无机多孔支持体-沸石膜复合体、其制造方法和使用其的分离方法

摘要

本发明的课题在于提供一种沸石膜复合体、其制造方法和使用该膜复合体的分离浓缩方法，所述沸石膜复合体同时实现了在实用上充分的压力差和分离性能，特别是在有机酸的存在下可以适用，能够对含有有机物的气体或液体的混合物进行分离浓缩，且不需要高的能量成本，具有经济性，且适用范围不受限制。本发明所涉及的无机多孔支持体-沸石膜复合体的特征在于，无机多孔支持体含有陶瓷烧结体，且作为沸石膜在无机多孔支持体表面具有CHA型沸石结晶层。
1. 一种无机多孔质支体-沸石膜复合体的制造方法，其中，使用含有Si元素源和Al元素源的反应混合物，通过水热合成，在无机多孔质支体上形成具有CHA型沸石的沸石膜，由此制造无机多孔质支体-沸石膜复合体，其特征在于，反应混合物进一步含有碱源，该碱源至少含有钾。

2. 如权利要求1所述的方法，其中，按照Si元素的氧化物相对于Al元素的氧化物的摩尔比（SiO2/Al2O3摩尔比）计算，反应混合物中的Si元素源和Al元素源之比为5以上10000以下。

3. 如权利要求1所述的方法，其中，按M(2/n)O相对于Si元素的氧化物的摩尔比（M(2/n)O/SiO2摩尔比）计算，反应混合物中的Si元素源和碱源之比为0.02以上0.5以下，其中，M表示碱金属或碱土金属，n表示其价数1或2。

4. 如权利要求1所述的方法，其中，按照钾相对于构成碱源的全部金属的摩尔比计算，反应混合物中的碱源和钾之比为0.01以上1以下。

5. 如权利要求1所述的方法，其中，向水热合成供给预先附着有品种的无机多孔支体。

6. 如权利要求1所述的方法，其中，反应混合物还含有有机模板剂。

7. 如权利要求1所述的方法，其中，无机多孔支体是氧化铝或莫来石。

8. 一种无机多孔质支体-沸石膜复合体，其是通过权利要求1～7任一项所述的方法制造的。

9. 一种分离方法，其中，使气体或液体的混合物与权利要求8所述的无机多孔支体-沸石膜复合体接触，使该混合物中透过性高的物质透过，由此从该混合物中分离出该透过性高的物质。

10. 一种浓缩方法，其中，使气体或液体的混合物与权利要求8所述的无机多孔支体-沸石膜复合体接触，使透过性高的物质从该混合物中透过，由此对透过性低的物质进行浓缩。
无机多孔支持体—沸石膜复合体，其制造方法和使用其的分离方法

技术领域

[0002] 本发明涉及适于对含有有机物的气体或液体的混合物进行分离，浓缩的无机多孔支持体—沸石膜复合体及其制造方法，进一步使用了该无机多孔支持体—沸石膜复合体的有机物的分离方法。

背景技术

[0003] 以往，在含有有机物的气体或液体的混合物的分离，浓缩中，根据作为分离、浓缩对象的物质的性质分别实施蒸馏法、共沸蒸馏法、溶剂提取法、蒸馏法，利用吸附剂进行的分离法等。但是，这些现有方法存在需要大量的能量或分离、浓缩对象的适用范围有限之类的缺点。

[0004] 近年来，作为代替这些现有分离方法的分离方法，提出了使用高分子膜等膜的膜分离、浓缩方法。高分子膜的加工性优异，例如有平膜、中空纤维膜等。但是，高分子膜具有耐热性低的缺点，并且，高分子膜的耐化学药品性低，特别是与有机溶剂或有机酸之类的有机物接触，大多数发生溶胀，所以分离、浓缩对象的适用范围是有限的。

[0005] 另一方面，提出了使用沸石膜等无机材料膜的膜分离、浓缩方法。沸石膜通常以沸石以膜状形成在支持体上的沸石膜复合体的形式用于分离、浓缩。例如，使有机物与水的混合物通过沸石膜复合体，选择性地使水透过，由此能够将有机物分离、浓缩。对于使用了无机材料膜的膜分离、浓缩，与通过蒸馏或吸附剂进行的分离相比，除了能够削减能量的使用量外，能够在比高分子膜更广的温度范围实施分离、浓缩，进而还能够适用于含有有机物的混合物的分离。

[0006] 对于使用了沸石膜的分离，提出了将具有亲水性的沸石用于水的选择性透过的方法。例如提出了：使用A型沸石膜复合体使水选择性地透过来浓缩醇的方法（专利文献1）；使用丝光沸石型沸石膜复合体，使水由醇与水的混合体系中选择性地透过醇进行浓缩的方法（专利文献2）；使用镁硅沸石型沸石膜复合体，使水由乙酸与水的混合体中选择性地透过对乙酸进行分离浓缩的方法（专利文献3）等。

发明内容

[0010] 但是，还尚未发现兼具在实用化方面充分的处理量和分离性能，且对有机物特别
是有机酸具有耐受性的沸石膜。利用沸石膜进行的分离、浓缩的处理量（透过流量）一般用透过流量来表示，所述透过流量表示每单位时间、单位平面面积透过物质的重量。对于此时水的透过流量，为了将沸石膜实用化，透过流束越大越优选，可以说优选最低为1kg/(m²・h)以上。

[0011] 但是，对于专利文献2记载的丝光沸石型沸石膜复合体的透过流束，在透过的水的浓度为95重量%以上的情况下，水/乙醇体系中最大为0.6kg/(m²・h)，在水/乙酸体系中为0.23kg/(m²・h)，对于实用化所需要的时间量来说是不充分的。

[0012] 另外，对于专利文献3中记载的镁泥沸石型沸石膜复合体的透过流束，在透过的水的浓度为95重量%以上的情况下，水/乙醇体系中最大为0.22kg/(m²・h)，对于实用化来说处理量是不充分的。

[0013] 并且，在对有机物的耐受性方面，用于上述沸石膜的丝光沸石型沸石和镁泥沸石型沸石在酸性条件下会进行脱Al化反应，因而通常可以预想在沸石表面活性的SiO₂/Al₂O₃比会发生变化。由此可以预想在使用时间的延长，上述沸石膜复合体的分离性能会发生变化，因而不优选在有机酸存在的条件下使用。另外还有若A型沸石与酸接触则结构会被破坏因而有有机酸存在下无法适用作分离膜这样的问题。

[0014] 本发明的课题在于使用一种在微粒材料分离膜进行的分离、浓缩中同时实现了实用上充分的处理量和分离性能的沸石膜复合体、其制造方法、以及使用了该膜复合体的分离、浓缩方法。

[0015] 本发明的课题在于使用一种无需高能量成本而具有经济性、且用范围不受限制，同时实现了在实用化方面充分的处理量和分离性能的沸石膜复合体；其制造方法、以及使用了该膜复合体的分离、浓缩方法。并且，本发明的课题在于使用一种在有机物特别是有机酸的存在下可以使用、能够对含有有机物的气体或液体的混合物进行分离浓缩的无机多孔复合体及其制造方法和使用了该复合体的分离浓缩方法，特别是有机酸/水的混合液的分离浓缩方法。

[0016] 为了解决上述课题，本发明人反复进行了深入研究、结果发现，通过将无机多孔支持体和/或沸石膜最优化，可解决上述课题，实现了以下的发明。

[0017] <1>一种无机多孔支持体-沸石膜复合体，其特征在于，无机多孔支持体含有陶瓷烧结体，且作为沸石膜在无机多孔支持体表面具有CH₄型沸石结晶层。

[0018] <2>一种无机多孔支持体-沸石膜复合体，其特征在于，作为沸石膜具有CHA型沸石结晶层，且在对沸石膜表面进行X射线照射而得到的X射线衍射图谱中θ=17.9°附近的峰强度为2θ=20.8°附近的峰强度的0.5倍以上。

[0019] <3>一种无机多孔支持体-沸石膜复合体，其特征在于，作为沸石膜具有CHA型沸石结晶层，且在对沸石膜表面进行X射线照射而得到的X射线衍射图谱中θ=9.6°附近的峰强度为2θ=20.8°附近的峰强度的4倍以上。

[0020] <4>如<1>所述的无机多孔支持体-沸石膜复合体，其中，在对沸石膜表面进行X射线照射而得到的X射线衍射图谱中θ=17.9°附近的峰强度为2θ=20.8°附近的峰强度的0.5倍以上。

[0021] <5>如<1>、<2>或<4>所述的无机多孔支持体-沸石膜复合体，其中，在对沸石膜表面进行X射线照射而得到的X射线衍射图谱中θ=9.6°附近的峰强度为2θ=20.8°附近的
峰强度的4倍以上。
【0022】如1～10的任一项所述的无机多孔支持体-沸石膜复合体，其中，沸石结晶层的SiO₂/Al₂O₃摩尔比为5以上。
【0023】如7～10的任一项所述的无机多孔支持体-沸石膜复合体，其中，所述复合体能够透过含有有机物的气体或液体的混合物中的透过性高的物质，从该混合物中分离出该透过性高的物质。
【0024】如8～10的任一项所述的无机多孔支持体-沸石膜复合体，其中，含有有机物的气体或液体的混合物为有机物与水的混合物。
【0025】如9～10的任一项所述的无机多孔支持体-沸石膜复合体，其中，有机物为有机酸。
【0026】如10～11的任一项所述的无机多孔支持体-沸石膜复合体，其中，有机物为选自醇、醚、醛、酮和含氧的有机化合物中的至少一种。
【0027】如11～12的任一项所述的无机多孔支持体-沸石膜复合体，其中，无机多孔支持体含有选自氧化铝、二氧化硅和莫来石中的至少一种。
【0028】一种无机多孔支持体-沸石膜复合体的制备方法，其中以1～11的任一项所述的无机多孔支持体-沸石膜复合体的方法，该制备方法的特征在于，其分隔使CHA型沸石在无机多孔支撑体表面结晶化的工序。
【0029】如12～13的任一项所述的无机多孔支持体-沸石膜复合体的制备方法，其中，在使沸石的晶种附着于无机多孔支撑体表面后，使CHA型沸石表面结晶。
【0030】如13～14的任一项所述的无机多孔支持体-沸石膜复合体的制备方法，其中，沸石的晶种为CHA型沸石。
【0031】如14～15的任一项所述的无机多孔支持体-沸石膜复合体的制备方法，其特征在于，使用含有Si元素源和Al元素源的混合物按照Si与Al的比以各氧化物换算来表示的（SiO₂/Al₂O₃）摩尔比为5～10000的方式作为原料来进行CHA型沸石的结晶化。
【0032】如15～16的任一项所述的无机多孔支持体-沸石膜复合体的制备方法，其特征在于，在反应混合物中存在碱金属离子。
【0033】如16～17的任一项所述的无机多孔支持体-沸石膜复合体的制备方法，该方法进一步使用有机模版剂作为原料，且有机模版剂为非1-金刚烷烃衍生出的阳离子。
【0034】一种分离膜，其含有1～11的任一项所述的无机多孔支持体-沸石膜复合体。
【0035】一种分离方法，其特征在于，使含有有机物的气体或液体的混合物与1～11的任一项所述的无机多孔支持体—沸石膜复合体接触，使该混合物中透过性高的物质透过，由此从该混合物中分离出该透过性高的物质。
【0036】一种分离方法，其中，含有有机物的气体或液体的混合物为有机酸与水的混合物。
【0037】一种分离方法，其中，含有有机物的气体或液体的混合物为选自醇、醚、醛、酮和含氧的有机化合物中的至少一种与水的混合物。
【0038】一种浓缩方法，其特征在于，使含有有机物的气体或液体的混合物与1～11的任一项所述的无机多孔支持体—沸石膜复合体接触，使透过性高的物质从该混合物中透过，由此对透过性低的物质进行浓缩。
[0039] 〈23〉如〈22〉所述的浓缩方法，其中，含有有机物的气体或液体的混合物为选自有机酸、醇、醚、酯、酮和含氮的有机化合物中的至少一种与水的混合物。

