. At 3200, a logical APDU is received. At 3205, the

logical APDU is pre-processed. The pre-processing may include, by way of example,

38

WO 2004/066111 PCT/US2004/000698

finalizing processing of the previous program unit if the current APDU is the first APDU
of another program unit. The pre-processing may also include, by way of example,
decryption. The result of the pre-processing is an indication of whether the logical
APDU is valid. At 3210, a determination is made regarding whether the logical APDU
is valid. If the logical APDU is invalid, loading is aborted at 3215. If the logical APDU
is valid, an authentication fingerprint is computed at 3210 and the received logical
APDU is processed at 3225 to prepare the data in the logical APDU data field for
storage. The processing may include, by way of example, resolving references to other
program units. At 3230, a determination is made regarding whether a stored result is
required. Some APDUs may not require persistent storage. By way of example, an
APDU that merely includes information about a preceding or succeeding APDU may not
require persistent storage. If a stored result is required, the result is stored at 3225. At
3240, a storage commitment fingerprint is computed over the stored result using the

result of the previously computed storage commitment fingerprint.

[0109] Turning now to FIG. 33, a flow diagram that illustrates a method for computing
an authentication fingerprint in accordance with one embodiment of the present

invention is presented. Figure 33 provides more detail for reference numeral 3220 of
FIG. 32. At 3300, a determination is made regarding whether the APDU is a link

APDU. Ifthe APDU is not a link APDU, at 3305 a determination is made regarding
whether the APDU is a verification APDU. If the APDU is a verification APDU, at

3310 a determination is made regarding whether verification APDUs are part of the
authentication fingerprint. If the APDU is not a link APDU or a verification APDU, or if
the APDU is a verification APDU and verification APDUs are part of the authentication
fingerprint, at 3315 the authentication ﬁngerprint is computed over the logical APDU

payload using the result of the previously computed authentication fingerprint.

[0110] As illustrated in FIG. 32, the receipt of logical APDUs (3200) is interleaved with
the computation of an authentication fingerprint (3220) and computation of a storage
commitment fingerprint (3240). Alternatively, the smart card may receive one or more
logical APDUs and then compute an authentication fingerprint and storage commitment

fingerprint over the one or more received APDU .

39

WO 2004/066111 PCT/US2004/000698

[0111] Turning now to FIG. 34, a flow diagram that illustrates a method for processing a
logical APDU in accordance with one embodiment of the present invention is presented.
Figure 34 provides more detail for reference numeral 3225 of FIG. 32. At 3400,
verification information is accepted. At 3405, the verification information is used to
verify a logical APDU. At 3410, a determination is made regarding whether the logical
APDU was successfully verified. If the logical APDU was successfully verified, linking

information is accepted at 3415 and at 3420, the linking informatjon is used to link.
Virtual Method Jump Table

[0112] The data structures as described with respect to FIG. 7 illustrate linking to static
methods, or methods having a single call address. Object-oriented languages such as the
Java™ language support virtual methods, or methods that may have multiple copies. In
the Java™ language, a virtual method may be declared in a class and a subclass of the
class may override or replace the virtual method with its own instance of the virtual
method. An instance of the subclass will reference the version of the method overridden
in the subclass, while an instance of the class will reference the virtual method declared

in the class.

[0113] According to one embodiment of the present invention, the capability to link
virtual methods is provided by creating a jump table for each virtual method that is
overridden at least once. The jump tabie includes the address of each instance of a
virtual method. Object constructors are rewritten to accept a “type” parameter,
constructor calls are rewritten to provide type information, and virtual method program
calls are rewritten to include an indication of the current type of the called object. The
indication of the current type is used as an index into the corresponding virtual method
jump table, where the address of the appropriate virtual method code is obtained. This is

explained in more detail below with reference to FIGS. 35-37.

[0114] Turning now to FIG. 35, data structures for linking a program including virtual
methods in accordance with one embodiment of the present invention is presented. As
shown in FIG. 35, subclass N (3505) extends class M (3500) and does not override
method A (3525) or B (3530). Subclasé O (3510) extends class M (3500) and overrides
method A (3525). Any calls to method O.A (3550) actually calls method O.A (3550),

40

WO 2004/066111 PCT/US2004/000698

not method M.A (3525). Jump table 3320 is indexed by a value of a type identifier in the
class instance data. Each entry of jump table 3520 includes the address of the virtual
method instance corresponding to the index, for each virtual method in a class having at
least one instance. Every call to method M.A (3525) that has been overridden includes a
type identifier. The type identifier is used as an index in the jump table 3320 to obtain
the address of the code corresponding to the virtual method instance. The calls in
subclass N (3505) and subclass O (3510) are rewritten to call with the type identifier.
The calls may be rewritten by a host computer or a loading terminal before loading the
program on a smart card, such as when an augmented CAP file is produced.
Alternatively, the calls may be rewritten by a loading terminal. The target smart card
may also rewrite the calls after the program data has been loaded. The type identifier is

obtained from a “current type of the object” field 3345 in the called object 3515.

[0115] Searching for the appropriate virtual method instance is thus made more
deterministic by giving each subtype and each method a type identifier. Using the
example illustrated in FIG. 35, when class “M” (3500) or class “N” (3505) objects are
instantiated, both objects are instantiated with the type identifier having a value of zero.
When the “O” (3510) object is instantiated, the type identifier associated with the
instance is the value one. When object “O” (3510) calls the virtual method, the type
identifier is used as an index into the jump table 3520 to determine which virtual method
instance to call, thus obviating the need to perform an exhaustive search for the

appropriate virtual method instance.

[0116] Turning now to FIG. 36, a block diagram that illustrates modifying a stored
program having link data to resolve dynamic references in accordance with one
embodiment of the present invention is presented. Figure 36 is similar to FIG. 7, except
that FIG. 36 includes a jump table (3676, 3680, 3682) for each virtual method having at
least one virtual method instance. Referring to card memory 3600, code for methods
AlA (3602), A2A (3612) and B2A (3628) include calls to virtual methods A1C (3608),
B1A (3620) and B1D (3626), respectively. Referring to modified card memory 3650,
code for methods A1A (3652), A2A (3660) and B2A (3674) has been modified to refer
to the jump table associated with the called virtual method (3676, 3680, 3682) and a type

indicator of the called object.

41

WO 2004/066111 PCT/US2004/000698

[0117] Turning now to FIG. 37, a flow diagram that illustrates modifying a stored
program having link data to resolve dynamic references in accordance with one
embodiment of the present invention is presented. At 3700, a program is received. At
3705, classes in the program are enumerated. Box 3710 is performed per class. At 3720,
object constructor calls are rewritten to provide type information. At 3725, object
constructors are rewritten to accept a “type” parameter. Box 3715 is performed per
virtual method in a class. At 3720, a determination is made regarding whether the virtual
method has been overridden with an instance of the virtual method. If the virtual method
has been overridden, at 3725 a virtual method jump table for the virtual method having at
least one virtual method instance is created. At 3730, program calls to the virtual method
are rewritten to refer to the jump table associated with the called virtual method and a
type indicator of the called object. If the virtual method has not been overridden, the

virtual method may be linked in the same manner as a static method.

