

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 December 2003 (04.12.2003)

PCT

(10) International Publication Number
WO 03/099857 A1

(51) International Patent Classification⁷: C07K 7/06, A61K 38/08, G01N 33/53, 33/68

(21) International Application Number: PCT/CA03/00771

(22) International Filing Date: 23 May 2003 (23.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/382,336 23 May 2002 (23.05.2002) US

(71) Applicant (for all designated States except US): THER-ATECHNOLOGIES INC. [CA/CA]; 2310 boulevard Alfred-Nobel, Ville Saint-Laurent, Québec H4S 2A4 (CA).

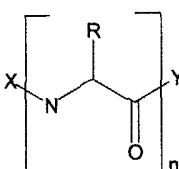
(72) Inventors; and

(75) Inventors/Applicants (for US only): PERI, Krishna, G. [CA/CA]; 3130 Toupin blvd., Ville Saint-Laurent, Québec H4K 1Y8 (CA). MOFFETT, Serge [CA/CA]; 745 Place Fortier, Apt. 1112, Ville Saint-Laurent, Québec H4L 5A6 (CA). ABRAN, Daniel [CA/CA]; 2651 Justine Poirier, Vaudreuil, Québec J7V 8Z1 (CA). BERGERON, Annie [CA/CA]; 863, Soissons, Repentigny, Quebec J5Y 2B3 (CA).

(74) Agents: DUBUC, J. et al.; Goudreau Gage Dubuc, Stock Exchange Tower, 800 Place Victoria, Suite 3400, P.O. Box 242, Montréal, Quebec H4Z 1E9 (CA).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/099857 A1

(54) Title: ANTAGONISTIC PEPTIDES OF PROSTAGLANDIN E2 RECEPTOR SUBTYPE EP4

(I)

5 ethylene glycol residues.

(57) Abstract: Antagonistic peptides of prostaglandin E2 receptor subtype EP4 and their use in the treatment or prevention of medical conditions associated with oligouric nephropathy, bone resorption, abnormal intestinal crypt cell proliferation or patency of the ductus arteriosus and the like are provided herein. The antagonistic peptides of the present invention possess general formula (I): wherein X is selected from the group consisting of a hydrogen atom, a sequence of 1 to 3 amino acids, and protecting groups such as a carbamate group and an acyl group; and wherein Y is selected from the group consisting of a hydrogen atom, 1 to 5 L-lysine residues, phosphate, sulfate and 1 to

TITLE OF THE INVENTION

[0001] Antagonistic peptides of prostaglandin E2 receptor subtype EP4

FIELD OF THE INVENTION

5 **[0002]** The present invention relates to antagonistic peptides of prostaglandin E2 receptor subtype EP4. More particularly, the present invention relates to peptidic antagonists of prostaglandin E2 receptor subtype EP4 and their use in the treatment of medical conditions associated with oligouric nephropathy, bone resorption, abnormal intestinal crypt cell 10 proliferation or patency of ductus arteriosus.

BACKGROUND OF THE INVENTION

[0003] Prostaglandins are derived from the oxygenation of arachidonic acid by prostaglandin (PG) synthases. Prostaglandins mediate a wide variety of physiological actions, such as vasomotricity, sleep/wake cycle, 15 intestinal secretion, lipolysis, glomerular filtration, mast cell degranulation, neurotransmission, platelet aggregation, leuteolysis, myometrial contraction and labor, inflammation and arthritis, patent ductus arteriosus, cell growth and differentiation. Prostanoids mediate their actions through binding to distinct receptors which belong to the super family of rhodopsin-like seven 20 transmembrane helical receptors. These receptors are coupled to heterotrimeric G-proteins comprised of α , β and γ subunits which, upon activation, elicit alterations in cell calcium, initiate phosphoinositide hydrolysis, or promotion or repression of cyclic adenosine monophosphate synthesis (Narumiya, S. et al. 1999; *Physiol. Rev.* 79: 1193-1226.).

25 **[0004]** Of the five pharmacologically-distinct prostanoid receptors PGE2, PGI2, PGD2, PGF2 α , and TxA2, four subtypes of PGE2 receptor are

-2-

described (Ichikawa, et al. 1996). These are EP1, EP2, EP3, which have several splice variants, and EP4. Cloned human EP4 (also known as prostaglandin E2 receptor subtype EP4) is a 488 amino acid glycoprotein, linked to $G_{\alpha s}$, and is involved in the stimulation of adenylyl cyclase and cAMP synthesis (US patents No. 5, 759, 789 and 5,605,814). The EP4 receptor is expressed at high levels in the intestine, but at much lower levels in the lung, kidney, thymus, uterus and brain (Bastien, Y. et al. 1994; *J. Biol. Chem.* 269 (16):11873-77). The EP4 receptor is involved in fluid filtration in the kidney, differentiation of monocyte / macrophage precursors into osteoclasts, proliferation of intestinal crypt cells, and patency of ductus arteriosus in the mammalian fetus.

[0005] PGE2 is abundantly produced in the kidneys and is involved in the regulation of renal microcirculation, salt and water transport, and renin release (Breyer, M. D. et al. 1998; *Kidney Int.* 54 (Suppl. 67): S88-94). All EP receptors are regionally distributed in the kidney structures (Morath, R. et al. 1999; *J. Am. Soc. Nephrol.* 10: 1851-60) and are associated with specific functions. All studies conducted on the distribution of EP receptors in the kidneys have shown that the EP4 receptor is uniquely expressed in glomeruli (Breyer, M. D. et al. 1996; *Am. J. Physiol.* 270: F912-918. Morath, R. et al. 1999; *J. Am. Soc. Nephrol.* 10: 1851-60). However, the presence of this receptor in other structures of the nephron, such as the collecting duct (Breyer, M. D. et al. 1998; *Kidney Int.* 54 (Suppl. 67): S88-94), the media of renal arteries and vasa recta (Morath, R. et al. 1999; *J. Am. Soc. Nephrol.* 10: 1851-60) has been separately reported. EP4 transcripts have also been found in juxtaglomerular granule cells, and is consistent with PGE2-induced cAMP synthesis in these cells. EP4 may therefore also play a role in renin secretion.

[0006] Glomerular prostaglandins are thought to affect filtration (Schlondorff, D. et al. 1987; *Kidney Int.* 29: 108-19) and renin release. PGE2

increases cAMP levels in isolated glomeruli (Freidlander, G. *et al.*, 1983; *Mol. Cell. Endocrinol.* 30: 201-214). It was suggested that the EP4 receptor coupled to cAMP synthesis, may regulate glomerular filtration (Sugimoto, Y. *et al.* 1994; *Am. J. Physiol.* 266(5 Pt 2):F823-8). Using small molecule 5 antagonists (Kohno, Y. *et al.* WO 00/16760) and peptide antagonists (Peri, K.G. *et al.* WO 00/01445), a direct role of the EP4 receptor in modulating kidney filtration and urine output has been demonstrated.

[0007] Bones undergo continuous remodelling, wherein bone formation is carried out by osteoblasts and bone resorption is carried out by 10 osteoclasts. These processes are controlled by several humoral factors such as parathyroid hormone, estradiol, vitamin D, cytokines, growth factors and prostaglandins. It has been illustrated that osteoclast induction by interleukin-1 (IL-1) is inhibited by aspirin-like drugs (Tai, H. *et al.* 1997). PGE2 analogues with EP4 receptor agonistic activity (no specific agonists or antagonists to this 15 receptor exist to date) promote osteoclast formation in co-cultures of mouse osteoblasts and bone marrow cells. Similar experiments using cells from EP4-knockout mice resulted in reduced osteoclast formation, suggesting a role of the EP4 receptor in osteoclastogenesis in mice (Narumiya *et al.* 1999).

[0008] The ductus arteriosus is a normal large, low resistance, 20 shunt vessel in fetuses, facilitating the bypass of blood towards the lungs. Since the fetus does not use its lungs (oxygen is provided through the mother's placenta), fetal lungs are collapsed and pose a high resistance to blood flow. Hence, blood flows from the right ventricle through the ductus into the descending aorta. High levels of circulating prostaglandins, particularly 25 PGE2, keep the ductus in the foetus open. When the infant is born, the lungs are inflated, the pulmonary resistance drops, PGE2 levels decrease, the ductus begins to close, and blood from the pulmonary artery thus enters into the lungs. The high levels of oxygen in the new born often close the ductus,

in most cases within 24 hours. Patent Ductus Arteriosus (PDA) is the condition wherein the ductus doesn't close. In cases of PDA, morbidity and mortality rates are directly related to the flow volume through the ductus arteriosus. A large PDA may cause pulmonary hypertension, edema, 5 recurrent infections, and may lead to congestive heart failure, if left untreated over long periods. Development of pulmonary vascular obstructive disease may occur. It is estimated that if left untreated, the mortality rate is 20% by the age of 20, 42% by the age of 45, and 60% by the age of 60. Females are 2 to 3 times more likely than males to develop PDA.

10 [0009] PDA can be treated either by drugs such as *Indomethacin*, which is a prostaglandin synthesis blocker, or by corrective surgery. *Indomethacin*, however, has side effects on renal ischemia and renal hypofusion, resulting in ischemic renal failure in preterm infants. EP4 is expressed in fetal pig (Bhattacharya, M. et al. 1999; *Circulation* 100(16):1751-6), fetal lamb (Bouayad, A. et al., 2001; *Am. J. Physiol. Heart Circ. Physiol.* 280(5): H2342-9) and fetal baboon (Smith G. C. et al., 2001; *J. Cardiovasc. Pharmacol.* 37(6): 697-704) ductus arteriosus. Paradoxically, EP4 knock-out mice die after birth due to insufficient closure of ductus arteriosus (Nguyen, M. et al. 1997; *Nature*, 390: 78-81).

15 [0010] A selective peptidic antagonist of the EP4 receptor has been used in the treatment of fetal ductus arteriosus (Peri, K. G. et al., WO 00/01445 and Wright, D.H. et al. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 2001; 281(5):R1343-60).

20 [0011] Prostaglandins, particularly PGE2, play an important role in 25 intestinal crypt cell proliferation. In fact, the inducible prostaglandin synthesizing enzyme COX-2 was shown to be present in intestinal polyps, as well as in colon tumors (Shattuck-Brandt, R.L. et al., 1999; *Mol. Carcinog.*

-5-

24(3):177-87). COX-2 selective blockers such as *Nimesulide* were used to prevent chemical induction of colon carcinogenesis (Jacoby, R. F. *et al.* 2000; *Cancer Res.* 60(18):5040-4). Recently, the actions of PGE2 have been shown to be mediated by the EP4 receptor, as deduced from the low incidence of 5 colon polyps in EP4-/- mice, due to azoxymethane and the efficacy of the EP4 selective antagonist ONO-AE2-227 in reducing aberrant crypt foci in azoxymethane-treated min mice (Mutoh, M. *et al.* 2002; *Cancer Res.* 62(1): 28-32).

10 [0012] There thus remains a need to develop selective peptide antagonists of the prostaglandin E2 receptor subtype EP4, and which are useful in the treatment and prevention of colon carcinogenesis.

15 [0013] There also remains a need for methods of treating end-stage renal disease, acute renal failure and other conditions of renal insufficiency preventing bone resorption in osteoporosis, in addition to conditions preventing closing of the ductus (PDA) in the neonates

[0014] There also remains a need for methods of treating medical conditions such as osteoporosis, dental diseases and other diseases where bone loss is an integral part of the disease process.

[0015] The present invention seeks to meet these and other needs.

20 [0016] The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety.

SUMMARY OF THE INVENTION

[0017] Selective peptide antagonists of the prostaglandin E2 receptor subtype EP4 are described. These peptidic antagonists can be used

for making pharmaceutical compositions in order to treat patients diagnosed with acute or progressive renal failure, osteoporosis, dental disease, and patent ductus arteriosus or patients at risk of developing such diseases.

5 [0018] The present invention relates to selective peptidic or peptidomimetic forms of a prostaglandin E2 receptor subtype EP4 antagonist, capable of inhibiting at least one of the functional consequences of the receptor's activity.

[0019] The present invention relates to selective peptide antagonists of the prostaglandin E2 receptor subtype EP4.

10 [0020] Furthermore, the present invention relates to selective peptide antagonists of the prostaglandin E2 receptor subtype EP4, useful in the treatment and prevention of colon carcinogenesis.

15 [0021] Moreover, the present invention relates to pharmaceutical compositions comprising selective peptidic or peptidomimetic antagonists of prostaglandin E2 receptor subtype EP4, useful in treating end-stage renal disease, acute renal failure and other conditions of renal insufficiency preventing bone resorption in osteoporosis, as well as conditions preventing closing of the ductus (PDA) in the neonates.

20 [0022] Additionally, the present invention relates to selective EP4 antagonists useful in the treatment of medical conditions such as osteoporosis, dental diseases and other diseases where bone loss is an integral part of the disease process.

