7121966 A2 | IO 0 0 0O

Tg)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
22 December 2005 (22.12.2005)

OO OO O

(10) International Publication Number

WO 2005/121966 A2

GO6F 12/00

(51) International Patent Classification’:

(21) International Application Number:
PCT/IB2005/051774

(22) International Filing Date: 31 May 2005 (31.05.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

04013507.1 8 June 2004 (08.06.2004) EP

(71) Applicant (for all designated States except US):
FREESCALE SEMICONDUCTOR, INC. [US/US];
7700 West Parmer Lane, Austin, Texas 78729 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PELED, Itay
[TL/L]; Mishol Ekron 25, 84807 Beer-Sheva (IL). AN-
SCHEL, Moshe [IL/IL]; Shalom Halihem 24, 44418
Kafr-Sabe (IL). EFRAT, Yacov [IL/IL]; Bik’at Beit
Hanetofa 13A, Kfar-Saba (IL). ELDAR, Alon [IL/IL];
Hertsel 78, 43354 Ra’anana (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: A MEMORY CACHE CONTROL ARRANGEMENT AND A METHOD OF PERFORMING A COHERENCY OP-

ERATION THEREFOR

§107 |~ 105
CACHE
MEMORY
<103
3015 303
RECEIVE o CACHE MAIN
PROCESSOR CONTROLLER MEMORY
| <305
TAG
ARRAY
CACHE MEMORY SYSTEM

(57) Abstract: A memory cache control arrangement for performing a coherency operation on a memory cache (105) comprises a
receive processor for receiving (301) an address group indication for an address group comprising a plurality of addresses associated

with a main memory (103). The address group indication may indicate a task identity and an address range corresponding to a

& memory block of the main memory (103). A control unit (303) processes each line of a group of cache lines sequentially. Specifically
& it is determined if each cache line is associated with an address of the address group by evaluating a match criterion. If the match
criterion is met, a coherency operation is performed on the cache line. If a conflict exists between the coherency operation and
another memory operation the coherency means inhibits the coherency operation. The invention allows a reduced duration of a cache
coherency operation. The duration is further independent of the size of the main memory address space covered by the coherency

=

operation.

WO 2005/121966 A2 II}H10 Y N0VOH0 AT 0O 00RO AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

-1 -
A MEMORY CACHE CONTROL ARRANGEMENT AND A METHOD OF
PERFORMING A COHERENCY OPERATION THEREFOR

Field of the Invention

This dinvention zrelates to a memory <cache control
arrangement and a method of performing a coherency

operation therefor.
Background of the Invention

Digital data processing system are used in many
applications including for example data processing
systems, consumer electronincs, computers, cars etc. For
example, personal computers (PCs) use complex digital
processing functionality to provide a platform for a wide

variety of user applications.

Digital data processing systems typically comprise input/
output functionality, instruction and data memory and one
or more data processors, such as a microcontroller, a

microprocessor or a digital signal processor.

An important parameter of the performance of a processing
system is the memory performance. For optimum
performance, it is desired that the memory is large, fast
and preferably cheap. Unfortunately these characteristics
tend to be conflicting requirements and a suitable trade-

off is required when designing a digital system.

In order to improve memory performance of processing
systems, complex memory structures which seek to exploit
the individual advantages of different types of memory

have been developed. In particular, it has become common

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 2 -
to use fast cache memory in association with larger,

slower and cheaper main memory.

For example, in a PC the memory is organised in a memory
hierarchy comprising memory of typically different size
and speed. Thus a PC may typically comprise a large, low
cost but slow main memory and in addition have one or
more cache memory levels comprising relatively small and
expensive but fast memory. During operation data from the
main memory is dynamically copied into the cache memory
to allow fast read cycles. Similarly, data may be written
to the cache memory rather than the main memory thereby

allowing for fast write cycles.

Thus, the cache memory is dynamically associated with
different memory locations of the main memory and it is
clear that the interface and interaction between the main
memory and the cache memory is critical for acceptable
performance. Accordingly significant research into cache
operation has been carried out and various methods and
algorithms for controlling when data 1s written to or
read from the cache memory rather than the main memory as
well as when data is transferred between the cache memory

and the main memory have been developed.

Typically, whenever a processor Dperforms a read
operation, the cache memory system first checks if the
corresponding main memory address is currently associated
with the cache. If the cache memory contains a valid data
value for the main memory address, this data value is put
on the data bus of the system by the cache and the read
cycle executes without any wait cycles. However, if the
cache memory does not contain a valid data wvalue for the

main memory address, a main memory read cycle is executed

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 3 -
and the data is retrieved from the main memory. Typically
the main memory read cycle includes one or more wait

states thereby slowing down the process.

A memory operation where the processor can receive the
data from the cache memory is typically referred to as a
cache hit and a memory operation where the processor
cannot receive the data from the cache memory is
typically referred to as a cache miss. Typically, a cache
miss does not only result in the processor retrieving
data from the main memory but also results in a number of
data transfers between the main memory and the cache. For
example, 1f a given address is accessed resulting in a
cache miss, the subsequent memory locations may be
transferred to the cache memory. As processors frequently
access consecutive memory locations, the probability of
the cache memory comprising the desired data thereby

typically increases.

Cache memory systems are typically divided into cache
lines which correspond to the resolution of a cache
memory. In cache systems known as set-associative cache
systems, a number of cache lines are grouped together in
different sets wherein each set corresponds to a fixed
mapping to the lower data bits of the main memory
addresses. The extreme case of each cache line forming a
set is known as a direct mapped cache and results in each
main memory address being'nmpped to one specific cache
line. The other extreme where all cache lines belong to a
single set is known as a fully associative cache and this
allows each cache line to be mapped to any main memory

location.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 4 -
In order to keep track of which main memory address (if
any) each cache line is associated with, the cache memory
system typically comprises a data array which for each
cache line holds data indicating the current mapping
between that line and the main memory. In particular, the
data array typically comprises higher data bits of the
associated main memory address. This information is
typically known as a tag and the data array is known as a

tag-array.