[0118] According to another embodiment of the present invention, a call to a virtual
method that has been overridden at least once is replaced with a call instruction that uses
the type indicator of the called object as an index into a table positioned in the instruction

stream inline with the call instruction.
Program Unit Storage Commitment Fingerprint

[0119] According to embodiments of the present invention, a program unit storage
commitment fingerprint is associated with a program unit. The program unit storage
commitment fingerprint may be used to indicate commitment of the program unit. In
other words, the program unit storage commitment fingerprint may be used to indicate
the program unit has been finally loaded onto the target smart card. The program unit
storage commitment fingerprint may also be used to indicate whether the program unit
data has been tampered with or is otherwise unfit for execution. The program unit
storage commitment fingerprint is computed over the program unit data and associated
with the program unit at the time the program unit is finally stored in a persistent
mutable memory and ready for use. The program unit storage commitment fingerprint
may be stored in an area of memory contiguous with the associated program data.
Alternatively, a reference to the program unit commitment fingerprint may be stored

with the associated program data. As a further alternative, program units may be stored

42

WO 2004/066111 PCT/US2004/000698

in a tabular form, with each entry including a storage unit and the corresponding
fingerprint. Those of ordinary skill in the art will recognize other techniques for

associating program units with commitment fingerprints are possible.

[0120] Upon use of the program unit, the program unit storage commitment fingerprint ‘
initially associated with the program unit is matched against the result of computing a
storage commitment fingerprint over the program unit data. A mismatch indicates the

program unit data has been tampered with or is otherwise unfit for execution.

[0121] A program unit may comprise any logical program structure. Using Java™
technology as an example, a program unit may comprise a package, a class, a method or
any combination thereof. Additionally, a program unit may be stored in noncontiguous

memory.

[0122] According to one embodiment of the present invention, “use” of a program unit
comprises executing the program unit. According to another embodiment of the present
invention, “use” of a program unit comprises creating an instantiation of another
program unit based at least in part on the program unit. Using Java™ technology as an
example, “use” of a program unit may comprise object instantiation. According to
another embodiment of the present invention, “use” of a program unit comprises reading

the program unit data.
Hierarchical Program Unit Storage Commitment Fingerprint

[0123] According to embodiments of the present invention, a storage commitment
fingerprint of a higher level program unit may be based at least in part on at least one
storage commitment fingerprint of a lower level program unit. This is illustrated below
with respect to FIG. 38. |

[0124] Turning now to FIG. 38, a block diagram that illustrates a hierarchy of program
unit storage commitment fingerprints in accordance with one embodiment of the present
invention is presented. Reference numerals 3800-3808 represent classes, reference
numerals 3810-3812 represent packages and reference numeral 3814 represents a load

comprising one or more packages. Class storage commitment fingerprints 3818-3826

43

WO 2004/066111 PCT/US2004/000698

are formed by computing a fingerprint over class-level data in classes 3800-3808,
respectively, and the collection of method storage commitment fingerprints in classes
3800-3808, respectively. Package storage commitment fingerprints 3828-3830 are
formed by computing a fingerprint over package-level data in packages 3810-3812,
respectively, and the collection of class storage commitment fingerprints in packages
3810-3812, respectively. Load storage 60mmitment fingerprint 3816 is formed by
computing a fingerprint over the collection of package storage commitment fingerprints

in load 3814.

[0125] Alternatively, one or more storage commitment fingerprints of a higher level
program unit may be based on the data of a lower level program unit. Using Java™
technology as an example, a class storage commitment fingerprint may be based over

class-level data and method-level data for methods belonging to the class.

[0126] Turning now to FIG. 39, a block diagram that illustrates a data structure’
including program code and program unit storage commitment fingerprints in
accordance with one embodiment of the present invention is presented. Card memory
3900 comprises a storage area for a load unit 3902 that comprises package “A” 3904 and
package “B” 3906. Packages 3904 and 3906 comprise classes 3908-3910 and 3912-
3914, respectively. Classes 3908, 3910, 3912 and 3914 comprise methods 3916-3922,
3924-3926, 3928-3934 and 3936-3938, respectively. Method storage commitment
fingerprints 3940-3964 are computed over method code 3916-3938, respectively. Class
storage commitment fingerprints 3966, 3968, 3970 and 3972 are computed over method
storage commitment fingerprints 3940-3946, 3948-3950, 3954-3960 and 3962-3964,
respectively. Class storage commitment fingerprints 3966, 3968, 3970 and 3972 may
also be computed over any field definitions and initialized static data that is part of the
respective class. Package storage commitment fingerprints 3974 and 3976 are computed
over class storage commitment fingerprints 3966-3968 and 3970-3972, respectively.
Load unit storage commitment fingerprint 3978 is computed over package storage

commitment fingerprints 3974 and 3976.

[0127] Turning now to FIG. 40, a block diagram that illustrates a data structure
including program code and a load storage commitment fingerprint in accordance with

one embodiment of the present invention is presented. Figure 40 is similar to FIG. 39,

44

WO 2004/066111 PCT/US2004/000698

except FIG. 40 does not include class storage commitment fingerprints or package
storage commitment fingerprints. Load unit storage commitment fingerprint 4042 is
computed over stored method code 4016-3840 in packages “A” 4004 and package “B”
4006.

Runtime Integrity Checks

[0128] According to embodiments of the present invention, a program unit commitment
fingerprint is used to check the integrity of a program unit at runtime. Figures 41 and 42
illustrate the general case for this runtime integrity checking. Figures 43 and 44 illustrate
embodiments of the present invention that use a dispatching mechanism to implement

runtime integrity checking.

[0129] Figure 41 is a flow diagram that illustrates a method for using a program unit
commitment fingerprint to determine whether a program unit may be used, in accordance
with one embodiment of the present invention. At 4100, a request for use of a program
unit is received. According to one embodiment of the present invention, the “use”
comprises creating an instantiation based at least in part on the program unit. According
to another embodiment of the present invention, the “use” comprises executing the
program unit code. According to another embodiment of the present invention, the “use”

comprises reading the program unit data.

[0130] According to embodiments of the present invention, a program unit may be a

program, a package, a class, a method an instance variable or a class variable. However,
the illustration of a program unit with respect to Java™ technology is not intended to be
limiting in any way. Those of ordinary skill in the art will recognize that a program may

be partitioned in many ways.

[0131] Still referring to FIG. 41, at 4105 a determination is made regarding whether it is
the first time the program unit use request has been received in the current session. Ifit
is not the first time the program unit use request has been received in the current session,
a stored determination of program unit data validity is used at 4130. If this is the first
time the program unit use request has been received in the current session, at 4135 an

indication that the program unit has been used in the current session is made. At 4110, a

45

WO 2004/066111 PCT/US2004/000698

determination is made regarding whether the stored program unit data is valid. The
result of this determination is checked at 4115. If the stored program unit data is not
valid, a failure indication is made at 4120. If the stored program unit data is valid, the

program unit is used at 4125.

[0132] According to another embodiment of the present invention, the validity of a
stored program unit is determined upon receiving a request for use of the program unit,
without regard to whether a previous use request for the same program unit was received

in the current session.

[0133] According to one embodiment of the present invention, a fingerprint device is
configured to compute authentication fingerprints, program storage commitment
fingerprints, or both. According to another embodiment of the present invention, a
fingerprint device comprises a computation unit that computes the storage commitment
fingerprint. The computation unit is linked to memory dedicated to storing committed
data. The computation unit may be integrated with a memory device comprising the
memory. Alternatively, the computation unit may be a standalone device in
communication with a memory device comprising the memory. According to one
embodiment of the present invention, the computation unit is configured to automatically
and incrementally compute the fingerprint for the memory upon detecting a write

operation to the memory.