[0040] 对于本发明的无机多孔支持体－沸石膜复合体，在由含有有机物的气体或液体的混合物中分离、浓缩特定的化合物时，其为在实用上也具有足够大的处理量且具有充分的分离性能的分离浓缩用沸石膜复合体，可以使用沸石膜由含有有机物的气体或液体的混合物中进行分离、浓缩。

[0041] 另外，根据本发明的沸石膜复合体的制造方法，可以得到耐酸性优异的分离、浓缩用沸石膜复合体，能够对含有有机酸的混合物进行分离浓缩。

附图说明

[0042] 附图1是渗透气化测定装置的简图。
[0043] 附图2是实施例2所述的沸石膜的XRD测定结果。
[0044] 附图3是实施例5所述的沸石膜的XRD测定结果。
[0045] 附图4是实施例6所述的沸石膜的XRD测定结果。
[0046] 附图5是实施例8和比较例1所述的水/乙酸分离能的测定结果。

具体实施方式

[0047] 下面详细地说明本发明的实施方式，但以下记载的构成要件的说明是本发明实施方式的一例，而本发明的实施方式并不限于这些内容，可以在其要点的范围内进行各种变形来实施。

[0048] 本发明的无机多孔支持体－沸石膜复合体（以下有时简称为“沸石膜复合体”）是CHA型沸石在含有陶瓷烧结体的无机多孔支持体的表面层以膜状进行结晶化而成的复合体。

[0049] 首先，对于构成本发明无机多孔支持体－沸石膜复合体的各成分进行具体说明。

[0050] （无机多孔支持体）

[0051] 作为本发明中所用的无机多孔支持体，只要具有能够在表面层进行沸石的膜状结晶化的化学稳定性且为多孔质就没有特别限制。例如可举出二氧化硅、α-氧化铝、γ-氧化铝、莫来石、氧化锆、二氧化钛、二氧化二钇、氮化硅、碳化硅等陶瓷烧结体；铁、青铜、不锈钢等烧结金属；玻璃；碳成型体等。

[0052] 作为本发明中所用的含有陶瓷烧结体的无机多孔支持体，指的是含有对陶瓷进行烧结而成的物质的多孔质支持体，该陶瓷为基本成分或其大部分成分由无机非金属物质构成的固体材料。

[0053] 具体可举出含有α-氧化铝、γ-氧化铝、莫来石、氧化锆、二氧化钛、二氧化二钇、氮化硅、碳化硅等的陶瓷烧结体。这些物质可以单独使用，也可以混合多种使用。这是由于对于这些陶瓷烧结体来说，其一部分在沸石膜合成中发生沸石化，从而具有提高界面的密合性效果。

[0054] 其中，对于含有氧化铝、二氧化硅、莫来石中的至少一种物质的无机多孔支持体，由于容易发生无机多孔支持体的部分沸石化，因而无机多孔支持体与CHA型沸石的结合变得牢固，易于形成致密的分离性能高的膜，在这一点上来说是更优选的。
对于本发明中所用的无机多孔支持体的形状，只要能够对气体混合物、液体混合物进行有效分离就没有限制，具体可以举出平板状、管状、或存在大量圆筒状、圆柱状或四棱柱状的孔的蜂窝状支持体或单块(モノリス)等，可以为任一形状。

对于本发明中所用的无机多孔支持体，在其表面层(下文中也称为“无机多孔支持体表面层”)中使沸石结晶化。

对上述无机多孔支持体表面层所具有的细孔径没有特别限制，但优选对细孔径进行控制，优选的范围是：细孔径通常为0.02μm以上、优选为0.05μm以上，进一步优选为0.1μm以上；且通常为20μm以下、优选为10μm以下、进一步优选为5μm以下。

并且，优选无机多孔支持体的表面光滑，根据需要可以用酸等对表面进行研磨。

另外，所谓无机多孔支持体表面层意味着对CHA型沸石进行结晶化的无机多孔支持体表面部分，这是表面即可，可以为各个形状的任何地方的表面，也可以为多个面。例如在圆筒管支持体的情况下，可以为外侧表面，也可以为内侧表面，可根据情况还可以为外侧和内侧两侧的表面。

另外，本发明中所用无机多孔支持体的无机多孔支持体表面层以外的部分的细孔径并不特别限制，并且无需进行特别控制，但优选无机多孔支持体表面层以外的部分的气孔率通常为20%～60%。无机多孔支持体表面层以外的部分的气孔率左右进行气体或液体分离时的透过流束，若小于上述下限则具有透过物扩散受阻的倾向，若大于上述上限则有无机多孔支持体的强度降低的倾向。

(CHA型沸石)

本发明中所用的CHA型沸石表示的是在国际沸石协会(International Zeolite Association, IZA)制定的规定沸石结构的准则中为CHA结构的沸石。是与天然出产的菱沸石具有同等结晶结构的沸石。CHA型沸石采取以具有由3.8×3.8Å径尺寸的氧8元环构成的三维细孔为特征的结构，其结构特征通过X射线衍射数据来体现。

本发明中所用的CHA型沸石的骨架(framework)密度为14.5T/1000Å。骨架密度意味着每1000Å³沸石中氧以外的构成骨架的元素的物质的量，该值取决于沸石的结构。另外，骨架密度与沸石之间的结构关系见ATLAS OF ZEOLITE FRAMEWORK TYPES(沸石骨架类型图集)第五次修订版2001。ELSEVIER。

本发明中所用的CHA型沸石的SiO₃/Al₂O₃摩尔比没有特别限定，但通常为5以上、优选为8以上、更优选为10以上，进一步优选为12以上。作为上述摩尔比的上限，通常为2000以下、优选为1000以下，更优选为500以下，进一步优选为100以下。这与后述的沸石膜的SiO₃/Al₂O₃摩尔比是相同的。

(沸石膜)

本发明中的沸石膜是指由沸石构成的膜状物，优选为使沸石在上述无机多孔支持体的表面层结晶化而成膜的沸石膜。作为构成膜的成分，除沸石外，根据需要也可以含有二氧化硅、氧化铝等无机粘结剂；聚合物等有机物；或对沸石表面进行修饰的硅烷基化剂等。

本发明中的沸石膜也可以含有一部分无定形成分等，但优选为实质上仅由沸石构成的沸石膜。具体地说为以CHA型的沸石作为主成分的沸石膜，可以部分地含有丝光沸石型、MFI型等其他结构的沸石，也可以含有无定形成分等，但优选为实质上仅由CHA型沸石构
成的沸石膜。

【0069】作为本发明中所用的沸石膜的厚度并无特别限制，但通常为0.1μm以上，优选为0.3μm以上，进一步优选为1.0μm以上。并且，通常为100μm以下，优选为60μm以下，进一步优选为20μm以下的范围。

【0070】另外，本发明中的沸石结晶层是指具有上述沸石膜的厚度的沸石膜状物。

【0071】对形成本发明中的沸石膜的沸石的粒径没有特别限定，但是如果粒径过小，则晶界会大等，具有使透过选择性等降低的倾向，因而沸石粒径通常为30nm以上，优选为50nm以上、更优选为100nm以上，粒径上限为膜的厚度以下。更优选的是沸石的粒径与膜的厚度相同，这是由于沸石的粒径与膜的厚度相同时沸石的晶界最小，对于水热合成所得到的沸石膜，由于有沸石的粒径与膜的厚度相同，因而优选。

【0072】对本发明中的沸石膜的SiO2/Al2O3摩尔比没有特别限定，但是通常为5以上，优选为8以上，更优选为10以上，进一步优选为12以上。作为上限，通常为2000以下，优选为1000以下，更优选为500以下，进一步优选为100以下。SiO2/Al2O3摩尔比不足上述下限时，耐久性会降低的倾向，超过上述上限时，耐久性会减小，因而透过流束有减小的倾向。

【0073】本发明中的沸石膜也可以直接使用由沸石构成的膜状物，但通常以将沸石以膜状固化在各种支持体上的沸石膜复合体的形式来使用，优选以下文详述的无机多孔支持体-沸石膜复合体的形式使用。

【0074】（无机多孔支持体-沸石膜复合体）

【0075】本发明的无机多孔支持体-沸石膜复合体是用沸石以膜状固化在无机多孔支持体的表面层，根据情况部分固化至无机多孔支持体的内部的状态的膜复合体。

【0076】为了形成这样的沸石膜复合体，有如下方法：使沸石在无机多孔支持体上结晶为膜状而形成沸石膜复合体的方法；用无机粘结剂或有机粘结剂使沸石固着在无机多孔支持体上的方法；使沸石的聚合物固化的方法；使无机多孔支持体浸渍（根据情况使其吸水）沸石浆料，由此使沸石固化于无机多孔支持体上的方法等。

【0077】本发明中优选的状态是使沸石以膜状结晶化至无机多孔支持体表面层。

【0078】具体地说为使CHA型沸石以膜状结晶化至无机多孔支持体表面层的状态，通常通过水热合成来进行结晶化。

【0079】对本发明中所用的沸石膜在无机多孔支持体表面上的位置没有特别限定，在使用管状无机多孔支持体时，既可以在外表面附着沸石膜，也可以在内表面附着沸石膜，进而根据所应用的体系也可以在两面附着沸石膜。并且，既可以层积在无机多孔支持体的表面，也可以按照对多孔质支持体表面层的细孔内进行填埋的方式来进行结晶化。这种情况下，在结晶化的膜层的内部没有龟裂或连续的微细孔是重要的，形成所谓的致密膜以提高分离性。

【0080】本发明的无机多孔支持体-沸石膜复合体优选的尺寸是在X射线衍射图谱中2θ＝17.9°（在附图中以deg表示该角度°，下同）附近的峰的强度为2θ＝20.8°附近的峰的强度的0.5倍以上。
此处所说的峰的强度是指从测定值中减去背景值后的值。以由(2θ=17.9°附近的峰的强度)/(2θ=20.8°附近的峰的强度)表示的峰强度比来说，理想的是0.5以上，优选为1以上。进一步优选为1.2以上，特别优选为1.5以上。对上限没有特别限定，然而通常为1000以下。

