wo 2010/078397 A2 I 10K 00 YR 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 11D 000 1.0 OO OO A
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
8 July 2010 (08.07.2010) WO 2010/078397 A2

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 11/14 (2006.01) GO6F 11/20 (2006.01) kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS ? CBRB’ CBI(J}, g;l’ DB]IE{ ? DBI\(V ’];313[{ ’]];é’
PCT/US2009/069778 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
30 December 2009 (30.12.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/347.300 31 December 2008 (31.12.2008) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
SCHNEIDER ELECTRIC USA, INC. [US/US]; 1415 ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

S. Roselle Road, Palatine, IL 60067 (US). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SUN, Enxi
[CN/US]; 116 Trapelo Road #3, Waltham, MA 01845
(US). DOGGETT, David [AU/US]; 82 Hibbert St., Ar-

lington, MA 02476 (US). Declarations under Rule 4.17:
(74) Agents: SMOLIK, Kenneth F. et al.; Banner & Witcoff, — as to applicant’s entitlement to apply for and be granted
Ltd., 10 S. Wacker Drive, Suite 3000, Chicago, IL a patent (Rule 4.17(i1))

0606-7407 (US). — as fto the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: COMPONENT CONFIGURATION MECHANISM FOR REBOOTING

(57) Abstract: Aspects of the invention support a
component configuration mechanism when rebooting a
circuit module (201) of a programmable logic con-
troller (101). A component (application) may be con-
figured from a plurality of sources, including flash
memory (204) and a web-based configuration source.
The configuration mechanism avoids using invalid
configuration data when replacing the communication
5. RN module. The circuit module may support a plurality of
t;jf;';i’f;; E P O comp.onents,.where some of the components may be
S04 NOE associated with a web-based configuration while other

k components may be associated with a CPU-based con-

figuration. If the configuration data in the flash memo-

ry of the communication module is determined to be
209 invalid, the communication module obtains configura-
ML tion data from a web-based configuration source for a
3133&’ web-based configured component and from an associ-
SEEN ated CPU module (202) for a CPU-based configured
331 121a;\ component. The validity of configuration data in inter-
R nal memory is determined by comparing values of

\ g cyclic checksums and configuration times.

FIG. 3

WO 2010/078397 A2 I 0000)00 N0 SR A O A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

[1]

2]

3]

[4]

WO 2010/078397 PCT/US2009/069778

1

COMPONENT CONFIGURATION MECHANISM FOR REBOOTING

BACKGROUND

Factory automation systems are increasingly being integrated with communication
networks. Control systems are being implemented on networks for remote monitoring
and control of devices, processes, etc. System failures involving the primary mode
controller that can shut down the control system are avoided by having a back-up
controller readily available in hot/active standby mode to replace the failing primary
mode controller. Even with system redundancy, it is important that any system failures

be repaired expeditiously in order to reduce the probability of a system outage.

Controllers such as programmable logic controllers (PLC) have been implemented in
duplex or back-up system configurations where downtime of a system cannot be
tolerated. Such a control system delivers high reliability through redundancy. Generally,
the duplex configuration incorporates a pair of PLC’s assembled in a hot or active
standby configuration, where one PLC is operating in a primary mode and the other
PLC is functioning in a secondary or standby/backup mode. The primary controller runs
an application by scanning a user program to control and monitor a remote input/output
(I/0) network. The other (secondary) controller acts as the active standby controller.
The standby controller does not run the application and does not operate the remote 1/O
devices. The standby controller is updated by the primary controller with each scan. The
standby controller is then ready to assume control of the control system within one scan

if the primary controller fails to operate or is removed from operation.

The primary and secondary controllers are interchangeable and can be swapped or
switched when desired. Either controller can be placed in the primary state. The active
standby configuration requires the non-primary controller to be placed in the standby
mode to secure the system's redundancy. The controllers continuously communicate
with each other to ensure the operability of the control system. The communication
among the controllers is used to determine if a swap of the controllers should be

initiated due to a system failure or by election of an operator.

Even with a primary/secondary controller configuration where the inoperative controller

can be removed from service, it is important that an inoperative controller be repaired in

[5]

[6]

[7]

WO 2010/078397 PCT/US2009/069778

2

order to provide a reliability that is often expected by the operator. A controller
typically includes a number of circuit packs, e.g., a central processor unit (CPU) module
and communication module that interfaces with external devices. In order to repair an
inoperative controller, a detected faulty module is typically replaced with an operative
module. However, a controller functions in a specific control environment;
consequently, an inserted circuit pack is typically configured for the control

environment.
SUMMARY

An aspect of the invention provides apparatuses, computer-recadable media, and
methods for supporting a component configuration mechanism when rebooting a
communication module of a programmable logic controller. The component
(application) in the communication module may be configured from a plurality of
sources, including PLC (Unity Pro), flash memory and a web-based configuration
source. The configuration mechanism avoids using invalid configuration data when

replacing the communication module.

With another aspect of the invention, a circuit module of a programmable logic
controller (PLC) includes an internal memory configured to store stored configuration
information, a communication interface configured to obtain external configuration
information from an external configuration source, and a processor configured to
determine a configuration scenario and to select a configuration source based on the
configuration scenario. The configuration source may be either the internal memory
(e.g., flash memory) or the external configuration source. The circuit module may
assume different types of modules including a communication module that interfaces to

an Ethernet network.

With another aspect of the invention, a communication module may support a plurality
of components. Some of the components may be associated with a web-based
configuration while other components may be associated with a CPU-based
configuration. If the configuration data in the flash memory of the communication
module is determined to be invalid, the communication module obtains configuration
data from a web-based configuration source for a web-based configured component and

from an associated CPU module for a CPU-based configured component.

WO 2010/078397 PCT/US2009/069778

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

3

With another aspect of the invention, a communication module determines the validity
of configuration data in its internal memory by comparing values of cyclic checksums

and configuration times.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention and the advantages thereof
may be acquired by referring to the following description in consideration of the
accompanying drawings, in which like reference numbers indicate like features and

wherein:
Figure 1 shows a control system according to an embodiment of the invention.

Figure 2 shows a block diagram of a network control system according to an

embodiment of the invention.