[0134] According to another embodiment of the present invention, the computation unit
is configured to automatically and incrementally compute the fingerprint for the memory
before use of data in the memory, such as upon detecting a read operation for the
memory. By way of example, upon receiving a read request for data stored at memory
addresses specified by a memory range, the computation unit computes a fingerprint over

the data stored at the memory addresses specified by the memory range.

[0135] Turning now to FIG. 42, a flow diagram that illustrates a method for determining
whether stored program unit data is valid in accordance with one embodiment of the
present invention is presented. Figure 42 provides more detail for reference numeral
4110 of FIG. 41. At 4200, a fingerprint is computed over the program unit data. At

4205, a determination is made regarding whether the computed fingerprint matches a

46

WO 2004/066111 PCT/US2004/000698

stored fingerprint. If the computed fingerprint does not match the stored fingerprint, at
4210 an indication that the stored program unit data is invalid is made. If the computed
fingerprint matches the stored fingerprint, at 4215 an indication that the stored program

unit data is valid is made.

Dispatch Table

[0136] In the context of the present invention, the term “gateway dispatcher” is defined
as a program unit configured to determine whether the executable code of a called
method is valid before calling the method. A gateway dispatcher may be part of a virtual

machine or a lower level routine.

[0137] According to embodiments of the present invention, links to called routines may
be hard-coded. According to alternative embodiments of the present invention, a
dispatch table associated with a protection unit includes an entry for methods protected
by the protection unit. A caller of a method in a protection unit calls the method by
referring to the protection unit and an index in the table. The reference determines
whether the executable code of a called method is valid (has been verified) before calling
the method. A gateway dispatcher verifies the protection unit if the protection unit
dispatch table has been loaded but the protection unit has not been verified. The gateway
dispatcher loads the dispatch table and verifies the protection unit if the protection unit
dispatch table has not been loaded. This is explained in more detail below with reference

to FIGS. 43 and 44.

[0138] Turning now to FIG. 43, a block diagram that illustrates a smart card configured
to ensure a called method has been verified prior to execution in accordance with one
embodiment of the present invention is presented. Figure 43 illustrates a data structure
for implementing the “use program unit” process discussed previously with respect to
reference numeral 4125 of FIG. 41. According to one embodiment of the present
invention, entry points to a class or package are precomputed at load time. The eniry
points trigger a test to determine whether the method being called has been verified.

Calls are linked to those entry points by rewriting code containing calls to the methods.

47

WO 2004/066111 PCT/US2004/000698

[0139] As shown in FIG. 43, there is a dispatch table entry for every callable routine in a
protection unit. Each entry includes a check bit and a routine address. Once initialized,
methods or routines within a protection unit can call each other. Methods that call
outside a protection unit do so via a dispatch table (4300, 4305, 4310). If the check bit of
the dispatch table entry corresponding to the called routine indicates a checked status, the
routine address of the dispatch table entry is used to call the routine. If check bit
indicates an unchecked status, verification of the code is performed. Storing the dispatch
tables (4300, 4305, 4310) in an impersistent mutable memory such as a RAM 4345 and
associating the value zero with an unchecked status guarantees the check bit indicates an
unchecked status upon initialization. In other words, verification of program code is
guaranteed to be session-based because the contents of RAM 4345 are destroyed after
each session and the next session will start with the check bit indicating an unchecked

status.

[0140] Having one check bit per entry allows the tables to be contiguous; referencing an
entry requires just the base address of the table and an offset. Additionally, each entry
includes a check bit because the corresponding routine may be the first routine within a

protection unit to be called.

[0141] According to one embodiment of the present invention, the check bit comprises
the most significant bit and the method address comprises the least significant bits of a
dispatch table entry. If the gateway dispatcher reads check bit value that indicates an
unchecked status, the least-significant bits of the dispatch table entry are used to call the
routine. This mechanism obviates the need for a second memory access to obtain the

method address.

[0142] According to another embodiment of the present invention, each table has a per-
table check bit that indicates whether the table has been validly initialized. Each table

entry comprises a method address.

[0143] According to one embodiment of the present invention, protection units are per
package. According to another embodiment of the present invention, protection units are
per class. According to another embodiment of the present invention, protection units

are per method.

48

WO 2004/066111 PCT/US2004/000698

[0144] According to another embodiment of the present invention, the program units
protected by a protection unit corresponds with the program units included in a storage
commitment fingerprint. By way of example, if storage commitment fingerprints are
computed over methods in a class, protection units are per class. As a further example, if
storage commitment fingerprints are computed over classes in a package, protection

units are per package.

[0145] The address of the next RAM-based dispatch table, as well as the current number
and size of dispatch tables for other load units are examples of the type of information
the card can provide for the link process mentioned above with respect to reference
numeral 2110 of FIG. 21.

[0146] According to embodiments of the present invention, program code is rewritten to
replace calls to routines outside a protection unit with calls to a gateway dispatcher.
According to one embodiment of the present invention, the code is rewritten at
conversion time, when a CAP file is created. According to another embodiment of the
present invention, the code is rewritten at CAP file disassembly time. According to
another embodiment of the present invention, the code is rewritten at load time, or at link

time in the target smart card.

[0147] When a call is made to a routine outside a protection unit, it must be determined
whether the called region is checked as well. The gateway dispatcher inspects the table
that belongs to the called method to determine whether it may jump directly to the
routine, or whether the called routine must be verified first. In the example illustrated in
FIG. 43, a check bit value of zero is used to indicate an unchecked status. In this case, a
value of zero may indicate the entry is corrupted. It may also indicate the entry is valid
but that the code has not been verified. Thus, if the check bit has a value that indicates
an unchecked status, the dispatch table template is obtained from a persistent mutable
memory such as EEPROM, and the called routine is verified. This is shown in more
detail below with reference to FIG. 44.

[0148] Turning now to FIG. 44, a flow diagram that illustrates a method for ensuring a

called method has been verified prior to execution in accordance with one embodiment

49

WO 2004/066111 PCT/US2004/000698

of the present invention is presented. Figure 44 presumes that program code has been
rewritten such that calls between protection units have been replaced with calls to a
gateway dispatcher. Figure 44 also presumes that a dispatch table template that points to
the actual method for each of the entries is placed in EEPROM during the linking
process. Figure 44 also presumes that upon reset or upon the first use of any entry in a
dispatch table, the dispatch table template is copied to a preallocated space in an

impersistent mutable memory such as RAM.

[0149] In the context of the present invention, a protection unit is collective if the unit of
use is not the same as the unit of protection. By way of example, if the unit of use is a
method and the unit of protection is a method, the protection unit is not collective. But if
the unit of use is a method and the unit of protection is a class, the protection unit is

collective.