本发明的无机多孔支持体-沸石膜复合体优选的尺寸是在X射线衍射图谱中2θ=9.6°附近的峰的强度为2θ=20.8°附近的峰的强度的4倍以上。

以由(2θ=9.6°附近的峰的强度)/(2θ=20.8°附近的峰的强度)表示的峰强度比来说，理想的是4以上，优选为6以上，进一步优选为8以上，特别优选为10以上。对上限没有特别限定，然而通常为1000以下。

此处所说的X射线衍射图谱是指对沸石所主要附着的二侧的表面照射以CuKα为射线源的X射线，扫描轴设定为θ/2θ而得到的图谱。作为测定样品的形状，若为X射线能够对膜复合体的沸石所主要附着的二侧的表面进行照射的形状，也可以任意形状，作为很好地表现出膜复合体的特征的形状，优选直接制成的膜复合体的形状或切割成装置所限制的适当尺寸后的形状。

对于此处所说的X射线衍射图谱，在膜复合体的表面为弯曲的情况下，也可以使用自动可变狭缝对照射宽度进行固定来测定。使用自动可变狭缝的情况下，X射线衍射图谱是指实施了可变量固定狭缝校正后得到的图谱。

此处所说的2θ=17.9°附近的峰指的是，在并非来源于基材的峰中的，存在于17.9°±0.6°的范围的峰中的最大峰；2θ=20.8°附近的峰指的是，在并非来源于基材的峰中的，存在于20.8°±0.6°的范围的峰中的最大峰。

并且，2θ=9.6°附近的峰指的是，在并非来源于基材的峰中的，存在于9.6°±0.6°的范围的峰中的最大峰。

根据COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟XRD粉末图谱集合)第三次修订版1996 ELSEVIER，X射线衍射图谱中2θ=9.6°附近的峰是按斜方六面体晶胞(rhombohedral setting)将空间群设定为

R̅3m

(No.166)时在CHA结构中指数为(1,0,0)的面所产生的峰。

并且，根据COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟XRD粉末图谱集合)第三次修订版1996 ELSEVIER，X射线衍射图谱中2θ=17.9°附近的峰是按斜方六面体晶胞将空间群设定为

R̅3m

(No.166)时在CHA结构中指数为(1,1,1)的面所产生的峰。

根据COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟XRD粉末图谱集合)第三次修订版1996 ELSEVIER，X射线衍射图谱中2θ=20.8°附近的峰是按斜方六面体晶胞将空间群设定为

R̅3m

(No.166)时在CHA结构中指数为(2,0,-1)的面所产生的峰。

根据COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟
XRD粉末图谱集合）第三次修订版1996 ELSEVIER, (1,0,0)面所产生的峰的强度与(2,0,-1)面所产生的峰的强度的典型性的比为2.5。因而推测，该比为4以上意味着沸石结晶按照例如对CHA结构按斜方六面体取晶胞时的(1,0,0)面趋向于与膜复合体的表面平行进行长向的方式发生取向进行成长。在沸石膜复合体中沸石结晶发生取向并进行成长在形成分离性能高的致密的膜的方面是有利的。

【0098】根据COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟XRD粉末图谱集合)第三次修订版1996 ELSEVIER, (1,1,1)面所产生的峰的强度与(2,0,-1)面所产生的峰的强度的典型性的比为0.3。因而推测，该比为0.5以上意味着沸石结晶按照例如对CHA结构按斜方六面体取晶胞时的(1,1,1)面趋向于与膜复合体的表面平行进行长向的方式发生取向进行成长。在沸石膜复合体中沸石结晶发生取向并进行成长在形成分离性能高的致密的膜的方面是有利的。

【0099】（沸石膜的制备方法）
【0100】作为本发明中的沸石膜的结晶化方法，只要CHA型沸石在无机多孔支持体上进行膜状结晶，形成CHA型沸石的膜，就可以使用任何方法。其中，优选将无机多孔支持体加入到用于制造CHA型沸石的反应混合物中直接进行水热合成从而使CHA型沸石在无机多孔支持体表面层结晶化的方法。

【0101】对于具体的优选方法，作为使CHA型沸石在无机多孔质支持体表面层形成膜状结晶的方法，对组成进行调整制成均匀的水性反应混合物，将该反应混合物加入到将无机多孔支持体缓慢地固定于内部的高压釜等耐热耐压容器中，密闭进行加热。

【0102】（反应混合物）

【0103】上述反应混合物的例子，优选含有Si元素源、Al元素源、（根据需要）有机模板剂和水，进而必要时添加离子的混合物。

【0104】对用于上述反应混合物的Si元素源、Al元素源没有特别限定。作为Si元素源，能够使用无定形二氧化硅、胶态二氧化硅、硅胶、硅酸钠、无定形铝的硅酸盐凝胶、四乙氧基硅烷（TEOS）、三甲基乙氧基硅烷等任一物质。作为Al元素源，能够使用铝酸钠、氧化铝、硫酸铝、磷酸铝、氧化铝、无定形氧化铝硅酸盐凝胶等任一物质。

【0105】在本发明中的CHA型沸石的制备中，可以根据需要使用有机模板剂(结构规定剂)，优选使用有机模板剂来合成。这是由于使用有机模板剂来合成时结晶化的沸石中的硅原子相对铝原子的比例高，耐酸性提高。作为有机模板剂，只要是可以形成CHA型的物质，无论何种类型均可，没有特别限定。

【0106】并且，模板剂可以使用一种，也可以组合两种以上使用，例如可以将美国专利第4544538号说明书、美国专利申请公开第2008/0075656A1号说明书记载的有机模板剂适宜组合使用。具体为衍生自1-金刚烷胺的阳离子。衍生自3-喹诺酮（キナクリジナル）的阳离子、衍生自3-外-氨基降冰片烯的阳离子等衍生自反环酰胺的阳离子，更优选衍生自1-金刚烷胺的阳离子。这是由于将衍生自1-金刚烷胺的阳离子作为有机模板剂时，可形成致密的膜的CHA型沸石进行结晶化。并且还由于可生成对膜选择性地透过水而维持有充分的亲水性的CHA型沸石，此外可获得耐酸性优良的CHA型沸石。

【0107】衍生自1-金刚烷胺的阳离子中更优选N,N,N-三烷基-1-金刚烷铵阳离子。N,N,N-三烷基-1-金刚烷铵阳离子的情况下的3个烷基是3个独立的烷基，通常为低级烷基，优选为
甲基。具体优选为N,N,N-三甲基-1-金刚烷铵阳离子。这样的阳离子伴随有对CHA型沸石的形成无害的阴离子。这样的阳离子的代表例中包含Cl⁻,Br⁻,I⁻等卤素离子；氢氧化物离子、乙酸盐、硫酸盐和羧酸盐。特别优选使用氢氧化物离子。并且，作为其他的有机模板剂，也可以使用N,N,N-三烷基季铵基铵阳离子。此时，烷基也是3个独立的烷基，通常为低级烷基。优选为甲基。最优选的是N,N,N-三甲基季铵基铵阳离子。

作为用于上述反应混合物的碱源，可以使用作为有机模板剂的抗衡阴离子的氢氧化物离子；NaOH、KOH等碱金属氢氧化物；Ca(OH)₂等碱土金属氢氧化物等。

对碱的种类没有特别限定，但通常为Na、K、Li、Rb、Cs、Ca、Mg、Sr、Ba。优选为Na、K，更优选为K。可使用两种以上的碱，具体优选使用Na和K。

反应混合物中的Si元素源与Al元素源的比通常以各元素的氧化物的摩尔比，即SiO₂/Al₂O₃摩尔比（以下有时简称为“SiO₂/Al₂O₃比”）来表示。对SiO₂/Al₂O₃比没有特别限定，但是通常为5:1以下，优选为5:1以上。这在可致密地形成CHA型沸石膜的方面是优选的，更优选为10:1以上，进一步优选为15:1以上。并且，SiO₂/Al₂O₃比为10000:1以下，优选为1000:1以下，更优选为300:1以下。

SiO₂/Al₂O₃比为在该范围时，可致密地形成CHA型沸石膜，因此是优选的；进一步地，所生成的CHA型沸石显示堵塞亲水性，能够由含有有机物的混合物中使亲水性化合物，特别是水选择性地透过，在这方面是优选的。并且，可得到耐酸性较强的CHA型沸石。另外，除Al以外也可以含有其他元素，例如Ga、Fe、B、Ti、Zr、Sn、Zn等元素。

SiO₂/Al₂O₃比为在该范围时，由于可形成致密膜的CHA型沸石发生结晶化，因此是优选的。并且，除了可生成对膜选择性地透过水而言具有充分的亲水性，即CHA型沸石以外，还可得到耐酸性优异的CHA型沸石，是在这方面是优选的。

对于反应混合物中的二氧化硅源与有机模板剂的比，有机模板剂相对于SiO₂的摩尔比为0.005:1，优选为0.01:1，进一步优选为0.02:1。在该范围时，可生成致密的CHA型沸石膜，并且生成的CHA型沸石的耐酸性强，Al难以脱离。

对于Si元素源与碱-source的比，用M表示碱金属或碱土金属，用n(1或2)表示其价数时，以M_{2/n}O/SiO₂的摩尔比为0.02:1，优选为0.04:1，进一步优选为0.05:1。并且，在碱金属中含有K的情况下，会生成更致密的结晶性高的膜，在这一点上是优选的。这种情况下的K与包含K在内的全部其它碱金属和/or碱土金属的摩尔比通常为0.01:1，优选为0.1:1，进一步优选为0.3:1。并且，K的添加具有增加在斜方六面体取晶带对空间群设定为

R̅₃m

(No.166)时CHA结构中指数为(1,0,0)的面所产的峰即2θ=9.6°附近的峰强度或(1,1,1)的面所产的峰即2θ=17.9°附近的峰强度与(2,0,-1)的面所产的峰即2θ=20.8°附近的峰强度的比的倾向。

Si元素源和水的比以水相对于SiO₂的摩尔比计为10:1000，优选为30:500，进一步优选为40:200，特别优选为50:150。反应混合物中的物质的摩尔比在这些范围时，可生成致密的CHA型沸石膜。水的量在致密的CHA型沸石膜的生成中是特别重要的。与粉末合成法的一般条件相比，水相对于二氧化硅多的条件下具有易于生成细的结晶形成致密的膜的倾向。合成粉末CHA型沸石时的水的量一般以H₂O/SiO₂摩尔比计在15:50左右，但本发
明优选设定为H2O/SiO2摩尔比高、水量多的条件，在H2O/SiO2摩尔比具体优选为50～150的条件下时，CHA型沸石在无机多孔支持体表面层结晶化形成致密的膜状，可得到分离性能高的膜复合体。在这一点上是优选的。