It is clear that the control of the cache memory is
highly critical and in particular that it is essential to
manage the correspondance between the main memory and the
cache memory. For example, 1f data is modified dn the
main memory without corresponding data of the cache
memory being updated or designated as invalid data,
disastrous consequences may result. Similarly, ‘if data
which has been written to the cache memory is not
transferred to the main memory before it is overwritten
in the cache or prior to the corresponding locations of
the main memory being accessed directly, the data
discrepancy may result in errors. Thus the reliability of
the processing system is highly dependent on the control
of the cache. Accordingly, coherency operations are
performed at suitable instants to eliminate or reduce the
probability that a discrepancy between cache memory and

main memory does not result in undesired effects.

For example, a Direct Memory Access (DMA) module may
be able to access the main memory directly. The DMA
may for example be part of a hard disk interface and
be used for transferring data from the main memory to
the hard disk during a hard disk write operation.

Before a DMA operation can be performed, it is

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 5 -
important that all data written to the cache memory
has been transferred to the main memory. Accordingly,
prior to a hard disk write operation, the processor
system preferably performs a coherency operation where
all data that has been written to the cache memory but
not the main memory is transferred to the main memory.
The coherency operation is probably executed with as
little complexity and time consumption as possible in
order to free up the system for normal operation and

to reduce the computational loading of the system.

However, generally such coherency operations are complex,
time consuming, power consuming and/or require complex
hardware thereby increasing cost. For example, if a given
address block of the main memory is to be transferred to
the hard disk, conventional approaches comprise stepping
trough each location of the main memory and checking
whether the cache comprises an updated ' value for this
location. As the main memory address block may be very
large, this is a very cumbersome process which typically
is very time consuming for a software implementation and
has a high complexity requirement for a hardware

implementation.

There are generally two approaches for implementing
coherency functionality which are hardware and software
coherency mechanisms. The hardware approach involves
adding a snooping mechanism for each cache based system.
The snooping mechanism tracks all the accesses done by
other masters (such as DMA processors) to the main
memory. When the snoop mechanism detects an access to a
valid data in the cache it notifies the main memory. On a
write to the main memory the cache data can be

automatically invalidated and on a read the data can be

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 6 -
fed to the requestor by the cache rather than the main
memory. The software approach to coherency is based on
enabling the user to flush, invalidate and synchronize
the cache by software. This is done by adding a
controller that executes these operations by software
configuration. The main advantage of the hardware
coherency mechanism is that it is done automatically i.e.
the user doesn't have to manage the operation. The main
disadvantage of the hardware coherency mechanisms is that
it is very complex to implement, it has a high power
consumption, and use up additional area of the
semiconductor. In low cost low power systems such as
Digital Signal Processors (DSPs) the hardware solution is

not 'suitable.

An example of a cache coherency operation is described in
European Patent Convention application EP 1182566Al1. The

document describes a cache maintenance operation based on

‘defining a start and end address of a main memory block

and consequently stepping through all addresses in the
range by the resolution of the cache line. For each step,
the main memory address 1is compared to all values stored
in the cache memory tag array and 1f a match is detected
a coherency operation is performed. However, this results
in a very time consuming process. Furthermore, although
the process time may be reduced by introducing a parallel
hardware comparison between the main memory address and
the tag érray, this increases the hardware complexity and

thus increases cost.

Additionally, the duration of the coherency operation
depends on the size of the memory block being processed.
Thus, as the size of the memory range increases, an

increasing number of addresses must be stepped through

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 7 -
thereby increasing the duration. This 1is a significant
disadvantage in particular for real time systems wherein
the uncertainty of the process duration significantly
complicates the real time management of different

processes.

US2002 065980 describes a digital system with several
processors, including a private level-one cache
associated with each processor and a shared level-two
cache having several segments per entry and a level-three
physical memory. US2002 065980 discloses a mechanism
that uses two qualifiers to define a ‘match’ on a cache

line.

EP 1 030 243 describes a virtual index, virtual tag cache
that uses an interruptible hardware clean function to
clean ‘dirty entries’ in the cache during a context
switch. A MAX counter and a MIN register define a range
of cache locations that are dirty. During the hardware
clean function, the MAX counter counts downward whist the
cache entries at the address given by the MAX counter are
written to main memory if the entry is marked as dirty.
Notably, if an interrupt occurs, the MAX counter is
disabled until a subsequent clean request is issued after

the interrupt is serviced.

Hence, an improved memory cache control arrangement,
processing system and method of performing a coherency
operation on a memory cache would be advantageous and in
particular a system allowing increased flexibility,
reduced complexity, reduced time consumption, reduced
cost, increased reliability and/or improved performance

would be advantageous.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

Statement of Invention

The present invention provides a memory cache control
arrangement, a memory cache system, a processing system
and a storage medium as described in the accompanying

claims.

Accordingly, the present invention seeks to preferably
mitigate, alleviate or eliminate one or more of the
above-mentioned disadvantages, singly or in any

combination.

