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APPLICATION PROFILING IN A DATA STORAGE ARRAY

Background

Distributed data storage systems can be used to efficiently manage large

volumes of data in a wide area network (WAN) or other network environment.

Such systems may include an array of data storage devices that are arranged to

form a mass storage memory space.

It is common to provide such systems with data migration capabilities.

Data having a higher level of host interest may be relocated to a portion of the

storage array capable of sustaining higher overall data transfer rates, while data in

which the host is less interested may be moved to a location capable of sustaining

lower overall data transfer rates. This allows the system to maintain a high 10

(input/output) data rate while adapting to different user workloads.

With continued demands for ever increased levels of storage capacity and

performance, there remains an ongoing need for improvements in the manner in

which storage devices in such arrays are operationally managed. It is to these and

other improvements that preferred embodiments of the present invention are

generally directed.

Summary

Various embodiments of the present invention are generally directed to an

apparatus and method for application profiling in a multi-device data storage array.

In accordance with various embodiments, a storage array of independent

data storage devices is arranged to form a fast pool and a slow pool of said devices.

A controller is adapted to migrate a distributed data set stored across a first

plurality of the devices in the slow pool to a second plurality of said devices in the

fast pool.

The controller carries out the migration responsive to a hint that a selected

application is about to be executed that utilizes the distributed data set, and

responsive to a return on investment (ROI) determination that an estimated cost of

said migration will be outweighed by an overall improved data transfer capacity of

the storage array over a predetermined minimum payback period of time.



The migration is carried out in anticipation of a user-initiated request for

the data set during the execution of the selected application. In some

embodiments, the fast pool is formed from a plurality of solid-state drives (SSDs)

and the slow pool is formed from a plurality of hard disc drives (HDD).

These and various other features and advantages which characterize the

various embodiments presented herein will become apparent upon reading the

following detailed description in view of the associated drawings.

Brief Description of the Drawings

FIG. 1 generally illustrates a distributed data storage system constructed

and operated in accordance with preferred embodiments of the present invention.

FIG. 2 is a functional representation of the use of so-called redundant array

of inexpensive discs (RAID) storage in the storage array of FIG. 1.

FIG. 3 provides a general block diagram of the controller and the storage

array of FIG. 1 in accordance with some embodiments.

FIG. 4 provides a functional representation of a hard disc drive (HDD) of

FIG. 3.

FIG. 5 represents a solid state drive (SSD) of FIG. 3.

FIG. 6 depicts the overall memory space of the storage array and the

management of data therein in accordance with various embodiments.

FIG. 7 is a functional block diagram of portions of the controller of FIG. 3

operated in accordance with some embodiments to carry out the upgrade and

downgrade migrations depicted in FIG. 6.

FIG. 8 shows an exemplary format for a sheet activity array (table)

generated and maintained by the hot sheet upgrade (HSU) facility of FIG. 7.

FIG. 9 is a flow chart for an UPGRADE ROI DETERMINATION routine

generally illustrative of steps carried out in accordance with various embodiments

of the present invention.

FIG. 10 shows a flow chart for a HSU FACILITY OPERATION routine

carried out in accordance with various embodiments.

FIG. 1 is a time sequence illustrating the use of a history pipeline during

the operation of the routine of FIG. 10.



FIG. 1 is a functional block representation of the HSU facility of FIG. 7

further operative responsive to an application profiling hint.

FIG. 1 is an APPLICATION PROFILING routine generally illustrative of

steps carried out in accordance with various embodiments.

Detailed Description

FIG. 1 shows an exemplary data processing system 100. The system 100 is

shown in FIG. 1 to include a host device 102, which may be a personal computer

(PC) or other device utilized by a user of the system. The host device 102

communicates across a network fabric 104 with a controller 106, which interfaces

with a data storage array 108 to store and retrieve user data.

It will be appreciated that the representation of the system 100 in FIG. 1 is

highly simplified, as any number of additional features and components may be

incorporated into the system as desired. Alternative configurations may include

additional user host devices; multiple types and hierarchies of networks; the use of

redundant controllers to facilitate fail over and fail back redundancy capabilities;

multiple types and configurations of data storage arrays within the system, and so

on.

The data storage array 108 is capable of storing data in a RAID (redundant

array of independent discs) configuration. As will be recognized, RAID storage

involves distributing a set of data across multiple independent data storage devices

to enhance data integrity and system reliability. A number of RAID conventions

are known in the art, such as but not limited to RAID-0 (which utilizes block level

striping across multiple storage devices), RAID-1 (data mirroring), RAID-5 (data

striping with distributed parity) and RAID-6 (data striping with double distributed

parity).

FIG. 2 shows an exemplary RAID configuration in which a distributed data

set 110 is stored as stripes of data 112 across various individual, independent data

storage devices 114. Each stripe 112 stores a portion of the user data in the RAID

set, as well as parity codes that allow the data set contents to be recovered in the

event of failure of one or more data storage devices 14.



While not limiting, in some embodiments the data in the storage array 108

may be arranged using a grid system such as in accordance with the so-called

RAID grid allocation system (RAGS). Generally, any particular collection of

blocks of data belonging to the same distributed data set, such as the data set 110 in

FIG. 2, can be assigned to a particular location within the grid system as a "sheet"

of data.

A "book" can be defined as a grouping of sheets and may be constructed

from multiple contiguous sets of blocks from different devices 114. The sheet size

may vary depending on the system configuration, including RAID type. For

purposes of providing a concrete example, a sheet size on the order of 240 MB of

combined data and parity may be typical.

FIG. 3 is a functional block diagram of the controller 106 and the storage

array 108 of FIG. 1 in accordance with some embodiments. It will be appreciated

that the diagram of FIG. 3 is merely exemplary, as any number of different types

and configurations of controllers and storage arrays can be utilized.

The controller 106 includes a main data pathway 116 to facilitate transfer

of write data from the host device 102 to the storage array 108, and to facilitate the

return of previously stored readback data from the storage array 108 to the host

device 102. While the pathway 116 is shown as a single contiguous bus, it will be

appreciated that this pathway, or data pipeline, can be formed from a number of

separate internal and external pathways within the controller, including PCI busses

and cross-point switches.

One or more policy processors 118, represented by a single functional

block 118, provide various control functions for the controller 106. The

processor(s) 118 may be realized as one or more programmable processors with

associated programming in memory, or in hardware. A fabric interface (I/F) 120

handles communication functions with the fabric 104, and an array I/F 122 directs

communications with the storage array 108.

A controller cache memory 126 represents a local volatile (e.g., DRAM)

and/or non-volatile (e.g. Flash memory or battery-backed DRAM) memory space

configured to temporarily store data utilized by the controller 106 during operation.

The data stored in the cache 126 can include readback data retrieved from the

storage array 108 for subsequent transfer to the host device 102, writeback data



supplied by the host device for subsequent writing to the storage array 108, a

metadata table indicative of the data structure of the array, programming used by

the policy processors, temporary calculation values, and so on.

In a preferred embodiment, the storage array 108 of FIG. 3 includes a

number of hard disc drives (HDDs) 128 and a number N of solid-state drives

(SSDs) 130. The HDDs 128 are denoted as HDD-1 to HDD-M, and the SSDs 130

are denoted as SSD-1 to SSD-N. The numbers M and N can take any respective

values, although it is contemplated in many cases that M will be significantly

greater than N.

An exemplary HDD 128 is shown in FIG. 4. The HDD 128 includes one or

more rotatable media 132 (e.g., magnetic discs) having recording surfaces that are

accessed by a corresponding array of read/write data transducers 134. The

transducers 134 are moved by a rotary actuator assembly 136. During operation,

the actuator assembly 136 pivots about a pivot axis 138 responsive to inputs from a

closed loop servo control system 140 to align a selected transducer 134 with a

concentric track (not separately shown) on an associated media surface.