Figure 3 shows a communication module and CPU module of a programmable logic

controller according to an embodiment of the invention.

Figure 4 shows a block diagram of a communication module according to an

embodiment of the invention.

Figure 5 shows a table with different configuration scenarios according to an

embodiment of the invention.

Figure 6 shows a flow diagram for selecting a configuration source according to an

embodiment of the invention.

Figure 7 shows a flow diagram for configuring a web-configured component according

to an embodiment of the invention.

Figure 8 shows a flow diagram for configuring a CPU-configured component according

to an embodiment of the invention.

DETAILED DESCRIPTION

In the following description of the various embodiments, reference is made to the

accompanying drawings which form a part hereof, and in which is shown by way of

WO 2010/078397 PCT/US2009/069778

[19]

[20]

[21]

[22]

[23]

4

illustration various embodiments in which the invention may be practiced. It is to be
understood that other embodiments may be utilized and structural and functional

modifications may be made without departing from the scope of the present invention.

Some firmware components in the communication module are configured by an
engineering tool, e.g., Unity Pro, through a programmable logic controller (PLC), which
stores the configuration data from the engineering tool. Other firmware components in
the communication module may be configured by “WEB” through the Ethernet, e.g.,
Web page and FTP client. All the configuration data, whether from the PLC or from

“WEB?”, are stored in the local flash of the communication module.

In the case of the communication module being reset, it is typically expected to read the
configuration data from the local flash instead of reading from the PLC and/or from the

“WEB?” for improving the system start-up performance.

In the case of the communication module being replaced by a used module with correct
configuration data for another control system, but not for the current control system, the
communication module should not configure its components with the configuration data

in its local flash.

A mechanism is needed to make sure the communication module configured correctly

on both the cases above.

Figure 1 shows a control system according to an embodiment of the invention. Two
identically configured programmable logic controllers (PLC’s) 101 and 103
communicate with each other via the standby option processor located in each
programmable logic controller over fiber optic link 157. Fiber optic link 157 may
support one of different protocols, including Ethernet and High-Level Data Link
Control (HDLC) at layer 2 of the OSI model. One of the programmable logic
controllers typically acts as the primary controller, while the other programmable logic
controller is in standby mode (corresponding to the secondary controller). The standby
controller is able to take ownership of remote 1/O links 159 and 161, which

communicate with remote I/O devices 105 and 107.

WO 2010/078397 PCT/US2009/069778

[24]

[25]

[26]

5

PLC’s 101 and 103 typically include a number of circuit modules (circuit packs) (e.g.,
circuit modules 113 and 115) that are inserted in a backplane housing. If PLC 101 and
103 becomes inoperative, a user may exchange the determined faulty circuit module
with a good circuit module, which may be a new or an old spare. If the circuit module is
an old spare, it typically has been previously configured for a different PLC that may be
associated with a different control environment. As an example, a user may determine
that a communication module is bad and replaces it with another communication from a

PLC that is offline.

A user communicates and controls programmable logic controllers 101 and 103 from
computers 109 and 111 over links 151, 153, and 155. With an embodiment, links 151,
153, and 155 operate in accordance with Transmission Control Protocol/Internet

Protocol (TCP/IP) over an Ethernet network.

Figure 2 shows a block diagram of a network control system according to an
embodiment of the invention. For example, a network control system consists of a
programming logic controller (PLC or CPU module 202), communication module 201,
web browser 203, /O devices 204-206, and engineering tools (not shown) for
configuration and diagnosing. Communication module 201 may contain numerous
firmware components (applications, e.g.,, components 207-210), where some
components are configured from a web-based configuration source (“WEB”) (e.g.,
components 207 and 208) and some components are configured from CPU module 202
(e.g., components 209 and 210) typically in conjunction with a configuration tool.
When communication module 201 is deemed broken, the user may replace it with
another communication module which may contain configuration data from WEB but
for a different control system. This may result in a problem of configuring the system
with configuration data for other system. Examples of components that are web-based
configured include 10 Scanner, Global Data component, and switch component.
Examples of components that are CPU-based configured include DHCP server and
SNMP Agent component. With some embodiments, when communication module 201
determines that configuration data must be obtained from WEB, communication
module 201 waits for the configuration data passively and the user inputs the
configuration data. The data is sent to communication module 201 through the web

browser or FTP client. With other embodiments, module 201 issues a request to a

WO 2010/078397 PCT/US2009/069778

[27]

[28]

[29]

[30]

6

remote server device to download the configuration, in which case, the web-based
configuration source is a repository of current data for web-based components and is

typically located on a secure server on the Internet or a company intranet.

Figure 3 shows communication module 201 and CPU module 202 of a programmable
logic controller according to an embodiment of the invention. CPU module 202 may
support different types of communication modules, including Network Options Ethernet
(NOE) modules that interface PLC to remote I/0O devices 105 and 107 over cables 159
and 161. Communication module 201 typically supports a plurality of different

components (applications).

If communication module 201 needs to reconfigure (e.g., during a reboot), module 201
uses configuration data from flash memory 304 if module 201 determines that the data
is correct for the operating environment. (Flash memory is non-volatile computer

memory that can be electrically erased and reprogrammed.)

There are several considerations when reconfiguring (rebooting) communication
module 201. For example, components including I/O scanner configuration, global data,
Simple Network Management Protocol (SNMP), and Dynamic Host Configuration
Protocol (DHCP) may be configured or updated. With traditional systems, if a
component is configured with configuration data in flash memory, it is possible for the
component to be configured with invalid data, resulting in the system crash. This may
occur when the module reboots from a power-on after a power-off during
writing/updating the configuration data from a CPU module or from a web-based
configuration source (not shown) into flash memory. Also, with traditional systems, if a
component is configured with the configuration data in flash memory, it is also possible
for the component to be configured with the configuration data that is associated with a

different module or different system, resulting in the system crash.