Brief Description of the Drawings

Exemplary embodiments of the present invention will now
be described, with reference to the accompanying

drawings, in which:

FIG. 1 is an illustration " of a processor ~ system
comprising a cache memory system in accordance with an

embodiment of the invention;

FIG. 2 i1s an illustration of a structure of a cache

memory ;

FIG. 3 illustrates a cache memory system in accordance

with an embodiment of the invention;

FIG. 4 illustrates an example of a tag array for a cache
memory system in accordance with an embodiment of the

invention; and

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 9 -
FIG. 5 illustrates a flow chart of a method of performing
a cache memory coherency operation in accordance with an

embodiment of the invention.

Description of Preferred Embodiments

FIG. 1 is an illustration of a processor system
comprising a cache memory system in accordance with an

embodiment of the invention.

A processing system 100 comprises a processor 101 and a
main memory 103 which stores instructions and data used
by the processor 101 in running applications. The
processor 101 may for example be a microprocessor or a
digital signal processor and the main memory is in .the
embodiment dynamic RAM (Random Access Memory). The main
memory 103 is relatively large and may for example be of
the order of 1 Gbyte. The processor 101 and the main
memory 103 are coupled to a cache memory system 105 which
together with the main memory 103 forms a hierarchical

memory arrangement for the processing system 100.

The cache memory system 105 comprises a cache memory 107
and a cache controller 109. The cache memory 107 is in
the described embodiment a static RAM which is
significantly faster than the dynamic RAM used by the
main memory 103. However the cache memory 107 1is
substantially smaller than the main memory 103 and may
for example be in the order of 256 kBytes. The cache
controller 109 controls the operation of the hierarchical
memory system and in particular controls the operation of
the cache memory system 105 and the access of the main

memory 103.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 10 -
In operation, the tasks run by the processor 101 access
memory by addressing memory locations in the address
space of the main memory 103. These memory accesses may
be served by the cache memory system 105 or may result in
memory accesses to the main memory 103. In particular for
read operations, the cache controller 109 determines if
the cache memory 107 contains valid data for the
specified main memory address and if so this wvalue is
retrieved and fed back to the processor 101. In
particular, 1f a cache match 1is detected, the cache
memory system 105 puts the appropriate data on the data
bus. If the cache controller 109 determines that the
cache memory 107 does not contain valid data for the
specified main memory address, it retrieves the
appropriate data from main memory 103. In particular, the
cache controller 109 may cause the main memory 103 to put

the appropriate data on the data bus.

When a cache miss occurs, the cache -<controller 109
furthermore loads the data retrieved from the main memory
103 into the cache memory 107 as the same main memory
address is often accessed again shortly after a previous
access. Due to the slow response times of the main memory
103, a walt signal 1is typically asserted thereby
introducing additional wait states in the read process.
Thus, a cache hit will result in a faster memory access
than for a cache miss. Furthermore, as the probability of
memory locations near the current memory location being
accessed increases, the cache controller 109 typically
transfers data from the memory locations adjacent to the

memory locatiomn.

It will be appreciated that although the embodiment is

described with reference to a cache controller 109 as a

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 11 -
single isolated functional module, this is merely for
brevity and clarity of the description and that the cache
controller 109 may be implemented in any suitable way. In
particular, the cache controller 109 may be implemented
in hardware, software, firmware or a combination thereof.
In addition, the cache controller 109 may e.g. be
integrated with the cache memory 107, the processor 101
or be a separate module. In particular, all or part of
the cache controller 109 may be fully or partly
implemented in software running on the processor 101 or

in a separate processor or memory management unit.

FIG. 2 1is an dillustration of a structure of a cache
memory 107. In the example, the cache memory 107 is a
direct mapped cache memory comprising 2¥ cache lines. In.
the example, each cache line comprises 4 data bytes and
the resolution of the main memory addressing is one byte.
In the example illustrated k=3 and the cache thus
comprises 32 bytes. It will be appreciated that practical
caches are typically significantly larger. For example,
currently cache memory for PCs may typically comprise
caches comprising 16 to 32 bytes in each cache line and

e.g. 8192 cache lines (i.e. k= 13).

For simplicity the main memory 103 will in the specific
example be considered to comprise 1 kbyte corresponding
to a 10 bit address space. It will be appreciated that
practical main memories typically are much larger and
have significantly longer addresses. In the example, a
main memory address put on the address bus by the
processor 101 may thus be represented by the binary

value:

bs bs, by, bs, bs, bs, bs, by, by, by

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

In the example, the mapping to the cache memory locations
is achieved by a fixed mapping between the address bits
and the cache memory location. Thus, in the example b;, by
determines the byte location within the cache line and b,
bs, b, determines the cache line address, also known as the
index. Thus, an address having b;, bg = 1,0 and bs, b;, by =
1,0,1 will map to memory location 10y of cache line 101, =
5. In the example of a direct mapped cache all main data
addresses having bi, by = 1,0 and by, bs, b = 1,0,1 will map

to this cache location.

The cache memory system 105 continuously keeps track of
which memory location a given cache line is currently
associated with as well as the status of the data held in
the cache 1line. Specifically, the cache controller 109
stores the value. of the higher address bits of the main.

memory address to which the cache line is currently.

..associated. The higher address bits are in this case

known as a tag and the cache controller 109 maintains a
tag array. The tag array comprises an entry for each
cache line with each entry being addressed by the k data
bits (the index) used to select the cache line. When a
cache line is associated with a new main memory address,
the previous tag entry 1is overwritten by the higher
address bits of the new main memory address, i.e. by data

bits by, bg, b7, bs, bs in the specific example.

Accordingly, whenever the processor 101 performs a read
operation the cache memory system 105 determines if the
corresponding value is present in the cache memory by
accessing the tag array using the index (bs, bs, bz) and
comparing the stored tag with the higher address bits of
the current address (by, bg, b7, be, bs). If the tag matches

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 13 -
the address and a flag indicates that the stored cache
data is wvalid, the data value from the cache memory is
put on the data bus resulting in a low latency read

operation.