The HDD 128 further includes data read/write (R/W) channel electronics

142, a local cache memory 144 and an HDD controller 146. The R/W channel 142

conditions data for writing to the disc by the transducers 134, and reconstructs

previously stored data from readback signals transduced by the transducers. The

cache memory 144 temporarily stores data during transfer operations between the

controller 106 and the media 132, and the HDD controller 146 provides top level

communications and control for the drive 128. The total available data capacity of

the HDD 128 may be on the order of around one terabyte, TB (10 12 bytes),

although other capacities can be used.

FIG. 5 shows an exemplary SSD 130 from FIG. 3. The SSD 130 includes a

non-volatile solid state memory array 148. The array 148 is contemplated as

constituting an array of flash memory cells, although other forms of non-volatile

memory can be used as desired. The array 148 is arranged as a series of erasure

blocks 150, each constituting the smallest increment size of the memory array that

may be subjected to an erasure operation at a given time. As will be recognized,

flash memory cells require an erasure operation prior to being rewritten with new

data. Each time an updated version of a data set is written to the array 148, the



data will be written to a new location, such as a most recently allocated erasure

block 150, and any older versions of the data set in the array will be marked for

erasure (garbage collection).

The SSD 130 further includes R/W channel electronics 152, a cache

memory 154 and an SSD controller 156. As with the HDD in FIG. 4, the SSD

R/W channel 152 operates to direct the reading of data from the array 148 and the

writing of data to the array. The SSD cache 1 4 temporarily stores data and other

information, and the SSD controller 156 provides top level communication and

control functions. The total available data capacity of the SSD 130 may be on the

order of around 0.5 TB, although other data capacities can be used.

As will be recognized by those having skill in the art, a variety of HDD and

SSD configurations are presently commercially available in the marketplace for

incorporation into data storage arrays. At present, HDDs tend to be generally less

expensive than SSDs on a per unit cost basis (e.g., dollars per gigabyte of data

storage capacity, or $/GB), potentially by an order of magnitude or more. On the

other hand, SSDs enjoy a significant advantage over HDDs in terms of I/O

performance (e.g., I/O operations per second, or IOPS), potentially on the order of

1-2 orders of magnitude or more.

The performance advantages of SSDs over HDDs arise for a number of

reasons, including the fact that HDDs can be subject to significant seek and media

rotation latencies during operation. In the HDD 128, accessing any particular set

of data stored to the rotatable media 132 may require a seek time delay to move

and settle the associated transducer 134 onto the appropriate track, as well as a

rotational time delay while the device waits for the data to rotate around to the data

transducer. By contrast, all of the data stored in the SSD 130 can be accessed at

substantially the same IO rate, irrespective of where the data are stored within the

solid-state memory array 148.

The mass storage array 108 of FIG. 3 incorporates both SSDs 130 and

HDDs 128 in order to take advantage of the benefits offered by each type of

device. The combined data storage capacity of the HDDs and the SSDs forms an

overall memory space 160 for the system 100, as represented in FIG. 6.

Distributed data sets (sheets) may be stored in either the HDDs 128 or the SSDs



130, and if managed correctly in accordance with the present discussion, where the

data are actually stored may be largely transparent to the system user.

It is apparent that the memory space 160 has an overall storage capacity in

relation to the individual data capacities of the HDDs 128 and the SSDs 130, as

well as the total numbers M and N of these respective units. An exemplary overall

data storage capacity of the array memory space may be on the order of several

hundred TB or more. The HDDs and SSDs may be physically grouped into

smaller blocks of devices (e.g., "storage bricks" of 20 devices each) that are then

accumulated in sufficient quantities to form the overall desired capacity of the

memory space 160.

The memory space 160 includes an SSD memory space 162, which is the

combined available memory of all of the N SSDs, and an HDD memory space 164,

which is the combined available memory of all of the M HDDs. The SSD memory

space 162 is referred to herein as fast (F) memory or a fast pool, and the HDD

memory space 164 is referred to as slow (S) memory or a slow pool.

While the SSD space 162 will generally have a substantially uniform SSD

data transfer rate irrespective of where the data sets are stored in the respective

memory arrays 148 (see FIG. 5), such is not necessarily true for the HDD storage

space 164. Rather, it is contemplated that the HDDs will employ constant angular

velocity (CAV) and zone based recording (ZBR) techniques, so that data stored

near the outermost diameters (ODs) of the rotatable media 132 will have a

sustainable data transfer rate that is several times higher (e.g., 2X) the data transfer

rate for data stored near the innermost diameters (IDs) of the media 132.

In accordance with various embodiments, the system carries out the

upgrades and downgrades based on the accumulation of data access statistics, such

as through the use of a data history pipeline of highest and lowest interest data sets

over a sequence of epoch intervals. Over time, access patterns can be identified

such as when a particular application has been requested by the host device 102,

which is found to result in a particular sequence of requests for particular sets of

data.

When the system detects a subsequent launching of that application, it can

quickly operate to move those data sets that may be requested in the near future to

the faster SSD memory space 162 (fast pool) in anticipation of such usage.



Moreover, the access patterns can further inform the system with regard to the

expected dwell time for a data set recently moved to the fast pool; that is, whether

the data set will remain of high interest to the host and continue to be utilized

multiple times, or whether the host interest will fade after a certain point, making it

of greater advantage to downgrade the recently requested data from the fast pool

back to the slow pool of memory (e.g., HDDs 128).

In making these migration decisions, a determination can be made that an

estimated cost of a particular migration will be outweighed by an overall improved

data transfer capacity of the storage array over a predetermined minimum payback

period of time.

The upgrades and downgrades are carried out using a mechanism referred

to herein as a hot sheet upgrade (HSU) utility. The HSU utility employs a return-

on-investment (ROI) scheme that evaluates the benefits of various proposed data

migrations in terms of the costs associated with the migrations. The HSU utility is

preferably incorporated into the functionality of the controller 106, although such

is not necessarily limiting.

The migrations carried out by the HSU facility are to different locations

within the storage array 108. This is in contrast to the movement of data from the

storage array 108 to the DRAM cache 126 of the controller 106. It will be

apparent that the migration of data to the cache 126 can be viewed as being

essentially "free," in the sense that any data moved to the cache 126, whether as a

result of a host write request or a read from the storage array, requires relatively

little cost to retain in the cache in terms of additional system bandwidth and other

resources.

No further 10 operations are required to retain read data in the cache 126

after the data have been transferred to the host. The IO operations for speculative

data reads to transfer non-requested data (e.g. "read-ahead" data) to the cache 126

can be scheduled so as to not significantly impact the overall processor (CPU)

loading, since the speculative data may have spatial locality to data that has been

requested by the host. Thus, continuing to retain cached readback data in the

controller cache 126 adds substantially no additional cost to the system, apart from

the opportunity lost for cache hits on other data that could have been retained in the

cache.



It will further be apparent that any cached read data in the cache 126

constitutes a secondary copy of the data, since a primary copy of the data remains

in the array location from which the data were pulled. The cached data can thus be

easily jettisoned from the cache by a simple overwrite operation with new data

without the need to move the data to a safe location. There is therefore essentially

no cost associated with removing cached read data from the cache.

By contrast, the movement of data within the array 108 between the SSD

memory space 162 and the HDD memory space 164 can entail significant costs in

terms of system resources. The movement of such data is carried out over the

same control and data paths used to control the array 108. The use of these control

and data paths to carry out a migration may interfere with the ability to satisfy on

going user initiated data accesses, and can consume significant CPU cycles and

memory bandwidth. Such migrations will generally employ the movement of

relatively large chunks of data, since keeping track of the locations of smaller

chunks of data would tend to increase the complexity and size of the metadata

tables maintained by the controller.