（0119）（复合体的制造方法）

对于在支持体表面层使可适用于气体或液体混合物的分离的致密的、且能够达成充分的透过流束的膜状CHA型沸石进行结晶化，仅简单的直接应用上述的文献是不够的。需要从这些方法中对制成膜状的条件进行各种研究。

（0120）在本发明中的无机多孔支持体表面层使CHA型沸石进行结晶化形成膜状时，可以不存在晶种，但通过在反应体系中加人晶种，能够促进CHA型沸石的结晶化，在这一点上优选存在晶种。作为加入晶种的方法没有特别限定，可以为如粉末状CHA型沸石的合成时那样在反应混合物中加人晶种的方法。预先使晶种附着于无机多孔支持体表面上的方法；作为膜复合体的制造方法，优选预先使晶种附着于无机多孔支持体表面上。通过预先使晶种附着于支持体表面上，易于生成致密的分离性能良好的沸石膜。

（0121）本发明中使用的晶种只要是促进结晶化的沸石，无论何种类均可，但为了效率良好地进行结晶化，优选为CHA型沸石。用作晶种的CHA型沸石没有特别限定，但是理想的其粒径要根据需要也可以粉碎后使用。其粒径通常为0.5μm以上，优选为1μm以上，更优选为2μm以上，且通常为5μm以下，优选为3μm以下。进一步优选为2μm以下。

（0122）对于使晶种附着于本发明中的无机多孔支持体表面上的方法，没有特别限定，有如下方法等；使晶种分散于水等溶剂中，在该分散液中浸渍支持体，使晶种附着于表面的浸渍法；将晶种与水等溶剂混合，制成浆料状，涂布于无机多孔支持体表面上的方法。对于控制晶种的附着量、再现性良好地制造膜复合体来说，理想的是浸渍法。

（0123）对本发明中用于分散晶种的溶剂没有特别限定，优选水。对分散的晶种的量没有特别限定，但相对于分散液的总重量，晶种的量通常为0.01重量%以上、优选为0.1重量%以上、更优选为0.5重量%以上，且通常为20重量%以下、优选为10重量%以下、更优选为5重量%以下，进一步优选为3重量%以下。分散的晶种的量过少附着于无机多孔支持体上的晶种的量变少，因而在水热合成时在支持体表面有时出现部分未生成CHA型沸石之处，有可能形成有缺陷的膜。若分散液中的晶种的量过多，则由于通过浸渍法附着于无机多孔支持体表面上的晶种的量几乎是恒定的，因而分散的晶种的量若过多则晶种的浪费增多，在成本方面是不利的。

（0124）本发明中的无机多孔支持体优选通过浸渍法或浆料涂抹使晶种附着后进行干燥，然后进行膜的合成。

（0125）对预先附着于支持体表面上的晶种的量没有特别限定，但是以每1m²基材中的晶种的重量计，通常为0.01g以上、优选为0.05g以上、更优选为0.1g以上，且通常为100g以下、优选为50g以下、更优选为10g以下。在晶种的量不足上述下限的情况下，难以形成结晶，膜的生成有时不充分，或者膜的生成有不均匀的倾向，因而有时难以生成致密的膜。并且，若晶种的量超过上述上限的情况下，有时以外的凹凸随晶种而加深，或者有时从支持体表面脱落的晶种使自发热核于生长、阻碍支持体上的膜生成，因而有可能难以生成致密的膜。

（0126）在通过水热合成进行结晶化的情况下，在对无机多孔支持体进行固定时，可以采
取竖放、横放等所有的形态。此时，既可以用水静置法进行结晶化，也可以搅拌反应混合物进行结晶化。

【0128】对使沸石结晶化时的温度没有特别限定，但是通常为100℃以上，优选为120℃以上，进一步优选为150℃以上，且通常为200℃以下，优选为190℃以下，进一步优选为180℃以下。在反应温度过低的情况下，有时CHA型沸石不完全结晶化，故不是优选的。在反应温度过于高于该范围的情况下，会生成与CHA型不同类型的沸石，所以说不是优选的。

【0129】对于加热时间没有特别限定，但是通常为1小时以上，优选为5小时以上，进一步优选为10小时以上，且通常为10天以下，优选为5天以下，更优选为3天以下，进一步优选为2天以下。在反应时间过短的情况下，有时CHA型沸石不完全结晶化，故不是优选的。在反应时间过长的情况下，会生成与CHA型不同类型的沸石，故不是优选的。

【0130】对结晶化时的压力没有特别限定，在将加入到密闭容器中的反应混合物加热到所述温度范围内所产生的自生压力下足以进行结晶化，但也可以加入氢等惰性气体。

【0131】对于通过水热合成得到的无机多孔支持体-沸石膜复合体，优选在水洗后除掉沸石中的有机模板剂。作为除掉有机模板剂的方法，有烧制、提取等方法，对其方法没有限定，但优选烧制，优选的烧制温度是：通常为350℃以上，优选为400℃以上，更优选为430℃以上，进一步优选为180℃以上，且通常为900℃以下，优选为850℃以下，进一步优选为800℃以下，特别优选为750℃以下。烧制温度过低时，残留的有机模板剂的比例增多的倾向，沸石的细孔少，从而分离浓缩时的通过速度有可能增小，所以不是优选的。烧制温度过高时，支持体与沸石的热膨胀差之差增大，因此在沸石膜上可能会产生龟裂，沸石膜会失去致密性，分离性能容易降低。

【0132】对于烧制时间，只要足以除掉有机模板剂就没有特别限定，但是优选为1小时以上，进一步优选为5小时以上，对上限没有特别限定，通常为24小时以内。烧制一般在空气气氛下进行，但也可以在含氧的气氛下进行。

【0133】对于烧制时的升温速度，为了减少支持体与沸石的热膨胀率之差所导致的在沸石膜上产生龟裂的情况，优选升温速度尽可能缓慢。升温速度通常为5℃/分钟以下，优选为2℃/分钟以下，进一步优选为1℃/分钟以下，特别优选为0.5℃/分钟以下。通常，考虑到作业性，升降温速度为0.1℃/分钟以上。并且，为了避免在沸石膜上产生龟裂，对烧制后的降温速度也需要进行控制。与升降温速度同样地，速度越慢越优选。降温速度通常为5℃/分钟以下，进一步优选为2℃/分钟以下，进一步优选为1℃/分钟以下，特别优选为0.5℃/分钟以下。通常，考虑到作业性，降温速度为0.1℃/分钟以上。

【0134】也可以根据需要对无机多孔支持体-沸石膜复合体进行离子交换。使用模板剂进行合成时，离子交换通常在进行烧制等除去模板剂后进行。作为用于离子交换的离子，可举出质子；Na⁺、K⁺、Li⁺等碱金属离子；Ca²⁺、Mg²⁺、Sr²⁺、Ba²⁺等碱土金属离子；以及Fe、Cu、Zn等过渡金属的离子等。其中优选质子以及Na⁺、K⁺、Li⁺等碱金属离子。

【0135】作为离子交换的方法，利用NaNO₃、NaNO₃等铵盐或含有用于交换的离的的水溶液，根据情况利用盐酸等酸水；通常为室温至100℃的温度下对烧制后（使用了模板剂时等）的无机多孔支持体-沸石膜复合体进行处理，然后进行水洗，根据需要在200℃～500℃烧制。

【0136】（分离浓缩方法）

【0137】使用本发明的无机多孔支持体-沸石膜复合体对含有有机物的气体或液体混合物
进行分离浓缩的方法是这样的方法：籍由具备沸石膜的无机多孔支持体，使支持体侧或沸石膜侧中的一侧与含有有机物的气体或液体的混合物相接触，使其相反侧的压力为低于与混合物所接触的一侧的压力，从而使对CHA型沸石膜具有透过性物质（混合物中的透过性高的物质）由混合物中选择性地透过。由此能够从混合物中分离出透过性高的物质。并且，其结果，该方法通过提高含有有机物的混合物中的特定有机物（混合物中的透过性低的物质）的浓度而对特定有机物进行分离回收或进行浓缩。具体而言，在水和有机物的混合物的情况下，通常水对沸石膜的透过性高，因而从混合物中进行水和有机物的分离，有机物在原来的混合物中被浓缩，被称为透过性渗透气化、蒸气渗透的分离浓缩方法是一种形态。

【0138】对本发明的沸石膜复合体的形状没有特别限定，可以采用管状、中空纤维状、单块型、蜂窝型等所有形状。并且，对尺寸也没有特别限定，但例如在管状的情况下，实用上优选通常长度为2cm～200cm、内径为0.5cm～2cm、厚度为0.5mm～4mm。

【0139】本发明的沸石膜复合体的一种分离功能是作为分子筛的分离，适合用于具有CHA型沸石的有效细孔径为3.8Å以上的大小的气态分子或液体分子与该大小以下的气态或液体分子的分离。另外，用于分离的分子的大小没有上限，但分子的大小通常为约100Å以下。

【0140】并且，本发明的沸石膜复合体的再一个分离功能是利用亲水性之差的分离。亲水性也根据沸石的种类而不同，但通常使沸石骨架中含有有一定量Al从而表现出亲水性质。只要控制CHA型沸石膜的结晶化条件，就可以控制结晶中的SiO2/Al2O3摩尔比。使用这样的亲水性膜的时候，通过从有机物与水的混合溶液中选择性地使水分子透过膜，能够将有机物分离。例如，通过从有机酸类/水、醇类/水、丙酮、甲基异丁基酮等醇类/水、酮类/水、二氧六环、四氢呋喃等醚类/水、二甲基甲酰胺、N-甲基吡咯烷酮等酰胺等含氮的有机化合物（含N的有机物）/水、乙酸酯等酯类/水等的有机物与水的混合水溶液中选择性地使水透过，可以对有机物进行分离浓缩。此时对有机物与水的混合物中的水的含量没有特别限制，即使在A型沸石中会发生结构破坏的高含水量例如20重量％以上的含水量的混合物中，该沸石膜复合体的结构也不会发生破坏，能够实现高的选择率和透过流束。

【0141】另外，在有机酸/水以外的体系中，即使存在有机酸或无机酸，耐酸性也高，因而也是可以使用的。

【0142】这样，本发明的沸石膜复合体即使在从含水量高的与有机物的混合物中的分离、酸性条件下的分离中也能够实现高选择率和透过流束。因而，通过使用本发明的沸石膜复合体对通常以蒸馏来分离的混合物进行分离，与蒸馏相比能够减少分离所需的能量。本发明的沸石膜复合体可以从含水量范围较宽的混合物中进行分离，所以对于迄今为止无法分离的体系也可以进行分离。例如，迄今为止采用A型的沸石膜不能进行从含水量高的与有机物的混合物中的分离，因而需要通过蒸馏将有机物浓缩至90％左右后再使用A型沸石膜。但是，若使用本发明的沸石膜复合体，则即使从例如50％以上的含水量的与有机物的混合物中也能进行水与有机物分子的分离，对有机物进行浓缩。在使用本发明的沸石膜复合体对水和有机物进行分离的情况下，在将有机物浓缩至所期望的浓度时，既可使用沸石膜复合体进行所有的工序，也可以将沸石膜复合体与蒸馏或变压吸附（PSA）、变温吸附（TSA）等分离方法适宜组合，通过对条件进行配合，可以以最佳的能量效率进行分离。

【0143】作为可利用本发明的沸石膜复合体进行分离的有机物的例子，可举出乙酸、丙酸、甲酸、乳酸、草酸、酒石酸、苯甲酸等羧酸类；磺酸、亚磺酸、巴比妥酸（ハピツル酸）、尿酸、苯
酚、烯醇、二酮型化合物、苯硫酚、酰亚胺、肟、芳香族磺酰胺、伯硝基化合物和仲硝基化合物等有机酸；甲醇、乙醇、异丙醇等醇；丙酮、甲基异丁基酮等酮类；乙醛等醛类；二氧六环、四氢呋喃等醚类；二甲基甲酰胺、N-甲基吡咯烷酮等酰胺等含氮的有机化合物(含N有机物)；乙酸酯等酯类等。这些之中，在从能够有效利用分子筛和氵水性这两种特征的有机酸与水的混合物中对有机酸进行分离时，无机多孔支持体-沸石膜复合体的效果突出地表现出来。更适合的例子优选为羧酸类与水的混合物，特别优选乙酸与水的分离等。并且，从有机酸以外的有机物与水的混合物中进行有机物和水的分离时，有机物优选碳原子数为2以上，更优选碳原子数为3以上。

【0144】使用本发明的无机多孔支持体-沸石膜复合体时，可以作为分离膜、优选作为渗透气化分离膜发挥作用功能进行从含有有机物的气体或液体的混合物中分离特定化合物、进一步进行浓缩的在实用上具备充分的处理量，也有充分的分离性能的充分的膜分离。此处所说的充分的处理量是指透过膜的物质的透过流速为1kg/(m²·h)以上，并且，充分的分离性能是指表示膜分离中一般所用的分离性能的、分离系数=(P_a/P_b)/(P_a/P_b)中的、P_a为透过液中的主成分的重量百分浓度，P_b为透液中的副成分的重量百分浓度。P_a为透过液中成为主成分的成分在被分离混合物中的重量百分浓度，P_b为在透过液中成为副成分的成分在被分离混合物中的重量百分浓度]为100以上或者指透过液中的主成分的浓度为95重量%以上。

【0145】采用现有的丝光沸石型沸石膜复合体或镁碱沸石型沸石膜复合体不能进行同时实现充分的处理量和充分的分离性能的含有有机物的混合液的膜分离。本发明中，由于CHA型沸石的细孔结构为三维结构，因而据推测，与细孔为一维结构的丝光沸石型沸石的膜相比，分子易于从细孔内通过，因而透过流速高，达到了充分的处理量。对于分离性能高的致密的沸石膜来说透过物质的主要流路为沸石结晶中的细孔，因而推测细孔多的结构的沸石的膜能够在实现高分离性能的同时实现充分的处理量。结晶中的细孔的量也能够由沸石的骨架密度推测。CHA型沸石的骨架密度为14.5T/1000Å³，与此相比较丝光沸石为17.2T/1000Å³，镁碱沸石为17.6T/1000Å³，所以从骨架密度的方面出发，推测也是CHA型沸石的结晶中成为透过物质的流路的空间多。

【0146】对于本发明的无机多孔支持体-沸石膜复合体，具备高SiO2/Al2O3摩尔比的CHA型沸石的耐酸性优异，这与A型沸石、丝光沸石型沸石是不同的，因而适合分离含有有机酸的混合物。从SiO2/Al2O3摩尔比高且含有有机模板剂的反应混合液中结晶化的CHA型沸石即使在酸性条件下也难以脱去Al，结构也稳定。而另一方面，丝光沸石型沸石在酸性条件下会进行脱Al。可以预想，尽管进行脱Al所致的丝光沸石型沸石的结晶结构的变化少，但结晶的SiO2/Al2O3摩尔比向增加的方向变化，因而丝光沸石型沸石膜中的结晶的亲水性降低，利用了亲水性的分离中分离性能有可能降低。并且，对于A型沸石，由于酸的作用会使其结构被破坏，因而推测在有机酸的存在下无法作为膜发挥作用。

【0147】本发明的沸石膜复合体由于具有耐酸性，因而能够有效利用从含有有机酸的混合物中的分离浓缩、特别是通过从乙酸等有机酸与水的混合物中选择性地使水透过而进行的有机酸的分离浓缩、用于促进酯化反应的水分离等。

【0148】实施例

【0149】下面基于实施例更具体地说明本发明，但只要不超出其要点，本发明并不限于
以下实施例。

【0150】 X射线衍射(XRD)的测定方法
【0151】 基于以下的条件进行XRD测定。
【0152】 装置名: 荷兰PANalytical社制造的X’PertPro MPD
【0153】 光学系统规格 入射侧: 封闭式X射线管(CuKα)
【0154】 Soller Slit(0.04rad)
【0155】 Divergence Slit(Valuable Slit)
【0156】 试样台: XYZ处理台
【0157】 受光侧: 半导体阵列检测器(X’Celerator)
【0158】 Ni-filter
【0159】 Soller Slit(0.04rad)
【0160】 测角仪扫描半径: 240mm
【0161】 测定条件
 X射线输出(CuKα): 45kV, 40mA
【0162】 扫描轴: θ/2θ
【0163】 扫描范围(2θ): 5.0-70.0°
【0164】 测定模式: 连续(Continuous)
【0165】 读取宽度: 0.05°
【0166】 计数时间: 99.7sec
【0167】 自动可变狭缝(Automatic-DS): 1mm(照射宽度)
【0168】 横向散射遮蔽器: 10mm(照射宽度)
【0169】 另外, 在相对于圈筒管的轴向垂直的方向照射X射线。并且, X射线主要照射在置于
 试样台上的圆筒管状膜复合体与平行于试样台表面的面相接的两条线中并非为试样台表面
 而为位于相对于试样台表面为上部的另一方的线上从而尽可能地不引入噪音等。
【0170】 SEM-EDX的测定方法
【0171】 装置:
【0172】 SEM: FE-SEM Hitachi: S-4800
【0173】 EDX: EDAX Genesis
【0174】 加速电压: 10kV
【0175】 对倍率5000倍下的整个视野(25μm×18μm)进行扫描, 进行X射线定量分析。
【0176】 (实施例1)
【0177】 为了制作CHA型沸石膜, 参考USP4544538的记载, 制备氢氧化N,N,N-三甲基-1-金刚烷基铵(TMADOH)水溶液。以下给出例子。
【0178】 将5.5g的1-金刚烷胺(Aldrich社制造)溶解在75ml的甲醇中, 加入24.2g的碳酸
 钾, 搅拌30分钟。向其中滴加10ml的碘甲烷, 搅拌1昼夜。其次加入50ml二氯甲烷, 过滤固体。利用蒸发器将所得到的溶液的溶剂除去, 得到固体。向该固体中加入130ml二氯甲烷后过滤
 并除去溶剂, 该操作反复进行2次。其次, 将得到的固体用甲醇进行重结晶, 过滤出重结晶得
 到的固体, 用二乙基醚清洗后进行干燥, 得到碘化N,N,N-三甲基-1-金刚烷基铵(TMADI)。其
 后使该TMADI溶解在水中, 利用阴离子交换树脂(三菱化学社制造的SA-10A)进行离子交换,
 用蒸发器浓缩, 得到氢氧化N,N,N-三甲基-1-金刚烷基铵水溶液。根据滴定, 该水溶液中的
氢氧化N,N,N-三甲基-1-金刚烷基铵的浓度为0.75mmol/g。并且，该水溶液中所含有的K量为1.84重量%。

[0179] 无机多孔支持体-(CHA型)沸石膜复合体是通过在无机多孔支持体上直接水热合成CHA型沸石膜来制作的。

[0180] 作为用于水热合成的反应混合物，制备了以下的反应混合物。

[0181] 在将1mol/l-NaOH水溶液6.9g与水103.6g混合得到的混合液中加入氢氧化铝（含有53.5重量%的Al₂O₃，Aldrich社制造）0.43g，搅拌进行溶解，制成透明溶液。向其中加入作为有机模板剂的上述氢氧化N,N,N-三甲基-1-金刚烷基铵(TMADOH)水溶液9.2g(该溶液中作为K含有0.17g)，进而加入胶态二氧化硅(日产化学社制造的SNOWTEX(スノーテックス)-40)10.4g，搅拌3小时，制备水热合成用混合物。

[0182] 将(株)NIKATO制造的莫来石管(P,外径12mm,内径9mm)切成80cm的长度后，用耐水性砂纸将外表面磨滑，用超声波清洗机清洗后进行干燥，用作无机多孔支持体。在进行水热合成之前，用水浸法使支持体上附着粒径为0.5μm左右的CHA型沸石晶种，该晶种是通过与上述方法相同的方法以SiO₂/Al₂O₃/NaOH/lH₂O/TMADOH=1/0.033/0.1/40/0.1的凝胶组成于160℃水热合成2天进行结晶化而得到的。

[0183] 将支持体在分散有1重量%该晶种的水中浸渍规定时间，然后于100℃干燥5小时以上，使晶种附着在支持体上。所附着的晶种的重量为约3g/m²。将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物的特氟龙(注册商标)制内筒中，密闭高压釜，于160℃、自生压力下加热48小时。经过规定时间后，自然冷却后将支持体-沸石膜复合体从反应混合物中取出，清洗干燥于100℃干燥5小时以上。干燥后，在模板剂烧制前的沸石(以下有时称为as-made)的状态下将圆筒状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设为减压，用真空管线中设置的流量计测定空气的透过流速，其结果，透过流速为Oml/(m²·min)。

[0184] 用电炉对模板剂烧制前的沸石(as-made)的膜复合体于550℃烧制10小时。此时的升温速度和降温速度都设定为0.5℃/分钟，由烧制后的膜复合体的重量与支持体的重量的差可知在支持体上结晶化的CHA型沸石的重量为120g/m²，由SEM观察可知膜厚为约15μm。

[0185] 测定生成的膜的XRD，可知生成了CHA型沸石。XRD测定通过上述的条件进行。并且，利用自动可变狭缝将照射宽度固定为1mm来测定，使用Materials Data,Inc.的XRD解析软件JADE 7.5.2(日语版)进行可变狭缝→固定狭缝转换，得到XRD图谱。(2θ=17.9°附近的峰的强度)/(2θ=20.8°附近的峰的强度)=2.9，推测在按斜方六面体取晶胞中的(1,1,1)面发生取向。

[0186] 并且，对切割成薄长方形的无机多孔支择体-CHA型沸石膜复合体用SEM观测，其结果，在表面致密地生成结晶。

[0187] 并且，通过SEM-EDX，测定沸石膜的SiO₂/Al₂O₃摩尔比，其结果为22。

[0188] (实施例2)