Erroneous operation may occur when a communication module fails and is replaced
with another module which has the configuration data in flash memory for a different
module or system. For example, an NOE module may be configured with a device
scanning table for scanning different I/O devices. If a NOE module is taken from a
different slot, the module may be configured for a different rack and thus will not have

the correct I/O scanning table stored in the module’s flash memory. When booting up,

WO 2010/078397 PCT/US2009/069778

[31]

[32]

[33]

[34]

7

the NOE module consequently will use the existing 10 scanning table for different rack
to configure and start the 1O scanner, resulting in system 100 crashing. In order to avoid
this situation in traditional systems, the user can reconfigure the I/O scanner through
“WEB” every time the NOE module is reset or the CPU module is reset. However, this

action requires time and effort by the user.

Also, with traditional systems, if only the CPU module is replaced, the communication
module may not configure itself or some components with the configuration data in
flash memory and instead indicates that it is waiting for the configuration data from the
web source. This situation occurs because the module’s start-up firmware typically
cannot make a distinction among the combinations of a new CPU module + an old
communication module, an old CPU module + a new communication module, and a

new CPU module + a new communication module with traditional system.

Embodiments of the invention support a component configuration mechanism during
the communication module 201 booting in the condition of mixing the component
configurations from WEB and PC tools and using flash configuration data backup. The
configuration mechanism typically avoids using invalid configuration data from flash
memory 304 due to powering off during updating the flash and replacing the
communication module. The mechanism is to be used for different communication
module products, for example, NOE (Network Option Ethernet), ETY, NOC (Network
Option CIP), and ETC. Moreover, in addition to communication modules, embodiments
of the invention support other types of circuit modules in control system 100, e.g., any

modules containing configuration data and/or device parameters for other devices.

System 100 typically includes CPU (controller) module 202, communication module
201, and numerous other devices. The configuration of CPU module 202 may be
through a configuration tool 303 (Unity™ Pro that executes in a PC, e.g., computers
109 or 111). Once finishing configuring CPU module 202, the user usually disconnects
the configuration tool 303 (Unity Pro) with CPU module 202. As supported by
communication module 201, some components are configured by CPU module 202,

while other components are configured by a web-based configuration source.

With an aspect of the invention, a component configuration mechanism typically avoids

the configuration of a component being configured with invalid configuration data

WO 2010/078397 PCT/US2009/069778

[35]

[36]

8

when communication module 201 reboots (power-on) just after a power-off occurs
during writing the configuration data into flash memory. The capability may be
selectable. If a user wishes higher system performance, the user can chose not to use
this feature. The component configuration mechanism typically avoids the configuration
of any component being configured with the inappropriate existing configuration data
which are associated with a different module or different system when a new module is
boot up. Start-up firmware can determine whether the reboot is from a reset of the
existing communication module or from a first power-on of a new replaced

communication module.

In order to reduce the booting time and realize real automation, communication module
201 uses the local copies of the configuration data 316, 317, and 318¢ stored in flash
memory 304 to configure its components. Therefore, the configurations of the
communication module’s components during rebooting considers not only the booting
scenarios (cases) (as shown in Figure 5) but also the validity of the configuration data in
the local flash memory 304. With some embodiments, the booting scenario and the
validity of the local copies of the configuration data are determined, where
configuration information is only in CPU module 202 and communication module 201.
Either or both modules can be replaced, which results in the loss of the backup
configuration information. Embodiments of the invention resolve configuration

ambiguities under different booting conditions (configuration scenarios).

With embodiments of the invention, Unity Pro configuration tool 303 provides
checkboxes labeled as “CPU replaced and first time configuration” 307 and ‘“NOE
replaced and first time configuration” 308. When the user replaces a failed CPU module
with another CPU module and configures the CPU module for the first time, the user
checks “CPU replaced and first time configuration” checkbox 307. When the user
replaces a failed NOE module with another NOE module and configures the NOE
module for the first time, the user checks “NOE replaced and first time configuration”
checkbox 308. For ecach replacement module, the corresponding checkbox is checked
only when the first time configuration is made. Each time the user builds the
configuration data, Unity Pro configuration tool 303 issues a pop up window to remind

the user to set checkboxes 307 and 308 correctly.

WO 2010/078397 PCT/US2009/069778

[37]

[38]

[39]

[40]

9

Unity Pro configuration tool 303 downloads the configuration data to CPU module 202.
Consequently, CPU module 202 obtains CPU Config CRC 309a,309b,
CPU Config Time 310a,310b, and checkbox wvalues CPU new 312a,312b and
NOE new 311a,311b. The configuration data are stored in CPU flash memory 305 and
in system RAM 306 for subsequent access by CPU module 202. The configuration
values should be consistent in flash memory 305 and in RAM 306. Consequently, each
time CPU module 202 reboots, these values are updated in RAM 306 from flash
memory 305; each time CPU module 202 receives new configuration data from Unity

Pro configuration tool 303, these configuration values are written into flash memory

305.

The cyclic redundancy code (CRC) for the configuration data 316 and 317 of each web-
configured component is computed whenever configuration data 316 and 317 are
configured/updated from the “WEB”. (The exemplary embodiment shown in Figures 2
and 3 depict component A and component B.) The corresponding CRC values and
module configuration time are saved both in flash memory 304 (313c, 314c, and 315¢
of communication module 201), flash memory 305, and system configuration table 306.
The module configuration time (NOE Config Time 315a,315b,315¢) is updated
whenever a configuration occurs no matter whether it comes from CPU module 202 or
from the WEB and should always be Ilarger than the CPU_Config Time
(310a,310b,310c¢) from the Unity Pro configuration tool 303.

Upon configuration, communication module 201 reads CPU_Config CRC 3090,
CPU_Config Time 310b, CPU_new 312b, and NOE_new 311b from system RAM 306
of CPU module 202. Module 201 saves them in local flash memory 304 and reads each
component CRC (313¢,314¢) to CPU module 202 (corresponding to Component A
CRC 313b and Component B CRC 314b). CPU module 202 sets CPU _new 312b,312a
and NOE new 311a,311b to “0” after communication module (NOE) 201 reads them
in order to indicate that both CPU module 202 and NOE module 201 are not new. With
some embodiments, if CPU module cannot set CPU_new 312b and NOE new 311b,

then communication module 201 sets these values.