It follows that migrating data between the HDD space 164 and the SSD

space 162 can incur significant costs in terms of CPU cycles, memory bandwidth,

back-end bandwidth and HDD bandwidth, over and above the cost of the user

access that stimulated the movement to begin with. The HSU facility of the

present disclosure operates to evaluate whether sufficient benefit, in terms of

improved system data transfer capacity over a selected payoff period, is likely to

be gained before initiating any such migrations. If insufficient benefit can be

reasonably foreseen, then no migrations will be performed and the system will be

left as it is, along with the knowledge that the current allocations between the SSD

and HDD space are sufficiently optimized.

FIG. 7 is a block diagram representation of relevant portions of the

controller 106. The various blocks in FIG. 7 may be realized in software,

firmware, hardware or some combination thereof, and may form a part of the

policy processor functionality.

The aforementioned HSU (hot sheet upgrade) facility is represented by

block 200 in FIG. 7. The HSU facility 200 operates to make migration decisions

for various sheets in the array 108. The HSU facility 200 may be responsible for



all of the sheets in the array, or for a subset of sheets, as required. In the latter

case, only portions of the fast and slow pools may be made available to the HSU

facility for sheet migrations.

As used herein, the term "sheet" will be broadly understood as a distributed

data set (e.g., a RAID set), orders of magnitude smaller in capacity than an HDD,

that is stored across multiple independent storage devices such as the HDDs 128 or

the SSDs 130, as opposed to a data set that is wholly contained within a single data

storage device. This distinction will be appreciated because an individual device

such as the HDDs 128 and SSDs 130 may have its own internal capabilities of

rearranging data to appropriate locations within itself, such as to different disc 132

surfaces/radii or different erasure blocks 150. These internal rearrangements are

carried out without "going outside" the device to consume system level resources,

and are therefore carried out in a manner that is transparent to other system

components such as the controller 106. The actual resolution size of the

distributed set can be any suitable size, with the understanding that smaller sizes

will generally entail greater data collection and tracking requirements as compared

to relatively larger sizes.

The HSU facility 200 operates in response to inputs supplied by a cache

manager block 202 and an epoch timer 204. The HSU facility 200 generates a

series of data structures that are used to govern the ROI evaluation and migration

process. These data structures may include a sheet activity array (table) 206 and an

upgrade sheet array (table) 208. The cache manager 202 supplies data to the HSU

facility 200 in the form of user-initiated 10 counts, and the epoch timer 204

supplies epoch timing indication signals to the HSU facility 200 at regular

intervals.

As used herein, an "epoch" refers to an elapsed time interval during which

the HSU facility 200 collects data that indicates how much user-initiated back-end

IO is occurring to every sheet in the system. At the conclusion of each epoch, the

HSU facility 200 processes the data it has received and, based on that data and data

from previous epochs, makes a migration decision. The system then commences a

new epoch, during which the foregoing operations are repeated.

Epochs occur sequentially and each epoch has a common duration. This

duration may be settable by the user or a system administrator. An exemplary



epoch interval duration may be 20 seconds for each epoch, although any suitable

duration can be used. In some embodiments, epoch durations range from as low as

around three (3) seconds to as high as five (5) minutes or more. Values lower or

higher than these can be used. It has been found in some cases that epochs shorter

than about 3 seconds in length may lead to significant quantization errors, and

epochs longer than about 5 minutes may reduce the rate of adaptation to real

changes in I/O patterns.

By way of illustration, assume the array 108 has a total of ten (10) 3.5 inch

form factor, 7200 RPM magnetic disc drives, which combined can store on the

order of about 33,000 sheets of combined data and parity (of 240MB each) in the

available data pool (e.g., HDD memory space 164 in FIG. 6). An exemplary IO

rate for this group of devices may be on the order of about 1600 IOs per second

(IOPS). Using a 10 second epoch, the "average" sheet in the pool might

experience something on the order of about 1600/33,000=0.05 IOPS, or about 0.5

IOs over the duration of the epoch.

A single small RAID-5 write may result in a total of four (4) IOs to a single

sheet of data. These additional IOs may include the need to read the existing

RAID set, recalculate various parity values, and rewrite the completed data set to

the devices. Based on raw IO counts, this provides a rate that is eight times the

average expected rate (e.g., 4 IOs v. 0.5 IOs). Thus, if the epoch interval is too

short, a single user-initiated access to a single sheet might look like a spike in

activity indicative of high host interest in the data, whereas in reality only one

actual access of the data was requested by the host.

The use of relatively longer epochs, combined with the use of other IO

filtering techniques to be discussed below, can filter out the "noise" associated with

individual IOs so that a sustainable access pattern can be gleaned from the access

statistics. Epochs as disclosed herein also present an effective way to clear out the

accumulated IO counts in situations where upwards of tens of thousands of sheets

(or more) of data are being tracked at the same time.

It is contemplated that the epochs will be individually identified using a

sequentially increasing count, referred to as the epoch number (e.g., epoch 1, epoch

2, epoch 3, . . .). The data structures 206, 208 maintained by the HSU facility 200

accumulate the sheet IO counts on a per sheet basis, and also identify the



associated epoch number in which those counts were obtained. If the epoch

number in a particular entry for a particular sheet does not match the current epoch,

the sheet's IO count for the current epoch can be deemed to be zero (0) IOs, and the

next IO to that sheet can operate to update the sheet's epoch number and clear its

count before updating the count with the current IO.

Tracking the epoch numbers also allows a differentiation to be made

between different "degrees of zero" for the existing IO count. For example, a

mismatched epoch number in an entry at the end of an epoch means that there have

been "zero IOs for the last E epochs," where E represents the size of the mismatch

in terms of elapsed epochs. This data may be useful in selecting which data set to

downgrade.

Depending on the data structure configuration, it is contemplated that the

continuously incrementing epoch numbers can eventually "wrap around" (return to

zero) in value. The effects of such wrap-arounds are benign. In a worst case

scenario, a sheet that hasn't received an IO for a long time might theoretically be

selected as a possible upgrade candidate due to an epoch number wrap-around, but

will not be actually upgraded because of other filters in the HSU facility operation,

such as the use of a history pipeline discussed below.

For reference, the use of a 16-bit epoch number combined with a 10 second

epoch duration would result in the epoch numbers being wrapped around

(returning to an initial 0 count) once per week. The use of a 24-bit epoch number

with a 10 second epoch duration would not result in a wrap-around return to zero

until about five (5) years have passed. An appropriate size for the maximum epoch

number can be tailored to meet system requirements.

The HSU facility 200 is generally configured to offload highest-interest

random back-end IO operations from the HDD memory space 164 to the SSD

memory space 162, and vice versa. In at least some embodiments, the focus is

primarily on the migration of data subject to random accesses rather than

sequential accesses.

Random accesses are user-initiated accesses for sheets with nonsequential

logical and/or physical proximity, and are carried out to different, non-adjacent

locations in the array (e.g., non-related files used by different applications or

processes). Sequential accesses involve the sequential transfer of data that are in



logical and/or physical proximity, such as the streaming of a large data set (e.g., a

large database or a movie, etc.).

HDDs 1 8 are particularly suited to recovering sequential data in a fast and

efficient manner, due to the short overhead processing time required to switch to

different transducers within a given cylinder and to carry out one-track seeks to

adjacent tracks on a selected media surface. The ratio of SSD to HDD transfer

rates for sequential 10 data may be on the order of about 3:1, so storing

sequentially accessed data in the SSDs only provides a marginally higher data

transfer rate for the overall system. On the other hand, the ratio of SSD to HDD

transfer rates for random 10 data may be on the order of from about 25:1 to 100:1

or more. Thus, it makes sense to migrate random IO data to the SSDs and to leave

sequentially accessed data in the HDDs.