A disadvantage with a direct mapped cache is that each
main memory address can only be associated with a single
cache 1line resulting in the probability of conflicts
between different main memory addresses increasing and
being significant even for a very lightly loaded cache.
For example, even if only a single cache line of a large
cache memory is associated with a given main memory
address, it may be impossible to associate a second main
memory address with the cache if this happens to result
in the same index as the already associated main memory

address.

A fully associative cache provides significantly more
flexibility by allowing each cache line to be associated
with any main memory address. Specifically, this may be
considered equivalent to the index comprising zero bits
and the tag comprising all address bits not used to

address a location in the cache line.

A set associative cache may be seen as an intermediate
between the direct mapped cache and the fully associative
cache. In a set-associative cache, a block of cache
memory is associated with specific lower address bits as
for a direct mapped memory cache. However, in contrast to
the direct mapped cache, a plurality of cache blocks are
mapped to the same addresses. For example, in the above
example, rather than having an index of three bits bs, bs,
b, the set associative cache may only use and index of two

bits bs;, b,. Thus instead of having a single block of 8

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 14 -
cache lines, the cache memory may now comprise two blocks
of 4 cache lines. Accordingly, each main memory may be

associated with two different cache lines.

Accordingly, the cache memory system 105 maintains a tag
array which has multiple entries for a given index. Thus,
when e.g. a read operation occurs, it 1is necessary to
check a plurality of entries in the tag array rather than
just a single entry as for the direct mapped cache.
However, the number of entries that must be checked is
still relatively small and the operation may be

facilitated by parallel processing.

Thug in order for the cache memory system 105 to
determine if a memory access relates to the cache memory
107 or the main memory 103 it maintains a data array (tag
array) which for each cache 1line comprises data
indicating the association to the main memory 103. In
addition, the cache memory system 105 keeps track of the
status of the data of the cache line. In particular, the
cache memory system 105 maintains a status indication
which indicates whether new data has been written to a
given cache line but not to the main memory. If so there
is a discrepancy between the data of the cache memory 107
and the main memory 103 and the data of the cache memory
107 must be written to the main memory 103 before the
data is dropped from the cache or the main memory 103 is
accessed directly. This indication is referred to as a

dirty-bit indication.

Similarly, for read operations a valid indication is used
to indicate whether the cache line comprises valid data

which has been retrieved from the main memory 103.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

15
It will be appreciated that the status indications may in
some embodiments relate to the entire cache 1line or
individual status indications for each location in the

cache line may e.g. be maintained.

It will be appreciated that in order to manage the
hierarchical memoxry system coherency (maintenance)
operations are required. Such coherency operations
include operations that maintain the coherency between
the cache memory 107 and the main memory 103 including
maintenance write operations, read operations,

synchronisation operations etc.

FIG. 3 dillustrates the cache memory system 105 in
accordance with an embodiment of the invention in more
detail. The illustration and description will for brevity
and clarity focus on the functionality required for
describing the embodiment. In particular the description
will focus on the operation of the cache memory system
105 when performing a coherency operation for a direct

mapped cache.

In the embodiment, the cache memory system 105 comprises
a receive processor 301 which receives instructions from
the processor 101. The receive processor 301 is coupled
to a control wunit 303 which controls the coherency
operation of the cache memory system 105. The control
unit 303 is further coupled to a tag array 305 as well as

the cache memory 107 and the main memory 103.

In accordance with the embodiment of the invention, a
coherency operation is initiated by the receive processor
301 receiving an address group indication £from the

processor 101. The address group indication identifies a

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

...16_
group of memory locations in the main memory 103. In the
described embodiment, the group consist in a continuous
block of memory locations starting at a start address and
ending at an end address. However, it will be appreciated
that in other embodiments and other applications the
address group may correspond to other groups of addresses

including disjoint address areas of the main memory 103.

In the described embodiment, the receive processor 301
thus receives an address group indication consisting in a
start address and end address. The receive processor 301
further receives an indication that a specific coherency
operation is to be performed on the specified address
range. For example, the address range may correspond to a
given application and the coherency operation may be
instigated due to the application terminating. As another
example, a DMA operation may be set-up to directly access

the specified address range of the main memory 103 and

" the coherency operation may be instigated to ensure that -

all data written to the cache for this address range is
transferred to the main memory 103 prior to the DMA

operation.

The receive processor 301 feeds the start address and the
end address to the control unit 303 which stores these
values. The control unit 303 then proceeds to perform the
coherency process. However, contrary to conventional
approaches, the control unit 303 does not step through
the main memory addresses of the address range to
determine if a cache entry exists for each address of the
frequency range. Rather, in the current embodiment, the
control unit 303 processes each cache line sequentially
by stepping through the tag array 305 and for each entry

determining if the cache line is associated with the main

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 17 -
memory address range in accordance with a suitable match
criterion. If a cache line is found to be associated with
the main memory address range, the control unit 303
performs the required coherency operation on the cache

line.

For example, the control unit 303 first retrieves the tag
stored for a zero index. The corresponding main memory
address is determined by combining the tag and the index
and the resulting address is compared to the start and
end address. If the address falls within the range, the

coherency operation is performed on the cache line. For

‘example, if the coherency operation comprises flushing

elements of the cache associated with the address range,
the control unit 303 causes the data of the cache line to
be written to the main memory 103. The control unit 303
then proceeds to retrieve the tag stored for the next
index, i.e. for an index of ‘1 and then repeats the

process for this cache line.