[0150] Still referring to FIG. 44, at 4400 a determination is made regarding whether a
calling method and a called method are within the same protection unit. This
determination is made as part of the code rewriting process. If the two methods are
within the same protection unit, the calling method calls the called method directly at
4405. If the two methods are not within the same protection unit, the code rewriting
process replaces the call to the called routine (B) with a call to the gateway dispatcher. If
the code has been rewritten in this way, at 4410 the calling method calls a gateway
dispatcher. At 4415, the gateway dispatcher determines the dispatch table associated
with the protection unit of the called method. At 4420, a determination is made
regarding whether protection unit has been checked. If the protection unit has not been
checked, it is checked at 4425. At 4430, the dispatch table corresponding to the
protection unit is obtained from a persistent mutable memory such as EEPROM and
loaded into an impersistent mutable memory such as RAM. At 4435, a determination is
made regarding whether the protection unit is collective. If the protection unit is
collective, at 4440 the check bits in the protection unit are made to indicate an unchecked
status. Once the protection unit has been checked, at 4445 the dispatch table entry
corresponding to the called method is examined. At 4450, a determination is made
regarding whether the check bit of the table entry has a value that indicates a checked
status. If the check bit has a value that indicates a checked status, at 4465 the called
method is called using the address in the table entry. If the check bit value indicates an

) 50

WO 2004/066111 PCT/US2004/000698

unchecked status, verification of the prot/ection unit comprising the method is performed
at 4455 and the check bit of methods in the protection unit are made to indicate a
checked status at 4460. At 4465, the called method is called using the address in the
table entry.

[0151] The illustration of embodiments of the present invention with respect to Java
Card™ technology is for purposes of illustration and is not intended to be limiting in any
way. Any program file comprising program data may be used in place of a CAP file
comprising structured program data. By way of example, an archive file such as a
Java™ archive (JAR) file may be used. Additionally, any communication protocol that
defines a protocol data unit may be used in place of the APDU protocol. Additionally,
program data for programs written in languages other than the Java™ language may be
used. Moreover, the target device need not be a smart card. The target device may be
any device capable of receiving protocol data units and executing a program based at

least in part on the received data.

[0152] While embodiments and applications of this invention have been shown and
described, it would be apparent to those skilled in the art having the benefit of this
disclosure that many more modifications than mentioned above are possible without
departing from the inventive concepts herein. The invention, therefore, is not to be

restricted except in the spirit of the appended claims.

51

WO 2004/066111 PCT/US2004/000698

CLAIMS

What is claimed is:

1. A method for committing data loaded on a device, the method comprising:
computing a program unit storage commitment fingerprint over a program unit if said
program unit is finally loaded in a non-volatile memory on said device;
associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

2. The method of claim 1 wherein said storing further comprises storing said program
unit storage commitment fingerprint in an area of memory contiguous with said

program unit.

3. The method of claim 1 wherein said method further comprises storing with said

program unit a reference to said program unit storage commitment fingerprint.

4. The method of claim 1 wherein said data comprises a Java™ program.

5. The method of claim 4 wherein said program unit comprises at least one of a

package, a class, a method or static class variable.

6. The method of claim 1 wherein said program unit storage commitment fingerprint

comprises a checksum.

7. The method of claim 1 wherein said program unit storage commitment fingerprint

comprises a cyclic redundancy code (CRC).

8. A method for committing data loaded on a device, the method comprising:
computing a program unit storage commitment fingerprint over a program unit
before loading said program unit in a non-volatile memory on said device;
associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

52

WO 2004/066111 PCT/US2004/000698

9.

10.

I1.

12.

13.

14.

15.

16.

A method for committing data loaded on a device, the method comprising:

step for computing a program unit storage commitment fingerprint over a program
unit if said program unit is finally loaded in a non-volatile memory on said
device;

step for associating said program unit storage commitment fingerprint with said
program unit; and

step for storing said program unit storage commitment fingerprint.

The method of claim 9 wherein said step for storing further comprises step for
storing said program unit storage commitment fingerprint in an area of memory

contiguous with said program unit.

The method of claim 9 wherein said method further comprises step for storing with

said program unit a reference to said program unit storage commitment fingerprint.
The method of claim 9 wherein said data comprises a Java™ program.

The method of claim 12 wherein said program unit comprises at least one of a

package, a class, a method or static'class variable.

The method of claim 9 wherein said program unit storage commitment fingerprint

comprises a checksum.

The method of claim 9 wherein said program unit storage commitment fingerprint

comprises a cyclic redundancy code (CRC).

A method for committing data loaded on a device, the method comprising:

step for computing a program unit storage commitment fingerprint over a-program
unit before loading said program unit in a non-volatile memory on said device;

step for associating said program unit storage commitment fingerprint with said
program unit; and

step for storing said program unit storage commitment fingerprint.

53

WO 2004/066111 PCT/US2004/000698

17.

18.

19.

20.

21.

22.

23.

24,

A program storage device readable by a machine, embodying a program of

instructions executable by the machine to perform a method for committing data

loaded on a device, the method comprising:

computing a program unit storage commitment fingerprint over a program unit if said
program unit is finally loaded in a non-volatile memory on said device;

associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

The program storage device of claim 17 wherein said storing further comprises
storing said program unit storage commitment fingerprint in an area of memory

contiguous with said program unit.

The program storage device of claim 17 wherein said method further comprises
storing with said program unit a reference to said program unit storage commitment

fingerprint.

The program storage device of claim 17 wherein said data comprises a Java™

program.

The program storage device of claim 20 wherein said program unit comprises at least

one of a package, a class, a method or static class variable.

The program storage device of claim 17 wherein said program unit storage

commitment fingerprint comprises a checksum.

The program storage device of claim 17 wherein said program unit storage

commitment fingerprint comprises a cyclic redundancy code (CRC).

A program storage device readable by a machine, embodying a program of
instructions executable by the machine to perform a method for committing data
loaded on a device, the method comprising:

computing a program unit storage commitment fingerprint over a program unit

before loading said program unit in a non-volatile memory on said device;

54

WO 2004/066111 PCT/US2004/000698

25.

26.

27.

28.

29.

30.

31.

32.

associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

An apparatus for committing data loaded on a device, the apparatus comprising:

means for computing a program unit storage commitment fingerprint over a program
unit if said program unit is finally loaded in a non-volatile memory on said
device;

means for associating said program unit storage commitment fingerprint with said
program unit; and

means for storing said program unit storage commitment fingerprint.

The apparatus of claim 25 wherein said means for storing further comprises means
for storing said program unit storage commitment fingerprint in an area of memory

contiguous with said program unit.

The apparatus of claim 25 wherein said apparatus further comprises means for
storing with said program unit a reference to said program unit storage commitment

fingerprint.
The apparatus of claim 25 wherein said data comprises a Java™ program.

The apparatus of claim 28 wherein said program unit comprises at least one of a

package, a class, a method or static class variable.

The apparatus of claim 25 wherein said program unit storage commitment fingerprint

comprises a checksum.,

The apparatus of claim 25 wherein said program unit storage commitment fingerprint

comprises a cyclic redundancy code (CRC).

An apparatus for committing data loaded on a device, the apparatus comprising:
computing a program unit storage commitment fingerprint over a program unit

before loading said program unit in a non-volatile memory on said device;

55

WO 2004/066111 PCT/US2004/000698

associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

33. An apparatus for committing data loaded on a device, the apparatus comprising:
a memory for storing said data loaded on said device; and
an installer configured to:
compute a program unit storage commitment fingerprint over a program unit if
said program unit is finally loaded in a non-volatile memory on said device;
associate said program unit storage commitment fingerprint with said program
unit; and

store said program unit storage commitment fingerprint.

34. The apparatus of claim 33 wherein said installer is further configured to store further
said program unit storage commitment fingerprint in an area of memory contiguous

with said program unit.