[0023] Further scope and applicability will become apparent from the detailed description given hereinafter. It should be understood however,

-7-

that this detailed description, while indicating preferred embodiments of the invention, is given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] Having thus generally described the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof, and in which:

5 **[0025]** Figure 1A shows the effects of 213.15 and corresponding derivatives (see Table 3) on the urine flow rate (expressed as μl of urine / h/kg body weight) in the rat model of ischemic nephropathy. Figures 1B and 1C show the effects of 213.15 and corresponding derivatives (see Table 3) on the average glomerular filtration rate (GFR) over a period of 60 minutes (from 20
10 minutes to 80 minutes following injection of the drug, which was immediately after the removal of the clamps) in the rat model of ischemic nephropathy;

[0026] Figure 2A shows the dose response of 213.29 on the GFR in normal beagle dogs. Figure 2B shows the maximal effects of 213.29 on kidney function parameters in rat, dog and piglet;

15 **[0027]** Figure 3 shows the effects of 213.29 on the dilation produced by PGE2 in porcine lower saphenous venous rings that are pre-contracted with U46619 (thromboxane A2 mimetic);

[0028] Figure 4A shows the degradation profile of 213.29 in human serum. The peptide contains two lysines at the carboxy terminus which are
20 susceptible to serum proteases. The degradation results in peptides lacking either one carboxyl lysine [213.291] or two carboxyl lysines [213.292]. The carboxyl leucine residue appears to be completely resistant to degradation by human serum under the experimental conditions. Figure 4B shows the bioactivity of 213.29 and its metabolites in a cell based assay. Human EP4
25 expressing HEK293 cells were stimulated with 100 nM PGE2 in the presence or absence of 213.29 and its metabolites 213.291 and 213.292. cAMP levels

determined by radioimmunoassay were expressed in pmol/10⁵ cells.

[0029] Figure 5 shows the effects of 213.29 on selective agonist-stimulated contractile responses of other prostanoid receptors (butaprost-EP2; 17-phenyl PGE2-EP1; PGF2a-FP; U46619-TP; M&B28767-EP3) in 5 porcine retinal microvascular contractility assay;

[0030] Figure 6A shows improvements in kidney function as assessed by glomerular filtration rate (GFR), renal plasma flow (RPF) and urine output in response to iv bolus (1mg/kg) of 213.29 in the rat renal artery occlusion (RAO) model. As a control, *fenoldopam* (0.6 µg/kg bolus, followed 10 by 0.6 µg/kg/h for the duration of the experiment) was used. Figure 6B shows blood urea nitrogen (urea) and creatinine levels in response to 213.29 and *fenoldopam* in the rat RAO model (kidney function parameters are given in Figure 6A), (Sham means sham-operated rats as control);

[0031] Figure 7 shows a graphical representation of kidney 15 histology (erythrocyte extravasation in periglomerular space and tubules presenting occlusions) in rats that underwent bilateral renal artery clamping for 1 hour and received qd (once daily)1 mg/kg of 213.29 iv Bolus. The results show that 213.29 treatment significantly reduced periglomerular erythrocyte extravasation and tubular occlusion, leading to better recovery of kidney 20 function in the rat model of ischemic acute renal failure;

[0032] Figure 8. shows improvements in kidney function as assessed by RPF, GFR, and UV-urine flow rate, obtained with *qd* (once a day) and *bid* (twice a day) administration of 213.29 (1 mg/kg iv bolus) in animals that underwent bilateral renal artery clamping for 1 hour; and

25 [0033] Figure 9A shows kidney function parameters on day 5 in a

-10-

rat model of acute tubular necrosis (rats injected with *cisplatin* ip 17.5 mg/kg on day 1). Glomerular filtration rate (GFR), renal plasma flow and urine output in saline (Sal) -treated rats, declined to extremely low levels by day 5; administration of 213.29 (1 mg/kg) on day 5 improved urinary parameters in 5 saline-treated rats. However treating rats with 213.29 (5 mg/kg tid), starting on day 2, nearly normalized all parameters of kidney function by day 5; the improvement in kidney function correlated with decreases in blood urea nitrogen (BUN) and creatinine levels. Figure 9B shows a graphical presentation of kidney histology from *cisplatin*-treated rats. 213.29 treatment 10 (5 mg/kg tid) reduced hypertrophic glomeruli as well as the number of collecting ducts containing occlusions.

[0034] Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments with reference to the 15 accompanying drawings, which is exemplary and should not be interpreted as limiting the scope of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0035] In order to provide a clear and consistent understanding of the terms used in the present specification, a number of definitions are 20 provided below.

[0036] The term "agonist", as used herein, is understood as being an agent that potentiates at least one aspect of EP4 bioactivity. EP4 bioactivity can be increased for example, by stimulating the wild-type activity and by stimulating signal transduction, or by enabling the wild type EP4 25 protein to interact more efficiently with other proteins which are involved in signal transduction cascades.

[0037] The term "antagonist", as used herein, is understood as being an agent that inhibits at least one aspect of EP4 bioactivity. An EP4 antagonist can be a compound that inhibits or decreases the interaction between an EP4 molecule and another molecule, or decreases the synthesis and expression of an EP4 polypeptide, or inhibits the bioactivity of an EP4 molecule. The antagonist can be a nucleic acid molecule such as a dominant negative form of EP4, an EP4 antisense molecule, a ribozyme capable of specifically interacting with EP4 mRNA, or molecules that bind to an EP4 polypeptide (e.g. peptides, peptidomimetics, antibodies, small molecules).

5

[0038] The term "amino acid", as used herein, is understood as including both the L and D isomers of the naturally occurring amino acids, as well as other nonproteinaceous amino acids used in peptide chemistry to prepare synthetic analogs of peptides. Examples of naturally-occurring amino acids include, but are not limited to glycine, alanine, valine, leucine, isoleucine, serine, and threonine. Examples of nonproteinaceous amino acids include, but are not limited to norleucine, norvaline, cyclohexyl alanine, biphenyl alanine, homophenyl alanine, naphthyl alanine, pyridyl alanine, and substituted phenyl alanines (substituted with one or more substituents including but not limited to alkoxy, halogen and nitro groups). Beta and gamma amino acids are also within the scope of the term "amino acid". These compounds are known to persons skilled in the art of peptide chemistry.

10

15

20

[0039] For the purpose of clarity, commonly accepted notations of amino acids are given below:

FULL NAME	3-LETTER CODE	1-LETTER CODE	FULL NAME	3-LETTER CODE	1-LETTER CODE
Aspartic Acid	Asp	D	Threonine	Thr	T
Glutamic Acid	Glu	E	Glycine	Gly	G
Lysine	Lys	K	Alanine	Ala	A

Arginine	Arg	R	Valine	Val	V
Histidine	His	H	Leucine	Leu	L
Tyrosine	Tyr	Y	Isoleucine	Ile	I
Cysteine	Cys	C	Methionine	Met	M
Asparagine	Asn	N	Proline	Pro	P
Glutamine	Gln	Q	Phenylalanine	Phe	F
Serine	Ser	S	Tryptophan	Trp	W

[0040] The term "polar amino acid", as used herein, is understood as referring to any amino acid containing an uncharged side chain that is relatively soluble in water.

5 **[0041]** The term "hydrophobic amino acid", as used herein, is understood as referring to any amino acid containing an uncharged side chain that is sparingly soluble in water.

10 **[0042]** The term "related amino acid", as used herein, is understood as referring to an alpha, beta or gamma substituted amino acid, natural or synthetic in origin, capable of mimicking the functionality of the side chain (e.g. aromatic, aliphatic, charged, polar, H-donor, H-acceptor). Examples of substitutions include, but are not limited to those provided in Tables 1 and 2.

15 **[0043]** The terms "biological activity", "bioactivity" or "biological function", as used interchangeably herein, are understood as referring to a function that is directly or indirectly performed by an EP4 polypeptide, or by any fragment thereof. Biological activities of EP4 include, but are not limited to binding to another molecule, interacting with other proteins, alterations in signal transduction such as guanine nucleotide binding by G α proteins, 20 calcium fluxes, cAMP synthesis, inositol phosphate synthesis, internalization of EP4 polypeptide, associating with other intracellular proteins or coated pits

in the cell membrane. A description of bioassays of the EP4 receptor is provided below.

[0044] The terms "cells", "host cells" or "recombinant host cells", as used interchangeably herein, are understood as referring not only to the 5 particular cell, but to all its progeny. Also understood as being within the scope of these terms are cells of mammalian, amphibian, fungal, and bacterial origin.

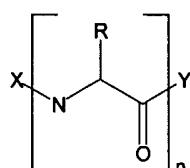
[0045] The term "modulation", as used herein, is understood as referring to both upregulation [*i.e.*, activation or stimulation (e.g., by agonizing 10 or potentiating)] and downregulation [*i.e.* inhibition or suppression (e.g., by antagonizing, decreasing or inhibiting)].

[0046] The terms "protein" and "polypeptide", as used interchangeably herein, are understood as referring to a gene product.

[0047] The term "peptide", as used herein, is understood as 15 referring to a linear polymer containing at least 2 amino acids and a maximum of about 50 amino acids. The amino acids can be naturally-occurring, or synthetically-derived molecules. Examples of such molecules include, but are not limited to L-amino acids, D-amino acids, and synthetic analogues of natural amino acids including but not limited to non-proteinaceous amino 20 acids.

[0048] The term "peptidomimetic", as used herein, is understood as referring to a molecule that mimics the structural and/or functional features of a peptide. A person skilled in the art uses a variety of methods to derive peptidomimetics of a particular peptide such as, but not limited to: 25 substitutions of individual amino acids with synthetic chemical entities, non-

proteinaceous amino acid analogues, deletions and additions of amino acids, replacing one or more amino acids in the peptide with scaffolds such as beta turn mimetics, or with known pharmacophores. The objective of deriving a peptidomimetic is to obtain a superior molecular analogue of the peptide in 5 terms of potency, efficacy, and which has a smaller size and has a better pharmacological and toxicological profile than the parent peptide.


[0049] The term "small molecule", as used herein, is understood as referring to a composition which has a molecular weight of less than about 1 kD and most preferably less than about 0.4 kD. Examples of small 10 molecules include, but are not limited to nucleotides, amino acids, peptides, peptidomimetics, carbohydrates, lipids or other organic (carbon containing) molecules.

[0050] The term "another group of substitutions", as used herein, is understood as referring to exchanges within one of the five groups as 15 depicted in Table 2.

[0051] The term "patient", as used herein, is understood as particularly referring to humans and includes any animal.

[0052] The present invention relates to a composition comprising a peptide antagonist having the following general formula:

20

25 **[0053]** wherein X is attached to the N-terminus of the peptide and

is selected from the group consisting of a hydrogen atom, a sequence of 1 to 3 amino acids, and protecting groups such as a carbamate and an acyl group. The acyl group is composed of a hydrophobic moiety selected from the group consisting of cyclohexyl, phenyl, benzyl, and short chain linear and branched 5 chain alkyl groups ranging from 1 to 8 carbon atoms. Specific examples of acyl groups are acetyl and benzoyl;

[0054] Y is attached to the carboxy-terminus of the peptide and is selected from the group consisting of a hydrogen atom, 1 to 5 L-lysine residues, phosphate, sulfate and ethylene glycol (1 to 5 residues);

10 **[0055]** n is an integer equal to 9;

[0056] R is designated as R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹, starting from the N-terminus of the peptide wherein,

[0057] R¹ is selected from the group consisting of L-(4,4) biphenyl and D-(4,4) biphenyl;

15 **[0058]** R² is selected from the group consisting of CH₃, OH and CH₂OH;

[0059] R³ is selected from the group consisting of CH₃, OH and CH₂OH;

20 **[0060]** R⁴ is selected from the group consisting of phenyl, tyrosyl, benzoyl and related aromatic groups;

[0061] R⁵ is selected from the group consisting of CH₂COOH,

-16-

CH₂CH₂COOH and related carboxylic acid groups;

[0062] R⁶ is selected from the group consisting of is CH₃, CH₂CH₃, CH₂CH₂CH₃, and related short chain aliphatic alkyl groups ranging from 1 to 6 carbon atoms;

5 **[0063]** R⁷ is selected from the group consisting of is CH₃, CH₂CH₃, CH₂CH₂CH₃, and related short chain aliphatic alkyl groups consisting of 1 to 6 carbon atoms;

[0064] R⁸ is lysine; and

[0065] R⁹ is lysine.

