w 2213/8637 A 1[I IV 000 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(29) World Intellectual Property

Or ganization é e T e
—

~

International Bureau /) .
."/))/ (10) International Publication Number
(43) International Publication Date —/ WO 2013/086037 Al
13 June 2013 (13.06.2013) WiPO | PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 12/02 (2006.01) kind d national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(21) International Application Number:
PCT/US20 12/0680 17

(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
5 December 2012 (05.12.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- _ ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, D, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: ZM, ZW.

13/312,775 6 December 201 1 (06.12.201 1) us _ o
(84) Designated States (unless otherwise indicated, for every
(71) Applicant: XIOTECH CORPORATION [US/US]; 9950 kind d regional protection available): ARIPO (BW, GH,
Federal Drive, Suite 100, Colorado Springs, CO 80921 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, Tz,
(US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(72) Inventors. LARY, Richard, Franklin; 1650 Summit
Point Court, Colorado Springs, CO 80919 (US). MCDON-=
ALD, James; 75 Cooden Drive, Bexhill-on-Sea, East Sus-
sex TN39 3AN (GB). HAGEMAN, Keith; 9107 Lizard
Rock Trail, Colorado Springs, CO 80924 (US). ML, MR, NE, SN, TD, TG).

(74) Agents MCCARTHY, Randall, K. et a; Hall Estill ar- Fublished:
torney a Law, 100 North Broadway, Suite 2900, Ok- — With international search report (Art. 21(3))
lahoma City, OK 73102 (US).

(54) Title: APPLICATION PROFILING IN A DATA STORAGE ARRAY

(57) Abstract: Method (300) and apparatus
300 (200) for application profiling in amulti- device

data storage array (108). In accordance with

APPLICATION various embodiments, a storage array (108) is

PROFILING formed of independent data storage devices (1

14) that form a fast pool (162) and a slow pool

Y 802 (164) of said devices, such as solid-state drives

RECEIVE HINT THAT SELECTED APPLICATION IS (SSDs) (130) and hard disc drives (HDDs)
ABOUT TO BE EXECUTED (128). A controller (1 18, 200) is adapted to mi-

v /304 grate (304) a distributed data set (1 10) stored

across afirst plurality of the devices in the slow

MIGRATE DATA BASED ON A PREVIOUS pool to a second plurality of said devices in the

CHARACTERIZATION OF THE

SELECTED APPLICATION fast pool. The controller carries out the migra-

tion responsive to a hint (302) that a selected

v o 306 application is about to be executed that utilizes

CONCURRENT HSU FACULTY OPERATION J the distributed data set, and responsive to are-
turn on investment (ROI) determination (238)

v 308 that an estimated cost of said migration will be

RECEIVE SECOND HINT THAT APPLICATION IS outweighed by an overall improved data transfer
CONCLUDED capacity of the storage array over a predeter-

210 mined minimum payback period of time.

Y

PERFORM OVERRIDE MIGRATION TO FAST
POOL OF APPLICATION DATA FIG. 14

10

15

20

25

30

35

WO 2013/086037

APPLICATION PROFILING IN A DATA STORAGE ARRAY

Background
Distributed data storage systems can be used to efficiently manage large

volumes of data in awide area network (WAN) or other network environment.
Such systems may include an array of data storage devices that are arranged to
form amass storage memory space.

It is common to provide such systems with data migration capabilities.
Data having a higher level of host interest may be relocated to a portion of the
storage array capable of sustaining higher overal datatransfer rates, while datain
which the host is less interested may be moved to a location capable of sustaining
lower overall datatransfer rates. This allows the system to maintain ahigh 10
(input/output) data rate while adapting to different user workloads.

With continued demands for ever increased levels of storage capacity and
performance, there remains an ongoing need for improvements in the manner in
which storage devices in such arrays are operationally managed. It isto these and
other improvements that preferred embodiments of the present invention are

generaly directed.

Summary
Various embodiments of the present invention are generally directed to an

apparatus and method for application profiling in amulti-device data storage array.

In accordance with various embodiments, a storage array of independent
data storage devices is arranged to form afast pool and a slow pool of said devices.
A controller is adapted to migrate a distributed data set stored across afirst
plurality of the devices in the slow pool to a second plurality of said devices in the
fast pool.

The controller carries out the migration responsive to a hint that a selected
application is about to be executed that utilizes the distributed data set, and
responsive to areturn on investment (ROI) determination that an estimated cost of
said migration will be outweighed by an overall improved data transfer capacity of

the storage array over a predetermined minimum payback period of time.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

The migration is carried out in anticipation of a user-initiated request for
the data set during the execution of the selected application. In some
embodiments, the fast pool is formed from aplurality of solid-state drives (SSDs)
and the slow pooal is formed from aplurality of hard disc drives (HDD).

These and various other features and advantages which characterize the
various embodiments presented herein will become apparent upon reading the

following detailed description in view of the associated drawings.

Brief Description of the Drawings

FIG. 1generdly illustrates a distributed data storage system constructed
and operated in accordance with preferred embodiments of the present invention.

FIG. 2 isafunctional representation of the use of so-called redundant array
of inexpensive discs (RAID) storage in the storage array of FIG. 1.

FIG. 3 provides ageneral block diagram of the controller and the storage
array of FIG. 1lin accordance with some embodiments.

FIG. 4 provides afunctional representation of ahard disc drive (HDD) of
FIG. 3.

FIG. 5 represents a solid state drive (SSD) of FIG. 3.

FIG. 6 depicts the overall memory space of the storage array and the
management of datatherein in accordance with various embodiments.

FIG. 7isafunctional block diagram of portions of the controller of FIG. 3
operated in accordance with some embodiments to carry out the upgrade and
downgrade migrations depicted in FIG. 6.

FIG. 8 shows an exemplary format for a sheet activity array (table)
generated and maintained by the hot sheet upgrade (HSU) facility of FIG. 7.

FIG. 9isaflow chart for an UPGRADE ROl DETERMINATION routine
generadly illustrative of steps carried out in accordance with various embodiments
of the present invention.

FIG. 10 shows aflow chart for aHSU FACILITY OPERATION routine
carried out in accordance with various embodiments.

FIG. 11isatime segquence illustrating the use of a history pipeline during
the operation of the routine of FIG. 10.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

FIG. 12 isafunctional block representation of the HSU facility of FIG. 7
further operative responsive to an application profiling hint.
FIG. 13 isan APPLICATION PROFILING routine generaly illustrative of

steps carried out in accordance with various embodiments.

Detailed Description

FIG. 1shows an exemplary data processing system 100. The system 100 is
shown in FIG. 1to include ahost device 102, which may be a personal computer
(PC) or other device utilized by auser of the system. The host device 102
communicates across anetwork fabric 104 with acontroller 106, which interfaces
with adata storage array 108 to store and retrieve user data.

It will be appreciated that the representation of the system 100 in FIG. 1lis
highly simplified, asany number of additional features and components may be
incorporated into the system as desired. Alternative configurations may include
additional user host devices; multiple types and hierarchies of networks; the use of
redundant controllers to facilitate fail over and fail back redundancy capabilities;
multiple types and configurations of data storage arrays within the system, and so
on.

The data storage array 108 is capable of storing data in aRAID (redundant
array of independent discs) configuration. Aswill be recognized, RAID storage
involves distributing a set of data across multiple independent data storage devices
to enhance data integrity and system reliability. A number of RAID conventions
are known in the art, such as but not limited to RAID-0 (which utilizes block level
striping across multiple storage devices), RAID-1 (data mirroring), RAID-5 (data
striping with distributed parity) and RAID-6 (data striping with double distributed
parity).

FIG. 2 shows an exemplary RAID configuration in which a distributed data
set 110 is stored as stripes of data 112 across various individual, independent data
storage devices 114. Each stripe 112 stores aportion of the user data in the RAID
set, aswell as parity codes that allow the data set contents to be recovered in the

event of failure of one or more data storage devices 1 14.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

While not limiting, in some embodiments the data in the storage array 108
may be arranged using agrid system such as in accordance with the so-called
RAID grid allocation system (RAGS). Generally, any particular collection of
blocks of data belonging to the same distributed data set, such asthe data set 110 in
FIG. 2, can be assigned to aparticular location within the grid system as a "sheet"
of data.

A "book" can be defined as a grouping of sheets and may be constructed
from multiple contiguous sets of blocks from different devices 114. The sheet size
may vary depending on the system configuration, including RAID type. For
purposes of providing a concrete example, a sheet size on the order of 240 MB of
combined data and parity may betypical.

FIG. 3isafunctiona block diagram of the controller 106 and the storage
array 108 of FIG. 1lin accordance with some embodiments. It will be appreciated
that the diagram of FIG. 3 is merely exemplary, asany number of different types
and configurations of controllers and storage arrays can be utilized.

The controller 106 includes amain data pathway 116 to facilitate transfer
of write data from the host device 102 to the storage array 108, and to facilitate the
return of previously stored readback data from the storage array 108 to the host
device 102. While the pathway 116 is shown as asingle contiguous bus, it will be
appreciated that this pathway, or data pipeline, can be formed from a number of
separate internal and external pathways within the controller, including PCl busses
and cross-point switches.