Accordingly, the control unit 303 steps through the cache
tag array 305 one cache line at a time, and for each line
performs the required coherency operation on cache memory
107 if the cache line is associated with the specified

memory range.

The described approach provides a number of advantages
over the prior art and facilitates or enables a cache
memory system which is flexible has low complexity, low

cost and high reliability.

Specifically, as the main memory address range is
typically much larger than the cache size, fewer

comparison cycles need to be considered. In other words,

WO 2005/121966

10

15

20

25

30

PCT/IB2005/051774

- 18 -
the number of iterations of a loop evaluating a match
criterion and conditionally performing a coherency
operation is significantly reduced. This will typically
reduce the duration of the coherency process
significantly thereby reducing the computational load and

freeing up the system of other activities.

Furthermore, the duration of the coherency operation
depends on the size of the cache rather than the size of
the address range. This not only tends to reduce the time
required for the coherency process but also results in it
being bounded and independent of the address range. This
is in particular a significant advantage in real time
processing systems and facilitates the time management in

such a system.

Additionally, the approach is relatively simple and may
be implemented by low complexity hardware, software,
firmware or a combination thereof. In ‘particular the
functionality of the control unit 303 may at least
partially be implemented as a firmware routine of the

processor 101.

It will be appreciated that the above description for
clarity has not considered an evaluation of the status of
the data of the cache 1line. However, preferably the
control unit 303 determines the status of the data of the
cache line. Thus the match criterion preferably comprises
a consideration of the status of the cache line data and/
or the coherency operation is performed in response to
the cache line data status. For example, data may only be
written to the main memory 103 if the status indication

corresponds to a dirty bit status.

WO 2005/121966

10

15

20

25

30

PCT/IB2005/051774

- 19 -
It will also be appreciated that although the description
specifically considered a cache 1line evaluation, the
pbrocess may also separate between different elements of
the cache line. For example, the start and/or end address
need not coincide with a cache line division but may
correspond to a data element within the cache line. Also
the status of the data may relate to the individual
elements and the coherency operation may consider each
individual element. For example, status indications may
relate to individual data bytes in a cache line and only
the data bytes for which a dirty bit indication is set 1is

written to the main memory 103.

It will also be appreciated that although the ' control
unit 303 preferably steps through the entire cache memory
107 one cache line at a time, it may be advantageous in
some embodiments to only step through a subset. of the

cache lines and this subset may be e.g. predefined or

dynamically determined.

The coherency process and operation may be any suitable

coherency process and operation.

Specifically, the coherency operation may be an
invalidate operation. An invalidate operation may
preferably invalidate all cache lines associated with the
specified address range. Thus, the control unit 303 may
step through the cache and set the status indication to
invalid for all cache lines corresponding to the address
range. This operation may for example be advantageous in
situations where the data was updated in the main memory
103 (by DMA) or situations where the cache holds
temporary variables in the cache memory 107 that can be

invalidated at the end of a task as they are not needed.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 20 -

Alternatively or additionally the coherency operation may
be a synchronisation operation. A synchronisation
operation may synchronise all cache lines associated with
the specified address range. Thus, the control unit 303
may step through the cache and write to main memory 103
dirty sections and negate the dirty indication while
keeping the wvalid indication for all cache 1lines

corresponding to the address range.

This operation may for example be advantageous in
situations where the memory section is to be read by DMA
from main memory 103 while retaining the validity of the
data in the cache memory 107 for later use. Another use
of the synchronize operation is taking advantage of free
cycles to reduce the number of dirty sections in the

cache memory 107.

Alternatively or additionally the coherency operation may

be a flush operation. A flush operation may flush all
cache lines associated with the specified address range.
Thus, the control unit 303 may step through the cache and
write the data of all cache lines corresponding to the
address range and having a dirty bit indication to the
main memory 103 and then invalidate the cache line. This
operation may for example be advantageous in situations
where a memory operation is about to be performed
directly on the main memory 103 without the involvement
of the cache memory system 105 and when the data is not

expected to be used by the processor 101.

In the following, an embodiment of the invention applied
to a set-associative memory will be described. In the

embodiment, the cache memory 107 is organised into four

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 21 -
sets. A main memory address may be associated with any of
the sets and thus there are four possible cache lines for
each main memory location. The embodiment is compatible
with the cache memory system 105 illustrated in FIG. 2

and will be described with reference to this.

In the embodiment, the addressing by the processor
employs virtual memory addressing. Specifically, each
task running on the processor 101 uses a standard address
space which may be mapped to a given physical memory area
in the main memory 103 by a memory management unit. Each
running task is allocated a task identity which is used
by the memory management unit when mapping to the main
memory 103. For example, the instructions of a first task
may address memory in the range [0, FFFF,]. The memory
management unit may allocate this task the task identity
1 and map the range to a physical memory range of [10
000,, 10 FFFFy]. The instructions of a second task may
also address memory in the range [0, FFFFy]. The memory
management unit may allocate this task the task identity
2 and map the range to a physical memory range of [08

000,, 08 FFFFul.

FIG. 4 illustrates an example of a tag array 400 for a
cache memory system 105 in accordance with this
embodiment. The tag array comprises four separate data
structures 401, 403, 405, 407, each structure
corresponding to one of the four sets of the set
associative cache. Thus an entry exists in the tag array
for each cache 1line. In the embodiment, each entry
comprises a tag corresponding to the higher bits of the
virtual address used by the processor 101. In addition,
each entry comprises a task i1dentity dindicating which

task the cache line is associated with. Thus, the entry

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 22 -
in the tag array i1is indicative of the physical main

memory address associated with the cache line.