10 **[0066]** In a preferred embodiment of the present invention, the peptide antagonists of the present invention are selected from the group consisting of 213.15 (bip)tseyeal (SEQ ID NO: 1); 213.19 (bip)tseyealK (SEQ ID NO: 2); 213.20 (bip)tseyeglK (SEQ ID NO: 3); 213.21(bip)tseyealKK (SEQ ID NO: 4); 213.22 (bip)tseyeglKK (SEQ ID NO: 5); 213.23 (bip)tseyeslK (SEQ ID NO: 6); 213.24 (bip)tseyeslKK (SEQ ID NO: 7); 213.25 (bip)tseyeaK (SEQ ID NO: 8); 213.26 (bip)tseyesK (SEQ ID NO: 9); 213.27 (Bip)tseyealKK (SEQ ID NO: 10); 213.28 (bip)tseyeaLKK (SEQ ID NO: 11); 213.29 (Bip)tseyeaLKK (SEQ ID NO: 12); and 213.30 (bip)tseyealGKK (SEQ ID NO: 13),

15 **[0067]** wherein Bip is L-(4,4)-biphenylalanine and bip is D-(4,4)-biphenylalanine, and wherein D-amino acids are indicated in small letters and L-amino acids in capital letters. Amino acids are indicated in their single letter code.

20 **[0068]** The present invention also relates to pharmaceutical

compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13 and peptidomimetics thereof, in association with one or more pharmaceutically acceptable carriers or excipients for increasing glomerular filtration and urine output.

- 5 **[0069]** The present invention also relates to pharmaceutical compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13 and peptidomimetics thereof in association with one or more pharmaceutically acceptable carriers or excipients.
- 10 **[0070]** Furthermore, the present invention relates to the use of pharmaceutical compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13, and peptidomimetics thereof for improving glomerular filtration and/or urine output of a patient diagnosed with end stage renal disease and acute renal failure.
- 15 **[0071]** Furthermore, the present invention relates the use of pharmaceutical compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13, and peptidomimetics thereof for preventing bone loss experienced by patients suffering from osteoporosis, dental disease and cancer related conditions.
- 20 **[0072]** Moreover, the present invention relates to the use of pharmaceutical compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13, and peptidomimetics thereof for effecting closure of the ductus arteriosus in medical conditions where patency of this blood vessel occurs.
- 25 **[0073]** Additionally, the present invention relates to the use of

-18-

pharmaceutical compositions comprising one or more peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13, and peptidomimetics thereo for preventing or treating patients diagnosed with colon cancer or adenomatous polyps.

5 **[0074]** Additionally, the present invention relates to a method of using the peptide or peptidomimetics of the present invention in an assay comprising the steps of culturing cells or tissues expressing prostaglandin E2 receptor EP4 naturally or recombinantly; treating the cultured cells or tissues with a quantity of compound of claim 1 in the presence or absence of a known 10 concentration of an agonist of said receptor; and measuring one or more of aspects of the bioactivity of the receptor, wherein the aspects are selected from the group consisting of GTP binding and hydrolysis by G_α proteins, cyclic adenosine monophosphate synthesis, alterations in cell calcium, cell growth and/or differentiation, altered gene expression and smooth muscle contraction 15 or dilation.

[0075] Finally, the present invention relates to the use of one or more of the peptide antagonists selected from the group consisting of labeled SEQ ID NOS: 1-13 in a bioassay for identifying small molecule mimetics.

20 **[0076]** Of course it shall be understood that the peptide antagonists of the present invention can also be used for preventing medical conditions or diseases in which antagonists of prostaglandin E2 receptor EP4 are warranted.

EP4 Antagonists

[0077] In the present invention a set of peptides have been synthesized, based on the sequence of peptide 213.15 (SEQ ID NO: 1). Due to its poor solubility, the potential of this peptide as a therapeutic agent is limited. A library of peptides containing various modifications of peptide 213.15 was synthesized, and characterized in terms of serum degradation, solubility, and pharmacological efficacy and potency in normal animals as well as in the rat model of acute renal failure. Based on these analyses, several peptides, more specifically peptides listed as Seq. ID Nos. 2-13, were identified.

Optimization of EP4 Antagonist 213.15 (SEQ ID NO: 1)

[0078] In order to improve the therapeutic efficacy of the peptidic lead compounds of the present invention, several modifications of the peptide were made by substituting one amino acid with a related amino acid or by adding amino acids to the carboxy terminus of the peptide. Substitutions of the amino acids of the EP4 peptidic antagonists of the present invention include, but are not limited to a variant wherein at least one amino acid residue in the polypeptide has been replaced by a different amino acid, either related by structure or by side chain functionality (aromatic, aliphatic and positively- or negatively-charged). Such substitutions are preferably made in accordance with the following description of relations among amino acids.

-20-

[0079]

Table 1: Examples of related amino acids

Residue	Substitution	Residue	Substitution	Residue	Substitution	Residue	Substitution
Ala	Gly;Ser	Gln	Asn	Leu	Ile;Val	Thr	Ser
Arg	Lys	Glu	Asp	Lys	Arg;Gln;Glu	Trp	Tyr
Asn	Gln;His	Gly	Ala; Pro	Met	Leu;Tyr;Ile	Tyr	Trp;Phe
Asp	Glu	His	Asn;Gln	Phe	Met;Leu;Tyr	Val	Ile;Leu
Cys	Ser	Ile	Leu;Val	Ser	Thr	Pro	Ala; Gly

[0080] As illustrated in Table 2, another group of substitutions of the peptidic EP4 antagonists of the present invention involves those wherein
 5 at least one amino acid residue has been removed and is substituted by a different residue, which is inserted in its place.

[0081]

Table 2: Relations among amino acids

Small aliphatic, nonpolar or slightly polar residues	Ala, Ser, Thr (Pro, Gly)
Polar, negatively charged residues and their amides	Asp, Asn, Glu, Gln
Polar, positively charged residues	His, Arg, Lys
Large aliphatic, nonpolar residues	Met, Leu, Ile, Val (Cys)
Large aromatic residues	Phe, Tyr, Trp

[0082] The three amino acid residues placed between parentheses
 10 in Table 2, play a special role in protein architecture. "Gly" is the only residue lacking any side chain and thus imparts flexibility to the chain. This however tends to promote the formation of a secondary structure other than the alpha-helical structure. "Pro", because of its geometry, tightly constrains the chain. It generally tends to promote beta turn-like structures. "Cys" is capable of
 15 participating in disulfide bond formation.

[0083]

"Tyr", because of its hydrogen bonding potential, has significant kinship with "Ser" and "Thr".

[0084] Any amino acid component of the EP4 peptidic antagonists of the present invention can be substituted by its corresponding enantiomer (the same amino acid but of opposite chirality). Therefore, any amino acid naturally occurring in the L-configuration may be substituted by its 5 corresponding enantiomer, that is, an amino acid having the D-configuration. Amino acids of the L-configuration have the same chemical structural type as the amino acids of the D-configuration, but have opposite chirality. The L- and D- configuration can also generally be referred to as R- or the S- configuration. Additional variations include β - and γ -amino acids, providing for 10 a different spatial arrangement of chemical groups.

[0085] In addition to the substitutions outlined above, synthetic amino acids providing similar side chain functionality can also be introduced into the peptide. For example, aromatic amino acids may be replaced with D- or L-naphthylalanine, D- or L-phenylglycine, D- or L-2-thienylalanine, D- or L- 15 1-, 2-, 3-, or 4-pyrenylalanine, D- or L-3-thienylalanine, D- or L-(2-pyridinyl)-alanine, D- or L-(3-pyridinyl)-alanine, D- or L-(2-pyrazinyl)-alanine, D- or L-(4-isopropyl)-phenylglycine, D-(trifluoromethyl)-phenylglycine, D-(trifluoromethyl)-phenylalanine, D-p-fluorophenylalanine, D- or L-p-biphenylalanine D- or L-p-methoxybiphenylalanine, D- or L-2-indole(alkyl)alanines, and D- or L- 20 alkylalanines wherein the alkyl group is selected from the group consisting of substituted or unsubstituted methyl, ethyl, propyl, hexyl, butyl, pentyl, isopropyl, iso-butyl, and iso-pentyl.

[0086] Non-carboxylate amino acids can be made to possess a negative charge, as provided by phosphono- or sulfated (e.g. $-\text{SO}_3\text{H}$) amino acids, which are to be considered as non-limiting examples. 25

[0087] Other substitutions may include unnatural alkylated amino acids, made by combining an alkyl group with any natural amino acid. Basic

natural amino acids such as lysine and arginine may be substituted with alkyl groups at the amine (NH₂) functionality. Yet other substitutions include nitrile derivatives (e.g., containing a CN-moiet in place of the CONH₂ functionality) of asparagine or glutamine, and sulfoxide derivative of methionine. In 5 addition, any amide linkage in the peptide may be replaced by a ketomethylene, hydroxyethyl, ethyl/reduced amide, thioamide or reversed amide moieties, (e.g. (-C=O)-CH₂), (-CHOH)-CH₂-, (CH₂-CH₂), (-C=S)-NH-, or (-NH-(-C=O) for (-C=O)-NH-)).

[0088] Covalent modifications of the peptides are thus included 10 within the scope of the present invention. Such modifications may be introduced into EP4 peptidic antagonists by reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent capable of reacting with selected side chains or terminal residues of the polypeptide. The following examples of chemical derivatives are provided by way of illustration 15 only, and are not meant to limit the scope of the present invention. Cysteinyl residues may be reacted with alpha-haloacetates (and corresponding amines), such as 2-chloroacetic acid or chloroacetamide, to provide carboxymethyl or carboxyamidomethyl derivatives. Histidyl residues may be derivatized by reaction with compounds such as diethylpyrocarbonate (e.g., 20 at pH 5.5-7.0) because this reagent is relatively specific for the histidyl side chain. p-Bromophenacyl bromide may also be used (e.g., where the reaction is preferably performed in 0.1M sodium cacodylate at pH 6.0). Lysinyl and amino terminal residues may be reacted with compounds such as succinic or other carboxylic acid anhydrides. Other suitable reagents for derivatizing 25 alpha-amino-containing residues include compounds such as imidoesters (e.g. methyl picolinimidate); pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

[0089] Arginyl residues may be modified by reaction with one or several conventional reagents, such as phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin, according to known method steps. The derivatization of arginine residues requires that the reaction be performed 5 under alkaline conditions, because of the high pKa of the guanidine functional group. Furthermore, these reagents may also react with the amine groups of lysine, as well as with the arginine epsilon-amino group.

[0090] The specific modification of tyrosinyl residues per se is well-known. Specific and non-limiting examples include the introduction of spectral 10 labels onto tyrosinyl residues by reaction with aromatic diazonium compounds or tetranitromethane. N-acetylimidazol and tetranitromethane may be used to form O-acetyl tyrosinyl species and 3-nitro derivatives, respectively.

[0091] Carboxyl side groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides ($R'-N=C=N-R'$) such as 15 1-cyclohexyl-3-(2-morpholinyl- (4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore aspartyl and glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions. Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues.

20 **[0092]** Other modifications of the peptides of the present invention may include hydroxylation of proline and lysine; phosphorylation of the hydroxyl group of seryl or threonyl residues; methylation of the alpha-amino group of lysine, arginine, and histidine; acetylation of the N-terminal amine; methylation of main chain amide residues (or substitution with N-methyl amino acids) and, in some instances, amidation of the C-terminal carboxyl groups, according to methods known in the art.

[0093] Covalent attachment of fatty acids (C₆-C₁₈) to the peptides of the present invention confers additional biological properties such as for example protease resistance, plasma protein binding, increased plasma half life, and intracellular penetration.

5 **[0094]** The above description of possible modifications of a lead peptide should not be considered as a limitation to the scope of the approaches, nor should it be considered as a limitation to the possible modifications that can be engineered using a lead peptide such as 213.15 as the template. Due to the complex nature of peptide folding, neither the
10 receptor-bound conformation of the peptide antagonist, nor the effects of the modified peptides on EP4 bioactivity can be predicted with absolute certainty. Hence, those skilled in the art will readily appreciate that the modified peptides should be tested in bioassays as described in the present invention or in those known in the art to the person of ordinary skill, in order to confirm
15 biological activity. Non-limiting examples of assays include receptor binding or modulation of ligand binding to the corresponding GPCR. Specific examples pertaining to GPCRs and more particularly to the EP4 receptor in terms of *in vitro*, *ex vivo* and *in vivo* assays are known to persons skilled in the art, and selected examples are depicted in the Figures and are described
20 below.

EP4 Receptor Bioassays

[0095] There are many published methods of assaying EP4 bioactivity, using either purified or crude preparations of EP4 (cell-free assays; see below) from tissues or cells in which EP4 is recombinantly expressed in
25 heterologous bacterial, fungal or mammalian expression systems.

[0096] Cell-free assays can be used to identify compounds which are capable of interacting with an EP4 protein, thereby modifying the activity

of the EP4 protein. Such a compound can, for example, modify the structure of an EP4 protein and thereby affect its activity. Cell-free assays can also be used to identify compounds which modulate the interaction between an EP4 protein and an EP4 binding partner. An EP4 binding partner is PGE2. In a 5 preferred embodiment, cell-free assays used for identifying such compounds consist essentially of a mixture containing a buffered solution, EP4 protein, EP4 binding partner and a test compound. A test compound can be for example, a peptide, a peptidomimetic, a small molecule, and a nucleic acid. For detection purposes, the binding partner can be labeled with a specific 10 marker such as a radionuclide, with a fluorescent compound or with an enzyme. The interaction of a test compound with an EP4 protein can then be detected by determining the level of the marker after an incubation step and a washing step. A statistically significant change (potentiation or inhibition) in the interaction of the EP4 and EP4 binding protein in the presence of the test 15 compound, relative to the interaction in the absence of the test compound, indicates a potential agonistic effect (mimetic or potentiator) or antagonistic effect (inhibitor) of EP4 bioactivity for the test compound. Radiolabeled samples are counted and quantified by scintillation spectrophotometry. Binding ligands can be conjugated to enzymes such as acetyl choline 20 esterase and bound EP4-binding partner can be quantified by enzyme assay.

[0097] Cell-free assays can also be used to identify compounds which interact with an EP4 protein and which modulate an activity of an EP4 protein. Accordingly, in one embodiment, an EP4 protein is contacted with a test compound, and the bioactivity of the EP4 protein is monitored. The 25 bioactivity of the EP4 protein in cell-free assays include, but is not limited to GTP binding, GTP hydrolysis, dissociation of G_α proteins, adenylate cyclase activation, phospholipase (A2, beta, gamma and D isoforms) activation, phospholipid hydrolysis and cAMP synthesis. The methods of measuring these changes in the bioactivity of a GPCR protein are well known to those 30 skilled in the art.

Cell-Based Assays of EP4 Bioactivity

[0098] EP4 bioactivity can also be measured using whole bacterial, fungal, amphibian or mammalian cells (see cell-based assays described below), in which the EP4 protein is recombinantly expressed as a native 5 protein or as a fusion protein, (e.g. EP4 conjugated to antibody epitope tags, green fluorescent protein, G α or β -arrestin). Fusion proteins have certain advantages over native proteins; fusion proteins can provide direct detection of EP4 polypeptides or EP4 bioactivity in cells, tissues and organisms. Epitope (FLAG, HA, polyHIS, c-myc, etc.)-tagged EP4 can be useful in 10 tracking the protein in cells and tissues by immunochemical staining methods, and may aid in the isolation of pure or substantially-pure proteins of EP4 through immunoaffinity chromatography. Green fluorescent protein (GFP) fusion to the EP4 protein can be used to locate and follow the movements of EP4, such as for example its aggregation or association with other cellular 15 proteins, internalization, trafficking, degradation in endocytotic vesicles, in living or fixed cells. EP4 fusions of GFP and luciferase can be used to study and monitor dimer and oligomer formation and association with other signaling molecules. EP4-G α protein fusions can be used to measure GTP binding and hydrolysis by the G protein in response to agonists or 20 antagonists, and these methods, known to persons skilled in the art, are used to screen and/or test small molecule compound libraries for agonist or antagonist activity. These examples illustrate, but are not intended to limit the potential fusion partners and their uses in basic and applied scientific studies.

[0099] Cell based assays can be used for example, to identify 25 compounds that modulate the bioactivity of the EP4 protein, and the expression of an EP4 gene or those genes that are induced or suppressed in response to increased or decreased bioactivity of the EP4 protein. Accordingly, in one embodiment, a cell capable of producing EP4 is incubated with a test compound in the presence or absence of a natural or synthetic

agonist/antagonist of EP4, and the bioactivity of EP4 is measured. The resultant alterations in the bioactivity of EP4 are compared to control EP4 producing cells, which have not been contacted with the test compound. These measurements are used to assess the potency, affinity and action of

5 the test compound towards modulating EP4 bioactivity.

Methods of Treatment

[0100] The present invention provides for both prophylactic and therapeutic methods of treating a patient diagnosed with reduced urine output and acute or chronic renal impairment. Administration of a prophylactic agent

10 can occur prior to the manifestation of symptoms characteristic of the EP4 aberrancy, such that the medical condition and its consequences are prevented or, alternatively, its progression delayed. In general, the prophylactic or therapeutic methods comprise administering a therapeutically effective amount of an EP4 antagonist to a subject in need thereof. As

15 described in the present invention, examples of suitable EP4 antagonists and derivatives thereof include, but are not limited to peptides, peptidomimetics and small molecule mimetics.

[0101] Data supporting the therapeutic use of the EP4 antagonists of the present invention, and derivatives thereof, for the treatment of human

20 renal insufficiency disorders characterized by reduced urine output, increased blood urea nitrogen (BUN) and creatinine levels, was obtained from animal models of nephropathy. Renal insufficiency in acute renal failure may arise due to ischemia, secondary to poor renal perfusion or due to nephrotoxic insults mediated by radiocontrast agents, antineoplastics, antibiotics,

25 immunosuppressive agents and heavy metals. Two rat models in which renal insufficiency has been produced by bilateral renal artery occlusion (ischemic nephropathy) or cisplatin injection (acute tubular necrosis), have been well characterized and shown to approximate the renal damage suffered by

human patients (see review by Lieberthal, W., Nigam, S.K. (2000); Am. J. Physiol. Renal. Physiol. 278(1):F1-F12). Both rat models were used to illustrate the utility of the EP4 antagonists of the present invention, and derivatives thereof, for improving renal damage as well as kidney function.

5 Several examples are provided in which the use of the EP4 antagonists of the present invention, as well as derivatives thereof, showed improved glomerular filtration, renal blood flow and urine output in rats, dogs and pigs. It is expected that the pharmacological efficacy of the EP4 antagonists of the present invention, as illustrated in diverse species (rats, dogs and pigs)

10 extends to human subjects as well, based on the similarities in receptor sequences and their tissue distribution.

Pharmaceutical preparations of EP4 antagonists

[0102] The toxicity and therapeutic efficacy of the EP4 antagonists of the present invention, such as the LD₅₀ (lethal dose to 50% of the population) and the ED₅₀ (the therapeutically effective dose in 50% of the population) can be determined by standard pharmaceutical procedures in experimental animals. The dose ratio between toxic and therapeutic effects is known as the therapeutic index, and which can be expressed as the LD₅₀/ED₅₀ ratio. Compounds that exhibit large therapeutic indexes are preferred. The dosage of such compounds lies preferably within a range of circulating concentrations that includes the ED₅₀ but with little or no toxicity.

15 The dosage may vary within this range, depending on the dosage form employed and the route of administration. A dose may be formulated in animal models in order to obtain a circulating plasma concentration range that includes the IC₅₀ (the concentration of the test compound that achieves a 50% inhibition of the symptoms) as determined in *in vitro* and *ex vivo* assays and in animal studies. Such information can then be used to more accurately determine useful doses in humans. Plasma levels of EP4 antagonists can be measured, for example, by high performance liquid chromatography coupled

with mass spectroscopy (HPLC-MS). The effective dose of an EP4 antagonist could be 0.01 micrograms to 100 mg/kg and is determined by the route of administration, pharmaceutical preparation and the mode of delivery.

[0103] The present invention is illustrated in further detail by the
5 following non-limiting examples.

EXAMPLE 1

Chemical synthesis of peptides

[0104] Several peptides, based on the structure of 213.15 (SEQ ID NO: 1), were synthesized using F-moc chemistry and the solid phase 10 Merrifield peptide method. The structures of these peptides are listed in Table 3 (SEQ ID NOS: 2-13). The purity of the trifluoroacetate salts of these peptides was assessed by HPLC and mass spectroscopy. The general synthesis methods will be better understood by referring to the following treatises: "Solid phase peptide synthesis", Stewart & Young, W. H. Freeman 15 Co. San Francisco, 1969; "The proteins", Erikson and Merrifield, Vol. 2. (ed. Neurath & Hill), Academic Press, New York. 1976. The solubility of the peptides in water is also listed in Table 3.

EXAMPLE 2

Effect of 213.15 derivatives on glomerular filtration and urine output 20 in a rat model of ischemic nephropathy

[0105] Bilateral clamping of the renal arteries for 30-60 minutes results in the reperfusion of the kidneys and associated sequelae such as a dramatic decrease in glomerular filtration rate, urine output and tubular cell death. This model reproduces some important consequences of oligouric 25 renal failure in humans. The efficacy of various 213.15 derivatives in reversing the renal damage was measured.

-30-

Ischemic nephropathy model

[0106] Sprague-Dawley rats (250-300 g) were anesthetized and the jugular vein was canulated for infusion with the peptide or with saline. In addition, the carotid artery was canulated to measure the arterial blood pressure with a pressure transducer (Gould) and to collect blood samples. The urinary bladder was canulated to collect urine. After catheterization, an infusion (1.6 ml/hr) of a mixture of [³H] inulin (8 µCi/hr), [¹⁴C] aminohippuric acid (0.8 µCi/hr) and anesthetics (ketamine and xylazine; 9:1 w:w; 0.095 ml/ml) was started. The animals were allowed to stabilize for a further 40 minutes. Two urine samples were collected over 10 minute periods, (from 40 to 50 minutes, and from 50 to 60 minutes) to assess the stability of the basal GFR. Blood samples were collected at 45 and 55 minutes respectively. The left and right renal arteries were then clamped for a period of 60 minutes to induce an acute renal ischemia. After the ischemic period, the animals were treated with peptides, 213.19-213.30, (1 mg/kg iv bolus) or with saline via the jugular vein. Blood and urine samples were then collected every 20 minutes for an additional period of 2 hours. Glomerular filtration rates (GFR) and urine flow rates, (measured by the [³H] inulin method) as well as renal plasma flow (measured by the [¹⁴C] aminohippuric acid method), were determined at different times and averaged for a 60 minute (20-80 minutes following the drug administration) period.

-31-

[0107]

Table 3: Synthesized peptide library, based on the structure of 213.15

Seq ID No.	Peptide Number	Sequence (N to C) [§]	Solubility (mg/ml)*
1	213.15	(bip)tseyeal	0.2
2	213.19	(bip)tseyealK	2.8
3	213.20	(bip)tseyeglK	1.15
4	213.21	(bip)tseyealKK	24.5
5	213.22	(bip)tseyeglKK	24.5
6	213.23	(bip)tseyeslK	13.0
7	213.24	(bip)tseyeslKK	23.5
8	213.25	(bip)tseyeaK	6.0
9	213.26	(bip)tseyesK	8.0
10	213.27	(Bip)tseyealKK	23.0
11	213.28	(bip)tseyeaLKK	20.0
12	213.29	(Bip)tseyeaLKK	15.6
13	213.30	(bip)tseyealGKK	16.0

[§] Capital letters indicate L-amino acids; small letters indicate D-amino acids; bip: D-(4,4) biphenyl alanine; Bip: L-(4,4) biphenyl alanine.

5 *Solubility is determined in water.

[0108]

The results on the urine flow rate (Figure 1A) and on GFR (Figure 1B) are expressed as average urine flow rate and average GFR over a 60 minute period starting 20 minutes after the administration of the drugs. The order of efficacy for urine output was determined to be: 213.15 > 213.19
10 ≥ 213.21; other peptides were of similar efficacy to 213.15. Similarly, 213.19 and 213.21 also showed an increase in GFR. An improvement in GFR was not observed for the other peptides. Peptides 213.19 and 213.21 were consistently superior to the other peptides in causing improvements in GFR, urine flow rate and renal plasma flow.

15 [0109]

Based on the structure of 213.21, four more analogues, 213.27-213.30, were synthesized and tested in the rat model of renal artery occlusion. The results of GFR (averaged over 60 minutes and starting 20

-32-

minutes after the injection of the drug) are shown in Figure 1C. For comparison, 213.15 and 213.21 are included in the figure. Both 213.28 and 213.29 increased GFR 4 and 5 fold, comparatively to 213.15, over the course of a 40 minute period following the unclamping of the renal artery. Of the 5 compounds tested, 213.28 and 213.29, which are also more soluble (Table 3), are found to be more efficacious than the parent compound, 213.15.

EXAMPLE 3

Dose response of 213.29 on kidney function in normal rat, dog and piglet

10 [0110] The dose response of 213.29 (1, 2, 3, 4, 5, 10 mg/kg bolus iv) was tested in anesthetized female Beagle dogs. Following an acclimation of at least one week, and overnight fasting, each animal was anesthetized with an iv injection of Thiopental (5 mg/Kg); the anesthesia was continued under isoflurane. The animal was kept warm and the body temperature 15 monitored every 15 minutes. A carotid catheter for monitoring the blood pressure and a urethral catheter for collecting urine were installed. A constant iv infusion of saline (10 mL/kg/h), containing a total dose of 0.05 mCi of [³H] inulin and 0.005 mCi of [¹⁴C] para-aminohyppuric acid (PAH), sufficient for 5 hours of infusion, was initiated. A urine sample was collected every 10 20 minutes. In the middle of each 10-minute period, a blood sample was collected. After 60 minutes of equilibration of the radiolabels, incremental doses of 213.29 were injected intravenously via the cephalic vein.