[0189] 通过在无机多孔支持体上直接水热合成CHA型沸石,制作无机多孔支持体CHA型沸石膜复合体。

[0190] 作为用于水热合成的反应混合物，制备以下的反应混合物。

[0191] 在将1mol/L-NaOH水溶液10.5g、1mol/L-KOH水溶液7.0g和水100.0g混合得到的混
合溶剂中加入氢氧化铝(含有53.5重量%Al₂O₃, Aldrich社制造)0.88g,搅拌使其溶解,制成透明溶液,向其中加入作为有机模板剂的氢氧化N,N,N-三甲基-1-金刚烷基铵(TMADOH)水溶液(含有25重量%TMADOH, Sachem社制造)2.95g,进而加入胶态二氧化硅(日产化学社制造SOWTEX-40)10.5g,搅拌2小时,制备成水热合成用混合物。

0192 作为无机多孔支持体,使用与实施例1同理处理得到的支持体。在进行水热合成之前,与实施例1同样地在支持体上附着粒径为0.5μm左右的CHA型沸石晶种。所附着的晶种的重量约为5g/m²。

0193 与实施例1同样地将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物的特氟龙(注册商标)制内筒中,密封高压釜,于160℃、自生压力下加热48小时。经过规定时间后,自然冷却后将支持体-沸石膜复合体从反应混合物中取出,清洗后于100℃干燥5小时以上。在干燥后的as-made状态下将圆筒管状的膜复合体的一端密封,将另一端与真空管线连接,由此将管内设定为减压,用真空管线上设置的流量计测定空气的透过流束,其结果,透过流束为0ml/(m²・min)。用电炉对模板剂烧制前的沸石的膜复合体于500℃烧制5小时。由烧制后的膜复合体的重量与支持体的重量的差可由支持体上结晶化的CHA型沸石的重量为120g/m²。由SEM观察可知膜厚为约15μm。

0194 测定生成的沸石膜的XRD,结果可知,生成了CHA型沸石。与实施例1同样地进行XRD测定。生成的膜的XRD与作为晶种使用的粉末CHA型沸石(USP4544538号公报中一般称为SSZ-13的沸石,以下表示为SSZ-13)SSZ-13的XRD的比较示于图2。图2中a表示实施例2的膜的XRD, b表示SSZ-13的XRD。并且,图中的*为来源于支持体的峰。生成的膜的XRD中,可与作为粉末CHA型沸石的SSZ-13的XRD相比,θ=17.9°附近的峰的强度显著大。作为粉末CHA型沸石的SSZ-13的(θ=17.9°附近的峰的强度)/ (θ=20.8°附近的峰的强度)=0.2,与之相对,生成的膜的(θ=17.9°附近的峰的强度)/(θ=20.8°附近的峰的强度)=12.6,推测在按平方六面体晶胞中的(1,1,1)面发生取向。

0195 并且,通过SEM-EDX,测定沸石膜的SiO₂/Al₂O₃摩尔比,结果为17。

0196 (实施例3)

0197 通过在无机多孔支持体上直接水热合成CHA型沸石,制作无机多孔支持体-CHA型沸石膜复合体。

0198 作为用于水热合成的反应混合物,制备以下的反应混合物。

0199 在将1mol/L-NaOH水溶液10.5g, 1mol/L-KOH水溶液7.0g和水100.4g混合而成的混合溶剂中加入氢氧化铝(含有53.5重量%的Al₂O₃, Aldrich社制造)0.88g,搅拌使其溶解,制成透明溶液。向其中加入作为有机模板剂的氢氧化N,N,N-三甲基-1-金刚烷基铵(TMADOH)水溶液(含有25重量%TMADOH, Sachem社制造)2.37g,进而加入胶态二氧化硅(日产化学社制造SOWTEX-40)10.5g,搅拌2小时,制备成水热合成用混合物。

0200 作为无机多孔支持体,使用与实施例1同样处理得到的支持体。在进行水热合成之前,与实施例1同样地在支持体上附着粒径为2μm左右的CHA型沸石晶种。所附着的晶种的重量为约2g/m²。用于晶种的粒径2μm左右的CHA型沸石是使用Sachem社的25重量%氢氧化N,N,N-三甲基-1-金刚烷基铵(TMADOH)水溶液,以SiO₂/Al₂O₃/NaOH/KOH/H₂O/TMADOH＝1/0.066/0.15/0.1/100/0.1的凝胶组成于160℃进行2天水热合成,对结晶化了的沸石进行过滤、水洗、干燥而得到的。
【0201】与实施例1同样地将该附着有晶体的支持体以垂直方向浸在装有上述反应混合物的特氟龙（注册商标）制内筒中，密闭高压釜，于160℃、自生压力下加热48小时。经过规定时间后，自然冷却后将支持体-沸石膜复合体从反应混合物中取出，清洗后于100℃干燥5小时以上。在干燥后的as-made状态下将圆筒状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设定为减压，用真空管线上设置的流量计测定空气的透过流束，其结果，透过流束为0ml/(m²·min)。用电炉对模板剂烧制前的沸石的膜复合体于500℃烧制5小时。由烧制后的膜复合体的重量与支持体的重量的差可知在支持体上结晶化的CHA型沸石的重量为130g/m²。

【0202】测定生成的膜的XRD。可知生成了CHA型沸石。与实施例1同样地进行XRD测定，由生成的膜的XRD的结果可知，2θ＝17.9°附近的峰的强度显著大。生成的膜的(2θ＝17.9°附近的峰的强度)／(2θ＝20.8°附近的峰的强度)＝1.0。

【0203】并且，通过SEM-EDX，测定沸石膜的SiO₂/Al₂O₃摩尔比，结果为20。

【0204】（实施例4）

【0205】除了使用多孔质氧化铝管（外径2mm，内径9mm）作为无机多孔支持体以外，与实施例3同样地进行操作，制作用无机多孔支持体-CHA型沸石膜复合体。

【0206】由生成的CHA型沸石膜的XRD的结果可知，(2θ＝17.9°附近的峰的强度)／(2θ＝20.8°附近的峰的强度)＝1.2。并且，通过SEM-EDX，测定沸石膜的SiO₂/Al₂O₃摩尔比，结果为17。

【0207】（实施例5）

【0208】通过在无机多孔支持体上直接水热合成CHA型沸石，制作无机多孔支持体-CHA型沸石膜复合体。

【0209】作为用于水热合成的反应混合物，制备以下的反应混合物。

【0210】将1mol/L-NaOH水溶液32g、1mol/L-KOH水溶液48g和水457g混合而成的混合溶剂中加入氢氧化铝（含有约2.5重量％Al₂O₃，Aldrich社制造）4.0g，搅拌使其溶解，制成大致透明的溶液。向其中加入作为有机模板剂的氧化铝N,N-三甲基-1-金刚烷基铵（TMADOH）水溶液（含有25重量％TMADAOH、Sachem社制造）13.5g，然后加入磷酸二氯硅（日本化学社制造SNOWTEX-40）48g，搅拌2小时，制备成水热合成用混合物。

【0211】作为无机多孔支持体，使用与实施例1同样处理得到的支持体。在进行水热合成之前，使支持体上附着粒径2μm左右的CHA型沸石的晶种，除此以外进行与实施例1相同的处理，附着的晶种的重量为约5g/m²。

【0212】与实施例1同样地将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物的特氟龙（注册商标）制内筒中，将该特氟龙（注册商标）制内筒放入1L的不锈钢制高压釜中，密闭高压釜，用5小时升温后，于160℃、自生压力下加热48小时。反应期间，通过以200rpm旋转的搅拌桨混合反应混合物，经过规定时间后，自然冷却后将支持体-沸石膜复合体从反应混合物中取出，清洗后于100℃干燥4小时以上。在干燥后的as-made状态下将圆筒状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设定为减压，用真空管线上设置的流量计测定空气的透过流束，其结果，透过流束为0ml/(m²·min)。用电炉对模板剂烧制前的沸石的膜复合体于500℃烧制5小时。由烧制后的膜复合体的重量与支持体的重量的差可知在支持体上结晶化的CHA型沸石的重量为120g/m²。
[0213] 测定生成的膜的XRD，可知生成了CHA型沸石。与实施例1同样地进行XRD测定，生成的膜的XRD图见图3，图中的*为来源于支持体的峰。

[0214] 生成的膜的XRD中，可知，与作为粉末CHA型沸石的SSZ-13的XRD相比，2θ=9.6°附近反射的强度显著大。生成的膜的(2θ=9.6°附近的强度)/(2θ=20.8°附近的峰的强度)=6.8，与COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE(沸石模拟XRD粉末图谱集合)第三次修订版1996ELSEVIER中记载的粉末的CHA的XRD的比((2θ=9.6°附近的峰的强度)/(2θ=20.8°附近的峰的强度)=2.5相比显著增大，推测在按斜方六面体取晶胞中的(1,0,0)面发生取向。并且，通过SEM-EDX，测定沸石膜的SiO2/Al2O3摩尔比，结果为17。

[0215] (实施例6)

[0216] 通过在无机多孔支持体上直接水热合成CHA型沸石，制作无机多孔支持体-CHA型沸石膜复合体。

[0217] 作为用于水热合成的反应混合物，制备以下的反应混合物。

[0218] 在将1mol/L NaOH水溶液30.1g和水66.0g混合而成的混合溶剂中加入氢氧化铝（含有53.5%Al2O3Aldrich社制造）0.057g，搅拌使其溶解，制成大致透明的溶液。向其中加入作为有机模板剂的氢氧化N,N,N-三甲基-1-金刚烷基铵（TMADOH）水溶液（含有25重量%TMADAOH,Sachem社制造）12.7g，进而加入胶态二氧化硅（日产化学社制造SNOWTEX-40）23.6g，搅拌2小时，制备成水热合成用混合物。

[0219] 作为无机多孔支持体，使用与实施例1同样处理得到的支持体。在进行水热合成之前，与实施例1同样地使支持体上附着0.5μm左右的CHA型沸石的晶种。附着的晶种的重量约为3g/m²。

[0220] 与实施例1同样地将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物的特氟龙（注册商标）制内筒中，密闭高压釜，于160°C、自生压力下加热48小时。经过规定时间后，自然冷却后将支持体-沸石膜复合体从反应混合物中取出，清洗后于100°C干燥4小时以上。在干燥后的as-made状态下将圆筒状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设定为减压，用真空管线上设置的流量计测定空气的透过流束，其结果，透过束为0ml/(m²·min)。用电炉对模板剂烧制前的沸石的膜复合体于500°C烧制5小时。由烧制后的膜复合体的重量与支持体的重量的差可得知在支持体上结晶化的CHA型沸石的重量为100g/m²。

[0221] 测定生成的膜的XRD，可知生成了CHA型沸石。与实施例1同样地进行XRD测定，生成的膜的XRD图见图4，图中的*为来源于支持体的峰。

[0222] 在生成的膜的XRD中(2θ=9.6°附近的峰的强度)/(2θ=20.8°附近的峰的强度)=1.7，(2θ=17.6°附近的峰的强度)/(2θ=20.8°附近的峰的强度)=0.3。