CPU module 202 and NOE module 201 are connected to and communicate with each

other through back plane bus 319. Configuration tool 303 runs in a PC and connects to

WO 2010/078397 PCT/US2009/069778

[41]

[42]

[43]

10

the PLC through Modbus plus port or USB port in the PLC board directly or through
the Ethernet port on NOE module 201 board indirectly. In the first two cases,
configuration tool 303 directly configures the PLC no matter whether NOE module 201
runs or not. In the second case, configuration tool 303 configures the PLC through NOE
module board 201, which should have valid configuration and be running. The last case
is mostly used for changing configuration when system 100 is already running. When
configuring a PLC (new or used one in another system) into system 100 at the first time,

the user should reconfigure the PLC first and system 100 should reboot.

The configuration of NOE module 201 depends on CPU module 202, which should be
running and have valid configuration data for NOE module 201. NOE module 201 reads
configuration information from CPU module 202 so that NOE module 201 knows
which components are configured from CPU module 202 and which components are

configured from WEB (not shown).

Unity Pro configuration tool 303 supports checkboxes 307 and 308 labeled “CPU
replaced and first time configuration” and “NOE replaced and first time configuration,”
respectively. When the user replaces a failed CPU module with another CPU module
and configures the CPU module for the first time, the user checks the “CPU replaced
and first time configuration” checkbox 307. When the user replaces a failed NOE
module with another NOE module and configures the NOE module for the first time,
the user checks the “NOE replaced and first time configuration” checkbox 308. For
cach replacement module, the corresponding checkbox is only needed to be checked
once when the first time configuration is made. Each time when the user builds the
configuration data, Unity Pro configuration tool 303 issues a pop up window to remind

the user to set checkboxes 307 and 308 correctly.

CPU _Config CRC (3092a,309b) is the CRC of the CPU configuration data and the
CPU _Config Time (310a,310b) is the CPU configuration data build time. When Unity
Pro configuration tool 303 downloads the configuration data to CPU module 202, it also
loads these two variables into CPU module 202 during the configuration. Also, Unity
Pro configuration tool 303 loads checkbox values CPU new 311a,311b and NOE new
312a,312b to CPU module. These four values are stored in CPU flash memory 305 and

in the module’s configuration area in system RAM 306 for CPU module 202 to access.

WO 2010/078397 PCT/US2009/069778

[44]

[45]

[46]

[47]

11

These values should be consistent in flash memory 305 and system RAM 306 ecach time
the CPU reboots or with a new configuration from Unity Pro configuration tool 303.
These four configuration values in system RAM 306 are typically updated from flash
memory 305.

Communication module 201 stores configuration data A 316 (corresponding to web-
configured component A), configuration data B 317 (corresponding to web-configured
component B), and Copy CPU_Config Data 318¢ (corresponding to a CPU-configured
components 209 and 210 as shown in Figure 2). Copy CPU_Config Data 318c is a
local copy of the configuration data from CPU (corresponding to configuration data
318a,318b). These configuration data are originally stored in CPU module 202 and read
by NOE module 201, which saves a copy of the configuration data. With a subsequent
reboot, NOE module 201 uses the local copy to configure components that are CPU-

configured if the local copy is valid and not corrupted.

Figure 4 shows a block diagram of communication module 201 according to an
embodiment of the invention. Processor 402 may execute computer executable
instructions from a computer-readable medium, e.g., memory 406. Computer storage
media may include volatile and nonvolatile, removable and non-removable media
implemented in any method or technology for storage of information such as computer
readable instructions, data structures, program modules or other data. Computer storage
media include, but is not limited to, random access memory (RAM), read only memory
(ROM), clectronically erasable programmable read only memory (EEPROM), flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium that can be used to store the desired

information and that can be accessed by processor 402.

Communication module 201 typically performs a plurality of functions corresponding
to components. For example, communication module 201 scans and controls remote
devices 105 and 107 through I/O interface 407 and consequently maintains a table in

flash memory 304 (e.g., configuration data B 317 as shown in Figure 3.)

Processor 402 obtains configuration data from flash memory 304 (also shown in Figure

3) for supported components when processor 402 determines that the configuration data

WO 2010/078397 PCT/US2009/069778

[48]

[49]

[50]

[S1]

[52]

12

in flash memory 304 is valid. However, processor 402 obtains configuration data from
web-based tool 401 for web-configurable components through network interface 404
and obtains configuration data from CPU module 202 for CPU-configurable
components through PLC interface 405.

Figure 5 shows table 500 with different configuration scenarios according to an
embodiment of the invention. With booting scenario 501 (case 1), control system 100
(CPU, communication module, and devices) is running and no new configuration data
comes from Unity Pro configuration tool 303. The same communication module is
rebooted with the conditions of automatic rebooting recovery from software or
hardware errors, manual rebooting performed by users, automatic rebooting forced by
remote commands, and manual rebooting performed by developers and testers for

developing, testing, debugging, verification, and validation.

With booting scenario 502 (case 2), control system 100 is running and the user changes
the configuration of the system through Unity Pro configuration tool 303. There is no

reboot from the CPU, communication module, and devices.

With booting scenario 503 (case 3), control system 100 is stopped and then the user

powers on the whole system. There is no new configuration.

With booting scenario 504 (case 4), control system 100 is running and no new
configuration data comes from Unity Pro configuration tool 303. Subsequently, the
communication module fails, and the user replaces it with another communication
module, which automatically reboots. The replacing communication module may be
completely new or a used one. If it is a used module, it may contain web-configured
configuration data of some web-configured components for another control system
other than this one. With an aspect of the invention, previous configuration data (not for
this system) is not used to configure associated components of the communication

module.

With booting scenario 505 (case 5), control system 100 is stopped. The user replaces the
communication module with another one and then reboots the whole system. In this
condition, the communication module may contain web-configured configuration data

of associated web configuring components for another control system other than this

WO 2010/078397 PCT/US2009/069778

[53]

[54]

[53]

13

one. The communication module should not be configured with previous configuration

data but instead should wait for the configuration data from the WEB.

With booting scenario 506 (case 6), control system 100 is stopped. The user replaces the
CPU module with a new one and then reboots and configures system 100. In this
condition, the same communication module still contains valid web configuration data
in its flash and should be configured with the valid configuration data but not wait for

the configuration from the WEB.