One or more policy processors 118, represented by a single functional
block 118, provide various control functions for the controller 106. The
processor(s) 118 may berealized as one or more programmable processors with
associated programming in memory, or in hardware. A fabric interface (I/F) 120
handles communication functions with the fabric 104, and an array I/F 122 directs
communications with the storage array 108.

A controller cache memory 126 represents a local volatile (e.g., DRAM)
and/or non-volatile (e.g. Flash memory or battery-backed DRAM) memory space
configured to temporarily store data utilized by the controller 106 during operation.
The data stored in the cache 126 can include readback data retrieved from the
storage array 108 for subsequent transfer to the host device 102, writeback data

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

supplied by the host device for subsequent writing to the storage array 108, a
metadata table indicative of the data structure of the array, programming used by
the policy processors, temporary calculation values, and so on.

In apreferred embodiment, the storage array 108 of FIG. 3 includes a
number M of hard disc drives (HDDs) 128 and anumber N of solid-state drives
(SSDs) 130. The HDDs 128 are denoted as HDD-1 to HDD-M, and the SSDs 130
are denoted as SSD-1 to SSD-N. The numbers M and N can take any respective
values, athough it is contemplated in many cases that M will be significantly
greater than N.

An exemplary HDD 128 is shown in FIG. 4. The HDD 128 includes one or
more rotatable media 132 (e.g., magnetic discs) having recording surfaces that are
accessed by a corresponding array of read/write datatransducers 134. The
transducers 134 are moved by arotary actuator assembly 136. During operation,
the actuator assembly 136 pivots about a pivot axis 138 responsive to inputs from a
closed loop servo control system 140 to align a selected transducer 134 with a
concentric track (not separately shown) on an associated media surface.

The HDD 128 further includes data read/write (R/W) channel electronics
142, alocal cache memory 144 and an HDD controller 146. The R/W channel 142
conditions data for writing to the disc by the transducers 134, and reconstructs
previously stored data from readback signals transduced by the transducers. The
cache memory 144 temporarily stores data during transfer operations between the
controller 106 and the media 132, and the HDD controller 146 provides top level
communications and control for the drive 128. The total available data capacity of
the HDD 128 may be onthe order of around one terabyte, TB (102 bytes),
although other capacities can be used.

FIG. 5 shows an exemplary SSD 130 from FIG. 3. The SSD 130 includes a
non-volatile solid state memory array 148. The array 148 is contemplated as
constituting an array of flash memory cells, although other forms of non-volatile
memory can be used asdesired. The array 148 isarranged as a series of erasure
blocks 150, each constituting the smallest increment size of the memory array that
may be subjected to an erasure operation at a given time. Aswill be recognized,
flash memory cells require an erasure operation prior to being rewritten with new

data. Each time an updated version of a data set is written to the array 148, the

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

data will be written to anew location, such as amost recently allocated erasure
block 150, and any older versions of the data set in the array will be marked for
erasure (garbage collection).

The SSD 130 further includes R/W channel electronics 152, a cache
memory 154 and an SSD controller 156. Aswith the HDD in FIG. 4, the SSD
R/W channel 152 operates to direct the reading of data from the array 148 and the
writing of datato the array. The SSD cache 154 temporarily stores data and other
information, and the SSD controller 156 provides top level communication and
control functions. The total available data capacity of the SSD 130 may be on the
order of around 0.5 TB, athough other data capacities can be used.

Aswill be recognized by those having skill in the art, avariety of HDD and
SSD configurations are presently commercially available in the marketplace for
incorporation into data storage arrays. At present, HDDs tend to be generally less
expensive than SSDs on a per unit cost basis (e.g., dollars per gigabyte of data
storage capacity, or $/GB), potentially by an order of magnitude or more. On the
other hand, SSDs enjoy a significant advantage over HDDs in terms of 1/O
performance (e.g., I/O operations per second, or IOPS), potentially on the order of
1-2 orders of magnitude or more.

The performance advantages of SSDs over HDDs arise for a number of
reasons, including the fact that HDDs can be subject to significant seek and media
rotation latencies during operation. Inthe HDD 128, accessing any particular set
of data stored to the rotatable media 132 may require a seek time delay to move
and settle the associated transducer 134 onto the appropriate track, aswell asa
rotational time delay while the device waits for the data to rotate around to the data
transducer. By contrast, all of the data stored in the SSD 130 can be accessed at
substantially the same 10 rate, irrespective of where the data are stored within the
solid-state memory array 148.

The mass storage array 108 of FIG. 3 incorporates both SSDs 130 and
HDDs 128 in order to take advantage of the benefits offered by each type of
device. The combined data storage capacity of the HDDs and the SSDs forms an
overall memory space 160 for the system 100, as represented in FIG. 6.
Distributed data sets (sheets) may be stored in either the HDDs 128 or the SSDs

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

130, and if managed correctly in accordance with the present discussion, where the
data are actually stored may be largely transparent to the system user.

It is apparent that the memory space 160 has an overall storage capacity in
relation to the individual data capacities of the HDDs 128 and the SSDs 130, as
well asthe total numbers M and N of these respective units. An exemplary overall
data storage capacity of the array memory space may be on the order of several
hundred TB or more. The HDDs and SSDs may be physically grouped into
smaller blocks of devices (e.g., "storage bricks' of 20 devices each) that are then
accumulated in sufficient quantities to form the overall desired capacity of the
memory space 160.

The memory space 160 includes an SSD memory space 162, which isthe
combined available memory of al of the N SSDs, and an HDD memory space 164,
which is the combined available memory of al of the M HDDs. The SSD memory
space 162 isreferred to herein asfast (F) memory or afast pool, and the HDD
memory space 164 isreferred to as slow (S) memory or aslow pool.

While the SSD space 162 will generally have a substantially uniform SSD
data transfer rate irrespective of where the data sets are stored in the respective
memory arrays 148 (see FIG. 5), such is not necessarily true for the HDD storage
space 164. Rather, it is contemplated that the HDDs will employ constant angular
velocity (CAV) and zone based recording (ZBR) techniques, so that data stored
near the outermost diameters (ODs) of the rotatable media 132 will have a
sustainable data transfer rate that is several times higher (e.g., 2X) the data transfer
rate for data stored near the innermost diameters (IDs) of the media 132.

In accordance with various embodiments, the system carries out the
upgrades and downgrades based on the accumulation of data access statistics, such
asthrough the use of a data history pipeline of highest and lowest interest data sets
over a sequence of epoch intervals. Over time, access patterns can be identified
such aswhen a particular application has been requested by the host device 102,
which is found to result in a particular sequence of requests for particular sets of
data

When the system detects a subsequent launching of that application, it can
quickly operate to move those data sets that may be requested in the near future to
the faster SSD memory space 162 (fast pool) in anticipation of such usage.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

Moreover, the access patterns can further inform the system with regard to the
expected dwell time for adata set recently moved to the fast pool; that is, whether
the data set will remain of high interest to the host and continue to be utilized
multiple times, or whether the host interest will fade after a certain point, making it
of greater advantage to downgrade the recently requested data from the fast pool
back tothe slow pool of memory (e.g., HDDs 128).

In making these migration decisions, adetermination can be made that an
estimated cost of a particular migration will be outweighed by an overall improved
data transfer capacity of the storage array over a predetermined minimum payback
period of time.

The upgrades and downgrades are carried out using a mechanism referred
to herein asahot sheet upgrade (HSU) utility. The HSU utility employs areturn-
on-investment (ROI) scheme that evaluates the benefits of various proposed data
migrations in terms of the costs associated with the migrations. The HSU tility is
preferably incorporated into the functionality of the controller 106, although such
isnot necessarily limiting.

The migrations carried out by the HSU facility areto different locations
within the storage array 108. This is in contrast to the movement of data from the
storage array 108 to the DRAM cache 126 of the controller 106. It will be
apparent that the migration of data to the cache 126 can be viewed as being
essentially "free," in the sense that any data moved to the cache 126, whether as a
result of ahost write request or aread from the storage array, requires relatively
little cost to retain in the cache in terms of additional system bandwidth and other
resources.

No further 10 operations are required to retain read data in the cache 126
after the data have been transferred to the host. The 10 operations for speculative
data reads to transfer non-requested data (e.g. "read-ahead" data) to the cache 126
can be scheduled so asto not significantly impact the overall processor (CPU)
loading, since the speculative data may have spatial locality to data that has been
requested by the host. Thus, continuing to retain cached readback data in the
controller cache 126 adds substantially no additional cost to the system, apart from
the opportunity lost for cache hits on other data that could have been retained in the

cache.

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

It will further be apparent that any cached read data in the cache 126
constitutes a secondary copy of the data, since aprimary copy of the data remains
in the array location from which the data were pulled. The cached data can thus be
easily jettisoned from the cache by a simple overwrite operation with new data
without the need to move the datato a safe location. There is therefore essentially
no cost associated with removing cached read data from the cache.