Another advantage to ignoring sequentially accessed data for purposes of

migration to the SSDs is that sequential IOs might tend to dominate the overall 10

counts since the requests can tend to hit the same sheet rapidly in succession, and

thereafter not hit it again. This might cause the HSU facility 200 to make exactly

the wrong decisions in terms of which sheet(s) to migrate to SSD, always moving

the data "one-step-behind" where it should be.

A variety of techniques can be used to filter out sequential 10 operations

from consideration by the HSU facility 200. In some embodiments, the cache

manager 202 is able to detect sequential IO requests, and does not forward these

counts to the HSU facility 200. Because the cache manager 202 can be configured

to operate as the primary requestor of data from the array 108, the cache manager

can easily detect when the observed order of requests for the virtual block

addresses (or other nomenclature for the requested data) indicates a sequential data

transfer.

In other embodiments, all of the raw IO counts for user-initiated accesses

can be supplied by the cache manager 202 to the HSU facility 200, and the HSU

facility can operate to detect and jettison counts related to sequential accesses. It is

noted that in either scheme, the IO counts from the cache manager are preferably

limited to those specifically relating to user-initiated accesses, which means that

other background IOs such as used during RAID rebuilds, data scrubbing,

background and demand zeroing, and internal data reconfiguration, are ignored and



are not included in the accumulated statistics. These counts are usually one-time

operations and are not directly indicative of host interest. However, it is possible

to include these counts in the accumulated statistics if desired.

In some embodiments, the cache manager 202 may issue its back-end IOs

as virtual operations, which may be turned into multiple operations based on 10

type and RAID configuration. As noted above, a single write access of a RAID-5

sheet may result in a total of 4 IOs, which increases the total amount of processing

time and effort that has to be carried out by the respective storage devices in order

to store the data. If cache manager back-end I/Os are virtual, each 0 count

received by the HSU facility 200 can be weighted by the HSU facility in terms of

the total overhead processing effort required to satisfy the request.

For example, all reads of data, no matter what the RAID configuration

thereof, can be assigned a weight of 1.0. A write operation of RAID-0 data may be

assigned a weight of 1.0. A RAID-1 write operation may be given a weight of 2.0.

A small RAID-5 write may have an assigned weight of 3.5. As desired, the size

(e.g., block or sector count) of a particular IO operation may be taken into account

in determining an overall weighted IO count. Generally, the size of a given data

transfer has little effect on overall latency for both SSDs and HDDs, although this

effect can become increasingly pronounced as the data I/O size increases. A

weighting compensation factor based on transfer size can be selected, such as a

value of about 0.2% per 1KB transferred after the first 4KB. So for example, a

RAID-5 write with 64KB of data might be given an assigned weight of 3.5 * 1.12

= 3.9.

During system initialization, the HSU facility 200 in FIG. 7 scans the

existing array data structure and constructs the sheet activity array 206 and the

upgrade sheet array 208. The sheet activity array 206 serves to track sheet IO

activity and ownership, and may take a format as shown in FIG. 8. In FIG. 8, each

sheet has an associated entry 2 , such as Entry N for sheet N. Each entry 2 10

includes a number of fields including an epoch number field 212 which identifies

the epoch number for the most recent epoch in which at least one user initiated,

random IO was carried out for that sheet. A fast sheet flag field 214 indicates

whether the sheet is currently located in fast memory (e.g., in the SSD memory

space 162). A fixed sheet flag field 216 indicates whether the sheet should remain



in a fixed location and not be moved, such as a dedicated portion of the storage

array.

A sheet 10 count field 218 provides a count of "weighted IOs" for the

epoch identified in the epoch number field 212. An owner field 220 identifies the

logical user device (if any) that owns the sheet. A start address field 222 indicates

the beginning address (such as in terms of virtual block address, VBA) of the

sheet. A location field 224 identifies the location of the sheet in the storage array.

The upgrade sheet array 208 is arranged as a number of entries, with one

entry for each sheet in the fast portion of the storage array that has been made

available for management by the HSU facility 200. If a sheet has not been

allocated, the entry will be a NULL pointer. If the sheet has been allocated and

upgraded, the entry in the table 208 can be used to point to the sheet's entry in the

table 206.

The HSU facility 200 uses a return on investment (ROI) evaluation of the

collected, weighted IO counts to determine whether to perform a migration.

Different calculations can be used depending on whether the migration only

involves an upgrade, or whether the migration involves both an upgrade and a

downgrade.

An upgrade-only migration means that there is available, non-allocated

space in the SSD memory space 162 that could accommodate the addition of a

particular set of data, so that carrying out this upgrade would not result in the

displacement of any existing data in the SSD memory space. An upgrade-

downgrade migration means that the upgraded data set that is moved to the SSD

memory space is going to require the displacement of an existing set of data from

the SSD memory space to the HDD memory space.

The costs associated with each of these migration types will be discussed in

turn. In some embodiments, the ROI evaluation of a potential upgrade-only

migration can be carried out in accordance with the following relation:

IOsPerHour(S) > CostToUpgrade(S) *ROIhurdle ( )

where (S) indicates that the sheet under consideration is currently located in slow

(e.g., HDD) memory, IOsPerHour(S) is an extrapolation of an expected IO rate for



the sheet over an hour elapsed time, CostToUpgrade(S) is a value indicative of the

additional system resources necessary to upgrade the sheet of data to fast (e.g.,

SSD) memory, and ROIhurdle is a threshold (investment payoff) value. Thus,

relation (1) generally evaluates whether the expected 10 interest in the data, while

it remains in the slow pool, is greater than the cost to upgrade the data to the fast

pool.

The IOsPerHour(S) value from equation (1) may be extrapolated as

follows:

IOsPerHour(S) = IOsInLastEpoch(S) *3600/DurationOfLast Epoch (2)

where IOsInLastEpoch(S) is the weighted accumulated count of IOs for the

associated sheet during the most recent epoch. The CostToUpgrade(S) value from

equation (1) can be determined as follows:

CostToUpgrade(S) = (AmountOflJserData(S)/MigrationChunkSize) * (3)

RelativeMigrationlOCost

where AmountOfUserData(S) depends on the RAID organization of the sheet in

consideration and whether parity data is read from the sheet or regenerated by the

controller during the migration, and may be on the order of from about 120MB-

240MB.

MigrationChunkSize is a suitable I/O chunk size for migrating data, such as

1MB (megabyte or 106 bytes). The RelativeMigrationlOCost is a value indicative

of the ratio of the time a single HDD requires to read or write the

MigrationChunkSize to the time it takes to perform a small (e.g. 4KB) random read

or write. The RelativeMigrationlOCost value can be a settable parameter, with a

suitable value being 3.0. This value can be empirically determined in relation to

the different operational characteristics of the fast and slow pools of memory.

The ROIhurdle value of relation (1) can be expressed in terms of a

percentage. In this context, an ROIhurdle value of 1.0 (100%) means that a

migration would be justified only if the cost of the migration is projected to be paid



back within an hour. Other values would indicate other payback periods: for

example, an ROIhurdle value of 0.1 (10%) would require payback within 10 hours,

whereas an ROIhurdle value of 30.0 (3000%) would require a payback within the

next two minutes. This value is settable by the user or system administrator, with

1.0 being the default value.

At the conclusion of a given epoch, the HSU facility 200 can evaluate a

particular sheet having an associated IO count and determine whether it would be

advantageous to migrate that sheet from HDD to an available location in SSD. It

will be appreciated that the migration effort will require the use of significant

system resources to read the data out from the HDD memory space 164 to the

controller cache 126 (see FIG. 3) and then to write the data from the cache 126 to

the SSD memory space 162. Because the system resources are tied up performing

this operation, these resources are not available for use in satisfying on-going user-

initiated requests. Hence, the initial transfer may result in a temporary decrease in

the then-observable average system IO rate.