With booting scenario 507 (case 7), control system 100 is stopped. The user replaces
both the CPU module and the communication module with new ones and then reboots
and configures the whole system. In this condition, the communication module may
contain web-configured configuration data of associated web-configured components
for another control system other than this one. The communication module should not
be configured previous configuration data but instead wait for the configuration from

the WEB.

Figure 6 shows flow diagram 600 for selecting a configuration source according to an
embodiment of the invention. With embodiments of the invention, process 600 is
configured by processor 402 as shown in Figure 4. Flow diagram 600 corresponds to
the following pseudo code when configuring components supported by communication

module 201. Flow diagram 600 processes the following configuration data:

CPU_Config CRC: (corresponding to 3092a,309b,309c) the CRC of the
configuration data downloaded from Unity Pro
configuration tool 303.

CPU_config_time: (corresponding to 310a,310b,310c) the time of the unity
download the configuration data to CPU from Unity Pro
configuration tool 303.

CPU_new: (corresponding to 312a,312b) the value corresponding to
checkbox “CPU replaced and first time configuration”
307.

NOE new: (corresponding to 311a,311b) the value corresponding to
checkbox “NOE replaced and first time configuration”

308.

WO 2010/078397 PCT/US2009/069778

[S6]

[57]

14

NOE_Config Time: (corresponding to 315a,315b,315¢) the time of the NOE
change in the configuration.

CRC: (corresponding to 313a,313b,313¢ and
314a,314b,314c)CRC for each web configured
component

Copy_CPU _Config Data: (corresponding to 318c¢) local copy of the configuration
data from CPU module 202.

Configuration data A: (corresponding to 316) local copy of the configuration

data for component A from WEB.

In step 601, process 600 begins the configuration process to configure the components
of communication module 202. Module 202 is denoted as NOE, although embodiments
of the invention can support other types of communication modules. Communication
module 202 reads CPU_Config CRC 309, CPU config time 310, CPU new 312,
NOE new 311, NOE Config Time 315, and CRCs for each web configured
component (e.g., 313 and 314) typically from system RAM 306. Also, step 601 sets
both CPU new 312 and NOE new 311 in CPU module 202 to “0” if CPU module 202
does not do this after communication module 202 reads them. This facilitates
communication module 202 obtaining the correct configuration information when there
is new configuration but when communication module 201 and/or CPU module 202

reboots.

The following listing of the pseudo code denotes corresponding steps in flow diagram

600 and the corresponding configuration scenarios (cases) as shown in Figure 5.

Step 603:
If (“NOE_new”) /* There must be a new configuration from Unity Pro configuration
tool */

{

For each of all the web configured components,

Step 605:
If (each component CRC in CPU module 202 == each component CRC in
NOE module 201) &&

WO 2010/078397 PCT/US2009/069778
15

if (NOE_Config Time in CPU module == NOE Config Time in NOE

module)

/* This is the case 2 with the checkbox “NOE module replaced and first
time configuration” in Unity Pro configuration tool is wrongly checked
by the user. */

Step 607 (Case 2):
Configure. WEB_Component_from_Flash (); /*function definition

below */
}
else
{
/* Now it is impossible to distinguish case 6 and case 7 here if the
user check the checkbox “NOE replaced and first time configuration” in
Unity Pro is wrongly checked by the user. It is exactly the designed role
of the checkbox “NOE replaced and first time configuration” in Unity
Pro to distinguish case 6 and case 7.*/
Step 609 (Cases 6 and 7):
Do not configure components with the data in flash but from WEB;
}

/* no matter what other conditions are, the module must read configuration data
for those components (to be configured from CPU) in new configuration

situation. */

Step 627:
Read configuration data from CPU;
Update Copy CPU_Config Data in local flash;

Configure those components (to be configured from CPU);

Step 611:
else If (“ CPU _new) /* NOE new = 0 and new configuration from Unity */

WO 2010/078397 PCT/US2009/069778

16
{
For each of all the web configured components,
Step 613:
If (each component CRC in CPU == each component CRC in NOE) &&
if (NOE_Config_Time in CPU == NOE_Config Time in NOE)
{
/* This is the case 2 with the checkbox “CPU replaced and first time
configuration” in Unity Pro is wrongly checked by the user. */
Step 607:
Configure WEB Component from_ Flash ();
}
Step 615:
else if (CPU_Config Time in CPU <= CPU_Config_Time in NOE))
{
/* NOE must be new and the user forgets to check the checkbox “NOE
replaced and first time configuration” in Unity Pro. Case 7%/
Step 609 (Cases 6 and 7):

Do not configure components with the data in flash but from WEB;
/* This avoids NOE module 201 being configured with the inappropriate
configuration data corresponding to a different module or system.*/

}

else

{
/* Now it is impossible to distinguish case 6 and case 7 here without the
correct NOE new. if the user forgets to check the checkbox “NOE
replaced and first time configuration” in Unity Pro in case 7. It will have
problem if there is existing configuration data for the web configured

components. The code here is based on the NOE-new value*/

WO 2010/078397 PCT/US2009/069778
17

Step 607 (Cases 6 and 7):
Configure WEB Component from_Flash();
}
/* no matter what other conditions are, the module must read configuration data
for those components (to be configured from CPU) in new configuration

situation. */

Step 627:
Read configuration data from CPU;
Update Copy CPU_Config Data in local flash;

Configure those components (to be configured from CPU);

else /* CPU new =0 && NOE new =0 */
{
/* case 1, case 2, case 3, case 4, and case 5 */

For each of all the web configured components,

Step 617 (Cases 1, 2, 3, 4, and 5):
If (each component CRC in CPU == each component CRC in NOE) &&
If (“NOE_Config Time” in CPU == “NOE_Config Time” in NOE)
{

/* This must be the case 1, or case 2, or case 3%/

Steps 621:
if ((“CPU_Config CRC” in CPU == “CPU_Config CRC” in NOE) &&
(“CPU_Config_Time” in CPU == “CPU_Config_Time” in NOE))

Steps 619 and 623 (Cases 1 and 3):
/* This must be the case 1 or case 3*/

Configure WEB_Component from_ Flash ();