FIG. 5 illustrates a flow chart of a method of performing
a cache memory coherency operation in accordance with
this embodiment of the invention. In the described
embodiment the method is performed by a processor such as
a microcontroller, a Central Processing Unit (CPU) or a
Digital Signal Processor (DSP) supporting one or more
applications. The method of FIG. 5 is performed in the

background to the processing of the user applications.

The method initiates in step 501 wherein the control unit
303 is initialised with a start address and an end
address defining an address range for which the coherency
operation is to be performed. The start address and the
end address are specified as virtual addresses used by a
given task. For example, for the case wherein a. first
task addresses memory in the range [0, FFFFy]° the start
and end addresses are within this range. In order to
relate virtual addresses to the physical main memory 103
address range, the control wunit 303 ig furthermore
initialised with task identity (task ID). In the specific
example, the coherency operation may relate to the
virtual memory interval [1000,, 17FFy] for the first task.
Accordingly, the control wunit 303 is in step 501
initialised by setting the start address to 1000y, the end
address to 17FFy and the task ID to 1.

The method continues in step 503 where a cache line
pointer is set to the first cache line corresponding to
the first entry 401 for the first set in the tag array
400.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 23 -
Step 503 is followed by step 505 wherein the tag and task
identity is retrieved from the tag array 400. Thus
currently Tag(0,0) and Task ID(0,0) is retrieved from the

tag array 400.

Step 503 is followed by step 507 wherein the control unit
303 determines if the cache 1line corresponding to the
first entry 401 is associated with an address for which a
coherency operation should be performed. Specifically,
the control unit 303 generates an address by combining
the retrieved tag with the index for the tag. Thus, a
full virtual address is generated for the first entry 401
by combining the address bits from the tag with the

address bits of the index. .

The generated address is compared to the start and end
address and the control unit 303 determines i1f the
retrieved Task ID matches the specified task ID. Thus, it
is determined if a task ID of 1 1is stored in Task
ID(0,0). If the generated address is within the specified
address range and the task IDs match, a match is
designated and it is thus desirable to perform a
coherency operation on the corresponding cache line. In
this case the method continues in step 509 and otherwise

it continues in step 513.

In step 509 it is determined if it 1s currently practical
to perform the coherency operation. Specifically, the
control unit 303 determines if a conflict exists between
the coherency operation and another memory operation.
The control unit 303 may for example determine if a
resource which is shared between the coherency operation
and the other memory operation is currently used by the

other memory operation. For example, if the cache memory

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 24 -
107 access resources which are shared between the normal
cache operation (cache 1line reallocation) and the
coherency operation, a higher priority may be given to
the normal cache operation when a conflict exists between

the two.

If a conflict is determined to exist in step 509, the
control unit 303 in the current embodiment proceeds to
inhibit the coherency operation. In particular, the
control unit 303 may inhibit the coherency operation by
delaying the coherency operation until the other memory
operation is terminated. This may be achieved by
continuously determining whether a line is replaced by a
concurrent line operation in step 519. If a line has
been replaced in step 519, the method moves to step 513
If a line has not been replaced in step 519, the process
returns to step 509 to determine whether it is currently

practical to perform the coherency operation.

Thus, the sweep segment cancellation criteria (in step
519) identifies whether the cache line associated with
the sweep segment has already been replaced, since the

match criteria has previously been checked in step 507.

When no conflict is determined in step 509 the method
proceeds to step 511 wherein the control unit 303
performs the desired coherency operation on the
corresponding cache line. As previously mentioned, the
coherency operation may for example be a flush,

invalidate or synchronise operation.

Step 511 is followed by step 513 wherein the control unit
303 determines if it has stepped through the entire

cache. If so, the method continues in step 515 wherein

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

25
the process terminates. Otherwise the method continues in
step 517 wherein the pointer is updated to refer to the
next cache line. The method then continues in step 505 by
processing the next cache line. The next cache line is
determined as the subsequent cache line in the set. When
the last cache line of a set has been reached, the next
cache line is determined as the first cache line of the
next set. When the last cache line of the last set has
been reached, this is detected in step 513 resulting in

the method terminating.

Thus, the method results in the cache 1lines of each
individual set being sequentially stepped through as well.
as the individual sets also being sequentially stepped
through. Thus, in the embodiment all cache lines of the
cache are sequentially processed and for each cache line,
it is determined if a coherency operation is appropriate

and if so the operation is performed.

Specifically, the tag array 400 of FIG. 4 is stepped
through by initially evaluating the first entry 409,
followed by the next entry 411 of set 0 and so forth
until the last entry 413 for set 0 is reached. The method
then steps to set 1 by pointing to the first entry 415 of
set 1. Similarly the last entry 417 of set 1 is followed
by the first entry 419 of set 2, and the last entry 421
of set 2 is followed by the first entry 423 of set 3.
When the last entry 425 of set 3 has been reached the

coherency process has been executed.

It will be appreciated that although the described
embodiment has described an implementation wherein the

steps are executed sequentially in the described order,

WO 2005/121966

10

15

20

25

30

PCT/IB2005/051774

- 26 -
parallel operations and/or a different order of the steps
may equally be applied as suitable. In particular, steps
505, 507, 509, 513, 517, may be performed in parallel to
step 511. Hence, while performing the coherency
operations for a cache line the controller may evaluate

the next cache line or lines.

Preferably, the control wunit 303 setg a termination
indication when the process terminates in step 515.
Specifically, the control unit 303 may cause an interrupt
indication to be set which results in an interrupt
sequence at the processor. The interrupt indication may
be a software interrupt indication or may be a hardware
interrupt indication such as setting a signal on an
interrupt signal input of the processor 101. This may
facilitate management of different tasks and in
particular facilitate task time management in real time

processing systems.

The above embodiments have focussed on a match being
determined in response to a single match criterion based
on a specified address range. However, in other
embodiments other criteria may be used and/or a plurality
of criteria may be used. For example, the address group
indication may consist in a task identity and the match
criterion may simply determine if each cache line matches
that task identity. Thus, a coherency operation may be
performed for a given task simply by specifying the

corresponding task identity.

Preferably, the control unit 303 is operable to select
between a plurality of match criteria and particularly it

may be operable to select between different match

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

- 27 -
criteria in response to data received from the processor

101.

For example, if the control unit 303 receives a start
address, an end address and a task identity in connection
with a coherency process instigation command, it may
proceed by using a match criterion that evaluates if the
entry in the tag array comprises data matching all three
requirements. However, if only a start address and an end
address was received in connection with the instigation
command, only the stored address tag will be considered
by the match criterion. This may allow a simple coherency
operation on a given memory area regardless of which task
is using the particular area. Furthermore, if the control
unit 303 &receives only a task identity with the
instigation command, the match criterion determines only
if the task identity matches. This allows a simple
coherency operation for a specific task. Finally, if no
specific data 1s &received in conhection with the
instigation command, the control unit 303 may perform a
coherency operation on the entire cache memory 107
regardless of the association between the cache memory

107 and the main memory 103.

It will be appreciated that although the above
description is specifically appropriate for a data memory
cache the invention may also be applied to for example an

instruction memory cache.

Thus, the preferred embodiment of the present invention
describes a mechanism to handle concurrent CPU and cache
sweeping processes. Any sweep or cleaning operation
involves several segments. Notably, each segment

performs the operation on a specific cache line.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

In the preferred embodiment of the present invention, the
management of sweep segment delay or cancellation is
handled by an internal mechanism on a segment-by-segment
basis. This allows seamless parallel CPU and cache sweep
operations. This provides a clear advantage in allowing
the CPU to be active (not stalled or in wait mode) as
much asg possible. Thus, the CPU may be active whilst the
cache sweep operation is active and any conflicts which
may be caused by this parallel operation are managed

internally.

It will also be appreciated that the invention is not
limited to performing only one comparison per cycle but
that a plurality of comparisons may e.g. be performed in

parallel.

Whilst the specific and preferred implementations of the
embodiments of the present invention are described above, -
it is clear that one sgkilled in the art could readily
apply variations and modifications of such inventive

concepts.

In particular, it will be appreciated that the above
description for clarity has described embodiments of the
invention with reference to different functional units of
the processing system. However, it will be apparent that
any suitable distribution of functionality Dbetween
different functional units may be used without detracting
from the invention. Hence, references to gpecific
functional units are only to be seen as references to
suitable means for providing the described functionality
rather than indicative of a strict logical or physical

structure, organization or partitioning. For example, the

WO 2005/121966 PCT/IB2005/051774

10

- 29 -
cache controller may be integrated and intertwined with

the processor or may be a part of this.

The invention can be implemented in any suitable form
including hardware, software, firmware or any combination
of these. However, preferably, the invention is
implemented as computer software running on one or more

data processors.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

Claims (PCT)

1. A memory cache control arrangement for performing
a coherency operation on a memory cache (105) comprising:
means for receiving (301) an address group
indication for an address group comprising a plurality of
addresses associated with a main memory (103);
and characterized by:
processing means (303) for sequentially processing
each cache line of a group of cache lines; the processing
means (303) comprising:
match means for determining 1f a cache 1line is
associated with an address of the address
group by evaluating a match criterion;
coherency means for performing a coherency
operation on the cache 1line if the match
criterion is met; and
means for determining if a conflict exists between
the c¢oherency operation and another memory
operation and wherein the coherency means are
operable to inhibit the coherency operation

if a conflict exists.

2. A memory cache control arrangement as claimed in
claim 1 wherein the conflict relates to a resource which
is shared between the coherency operation and the other

memory operation.

3. A memory cache control arrangement as claimed in
claim 1 or Claim 2 wherein the means for determining if a
conflict exists is operable to determine that a conflict
exists if the coherency operation and the other memory
operation result in a substantially simultaneous access

to the same cache resource.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

4. A memory- cache control arrangement as claimed in
any of the preceding claims wherein the coherency means
are operable to inhibit the coherency operation by
delaying one of the coherency operation and the other

memory operation.

5. A memory cache control arrangement as claimed in
any of the preceding claims wherein the match criterion
comprises an evaluation of whether a main memory address
associated with the cache line belongs to the address

group.

6. A memory cache control arrangement as claimed in
any of the preceding claims wherein the address group
indication comprises a start address and an end address
of a memory block of the main memory and the match
criterion comprises determining if the main memory

address belongs to the memory block.

7. A memory cache control arrangement as claimed in
claim 6 wherein the start address and the end address are

virtual memory addresses.

8. A memory cache control arrangement as claimed in
any of previous claims 5 to 7 wherein the match means is
operable to determine the main memory address in response

to a cache line tag and a cache line index.

9. A memory cache control arrangement as claimed in
any previous claim wherein the memory cache (105) is a
set-associative memory cache and the group of cache lines
comprise cache 1lines of different sets of the set-

associative memory.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

10. A memory cache control arrangement as claimed in
claim 9 wherein the processing means (303) is operable to
process sets of the set-associative memory cache

sequentially.

11. A memory cache control arrangement as claimed in
any previous claim wherein the address group indication
comprises an indication of at least one task identity and
the match criterion comprises an evaluation of whether a
task identity associated with the first cache 1line

matches the at least one task identity.