However, if a standard ROIhurdle value of 1.0 is used, it is expected that,

over the next hour, the overall average system IO rate will actually be improved

over what would have otherwise been observed had the migration not taken place.

Longer and shorter payback periods can be readily implemented by changes in the

ROIhurdle value. Alternatively, relation (1) can be used to calculate an actual

payback period (PaybackPeriod) for a potential upgrade-only migration, as

follows:

PaybackPeriod = CostToUpgrade(S) / IOsPerHour(S) (4)

In this alternative case, the PaybackPeriod value could then be evaluated to

determine whether it is sufficiently short to warrant the migration.

As noted above, an upgrade-downgrade migration involves the same steps

as an upgrade-only migration, plus additional IOs to read out the displaced data

from the SSD space and to write the displaced data to the HDD space.

The ROI determinations for upgrade-downgrade migrations can be carried

out as follows:



(IOsPerHour(S) - IOsPerHour(F)) > (CostToUpgrade (S) + (5)

CostToDowngrade(F)) *ROIhurdle

where IOsPerHour(S), CostToUpgrade(S) and ROIhurdle are calculated as set

forth above.

IOsPerHour(F) is extrapolated in a manner similar as in equation (2) above

to evaluate how many expected IOs would be for the data being moved from the

SSD fast (F) memory. CostToDowngrade(F) is a factor indicative of the additional

costs associated with placement of the displaced data into the slower HDD

memory, and may be determined similarly as set forth for equation (3) above.

One difference between the CostToUpgrade(S) value and the

CostToDowngrade(F) value is that the CostToDowngrade(F) generally may not

depend on the RAID organization of the data, since all sheet migrations may be

configured to write a full 240MB of combined data and parity to the target sheet,

and the target sheet in a downgrade will be to the slow (S) pool of memory.

It will be appreciated that the foregoing relations are merely exemplary,

and that other ways to evaluate the costs of migrations will readily occur to the

skilled artisan in view of the present disclosure. Generally, one purpose in

migrating data to the SSD memory space is to endeavor to reduce, as much as

possible, the amount of latency time associated with the slower HDD memory

space. That is, there is not only a benefit to moving higher host interest data to the

SSD, but to the extent this is successful, the observed HDD latency may improve

since the I/O rate to the slow pool will be reduced. Since the slow pool is often the

bottleneck, system performance will be improved.

The above relations are all first order approximations. More detailed

models can take into account specific times or operations required by the SSDs

and/or the HDDs. For example, the various ROI analyses can take into account

whether downgraded data is to be stored at a relatively faster location on the

rotatable media (e.g., near the ODs) or to be stored at a relatively slower location

on the rotatable media (e.g., near the IDs). Similarly, the decision to upgrade from

HDD to SDD can also evaluate whether the candidate data is near the OD or ID of

the discs. If the fast devices are only somewhat faster than the slow devices (e.g.

from 2X to 4X faster), the impact of references to the upgraded data, and the



impact of the upgrade operation itself, on the fast devices should also be taken into

account; this is not needed if for example, SSDs are used as the fast devices.

Finally, data stored on HDD that is found to not warrant an upgrade to SSD might

nevertheless warrant a relocation, based on the HSU utility findings, of the data to

a faster location within the HDDs, such as an available location nearer the ODs in

a different set of the HDDs.

FIG. 9 shows a flow chart for an UPGRADE INITIAL ROI

DETERMINATION routine 230, generally illustrative of steps carried out in

accordance with the foregoing discussion. The routine 230 of FIG. 9 represents

steps that are carried out by the HSU facility 200 during (or immediately after)

each epoch interval.

At step 232, a new epoch is initiated with a selected duration such as 20

seconds. This can be carried out as signaled by the epoch timer 204 in FIG. 7. At

step 234, the HSU utility 200 begins to accumulate user-initiated random access IO

counts for sheets accessed during the associated epoch, responsive to inputs

supplied by the cache manager 202 (FIG. 7). The counts are preferably weighted

by the cache manager or by the HSU utility to account for various factors such as

RAID configuration and data block size. This data collection continues until the

end of the epoch at step 236.

The HSU facility next calculates the IOPSperHour(S) and

CostToUpgrade(S) of the sheets in the HDD memory space that had the highest

count values at step 238. These values are checked against the ROI threshold

using equation (1) at step 240. Each sheet having a payback greater than the ROI

threshold is declared a "winner" as indicated at 242. It is possible that no winners

will emerge from a given epoch, and it is also possible that multiple winners may

be declared. The HSU facility can select the single best winner, or may select up to

X winners (e.g., X=4), with those winners being the sheets with the highest I/O

counts that met the ROI threshold.

Once the winner or winners have been selected, the HSU facility 200

continues at step 244 to identify one or more "losers," as indicated at 246. The

losers are the sheets of data stored in the SSD memory space 162 that have the

lowest IO activity. The tables 206, 208 may be searched to find the sheets with the



lowest I/O counts this epoch, or (if multiple sheets have zero I/Os this epoch) those

that have gone the longest without IO activity in order to find the worst losers.

Finally, if any losers contain a previously upgraded sheet of data (i.e. is not

unallocated), the IOPSperHour(F) and CostToUpgrade(F) of the losers and the

IOPSperHour(S) and CostToUpgrade(S) of the winners are jointly compared to the

OI threshold using Equation (5), step 248. Any winners who do not exceed the

ROI threshold against at least one loser based on Equation (5) are eliminated

(jettisoned) from the list of winners, as shown at 249. The UPGRADE INITIAL

ROI DETERMINATION routine then returns to step 232 to begin the data

collection for the next epoch.

In some embodiments, the HSU facility proceeds at this point to direct the

migration of data in accordance with the results of the routine of FIG. 9. For

example, up to K winners 242 with the highest I/O counts may be upgraded from

the HDD memory space 164 to the SSD memory space 162, and an appropriate

number of losers 244 with the lowest I/O counts may be downgraded from the SSD

memory space to the HDD memory space, where K is a user-settable parameter

(e.g. K = 2). The process continues in this fashion, selecting new winners and

losers for each epoch in turn.

While this approach can advantageously improve the utilization of the SSD

memory space, in some cases it is contemplated that making migration decisions

based on a single epoch may result in less than optimal decisions. Depending on

the host environment, user-initiated IO can be bursty at times, and a one-time burst

should not necessarily be extrapolated into a long term, unrealistic ROI level that

drives an unnecessary migration.

Accordingly, further embodiments of the present invention configure the

HSU facility 200 to observe the access patterns of the system over an extended

period of time. This time should be long enough so that an accurate assessment of

the patterns emerges, leading to confidence that migrating those sheets having

access rates that consistently exceed the ROI hurdle will pay back the costs of the

migration effort. The use of a longer single epoch may help in this decision

making process, but the use of a single epoch is still vulnerable to the effects of a

one-time burst, and may slow the system's adaptation to true I/O pattern changes.



FIG. 10 shows a history pipeline 250 that can be fed the winners and losers

identified by FIG. 9. The history pipeline 250 allows the HSU facility to

efficiently evaluate the continued IO access rates of the various winners and losers

over multiple epochs, allowing better ultimate migration decisions to be made.

FIG. 10 is a timing diagram to show operation of the HSU facility over an

extended elapsed period of time. A number of successive epochs are denoted at

252. As before, each epoch 252 is contemplated as lasting 20 seconds, and each

new epoch begins at the conclusion of the immediately preceding epoch.