WO 2010/078397 PCT/US2009/069778
18

Configure CPU_Component_from Flash (); /*function definition
below */

}

else

{

/* Itis case 2 */

Steps 619 and 627 (Case 2):
Configure WEB Component from_ Flash();
Read configuration data from CPU;
Update Copy CPU_Config Data in local flash;

Configure those components (to be configured from CPU);

else /* must be new CPU, or new NOE, or both new */
{
If (! Exit Dim_flag)
{
/* Exit Dim_flag is set when Unity Pro reconfigures CPU. Because
flag is not set, there is no CPU reboot and no new configuration from

unity. Consequently, it must be NOE replacement, case 4 in Figure 5%/

Steps 609 and 627 (Case 4):

Read configuration data from CPU;

Update Copy CPU_Config Data in local flash;

Configure those components (to be configured from CPU);

Not configure those components (to be configured from WEB) with
the

Data in flash but from WEB,

else

WO 2010/078397 PCT/US2009/069778

[58]

[59]

[60]

19

/* CPU reboot or new configuration from unity */

/*case 5 */

Steps 609 and 627 (Case 4):
Read configuration data from CPU;
Update Copy CPU_Config Data in local flash;
Configure those components (to be configured from CPU);
Not configure those components (to be configured from WEB) with
the
Data in flash but from WEB,
Clear Exit Dim_flag

}

When process 600 has completed the configuration, communication module 201

commences operating in the operational mode in step 625.

When process 600 determines configuration data is needed from WEB in order to
configure a web-configurable component (corresponding to step 609), process 600 may
inform the user to download the data from a web-based configuration source. With
some embodiments of the invention, a configuration process may automatically connect

to the web-based configuration source and configure the corresponding component.

Figure 7 shows flow diagram 607 (corresponding to step 607 as shown in Figure 6) for
configuring a web-configured component according to an embodiment of the invention.
As shown with step 701, a user may sclect not to calculate the checksum of the
configuration data of each component (e.g., configuration data 316 and 317 as shown in
Figure 3) and compare the calculated CRC with the stored CRC (e.g., 313¢ and 314c¢ as
stored in flash memory 304). The corresponding steps of flow diagram 607 are shown

in the following pseudo code.

/* This function configures the web-configured components from the configuration data
in flash */
Configure WEB Component from_Flash ()

WO 2010/078397 PCT/US2009/069778

20

Step 701:
If (compute checksum_selected) /* selectable feature for booting time

consideration */

{

For each component to be configured from WEB,

Steps 703 and 705
Compute CRC of its configuration Data in local flash;
Compare the CRC with its Component Config CRC stored in flash;
If (equal)
{

Step 709:
Configure = web-configurable components with its corresponding

configuration data in local flash;

}

else /*not equal */

{

Step 707:
Do not configure web-configurable component with the data in flash but
from WEB;

/* avoid using invalid data because of power off during updating flash */

}

else /* compute checksum_selected not selected */

{

Step 709:
Configure = web-configurable components with its corresponding

configuration data in local flash;

WO 2010/078397 PCT/US2009/069778

21

}

[61] Figure 8 shows flow diagram 623 (corresponding to step 623) for configuring a CPU-
configured component according to an embodiment of the invention. As shown with
step 801, a user may select not to calculate the checksum of the configuration data a
CPU-configurable component (e.g., configuration data 318 as shown in Figure 3) and
compare the calculated CRC with the stored CRC (e.g., 309¢ as stored in flash memory
304). The corresponding steps of flow diagram 623 are shown in the following pseudo

code.

/* This function configures the CPU-configured components from the configuration

data in flash */

Configure CPU_Component_from Flash ()
{

Step 801:
If (compute checksum_selected) /* selectable feature for booting time

consideration */

{

Steps 803 and 805:
Compute CRC of the Copy CPU_Config Data in local flash;
Compare the CRC with CPU_Config_CRC;
If (equal)
{

Step 815:

Configure those components (to be configured from CPU) with the data of
the

Copy CPU_Config Data in local flash;

WO 2010/078397 PCT/US2009/069778

22

else /*not equal */

{

Step 807:
Read configuration data from CPU;

Steps 809, 811, and 813:
Update Copy CPU_Config Data in local flash;
Configure those components (to be configured from CPU);

/* avoid using invalid data because of power off during updating flash */

}

else /* compute checksum_selected not selected */

{

Step 815:

Configure those components (to be configured from CPU) with the data of

the
Copy CPU_Config Data in local flash;

[62] As can be appreciated by one skilled in the art, a computer system with an associated

computer-readable medium containing instructions for controlling the computer system

can be utilized to implement the exemplary embodiments that are disclosed herein. The

computer system may include at least one computer such as a microprocessor, digital

signal processor, and associated peripheral electronic circuitry.

[63] While the invention has been described with respect to specific examples including

presently preferred modes of carrying out the invention, those skilled in the art will

appreciate that there are numerous variations and permutations of the above described

systems and techniques that fall within the spirit and scope of the invention as set forth

in the appended claims.

WO 2010/078397 PCT/US2009/069778
23

We Claim:

1. A circuit module of a programmable logic controller (PLC) comprising:
an internal memory configured to store stored configuration information;

a communication interface configured to obtain external configuration information from

an external configuration source; and

a processor configured to determine a configuration scenario and to select a
configuration source based on the configuration scenario, wherein the configuration source is

either the internal memory or the external configuration source.

2. The circuit module of claim 1, wherein the internal memory comprises a flash memory.
3. The circuit module of claim 1, wherein the circuit module comprises a communication
module.

4. The circuit module of claim 1, wherein the communication interface comprises a

network interface that is configured to communicate through a communication network.

5. The circuit module of claim 4, wherein the communication interface comprises a PLC

interface that is configured to communicate with a controller module of the PLC.

6. The circuit module of claim 5, wherein the processor supports a first component that is

associated with a web-based configuration.

7. The circuit module of claim 6, wherein the controller module comprises a central
processing unit (CPU) and wherein the processor supports a second component that is

associated with a CPU-based configuration.
8. The circuit module of claim 6, wherein the processor is further configured to:

compare a first redundancy check stored in the circuit module with a second
redundancy check stored in the controller module, wherein the first redundancy check and the

second redundancy check are associated with the first component; and

compare a first circuit module (CM) configuration time stored in the circuit module

with a second CM configuration time stored in the controller module.