[0223] 此外，生成的膜的XRD峰没有显示特异的强度。由此推测，例如生成的膜在按斜方六面体取晶胞中的(1,1,0)面、(1,1,1)面的任一面都没有发生取向。

[0224] 另外，欲通过SEM-EDX测定沸石膜的SiO2/Al2O3摩尔比，但起始的反应混合物的SiO2/Al2O3摩尔比为500，所以沸石膜的SiO2/Al2O3摩尔比也非常高，因而没有得到精确的值。沸石膜的SEM-EDX中，通常认为SiO2/Al2O3摩尔比的测定极限值为100左右，所以推测该沸石膜的SiO2/Al2O3摩尔比至少为100以上。
[0225] （实施例7）
[0226] 使用实施例1中得到的无机多孔支持体—CHA型沸石膜复合体,通过渗透气化法进行从70℃的水/乙酸混合溶液(50/50重量％)中选择性地使水透过的分离。
[0227] 用于渗透气化的装置的示意图见图1。图1中，5.的沸石膜复合体的侧被9的真空泵抽吸,与4.的分离液液所接触的外侧之间的压力差为约1气压。在该压力差的作用下，4.的被分离液中透过物质水在5的沸石膜复合体发生渗透气化而透过。透过的物质被7的捕集。另一方面，乙酸滞留在5的沸石膜的外侧。每隔一定时间，测定4.的被分离液的浓度，使用该浓度计算出各时间的分离系数。
[0228] 利用通过气相色谱法对捕集在阱中的透过液、被分离液的组成进行分析。透过开始后约5小时左右稳定,所以给出约5小时后的透过成果。
[0229] 透过流束为4.0kg/(m²·h)，分离系数为384,透过液中的水的浓度为99.74重量％,将测定结果列于表1。
[0230] （实施例8）
[0231] 使用实施例2中得到的无机多孔支持体—CHA型沸石膜复合体,与实施例7同样地通过渗透气化法进行从70℃的水/乙酸混合溶液(50/50重量％)中选择性地使水透过的分离。
[0232] 透过流束为4.8kg/(m²·h)，分离系数为544,透过液中的水的浓度为99.81重量％,测定结果列于表1。
[0233] 并且,持续长时间分离,研究透过流束的经时变化。将开始60分钟后的透过流束设定为1,绘制从开始至约10小时后的变化,见图5。由此可知,透过流束在约5小时后大致稳定。
[0234] （实施例9）
[0235] 使用实施例2中得到的无机多孔支持体—CHA型沸石膜复合体,与实施例7同样地通过渗透气化法进行从80℃的水/乙酸混合溶液(50/50重量％)中选择性地使水透过的分离。
[0236] 透过流束为6.0kg/(m²·h)，分离系数为649,透过液中的水的浓度为99.84重量％,测定结果列于表1。
[0237] （实施例10）
[0238] 使用实施例2中得到的无机多孔支持体—CHA型沸石膜复合体,与实施例7同样地通过渗透气化法进行从70℃的水/乙酸混合溶液(10/90重量％)中选择性地使水透过的分离。
[0239] 透过流束为1.4kg/(m²·h)，分离系数为1411,透过液中的水的浓度为99.33重量％,测定结果列于表1。
[0240] （实施例11）
[0241] 使用实施例3中得到的无机多孔支持体—CHA型沸石膜复合体,与实施例7同样地通过渗透气化法进行从70℃的水/乙酸混合溶液(50/50重量％)中选择性地使水透过的分离。
[0242] 透过流束为5.6kg/(m²·h)，分离系数为230,透过液中的水的浓度为99.57重量％,测定结果列于表1。
[0243] （实施例12）
[0244] 使用实施例4中得到的无机多孔支持体—CHA型沸石膜复合体,与实施例7同样地通过渗透气化法进行从70℃的水/2—丙醇水溶液(30/70重量％)中选择性地使水透过的分离。
[0245] 透过流束为7.7kg/(m²·h)，分离系数为3000,透过液中的水的浓度为99.92重
量%。测定结果列于表2。

[0246]（实施例13）
[0247]使用实施例5中得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透汽化法进行从70℃的水/乙酸混合溶液(50/50重量%)中选择性地使水透过的分离。

[0248]透过流束为4.6kg/(m²•h)，分离系数为64，透过液中的水的浓度为98.46重量%。测定结果列于表1。

[0249]（实施例14）
[0250]使用实施例6中得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透汽化法进行从70℃的水/乙酸混合溶液(50/50重量%)中选择性地使水透过的分离。

[0251]透过流束为0.9kg/(m²•h)，分离系数为26，透过液中的水的浓度为96.30重量%。测定结果列于表1。由于透过流束、分离系数、透过液中的水浓度用了约3小时达到稳定，所以该值为约3小时后的值。

[0252]（实施例15）
[0253]作为用于水热合成的反应混合物，制备以下的反应混合物，除此以外与实施例2同样地制作无机多孔支持体-CHA型沸石膜复合体。使用的用于水热合成的反应混合物如下制备，在将1mol/L-NaOH水溶液12.9g、1mol/L-KOH水溶液8.6g和水92.4g混合而成的混合溶液中加入氢氧化铝（含有53.5重量%的Al₂O₃，Aldrich社制造）1.16g，搅拌使其溶解，制成大致透明的溶液，向其中加入作为有机模板剂的氯化钠N，N-三甲基-1-金刚烷基铵(TMADOH)水溶液（含有25重量%TMADAOH，Sachem社制造）2.91g，进而加入胶态二氧化硅（日产化学社制造SNOWTEX-40）12.9g，搅拌2小时，制备成反应混合物，由所得到的膜复合体的烧制后的重量与支持体的重量的差可知，在支持体上结晶化的CHA型沸石的重量为150g/m²。

[0254]与实施例1同样地进行XRD测定。

[0255]生成的膜的(2θ=9.6°附近的峰的强度)/(2θ=20.8°附近的峰的强度)=12.8。

[0256]并且，通过SEM-EDX，测定沸石膜的SiO₂/Al₂O₃摩尔比，结果为15。

[0257]（实施例16）
[0258]使用实施例15中得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透汽化法进行从70℃的水/乙酸混合溶液(50/50重量%)中选择性地使水透过的分离。透过流束为4.5kg/(m²•h)，分离系数为180，透过液中的水的浓度为99.43重量%。测定结果列于表1。

[0259]（实施例17）
[0260]使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透汽化法进行从70℃的水/2-丙醇溶液(10/90重量%)中选择性地使水透过的分离。

[0261]透过流束为4.0kg/(m²•h)，分离系数为36000，透过液中的水的浓度为99.97重量%。测定结果列于表2。

[0262]（实施例18）
[0263]使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透汽化法进行从70℃的水/2-丙醇溶液(30/70重量%)中选择性地使水透过的分离。
[0264] 透光流束为5.8kg/(m²·h)，分离系数为31000，透过液中的水的浓度为99.99重量%。测定结果列于表2。
[0265] （实施例19）

[0266] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从50℃的水/2-丙醇溶液(30/70重量%)中选择性地使水透过
的分离。

[0267] 透光流束为2.5kg/(m²·h)，分离系数为29000，透过液中的水的浓度为99.99重量%。测定结果列于表2。

[0268] （实施例20）

[0269] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从50℃的水/四氢呋喃溶液(50/50重量%)中选择性地使水透过
的分离。

[0270] 透光流束为3.1kg/(m²·h)，分离系数为3100，透过液中的水的浓度为99.97重量%。测定结果列于表2。

[0271] （实施例21）

[0272] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从40℃的水/丙酮溶液(50/50重量%)中选择性地使水透过
的分离。

[0273] 透光流束为1.6kg/(m²·h)，分离系数为14600，透过液中的水的浓度为99.99重量%。测定结果列于表2。

[0274] （实施例22）

[0275] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从70℃的水/N-甲基-2-吡咯烷酮溶液(50/50重量%)中选择性地使水透过
的分离。

[0276] 透光流束为5.6kg/(m²·h)，分离系数为10300，透过液中的水的浓度为99.95重量%。测定结果列于表2。

[0277] （实施例23）

[0278] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从70℃的水/乙醇溶液(86/14重量%)中选择性地使水透过
的分离。

[0279] 透光流束为1.3kg/(m²·h)，分离系数为5000，透过液中的水的浓度为99.97重量%。测定结果列于表2。

[0280] （实施例24）

[0281] 使用与实施例2同样地得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从40℃的甲醇/丙酮溶液(50/50重量%)中选择性地使甲醇透过的分离。

[0282] 透光流束为0.1kg/(m²·h)，分离系数为670，透过液中的甲醇的浓度为99.86重量%。测定结果列于表2。

[0283] （比较例1）
[0284] 为了比较，通过在无机多孔支持体上直接水热合成MOR型沸石，来制作无机多孔支持体-MOR型沸石膜复合体，与实施例7相同的方法进行从70℃的水/乙酸混合溶液(50/50重量％)中选择性地使水透过的选择性混合物。

[0285] 作为用于水热合成的反应混合物，制造以下的反应混合物。

[0286] 在将氢氧化钠(97.0重量％、纯正化学社制造)14.9g和水69.5g混合而成的混合溶剂中加入氢氧化铝(含有53.5重量％Al₂O₃，Aldrich社制造)1.09g，搅拌使其溶解，制成透明溶液，向其中加入胶态二氧化硅(日产化学社制造SNOWTEX-40)90.0g，搅拌2小时，制成成水热合成用混合物。

[0287] 作为无机多孔支持体，使用与实施例1相同的支撑体，在水热合成之后，将5重量％的东曹制造的MOR型沸石TSZ-640NAA分散在水中而得到的浆料涂布在支撑体上，作为MOR型沸石的支撑体涂着在支撑体上。附着在支撑体的重量为约6g/m²。将该附着有耐磨的支撑体以垂直方向浸在装有上述反应混合物的特氟龙(注册商标)制内筒中，密闭高压釜，于160℃、自生压力下加热8小时，经过规定时间后，自然冷却后将支撑体-沸石膜复合体从反应混合物中取出，清洗后于100℃干燥5小时以上。在干燥后的as-made状态下将圆筒状膜的复合体的一端平滑，将另一端与真空管线连接，由此将管内设定为减压，用真空管线线上设置的流量计测定空气的透过流束，其结果，透过流束为0m³/(m²·分钟)。由此干燥后的膜复合体的重量与支持体的重量的差值约为，支持体上结晶化的MOR型沸石的重量为约为35g/m²。

[0288] 分离评价的结果是，透过流束为0.38kg/(m²·h)，分离系数为2300，透过液中的水的浓度为99.96重量％。

[0289] 由实施例8和比较例1的结果可知，CHA膜复合体具有与MOR膜复合体同等高的选择性，且具备MOR膜复合体的10倍以上的透过流束。

[0290] 进而，与实施例8时同样地持续长时间分离来研究透过流束的经时变化。将开始60分钟后的透过流束设定为1，绘制开始至约10小时后的变化，图5。与实施例8相比，经时性的降低明显，可知，CHA型沸石膜复合体在稳定性方面也优异。