Winners and losers (Ws and Ls) are declared for each epoch 252 in turn

using the routine of FIG. 9, and these winners and losers are sequentially placed

into the history pipeline 250. For example, arrowed path 254 represents the

winners and losers identified during Epoch 1, arrowed path 256 represents the

winners and losers identified during Epoch 2, and so on for the remaining epochs

(e.g., 258 represents the winners and losers for Epoch 3, 260 for Epoch 4, and 262

for Epoch 5).

At the conclusion of each epoch, the HSU utility performs the ROI

calculations in Equation (1) or Equation (5) on each of the winners and losers in

the history pipeline to see if upgrading the winners (and downgrading the losers if

necessary) would still provide a return on investment that exceeds the cost of

migration of the data. For example, when the winners and losers 256 from Epoch

2 are placed into the pipeline 250, the HSU utility will re-evaluate the winners and

losers 254 that were placed into the pipeline during Epoch 1 using the I/O count

data generated in Epoch 2 for those sheets. If any winners 254 are no longer

exhibiting favorable ROI values against the losers, those winners are jettisoned

from the pipeline, as indicated at 264.

Once a winner has proved itself for a total number of Z + 1 successive

epochs (on initial determination epoch and Z re-examinations in the history

pipeline), the winner is considered as a candidate for an upgrade migration

operation. As in the example with no history pipeline, the system will select up to

K winners to upgrade, and an appropriate number of losers to downgrade. The

actual winners (and losers) to upgrade (and downgrade) can be picked in several

ways; for example, based on the highest (lowest) I/O count in their initial

determination Epoch, based on the highest (lowest) I/O count in the final Epoch in



the history pipeline, or based on the highest (lowest) total I/O count across the Z +

1 epochs in which they were tested.

The parameters X, Y, Z and K may be settable to any suitable values; in

some embodiments, the number X of winners from each epoch can be set from 1 to

8, with a default value of 4. The number Y of losers can also be set from 1 to 8,

with a default value of 4. The number Z of consecutive epochs that need to be

survived can be from 2 to 7, with a default of 2, and the maximum number K of

sheets selected to upgrade at the end of the process can be set from 1 to 4, with a

default of 1. Z will usually be set greater than 1 because requiring sheets to prove

their upgrade-worthiness for at least three consecutive epochs resists being fooled

by one-time I/O bursts that straddle an epoch boundary.

FIG. 10 shows the use of a setting of Z=4, so that at the time of Epoch 5,

the surviving winners and losers 254 initially determined in Epoch 1 can be

selected for respective upgrade and downgrade operations or will be jettisoned, as

indicated by arrowed path 260. Similarly, at the time of Epoch 6 the surviving

winners and losers 254 initially determined in Epoch 2 can be selected for

migrations, etc.

In a preferred approach, the history pipeline 250 is arranged such that

winners and losers only persist in the pipeline for a limited amount of time; that is,

they do not persist indefinitely once placed into the pipeline, but instead "time-out"

at the end of Z+l epochs. For example, by the time Epoch 5 ends in FIG. 10, the

winners and losers 254 from Epoch 1 that are still in the pipeline are going to be

removed from the pipeline in order to make room for the new winners and losers

262 from Epoch 5. Of course, it is possible that the winners and/or losers 262

selected during Epoch 5 may include some or all of the surviving winners and/or

losers 254 that were previously selected by Epoch 1, so one or more of the winners

and/or losers from Epoch 1 may be immediately reinserted back into the pipeline.

This automatic jettisoning keeps the pipeline from accumulating a large,

uncontrolled number of entries which could bog down the system from both a data

tracking and calculation overhead perspective. This approach also efficiently

forms a "sliding window" filtering of the various candidates, in that a series of tests

have to be passed to qualify for an upgrade over a relatively extended period of

time (e.g., 5 epochs x 20 seconds/epoch = 100 seconds, etc.): first, an upgraded



winner has to be among the very best ROI candidates during the initial epoch to

have been placed into the pipeline; second, it has to maintain at least a good

enough ROI during the next Z epochs to remain in the pipeline; and finally, it has

to exhibit the best accumulated ROI at epoch Z+l to be selected for the upgrade.

Because the history pipeline 250 produces a delaying action, any sheet that

is upgraded or downgraded in any given epoch could also potentially be a

candidate for a later upgrade/downgrade migration in an internal stage of the

pipeline. Instead of searching the pipeline and removing such sheets, a flag can be

set in the Sheet Activity array entry for those sheets to disable further migrations

for Z epochs (by which time the sheet no longer appears in the history pipeline).

Similarly, once a sheet has been upgraded or downgraded, a flag can be set in an

appropriate data structure to make that sheet ineligible for further migrations for

some set period of time. These mechanisms can further reduce the incidence of

data thrashing.

The total amount of available space in the SSD memory space 162 will be

limited so that eventually, each SSD upgrade (winner) will generally require a

corresponding HDD downgrade (victim) to free up space in the target SSD space.

A variety of factors may be taken into consideration when choosing an appropriate

victim.

If there is no available unallocated space so that an occupied fast sheet will

be selected as a loser in step 244, the HSU facility 200 can carry out a search of the

upgrade sheets array 208 (FIG. 7), starting at the position following the last loser

initially determined in the previous Epoch, and continuing for a user-selectable

number A of entries in a round-robin fashion. This search selects the sheets from

this range with the minimum count of IO operations during the preceding epoch as

the potential losers. If more than one sheet has an IO count of zero, the sheet with

the oldest epoch number (field 212) is considered to have the lower I/O count since

this will be the sheet that has gone the longest time without IO activity. The

parameter A will be set to a value greater than the parameter Y in the UPGRADE

INITIAL ROI DETERMINATION process, and can be as large as the total number

of fast sheets available to the HSU facility. Using small values of A (relative to the

total number of fast sheets available) tends to make the system more conservative

about downgrading previously upgraded sheets, especially recently upgraded ones.



FIG. 11 provides another, alternative timing diagram to illustrate the

operation of the history pipeline 250 of FIG. 10 for three epochs 252 referenced as

Epoch 100-102. It can be seen that the three operations of FIG. 9 (steps 240, 244

and 248) are sequentially carried out at the conclusion of each epoch. For

example, at the end of Epoch 100, the winners and losers for that epoch will be

inserted, the winners for the last Z=4 epochs are jettisoned that do not meet the

ROI requirements of Equation (5), and then up to K surviving winners and losers

from Epoch 96 (100-4=96) are selected for upgrades and downgrades, respectively.

FIG. 12 presents a flow chart for an HSU FACILITY OPERATION routine

270, to summarize the foregoing discussion. The HSU facility is initialized at step

272, and various parameters are selected and/or loaded at step 274. This may

include the creation of the HSU tables 206, 208 from existing system configuration

information.

HSU facility operation commences at step 276, during which a succession

of epoch intervals are defined, IO counts are accumulated during each epoch, and

winners and losers (if any) for each epoch are loaded into the history pipeline 250.

Also in each epoch, the HSU facility re-tests the winners and losers 254 in

each stage of the history pipeline and jettisons any previously inserted winners

and/or losers that fail to continue to meet the requisite ROI thresholds as shown by

step 278. After Z epochs have elapsed the pipeline will be fully populated, and at

every subsequent epoch HSU facility 200 will perform migrations of the best

winners and the worst losers that emerge from the pipeline (if any survive the

numerous re-tests). Once a migration decision is declared by the HSU facility 200,

normal system processing takes over to carry out the migrations as quickly as

feasible.

It will be appreciated that the routine of FIG. 12 will generally operate to

optimize the utilization of the fast and slow pools of memory devices 162, 164

(FIG. 6) responsive to substantially any random input of data access patterns.

Further optimization can be had with the use of pattern detection capabilities of the

HSU facility, which will now be discussed.