[0111] The radioactivity in the blood and urine samples (n=30/dog) was determined by scintillation spectrometry. The results of the study are 25 shown in Figure 2A. A dramatic and maximal increase in GFR as well as urine flow rate was observed at 4 mg/kg of 213.29 in normal dogs. Figure 2B additionally shows the results of similar studies that were conducted in rats and piglets. The doses at which maximal responses in GFR, urine flow and

-33-

renal plasma flow were observed, are indicated in the inset of Figure 2B (n = number of animals). The results show that 213.29 causes increased renal perfusion, elevated GFR, and increased urine output in a species-independent manner. These results suggest that 213.29 would be effective

5 in increasing renal perfusion, GFR and urine flow in humans.

EXAMPLE 4

Effect of 213.29 on PGE2-induced dilation of porcine lower saphenous venous rings

Animals

10 **[0112]** Yorkshire piglets (2-4 days old) were used in this study, according to a protocol approved by the Animal Care Committee of the Research Center of the St.-Justine Hospital. Briefly, animals were anesthetized with halothane (1.5%) and the lower external saphenous veins removed and placed in cold Krebs buffer (pH 7.4) having the following
15 composition (mM): NaCl 120, KCl 4.5, CaCl₂ 2.5, MgSO₄ 1.0, NaHCO₃ 27, KH₂PO₄ 1.0, glucose 10, to which 1.5 U/ml heparin was added.

Organ bath assay

20 **[0113]** The saphenous veins were cleaned of extraneous tissue and cut into 4 mm rings which were placed in individual jacketed organ baths (15 ml; Radnoti Glass, Monrovia, CA) containing Krebs buffer and maintained at 37°C. The solution was bubbled with an O₂ / CO₂ mixture (95/5). In each experiment, 8 rings were used (4 from each saphenous vein) and were equilibrated for 60 minutes under 2.0 gr. passive tension with frequent washing and tension adjustment. The tension was measured by force-displacement transducers and was recorded on a computerized data acquisition system using the Work Bench software (both from Kent Scientific, Litchfield, CT).

Experimental protocol

[0114] The vasodilatory response of the lower external saphenous veins to PGE2 appears to result from the stimulation of EP2 (30%) and EP4 (70%). The tissues were initially challenged with U46619 (2×10^{-7} M) 5 (thromboxane A2 mimic) which induced a 1.5 to 2.0 gr. increase in tension. The rings which did not respond were discarded. When the response to U46619 reached a steady state, agents were added. When no response to the agents were observed, a period of 30 minutes was allowed to insure proper distribution of the agents in the tissue. Dose-response curves to PGE2 10 (10^{-10} - 10^{-6} M) were then obtained in the presence or absence of each of the tested drugs.

[0115] The results, which are an average of 2-8 experiments, are shown in Figure 3. The results are expressed as percent reversal of dilation produced by 1 μ M PGE2 in porcine lower saphenous venous rings 15 precontacted with 1 μ M U46619 (thromboxane A2 mimetic) in the presence of 1 μ M of peptide. 213.29 reversed approximately 50% of the dilatory effect of PGE2 in this tissue.

EXAMPLE 5Stability of 213.29 in human serum and the biological activity of the metabolites

[0116] The 213.29 peptide contains L-amino acids which could be susceptible to the action of serum proteases. In order to characterize the degradation products of 213.29, aliquots (100 μ g) were incubated in human serum (0.5 ml) for varying periods of time at 37°C. The reaction was 25 quenched with trifluoroacetic acid (0.24 ml; 1M), incubated on ice for 10 minutes following a further addition of TFA (0.25 ml; 0.05%), and centrifuged to precipitate the flocculates. The supernatants were purified by solid phase extraction on SepPak C₁₈ cartridges. The peptide was eluted with 80%

-35-

acetonitrile in 0.05% TFA and the eluates lyophilized. The peptide was then redissolved in acetic acid (400 μ l of 0.1N) and subjected to separation by reverse phase HPLC on C₁₈ columns. The peak containing fractions were collected and the mass of the peptide fragments determined by MALDI-TOF.

5 [0117] Figure 4A shows the degradation of 213.29 over time, and the appearance of one of the metabolic products lacking one carboxyterminal lysine (213.291) (Figure 4B). The cleavage was rapid with a half life of < 2 minutes. The second metabolite, 213.292 (Figure 4B) was not observed in the present experiment, and is slow to appear in the degradation reaction.

10 [0118] In order to test whether the metabolites also possessed biological activity, peptides 213.29, 213.291 and 213.292 were incubated with HEK293 cells recombinantly expressing human EP4 receptor, in the presence of 100 nM PGE2. cAMP levels were determined by radioimmunoassay and the results are illustrated in Figure 4B. The peptides by themselves did not 15 elicit stimulation of the receptor, but inhibited PGE2-stimulated cAMP synthesis by 20-30%.

Example 6

Selectivity of 213.29 antagonism to prostanoid receptor EP4

[0119] In order to demonstrate that 213.29 does not affect the 20 biological responses of other prostanoid receptors, selective ligands (butaprost-EP2; 17-phenyl PGE2-EP1; PGF2a-FP; U46619-TP; M&B28767-EP3) of prostanoid receptors were used in an *ex vivo* assay of vascular constriction in porcine retinas which was previously described and validated (Li, D.Y., Abran, D., Peri, K.G., Varma, D.R., Chemtob, S. (1996); J. 25 Pharmacol. Exp. Ther. 278(1):370-7). Since prostanoid receptor densities in newborn vasculature are minimal, due to down regulation by high levels of circulating prostaglandins in the perinatal period, the newborn pigs were

-36-

treated with a prostaglandin synthase blocker, ibuprofen (30 mg/Kg of bodyweight/ 8 h for 24 h) to increase the density of the receptors as well as their vasomotor effects.

Method

5 [0120] To prepare eyecups, a circular incision was made 3-4 mm posterior to *ora serrata*, to remove the interior segment and vitreous body with minimal handling of the retina. The remaining eyecup was fixed with pins to a wax base in a 20 ml tissue bath containing 20 ml of Kreb's buffer (pH 7.35-7.45) and equilibrated with 21% oxygen and 5% carbon dioxide at 37 °C. The 10 preparations were allowed to stabilize for 30 minutes.

[0121] 213.29 (10 μ M) was added 5 minutes prior to the addition of 0.1 μ M of ligands to the bath fluid. The outer vessel diameter was recorded with a video camera mounted on a dissecting microscope (Zeiss M 400) and the responses were quantified by a digital image analyzer (Sigma Scan 15 Software, Jandel Scientific, Corte Madera, CA). The vascular diameter was recorded prior to, and 5 minutes following the topical application of the agonist. Each measurement was repeated three times and showed <1% variability. As shown in Figure 5, 213.29 did not affect the contractile or dilatory responses of receptor selective agonists of prostanoid receptors. 20 Thus 213.29 appeared to be highly selective to prostanoid receptor EP4.

Example 7

Comparision of 213.29 to Fenoldopam in the improvement of kidney function in the rat model of ischemic nephropathy

[0122] Fenoldopam is a dopamine receptor subtype 1 agonist, and 25 has been shown to increase urine output in limited clinical and animal studies (Singer, I. and Epstein, M. 1998; Am. J. Kidney Dis. 31(5):743-55). The efficacy of fenoldopam and 213.29, in improving kidney function in the rat

model of ischemic nephropathy (described in Example 2) was compared. 213.29 was given as an iv bolus of 1 mg/kg whereas fenoldopam was given as an iv bolus of 0.6 μ g/kg followed by 0.6 μ g/kg/h for the duration of the experiment. As shown in Figure 6A, both fenoldopam and 213.29 increased 5 urine output to a similar extent, but only 213.29 was able to improve renal perfusion and GFR significantly. Blood urea nitrogen (BUN) and serum creatinine levels were measured after 72 hours and as shown in Figure 6B, both fenoldopam and 213.29 were equally efficacious in reducing BUN and creatinine levels.

10

Example 8

Protective effect of 213.29 administration in rats that suffered renal failure (in the rat model of ischemic nephropathy)

[0123] The kidneys from the animals used in Example 7 were collected 24 hours or 72 hours after the unclamping of the renal arteries and 15 drug dosing. An histological examination of sections was performed.

[0124] As shown in Figure 7, the number of glomeruli showing periglomerular extravasation was significantly reduced as a result of the treatment with 213.29. Similarly, the number of collecting ducts containing cell debris was significantly reduced by 213.29. These results point to the use of 20 213.29 in improving kidney function as well as in protection from ultrastructural damage, ensuing from ischemic insults.

Example 9

Effect of qd vs bid administration of 213.29 in rats that suffered renal failure due to bilateral renal artery clamping

25 [0125] In order to determine whether increasing the frequency of administration of 213.29 has a beneficial effect on kidney function in the rat RAO-model, 1 mg/kg of 213.29 iv was injected once (qd) or twice (bid) a day

and the kidney function compared on day 1 and day 5. The results obtained are shown in Figure 8. By day 4, the glomerular filtration rate (GFR), the renal plasma flow (RPF) and the urine flow rate (UV) improved to the same extent with a once a day (qd) or a twice a day (bid) administration. However, these 5 parameters of kidney function showed a dramatic improvement on day 1 when the drug is administered twice a day rather than once a day. Thus frequent dosing of 213.29 in conjunction with the pharmacokinetics of the drug may improve the kidney function in cases of renal insufficiency.

Example 10

10 **Efficacy of 213.29 administration in rats that suffered acute tubular necrosis and renal failure due to cisplatin.**

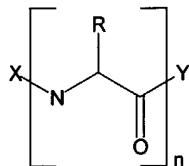
[0126] Acute tubular necrosis and renal failure are a direct consequence of the use of radiocontrast agents, neoplastic compounds and antibiotics. The rat cisplatin-induced acute tubular necrosis model was shown 15 to reproduce many features of the human disorder [Lieberthal, W., Nigam, S.K. (2000); Am. J Physiol. Renal. Physiol. 278(1):F1-F12].

Cisplatin-induced acute tubular necrosis rat model

[0127] Acute tubular necrosis was induced by injecting 17.5 mg/kg of cisplatin to Sprague-Dawley male rats on day 1. By day 5, the parameters 20 of kidney function, namely GFR, RPF and UV, were dramatically reduced to negligible quantities (Sal [saline] column in Figure 9A). This was followed by a 50% mortality in cisplatin-treated rats. Blood urea nitrogen (BUN) and creatinine levels increased dramatically by day 5 (data not shown).

[0128] In order to determine whether 213.29 could still be useful 25 in these conditions, kidney function tests were conducted after injecting the rats with 1 mg/kg iv on day 5. As shown in Figure 9A, GFR, RPF and UV improved dramatically compared to the saline treated rats. The parameters

-39-


of kidney function reached levels seen in normal healthy rats when the compound was given at 5 mg/kg three times a day (tid) starting on day 2 and continued till day 5 (Figure 9A). Both blood urea nitrogen and creatinine levels were reduced as expected.

5 **[0129]** The obtained results in two rat models of renal insufficiency (very well validated and accepted in the literature [Lieberthal, W., Nigam, S.K. (2000); Am. J. Physiol. Renal. Physiol. 278(1):F1-F12] as models that reproduce important features of human acute renal failure due to ischemia or nephrotoxins), show that 213.29 and its derivatives improve kidney function
10 and provide protection from exacerbation of renal damage. These compounds can therefore be used as therapeutic agents in human cases of acute renal failure and chronic renal insufficiency.

[0130] Although the present has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing
15 from the spirit and nature of the subject invention as defined in the appended claims.

CLAIMS

1. A peptide antagonist of prostaglandin E2 receptor EP4 having the following general formula:

wherein,

5 X is selected from the group consisting of a hydrogen atom, a sequence of 1 to 3 amino acids, and protecting groups such as a carbamate group and an acyl group;

Y is selected from the group consisting of a hydrogen atom, 1 to 5 L-lysine residues, phosphate, sulfate and 1 to 5 ethylene glycol residues;

10 n is an integer equal to 9;

R is selected from the group consisting of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, and R⁹;

wherein:

15 R¹ is selected from the group consisting of L-(4,4) biphenyl and D-(4,4) biphenyl;

R² is selected from the group consisting of CH₃, OH and CH₂OH;

R³ is selected from the group consisting of CH₃, OH and CH₂OH;

R⁴ is selected from the group consisting of phenyl, tyrosyl, benzoyl and related aromatic groups;

20 R⁵ is selected from the group consisting of CH₂COOH, CH₂CH₂COOH and related carboxylic acid groups;

R⁶ is selected from the group consisting of is CH₃, CH₂CH₃ and related short chain aliphatic groups ranging from 1 to 6 carbon atoms;

R⁷ is selected from the group consisting of is CH₃, CH₂CH₃, CH₂CH₂CH₃ and related short chain aliphatic groups ranging from 1 to 6 carbon atoms;

R^8 is lysine; and

R^9 is lysine.

2. A peptide antagonist as defined in claim 1, wherein the acyl group is composed of a hydrophobic moiety selected from the group consisting of cyclohexyl, phenyl, benzyl, and short chain linear and branched chain alkyl groups ranging from 1 to 8 carbon atoms.
5
3. A peptide antagonist as defined in claim 2, wherein the acyl group is an acetyl group.
4. A peptide antagonist as defined in claim 2, wherein 10 the acyl group is a benzoyl group.
5. A peptide antagonist as defined in claims 1 to 4, capable of inhibiting the bioactivity of prostaglandin E2 receptor EP4.
6. A peptidomimetic of the peptide antagonist as defined in claim 5, capable of inhibiting the bioactivity of prostaglandin E2 receptor 15 EP4.
7. A pharmaceutical composition comprising from about 0.1 to about 100 mg of the peptide antagonist as defined in claim 5.
8. A pharmaceutical composition comprising from about 0.1 to about 100 mg of the peptidomimetic as defined in claim 6.
- 20 9. Use of the pharmaceutical composition as defined in claims 7 and 8 for treating a patient diagnosed with end stage renal disease.
10. Use of the pharmaceutical composition as defined in claims 7 and 8 for treating a patient diagnosed with acute renal failure.
11. Use of the pharmaceutical composition as defined in 25 claims 7 and 8 for treating a patient diagnosed with renal insufficiency.

-42-

12. Use of the pharmaceutical composition as defined in any one of claims 9 to 11 for improving glomerular filtration.

13. Use of the pharmaceutical composition as defined in claim 12 for improving urine output.

5 14. Use of the pharmaceutical composition as defined in claims 7 and 8 for treating a patient diagnosed with patent ductus arteriosus.

15. Use of the pharmaceutical composition as defined in claim 14 for closing ductus arteriosus.

16. A peptide antagonist as defined in claim 2, selected
10 from the group consisting of 213.15 (bip)tseyeal (SEQ ID NO: 1), 213.19
(bip)tseyealK (SEQ ID NO: 2), 213.20 (bip)tseyeglK (SEQ ID NO: 3),
213.21(bip)tseyealKK (SEQ ID NO:4), 213.22 (bip)tseyeglKK (SEQ ID NO:5),
213.23 (bip)tseyeslK (SeEQ ID NO:6), 213.24 (bip)tseyeslKK (SEQ ID NO: 7),
213.25 (bip)tseyeaK (SEQ ID NO: 8), 213.26 (bip)tseyesK (SEQ ID NO: 9), 213.27
15 (Bip)tseyealKK (SEQ ID NO:10), 213.28 (bip)tseyeaLKK (SEQ ID NO: 11), 213.29
(Bip)tseyeaLKK (SEQ ID NO: 12) and 213.30 (bip)tseyealGKK (SEQ ID NO: 13),
wherein Bip is L-(4,4) biphenylalanine and bip is D-(4,4) biphenylalanine, and
wherein D-amino acids are identified by small letters and L-amino acids are
identified by capital letters.

20 17. A peptide antagonist as defined in claim 16, capable
of inhibiting the bioactivity of prostaglandin E2 receptor EP4.

18. A peptidomimetic of the peptide antagonist of claim
17, capable of inhibiting the bioactivity of prostaglandin E2 receptor EP4.

25 19. A pharmaceutical composition comprising from about
0.1 to about 100 mg of the peptide antagonist of claim 17.

20. A pharmaceutical composition comprising from about
0.1 to about 100 mg of the peptidomimetic of claim 18.

21. Use of the pharmaceutical composition as defined in claims 19 and 20 for treating a patient diagnosed with end stage renal disease.

22. Use of the pharmaceutical composition as defined in claims 19 and 20 for treating a patient diagnosed with acute renal failure.

5 23. Use of the pharmaceutical composition as defined in claims 19 and 20 for treating a patient diagnosed with renal insufficiency.

24. Use of the pharmaceutical composition as defined in any one of claims 21 to 23 for improving glomerular filtration.

10 25. Use of the pharmaceutical composition as defined in claim 24 for improving urine output.

26. Use of the pharmaceutical composition as defined in claims 19 and 20 for treating a patient diagnosed with patent ductus arteriosus.

27. Use of the pharmaceutical composition as defined in claim 26 for closing ductus arteriosus.

15 28. A method of using the peptide as defined in claim 5 in an assay comprising the steps of:

a) culturing cells or tissues expressing prostaglandin E2 receptor EP4 naturally or recombinantly;

b) treating said cultured cells or tissues with a quantity of compound of claim 1 in the presence or absence of a known concentration of an agonist of said receptor;

c) measuring one or more of aspects of the bioactivity of said receptor, wherein said aspects are selected from the group consisting of GTP binding and hydrolysis by G_α proteins, cyclic adenosine monophosphate synthesis, alterations in cell calcium, cell growth and/or differentiation, altered gene expression and smooth muscle contraction or dilation.

29. A method of using the peptidomimetic as defined in claim 6 in an assay comprising the steps of:

-44-

- a) culturing cells or tissues expressing prostaglandin E2 receptor EP4 naturally or recombinantly;
- b) treating said cultured cells or tissues with a quantity of compound of claim 6 in the presence or absence of a known concentration of an agonist of said receptor;
- c) measuring one or more of aspects of the bioactivity of said receptor, wherein said aspects are selected from the group consisting of GTP binding and hydrolysis by G_{α} proteins, cyclic adenosine monophosphate synthesis, alterations in cell calcium, cell growth and/or differentiation, altered gene expression and smooth muscle contraction or dilation.

10 30. A kit for assaying bioactivity of prostaglandin E2 receptor EP4 comprising a peptide as defined in claims 2 or 16 wherein the peptide is labeled with a marker selected from the group consisting of a radioactive isotope, biotin, or an enzyme.

15 31. A kit for assaying bioactivity of prostaglandin E2 receptor EP4 comprising a peptidomimetic as defined in claims 6 and 17 wherein the peptide is labeled with a marker selected from the group consisting of a radioactive isotope, biotin, or an enzyme.

20 32. Use of the peptide antagonist of claim 1 for the manufacture of a medicament for the treatment of end-stage renal disease, said medicament comprising a therapeutically effective amount of said peptide of claim 1.

25 33. Use of the peptide antagonist of claim 1 for the manufacture of a medicament for the treatment of acute renal failure, said medicament comprising a therapeutically effective amount of said peptide of claim 1.

30 34. Use of the peptide antagonist of claim 1 for the manufacture of a medicament for the treatment of renal insufficiency, said medicament comprising a therapeutically effective amount of said peptide of claim 1.

-45-

35. Use of the peptide antagonist of claim 1 for the manufacture of a medicament for the treatment patent ductus arteriosus, said medicament comprising a therapeutically effective amount of said peptide of claim 1.

5

1/10

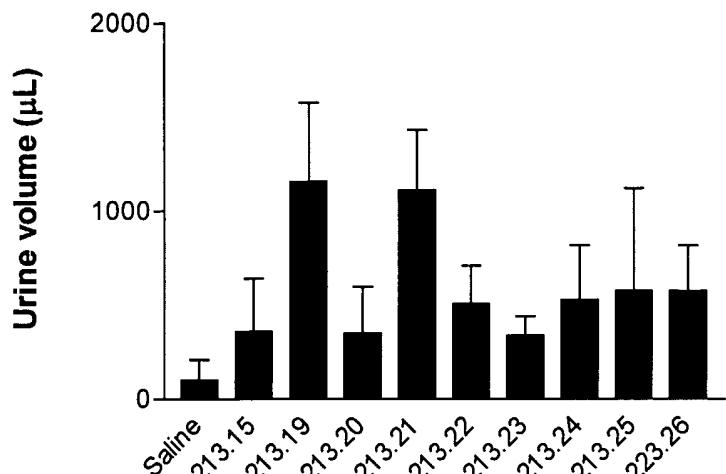


Figure 1A

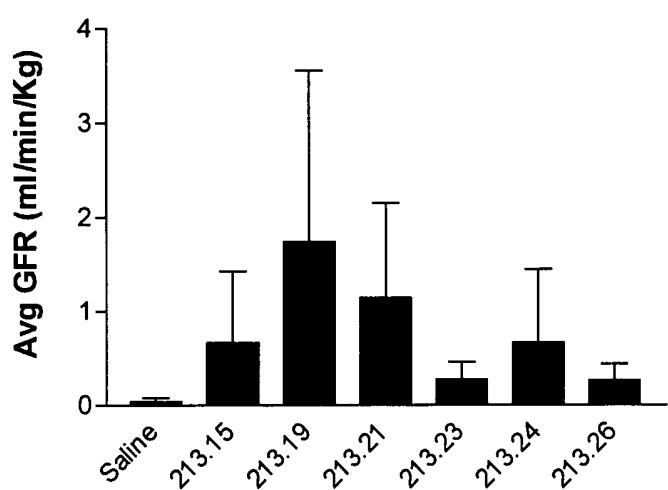


Figure 1B

2/10

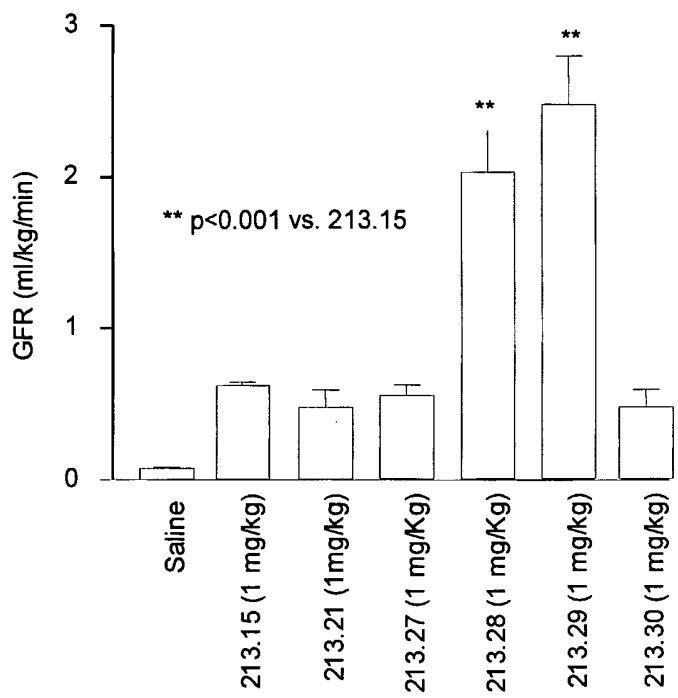


Figure 1C

3/10

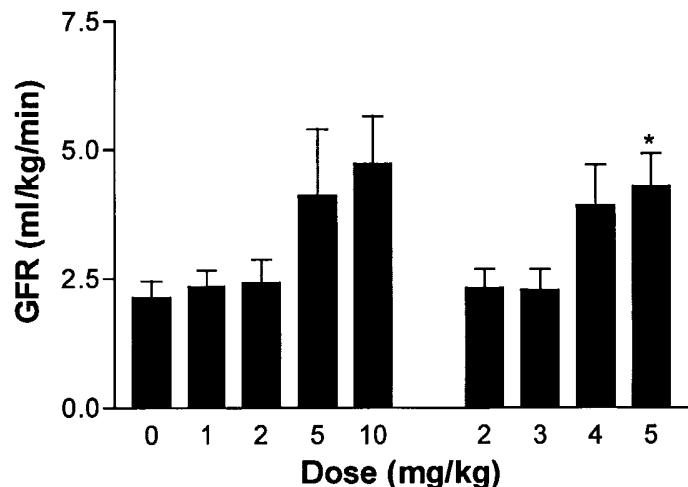


Figure 2A

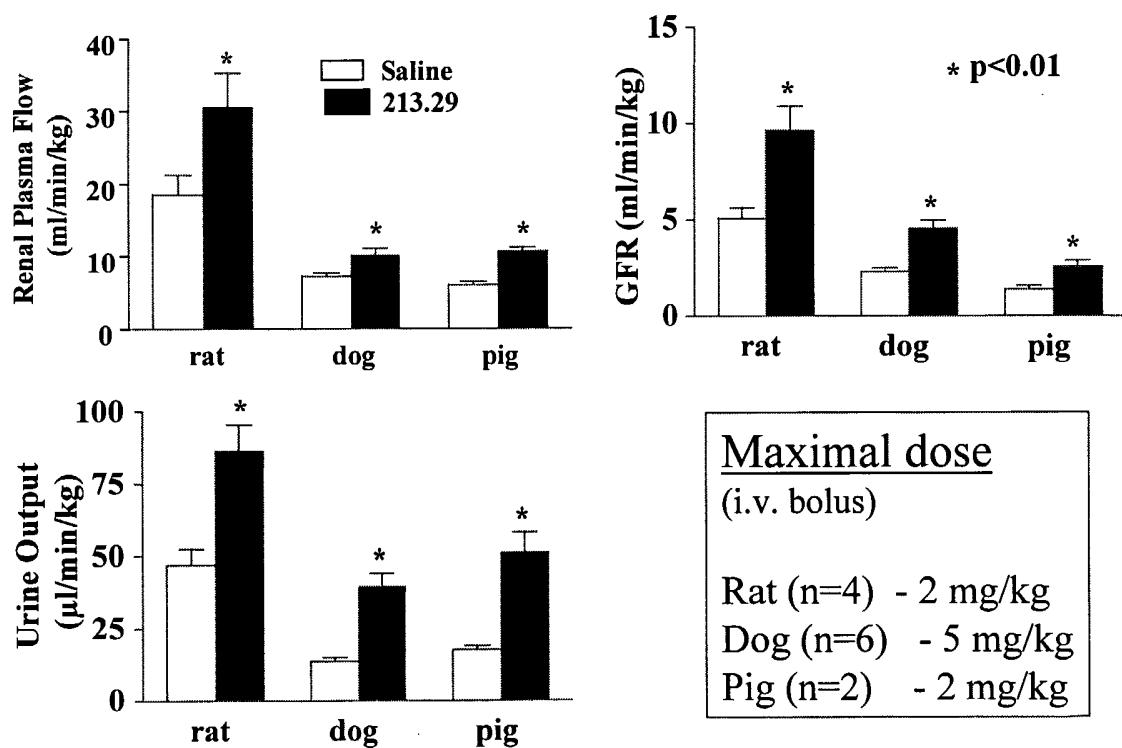


Figure 2B

4/10

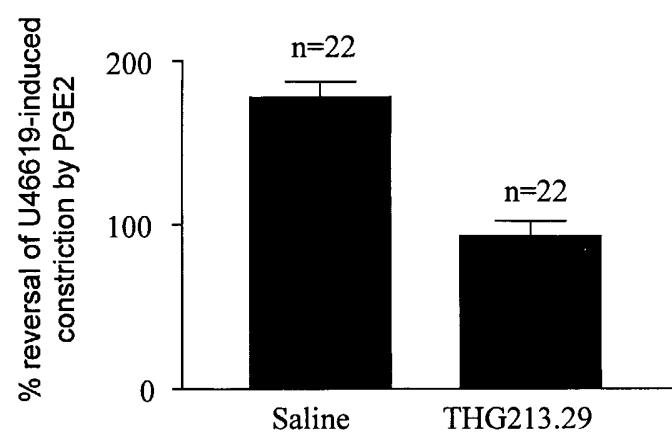


Figure 3

5/10

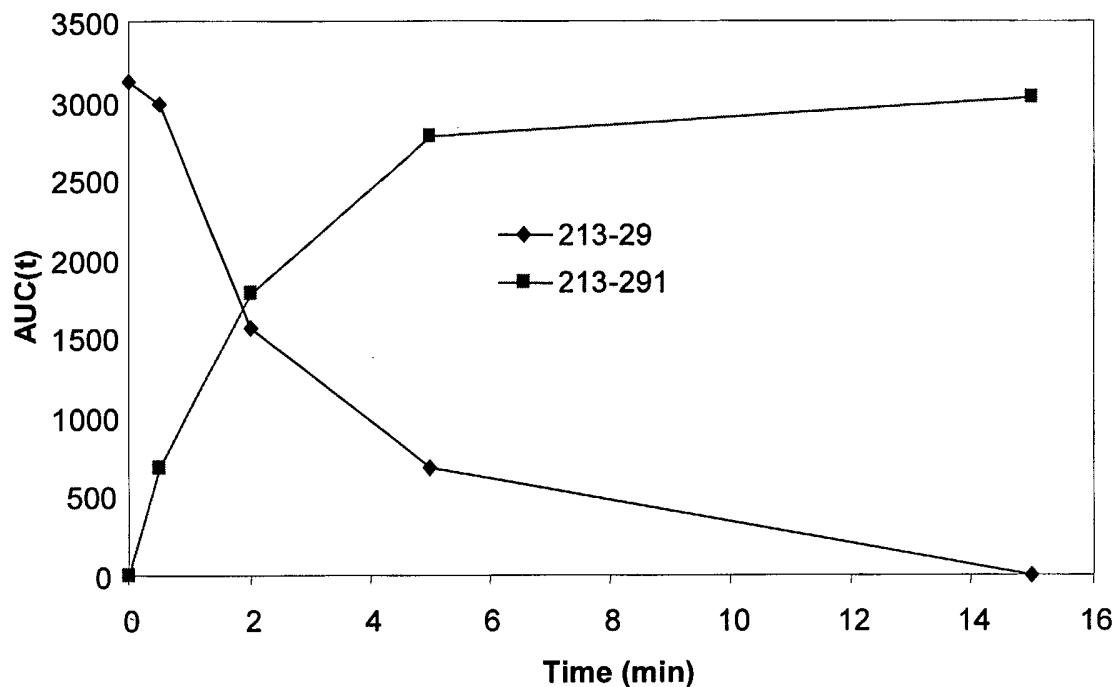


Figure 4A

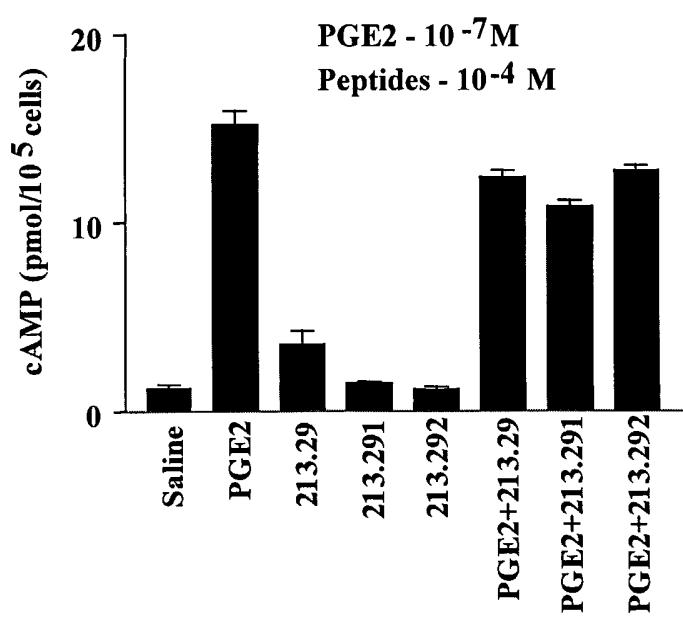


Figure 4B

6/10

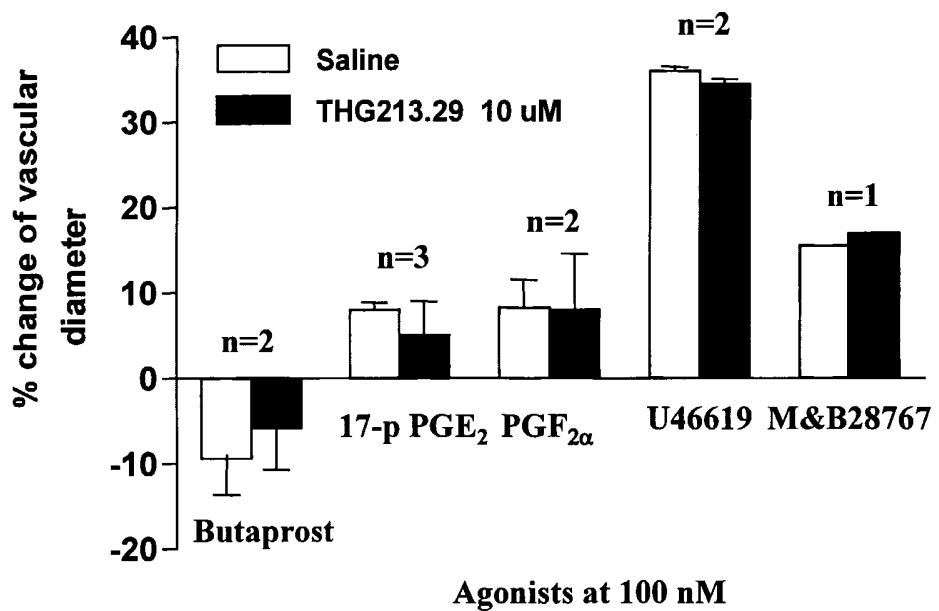


Figure 5

7/10

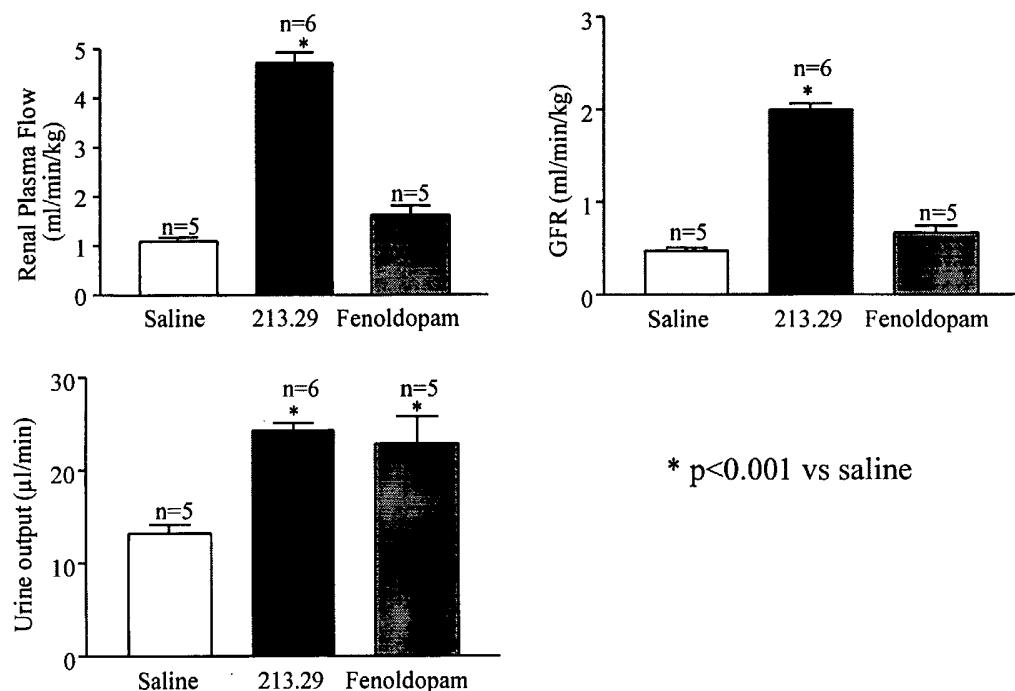
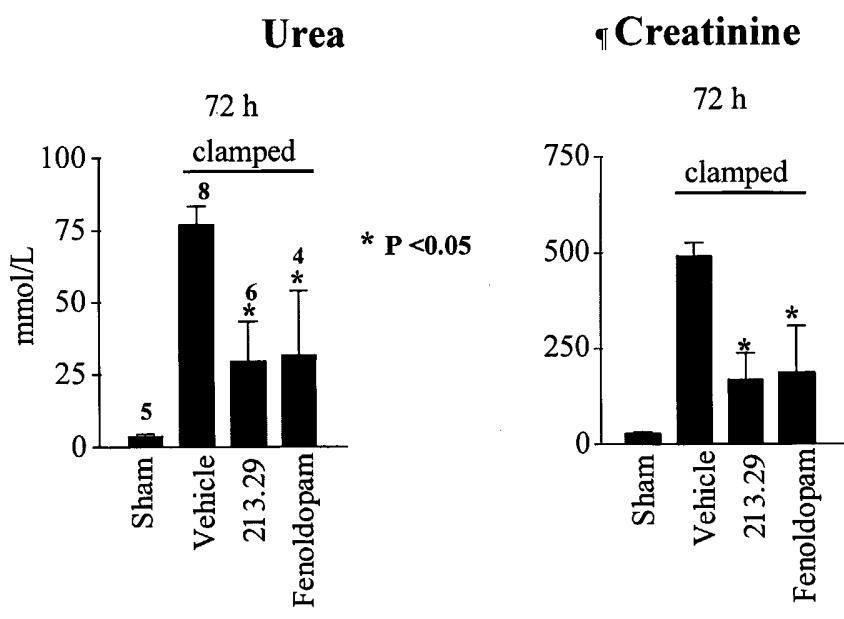