35. The apparatus of claim 33 wherein said installer is further configured to store with

said program unit a reference to said program unit storage commitment fingerprint.

36. The apparatus of claim 33 wherein said data comprises a Java™ program.

37. The apparatus of claim 36 wherein said program unit comprises at least one of a

package, a class, a method or static class variable.

38. The apparatus of claim 33 wherein said program unit storage commitment fingerprint

comprises a checksum.

39. The apparatus of claim 33 wherein said program unit storage commitment fingerprint

comprises a cyclic redundancy code (CRC).

40. A method for committing data loaded on a device, the method comprising:
computing a program unit storage commitment fingerprint over a program unit

before loading said program unit in a non-volatile memory on said device;

56

WO 2004/066111 PCT/US2004/000698

associating said program unit storage commitment fingerprint with said program
unit; and

storing said program unit storage commitment fingerprint.

41. A memory for storing data for access by an application program being executed on a
data processing system, comprising:

a data structure stored in said memory, said data structure including information used
by said program to determine at run-time whether a program unit has been
tampered with after said program unit has been finally loaded on a device, said
data structure comprising at least one executable code segment and at least one
storage commitment fingerprint, said at least one storage commitment
fingerprint computed over said at least one executable code segment after said at

least one executable code segment has been finally loaded on said device.

42. The memory of claim 41 wherein said at least one executable code segment is

contiguous with said at least one storage commitment fingerprint.

57

WO 2004/066111 PCT/US2004/000698
1/44

105
115

S

Command APDUs

S Respy APDUs
Host Computer 110

120 Smart Card

Y

Prior Art
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
2/44

200

205 \ 210
N oS

Header Body
Lc |DataField| Le

///ms////.m \\\\\

245

250

255 \ 260
S N

Body Trailer
. Data Field swi | swz
/ - \ \
265 FIG. 28 270 275
Prior Art
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

300
Class Files
305
Off-Card Verifier /
310
Converter /

CAP File

Package-
Structured
Java™ Content

350
y / 355

320

Off-Card
Installation
Program

Host Computer

CAP File

Package-
Structurad
Java™ Content

3/44

Loac ing
Terminal

Prior Art

FIG.3

315

330

PCT/US2004/000698

S

325

Runtime Environment

335

\

On-Card Verifier

340

\

On-Card Installer

345

\

Interpreter

SUBSTITUTE SHEET (RULE 26)

Smart Card

WO 2004/066111 PCT/US2004/000698
4/44

C =

Loading Terminal 400

\

Receive Converted Applet (CAP) File

|

Split CAP File And Associated Authentication
Data Amongst Multiple Application Protocol
Data Units {APDUs)

\

\

Transmit APDUs To Target Smart Card

l
=)

Prior Art
FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
5/44

C Begin)

Card
500 ard ¥
\ Reassemble CAP File In-Card
505 Y

/

Decrypt Reassembled CAP File

510 ¥

/

Authenticate Decrypted CAP File Data

516 v

/

Install Content Of Authenticated CAP File On
Card

|
=

Prior Art
FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

6/44

o

Reassemble CAP File In-Card }

-

\ Receive APDU
605
\ Y
Store APDU in EEPROM
610
\ Y
Acknowledge APDU

C End

Prior A

rt

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/000698

WO 2004/066111

~

700

Card Memory — =

~

Mothod A1A Code
Call Method A1C

Method A1A Link Data

~

Method A1B Code

-y

Method A1C Code

-y

AN

~3
-
n

Method A1D Code

/%

Method A2A Code
Call Method B1A

Method A2A Link Data

~
-
a

/

Method A2B Code

~1
-
-}

Method A2C Code

b §

Method B1A Code

-]

Method B1B Code

=y

Method B1C Code

=8

Method B1D Code

L

Method B2A Code

Method B2A Link Data

' __Call Method B1D

-3

AV 4 4 4

Method B2B Code

7/44

Prior Art
FIG. 7

750

PCT/US2004/000698

==~ Card Memory

Method A1A Code /75 2
Call Method A1C
(Address Of A1C) '
754
Method A1B Code /
Method A1C Code /75'6
7
Method A1D Code //5 8
Method A2A Code Wm 0
Call Method B1A
(Address Of B1A)
Method A2B Code)2
Method A2C Code /76 4
Method B1A Code //766
Method B1B Code /na
Method B1C Code /77 0
Method B1D Code /77 z
Method B2A Code 774
Call Method BID %~
{Address Of B1D)
776
Method B28B Code /

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
8/44

810 802

DISPLAY CENTRAL
<——-—> <———-’
ADAPTER PROCESSOR

DISPLAY SCREEN ==
804 o8
830 814\ /

SYSTEM
SERIAL | MEMORY 808
PORT
USER POINTING
DEVICE {[[o]
D e
CONTROLLER
818 ‘
e 834
KEYBOARD <—-—>Wﬂ [ﬂmm]
816 .
832 / NETWORK INTERFACE
'ADAPTER 820
SERIAL ¢ > =
PORT = E'.
MODEM =
FIXED DISK
828 626 822
: == 4 824
FLOPPY DISK
CD-ROM PLAYER UNIT
REMOVABLE
N S STORAGE
FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/000698

WO 2004/066111

9/44

980 950

CAP File 900 \
tructired / Runtime Environment
Data 955
\
910 On-Card Verifier
915
/ 960
985
On-Card Installer
Off-Card Instalfer - 2
Augmented 725" Logical APDUs + 965
Host Computer CAP File Loading Target Authentication T~
' Terminal APDU, Authentication| Interpreter
Fingerprint APDU ,
Verification APDUs
. Link APDUs / Memory
y
970 4
L Smart Card
W,
(' N ez T8
Augmented CAP File /
925
Package-Structured Data /
935

930
/
Loading Terminal Data Target Smart Card
Authentication Code(s) Authentication Code(s)

Authentication
Fingerprint

Verification Data f——ms=sc—n

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

PCT/US2004/000698
10/44
1000 1005 1010
Host Computer Loading Terminal Smart Card
Optionally Determine A Loading
Order Of Program Elements For
Optimized Verification And Linking
NS
1015
f d CAP Fil
Propare Augmente e Requiost For
l Loagling +
Load
Augmented '
1020 "5 File. Parajneters
Gommunicate Q:g'!‘r::‘;:ﬁ;‘“’ Flle] {y] |nitialize Loading OFf Applet »|{ Perform Load Initialization
1025 1030 Loglcal 1050
APDUSs]
Load Authenticated Applet Code - Load
1035 1
l it y 055
Initialize Applet patg.{ initialize
l 1040 R y 1060
(4040 4
L.oading
Process Proof Of Loading g Send Proof Of Loading
1045 1065
FIG. 10