By contrast, the movement of data within the array 108 between the SSD
memory space 162 and the HDD memory space 164 can entail significant costs in
terms of system resources. The movement of such data is carried out over the
same control and data paths used to control the array 108. The use of these control
and data paths to carry out a migration may interfere with the ability to satisfy on-
going user initiated data accesses, and can consume significant CPU cycles and
memory bandwidth. Such migrations will generaly employ the movement of
relatively large chunks of data, since keeping track of the locations of smaller
chunks of datawould tend to increase the complexity and size of the metadata
tables maintained by the controller.

It follows that migrating data between the HDD space 164 and the SSD
space 162 can incur significant costs in terms of CPU cycles, memory bandwidth,
back-end bandwidth and HDD bandwidth, over and above the cost of the user
access that stimulated the movement to begin with. The HSU facility of the
present disclosure operates to evaluate whether sufficient benefit, in terms of
improved system data transfer capacity over a selected payoff period, islikely to
be gained before initiating any such migrations. [f insufficient benefit can be
reasonably foreseen, then no migrations will be performed and the system will be
left as it is, dong with the knowledge that the current allocations between the SSD
and HDD space are sufficiently optimized.

FIG. 7 isablock diagram representation of relevant portions of the
controller 106. The various blocks in FIG. 7 may be redlized in software,
firmware, hardware or some combination thereof, and may form a part of the
policy processor functionality.

The aforementioned HSU (hot sheet upgrade) facility is represented by
block 200 in FIG. 7. The HSU facility 200 operates to make migration decisions
for various sheets in the array 108. The HSU facility 200 may be responsible for

10

15

20

25

30

WO 2013/086037

10

al of the sheets in the array, or for a subset of sheets, asrequired. In the latter
case, only portions of the fast and slow pools may be made available to the HSU
facility for sheet migrations.

As used herein, the term "sheet" will be broadly understood as a distributed
data set (e.g., aRAID set), orders of magnitude smaller in capacity than an HDD,
that is stored across multiple independent storage devices such asthe HDDs 128 or
the SSDs 130, as opposed to adata set that is wholly contained within a single data
storage device. This distinction will be appreciated because an individual device
such asthe HDDs 128 and SSDs 130 may have its own internal capabilities of
rearranging data to appropriate locations within itself, such asto different disc 132
surfaces/radii or different erasure blocks 150. These interna rearrangements are
carried out without "going outside" the device to consume system level resources,
and are therefore carried out in amanner that istransparent to other system
components such asthe controller 106. The actua resolution size of the
distributed set can be any suitable size, with the understanding that smaller sizes
will generally entail greater data collection and tracking requirements as compared
to relatively larger sizes.

The HSU facility 200 operates in response to inputs supplied by acache
manager block 202 and an epoch timer 204. The HSU facility 200 generates a
series of data structures that are used to govern the ROI evaluation and migration
process. These data structures may include a sheet activity array (table) 206 and an
upgrade sheet array (table) 208. The cache manager 202 supplies datato the HSU
facility 200 in the form of user-initiated 10 counts, and the epoch timer 204
supplies epoch timing indication signals to the HSU facility 200 at regular
intervals.

Asused herein, an "epoch” refers to an elapsed time interval during which
the HSU facility 200 collects data that indicates how much user-initiated back-end
IO is occurring to every sheet in the system. At the conclusion of each epoch, the
HSU facility 200 processes the data it has received and, based on that data and data
from previous epochs, makes amigration decision. The system then commences a
new epoch, during which the foregoing operations are repeated.

Epochs occur sequentially and each epoch has a common duration. This

duration may be settable by the user or a system administrator. An exemplary

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

11

epoch interval duration may be 20 seconds for each epoch, athough any suitable
duration can be used. In some embodiments, epoch durations range from as low as
around three (3) seconds to ashigh asfive (5) minutes or more. Values lower or
higher than these can be used. It has been found in some cases that epochs shorter
than about 3 seconds in length may lead to significant quantization errors, and
epochs longer than about 5 minutes may reduce the rate of adaptation to real
changes in 1/O patterns.

By way of illustration, assume the array 108 has atota of ten (10) 3.5 inch
form factor, 7200 RPM magnetic disc drives, which combined can store onthe
order of about 33,000 sheets of combined data and parity (of 240MB each) in the
available data pool (e.g., HDD memory space 164 in FIG. 6). Anexemplary 10
rate for this group of devices may be on the order of about 1600 10s per second
(IOPS). Using a 10 second epoch, the "average" sheet in the pool might
experience something on the order of about 1600/33,000=0.05 IOPS, or about 0.5
IOs over the duration of the epach.

A single small RAID-5 write may result in atotal of four (4) IOsto asingle
sheet of data. These additional 10s may include the need to read the existing
RAID set, recalculate various parity values, and rewrite the completed data set to
the devices. Based on raw |0 counts, this provides arate that is eight times the
average expected rate (e.g., 4 10sv. 0.5 10s). Thus, if the epoch interval istoo
short, asingle user-initiated access to a single sheet might look like a spike in
activity indicative of high host interest in the data, whereas in reality only one
actual access of the data was requested by the host.

The use of relatively longer epochs, combined with the use of other 10
filtering techniques to be discussed below, can filter out the "noise" associated with
individual 10s sothat a sustainable access pattern can be gleaned from the access
statistics. Epochs as disclosed herein also present an effective way to clear out the
accumulated 10 counts in situations where upwards of tens of thousands of sheets
(or more) of data are being tracked a the sametime.

It is contemplated that the epochs will be individually identified using a
sequentialy increasing count, referred to asthe epoch number (e.g., epoch 1, epoch
2, epoch 3, ...). The data structures 206, 208 maintained by the HSU facility 200
accumulate the sheet 1O counts on a per sheet basis, and also identify the

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

12

associated epoch number in which those counts were obtained. If the epoch
number in a particular entry for a particular sheet does not match the current epoch,
the sheet's |O count for the current epoch can be deemed to be zero (0) 10s, and the
next 10 to that sheet can operate to update the sheet's epoch number and clear its
count before updating the count with the current 10.

Tracking the epoch numbers also allows a differentiation to be made
between different "degrees of zero" for the existing 10 count. For example, a
mismatched epoch number in an entry at the end of an epoch means that there have
been "zero 10s for the last E epochs,” where E represents the size of the mismatch
in terms of elapsed epochs. This datamay be useful in selecting which data set to
downgrade.

Depending on the data structure configuration, it is contemplated that the
continuously incrementing epoch numbers can eventually "wrap around" (return to
zero) invalue. The effects of such wrap-arounds are benign. In aworst case
scenario, a sheet that hasn't received an 10 for a long time might theoretically be
selected as a possible upgrade candidate due to an epoch number wrap-around, but
will not be actually upgraded because of other filters in the HSU facility operation,
such asthe use of a history pipeline discussed below.

For reference, the use of a 16-bit epoch number combined with a 10 second
epoch duration would result in the epoch numbers being wrapped around
(returning to an initial 0 count) once per week. The use of a 24-bit epoch number
with a 10 second epoch duration would not result in awrap-around return to zero
until about five (5) years have passed. An appropriate size for the maximum epoch
number can betailored to meet system requirements.

The HSU facility 200 is generally configured to offload highest-interest
random back-end 10 operations from the HDD memory space 164 to the SSD
memory space 162, and vice versa. In at least some embodiments, the focus is
primarily on the migration of data subject to random accesses rather than
sequential accesses.

Random accesses are user-initiated accesses for sheets with nonsequential
logical and/or physical proximity, and are carried out to different, non-adjacent
locations in the array (e.g., non-related files used by different applications or

processes). Sequential accesses involvethe sequential transfer of datathat are in

10

15

20

25

30

WO 2013/086037

13

logical and/or physical proximity, such asthe streaming of alarge data set (e.g., a
large database or amovie, €tc.).

HDDs 128 are particularly suited to recovering sequential data in afast and
efficient manner, due to the short overhead processing time required to switch to
different transducers within a given cylinder and to carry out one-track seeksto
adjacent tracks on a selected media surface. The ratio of SSD to HDD transfer
rates for sequential 10 data may be on the order of about 3:1, so storing
sequentially accessed data in the SSDs only provides a marginaly higher data
transfer rate for the overal system. On the other hand, the ratio of SSD to HDD
transfer rates for random 10 data may be on the order of from about 25:1 to 100:1
or more. Thus, it makes sense to migrate random 1O data to the SSDs and to leave
sequentially accessed data in the HDDs.

Ancther advantage to ignoring sequentially accessed data for purposes of
migration to the SSDs isthat sequential 10s might tend to dominate the overall 10
counts since the requests can tend to hit the same sheet rapidly in succession, and
thereafter not hit it again. This might cause the HSU facility 200 to make exactly
the wrong decisions in terms of which sheet(s) to migrate to SSD, always moving
the data "one-step-behind” where it should be.

A variety of techniques can be used to filter out sequential 10 operations
from consideration by the HSU facility 200. In some embodiments, the cache
manager 202 is able to detect sequential 10 requests, and does not forward these
counts to the HSU facility 200. Because the cache manager 202 can be configured
to operate asthe primary requestor of data from the array 108, the cache manager
can easily detect when the observed order of requests for the virtual block
addresses (or other nomenclature for the requested data) indicates a sequential data
transfer.

In other embodiments, all of the raw 10 counts for user-initiated accesses
can be supplied by the cache manager 202 to the HSU facility 200, and the HSU
facility can operate to detect andjettison counts related to sequential accesses. Itis
noted that in either scheme, the 1O counts from the cache manager are preferably
limited to those specifically relating to user-initiated accesses, which means that
other background |10s such asused during RAID rebuilds, data scrubbing,

background and demand zeroing, and internal data reconfiguration, are ignored and

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

14

are not included in the accumulated statistics. These counts are usualy one-time
operations and are not directly indicative of host interest. However, it is possible
to include these counts in the accumulated statistics if desired.

In some embodiments, the cache manager 202 may issue its back-end 10s
asvirtual operations, which may be turned into multiple operations based on 10
type and RAID configuration. Asnoted above, a single write access of aRAID-5
sheet may result in atotal of 4 10s, which increases the total amount of processing
time and effort that has to be carried out by the respective storage devices in order
to store the data. If cache manager back-end 1/Os are virtual, each I0 count
received by the HSU facility 200 can be weighted by the HSU facility in terms of
the total overhead processing effort required to satisfy the request.

For example, al reads of data, no matter what the RAID configuration
thereof, can be assigned aweight of 1.0. A write operation of RAID-0 data may be
assigned aweight of 1.0. A RAID-1 write operation may be given aweight of 2.0.
A small RAID-5 write may have an assigned weight of 3.5. Asdesired, the size
(e.g., block or sector count) of aparticular 10 operation may betaken into account
in determining an overall weighted 10 count. Generally, the size of a given data
transfer has little effect on overall latency for both SSDs and HDDs, athough this
effect can become increasingly pronounced as the data 1/0O size increases. A
weighting compensation factor based on transfer size can be selected, such asa
value of about 0.2% per 1KB transferred after the first 4KB. So for example, a
RAID-5 write with 64KB of data might be given an assigned weight of 3.5 * 1.12
=3.0.

During system initialization, the HSU facility 200 in FIG. 7 scans the
existing array data structure and constructs the sheet activity array 206 and the
upgrade sheet array 208. The sheet activity array 206 serves to track sheet 10
activity and ownership, and may take aformat as shown in FIG. 8. In FIG. 8, each
sheet has an associated entry 210, such as Entry N for sheet N. Each entry 210
includes a number of fields including an epoch number field 212 which identifies
the epoch number for the most recent epoch in which at least one user initiated,
random 1O was carried out for that sheet. A fast sheet flag field 214 indicates
whether the sheet is currently located in fast memory (e.g., in the SSD memory
space 162). A fixed sheet flag field 216 indicates whether the sheet should remain

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

15

in afixed location and not be moved, such as a dedicated portion of the storage
array.

A sheet 10 count field 218 provides a count of "weighted 10s" for the
epoch identified in the epoch number field 212. An owner field 220 identifiesthe
logical user device (if any) that ownsthe sheet. A start address field 222 indicates
the beginning address (such as in terms of virtual block address, VBA) of the
sheet. A location field 224 identifies the location of the sheet in the storage array.

The upgrade sheet array 208 is arranged as a number of entries, with one
entry for each sheet in the fast portion of the storage array that has been made
available for management by the HSU facility 200. If a sheet has not been
alocated, the entry will beaNULL pointer. |If the sheet has been allocated and
upgraded, the entry in the table 208 can be used to point to the sheet's entry in the
table 206.

The HSU facility 200 uses areturn on investment (ROI) evaluation of the
collected, weighted 10 counts to determine whether to perform a migration.
Different calculations can be used depending on whether the migration only
involves an upgrade, or whether the migration involves both an upgrade and a
downgrade.

An upgrade-only migration means that there is available, hon-allocated
space in the SSD memory space 162 that could accommodate the addition of a
particular set of data, so that carrying out this upgrade would not result in the
displacement of any existing data inthe SSD memory space. An upgrade-
downgrade migration means that the upgraded data set that is moved to the SSD
memory space is going to require the displacement of an existing set of datafrom
the SSD memory space to the HDD memory space.

The costs associated with each of these migration types will be discussed in
turn. In some embodiments, the ROI evaluation of a potential upgrade-only

migration can be carried out in accordance with the following relation:

|OsPerHour(S) > CostToUpgrade(S * ROlhurdle 1)

where (S) indicates that the sheet under consideration is currently located in slow
(e.g., HDD) memory, 10sPerHour(S) is an extrapolation of an expected 10 rate for

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

16

the sheet over an hour elapsed time, CostToUpgrade(S) is avaue indicative of the
additional system resources necessary to upgrade the sheet of datato fast (e.g.,
SSD) memory, and ROlhurdle is athreshold (investment payoff) value. Thus,
relation (1) generally evaluates whether the expected 10 interest in the data, while
it remains in the slow pooal, is greater than the cost to upgrade the datato the fast
pool.

The I0sPerHour(S) value from equation (1) may be extrapolated as

follows:

|0sPerHour (S) = 10sInLastEpoch(S) * 3600/DurationOfLast Epoch 2

where 10sInLastEpoch(S) isthe weighted accumulated count of 1Os for the
associated sheet during the most recent epoch. The CostToUpgrade(S) value from

equation (1) can be determined as follows:

CostToUpgrade(S) = (AmountOflJser Data(S)/MigrationChunkSze) * (3)
RelativeMigrationl OCost

where AmountOfUserData(S) depends on the RAID organization of the sheet in
consideration and whether parity datais read from the sheet or regenerated by the
controller during the migration, and may be on the order of from about 120MB-
240MB.

MigrationChunkSize is a suitable I/O chunk size for migrating data, such as
1MB (megabyte or 106 bytes). The RelativeMigrationlOCost is avalue indicative
of the ratio of the time asingle HDD requires to read or write the
MigrationChunkSize to the time it takes to perform asmall (e.g. 4KB) random read
or write. The RelativeMigrationlOCost value can be a settable parameter, with a
suitable value being 3.0. This value can be empirically determined in relation to
the different operational characteristics of the fast and dow pools of memory.

The ROIhurdle value of relation (1) can be expressed in terms of a
percentage. In this context, an ROlhurdle value of 1.0 (100%) means that a
migration would bejustified only if the cost of the migration is projected to be paid

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

17

back within an hour. Other values would indicate other payback periods. for
example, an ROlhurdle value of 0.1 (10%) would require payback within 10 hours,
whereas an ROIlhurdle value of 30.0 (3000%) would require a payback within the
next two minutes. This value is settable by the user or system administrator, with
1.0 being the default value.

At the conclusion of a given epoch, the HSU facility 200 can evaluate a
particular sheet having an associated 10 count and determine whether it would be
advantageous to migrate that sheet from HDD to an available location in SSD. It
will be appreciated that the migration effort will require the use of significant
system resources to read the data out from the HDD memory space 164 tothe
controller cache 126 (see FIG. 3) and then to write the data from the cache 126 to
the SSD memory space 162. Because the system resources are tied up performing
this operation, these resources are not available for use in satisfying on-going user-
initiated requests. Hence, the initial transfer may result in atemporary decrease in
the then-observable average system 10 rate.

However, if a standard ROIhurdle value of 1.0 is used, it is expected that,
over the next hour, the overall average system 10 rate will actually be improved
over what would have otherwise been observed had the migration not taken place.
Longer and shorter payback periods can be readily implemented by changes in the
ROIlhurdle value. Alternatively, relation (1) can be used to calculate an actual
payback period (PaybackPeriod) for apotentia upgrade-only migration, as

follows:

PaybackPeriod = CostToUpgrade(S) / 10sPerHour (S 4

In this aternative case, the PaybackPeriod value could then be evaluated to
determine whether it is sufficiently short to warrant the migration.

Asnoted above, an upgrade-downgrade migration involves the same steps
as an upgrade-only migration, plus additional 10sto read out the displaced data
from the SSD space and to write the displaced datato the HDD space.

The ROI determinations for upgrade-downgrade migrations can be carried

out as follows:

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

18

(10sPerHour (S) - 10sPerHour(F)) > (CostToUpgrade(S) + (5)
CostToDowngrade(F)) * ROlhurdle

where 10sPerHour(S), CostToUpgrade(S) and ROlhurdle are calculated as set
forth above.

|OsPerHour(F) is extrapolated in a manner similar as in equation (2) above
to evaluate how many expected 10s would be for the data being moved from the
SSD fast (F) memory. CostToDowngrade(F) is afactor indicative of the additional
costs associated with placement of the displaced data into the slower HDD
memory, and may be determined similarly as set forth for equation (3) above.

One difference between the CostToUpgrade(S) value and the
CostToDowngrade(F) value is that the CostToDowngrade(F) generally may not
depend on the RAID organization of the data, since all sheet migrations may be
configured to write a full 240MB of combined data and parity to the target shest,
and the target sheet in a downgrade will beto the dow (S) pool of memory.

It will be appreciated that the foregoing relations are merely exemplary,
and that other ways to evaluate the costs of migrations will readily occur to the
skilled artisan in view of the present disclosure. Generally, one purpose in
migrating datato the SSD memory space isto endeavor to reduce, as much as
possible, the amount of latency time associated with the slower HDD memory
space. That is, there is not only abenefit to moving higher host interest datato the
SSD, but to the extent this is successful, the observed HDD latency may improve
since the 1/O rate to the dlow pool will bereduced. Sincethe slow poal is often the
bottleneck, system performance will be improved.

The above relations are all first order approximations. More detailed
models can take into account specific times or operations required by the SSDs
and/or the HDDs. For example, the various ROI analyses can take into account
whether downgraded data is to be stored at arelatively faster location on the
rotatable media (e.g., hear the ODSs) or to be stored at arelatively slower location
on the rotatable media (e.g., near the IDs). Similarly, the decision to upgrade from
HDD to SDD can also evaluate whether the candidate data is near the OD or ID of
the discs. If the fast devices are only somewhat faster than the slow devices (e.g.

from 2X to 4X faster), the impact of references to the upgraded data, and the

10

15

20

25

30

WO 2013/086037

19

impact of the upgrade operation itself, on the fast devices should also be taken into
account; this is not needed if for example, SSDs are used asthe fast devices.
Finally, data stored on HDD that is found to not warrant an upgrade to SSD might
nevertheless warrant arelocation, based on the HSU utility findings, of the datato
afaster location within the HDDs, such as an available location nearer the ODs in
adifferent set of the HDDs.

FIG. 9 shows aflow chart for an UPGRADE INITIAL ROI
DETERMINATION routine 230, generaly illustrative of steps carried out in
accordance with the foregoing discussion. The routine 230 of FIG. 9 represents
steps that are carried out by the HSU facility 200 during (or immediately after)
each epoch interval.

At step 232, anew epoch isinitiated with a selected duration such as 20
seconds. This can be carried out as signaled by the epoch timer 204 in FIG. 7. At
step 234, the HSU utility 200 begins to accumulate user-initiated random access 1O
counts for sheets accessed during the associated epoch, responsive to inputs
supplied by the cache manager 202 (FIG. 7). The counts are preferably weighted
by the cache manager or by the HSU utility to account for various factors such as
RAID configuration and data block size. This data collection continues until the
end of the epoch at step 236.

The HSU facility next calculates the IOPSperHour(S) and
CostToUpgrade(S) of the sheets in the HDD memory space that had the highest
count values at step 238. These values are checked against the ROI threshold
using equation (1) at step 240. Each sheet having a payback greater than the ROI
threshold is declared a "winner" asindicated at 242. It is possible that no winners
will emerge from a given epoch, and it is also possible that multiple winners may
be declared. The HSU facility can select the single best winner, or may select upto
X winners (e.g., X=4), with those winners being the sheets with the highest 1/0
counts that met the ROI threshold.

Once the winner or winners have been selected, the HSU facility 200
continues at step 244 to identify one or more "losers,”" asindicated at 246. The
losers are the sheets of data stored in the SSD memory space 162 that have the
lowest |O activity. The tables 206, 208 may be searched to find the sheets with the

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

20

lowest 1/0O counts this epoch, or (if multiple sheets have zero 1/Os this epoch) those
that have gone the longest without 1O activity in order to find the worst losers.

Finaly, if any losers contain apreviously upgraded sheet of data (i.e. is not
unallocated), the IOPSperHour(F) and CostToUpgrade(F) of the losers and the
IOPSperHour(S) and CostToUpgrade(S) of the winners arejointly compared to the
ROI threshold using Equation (5), step 248. Any winners who do not exceed the
ROI threshold against at least one loser based on Equation (5) are eliminated
(jettisoned) from the list of winners, as shown a 249. The UPGRADE INITIAL
ROI DETERMINATION routine then returns to step 232 to begin the data
collection for the next epoch.

In some embodiments, the HSU facility proceeds at this point to direct the
migration of data in accordance with the results of the routine of FIG. 9. For
example, up to K winners 242 with the highest 1/0 counts may be upgraded from
the HDD memory space 164 to the SSD memory space 162, and an appropriate
number of losers 244 with the lowest I/O counts may be downgraded from the SSD
memory space to the HDD memory space, where K is a user-settable parameter
(e.g. K =2). The process continues in this fashion, selecting new winners and
losers for each epoch in turn.

While this approach can advantageously improve the utilization of the SSD
memory space, in some cases it is contemplated that making migration decisions
based on a single epoch may result in less than optimal decisions. Depending on
the host environment, user-initiated 10 can be bursty at times, and a one-time burst
should not necessarily be extrapolated into along term, unrealistic ROI level that
drives an unnecessary migration.

Accordingly, further embodiments of the present invention configure the
HSU facility 200 to observe the access patterns of the system over an extended
period of time. This time should be long enough so that an accurate assessment of
the patterns emerges, leading to confidence that migrating those sheets having
access rates that consistently exceed the ROI hurdle will pay back the costs of the
migration effort. The use of alonger single epoch may help in this decision
making process, but the use of asingle epoch is still vulnerable to the effects of a
one-time burst, and may slow the system's adaptation to true 1/O pattern changes.

10

15

20

25

30

WO 2013/086037

21

FIG. 10 shows ahistory pipeline 250 that can be fed the winners and losers
identified by FIG. 9. The history pipeline 250 allows the HSU facility to
efficiently evaluate the continued 10 access rates of the various winners and losers
over multiple epochs, alowing better ultimate migration decisions to be made.

FIG. 10 isatiming diagram to show operation of the HSU facility over an
extended elapsed period of time. A number of successive epochs are denoted at
252. Asbefore, each epoch 252 is contemplated as lasting 20 seconds, and each
new epoch begins at the conclusion of the immediately preceding epoch.

Winners and losers (Ws and Ls) are declared for each epoch 252 in turn
using the routine of FIG. 9, and these winners and losers are sequentially placed
into the history pipeline 250. For example, arrowed path 254 represents the
winners and losers identified during Epoch 1, arrowed path 256 represents the
winners and losers identified during Epoch 2, and so on for the remaining epochs
(e.g., 258 represents the winners and losers for Epoch 3, 260 for Epoch 4, and 262
for Epoch 5).

At the conclusion of each epoch, the HSU utility performs the ROI
calculations in Equation (1) or Equation (5) on each of the winners and losers in
the history pipeline to see if upgrading the winners (and downgrading the losers if
necessary) would till provide areturn on investment that exceeds the cost of
migration of the data. For example, when the winners and losers 256 from Epoch
2 are placed into the pipeline 250, the HSU utility will re-evaluate the winners and
losers 254 that were placed into the pipeline during Epoch 1 using the I/O count
data generated in Epoch 2 for those sheets. If any winners 254 are no longer
exhibiting favorable ROI values against the losers, those winners arejettisoned
from the pipeline, as indicated at 264.

Once awinner has proved itself for atotal number of Z + 1 successive
epochs (on initial determination epoch and Z re-examinations in the history
pipelineg), the winner is considered as a candidate for an upgrade migration
operation. Asin the example with no history pipeline, the system will select up to
K winners to upgrade, and an appropriate number of losersto downgrade. The
actual winners (and losers) to upgrade (and downgrade) can be picked in several
ways, for example, based on the highest (lowest) I/0O count in their initial
determination Epoch, based on the highest (lowest) 1/O count in the final Epoch in

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

22

the history pipeline, or based on the highest (lowest) total 1/0O count across the Z +
1 epochs in which they were tested.

The parameters X, Y, Z and K may be settable to any suitable values; in
some embodiments, the number X of winners from each epoch can be set from 1to
8, with adefault value of 4. The number Y of losers can also be set from 1to 8,
with a default value of 4. The number Z of consecutive epochs that need to be
survived can be from 2 to 7, with a default of 2, and the maximum number K of
sheets selected to upgrade at the end of the process can be set from 1to 4, with a
default of 1. Z will usually be set greater than 1 because requiring sheets to prove
their upgrade-worthiness for at least three consecutive epochs resists being fooled
by one-time 1/0O bursts that straddle an epoch boundary.

FIG. 10 shows the use of a setting of Z=4, so that at the time of Epoch 5,
the surviving winners and losers 254 initially determined in Epoch 1can be
selected for respective upgrade and downgrade operations or will bejettisoned, as
indicated by arrowed path 260. Similarly, at the time of Epoch 6 the surviving
winners and losers 254 initially determined in Epoch 2 can be selected for
migrations, etc.

In apreferred approach, the history pipeline 250 is arranged such that
winners and losers only persist in the pipeline for alimited amount of time; that is,
they do not persist indefinitely once placed into the pipeline, but instead "time-out"
at the end of Z+l epochs. For example, by the time Epoch 5 ends in FIG. 10, the
winners and losers 254 from Epoch 1that are still in the pipeline are going to be
removed from the pipeline in order to make room for the new winners and losers
262 from Epoch 5. Of coursg, it is possible that the winners and/or losers 262
selected during Epoch 5 may include some or all of the surviving winners and/or
losers 254 that were previousy selected by Epoch 1, so one or more of the winners
and/or losers from Epoch 1 may be immediately reinserted back into the pipeline.

This automatic jettisoning keeps the pipeline from accumulating alarge,
uncontrolled number of entries which could bog down the system from both a data
tracking and calculation overhead perspective. This approach also efficiently
forms a "diding window" filtering of the various candidates, in that a series of tests
have to be passed to qualify for an upgrade over arelatively extended period of
time (e.g., 5 epochs x 20 seconds/epoch = 100 seconds, etc.): first, an upgraded

10

15

20

25

30

WO 2013/086037

23

winner has to be among the very best ROI candidates during the initial epoch to
have been placed into the pipeline; second, it has to maintain at least a good
enough ROI during the next Z epochsto remain in the pipeline; and finally, it has
to exhibit the best accumulated ROI at epoch Z+l to be selected for the upgrade.

Because the history pipeline 250 produces a delaying action, any sheet that
is upgraded or downgraded in any given epoch could also potentially be a
candidate for a later upgrade/downgrade migration in an internal stage of the
pipeline. Instead of searching the pipeline and removing such sheets, aflag can be
set in the Sheet Activity array entry for those sheets to disable further migrations
for Z epochs (by which time the sheet no longer appears in the history pipeline).
Similarly, once a sheet has been upgraded or downgraded, aflag can be setin an
appropriate data structure to make that sheet ineligible for further migrations for
some set period of time. These mechanisms can further reduce the incidence of
data thrashing.

The total amount of available space in the SSD memory space 162 will be
limited so that eventually, each SSD upgrade (winner) will generally require a
corresponding HDD downgrade (victim) to free up space in the target SSD space.
A variety of factors may be taken into consideration when choosing an appropriate
victim.

If there is no available unallocated space so that an occupied fast sheet will
be selected as a loser in step 244, the HSU facility 200 can carry out a search of the
upgrade sheets array 208 (FIG. 7), starting at the position following the last loser
initially determined in the previous Epoch, and continuing for a user-selectable
number A of entries in around-robin fashion. This search selects the sheets from
this range with the minimum count of 10 operations during the preceding epoch as
the potential losers. If more than one sheet has an 10 count of zero, the sheet with
the oldest epoch number (field 212) is considered to have the lower 1/0O count since
this will bethe sheet that has gone the longest time without 10 activity. The
parameter A will be set to avalue greater than the parameter Y in the UPGRADE
INITIAL ROI DETERMINATION process, and can be as large asthe total number
of fast sheets available tothe HSU facility. Using small values of A (relative to the
total number of fast sheets available) tends to make the system more conservative

about downgrading previously upgraded sheets, especialy recently upgraded ones.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

24

FIG. 11 provides another, aternative timing diagram to illustrate the
operation of the history pipeline 250 of FIG. 10 for three epochs 252 referenced as
Epoch 100-102. It can be seen that the three operations of FIG. 9 (steps 240, 244
and 248) are sequentially carried out at the conclusion of each epoch. For
example, at the end of Epoch 100, the winners and losers for that epoch will be
inserted, the winners for the last Z=4 epochs arejettisoned that do not meet the
ROI requirements of Equation (5), and then up to K surviving winners and losers
from Epoch 96 (100-4=96) are selected for upgrades and downgrades, respectively.

FIG. 12 presents aflow chart for an HSU FACILITY OPERATION routine
270, to summarize the foregoing discussion. The HSU facility is initialized at step
272, and various parameters are selected and/or loaded at step 274. This may
include the creation of the HSU tables 206, 208 from existing system configuration
information.

HSU facility operation commences at step 276, during which a succession
of epoch intervals are defined, 10 counts are accumulated during each epoch, and
winners and losers (if any) for each epoch are loaded into the history pipeline 250.

Also in each epoch, the HSU facility re-tests the winners and losers 254 in
each stage of the history pipeline andjettisons any previously inserted winners
and/or losers that fail to continue to meet the requisite ROI thresholds as shown by
step 278. After Z epochs have elapsed the pipeline will be fully populated, and a
every subsequent epoch HSU facility 200 will perform migrations of the best
winners and the worst losers that emerge from the pipeline (if any survive the
numerous re-tests). Once a migration decision is declared by the HSU facility 200,
normal system processing takes over to carry out the migrations as quickly as
feasible.

It will be appreciated that the routine of FIG. 12 will generaly operate to
optimize the utilization of the fast and slow pools of memory devices 162, 164
(FIG. 6) responsive to substantially any random input of data access patterns.
Further optimization can be had with the use of pattern detection capabilities of the
HSU facility, which will now be discussed.

The HSU facility 200 can further be configured to receive "hints' from
other parts of the system, such asbut not limited to the host 102 (FIG. 1). Such a

hint may take anumber of forms, such asa user directed input to the system that

10

15

20

25

30

WO 2013/086037

25

signals that the host device 102 is about to run a particular application. Asused in
this context, the term "application" refers to any large data grouping that is stored

in the array 108, such as but not limited to a software program, alarge multi-sheet
data file, a database or other data structure, or other data arrangement.

Generally, an application will involve arelatively large volume of data that
may involve multiple exchanges with the host over an extended period of time.
These exchanges may just involvethe reading of data, or may involve both reads
and writes. It is contemplated, although not required, that the applications are run
(or otherwise accessed) on aregular, recurring basis. An example of an application
might be a payroll routine for a particular organization that is executed at the end
of each calendar month.

FIG. 13 shows the HSU facility 200 receiving aparticular hint from the
host device 102 for a selected application referred to herein as "Application X".
The hint may identify the application by name or other identifier, or may simply be
asignal to the HSU facility 200 that a special data operation is about to take place
and a data collection operation should be initiated. The hint may also provide
other types of information that may be useful to the system, such as size of the data
set, aduration during which the application is expected to be used, future
scheduled times/dates for the application to be run again, etc.

In response to the hint, the HSU facility 200 may operate to generate an
activity log 292 which records host-initiated data access activity that occurs after
receipt of the hint. Asdesired, a secondary timer 294 may signal an elapsed time
duration during which the data will be accumulated in the activity log 292. This
duration may form part of the hint supplied by the host, or it may use a default
value, such as 3.0 hours.

During the activity accumulation interval, the HSU facility 200 will operate
as described above to generate winners and losers during each epoch interval, place
such into the history pipeline, and make upgrade and downgrade migrations to
optimize system performance. In some embodiments, the HSU facility will record
these upgrades and downgrades into the activity log, including when and in what
sequence the data were moved in or out of the fast pool, how long each sheet

stayed in the pool, and so on.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037

26

In other embodiments, the HSU facility more generally captures a complete
sequence of data accesses that occurred during the activity accumulation interval,
including accesses for data that were not migrated. It will be appreciated that the
amount and type of data accumulated during the activity accumulation interval will
vary depending on the requirements of a given application.

At the conclusion of the activity accumulation interval the HSU facility 200
may operate to store the activity log 292 in a suitable memory location, such asin
the slow pool 164 of the array 108. In this way, a data exchange record is retained
of system performance that was encountered responsive to the hint that initiated
the data collection operation.

Thereafter, a afuture date/time the HSU facility 200 may detect are-
execution of the selected application. This can be carried out in anumber of ways.
In some embodiments, the user simply sends another hint to the HSU facility that it
is re-executing the previously characterized application.

In other embodiments, the HSU facility itself recognizes that the
migrations being performed mirror (completely if not substantially) what
migrations were previously recorded in the activity log. Regardless, once the HSU
facility 200 becomes aware that the application is being re-executed, it can quickly
override existing migration decisions and instead commence the loading of the hot
data sheets to the fast pool of memory in the sequence indicated by the activity log
292.

FIG. 14 shows aflow chart for an APPLICATION PROFILING routine
300 that illustrates these steps. At step 302, the HSU facility receives ahint that a
selected application is about to be executed. The hint can be supplied by the host
device 102 or by another component of the system 100. Preferably, the hint will
identify the name of the selected application to enable the controller to perform a
search for apreviously generated activity log 292 for the selected application.

At step 304, the HSU begins migrating data based on a previous
characterization of the application identified at step 302 as set forth by the
associated activity log. This will involve the loading of some or al of the hot data
from the selected application to the hot pool. If this isthe first time for the selected
application to be characterized, no activity log will have been previously created

and so this step will be skipped.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

27

Normal HSU operation to identify and characterize hot data is concurrently
carried out at step 306. This operation will take place in accordance with the flow
of FIG. 12 discussed above. The concurrent operation of normal HSU
characterization will allow the system to adaptively adjust to changes in the
loading required by the application, and will tend to reduce sub-optimal migrations
based on changes since the most recent characterization of the application.

The concurrent operation of normal HSU profiling will also ensure that
other, concurrently executed applications (if any) are not automatically overlooked
with regard to migration operations, but can till have data migrated to the hot pool
for load balancing. Asdesired, the hint transmitted in step 302 can include a
priority indication that limits migrations just to data sets associated with the
selected application and prevents migrations from data sets not associated with the
application. Of course, thiswould generally require an identification of the data
sets that are associated with the selected data set, but this can be achieved in a
number of ways including through the previously generated activity log.

At step 308, a second hint can be received by the HSU that indicates that
the selected application from step 302 has concluded operation. This allows the
HSU to store the accumulated activity log for the application at step 310 in
preparation for a future re-execution of the log. The operation during step 310 can
be viewed as arationalization of the activity log so that new upgrades and
downgrades are added to the existing log information, and redundant upgrades and
downgrades are discarded. For example, if a sheet was upgraded but never used
during the most recent run, it can be removed from the log.

This adaptive monitoring and updating of the activity log will ensure that,
over time, the activity log for the selected application remains a current and
accurate characterization of the data sets used thereby.

When loading the activity log information for a given application, the
amount of data associated with the application will be less than the available data
capacity of the fast pool (e.g., SSD memory), in which case al of the upgraded
data can be moved to the fast pool as quickly asis convenient (e.g., within the first
10 minutes or so after detection of the application). In other instances, the SSD
memory may not necessarily accommodate al of the high interest data at the same

time. Under these circumstances, the HSU facility 200 can move the data sheets to

10

15

20

25

30

WO 2013/086037

28

the fast pool (and downgrade previously upgraded sheets) in the sequence set forth
by the activity log in anticipation of the use of the data by the host.

It will now be appreciated that the various embodiments discussed herein
can present benefits over the prior art, such asthe efficient selection of candidates
for migration between slow and fast memory pools based on return on investment
(RQI) evaluation of the costs associated with such migration. The use of
accumulated 10 counts over each epoch allows the data handling requirements of
the system to be simplified, and enables the HSU facility to focus in on those
distributed data sets that are most promising for upgrade and/or downgrade. The
use of weighted 10 counts advantageously allows the total cost of amigration to be
taken into account in terms of actual system resources that need to be expended,
and the filtering out of sequentia counts ensures that random 10 data are more
likely to be placed into the fast pool.

The use of ahistory pipeline, while not necessarily required, further
advantageously improves the likelihood that final migration decisions are made for
data that will tend to have IO host interest levelsthat are greater than the data
being replaced. Moreover, the approaches set forth herein allow the actual costs,
and improvements in performance, to be quantified.

Recording aprofile on an application basis provides further advantages in
that the highest interest data can be subsequently moved to the fast pool in
anticipation for use by the host or other system components.

It will be appreciated that traditional data migration capabilities were often
designed to operate in environments where one goa was to reduce the cost of the
overall storage system by utilizing cheaper media (slower HDDs, tapes, etc.) to
hold data that was accessed relatively infrequently. To determine if datawas
accessed infrequently, these data migration capabilities might gather access
statistics for hours or days, and then plan a set of data migrations that would take
place over subsequent hours or days.

The various embodiments presented herein employ sophisticated 1/0
filtering techniques and decision criteria, enabling a data migration capability that
detects and reacts to changes in the overall 1/0 workload presented to the storage
system in real time and quickly enough to begin improving the performance of a

newly executed application within seconds or minutes of its inception, without the

PCT/US2012/068017

10

15

20

WO 2013/086037

29

risk of degrading overall storage performance via unnecessary or counter—
productive data migrations (“trashing").

While the various embodiments discussed herein have been directed to a
distributed data storage system that uses a data storage array of SSDs and HDDs to
form fast and slow memory pools, it will be appreciated that this is merely for
purposes of presenting an exemplary embodiment. The various embodiments can
readily be adapted for use in other types of memory spaces having arelatively
faster 10 memory response in some locations and arelatively lower 10 memory
response in other locations.

It isto be understood that even though numerous characteristics and
advantages of various embodiments of the present invention have been set forth in
the foregoing description, together with details of the structure and function of
various embodiments of the invention, this detailed description is illustrative only,
and changes may be made in detail, especially in matters of structure and
arrangements of parts within the principles of the present invention to the full
extent indicated by the broad general meaning of the terms in which the appended
claims are expressed. For example, the particular elements may vary depending on
the particular application without departing from the spirit and scope of the present

invention.

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

30

Claims;

1 An apparatus comprising a storage array of independent data
storage devices that form afast pool and a slow pool of said devices, and a
controller which migrates a distributed data set stored across afirst plurality of the
devices in the dow poo] to a second plurality of said devices in the fast pool
responsive to a hint that a selected application is about to be executed that utilizes
the distributed data set and to areturn on investment (ROI) determination that an
estimated cost of said migration will be outweighed by an overall improved data
transfer capacity of the storage array over a predetermined minimum payback

period of time.

2. The apparatus of claim 1, in which the controller receives the hint as
asignal transmitted to the controller by a host device that identifies a name of the
application prior to a host request for atransfer of the selected application from the
array to the host.

3. The apparatus of claim 1, in which the selected application is
executed afirst time during which the controller carries out said ROI
determination, wherein the selected application is subsequently executed a second
time during which the controller carries out said migration of the distributed data
set, and wherein the controller receives the hint between the first time and the

second time the selected application is executed.

4, The apparatus of claim 3, in which the controller makes the ROI
determination in relation to an accumulated count of user-initiated accesses of the
distributed data set over a predetermined epoch interval and the estimated cost to
migrate said data set from the slow pool to the fast pool.

5. The apparatus of claim 4, in which the ROI determination is further
made in relation to a predetermined future payback period over which estimated

improvements in overall datatransfer rates with the array as aresult of said

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

31

migration outweigh the estimated cost to carry out said migration & the beginning
of said payback period.

6. The apparatus of claim 1, in which the controller further forms a
history pipeline of migration candidates that each exhibit ROl determination values
that exceed a predetermined ROI threshold over each of a succession of
consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

7. The apparatus of claim 1, in which the controller accumulates use
statistics associated with the selected application, receives a second hint that
indicates that execution of the selected application has concluded, and stores in
memory an activity log based on the selected application use statistics.

8. An apparatus comprising:

a storage array of independent data storage devices that form afast pool
and a dow pool of said devices; and

acontroller adapted to, responsive to receipt of afirst hint that a selected
application is about to be executed afirst time, makes areturn on
investment (ROI) determination with regard to arequested
distributed data set which forms a part of the selected application
and which is stored across a first plurality of the devicesin the slow
pool, said ROI determination indicating that a cost of migrating the
distributed data set to a second plurality of said devicesin the fast
pool will be outweighed by an overall improved data transfer
capacity of the storage array over a predetermined minimum
payback period of time; wherein

the controller is further adapted to, responsive to the ROI determination and
to receipt of a second hint that the selected application is about to be
executed a second time subsequent to the first time, migrates the
distributed data set to the second plurality of said devices in the fast

pool.

10

15

20

25

30

WO 2013/086037

32

9. The apparatus of claim 8, in which the controller receives the first
and second hints as signals transmitted to the controller by a host device, said
signals each identifying the selected application by name and received prior to a
host request for atransfer of the selected application from the array to the host

during the respective first and second executions of the selected application.

10. The apparatus of claim 8, in which the controller makes the ROI
determination in relation to an accumulated count of user-initiated accesses of the
distributed data set over a predetermined epoch interval and the estimated cost to
migrate said data set from the slow pool to the fast pool.

11. The apparatus of claim 10, in which the ROI determination is
further made in relation to a predetermined future payback period over which
estimated improvements in overall datatransfer rates with the array asaresult of
said migration outweigh the estimated cost to carry out said migration at the

beginning of said payback period.

12. The apparatus of claim 10, in which the controller further forms a
history pipeline of migration candidates that each exhibit ROl determination values
that exceed a predetermined ROI threshold over each of a succession of
consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

13. The apparatus of claim 8, in which the controller stores an activity
log in amemory which accumulates use statistics of data sets during the first
execution of the selected application, and in which the controller uses the activity
log during the second execution of the selected application to pre-load said data
sets to the hot pool prior to ahost request for said data sets during said second

execution.

14. A method comprising:
arranging adistributed data storage array of data storage devicesto

respectively form afast pool and a slow pool of said devices,

PCT/US2012/068017

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017

33

receiving a hint that a selected application is about to be executed; and

migrating a selected distributed data set stored across afirst plurality of
said devices in the slow pool to a second plurality of said devicesin
the fast pool responsive to said hint and responsive to areturn on
investment (ROI) determination that a cost associated with said
migration isjustified by an overall improved data transfer capacity
of the storage array over a predetermined minimum payback period

of time.

15. The method of claim 14, further comprising:

recording migrations of datato the fast pool over an activity period in an
activity log in amemory space during a previous execution of the
selected application, said recorded migrations including a first
migration of the selected distributed data set to said fast pool; and

using the activity log to migrate the selected distributed data set during the
migration step.

16. The method of claim 14, in which the ROI determination is made in
relation to an accumulated count of user-initiated accesses of the selected
distributed data set over a predetermined epoch interval and an estimated cost to
migrate said data set from the slow pool to the fast pool.

17. The method of claim 16, further comprising:

establishing a succession of epoch intervals each having a common
predetermined duration;

accumulating respective 10 access counts for various distributed data sets
stored in the slow pool for each epoch interval; and

placing selected ones of said various distributed data sets having ROI
determination values that exceed apredetermined threshold into a
history pipeline.

10

15

20

25

30

WO 2013/086037 PCT/US2012/068017
34

18. A method comprising:

arranging adistributed data storage array of data storage devicesto
respectively form afast pool and a slow pool of said devices,

storing a selected distributed data set across afirst plurality of said devices
in the dlow pooal;

receiving afirst hint that a selected application stored in the array is about
to be executed afirst time, the selected application including the
selected distributed data set;

recording migrations of data to the fast pool over an activity period
immediately following receipt of the first hint in an activity log in a
memory space, said migrations including a first migration of the
selected distributed data set to said fast pool based on areturn on
investment (ROI) determination;

returning the selected distributed data set back to the slow pool at a
conclusion of the first execution of the selected application;

subsequently receiving a second hint that the selected application is about
to be executed a second time; and

performing a subsequent, second migration of the distributed data set from
the slow pool to the fast pool prior to a user-initiated access request
for said data set during said second accessing of the selected

operation responsive to the activity log and the second hint.

19. The method of claim 18, in which the ROI determination associated
with the first migration of the data set is performed in relation to an accumulated
count of user-initiated accesses of the selected data set over a predetermined epoch
interval and an estimated cost to migrate said data set from the slow pool to the fast

pool.

20. The method of claim 19, in which the ROI determination is further
made in relation to a predetermined future payback period over which estimated
improvements in overall data transfer rates with the array as aresult of said
migration outweigh the estimated cost to carry out said migration at the beginning
of said payback period.

10

15

WO 2013/086037

35

21. The method of claim 19, in which the controller further forms a
history pipeline of migration candidates that each exhibit ROl determination values
that exceed a predetermined ROI threshold over each of a succession of
consecutive epoch intervals, wherein the selected distributed data set is selected

from among said migration candidates.

22, The method of claim 18, in which the fast memory pool of the data
storage array is formed from afirst plurality of solid-state drives (SSDs) each
comprising anon-volatile solid-state array of memory cells, the slow memory pool
of the data storage array is formed from a second plurality of hard disc drives
(HDDs) each comprising at least one rotatable data storage medium, and the ROI
determination is based on an estimated cost to carry out said migration which
includes an estimated time required to access the selected data set from the HDDs
and transfer said data set to a controller cache memory in preparation for

subsequent transfer to said SSDs.

PCT/US2012/068017

WO 2013/086037

1/8

PCT/US2012/068017

100
102
a 104 s 108
/1 06
FABRIC STORAGE
HOST CONTROLLER |a—{ ~ 20"
110
o
RAID STORAGE /1 14
112
bOOCROROCY OO0 GO
118
f120 / /122 FIG 2
FABRIC PROF(’:%;'%R(S) ARRAY
106
I/F \/F o
HOST
-
116
CONTROLLER
CACHE '/108
124
STORAGE
R Y __ _ARRAY -
128 | |
HDD-1 HDD-2 HDD-3 HDD-M |
l |
130 : :
\|\ SSD-1 SSD-2 SSD-3 SSD-N ,
| |

WO 2013/086037 PCT/US2012/068017

HDD
CONTROLLER

FIG. 4

SSD

130
!

X
o
iy
—_—_—— e e ——— — — —
\
\

FIG. 5

(FASTER HDD (SLOWER HDD
MEMORY) HDD SPACE MEMORY)

to2—" _/ DOWNGRADES N

I/0 RATE <%

SSD SPACE

FIG. 6

WO 2013/086037

3/8

PCT/US2012/068017

/200 200
202 /o SHEET
CACHE COUNTS - > A/fgmv
MANAGER (TABLE)
2% o och FACILITY 208
EPOCH TIMING U';g';égE
TIMER > ARRAY
(TABLE)
FIG. 7
206
SHEET
AACFIQQI(Y Pid EPOCH NUMBER |21
7 FAST SHEET FLAG |——~214
s FIXED SHEET FLAG |26
ENTRY N SHEET I/O COUNT | ——218
N N OWNER |20
N START ADDRESS |——222
N LOCATION 224

WO 2013/086037 PCT/US2012/068017

4/8
230
UPGRADE ROI
DETERMINATION
l /232
— BEGIN EPOCH INTERVAL
1 g

COLLECT /O COUNTS FOR SHEETS ACCESSED
DURING EPOCH INTERVAL

l /236
END EPOCH INTERVAL
l s
CALCULATE COST TO UPGRADE X SHEETS IN
SLOW MEMORY WITH HIGHEST 1/0 ACTIVITY
DURING PRECEDING EPOCH INTERVAL
242
l /240 /
COMPARE IOSPERHOUR/COSTTOUPGRADE X
SHEETS WITH HIGHEST IO ACTIVITY TO ROI “WINNERS”
THRESHOLD
l /—244 /246

EPOCH INTERVAL

IDENTIFY Y SHEETS IN FAST MEMORY WITH
LOWEST /O ACTIVITY DURING PRECEDING “LOSERS”

l /— 248 /249

COMPARE WINNERS TO ACTUAL LOSERS ——7/JETTISON

WO 2013/086037

TIME

5/8

/252

PCT/US2012/068017

HISTORY PIPELINE

EPOCH 1

Ws, Ls

1

254

EPOCH 2

Ws, Ls

|

256

EPOCH 3

Ws, Ls

|

258

EPOCH 4

Ws, Ls

4'

260

EPOCH 5

Ws, Ls

1

262

FIG. 10

JETTISON?
:264

JETTISON?
—>

JETTISON?
EE—

JETTISON,
UPGRADE,
DOWNGRADE?

266

WO 2013/086037

6/8

PCT/US2012/068017

History Pipeline Actions

Select up to K
surviving W’s
for upgrade
(and upto K L's
for downgrade)
from Epoch 96

Selectup to K
surviving W’s
for upgrade
(andupto K L’s
for downgrade)
from Epoch 97

Select up to K
surviving W’s
for upgrade
(anduptoKL’s
for downgrade)
from Epoch 98

then

Time
Insert Jettison W’s from
Epoch Epochs 96 100
Epoch| 100 then thatdon’t meet then
100 W’'s & Equation (5)
L’s using I/O counts
from Epoch 100
Insert Jettison W’s from
Epoch Epochs 9% 101
Epochl 101 then thatdon’t meet then
101 W’'s & Equation (5)
L’s using I/O counts
from Epoch 101
Insert Jettison W’s from
Epoch Epochs 98 102
Epoch| 102 then thatdon’t meet
102 W's & Equation (5)
L’s using 1/O counts
from Epoch 102
\

A

WO 2013/086037 PCT/US2012/068017

718

270
HSU FACILITY
OPERATION
/—272
INITIALIZE SYSTEM
274
l 7
SET PARAMETERS
1 .

BEGIN EPOCHS,INSERTING WINERS AND
LOSERS FROM EACH EPOCH INTO HISTORY
PIPELINE

l /—278

MONITOR PIPELINE, REMOVE WINNERS AND
LOSERS THAT DO NOT MEET ROl THRESHOLD
FOR EACH EPOCH

l /280

ONCE PIPELINE IS FULLY POPULATED, BEGIN
PERFORMING ONE UPGRADE/DOWNGRADE
EACH EPOCH FOR “BEST WINNER” AND “WORST
LOSER” IN THE PIPELINE

FIG. 12

WO 2013/086037 PCT/US2012/068017

8/8
200 292
- -
HOST HINT q
———>
HSU ACTIVITY
SECON FACILITY LOG
DARY
TIMER
\294
FIG. 13
300
/‘
APPLICATION
PROFILING
302
l -

RECEIVE HINT THAT SELECTED APPLICATION IS
ABOUT TO BE EXECUTED

l / 304

MIGRATE DATA BASED ON A PREVIOUS
CHARACTERIZATION OF THE

SELECTED APPLICATION
l /-306
CONCURRENT HSU FACULTY OPERATION
l / 308
RECEIVE SECOND HINT THAT APPLICATION IS
CONCLUDED
l /’ 310

PERFORM OVERRIDE MIGRATION TO FAST
POOL OF APPLICATION DATA FIG. 14

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2012/068017

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 12/02 (2013.01)
USPC - 711/113

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - GOBF 12/00, 02; 13/00, 02 (2013.01)
USPC - 711/100, 113, 118, 133

Minimum documentation searched (classification system followed by classification symbols)

CPC - GO6F 12/02, 0215, 122; 13/122

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PatBase, Orbit.com, Google Patents, Engineering Village

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

US 2008/0228772 A1 (PLAMONDON) 18 September 2008 (18.09.2008) entire document

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010/0199043 A1 (SECHREST et a) 05 August 2010 (05.08.2010) entire document 1-22

Y US 2009/0282273 A1 (HAMILTON 1 et al) 12 November 2009 (12.1 1.2009) entire document 1-22

Y US 2005/0097272 A1 (JANG et a) 05 May 2005 (05.05.2005) entire document 2,822

A US 5,325,509 A1 (LAUTZENHEISER) 28 June 1994 (28.06.1994) entire document 1-22

A 1-22

| | Further documents are listed in the continuation of Box C.

Ll

*

Specia categories of cited documents:

“A" document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
specia reason (as specified)

“O” document referring to an ora disclosure, use, exhibition or other
means

“P' document published prior to theinternational filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

16 January 2013

Date of mailing of the international search report

14 FEB 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