The HSU facility 200 can further be configured to receive "hints" from

other parts of the system, such as but not limited to the host 102 (FIG. 1). Such a

hint may take a number of forms, such as a user directed input to the system that



signals that the host device 102 is about to run a particular application. As used in

this context, the term "application" refers to any large data grouping that is stored

in the array 108, such as but not limited to a software program, a large multi-sheet

data file, a database or other data structure, or other data arrangement.

Generally, an application will involve a relatively large volume of data that

may involve multiple exchanges with the host over an extended period of time.

These exchanges may just involve the reading of data, or may involve both reads

and writes. It is contemplated, although not required, that the applications are run

(or otherwise accessed) on a regular, recurring basis. An example of an application

might be a payroll routine for a particular organization that is executed at the end

of each calendar month.

FIG. 13 shows the HSU facility 200 receiving a particular hint from the

host device 102 for a selected application referred to herein as "Application X".

The hint may identify the application by name or other identifier, or may simply be

a signal to the HSU facility 200 that a special data operation is about to take place

and a data collection operation should be initiated. The hint may also provide

other types of information that may be useful to the system, such as size of the data

set, a duration during which the application is expected to be used, future

scheduled times/dates for the application to be run again, etc.

In response to the hint, the HSU facility 200 may operate to generate an

activity log 292 which records host-initiated data access activity that occurs after

receipt of the hint. As desired, a secondary timer 294 may signal an elapsed time

duration during which the data will be accumulated in the activity log 292. This

duration may form part of the hint supplied by the host, or it may use a default

value, such as 3.0 hours.

During the activity accumulation interval, the HSU facility 200 will operate

as described above to generate winners and losers during each epoch interval, place

such into the history pipeline, and make upgrade and downgrade migrations to

optimize system performance. In some embodiments, the HSU facility will record

these upgrades and downgrades into the activity log, including when and in what

sequence the data were moved in or out of the fast pool, how long each sheet

stayed in the pool, and so on.



In other embodiments, the HSU facility more generally captures a complete

sequence of data accesses that occurred during the activity accumulation interval,

including accesses for data that were not migrated. It will be appreciated that the

amount and type of data accumulated during the activity accumulation interval will

vary depending on the requirements of a given application.

At the conclusion of the activity accumulation interval the HSU facility 200

may operate to store the activity log 292 in a suitable memory location, such as in

the slow pool 164 of the array 108. In this way, a data exchange record is retained

of system performance that was encountered responsive to the hint that initiated

the data collection operation.

Thereafter, at a future date/time the HSU facility 200 may detect a re-

execution of the selected application. This can be carried out in a number of ways.

In some embodiments, the user simply sends another hint to the HSU facility that it

is re-executing the previously characterized application.

In other embodiments, the HSU facility itself recognizes that the

migrations being performed mirror (completely if not substantially) what

migrations were previously recorded in the activity log. Regardless, once the HSU

facility 200 becomes aware that the application is being re-executed, it can quickly

override existing migration decisions and instead commence the loading of the hot

data sheets to the fast pool of memory in the sequence indicated by the activity log

292.

FIG. 4 shows a flow chart for an APPLICATION PROFILING routine

300 that illustrates these steps. At step 302, the HSU facility receives a hint that a

selected application is about to be executed. The hint can be supplied by the host

device 102 or by another component of the system 100. Preferably, the hint will

identify the name of the selected application to enable the controller to perform a

search for a previously generated activity log 292 for the selected application.

At step 304, the HSU begins migrating data based on a previous

characterization of the application identified at step 302 as set forth by the

associated activity log. This will involve the loading of some or all of the hot data

from the selected application to the hot pool. If this is the first time for the selected

application to be characterized, no activity log will have been previously created

and so this step will be skipped.



Normal HSU operation to identify and characterize hot data is concurrently

carried out at step 306. This operation will take place in accordance with the flow

of FIG. 12 discussed above. The concurrent operation of normal HSU

characterization will allow the system to adaptively adjust to changes in the

loading required by the application, and will tend to reduce sub-optimal migrations

based on changes since the most recent characterization of the application.

The concurrent operation of normal HSU profiling will also ensure that

other, concurrently executed applications (if any) are not automatically overlooked

with regard to migration operations, but can still have data migrated to the hot pool

for load balancing. As desired, the hint transmitted in step 302 can include a

priority indication that limits migrations just to data sets associated with the

selected application and prevents migrations from data sets not associated with the

application. Of course, this would generally require an identification of the data

sets that are associated with the selected data set, but this can be achieved in a

number of ways including through the previously generated activity log.

At step 308, a second hint can be received by the HSU that indicates that

the selected application from step 302 has concluded operation. This allows the

HSU to store the accumulated activity log for the application at step 310 in

preparation for a future re-execution of the log. The operation during step 310 can

be viewed as a rationalization of the activity log so that new upgrades and

downgrades are added to the existing log information, and redundant upgrades and

downgrades are discarded. For example, if a sheet was upgraded but never used

during the most recent run, it can be removed from the log.

This adaptive monitoring and updating of the activity log will ensure that,

over time, the activity log for the selected application remains a current and

accurate characterization of the data sets used thereby.

When loading the activity log information for a given application, the

amount of data associated with the application will be less than the available data

capacity of the fast pool (e.g., SSD memory), in which case all of the upgraded

data can be moved to the fast pool as quickly as is convenient (e.g., within the first

10 minutes or so after detection of the application). In other instances, the SSD

memory may not necessarily accommodate all of the high interest data at the same

time. Under these circumstances, the HSU facility 200 can move the data sheets to



the fast pool (and downgrade previously upgraded sheets) in the sequence set forth

by the activity log in anticipation of the use of the data by the host.

It will now be appreciated that the various embodiments discussed herein

can present benefits over the prior art, such as the efficient selection of candidates

for migration between slow and fast memory pools based on return on investment

(ROI) evaluation of the costs associated with such migration. The use of

accumulated IO counts over each epoch allows the data handling requirements of

the system to be simplified, and enables the HSU facility to focus in on those

distributed data sets that are most promising for upgrade and/or downgrade. The

use of weighted IO counts advantageously allows the total cost of a migration to be

taken into account in terms of actual system resources that need to be expended,

and the filtering out of sequential counts ensures that random IO data are more

likely to be placed into the fast pool.

The use of a history pipeline, while not necessarily required, further

advantageously improves the likelihood that final migration decisions are made for

data that will tend to have IO host interest levels that are greater than the data

being replaced. Moreover, the approaches set forth herein allow the actual costs,

and improvements in performance, to be quantified.

Recording a profile on an application basis provides further advantages in

that the highest interest data can be subsequently moved to the fast pool in

anticipation for use by the host or other system components.

It will be appreciated that traditional data migration capabilities were often

designed to operate in environments where one goal was to reduce the cost of the

overall storage system by utilizing cheaper media (slower HDDs, tapes, etc.) to

hold data that was accessed relatively infrequently. To determine if data was

accessed infrequently, these data migration capabilities might gather access

statistics for hours or days, and then plan a set of data migrations that would take

place over subsequent hours or days.

The various embodiments presented herein employ sophisticated I/O

filtering techniques and decision criteria, enabling a data migration capability that

detects and reacts to changes in the overall I/O workload presented to the storage

system in real time and quickly enough to begin improving the performance of a

newly executed application within seconds or minutes of its inception, without the



risk of degrading overall storage performance via unnecessary or counter¬

productive data migrations ("trashing").

While the various embodiments discussed herein have been directed to a

distributed data storage system that uses a data storage array of SSDs and HDDs to

form fast and slow memory pools, it will be appreciated that this is merely for

purposes of presenting an exemplary embodiment. The various embodiments can

readily be adapted for use in other types of memory spaces having a relatively

faster 10 memory response in some locations and a relatively lower 10 memory

response in other locations.