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
11/44
‘ Host Computer, Loading Terminal Smart Card
1106 ~=—_
‘ 1100 1102 1104
Disassemble CAP Flie Into Logical
: APDUs
Compute Authentication Fingerprint
Over APDU Data Stream S-S~
* 1108
Create Loading Terminal
Authentication Code e
1110
1112
Create Target Smart Card |2~ 1118
Authentication Code(s)
* Receive Load Request including
Augment CAP File By Inserting Augmented CAP File + AID + Init | Lopd 1140
Authentication Codes, Fingerprint, Instructions + Init Data Request,
Or Both Load
L Paranjotors
Augmented Initlate Load > Perform Load Initialization
1114 CAP File -
: Optionally Determine A Loading 1120
Communicate Augmented CAP Flle Order Of Program Elements For
Including Codes And Fingerprint To Optimized Verification And Linking 1121
: Loading Terminal
\ Disassemble Augmented CAP File
1116 Into Logical APDUs 1922
1124
Authenticate Based On Loading -
Terminal Authentication Code
* 1126
Extract Appropriate Target Smart | .=~
Card Authentication Code
' = 1128
Communicate Logical APDUS Logical
Including Smart Card APO) lﬁ Process Logical APDUs & Compute
Authentication Code To Target Authentication Fingerprint
Smart Card
v 1130 4122
Send Fingerprint Or Authentication Flng' grprint
Code Based On Fingerprint 1144
+ 1132
- Y
Authenticate Based On Target
Send Authentication Code : - Smart Card Authentication Code
Authenfication ‘ 1146
Corle X «
Commit To Memory
1134 + 1148
2" Initialization 2\
Perform Init Instructions + Load Data
- Initialize
Data 1]
‘ 1136 1150
< ing —
Receive Proof Of Loading -41-—9 Send Proof Of Loading

WO 2004/066111 PCT/US2004/000698
12/44

o=)

Host Computer 1200

\

Receive Converted Applet (CAP) File

l 1205

Disassemble CAP File Into Logical APDUs

l 1210

Compute Authentication Fingerprint Over .
APDU Data Stream

l 1215

Augment CAP File To Include Authentication Fingerprint,
At Least One Data Authentication Code, Or Both

l 1220

Communicate Augmented CAP File To Loading
Terminal

:
=)

\

\

\

\

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
13/44

1300

A\

CARP File
1305

\

Package Definition APDU(s) 1310

\

Class Definition APDU(s) 1315

\

Method Definition APDU(g)

1320

\

Method Code APDU(s)

1325
Field Definition APDU(s) '
1330

\

Field Initialization APDU(s)

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
14/44

(" oean)
| 1400

Receive Program Unit -

l 1405

Determine Data Types Used By Program Unit

l 1410

. Create A Mapping For The Data Types

\

\

1415

Y

Use The Mapping To Represent Type Information In
Verification information For The Program Unit

l
=)

\

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

15/44

1500 : 1502

1506 / 1524
Z |

Ordered Package A

Package A / 1510 1528

Class A
Method A.AA]

f

Class B I
1530
"™ Method A.B.B

-
c&
-
N

_I;
o
-t
£
-
o
w
h/

Method A.AB] ™ Method A.B.A

-
[
N
(-]

™ Method A.B.C

S~

Class A

Method A.A.C]

=

\

—— (4,3

-
(-]

Class B
Method A.B.A N » Method A.A.B
Method A.B.B \\18 1594 » Method A.AA
Method A.B.C \\20 1576 s Method A.A.C
SN
1522 1538
FIG. 15A FIG. 15C

1542 1550
ABA
& 3
1544 1546
ABB AAB
FIG. 16B
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
16/44

=
|

Receive Program Including Multiple Program
Units Targeted To A Device

1605 l

Obtain Control Flow Graph Of The Program

1610 l

Order The Program Units Based On The Control
Flow Graph

1615 l

Communicate The Ordered Program To The
Device '

l
=

/

/

/

/

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
17/44

1700 1702

1706 /
Z 1724

Package A / 710 \@ed Package A
Class A / 1726 Class B Data
. % 1712
Method A.A.A / \ —
1714 1728 EF]i " dSE
Method A.A.B] \\
1730 Method A.B.B
Method A.A.C || }15 \\
Class A Data |-
. L
Class B Class A
Fields
Method A.B.A K / ds_
Method A.A.B
Method A.B.B \\18 17?;/
Method A.B.C || \1720 17>/ Method A.B.A
\ Method A.A.A
1722 17>/
1740 Method A.B.C
1750
1742 FIG. 17C
1704

4 5

1752 1758 1760
" A.BA '
€V >
1754
A.B.B

FIG. 17B
FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
18/44

Disassemble CAP File Into
Logical APDUs

!

Per Package:

\ &
=]
-] =)
G

Create Package Definition APDUs * 1810

Y

Per Class: _ ’ 18

\

-
L]

Create Class Definition APDUs

-

Create Field Definition APDUs

l

\ \

Per Method: 1835
iz
Create Method Definition APDUs
l 1825
Create Method Code APDljs
' S
1840
i ' 1830
Create Data Initialization APDUs /

C =

FIG. 18 .

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

19/44
Disassemble CAP File Into
Logical APDUs 1900
Per Package: 1905
Create Package Definition APDUs 1910
Per Class: 191§
Create Class Definition APDUs /
l 1920
Create Field Definition APDUs /
: l 1925
Per Method:
, 1930
Create Method Definition APDUs //
* 1935
Create Method Code APDU Code //
APDUs
+ 1940
Create Method Verification /
. APDUs
* 1945
Create Class \'Ierification APDUs /
+ 1950
Create Data Initialization APDUs /
l 1955
Create Package Verification APDUs /
=
FIG. 19

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

Verification APDU is
Part Of Fingerprint

< Compute Authentication Fingerprint

Over APDU Data Stream

=

Initialize Authentication Fingerprint

2005

|
Y =z

R)

Receive Logical APDU

[=

Compute Authentication Fingerprint Over
Loglcal APDU Payload Using Resuit Of
Previously Computed Authentication
Fingerprint

=

FIG. 20A

PCT/US2004/000698

Verification APDU is
Not Part Of Fingerprint

Compute Authentication Fingerprint
Over APDU Data Stream
20

|

Initialize Authentication Fingerprint

2025

2z

Receive Logical APDU

Compute Authentication Fingerprint Over
Logical APDU Payload Using Result Of
Previously Computed Authentication
Fingerprint

2040

Yes Another

ogical APDU?Z

=

FIG. 20B

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
21/44

=

Loading Terminal 2100

\

Receive Augmented CAP File

l 2105,

Separate Authentication Codes And
Fingerprints From Augmented CAP File

L 2110

Obtain Linking Information

l 2115

Disassemble Augmented CAP File Into
Logical APDUs

l 2120

Communicate Logical APDUs To Smart Card
And Compute Authentication Fingerprint

Optional J 2125
\' - :;mwth-;n—t}c;t-e- B:s:d On l;a.ai;g;;m-i—nal 7

L Authentication Code
l 2130

Extract Appropriate Target Smart Card
Authentication Code

i 2135

Send Fingerprint And Authentication Code To
Smart Card

l 2140

Perform Initialization Instructions And Load
Data

l 2145

Receive Proof Of Loading From Card

1
=

FIG. 21

\

A\

\

A

A

\

\

\

A

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
22/44

isassemble Augmented CA . . -
G File Into Logical APDUSs) No Verification. No Linking

L 2200
Per Package: . 2205
Create Package Definition APDUs /
: J : 2210
Per Class: 2215
Create Class Definition APDUs /
l 2220
Create Field Definition APDUs //
l 2225
Per Method:

2230

Create Method Definition APDUs /

l 2235

Create Method Code APDUs /

Y 2240
Create Data Initialization APDUs /

FIG. 22

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

23/44
isassemble Augmented CA
2300 File Into Logical APDUs Verification, Source = CAP
/ * File Signer
Per Package: 2305
Create Package Definition APDUs L
{ {2310
Per Class: 2315
Create Class Definition APDUs =
l - 2320
Create Field Definition APDUs
- * 2325
Per Method: 233;4/
Create Method Definition APDUs /
‘ 2335
Create Method Code APDUs //
‘ 2340
Create Method Verification /
APDUs
* 2345
Create Class Veriﬁ;:ation APDUs //
¥ 2350
Create Data Initialization APDUs /
* 2355
Create Package Verification APDUs =