[0291] (比较例2)

[0292] 为了比较，通过在金属衬支持体上直接水热合成CHA型沸石来制作金属多孔质支持体-CHA型沸石膜复合体，与实施例7相同的方法进行从70℃的水/乙酸混合水溶液(50/50重量％)中选择性地使水透过的选择性混合物。

[0293] 作为金属衬支持体，具备将日本精机(株)的TFφ14XL250 NF2M-02S2切割为约80mm而成的支持体。

[0294] 作为用于水热合成的反应混合物，制造以下的反应混合物。

[0295] 在将1mol/L-NaOH水溶液32.0g和水74.55g混合而成的混合溶剂中加入氢氧化铝(含有53.5重量％Al₂O₃，Aldrich社制造)0.76g，搅拌使其溶解，制成大致透明的溶液。向其中加入作为有机模板剂的氢氧化N,N,N-三甲基-1-金刚烷基铵(TMAD0H)水溶液(含有25重量％TMAD0H，Sachem社制造)27.00g，进而加入胶态二氧化硅(ヒュームドシリカ，NIPPON AEROSIL社制造，AEROSIL 200)9.6g，搅拌2小时，制备成水热合成用混合物。

[0296] 对金属衬支持体进行与实施例1相同的处理。在进行水热合成之前，与实施例1同様地使用支持体上附着0.5μm左右的CHA型沸石的晶种，附着的晶种的重量为约为18g/m²。

[0297] 与实施例1同样地将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物
的特氟龙(注册商标)制内筒中，密闭高压釜，于160℃、自生压力下加热48小时。经过规定时间后，自然冷却后将支持体—沸石膜复合体从反应混合物中取出，清洗后于100℃干燥4小时以上。在干燥后的as—made状态下将圆筒管状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设定为减压，用真空管线上设置的流量计测定空气的透过流束，其结果，透过流束为0ml/(m²·min)。用电炉对模板制得前的沸石的膜复合体于500℃烧制5小时。由烧制后的膜复合体的重量与支持体的重量的差可得知在支持体上结晶化的CHA型沸石的重量为280g/m²。

【0298】由XRD的测定可知，在基材的表面生成了CHA型沸石。XRD测定与实施例1同样地进行。

【0299】在生成的膜的XRD中(2θ＝9.6°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)=0.8,(2θ＝17.9°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)=0.1。

【0300】如此，生成的膜的XRD峰没有显示特异的强度。由此推测，例如生成的膜在按斜方六面体晶胞中的(1,0,0)面、(1,1,1)面的任一面都没有发生取向。

【0301】分离评价的结果是，透过流束为0.48kg/(m²·h)。分离系数为5，透过液中的水的浓度为84.65重量％。

【0302】由比较例2和实施例3、4、5、6、7、8的结果可知，与陶瓷无机多孔支持体—CHA膜复合体不同，金属多孔质支持体—CHA膜复合体的选择透过性低，透过流束也低。(2θ＝9.6°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)，(2θ＝17.9°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)的值小，推测金属多孔质支持体—CHA膜复合体难以形成致密的膜，这与陶瓷无机多孔支持体—CHA膜复合体是不同的。

【0303】（实施例25）

【0304】通过在无机多孔支持体上直接水热合成CHA型沸石，制作无机多孔支持体—CHA型沸石膜复合体。

【0305】作为用于水热合成的反应混合物，制备以下的反应混合物。

【0306】在1mol/L-KOH水溶液126g中加入氢氧化铝(含有53.5重量％Al₂O₃，Aldrich社制造)5.7g，搅拌使其溶解，制备大致透明的溶液。向其中加入胶态二氧化硅(日产化学社制造SNOWTEX—40)27g，搅拌2小时，制备成水热合成用混合物。

【0307】作为无机多孔支持体，使用与实施例1同样处理得到的支持体，在进行水热合成之前，与实施例1同样地使支持体上附着0.2μm左右的CHA型沸石的晶种。附着的晶种的重量为约3g/m²。

【0308】如下合成该0.2μm左右的CHA型沸石的晶种。将触媒化成社制造的SiO₂/Al₂O₃比为7的Y型沸石10g入到将KOH 5g溶解在水100g中而得到的水溶液中，搅拌2小时。将该反应混合物加入特氟龙(注册商标)制内筒中，密闭高压釜，于100℃加热7天。其后，自然冷却，过滤、水洗，得到CHA型沸石。

【0309】与实施例1同样地将该附着有晶种的支持体以垂直方向浸在装有上述反应混合物的特氟龙(注册商标)制内筒中，密闭高压釜，于140℃、自生压力下加热108小时。经过规定时间后，自然冷却后将支持体—沸石膜复合体从反应混合物中取出，清洗后于100℃干燥4小时以上。在干燥后的as—made状态下将圆筒管状的膜复合体的一端密封，将另一端与真空管线连接，由此将管内设定为减压，用真空管线上设置的流量计测定空气的透过流束，其结
果，透过流束为0ml/(m²·min)。由该膜复合体的重量与支持体的重量的差可知，在支持体上结晶化的CHI型沸石的重量为50g/m²。

[0310] 测定生成的膜的XRD，可知生成了CHA型沸石。在生成的膜的XRD中，(2θ＝9.6°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)＝0.3，(2θ＝17.9°附近的峰的强度)/(2θ＝20.8°附近的峰的强度)＝0.1。

[0311] 如此，生成的膜的XRD峰没有显著特异的强度。由此推测，例如生成的膜在按斜方六面体晶胞中的(1,0,0)面、(1,1,1)面的任一面向都没有发生取向。

[0312] 并且，通过SEM-EDX，测定沸石膜的SiO₂/Al₂O₃比，其结果为6。

[0313] (实施例26)

[0314] 使用实施例25中得到的无机多孔支持体-CHA型沸石膜复合体，与实施例7同样地通过渗透气化法进行从70°C的水/2-丙醇水溶液(30/70重量％)中选择性地使水透过的选择。

[0315] 透过流束为3.9kg/(m²·h)，分离系数为21，透过液中的水的浓度为90重量％。测定结果列于表2。

[0316] [表1]

<table>
<thead>
<tr>
<th>实施例 7</th>
<th>实施例 1</th>
<th>分离混合物</th>
<th>浓度(重量％)</th>
<th>温度(℃)</th>
<th>透过流速(㎏/(m²·h))</th>
<th>分离系数</th>
<th>透过液中水浓度(重量％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>沸石膜</td>
<td></td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>4.0</td>
<td>384</td>
<td>99.74</td>
</tr>
<tr>
<td>复合体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 8</td>
<td>实施例 2</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>4.8</td>
<td>544</td>
<td>99.81</td>
</tr>
<tr>
<td>实施例 9</td>
<td>实施例 2</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>80</td>
<td>6.0</td>
<td>649</td>
<td>99.84</td>
</tr>
<tr>
<td>实施例 10</td>
<td>实施例 2</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70/90</td>
<td>1.4</td>
<td>1411</td>
<td>99.33</td>
</tr>
<tr>
<td>实施例 11</td>
<td>实施例 3</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>5.6</td>
<td>230</td>
<td>99.57</td>
</tr>
<tr>
<td>实施例 13</td>
<td>实施例 5</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>4.6</td>
<td>64</td>
<td>98.46</td>
</tr>
<tr>
<td>实施例 14</td>
<td>实施例 6</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>0.9</td>
<td>26</td>
<td>96.30</td>
</tr>
<tr>
<td>实施例 15</td>
<td>实施例 15</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>4.5</td>
<td>180</td>
<td>99.43</td>
</tr>
<tr>
<td>比较例 1</td>
<td>比较例 1</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>0.38</td>
<td>2300</td>
<td>99.96</td>
</tr>
<tr>
<td>比较例 2</td>
<td>比较例 2</td>
<td>水/乙酸</td>
<td>50/50</td>
<td>70</td>
<td>0.48</td>
<td>5</td>
<td>84.65</td>
</tr>
</tbody>
</table>

[0318] [表2]
<table>
<thead>
<tr>
<th>实施例 12</th>
<th>实施例 4</th>
<th>水/2-丙醇</th>
<th>浓度 (重量%)</th>
<th>温度 (℃)</th>
<th>透过流速 (kg/(m²·h))</th>
<th>分离系数</th>
<th>透过液浓度 (重量%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水/2-丙醇</td>
<td>30/70</td>
<td>70</td>
<td>7.7</td>
<td>3000</td>
<td>99.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>10/90</td>
<td>70</td>
<td>4.0</td>
<td>36000</td>
<td>99.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>30/70</td>
<td>70</td>
<td>5.8</td>
<td>31000</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>30/70</td>
<td>50</td>
<td>2.5</td>
<td>29000</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>50/50</td>
<td>50</td>
<td>3.1</td>
<td>31000</td>
<td>99.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>50/50</td>
<td>40</td>
<td>1.6</td>
<td>14600</td>
<td>99.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/N-甲基-2- 吐咯烷酮</td>
<td>50/50</td>
<td>70</td>
<td>5.6</td>
<td>10300</td>
<td>99.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/乙醇</td>
<td>86/14</td>
<td>70</td>
<td>1.3</td>
<td>500</td>
<td>99.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>甲醇/丙酮</td>
<td>50/50</td>
<td>40</td>
<td>0.1</td>
<td>670</td>
<td>99.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水/2-丙醇</td>
<td>30/70</td>
<td>70</td>
<td>3.9</td>
<td>21</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

尽管详细地并参照特定的实施方式对本发明进行了说明，但本领域技术人员明白，可以不脱离本发明的精神和范围地对本发明加以各种变更和修正。本申请是基于2009年2月27日提交的日本专利申请(日本特愿2009-46755)和2009年11月11日提交的日本专利申请(日本特愿2009-258274)提出的，以参考的形式将其内容引入本说明书。

3.21 产业上的可用性

根据本发明，可得到在从含有有机物的气体或液体的混合物中进行特定化合物的浓缩时具有耐实用的大处理量，且具有充分分离性能的分离、浓缩用沸石膜复合体，可以使
用沸石膜由含有有机物的气体或液体的混合物中进行分离、浓缩。

3.22 另外，根据本发明，可以得到耐酸性优异的分离、浓缩用沸石膜复合体，能够进行含有乙酸等有机酸的混合物的分离浓缩。特别是通过从有机酸与水的混合物中选择性地使水透过能够有效利用于有机酸的分离浓缩、用于促进酯化反应的水分离等。

3.23 符号说明

1. 搅拌器
2. 热介质(热浴)
3. 搅拌子
4. 被分离液
5. 沸石膜复合体
6. 皮拉尼真空计
7. 透过液捕集用阱
8. 冷阱
9. 真空泵
图1
图2
图3
图4