Figure 6A

n is same as in Urea panel

Figure 6B

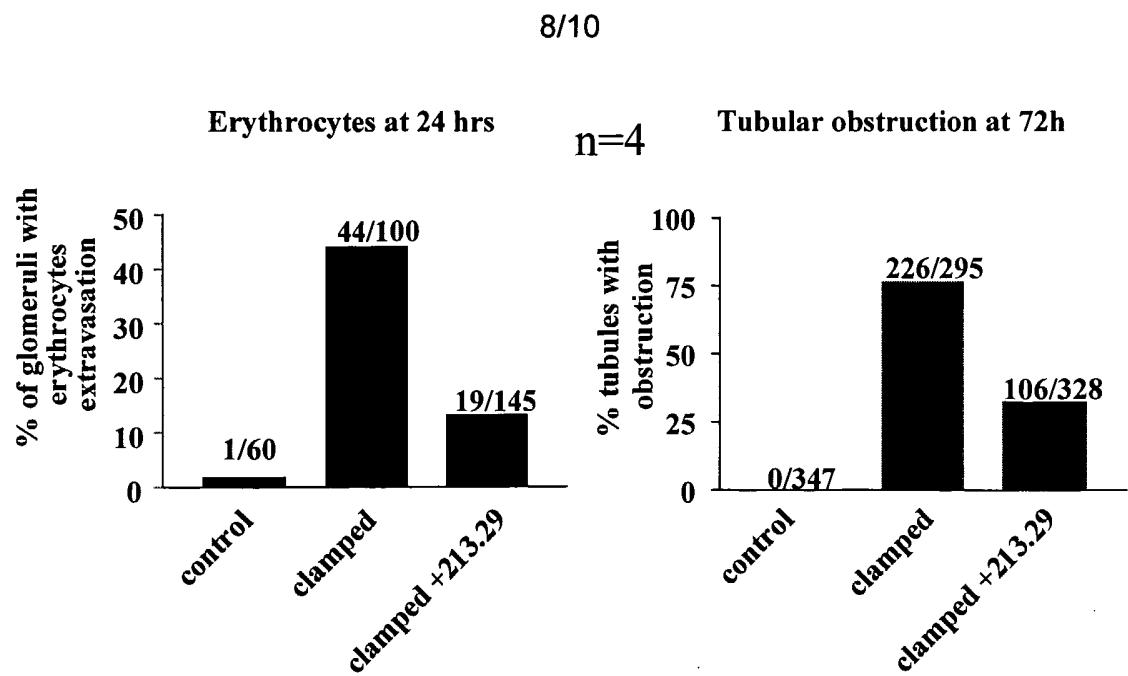


Figure 7

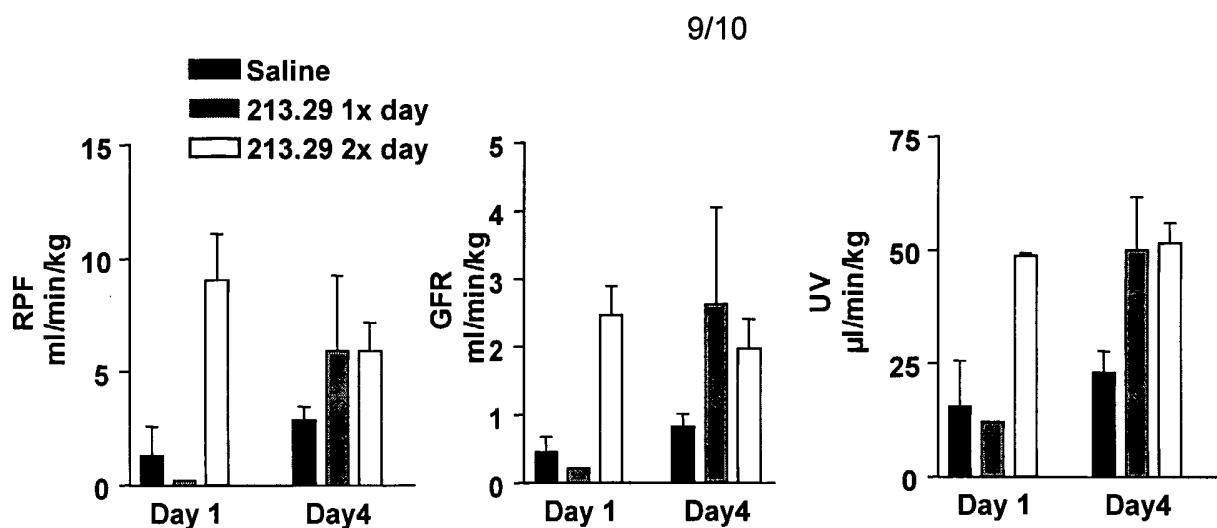


Figure 8

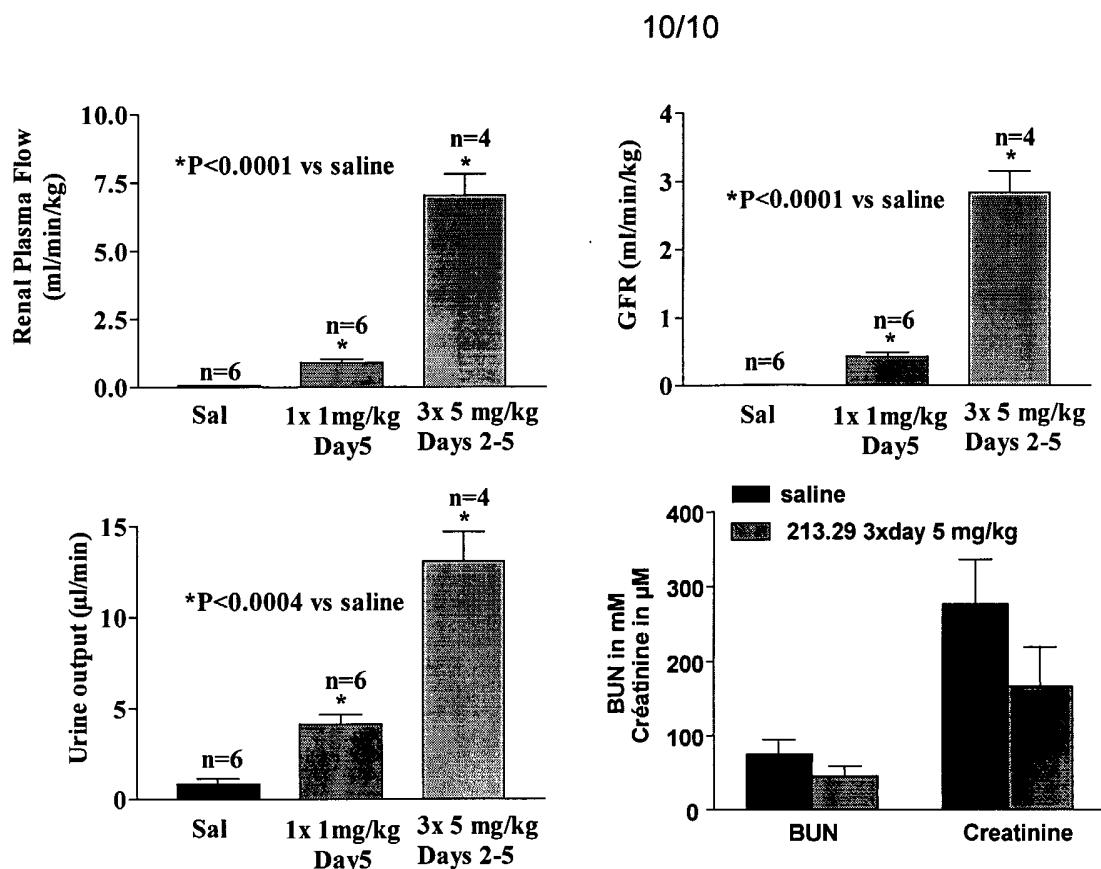


Figure 9A

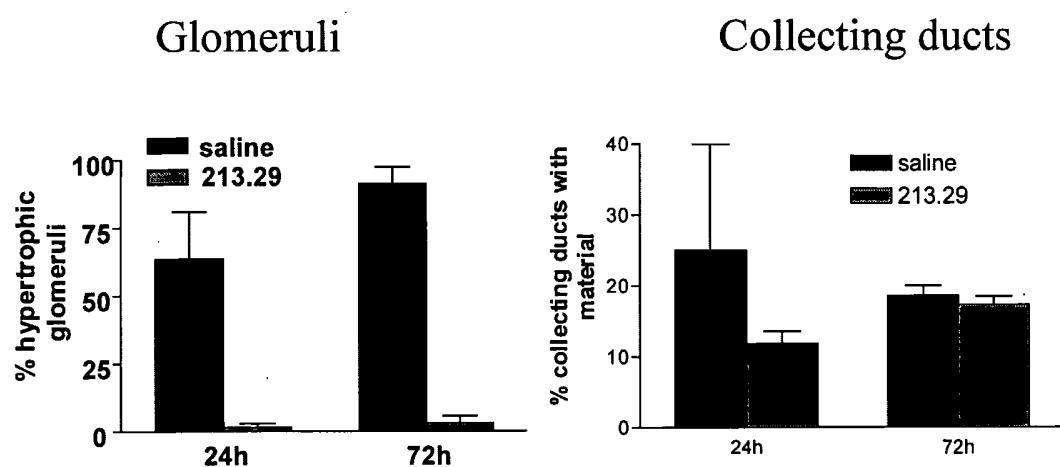


Figure 9B

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 03/00771A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07K7/06 A61K38/08 G01N33/53 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07K A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EMBASE, BIOSIS, EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01 42281 A (CHEMTOB SYLVAIN ;PERI KRISHNA G (CA); HOPITAL SAINTE JUSTINE (CA)) 14 June 2001 (2001-06-14) the entire document, particularly page 4 – page 7, SEQ ID NOS: 1-9 and the claims ----	1-35
A	TOMITA M ET AL.: "Effects of Selective Prostaglandin EP4 Receptor Antagonist on Ocleoclast Formation and Bone Resorption In Vitro" BONE, vol. 30, no. 1, January 2002 (2002-01), pages 159-163, XP002259093 ---- -/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search 24 October 2003	Date of mailing of the international search report 10/11/2003
--	--

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Schmidt, Harald
--	---

INTERNATIONAL SEARCH REPORT

International Application No
PCT/CA 03/00771

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 01 37877 A (MARUYAMA TAKAYUKI ;ONO PHARMACEUTICAL CO (JP); TANAKA MASAHARU (JP) 31 May 2001 (2001-05-31) & EP 1 232 757 A (ONO PHARMACEUTICAL CO) 21 August 2002 (2002-08-21) -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA 03/00771

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 9 to 15 and 21 to 27 encompass a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 1-15, 18, 20-35 (all partially)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-15,18,20-35 (all partially)

Present claims 1 to 15,18 and 20 to 35 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible.

Moreover, the compounds as defined in claims 1 or 2 do not match the peptides as set out in claim 16 and are therefore unclear (Article 6 PCT), the reasons reading as follows:

- (a) R2 may be alanine or serine, but claim 1 does not suggest a threonine residue;
- (b) the compounds should have at least nine amino acid residues; however, compounds 213.15, 231.25 and 213.26 are octapeptides;
- (c) it is not clear whether the compounds could consist of nine amino acid residues wherein R is selected from e.g. R1 or R2 only (such as AAAAAAAA); it is also confusing that not all of the compounds claimed in claim 16 end with at least two lysine residues if one takes into account that the general formula reads as X-R1-R2-R3-R4-R5-R6-R7-R8-R9-Y.

Furthermore, the scope of claims 6,8-15,18,20-27,29 and 31, in as far as the expression peptidomimetic is concerned, is so unclear (Article 6 PCT) that a meaningful search is impossible with regard to this expression.

Consequently, the search has been carried out for those parts of the application which do appear to be clear, supported and disclosed, namely the peptides selected from the group consisting of SEQ ID NOS: 1 to 13 as defined in claim 16, pharmaceutical compositions and kits containing them and their methods and uses.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/CA 03/00771

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0142281	A 14-06-2001	AU 2134001 A		18-06-2001
		WO 0142281 A1		14-06-2001
		CA 2396739 A1		14-06-2001
		EP 1244693 A1		02-10-2002
		JP 2003516417 T		13-05-2003
WO 0137877	A 31-05-2001	AU 1548501 A		04-06-2001
		BR 0015781 A		31-12-2002
		CA 2391526 A1		31-05-2001
		CN 1424918 T		18-06-2003
		EP 1232757 A1		21-08-2002
		HU 0203590 A2		28-03-2003
		WO 0137877 A1		31-05-2001
		NO 20022442 A		24-07-2002