=

FIG. 23

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

24/44
isassemble Augmented CA
2400 File Into Logical APDUs Verification, Source =
/ ! Loading Terminal
Per Package: 2405
Create Package Definition APDUs =
2410
Y /
Per Class: 2415
Create Class Definition APDUs /
l 2420
Create Field Definition APDUs /
2425
4 2z
Per Method: 2430
Create Method Definition APDUs /
v 2435
Create Method Code APDUs. /
+ 2440
Compute Method Verlfication Data And /
Create Method Verification APDUs
7 — 2445
Compute Class Verification Data And Create /
Class Verification APDUs
T 2450
Create Data Initialization APDUs
* 2455
Compute Package Verification Data And Create | ___—»—
Package Verification APDUs '

|
=

FIG. 24

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

25/44
isassemble Augmented CA)
2500 File Into Logical APDUs No Verification, Yes
/ * Linking
Per Package: 2505
Create Package Definition APDUs
* r'-yzs'l 0
Per Class: 2545
Create Class Definition APDUs 2~
l 2520
Create Field Definition APDUs |2~
‘ 2525
Per Method: 2530
Create Method Definition APDUs /
} 2535
Create Method Code APDUs /
7 ' 2540
Create Method Link APDUs /
l 2545
Create Data Initialization APDUs /

FIG. 25

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

26/44
isassemble Augmented CA
2600 File Into Logical APDUs Verification, Source = CAP
/ ¢ . File Signer, Linking
Per Package: 2605
Create Package Definition APDUs —
* 2615 2610
/
Per Class: /
Create Class Definition APDUs
* 2620
Create Field Definition APDUs /
* 2625
. /
Per Method: 2630
Create Method Definition APDUSs pZ
; 2635
Create Method Code APDUs //
+ 2640
't Create Method Verification //
APDUs 2645
- 64
Y //
Create Method Link APDUs
2650
Y ,
., Create Class Verification APDUs /
v - 2655 |
Create Data Initialization APDUS d
‘ 2660
Create Package Verification APDUs =

FIG. 26

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
27/44
isassemble Augmented CA
. 2700 File Into Logical APDUs Verification, Source =
/ - ‘ Loading Terminal, Linking
Per Package: 2705
Create Package Definition APDUs e
* . 2715 2710
/
Per Class: /
Create Class Definition APDUs
Y 2720
Create Field Definition APDUs =
7 2725
v
Per Method: 2730
Greate Method Definition APDUs "2
* 2735
Create Method Code APDUs /
* 2740
Compute Method Verification Data And /
Create Method Verification APDUs
2745
¥ W
Create Method Link APDUs
2750
Y
Compute Class Verification Data And Create /
Class Verification APDUs
: 2755
Y //
Create Data Initialization APDUs ‘
* 2760
Compute Package Verification Data And Create | __—»—
Package Verification APDUs

1
=

FIG. 27

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
28/44

‘ Create Method Link APDUs ’

2800

\

Compute Verifiable Linking Instructions Based
On Card Logical Memory Layout

2805

\

Create Link APDU Including The Verifiable
Linking instructions

=

FIG. 28

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

Begin

C)
Card l

29/44

2900

Perform Load Initialization

\

Y

2905

Process Logical APDU Stream

\

l

2910

Receive Authentication Fingerprint

v

2915

ecelve!
Authentication

Fingerprint Matches Yes

PCT/US2004/000698

2920

/

Computed
Authentication
ngerprin

»1 Receive Target Smart Card Authentication Code

2925

l

Authenticate Based On Target Smart Card

Authentication Code

2930

No

No
-
2945 #
\ Fail

2935

Authenticates?

N

Commit Data To Smart Card Memory

2940

l

S

Provide Loading Proof

FIG. 29

=

End

C)

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
30/44

C Begin)

Card

3000

Y

\

Perform Load Initialization

3005
Y

\

Process Logical APDU Stream

l 3010

\

Receive Authentication Fingerprint

3015

eceive
Authentication
Fingerprint Matches
Computed
Authentication
ngerprin

Yes

3020 l

No \ Commit Data To Smart Card Memory

3025 l

3030 \ Provide Loading Proof

\ F‘:il

K

C =

FIG. 30

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
31/44

(Periorm Load lnitialization)
l 3100

\

Receive Request For Loading

l 3105

Authenticate Request /
3110
Failed ?
3115
Check Load Parameters /
3120
Failed 2 S—YSS —
3125
Prepare For Loading /
3130

Y - y /
(End) | C E.nd With Failure)

FIG. 31

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
32/44

(Process Logical APDU Stream)

J 3200

Receive Logical APDU

\

3205
A 4

Pre-Process Logical APDU

\

3215 3210

Abort

3220

\

Compute Authentication Fingerprint

l 3225

Process Logical APDU

\

3230

Stored
Result
equired

No

Yes
3235

\

Store Result

l 3240

Compute Storage Commitment Fingerprint Over
Stored Result Using Result Of Previously
Computed Storage Commitment Fingerprint

»‘
=

FIG. 32

\

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
33/44

Compute Authentication
Fingerprint

3300

Yes _As The APDU A

Link APDU?

s The APDU
A Verification
APDU?

No

3310

erification
APDU Part Of
ingerprint

No

A

3315

Compute Authentication Fingerprint Over Loglcal APDU /
Payload Using Resuit Of Previously Computed Fingarprint

=

FIG. 33

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111
34/44

(Process Logical APDU)

PCT/US2004/000698

3400

Accept Verification Information

\J

3405

Use Verification Infoimation To Verify Logical
APDU

3410

No

Verifies?

3415

Accept Linking Information

3420

Use Linking Information To Link

=

FIG. 34

SUBSTITUTE SHEET (RULE 26)

PCT/US2004/000698

3520

\Jump Table

FIG. 35

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111
35/44
3500
Superclass M ﬁZS
Type_ID_MA=0 l
Method A
Method B\
3530
3505 3510
Subciass N Subclass O
Type_ID_MA =0 Type_ID_MA =1
Method A
N
N\ N\
3535 3540

3550

3515

DN NSO

Object

Type_ID_MA =1

Method A

3545

WO 2004/066111

3600 3650
3602 Card Memory — = ===~ card Memory 652
3sﬁ\ Method A1A Code Method A1A Code /3
Call Virtual Method A1C 3676 InvokeVirtualMethod
AN Method A1A Link Data \\ /— (A1C JumpTable, Type)
3606\ Method A1B Code A1C Method A1B Code /3654 .
Jump | T
Table 3656
3608\ Method A1C Code Method A1C Code /
3610\ Method A1D Code Method A1D Code /3658
3612
36» Method A2A Code Method A2A Code 3660
__Call Virtual Method BIA | InvokeVirtualMethod |7~
“X\[Method A2A Link Data (B1A JumpTable, Type)
3630
3616\ Method A2B Code \ Method A2B Code /3662
A 3664
3618 [Method A2C Code Jump Method A2C Code
AN Table |2z
36& Method B1A Code Method B1A Code /3666
36& Method B1B Code Method B1B Code | /3668
3624 ' : 3
s\\ Method B1C Code Method B1C Code ”/sm
3626 3682 . 3672
g [Method BAD Code \ Method B1D Code 2
B1D A
3628 .
N Jump 3674
3630 Method B2A Code Table Method B2A Code
Call Virtual Method B1D InvokeVirtualMethod L2~
\ Method B2A Link Data (B1D JumpTable, Type)
362\ Method B2B Code Method B2B Code /}76
FIG. 36

36/44

PCT/US2004/000698

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111
37/44

@k Program Having Virtual Metho%

l

PCT/US2004/000698

3700

Receive Program

\

3

3705

Enumerate Classes

\

Y

Per Class: " 3720

i

Rewrite Object Constructor Calls To
Provide Type Information

V.