12. A memory cache control arrangement as claimed in
claim 11 wherein the address group indication consists in

a task identity.

13. A memory cache control arrangement as claimed in
any previous claim wherein the group of "cache lines

comprise all cache lines of the memory cache.

14. A memory cache control arrangement as claimed in
any previous claim wherein the coherency operation is an

invalidate operation.

15. A memory cache control arrangement as claimed in
any previous claim wherein the coherency operation is a

synchronisation operation.

16. A memory cache control arrangement as claimed in
any previous claim wherein the coherency operation is a

flush operation.

WO 2005/121966 PCT/IB2005/051774

10

15

20

25

30

33
17. A memory cache control arrangement as claimed in
any previous claim wherein the processing means (303)
comprises means for setting a termination indication in
response to determining that all cache lines of the group

of cache lines have been processed.

18. A memory cache control arrangement as claimed in
claim 17 wherein the termination indication is an

interrupt indication.

19. A memory cache control arrangement as claimed in
any previous claim wherein the memory cache is an

instruction cache

20. A memory cache control arrangement as claimed in
any previous claim wherein the memory cache is a data

cache.

21. A memory cache system comprising a memory cache

control arrangement as claimed in any previousg claim.

22. A processing system comprising:
a processor;
a main memory;

a cache memory coupled to the processor and the

‘main memory; and

a memory cache control arrangement as claimed in

any of previous claims 1 to 20.

23. A method of performing a coherency operation on a
memory cache comprising the steps:

receiving an address group indication for an
address group comprising a plurality of addresses

associated with a main memory (103);

WO 2005/121966 PCT/IB2005/051774

10

- 15

20

25

30

34
and characterized by comprising the steps of:
sequentially processing each 1line of a group of
cache 1lines; the processing comprising for each cache
line of the group of cache lines performing the steps of:
determining if a £first cache line is associated
with an address of the address group by
evaluating a match criterion,
performing a coherency operation on the first
cache line if the match criterion is met; and
determining 1f a conflict exists between the
coherency operation and another memory
operation and wherein the coherency means are
operable to inhibit the coherency operation

if a conflict exists.

24 . A method of performing a coherency operation on a
memory cache ag claimed in claim 23 further characterised
in that the conflict relates to a resource which is
shared between the coherency operation and the other

memory operation.

25. A method of performing a coherency operation on a
memory cache as claimed in claim 23 or Claim 24 further
characterised in that the step of determining i1f a
conflict exists comprises determining that a conflict
exists i1f the coherency operation and the other memory
operation result in a substantially simultaneous access

to the same cache resource.

26. A method of performing a coherency operation on a
memory cache as claimed in any of preceding claims 23 to

25 further comprising the step of:

WO 2005/121966 ; PCT/IB2005/051774

35
inhibiting the coherency operation by the
coherency means by delaying one of the coherency

operation and the other memory operation.

5 27. A storage medium storing processor-implementable
instructions for controlling a processor to carry out the

method according to Claim 23.

WO 2005/121966

PCT/IB2005/051774

1/3
¢ 107 |~ 105
CACHE §103
101 2 MEMORY
A
109 _ _ MAIN
CACHE
CONTROLLER
100 CACHE MEMORY SYSTEM
A CACHE BYTE 0 BYTE 1 BYTE 2 | BYTE 3
LINE 0
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
LINE 1
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
LINE 2
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
K| | LINE 3
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
LINE 4
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
LINE 5
CACHE BYTE 0 BYTE 1 BYTE 2 | BYTE 3
LINE 6
CACHE BYTE 0 BYTE 1 BYTE 2 BYTE 3
Y | LINE 7

Fl1G. 2

PCT/IB2005/051774

WO 2005/121966

2/3

5 OId

€le

00%
¢ 135 713 | 138 0 135
L0t G2 S0% P4 4 o /Tt 0% €T
/[[\ /[\ /[
(c'¢) a1 wovL | (g') 9yl (¢'7) a1 wsvL | (£7) 9vl (¢) a1 wovL | (¢") avl (c'0) a1 Moyl | (5') 9vl
(7'c) a1 vl | (2'c) ov (2'7) a1 wsvl g 9y1 (z') a1 Myl 9v1 (z'0) a1 wsvl | (2'0) 9vl
('e) a1 wovl | (1) 9v (1'7) a1 wevl | (1'7) 9vL (1) a1 Myl 9y1 (1'0) a1 xsvi | (‘o) 9vL -
; ITH
(0'0) a1 wevL | (0'0) 9v (0'7) a1 wsvL | (0) 9vl (01) a1 vl | (0") 9vl (0'0) a1 wsvi | (0%) 9vl
ﬂ&v gty ST Lgop
WILSAS AMOWIN JHOVD
ANV
9y1
soc”
Y
ANONIN [| wamiouinod |, v_ 40SSI04d |
NIVA FHOVD _ IATION
o< > N 10€
€07 !
ANOWIN
FHOVD
(11824 Nowm

WO 2005/121966 . PCT/IB2005/051774

3/3

SET |~ 501

START ADDRESS
END ADDRESS
TASK ID

\

RESET LINE POINTER |f 503

o

\

EXTRACT TAG AND TASK ID 505
FROM TAG ARRAY

507
s

YES |

509

OPERATION NO

PERMITTED?

519

LINE
REPLACED BY
CONCURRENT LINE
QPERATION?

¢Sl
PERFORM COHERENCY OPERATION I

A

) 513

REACHED YES
LAST LINE IN
GACHE?

517
=

POINT TO NEXT LINE | ! Sz515

(" END OF OPERATION)

\

500

FIG. 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