It is to be understood that even though numerous characteristics and

advantages of various embodiments of the present invention have been set forth in

the foregoing description, together with details of the structure and function of

various embodiments of the invention, this detailed description is illustrative only,

and changes may be made in detail, especially in matters of structure and

arrangements of parts within the principles of the present invention to the full

extent indicated by the broad general meaning of the terms in which the appended

claims are expressed. For example, the particular elements may vary depending on

the particular application without departing from the spirit and scope of the present

invention.



Claims:

1. An apparatus comprising a storage array of independent data

storage devices that form a fast pool and a slow pool of said devices, and a

controller which migrates a distributed data set stored across a first plurality of the

devices in the slow poo] to a second plurality of said devices in the fast pool

responsive to a hint that a selected application is about to be executed that utilizes

the distributed data set and to a return on investment (ROI) determination that an

estimated cost of said migration will be outweighed by an overall improved data

transfer capacity of the storage array over a predetermined minimum payback

period of time.

2. The apparatus of claim 1, in which the controller receives the hint as

a signal transmitted to the controller by a host device that identifies a name of the

application prior to a host request for a transfer of the selected application from the

array to the host.

3. The apparatus of claim 1, in which the selected application is

executed a first time during which the controller carries out said ROI

determination, wherein the selected application is subsequently executed a second

time during which the controller carries out said migration of the distributed data

set, and wherein the controller receives the hint between the first time and the

second time the selected application is executed.

4. The apparatus of claim 3, in which the controller makes the ROI

determination in relation to an accumulated count of user-initiated accesses of the

distributed data set over a predetermined epoch interval and the estimated cost to

migrate said data set from the slow pool to the fast pool.

5. The apparatus of claim 4, in which the ROI determination is further

made in relation to a predetermined future payback period over which estimated

improvements in overall data transfer rates with the array as a result of said



migration outweigh the estimated cost to carry out said migration at the beginning

of said payback period.

6. The apparatus of claim 1, in which the controller further forms a

history pipeline of migration candidates that each exhibit ROI determination values

that exceed a predetermined ROI threshold over each of a succession of

consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

7. The apparatus of claim 1, in which the controller accumulates use

statistics associated with the selected application, receives a second hint that

indicates that execution of the selected application has concluded, and stores in

memory an activity log based on the selected application use statistics.

8. An apparatus comprising:

a storage array of independent data storage devices that form a fast pool

and a slow pool of said devices; and

a controller adapted to, responsive to receipt of a first hint that a selected

application is about to be executed a first time, makes a return on

investment (ROI) determination with regard to a requested

distributed data set which forms a part of the selected application

and which is stored across a first plurality of the devices in the slow

pool, said ROI determination indicating that a cost of migrating the

distributed data set to a second plurality of said devices in the fast

pool will be outweighed by an overall improved data transfer

capacity of the storage array over a predetermined minimum

payback period of time; wherein

the controller is further adapted to, responsive to the ROI determination and

to receipt of a second hint that the selected application is about to be

executed a second time subsequent to the first time, migrates the

distributed data set to the second plurality of said devices in the fast

pool.



9. The apparatus of claim 8, in which the controller receives the first

and second hints as signals transmitted to the controller by a host device, said

signals each identifying the selected application by name and received prior to a

host request for a transfer of the selected application from the array to the host

during the respective first and second executions of the selected application.

10. The apparatus of claim 8, in which the controller makes the ROI

determination in relation to an accumulated count of user-initiated accesses of the

distributed data set over a predetermined epoch interval and the estimated cost to

migrate said data set from the slow pool to the fast pool.

11. The apparatus of claim 10, in which the ROI determination is

further made in relation to a predetermined future payback period over which

estimated improvements in overall data transfer rates with the array as a result of

said migration outweigh the estimated cost to carry out said migration at the

beginning of said payback period.

1 . The apparatus of claim 10, in which the controller further forms a

history pipeline of migration candidates that each exhibit ROI determination values

that exceed a predetermined ROI threshold over each of a succession of

consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

13. The apparatus of claim 8, in which the controller stores an activity

log in a memory which accumulates use statistics of data sets during the first

execution of the selected application, and in which the controller uses the activity

log during the second execution of the selected application to pre-load said data

sets to the hot pool prior to a host request for said data sets during said second

execution.

14. A method comprising:

arranging a distributed data storage array of data storage devices to

respectively form a fast pool and a slow pool of said devices;



receiving a hint that a selected application is about to be executed; and

migrating a selected distributed data set stored across a first plurality of

said devices in the slow pool to a second plurality of said devices in

the fast pool responsive to said hint and responsive to a return on

investment ( OI) determination that a cost associated with said

migration is justified by an overall improved data transfer capacity

of the storage array over a predetermined minimum payback period

of time.

15. The method of claim 14, further comprising:

recording migrations of data to the fast pool over an activity period in an

activity log in a memory space during a previous execution of the

selected application, said recorded migrations including a first

migration of the selected distributed data set to said fast pool; and

using the activity log to migrate the selected distributed data set during the

migration step.

16. The method of claim 14, in which the ROI determination is made in

relation to an accumulated count of user-initiated accesses of the selected

distributed data set over a predetermined epoch interval and an estimated cost to

migrate said data set from the slow pool to the fast pool.

17. The method of claim 16, further comprising:

establishing a succession of epoch intervals each having a common

predetermined duration;

accumulating respective 10 access counts for various distributed data sets

stored in the slow pool for each epoch interval; and

placing selected ones of said various distributed data sets having ROI

determination values that exceed a predetermined threshold into a

history pipeline.



18. A method comprising:

arranging a distributed data storage array of data storage devices to

respectively form a fast pool and a slow pool of said devices;

storing a selected distributed data set across a first plurality of said devices

in the slow pool;

receiving a first hint that a selected application stored in the array is about

to be executed a first time, the selected application including the

selected distributed data set;

recording migrations of data to the fast pool over an activity period

immediately following receipt of the first hint in an activity log in a

memory space, said migrations including a first migration of the

selected distributed data set to said fast pool based on a return on

investment (ROI) determination;

returning the selected distributed data set back to the slow pool at a

conclusion of the first execution of the selected application;

subsequently receiving a second hint that the selected application is about

to be executed a second time; and

performing a subsequent, second migration of the distributed data set from

the slow pool to the fast pool prior to a user-initiated access request

for said data set during said second accessing of the selected

operation responsive to the activity log and the second hint.

19. The method of claim 1 , in which the ROI determination associated

with the first migration of the data set is performed in relation to an accumulated

count of user-initiated accesses of the selected data set over a predetermined epoch

interval and an estimated cost to migrate said data set from the slow pool to the fast

pool.

20. The method of claim 19, in which the ROI determination is further

made in relation to a predetermined future payback period over which estimated

improvements in overall data transfer rates with the array as a result of said

migration outweigh the estimated cost to carry out said migration at the beginning

of said payback period.



21. The method of claim 19, in which the controller further forms a

history pipeline of migration candidates that each exhibit ROI determination values

that exceed a predetermined ROI threshold over each of a succession of

consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

22. The method of claim 18, in which the fast memory pool of the data

storage array is formed from a first plurality of solid-state drives (SSDs) each

comprising a non-volatile solid-state array of memory cells, the slow memory pool

of the data storage array is formed from a second plurality of hard disc drives

(HDDs) each comprising at least one rotatable data storage medium, and the ROI

determination is based on an estimated cost to carry out said migration which

includes an estimated time required to access the selected data set from the HDDs

and transfer said data set to a controller cache memory in preparation for

subsequent transfer to said SSDs.
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