3725

Rewrite Object Constructors To
Accept A “Type” Parameter

Per Virtual Method: ‘ 3730

Create Virtual Method Jump Table
Indexed By Type Indicator

l

Rewrite Virtual Method Calls To Include:
Type Indicator Of Calling Object

e

3740

3710

3NMs

C =

FIG. 37

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

3800

Method
Fingerprint

Method
Fingerprint

Method
Method Fingerprint Method
Fingerprint Fingerprint
Method
Fingerprint :
Method ge’p Method
Fingerprint Fingerprint
Method
Fingerprint

3810

3818 /V

Class
Fingerprint

38/44

3804

Method
Fingerprint

Method Method
Fingerprint Fingerprint

PCT/US2004/000698

3808

Method
Fingerprint

Method
Fingerprint

Method

Method Fingerprint

Fingerprint

Method Method
Fingerprint | | Fingerprint

Method

3820

Fingerprint
Method
Method Method Fingerprint
Fingerprint Fingerprint
Method Method
Fingerprint Fingerprint
Method
Fingerprint 2812
=Y v 3826 W~
\ Class Class
Fingerprint

NN\ 3822

Package

Fingerprint NS\

Package
Fingerprint

Load
Fingerprint

FIG. 38

SUBSTITUTE SHEET (RULE 26)

Class \ Class
Fingerprint \ | Fingerprint \ Fingerprint
3824
3814

WO 2004/066111

3902

Load
Unit

\

3904

\

{Package
A

3906

Package
B

\

3908

Class A1

3910

Class A2

W

\

—

3966

3912

Class B1

3914

Class B2

\

AN

39/44

3900

AN

Card Memory

PCT/US2004/000698

3916

Mathod A1A Code

3940

Mathod A1A Storage Fingerprint

3918

HMethod A18 Code

3942

Mathad A1E Storage Fingerprint

3920

Msthod A1C Code

3944

Mothod A1C Storage Fingerprint

3922

AWAWA

Method A1D Code

3946

Mathod A1D Storage Fingerprint

Class A1 Storage Fingerprint

3924

Msthod A2A Code

Mathad A2A Starage Fingerprint

3926

Mothod A2B Code

3950

Mathod A2B Storage Fingarprint

3926

Method A2C Code

3952

Meothod A2C Storage Fingerprint

Class A2 Storage Fingerprint

Package A Storage Fingerprint

3928

Mothod B1A Code

3954

Method B1A Storags Fingerprint

3930

Method B18B Cods

3956

Mothod B1B Storage Fingerprint

3932

Muthod B1C Code

Mothod B1C Storage Fingerprint

Meothod B1D Code

Mothod B1D Storage Fingarprint

Class B1 Storage Fingerprint.

Mathod B2A Code

Mathod B2A Storage Fingerprint

Mathod B2B Code

Mathod B2B Storage Fingerprint

Class B2 Storage Fingerprint

Package B Storage Fingerprint

Load Unit Storage Fingerprint

3978

FIG. 39

SUBSTITUTE SHEET (RULE 26)

3958

3934
3960

3936
3962

3938
3964

WO 2004/066111

4002

\

Load

—— 4004

\

Package
"A

4006

W

Package
B

PCT/US2004/000698

40/44
4000
4008 Card Memory
\\ : 4016
Method A1A Code —-‘&4318
Class A1 Method A1B Code —=1520
4010 Method A1C Code 4022
\\ Method A1D Code =24
Method A2A Code e
. A2 4026
Class Method AZB Code 4008
4012 Method A2C Code =753
\\ Method B1A Code 3032
.) Method B1B Code o
Class B1 4034
4014 Method B1C Code 2036
Method B1D Code "'27!'538
Method B2A Code 245,
B . 040
Class B2 Method B2B Code =540
Load Unit Storage Fingerprint e
FIG. 40

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698

41/44

4100

()
l

Receive Request For Use Of A Program Unit /

4105

No

Request Has Been
Received In The

4135

\

Indicate The Program Unit Has Been Used In

The Current Session
+ Yes 4110
Determine Whether The Stored Program Unit /
Data Is Valid
y
Use Stored Determination 4115
Of Program Unit Data |————
Validity 4120
4130 is The Stored No /
. Program Unit Data Fail
Valid? .

4125

/

Use The Program Unit

F
=

FIG. 41

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
42/44

Determine Whether The Stored Program
Unit Data Is Valid

l 4200
Compute Storage Fingerprint /

Over Program Unit Data

4210

4

Indicate The Stored Program
Unit Data Is Invalid

Computed
Fingerprint
Matches Stored
ingerprint

4215

Indicate The Stored Program /

Unit Data Is Valid

=

FIG. 42

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111 PCT/US2004/000698
43/44

Runtime Environment

4345 4350
Impersistent Mutable Memory43oo Persistent Mutable Memory
4—’%/
Dispatch Table 1 4320
Check Bit Method /
1
g : AA
4305
/%30 4325
Dispatch Tahie 2 /
Check Bit Method °* .
0 — AB
1 Ty

\\
\\ \ _ —.4330 _ L E‘i_'_SE_A_
Dispatch Table 3 N -~~~ - Class B
. :

Check Bit Method _ \ ‘
0
N B.A

0 N
s as \ -
== N | 4335
4310 N N
\
\
\ B.C
\ v
» AN
4315 \
/ \
AN 4340
Gateway N 27
Dispatcher r j
Dispatch Table Template
Check Bit Methad
[1)]
0
—
Smart Card
FIG. 43

SUBSTITUTE SHEET (RULE 26)

WO 2004/066111

C Method A Calls Method B)

4400

re Metho
A And Method B

Within The Same .Yes

Protection
Unit?

PCT/US2004/000698
44/44
4405
-» Method A Calls Method B Directly

4410

Method A Calls Method B Via Dispatcher

v

A

4415

Gateway Dispatcher Determines Dispatch Table
Associated With Protection Unit Of Calied Method (Method
B)

7

4420

4425

pd

Check Protection Unit-

Yes No _Collectivd

Protection

ViaKe BCK BHS Tl DLE 0
Unit Indicate An Unchecked

Sta.tus—

v

Obtain Dispatch Table Template From
Persistent Mutable Memory And Load In RAM

4440 \

4430

y!

4445

' Examme Dispatch Table Entry Corresponding To
. Called Method (B)

W

4455

4450 ek

AN

Indicates A~\NO Perform Verification Of Protection Unit
Checked ™| Comprising The Called Method
4465 4460
Call Method Using Address In Table Entry Protection Unit Indicate A Checked
Stafus—
G
FIG. 44

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