WO 2010/078397 PCT/US2009/069778

24
9. The circuit module of claim 8, wherein the processor is further configured to:

based on the comparing of the redundancy checks and the CM configuration times,
selecting the configuration source either from a web-based configuration source or the internal

memory.

10. The circuit module of claim 9, wherein the processor is further configured to:
selecting the configuration source further based on a new module indicator.

11. The circuit module of claim 7, wherein the processor is further configured to:

compare a first redundancy check stored in the circuit module with a second
redundancy check stored in the controller module, wherein the first redundancy check and the

second redundancy check are associated with the second component; and

compare a first CPU configuration time stored in the circuit module with a second CPU

configuration time stored in controller module.
12. The circuit module of claim 11, wherein the processor is further configured to:

based on the comparing of the redundancy checks and the CPU configuration times,
selecting the configuration source either from a CPU-based configuration source or the internal

memory.
13. The circuit module of claim 12, wherein the processor is further configured to:

selecting the configuration source further based on a new module indicator.
14. A method for configuring a circuit module, the method comprising:

determining a configuration scenario from a set of possible configuration scenarios, the

set including a first configuration scenario and a second configuration scenario;

when the determined configuration scenario is the first configuration scenario, selecting

an internal configuration source;

when the determined configuration scenario is the second configuration scenario,

selecting an external configuration source; and

configuring a component of the circuit module using configuration data from the

selected configuration source.

WO 2010/078397 PCT/US2009/069778
25

15. The method of claim 14, wherein the internal configuration source comprises a flash

memory.

16. The method of claim 14, wherein the component is associated with a web-based

configuration.
17. The method of claim 16, further comprising:

comparing a first redundancy check stored in the circuit module with a second
redundancy check stored in an associated controller module, wherein the first redundancy

check and the second redundancy check are associated with the component; and

comparing a first circuit module (CM) configuration time with a second CM

configuration time stored in the associated controller module.
18. The method of claim 17, further comprising:

based on the comparing of the redundancy checks and the CM configuration times,
determining the selected configuration source either from a web-based configuration source or

the internal configuration source.

19. The method of claim 14, wherein the component is associated with a CPU-based

configuration.
20. The method of claim 19, further comprising:

comparing a first redundancy check stored in the circuit module with a second
redundancy check stored in an associated controller module, wherein the first redundancy

check and the second redundancy check are associated with the component; and

comparing a first CPU configuration time stored in the circuit module and a second

CPU configuration time stored in the associated controller module.
21. The method of claim 20, further comprising:

based on the comparing of the redundancy checks and the CPU configuration times,
determining the selected configuration source either from a CPU-based configuration source or

the internal configuration source.

WO 2010/078397 PCT/US2009/069778
26

22. A computer-readable storage medium storing computer-executable instructions that,

when executed, cause a processor to perform a method comprising;:

determining a configuration scenario from a set of possible configuration scenarios, the

set including a first configuration scenario and a second configuration scenario;

when the determined configuration scenario is the first configuration scenario, selecting

an internal configuration source;

when the determined configuration scenario is the second configuration scenario,

selecting an external configuration source; and

configuring the circuit module using configuration data from the selected configuration

source.

23. The computer-readable storage medium of claim 22, wherein the component is

associated with a web-based configuration and the method further comprising;:

comparing a first redundancy check stored in the circuit module with a second
redundancy check stored in an associated controller module, wherein the first redundancy

check and the second redundancy check are associated with the component; and

comparing a first circuit module (CM) configuration time with a second CM

configuration time stored in the associated controller module.
24. The computer-readable storage medium of claim 23, the method further comprising:

based on the comparing of the redundancy checks and the CM configuration times,
determining the selected configuration source either from a web-based configuration source or

the internal configuration source.

25. The computer-readable storage medium of claim 22, wherein the component is

associated with a CPU-based configuration and the method further comprising;:

comparing a first redundancy check stored in the circuit module with a second
redundancy check stored in an associated controller module, wherein the first redundancy

check and the second redundancy check are associated with the component; and

comparing a first CPU configuration time stored in the circuit module and a second

CPU configuration time stored in the associated controller module.

WO 2010/078397 PCT/US2009/069778
27
26. The computer-readable storage medium of claim 25, the method further comprising:

based on the comparing of the redundancy checks and the CPU configuration times,
determining the selected configuration source either from a CPU-based configuration source or

the internal configuration source.
27. A programmable logic controller comprising:
a control module configured to obtain CPU configuration data; and
a circuit module comprising an internal memory and configured to:
obtain circuit module (CM) configuration data;
compare the CPU configuration data with the CM configuration data;
determining a configuration scenario from the comparing; and

select a configuration source based on the configuration scenario, wherein the

configuration source is either the internal memory or an external configuration source.

28. The programmable logic controller of claim 27, wherein the circuit module supports a
first component that is associated with a web-based configuration and wherein the external

configuration source is a web-based configuration source.

29. The programmable logic controller of claim 28, wherein the circuit module supports a
second component that is associated with a CPU-based configuration and wherein the external

configuration source is the controller module.

30. The circuit module of claim 1, wherein the communication interface supports a
compatible interface selected from a group consisting of universal serial bus (USB), Modbus

Plus, Ethernet, and backplane bus.

PCT/US2009/069778

WO 2010/078397

1/8

O

7

Myissatiicy

<.
%

SRrRoR

ROt

g

Parsonal G

AT

/J

15

5

Hlandly
atlraiier

R
ek

!

Frimary
antre

o
.

103

RN IV

SIS AP IS SIS AP IS ISP PSP SIS

159

FIG. 1

WO 2010/078397

adavices
CPU {PLC)
for
Control
System A

[no
(%]

PCT/US2009/069778
2/8

Communication Module for | WER
Control System A

A

|Pisna Bug

o]
i8S

)

Componsit |

e

adevices allvicny

] Browser

Ethamst
203/J

207

alnvioss |
KiDsvice |

/ Ethamet

204

1 Pevice ¢

Ethamat

| Ethamet

]

Comparient |

—~

209

IR R D
fibovigs |

Calriponent

Ethamet

210

FIG. 2

WO 2010/078397 PCT/US2009/069778

3/8

Unity Pro Canfiguration Tool
03

MOE slot 3 RRASASS
'//H\ TR T 2 R o
308 N 5 CF replaced and fivst e configonation
B
] i NOE replned mad fivst nme configiraton

Ao

¥ Confrpwstion Time
TP New

NOE Mew

i
]
{
!
{
?
|
i
?
>

wdhevices
Communication Modids
o
309c)
31 j‘é CFU confipusnon CRC

CPU Configuration Time

313¢c NOE Configuration Time

sdavices
CPUIPLT ‘396

309b Systery RAM
_ LU configuraton CRC
__ P Confignratron Tuns
305 - 3t 5b‘\~ NOE Configusation Time
313b —————
Lo 314D\ o Comannts

URC o8 Configuration Dasa
Tor Crrmreoment B o Wel

NS
e
N

CRC of Unafigneaton Dt
for Conponent A Swr Web

309a;
310a,

315a
313a:
314a-

312a-
311a;

318a

£PL coafigueation LR
CRE of Copfigrraiion Data

for Commonesy B fom Wek

4

CPU snsgon Tine
CPL New

WIHE Coafigusates Tin -
New Configation Daa for
Cornonsats & from Web

p A

Fri

WY
£

CRE of Confizmratton Data

for Comoepet A o Web Confimuwation Data for

CoppanRnis G oand H Capfigwestion Data for

Componests B Tan Web

CRC of Configuessen Tata
ot Component B from Wab

R

LPU Tew

THIE New

Configasntinn Dava for
CTomponets G and H

el il i el el

FIG. 3

WO 2010/078397

4/8

WEB-BASED TOOL

401

PCT/US2009/069778

FIG. 4

N
(o]
—

105,107

FLASH MEMORY NETWORK
INTERFACE
304
A
PROGRAM ;02
MEMORY .
_+| PROCESSOR
| PLCINTERFACE .
405
—
v R
e VO INTERFACE (— 407
7 - N N
e
REMOTE /0
CPU HZOZ DEVICES

PCT/US2009/069778

WO 2010/078397

5/8

G 'Old

100q2l swsoe|d moN . DIUOD MBN 100Q8a. swsoe|d moN /
10003l awesg LBUU0D MaN 10008l woweoe|d maN g —~ 90§
10042l usweoe|d MmN 100q3. sweg g ™GOS
10003l juaweoeld mapN NO aweg ¥ \/\ﬁom
10048l awes j00qal awes I |/.
NO aweg LByuod man NO aweg Z €0s
10008 swes NO swes L AN 0§
SINPOA LOHEDIUNWILIOD Ndo SOLIBUSDS \/. LOS
g

WO 2010/078397 PCT/US2009/069778
600
Rabwoit
b “l' |
- " 609 Y
Bocting suscess 601
RTCEE runming '\’(Cordigure
Root tezhk runming - WEB
Read configuratian (Cases 6,7) 7 carfigured
infor reation from PLC o mpcfn‘ent
Begin «to corfigure o] fram WEE
oomporents
N , . 607
2 605~_ " Y N
603 ™. UNDE T Configura
:"/&GE ne';:\- e’ corfigurstion WEE
R [Yes]” ™ data LRE e [res] zonfigured
N S, @ndtime ok o 0| nomponsnts
™ " (Case 2) P
., e from Flash
o
[Na) N i
61 3’\’_!"/‘\-..\‘\\
o1 1F\7f ™ .~ NOE . (Case 2)
C Pl .. 7 configuration \-«.
< _nensy '_,,-------3-».\ o ~ ;
s - [Yes] - data -DRL - [Tes] Corfigure
t -, and tine ok r
d . / CPU
e configurad
T componerd
[Mod ﬁl {
615~ __~
T EPU '""‘m‘_ (Cases 6,7)
T corfigured ",
[Ho] T esrlier P i
Ny than NOE M)
(Cases 1,2,3.4,5) wed]\;
617 ¥
N I
I I > NN
~" HOE e Corfigure ey __
- corfiguration ", WEB d carfiguration .
\\.__ duts CRE 7 [res) | corfigured RN CRE and i
. and tite ok cormponents e & rr'ue ok ‘
" T (Cases 1,234 trom Fiash) ey . .
.‘-'\{: P e \ ‘-__,ef
[Na] [Yes] i Campare SR config 625
: Compars CRCz of all {Cases 1,3) CRC &itime stored in TPL \
components and 623 Corfiore - | S HCIE.' it 3ny wne i not
configueation time stored in CEU equal, if's not ok Fommunir‘aﬁan
CPU and NOE. if any one is corfigires ::_ Module (s
(Cases 4,5) nat equal, its not ok companants Running
, from Flash)

FIG. 6

WO 2010/078397 PCT/US2009/069778
7/8

607
b 701
-
e -..______/J
T -
" o,
<. compete _checksum_ssleded 5 =
QN o [No)
'\-.H_\%h--. __J_,.,.—""'——
[es] 709
e _—rJ._H
l - 703 Cordigurs
WEB
Calculate the CRC of confi gured
configuration dats in comparent
flash from flash
jt" 705
‘___,..,-F-"— —.b""-s.__ o~
_____,_._—-“’ Caloulsted T
o R S, -
= CRLC equals = - 3
e the stored CRC [fes]
._~_-- d_,_.a-"’""
! Corfigure
WER
corfigurad
oornponsrt - 707

. from WEE

FIG. 7

WO 2010/078397

623
-
*f.:rf compate_checksum_selected «:: =
s - [Ho]
e
-
L’;alc.ulate the CRC of /.\8/03
corfigurstion deta in

flash

J 805

-‘____..:— R""—\.
» """ Calculzsted e
o CRE squals T —
T the stored CRC " [res]
e ___..—-—""'_
—_
809
807

h1%4 /‘J

Read Upzfate
configurstion fi = i
deta from corfiguration
CEU datain
v fash

8/8

FIG. 8

Calculate
CRC and
updste the

sored one

PCT/US2009/069778

815

Cordfigure

CRU

configured
QO ot
from flash)

813

/

Corfigura
the
CoOmporent

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings

