本发明公开了一种方法，用于从包含上述蛋白的蛋白质来源生产IPP。所述蛋白具有 -I-P-P- 序列，并且在该蛋白氨基序列中存在的 -I-P-P- 是 -V-P-P- 的至少 6 倍高（基于摩尔）。所述方法包括水解所述蛋白，以及将 -I-P-P- 序列中的至少 40% 释放为肽 IPP，并且，其中使用能在蛋白中存在残基羧基末端进行切割的蛋白水解酶，所述酶优选是脯氨酸特异性内切蛋白酶，以及可选地，使用氨基肽酶。
lower the blood pressure of hypertensive
1. 一种方法，用于从糖原肽生产不含显著量VPP或LPP的IPP，所述方法包括用糖原肽与脯氨酸特异性蛋白酶温育，其中，先将糖原肽与氨基肽酶温育，随后与脯氨酸特异性内切蛋白酶温育。

2. 如权利要求1所述的方法，其中，当加入所述脯氨酸特异性蛋白酶的时候所述氨基肽酶是无活性的。

3. 如权利要求1或2所述的方法，其中，在水解蛋白来源期间形成的包括IPP的可溶肽被分离，以及可选地被干燥。

4. 一种方法，用于生产食物产品、饮料产品或膳食补充剂，所述方法包括：
 (a) 根据权利要求1至3中任一或所述来生产包含IPP的组合物；
 (b) 将所述含有IPP的组合物加入到食物产品、饮料产品或膳食补充剂中。

5. 如权利要求4所述的方法，还包括步骤(c)；从经水解的蛋白中分离可溶肽。

6. 如权利要求5所述的方法，其中步骤(c)在步骤(a)之后并在步骤(b)之前发生。

7. 如权利要求4所述的方法，其中，所述食物产品、饮料产品或膳食补充剂选自以下植物黄油、涂抹酱或乳制品构成的组。

8. 如权利要求7所述的方法，其中所述食物产品、饮料产品或膳食补充剂是基于酸奶或奶的产品。

9. 如权利要求7所述的方法，其中所述食物产品、饮料产品或膳食补充剂是酸奶或奶。

10. 如权利要求4所述的方法，其中，所述食物产品、饮料产品或膳食补充剂选自黄油或含乳清饮料。
来自糖巨肽的血压降低肽

【0001】发明领域

【0002】本发明涉及对 IPP 的生产。

【0003】发明背景

【0004】高血压是人类中相对普遍的疾病，其是心血管疾病、肾衰竭以及中风的主要风险因素。大量制药产品（例如钙阻断药、β 阻断药、利尿剂、α 阻断药、中枢 α 拮抗剂、血管紧张素 II 拮抗剂以及 ACE 抑制剂）的有效性表明，高血压的基本生理机制是多方面的。

【0005】高血压的生理机制，尤其是肾素-血管紧张素系统已获得了大量的科学关注。在该机制中，血管紧张素 II 由肝脏分泌，其被肽酶肾素切割，产生不具有生物活性的肽血管紧张素 I。随着血管紧张素 I 经过肺毛细血管，被称为血管紧张素转化酶（下文中称为 ACE）的另一肽酶通过去除血管紧张素 I 的最后两个残基（His-Leu）作用于血管紧张素 I，形成八肽血管紧张素 II。血管紧张素 II 八肽展示出强的血管收缩活性，因此提高了血压。导致血管紧张 I 的水平降低的 ACE 抑制剂能预防血管收缩，以及由此预防高血压。

【0006】除了切割血管紧张素 I 之外，ACE 还水解缓激肽，这是一种也参与血压调节的九肽。在后一机制中，ACE 抑制导致缓激肽水平增加，其促进血管舒张并降低血压。因此抑制 ACE 能通过至少两种独立的机制产生降低血压的效果。

【0007】人们还知，八肽血管紧张素 II 会刺激肾上腺素皮质释放醛固酮。醛固酮的靶器官是肾脏，在该处，醛固酮促进了从肾小管对钠的再吸收的增加。通过该第三种机制，ACE 抑制剂能降低血压，但是在这种情况下，通过减少钠的再吸收来实现的。

【0008】由于其多种生理效果，抑制 ACE 的蛋白水解活性成为降低血压的有效方法。该观察结果导致了大量有效药物降血压产品的出现，例如，卡托普利（captopril）和依那普利（enalapril）（Onedetti, M. A. et al., 1977, Science, Washington DC, 196, 441-444）。

【0009】因为高血压是相对普遍的疾病，所以用具有温和活性的天然成分抵消现代生活方式的这种不良后果是有效的。特别地，可包括进食物或饮料产品之中的具有温和活性的天然成分是有效的，因为此类产品可用于日常消耗。或者，此类具有温和活性的天然成分可被包括进膳食补充剂。最近数十年已经发现，发酵奶中存在的特殊的肽具有 ACE 抑制能力，其可在高血压个体中诱导血压降低。如今，大量的体外实验和一些动物实验已展示了从多种蛋白质来源获得的不同的肽的 ACE 抑制效果。虽然体外 ACE 抑制试验已揭示了许多不同的肽序列，但必须强调，ACE 抑制肽需在血液中循环以施加体内作用。这暗示着：治疗用的 ACE 抑制肽应能抵抗胃肠蛋白酶水解消化系统的降解，并且应在随后的肠壁运输过程中保持完整。

【0010】对多种 ACE 抑制剂的结构-功能研究已表明，它们通常在其 C 末端序列具有 Pro-Pro、Ala-Pro 或 Ala-Hyp（Maruyama, S. and Suzuki, H., 1982; Agric Biol Chem., 46 (5): 1393-1394）。该发现被 ACE 是不能切割涉及脯氨酸的肽键的肽基（peptidyl）二肽酶（EC 3.4.15.1）这一事实部分地解释。由此，不能从具有结构 Xaa-Pro-Pro 的三肽移出二肽 Pro-Pro，因为 Xaa-Pro 键无法被切割。因此可想到，如果具有结构 Xaa-Pro-Pro 的三肽以相对高的浓度存在，其将抑制 ACE 活性。因为不仅是 ACE，而是几乎所有的蛋白水解酶
都难于切割 Xaa-Pro 或 Pro-Pro 键，（多个）脯氨酸残基在肽的羧基末端的存在导致相对具有蛋白酶抗性的分子这一观点是基本能自圆其说的。类似地，含有羟脯氨酸（Hyp）代替脯氨酸的肽也是相对具有蛋白酶抗性的。由此可推断出，在其羧基末端上带有一个或多个（羟）脯氨酸残基的肽可能逃避胃肠道中的蛋白水解降解。这些推论将帮助我们理解特定的 ACE 抑制肽显著的体内血压降低效果：它们不仅符合 ACE 抑制的结构要求，它们还能抵抗胃道蛋白水解消化系统的降解，并且在随后的肠壁运输过程中保持完整。

[0011] 已报道了三肽 Leu-Pro-Pro（JP02036127）、Val-Pro-Pro（EP0 583 074）和 Ile-Pro-Pro（J. Dairy Sci. 78；777-783 1995）的强 ACE 抑制活性。最初，所有的 ACE 抑制肽都基于其对于 ACE 活性的体外作用被分析，三肽 Ile-Pro-Pro（下文中称为 IPP）、Val-Pro-Pro（下文中称为 VPP）以及 Leu-Pro-Pro（下文中称为 LPP）由于其强的 ACE 抑制效果导致相对低的 IC50 值从而明显出来。最后在自发高血压的兔子中可验证三肽 VPP 和 IPP 的假设抗高血压效果（Nakamura et al., J. Dairy Sci., 78；12531257 1995）。在这些实验中，从乳酸发酵的牛奶获得抑制性三肽。在奶发酵期间，通过生长中的乳酸细菌产生的蛋白酶来生产想要的肽。该发酵方法的缺陷是乳酸菌是活的生物，其排出的酶的类型和量都难于控制。因此，对 ACE 抑制肽的生产难以重现，并且不太可能产生酶的最优组合以确保所需肽的最大产率。此外，需要的发酵时间相对较长，这与低产率一起暗示了这种生物活性肽的成本结构不受欢迎。此外，发酵制品不太适于被直接包括在 a.o. 块状食物之中，这会产生严格的感官局限。此类发酵奶制品的不良口感以及从发酵培养液回收 ACE 抑制肽期间遇到的许多加工困难已在 US6,428,812 中描述过。尽管有这些缺点，发酵奶制品已被作为口服血管减压剂（vasodepressor）被用于实际应用。已用电透析，中空纤维膜透析或色谱方法从发酵奶制品中浓缩了 ACE 抑制肽，使得它们能以经浓缩膳食补充剂形式（例如片剂或锭剂）上市。

[0012] 上面提到的发酵生产途径的缺陷在 a.o. 专利申请 W001/68115 和 EP1231279 中认识到。在后一申请中，描述了一种纯的酶促方法，以从奶酪蛋白中回收三肽 Val-Pro-Pro 和 Ile-Pro-Pro。该申请要求保护一种用于生产这些三肽的方法，所述方法通过用一种蛋白酶和一种肽酶通过中间产物消化含有奶酪蛋白的材料来实现。这些酶的活性中的每一步可长达 12 小时，并且在易于导致微生物污染的条件下进行。在与肽酶活性之前，优选对中间产物肽加以纯化，只有在对中间产物肽的额外的色谱纯化步骤之后才能获得高纯度的 ACE 抑制肽。

发明内容

[0013] 在科学文献中，很多种不同的肽和水解产物已与血压降低作用关联起来。此外，已知很多生理机制涉及对血压的调控。根据本发明，通过选择合适的蛋白底物（水解后其将产生具有 IPP 的肽级分，IPP 作为主要的血压降低组分），使得涉及的肽和生理机制最小化。我们已发现，\(k \) 蛋白，以及更优选地，来自 \(k \) 蛋白的糖基肽（GMP）形成了肽级分的优先的起始点。在由此产生的血压降低肽混合物以及组分中，尤其是 IPP 发挥了重要作用。与现有技术的水解方法（其导致产生了 IPP、VPP 以及很多其它具有潜在生物活性的肽的混合物）相反，本发明的方法涉及直接生产 IPP，由此防止例如 VPP 的生产。根据本发明，优选地，用分子重小于 20kDa（优选小于 10kDa）且在其氨基酸序列中包含 -1-P-P- 序列的的蛋
白质作为起始蛋白。如前所述，GMP 是优选的底物蛋白。GMP 可从本文下述的 k - 酮蛋白获得。牛奶是 k - 酮蛋白的优选来源。还可使用来自其它哺乳动物的奶，例如来自山羊的奶。只要 k 酮蛋白分子的 GMP 部分包含 V-P-P- 序列即可。因为并非所有的 k 酮蛋白都可被牛凝乳酶切割，可能需要使用更合适的凝固酶（clotting enzyme）来获得 GMP 部分。

[0014] 本发明公开了在其氨基酸序列中存在的 V-P-P- 是 V-P-P- 的至少 6 倍高的蛋白（或蛋白或肽的混合物）的用途。优选地，在蛋白或肽序列中不存在 V-P-P- 序列（或者在用作为水解底物的蛋白或肽混合物中的序列中不存在）。优选的蛋白来源是不含 V-P-P- 的蛋白或肽，或蛋白或肽的混合物，其中包含所述不含 V-P-P- 的蛋白。因此，该混合物优选包含至少 50%，更优选至少 80%，进一步更优选至少 90%，以及最优选至少 95%（w/w）的不含 V-P-P-的蛋白或肽。更优选地，所述 V-P-P- 序列是 P-V-P-P- 或 A-V-P-P- 序列。

[0015] 此类蛋白的优选的例子是 GMP（可从牛奶获得的糖蛋白）。

[0016] 本发明的一个目的是提供纯的状态的血压降低肽 IPP，即没有被显著量的 VPP 肽污染。

[0017] 本发明的另一个目的是提供以高浓缩形式存在的血压降低肽 IPP，而无需使用昂贵的纯化步骤。

[0018] 本发明的另一个目的是提供在无苦味配方中存在的血压降低肽 IPP。该无苦味的配方优选具有实施例 8 中所定义的 2 或更小的苦味强度。

[0019] 本发明的另一个目的是提供一种酶促方法，所述方法从 k 酮蛋白的 GMP 部分选择性切割 IPP，其中优选使用脯氨酸特异性蛋白酶来进行。更优选地，使用脯氨酸特异性内切蛋酶，以及最优选地，使用具有酸性最优 pH 的脯氨酸特异性内切蛋白酶。

[0020] 本发明的另一个目的是提供一种酶促方法，所述方法从 GMP 选择性产生 IPP，其中，优选地，先将 GMP 与氨基肽酶水解，随后，优选在所述氨基肽酶不再具有活性的条件下，将 GMP 与脯氨酸特异性蛋白酶水解。

[0021] 本发明的另一个目的是提供一种包含 IPP 的组合物，并且同样的配方中不存在阿片肽（opioid peptides）。

[0022] 本发明的另一个目的是提供一种包含 IPP 的组合物，其存在于低过敏原的配方中。

[0023] 本发明的另一个目的是提供一种包含处于肽混合物中的 IPP 的组合物，所述肽混合物具有低于 30%、优选低于 20%、更优选低于 15% 的水解程度。

[0024] 本发明的另一个目的是提供一种包含水解产物的组合物，所述水解产物包含 IPP 并且具有低于 30%、优选低于 20%、更优选低于 15% 的水解程度。优选地，所述水解产物具有至少 1% 的水解程度，更优选至少 2% 的水解程度。

[0025] 本发明的另一个目的是提供包含 IPP 的组合物，其还包含不超过 10%（w/w）、优选地不超过 7%、最优选地不超过 3% 的游离氨基酸水平。

[0026] 本发明的另一个目的是提供一种方法，用于从经酸沉淀的废蛋白回收 k 酮蛋白的 GMP 部分。

[0027] 此外，本发明提供了本发明的组合物，或者通过本发明的方法生产的组合物用作为营养药物（优选地，药剂）的用途，用于生产营养药物（优选地，药剂）的用途，用于改善
健康或预防和/或治疗疾病的用途，或者用于生产用于预防或治疗疾病（例如，高血压、心力衰竭、前糖尿病或糖尿病、肥胖、葡萄糖耐受不良或应激）的营养药物（优选地，药剂）的用途。

【0028】优选地，本发明的组合物为膳食补充剂的形式，为个人护理用品的形式，包括洗液、凝胶或乳液形式的局部用品或者作为食物、饲料或宠物食品的成分。

【0029】本发明的组合物可用于生产用于预防肥胖或用于体重控制的功能性食品产品，或者用于生产用于心血管健康保持的功能性食品产品。优选地，所述心血管健康保持包括抑制血管紧张素转化酶或者控制血液胆固醇水平。

【0030】本发明的组合物可用于提供健康益处的食物产品，所述健康益处优选地选自预防肥胖、体重控制和心血管健康保持。

【0031】该功能性食品产品优选含有至少一种或多种B族维生素或3至25wt%的固醇。

【0032】本发明还提供了一种方法，用于制备食物产品、饮料产品或膳食补充剂，所述方法包括生产本发明的组合物或生产通过本发明的方法生产的组合物，以及将所述组合物包含在食物产品、饮料产品或膳食补充剂之中。

【0033】优选地，该食物产品、饮料产品或膳食补充剂选自植物黄油、涂抹酱、黄油、乳制品或含乳清饮料的组，优选地，基于酸奶或奶的产品，例如酸奶或奶。

【0034】发明详述

【0035】本发明涉及一种方法，其种，肽IPP以高产量产生，优选地，从小分子量的蛋白质产生，所述蛋白质在其氨基酸序列中具有相对V-P-P-含量而言高含量的I-P-P-。优选地，使用p-酪蛋白或更优选地，使用α-酪蛋白的GMP级分。优选地，所述方法包括单一酶促温和步骤。虽然根据本发明的方法对于所用的蛋白质底物高度特异，但是可以使用多种不同的蛋白质解酶制备来获得相对纯状态的血压降低活性。可以使用合适的蛋白质水解酶制备，从单种酶到复合酶混合物均可使用。优选地，使用在脯氨酸羧基末端进行切割的单种酶，优选地，该酶是脯氨酸特异性蛋白酶或者脯氨酸特异性寡肽酶。优选地，底物分子包括-A-P-P-或者-P-I-P-P-序列。此外，可以使用脯氨酸特异性内切蛋白酶与合适的氨基酸肽酶的组合。在后一种情况中，优选地，先在优选近中性条件（例如pH5至8）下用含有GMP的级分与氨基酸肽酶一起温育。该阶段也允许使用包括有-I-P-P-序列的底物，其中，X可代表任何氨基酸残基。优选地，在对氨基肽酶失活或者在氨基肽酶不具有活性的pH条件下，用N末端被截短的GMP分子与脯氨酸特异性蛋白酶一起温育。优选地，在脯氨酸羧基末端进行切割的蛋白酶（例如脯氨酸特异性内切蛋白酶）以及氨基肽酶活性不完全或者污染性的内切蛋白酶活性。优选地，在脯氨酸羧基末端进行切割的蛋白酶（例如脯氨酸特异性内切蛋白酶）以及氨基酸肽酶活性不完全或者污染性的羧基肽酶活性。不含污染性内切蛋白酶活性的脯氨酸特异性内切蛋白酶是具有优选地大于1的Pro Spec act/Endo的酶制剂，更优选地，大于100。不含污染性内切蛋白酶活性的氨基肽酶是具有优选地至少0.1的AP/Endo的酶制剂，更优选地，至少0.5，最优优选地，至少1。

【0036】不含污染性羧基肽酶活性的脯氨酸特异性内切蛋白酶是具有优选地至少1的Pro Spec act/CPD的酶制剂，更优选地，至少10。

【0037】不含污染性羧基肽酶活性的氨基肽酶活性是具有优选地至少0.1的AP/CPD的酶制剂，更优选地，至少0.3。上面提到的比例按照实施例5所述来测定。
优选地，蛋白序列中存在的 -I-P-P- 序列中的至少 20%、更优选至少 40%、或者进一步优选至少 60% 以及最优选至少 70% 被转化为肽 IPP。肽氨酸特异性内切蛋白酶优选能水解大的蛋白分子，例如底物蛋白质本身。根据本发明的方法具有通常少于 24 小时的温育时间、优选地，温育时间少于 10 小时、更优选地，少于 4 小时。温育温度通常高于 30°C，优选地，高于 40°C，更优选地，高于 50°C。本发明的另一方是从可溶的水解产物通过倾析、离心或通过过滤纯化含 IPP 的肽混合物的方法。

本发明还公开了：

- 肽组合物，其包含 1 至 5mg 的 IPP/g（基于干物质，基于蛋白质），或者 20 至 50mg IPP/g（基于干物质，基于蛋白质），以及
- 肽组合物，其包含 15~90%（wt 干物质）的肽，以及至少 20mg IPP/g（基于干物质，基于蛋白质），优选地，20 至 100mg IPP/g（基于干物质，基于蛋白质）。

在现有技术中，三肽 IPP、VPP 和 LPP 已被描述为有效的 ACE 抑制剂。如可从已知的氨基酸序列判断的，牛奶的乳清蛋白不包括对应于此三种 ACE 抑制三肽中任何一种的氨基酸序列。因此，不能从乳清蛋白中分离 IPP、VPP 和 LPP。但是，这些肽确实存在于牛奶的酪蛋白级分中。例如，β-酪蛋白包括 -I-P-P-(74-76)、-V-P-P-(84-86) 以及 -L-P-P-(151-153) 序列。此外，κ-酪蛋白还包括 -I-P-P-，但是不含另外两种序列。κ 酪蛋白中存在的 IPP 序列位于 109-110 位，即，κ-酪蛋白中独特的凝乳酶 Phc(105)-Met(106) 切割位点羧基末端数个氨基酸的位置。因此，在 κ 酪蛋白中，-I-P-P- 序列位于该分子的 GMP 部分。本发明的发明人已发现：在通过酸凝固的奶中，可以在奶酪乳清中发现从 κ 酪蛋白获得的 IPP 物质；在通过酸凝固的奶中，可以在沉淀的酪蛋白部分发现。

虽然按重量考虑 κ-酪蛋白并非酪蛋白的重要级分是事实，但本发明的发明人注意到从分子角度看，其存在是相当有意义的。例如 β-酪蛋白以每立方米奶大约 400 毫克尔的浓度存在，κ-酪蛋白以每立方米奶大约 180 毫克尔的浓度存在。此外，在奶酪乳清中，GMP 是重要的级分。虽然组合的血清蛋白的浓度为每立方米 320 毫克尔，但是 GMP 以每立方米奶酪乳清 400 毫克尔的浓度存在。

令人吃惊地，可以容易地获得 GMP。根据本发明，可以通过用凝乳酶在选定的 pH 条件下进行酶处理，从经酸沉淀的酪蛋白选择性释放 GMP。虽然从奶酪乳清中分离 GMP 更加困难，但是已知一些工业方法，其中能获得富含 GMP 的乳清级分。这些用上述已知方法获得的可商购得 GMP 级分目前用于多种营养药物应用。

在本申请中，我们描述了 GMP 作为优选的起始材料用于获得以高纯状态存在的血压降低 IPP 的用途。

典型地，奶的蛋白级分包括胶束酪蛋白级分以及经增溶的乳清蛋白级分。从定量角度来说，乳清蛋白中 β-乳球蛋白和 α-乳清蛋白是最重要的。从定量角度来说，酪蛋白中，相对疏水的 α-酪蛋白和 β-酪蛋白占据主要地位。酪蛋白胶束通过 κ-酪蛋白保持在溶液中。κ-酪蛋白的亲水部分，即所谓的糖基肽从胶束表面产生，由此对水溶液中的疏水酪蛋白加以稳定。

根据大量已良好建立的工业方法，可从奶中分离酪蛋白级分，例如用于制作奶酪。在这些方法之一中，对奶进行酸化，以从奶中选择性沉淀酪蛋白级分。经酸沉淀的物质包括所有酪蛋白，即 α-酪蛋白、β-酪蛋白、κ-酪蛋白和 γ-酪蛋白。未沉淀的经酸化奶级分被称
为“乳清澄清（whey serum）”。在另一种方法中，将奶与奶凝固酶一起温育，例如与牛凝乳酶一起温育（凝乳酶处理“rennet”）。凝乳酶是一种蛋白酶，其非常有选择性地切割κ-酪蛋白的Phe(105)–Met(106)肽键。通过该反应，κ-酪蛋白的疏水GMP部分被切下，这导致胶束酪蛋白级分的立即聚集成沉淀。在这种情况下，沉淀的酪蛋白级分被称为“凝乳（curd）”。随着κ-酪蛋白的GMP部分被切下，该酶促手段中，亲水的GMP片段与多种浆蛋白保持在溶液中，形成所谓“奶酪”或“甜”乳清。

【0048】 多篇公开文献要求保护消耗富含GMP的奶级分而产生的生理益处。此外，大量公开文献描述了分离富含GMP的奶酪乳清级分的具有成本效益的途径。例如，在EP1037537中描述了超滤的使用，在US6787158中描述了阴离子树脂的使用。

【0049】 本发明的一个方面涉及用GMP的水解产物作为血压降低试剂。我们已发现，GMP中相对高水平的IPP以及具有羧基末端脯氨酸的其它肽可与血压降低作用相关。

【0050】 水解产物指通过水解蛋白质的（蛋白水解产物或经水解的蛋白），可溶的水解产物是蛋白水解产物的（水）可溶性级分，其还在本文中被描述为包含可溶肽的组合物或包含可溶肽的组合物，或蛋白水解产物和可溶水解产物的混合物。

【0052】 阿片肽是可结合鸦片类受体的肽。

【0053】 对所有酶进行分类和命名的、来自IUB的国际承认的体系包括蛋白酶。用于蛋白酶EC号码的更新的IUB文本可在互联网站点http://www.chem.qmw.ac.uk/iubmb/ enzyme/EC3/4/11/找到。在该系统中，按照其催化单一反应的事实对酶进行定义。这具有下述重要提示：若干种不同的蛋白质均被描述为同一种酶，而能催化超过一种反应的蛋白质却被当作不止一种酶。该系统将蛋白酶分为内切蛋白酶和外切蛋白酶。内切蛋白酶是催化内部肽键水解的那些酶，外切蛋白酶则水解与末端α-氨基邻近的肽键（“氨基酸酶”），或末端羧基与倒数第二个氨基酸之间的肽键（“羧基肽酶”）。内切蛋白酶基于催化机制被分为多个亚-亚组。存在有下述亚-亚组：丝氨酸内切蛋白酶（EC3.4.21）、半胱氨酸内切蛋白酶（EC3.4.22）、天冬氨酸内切蛋白酶（EC3.4.23）、金属内切蛋白酶（EC3.4.24）和苏氨酸内切蛋白酶（EC3.4.25）。

【0054】 氨基肽酶在3.4.11组中。亚分组基于除去20种不同氨基酸的相对效率。可区分开具有窄的和宽的特异性的氨基肽酶。氨基肽酶可从蛋白质和肽底物顺序除去单个的氨基酸末端氨基酸。具有窄特异性的氨基肽酶展示出对于在PI位置上从底物肽释放的氨基酸残基类型的强烈偏好。宽特异性的氨基肽酶能在N-末端或P1位置释放一定范围的不同氨基酸（按照Schechter的命名法；Schechter, I. And Berger, A. 1967. Biochem Biophys ResCommun 27, 457–462）。羧基肽酶能从蛋白质和肽底物顺序除去单个的羧基末端氨基酸。与内切蛋白酶的情况相当，羧基肽酶基于催化机制被分为多个亚-亚组。丝氨酸型羧基肽
酶处于 EC3.4.16 组，金属羧基肽酶处于 EC3.4.17 组，半胱氨酸型羧基肽酶处于 EC3.4.18 组。针对蛋白酶的 EC 表的值用于提供针对多种类型的蛋白酶活性的标准术语，尤其用于向每种蛋白酶分配独特的身份号码以及推荐名称。

[0055] **酰蛋白分子的 GMP 部分是长度为 64 个氨基酸残基的多肽。**如果所有 IPP 都被定量回收，纯的 GMP 制剂可产生大约 5% (w/w) 的 IPP 浓度，而没有被 VPP 和 IPP 显著污染。在本申请中，**我们描述了多种蛋白水解方法，用于从 GMP 多肽分离 IPP 三肽，可选地，在单一温度步骤中并以高产量进行。**因此，根据本发明的方法，可获得包含 IPP 的组合物，其中，IPP 的浓度足够高到可以在简单纯化步骤直接或间接使用，而无需复杂的高成本的纯化过程，例如色谱分离或纯化。

[0056] **根据第一种蛋白水解方法，将经分离的 GMP 分子与复合微生物蛋白酶制剂（例如 Sumizyme FP (Shin Nihon) 或 Flavourzyme (NOVO) 或 Umamizyme (Amano)）一起温育。 Sumizyme FP、Flavourzyme 和 Umamizyme 含有多种内切蛋白水解酶加外切蛋白水解活性（例如羧基肽酶和羧基肽酶）的酶制剂。通过对酶剂量和 pH 条件的仔细选择，我们已能使 Sumizyme FP 或 Flavourzyme 制剂在单一温育步骤中获得 IPP 三肽。但是，该第一种蛋白水解策略的缺点在于，通过存在的多种酶活性可形成多种不同的肽。此外，产生相对高含量的游离氨基酸，如果不进行进一步纯化的话，这将导致最终含有 IPP 的产物出现肉汤味的异味。**

[0057] **根据第二种蛋白水解方法，将经分离的 GMP 分子与脯氨酸特异性寡肽酶（EC3.4.21.26）或脯氨酸特异性内切肽酶一起温育。**在该阶段中，这两种类型的酶独特的特异性被有利地使用。两种类型的脯氨酸特异性蛋白酶优选水解肽键——脯氨酸残基的 C 末端。但是，这两种酶固有的副作用是将丙氨酸残基的 C- 末端进行水解。因为存在于 GMP 中的 -I-P-P- 序列 N 末端是丙氨酸残基，因此将 GMP 与纯的脯氨酸特异性寡肽酶或纯的脯氨酸特异性内切肽酶一起温育直接产生 IPP。该途径的重要优点是在不产生污染性的大量其它肽（能导致非常苦的异味以及甚至施加不想要的生物活性）的情况下获得高的 IPP 产率。此外，在此过程期间几乎没有游离氨基酸残基，使得获得具有高浓度 IPP 的味道温和的产物。

[0058] **根据另一种蛋白水解方法，首先将经分离的 GMP 分子与氨基肽酶一起温育，以除去 GMP 中 IPP 序列之前的 GMP N- 末端氨基酸（Met 和 Ala）。**仅在该次温育之后，才将脯氨酸特异性蛋白酶加入到反应混合物中，以释放 IPP 肽。优选地，在用脯氨酸特异性蛋白酶温育期间或之后氨基肽酶不再有活性。我们已经发现，该手段导致更高的 IPP 产率，并且仍然不会导致异味产生，并且很少导致终产物中存在的游离氨基酸产生。此外，IPP 可以相对其它肽的高含量存在，尤其是相对三肽。制备的 IPP 可被进一步与较大的肽分离。因为氨基肽酶能从肽的 N- 末端侧顺序性除去氨基酸，因此需要氨基肽酶解活性，其可高效地释放 IPP 序列之前的甲硫氨酸 ("M") 和丙氨酸 ("A") 残基。IPP 三肽中存在的 I-P 和 P-P 肽键被发现能抵抗酶促切割，并且在对完整 GMP 分子进行温育之后，这种氨基肽酶活性将剪短 GMP 分子的 N- 末端，以便从 IPP 开始。

[0059] **具有想要的氨基肽酶活性的商业酶制剂是 Corolase LAP (AB 酶)。** Corolase LAP 代表相对纯的、克隆的且过量表达的亮氨酸氨基肽酶活性，其来自 Aspergillus。因为，该制剂缺乏非特异性的内切蛋白水解活性以及羧基肽酶活性，因此阻止了对 GMP 底物分子的不
想要的切割。具有相对广的特异性的另一克隆的过量表达氨基肽酶是来自 A. niger 的氨基肽酶 (W002/068623 的 SEQ ID171)。

[0060] 最后我们已注意到，GMP 还可有利地用于下述方法，其中通过发酵途径产生 IPP。如实施例中所述的，将 GMP 与特定乳酸杆菌一起培养产生 IPP，并且不产生对于全奶发酵来说特征性的异味。

[0061] 所有上述方面都特别重要，因为其允许生产高度标准化的产品，而没有不想要的生物活性或者味道或者气味。此类高度标准化的产品无须进行随后的纯化步骤即可被包括进多种食物应用或者浓缩的膳食产品（例如片剂或凝胶）。可以通过选择性除去 IPP 的肽，获得含有更多等的 IPP 浓度的高度标准化产品，例如，生产更小的片剂或凝胶。除掉没有显著的血压降低活性的肽可以例如通过下述方法来进行：沉淀这些非活性肽，接着进行（超）过滤或沉淀步骤。在另一种手段中，可通过随后的纯化来进一步增加生物活性成分的浓度，其中，使用脱 IPP 非常疏水这一特征。这些纯化方法包括纳米过滤、萃取（例如用丁醇来进行）接着蒸馏/沉淀，或者获得的经酸化水解产物与粘合剂接触，所述粘合剂例如活性碳或聚酯树脂，例如来自 Amberlite XAD 范围的（Rohm）的。此外，可以使用例如 Pharmacia 提供的丁基琼脂糖树脂。将血压降低肽由此类材料上解吸附下来可有用有机溶剂（例如甲醇/乙醇混合物或丙醇）来进行。此外，使用 CO₂或 N₂O 进行的超临界萃取可用于获得高度纯化的生物活性肽。

[0062] 在 EP 231 279 中，描述了一种纯粹的酶促方法，用于从奶的酪蛋白回收三肽 VPP 和 IPP。该申请要求保护一种用于生产三肽的方法，所述方法通过一种蛋白酶和一种肽酶对含有酪蛋白酶的蛋白质进行消化来实现，这通过所谓的“中间产物肽”进行。所述“中间产物肽”选自由含有序列 -V-P-P- 但是除了该序列中的 Pro 之外不含 Pro 的肽，以及含有序列 -I-P-P- 但是除了该序列中的 Pro 之外不含 Pro 的肽构成的组，如 EP 231 279 完全部分所述，所述方法涉及两步过程。首先，产生包含 Val-Pro-Pro 或 Ile-Pro-Pro 的中间产物肽。这通过将酪蛋白与合适的蛋白酶温育来进行。根据实施例之一，在 37 摄氏度进行 12 小时的时间。然后通过将第一种水解产物加热至 100 摄氏度 3 分钟来失活所用的蛋白酶，再次冷却之后，加入另一种酶制剂（事实上，具有外切蛋白水解活性的酶）来。用该另一种酶制剂在 37 摄氏度再温育 12 小时后，可展示出三肽 V-P-P 和 I-P-P 的存在。为获得这些 ACE 抑制的更高产率，EP 231 279 还建议在暴露给外切蛋白水解活性之前对中间产物肽进行纯化和浓缩。EP 231 279 还建议，在该工艺中，在获得中间产物肽之后，并且在中间产物肽与肽酶接触之前，可选地，可进行多种操作，例如，通过例如在 5000 至 20000rpm 下离心 3 至 10 分钟去除未反应的蛋白。因此，以工业方式而非不实用的两步酶促过程来获得想要的三肽。因为每次酶温育要在 pH4.5 至 7.0 以及 25 至 50 摄氏度的温度下进行长达 12 小时，明显地，从微生物学的角度来看，该工艺也是难以接受的。上述长的温育时间与 25 至 50℃的低温育温度的组合可能容易导致含蛋白的溶液被感染。

[0063] 较之 EP 231 279 所述的方法，本申请中指出的创造性步骤是显而易见的。首先，本申请描述了仅使用 η 酯蛋白的 GMP 片段。由此，将仅释放 IPP，而己知被酯蛋白所包含的其它很多可能非常苦的肽并不产生。第二，使用脯氨酸特异性蛋白酶进行的根据本发明的温育是在单个温育步骤中通过单种纯的酶来进行。因为脯氨酸特异性蛋白酶非常具有选择性的切割模式（这是该特殊内切蛋白酶所固有的），想要的 IPP 肽立即释放出
来，同时仅有非常有限数量的其它肽释放。令人吃惊地，没有 EP1232 279 中提到的“中间产物肽”的形成。第三，根据本发明的酶育（其中，GMP 酶蛋白片段与纯的氨基肽酶酶育，然后再与脯氨酸特异性蛋白酶酶育）与 EP1 232 279 中描述的途径实质上是不同的。本发明的酶育高效释放 IPP 并且具有最小水平的污染性肽和游离氨基酸。优选的酶育用氨基肽酶（根据 EP1 232 279 的“肽酶”）开始，代替蛋白酶（proteinase），并且不产生“中间产物肽”。在后来的步骤中，使用内切蛋白酶代替蛋白酶（proteinase），同样没有“中间产物肽”形成。

【0064】尽管存在针对现有技术产品提到的缺点，经发酵的奶制品已作为经口施予的被用于实践应用。也已通过电渗析、中空纤维膜渗析或色谱方法从经发酵奶制品浓缩出了 ACE 抑制肽，使得它们可以以浓缩膳食补充剂（例如片剂或凝胶）上市。

【0065】本发明的一个目的是提供纯的状态的肽 IPP，即没有例如 VPP 或 LPP 的肽显著地污染的 IPP。

【0066】本发明的另一个目的是提供以高浓缩形式存在的肽 IPP，而无需使用昂贵的纯化步骤。

【0067】本发明的另一个目的是提供在无苦味配方中存在的血压降低肽 IPP。

【0068】本发明涉及肽组合物，用作营养药物，优选地，药剂。本发明还涉及本发明的肽组合物作为营养药物（优选地，药剂）的用途，涉及本发明的肽组合物用于生产营养药物（优选地，药剂）的用途，涉及本发明的肽组合物用于改善健康或预防和/或治疗疾病的用途，涉及本发明的肽组合物用于生产营养药物（优选地，药剂）的用途，涉及本发明的肽组合物用于抑制心血管疾病的用途，涉及本发明的肽组合物用于抑制糖尿病或糖尿病的用途，涉及本发明的肽组合物用于抑制或预防肥胖的用途，涉及本发明的肽组合物用于增加血浆胰岛素或用于增加对于血浆胰岛素的敏感性的用途，涉及本发明的肽组合物用于增加血浆胰岛素或用于增加 2 型糖尿病或前糖尿病的血浆胰岛素的敏感性的用途，涉及本发明的肽组合物用于降低 2 型糖尿病或前糖尿病血液中餐后葡萄糖浓度的用途，涉及本发明的肽组合物用于降低 2 型糖尿病或前糖尿病血液中餐后胰岛素分泌的用途，涉及本发明的肽组合物的下述用途。其，本发明的肽组合物是膳食补充剂的形式，涉及本发明的肽组合物用于生产对应激影响进行治疗性处理的功能性食物产品的用途，涉及本发明的肽组合物在局部应用（优选地，在个人护理应用）中的用途，以及涉及本发明的肽组合物在饲料和宠物食品中的用途。

【0069】此外，本发明涉及一种方法，所述方法用于治疗 1 型和 2 型糖尿病，以及用于在具有前糖尿病或葡萄糖耐受不良（IGT）的个体中预防 2 型糖尿病，所述方法包括向需要此类治疗的个体施予本发明的肽组合物，本发明还涉及一种方法，用于治疗遭受高血压或心力衰竭的人群，或者用于对其进行预防，所述方法包括向需要此类治疗的个体施予本发明的肽组合物，以及，展示出降血压效果。对 ACE 的抑制导致血管收缩减少，血管舒张增加，钠和水排出提高，这进而导致外周血管抵抗（peripheral vascular resistance）降低以及血压降低，以及局部血流改善。因此，本发明的包含肽的水解产物对于预防和治疗可受 ACE 抑制影响的疾病特别有用，所述疾病包括但不限于，高血压、心力衰竭、心绞痛、动脉梗塞、中风、外周动脉障碍疾病、动脉硬化、肾病、肾功能不全、勃起障碍、内皮功能障碍、左心室肥大、糖尿病血管并发症、液体潴留（fluid retention）以及醛固酮增多症。组合物还可用于
预防和治疗胃肠紊乱（腹泻、肠易激综合征（irritable bowel syndrome）、炎症、糖尿病、肥胖、痴呆、癫痫、老年性意识错乱以及Meniere’s综合征。此外，组合物可增强认知功能和记忆力（包括Alzheimer’s症）、饱腹感（satiety feeling）、限制缺血性损伤以及预防动脉旁路（by-pass）手术或血管成形术（angioplasty）之后被再次占领。

糖尿病是常见的慢性疾病，迄今为止没有治愈方法。糖尿病的发病率和流行程度呈指数增长，在发达国家和发展中国家是最普遍的代谢紊乱之一。糖尿病是多种致病因素导致的复杂疾病，其特征为碳水化合物、蛋白质及脂肪代谢受阻，这与胰岛素分泌不足和/或与胰岛素抗性相关。这会导致空腹及餐后的血糖葡萄糖浓度升高，如果未被治疗则会导致并发症。此疾病有两大类，胰岛素依赖型糖尿病（IDDM，T1DM）和非胰岛素依赖型糖尿病（NIDDM，T2DM）。T1DM = 1型糖尿病，T2DM = 2型糖尿病。

T1DM及T2DM与高血糖、高胆固醇血和高脂血性相关。T1DM及T2DM中，相应的胰岛素的绝对缺乏和对胰岛素的不敏感性会导致肝脏、肌肉和脂肪组织对葡萄糖的利用减少，并且导致血液中葡萄糖水平升高。由于微血管和大血管疾病的风险增加，未受控制的高血糖与增加的死亡率和过早死亡率相关，所述疾病包括肾病、神经病、视网膜病、高血压、中风和心脏病。新近证据表明，严格血糖控制是预防T1DM及T2DM的上述并发症的主要因素。因此，通过药物或治疗进行最终血糖控制，是治疗糖尿病的重要手段。

对T2DM的治疗最初涉及膳食及生活方式的改变，当上述措施无法保持足够的血糖控制时，就会用口服的降血糖药剂和/或外源胰岛素对病人进行治疗。目前用于治疗T2DM的口服药物剂型包括加强胰岛素分泌的药物（磺脲类）、促进胰岛素在肝脏中作用的药物（缩二肽类）、增加胰岛素敏感性的剂型（噻唑烷二酮类）及作用于抑制葡萄糖吸收的剂型（α-葡萄糖苷酶抑制剂）。然而，由于胰腺细胞功能的逐渐丧失导致高血糖逐渐恶化，目前可利用的药物通常不能长期保持足够的血糖控制。能够保持目标血糖水平的病人比例在一定时间之后会显著降低，因此必须施用额外/另外的药物制剂。此外，所述药物可能具有不理想的副作用，而且其同高无效率和高复发率联系在一起。最后，降糖药物的使用可能对控制血液中葡萄糖水平有效，但其却可能无法预防糖尿病的所有并发症。因此，目前用于治疗所有类型的糖尿病的方法不能达到令血糖量正常的目标，也无法预防糖尿病并发症。

因此，虽然被选用于治疗T1DM及T2DM的方法基本都基于施予胰岛素和口服降血糖药物，但人们却需要副作用最小的安全有效的营养补充剂，用于糖尿病的治疗和预防。很多病人都对另外的疗法感兴趣，所述疗法未能将与高剂量药物相关的副作用降至最小，并能产生额外的临床效益。糖尿病病人对被认为是“自然的”治疗特别感兴趣。所述治疗具有温和的抗糖尿病效果，而且没有大的副作用，其可被用作辅助治疗。T2DM是逐渐发展的慢性疾病，其通常不为病人所知，直到产生胰岛素的胰腺细胞（胰岛的β-细胞）出现了明显的损伤。因此，人们对于发展可用于针对风险人群，尤其是处于T2DM发展中的高风险状态的老年人预防β-细胞损伤以及因此预防明显的T2DM发展的膳食补充剂的费用也在增加。对胰腺β-细胞的保护可通过降低血钾葡萄糖和/或脂类水平来获得，因为葡萄糖和脂类对β-细胞造成损伤性影响。血钾葡萄糖水平的降低可通过不同的机制来获得，例如通过增强胰岛素敏感性和/或通过降低肝对葡萄糖的生产来进行。血钾脂类水平的降低也可通过不同机制获得，例如通过增强脂类氧化和/或脂类贮藏来获得。用于保护胰腺β-细胞的另一可
能策略将是降低氧化胁迫。氧化胁迫还导致 β-细胞损伤，以及随后对胰岛素分泌的损失，和向明显的 T2DM 的发展。

[0074] 因此，T2DM 是一种并发症，其源自多种器官位点上同时存在的缺陷；肌肉和脂肪组织中对胰岛素作用的抗性、胰腺对胰岛素的分泌有缺陷、肝脏中葡萄糖无限制的产生这些缺陷，伴随脂肪异常和内皮功能障碍。因此，鉴于 T2DM 中的多种病理生理损伤，组合疗法对其控制来说是有吸引力的手段。

[0075] 本发明涉及新颖的营养药物组合物，所述组合物包含本发明的含肽组合物。包含本发明的含肽组合物的营养药物组合物还可包含水解蛋白和碳水化合物作为活性成分，用于治疗或预防糖尿病，或与葡萄糖耐受不良相关的其它病况，例如 X 综合征。另一方面，本发明涉及此类组合物作为营养补充剂在所述治疗或预防中的用途，例如，作为包含维生素和矿物质的复合维生素制剂的添加剂，所述维生素和矿物质对维持正常代谢功能来说是必需的，但其却不能在体内被合成。在另一个方面，本发明涉及一种方法，用于治疗 1 型和 2 型糖尿病，以及用于在具有前糖尿病或葡萄糖耐受不良（IGT）或肥胖的个体中预防 T2DM，所述方法包括向需要此类治疗的个体施予本发明的含肽组合物，以及蛋白水解产物或未水解蛋白和 / 或碳水化合物。

[0076] 本发明的组合物特别用于治疗 T1DM 和 T2DM，以及用于在具有前糖尿病或葡萄糖耐受不良（IGT）的个体中预防 T2DM。

[0077] 我们发现，本发明的含肽组合物可用于 2 型糖尿病或前糖尿病，优选地，用于降低餐后葡萄糖浓度，或者用于增加血液中餐后胰岛素的分泌。

[0078] 包含肽以及可选地碳水化合物的组合物刺激胰岛素分泌，增加葡萄糖向胰岛素敏感性靶组织（例如脂肪组织、骨骼肌和肝脏）的分配，以及由此在对糖尿病的治疗提供协同效果。

[0079] 通常认为，应激 (stress) 相关疾病，以及应激对身体的负面影响对于很多人有显著的作用。近年来，在药物和科学界，应激的影响，以及其对于多种疾病和病况发展的作用已获得了更广泛地接受。消费者现在逐渐认识到这些潜在的问题，并开始对于减少或预防应激对其健康的可能的负面影响产生逐渐增加的兴趣。

[0080] 本发明的另一方面是提供适合用于帮助身体耐应激影响的食物产品，或可被包含在其中的成分。

[0081] 本发明的另一个目的是提供一种食物产品，其包括提供健康益处（诸如帮助身体应答应激的负面影响）的本发明的含肽组合物。

[0082] 术语“营养药物”在本文中指同时在营养领域及制药领域应用中的有用性。因此，所述新颖的营养药物组合物可作为食物和饮料的补充剂，也可作为药物制剂用于肠道或非肠道应用，所述制剂可以是固体制剂，例如胶囊或片剂，或是液体制剂，例如溶液或悬浮液。从前文明显可知，术语“营养药物组合物”还包含食物和饮料，其包含本发明的含肽组合物以及可选地碳水化合物，以及包含前述活性成分的补充性组合物，例如膳食补充剂。

[0083] 术语膳食补充剂在本文中指含有用以对膳食加以补充的“膳食成分”且通过摄取的产品。这些产品中“膳食成分”可包括：维生素、矿物质、草本物质或其它植物性药材（botanical）、氨基酸和酶、器官组织、腺体（glandular）和代谢产物等物质。膳食补充剂可以是提取物或浓缩物，其可以以多种形式出现，例如片剂、胶囊、软明胶 (softgels)、明胶胶
囊（gelcaps）、液体或粉末。它们还可以是其它形式，例如条棒状，但是如果它们是的话，膳食补充剂标签上的信息通常将不把产品标示为传统食品，或餐食或膳食中的唯一项目。

【0084】本发明中的营养药物组合物中还可以加入复合维生素及矿物质补充剂，以获得足够数量的必需营养物，所述营养物在某些膳食中是缺乏的。复合维生素及矿物质补充剂还用于疾病预防和防止营养缺乏及缺陷，所述营养缺乏及缺陷是由于生活方式以及通常不充分的饮食模式造成的，这有时可见于糖尿病。此外，氧化应激也被暗示与胰岛素抗性的发展有牵连。活性氧物质（reactive oxygen species）可能通过扰乱胰岛素受体信号级联过程来破坏胰岛素激发的葡萄糖吸收。用抗氧化剂，例如α-生育酚（维生素E）、抗坏血酸（维生素C），来控制氧化应激对于治疗糖尿病来说可能是有价值的。因此，复合维生素补充剂可添加到上述活性物质中，以保持良好的平衡营养。

【0085】此外，本发明的含肽组合物与矿物质，例如镁（Mg²⁺）、钙（Ca²⁺）和/或钾（K⁺）的组合可用于改善健康以及预防和/或治疗疾病，包括但不限于心血管疾病和糖尿病。

【0086】在本发明的一个优选方面，本发明的营养药物组合物含有本发明的含肽组合物。IPP适合以向将被施予的个体提供每kg体重约0.001g至每kg体重约1g的每日剂量的量存在于根据本发明的组合物中。食物或饮料适合含有每份大约0.05g至每份大约50g的IPP。如果营养药物组合物是药物制剂，此类制剂可以按每个剂量单位（例如每个胶囊或片剂）计，包含大约0.001g至大约1g的量的IPP，或者，对液体制剂而言，按每份每日剂量计，分别包含大约0.035g至大约70g的量的IPP。本发明的含肽组合物适合以向将被施予的个体提供每kg体重约0.01g至每kg体重约3g的每日剂量的量存在于根据本发明的组合物中。食物或饮料适合含有每份大约0.1g至每份大约100g的蛋白水解产物。如果营养药物组合物是药物制剂，此类制剂可以按每个剂量单位（例如，每个胶囊或片剂）计，包含大约0.01g至大约5g的量的含肽组合物，或者，对液体制剂而言，按每份每日剂量计，包含大约0.7g至大约210g的量的含肽组合物。

【0087】在本发明的另一个优选方面，组合物包含前面指出的本发明的肽以及可选地，碳水化合物。碳水化合物适合以向将被施予的个体提供每kg体重约0.01g至每kg体重大约7g的每日剂量的量存在于根据本发明的组合物中。食物或饮料适合含有每份大约0.5g至每份大约200g的碳水化合物。如果营养药物组合物是药物制剂，此类制剂可以按每个剂量单位（例如，每个胶囊或片剂）计，包含大约0.05g至大约10g的量的碳水化合物，或者，对液体制剂而言，按每份每日剂量计，包含大约0.7g至大约490g的量的碳水化合物。

【0088】剂量范围（对70kg的人而论）

<table>
<thead>
<tr>
<th>IPP</th>
<th>0.005-70g/天（每种）</th>
</tr>
</thead>
<tbody>
<tr>
<td>蛋白水解产物</td>
<td>0.07-210g/天</td>
</tr>
<tr>
<td>未水解蛋白</td>
<td>0.07-210g/天</td>
</tr>
<tr>
<td>碳水化合物</td>
<td>0.1-490g/天</td>
</tr>
</tbody>
</table>

【0089】本发明的一个目的是提供可用于向消耗其的个体提供健康益处的可食用物质。另一个目的是提供可以以经分离形式或被包装在食物产品的、可被方便地摄取的此类可食用物质。

【0090】本发明的另一个目的是提供适合用于体重控制程序的食物产品，或可被包装在所述产品的成分。
本发明的另一个目的是提供可适合用于帮助保持心血管健康（例如，通过 ACE 抑制）的食物产品，或可被包括进所列产品的成分。本发明的另一个目的是提供具有可接受的稳定性和 / 或感官性质（特别是好的味道，例如不存在不可接受水平的苦味）的食物产品，或可被包括进所列产品的成分。本发明的另一个方面是提供一种食物产品，其具有高浓度的下述成分，所述成分提供健康益处，例如协助预防肥胖 / 体重控制和 / 或帮助保持心血管健康。令人吃惊地，根据本发明，使用本发明的含肽组合物用于制备消耗后提供健康益处的食物产品，实现了这些目的中的一个或多个。根据第一个方面，本发明提供了本发明的含肽组合物用于生产用于预防肥胖或用于体重控制的功能性食物产品的用途。根据第二个方面，本发明提供了本发明的含肽组合物用于生产用于心血管健康保持的功能性食物产品的用途。根据本发明尤其优选的是，心血管健康保持包括抑制血管紧张素转化 (ACE) 酶和 / 或控制血液葡萄糖水平。根据第三个方面，本发明提供了能向其消耗者提供健康益处的功能性食物产品，所述健康益处选自：预防肥胖、体重控制以及心血管健康保持，并且，所述功能性食物产品包含本发明的含肽组合物。根据本发明的含肽组合物的另一优点是，该含肽组合物可被方便地包括进食食物产品之中，以生产出功能性食物产品，并且不会以不可接受的程度影响到其稳定性和 / 或感官性质。根据本发明的 “健康益处试剂” 是指当被摄取时提供健康益处的物质，即，对健康的某些方面具有正面影响，或者帮助保持良好健康的某些方面的物质，良好健康的这些方面是预防肥胖、体重控制和心血管健康保持。“健康益处” 指对于健康的某些方面具有正面作用，或者能帮助保持良好健康的某些方面。根据本发明的 “功能性食物产品” 被定义为适合人类消耗的食物产品（为清楚起见，其包括饮料），其中，本发明的含肽组合物以有效量用作为其成分，使得所述食物产品的消费者获得显著的健康益处。术语 “包含” 在本文中使用时表示不限于任何随后指出的要素，而是表示包括具有大的或小的功能重要性的未指出的要素。换句话说，列出的步骤、元素或选项不必是穷竭的。当使用词语 “包括” 或 “具有” 时，这些术语与上面定义的 “包含” 等同。本发明的另一个目的是提供一种酶促方法，所述方法从 κ 酪蛋白的 GMP 部分选择性切割 IPP，优选地，使用脯氨酸特异性蛋白酶进行，更优选地，使用脯氨酸特异性内切蛋白酶来进行，最优选地，使用具有酸性最优 pH 的脯氨酸特异性内切蛋白酶来进行。本发明的另一个目的是提供一种方法，用于从经酸沉淀的酪蛋白回收 κ 酪蛋白的 GMP 部分。有效的血压降低肽 IPP 在肽的羧基末端具有两个脯氨酸残基。因为包括脯氨酰残基的肽键已知能抵抗蛋白水解切割，因此，血压降低肽中存在两个脯氨酸残基将向此类肽赋予增加的针对蛋白水解降解的抗性。这一点增加了在与复合酶制剂温育期间相关三肽避免被完全水解的可能性。类似地，IPP 可能避免胃肠道消化，使得这些肽具有完整到达
血流的更好的机会。为获得在其羧基末端具有至少单个但优选多个脯氨酸残基的肽，使用能将脯氨酸残基羧基末端进行切割的蛋白酶提供了有意的选择。所谓的脯氨酸羧肽酶（EC3.4.21.26）具有优先在脯氨酸残基羧基侧切断肽的独特可能性，并且以更低的效率在丙氨酸羧基侧切割。在所有从哺乳动物以及微生物来源分离的经充分表征的脯氨酸特异性蛋白酶中，都已经鉴定出了独特的肽酶结构域，其将大肽排除在酶的活性位点之外。事实上，这些酶不能降解含有超过大约 30 个氨基酸残基的肽，因此这些酶现在被称为“脯氨酸羧肽酶”（Fulop et al.; Cell. Vol. 94, 161-170, July 24, 1998）。因此，在它们施加其水解作用之前，这些脯氨酸羧肽酶需要用其它内切蛋白酶进行粗放的前水解。但是，W002/45523 所述，甚至脯氨酸羧肽酶与上述另一种内切蛋白酶的组合，也产生出水解产物，其特征在于，具有显著提升的活性的，具有羧基末端脯氨酸残基的肽。由于这个原因，此类水解产物形成了类似结果，用于分离具有体外 ACE 抑制作用以及对胃肠蛋白水解降解具有提高的抗性的肽。除开这些可能的好处，我们并不知道明确指出使用脯氨酸特异性蛋白酶回收血压降低肽的肽的，更不用说对 IPP 的选择性生产。

在实施例 2 中，我们展示了从 A. niger 获得的脯氨酸特异性蛋白酶的最优温度和 pH，并将其与从微生物 Flavobacterium meningosepticum 获得的脯氨酸特异性羧肽酶相比。含有蛋白质的水溶液很容易受微生物污染，特别是在高于 5.0 的 pH 值以及 50 摄氏度或更低的温度下保持数小时。尤其地，此类长时间温育步骤中可能产生的微生物毒素很可能在随后的加热步骤中存活，形成对食品级产品的潜在威胁。与 EP1 231 279 所述的条件不同，根据本发明的方法优选使用高于 50 摄氏度的温育温度。组合其中以少于 24 小时的时间，优选少于 8 小时的时间，更优选少于 4 小时的时间进行酶温育的一步酶方法，根据本发明的方法提供了微生物减少性提高的好处。

在实施例 3 中，我们展示出，用于本发明的方法中，从 A. niger 获得的酶制剂不仅显示出非常窄的底物特异性，这意味着除了存在针对涉及脯氨酸或丙氨酸残基的肽键的活性之外，并不存在显著的内切蛋白水解活性。在本申请的实施例 4 中，我们展示，Aspergillus 酶并非寡肽酶，而是真正的内切肽酶，其能水解完整蛋白、大肽以及较小的肽分子，而无需辅助性的内切蛋白酶。这一令人吃惊的发现使我们可以通过使用辅助性的内切蛋白酶，从而可产生含有出乎意料的高含量的具羧基末端脯氨酸残基的肽的水解产物。此外，为在水解多肽或寡肽期间产生数量非常有限的肽，不用辅助性内切蛋白酶是优选的。从而，获得了相对简单的肽混合物，其特征在于，存在的肽中的大多数都具有羧基末端脯氨酸残基。
在实施例5中，我们针对存在的内切蛋白水解活性、氨基肽水解活性以及羧基肽水解活性的方面对所用的酶制剂进行了分析。脯氨酸特异性内切蛋白酶具有不可忽视的副活性，而Sumizyme FP和Flavourzyme制剂形成了很多种不同的酶种类的丰富来源。

在实施例6中，我们描述了用于分离GMP的另一种途径，即，从可商品的酪蛋白酸钙进行分离。使用脯氨酸特异性内切蛋白酶，我们还从由此分离的GMP回收了IPP。A niger来源的酶不显著的氨基肽酶活性这一事实（见实施例5）强烈暗示：形成的IPP是从κ酪蛋白中存在的- A107-L108-P109-P110-序列释放的。我们假设，IPP的肽键羧基末端是由A niger获得的脯氨酸内切蛋白酶的主活性切割的，而前面的Ale-1le键的切割是由其Ala特异性副活性来完成的。该途径的好处在于，对GMP选择性移除之后，剩余的酪蛋白酸盐分级可用于另外的应用。

在实施例7中，我们展示了脯氨酸特异性内切蛋白酶以及复合Sumizyme FP制剂可用于从商业获得的GMP释放出IPP。优选地，该组合物包含0.1至100mg/g的IPP（基于干物质并且基于蛋白质），更优选地，1至50mg/g的IPP（基于干物质并且基于蛋白质），最优选地，2至35mg/g的IPP（基于干物质并且基于蛋白质）。我们还发现，在使用脯氨酸特异性内切蛋白酶的情况下，GMP的水解导致产生的组合物包含含量大致相同的三肽IPP和肽TSTP。因此，本发明还涉及包含IPP和TSTP的组合物，其中，IPP: TSTP的摩尔比在1.5至0.5之间，优选地，1.3至0.7之间，更优选地，1.2至0.8之间。优选地，该组合物包含0.1至100mg/g的IPP（基于干物质并基于蛋白质），更优选地，1至50mg/g的IPP（基于干物质并且基于蛋白质），最优选地，2至35mg/g的IPP（基于干物质并且基于蛋白质）。}

在实施例8中，我们展示了使用GMP水解产物的感官好处。

在实施例9中，我们将阐述使用GMP允许通过发酵手段制备含有IPP的产品。

因此，本发明产生了相对于现有技术而言的多种好处。最重要地，根据本发明的方法产生来多样性更小的水可溶性肽，并且，在这些水可溶性肽中，IPP以主要的量存在。这在味道温和的产品中需要高浓度IPP的情况下尤其重要。根据本发明的方法，优选地，蛋白质中存在的- A1-P-P-序列中的至少20%，更优选地至少30%，最优选地至少40%被转化为IPP。

水解之后可对溶液进行加热。可选地，可改变溶液的pH或者可将溶液与溶剂混合。

根据本发明的一个方面，对蛋白来源的水解期间形成的包括IPP的可溶肽被分离，以及可选地，被干燥。在倾析、过滤或离心以除去形成的沉淀之后，可回收含有生物活性肽的上清液，例如通过反渗透或蒸发，可选地，组合额外的过滤步骤，可选地，接着的喷雾干燥步骤来之间，以产生用于获得具有高度生物活性以及良好的水溶解度的食品级物质或粉末。在用脯氨酸特异性蛋白酶对合适的底物蛋白质（例如GMP）进行消化时，获得含有高浓度IPP的白色无气味粉末，并且获得出人意料之外的低水解程度。

在营养药物应用以及食物和饮料应用中，可有效地使用本发明的水解产物。蛋白水解产物、可溶性水解产物及其混合物可用于营养药物应用、食物应用或者饮料。优选地，可溶性水解产物用于营养药物应用、食物应用或者饮料，因为存在高含量的活性肽。

如果被适当稀释至正确的三肽浓度，可获得具有出色美味的通用起始材料，其适合向所有种类的食物和饮料赋予血压降低性质。
[0123] 在额外的纯化步骤（例如色谱）之后获得的肽混合物可用来被包括进食食物产品中。所述进食食物产品是日常生活中被广泛消耗的。此类产品的例子是植物黄油、涂抹酱、多种乳制品（例如黄油或酸奶或奶或含乳清饮料）、烘焙制品（例如蛋糕和曲奇）、液体食物（例如汤）以及糖和甜味剂和糖块。因为根据本发明的含 IPP 的水解产物具有非常温和的味道，因此可将该水解产物包括进所有种类的饮料中，包括瓶装饮用水、软饮料、运动饮料、果汁、柠檬水以及速溶茶和咖啡。

[0127] 虽然这类组合物典型地施予人类，但它们也可施予动物（优选地，哺乳动物），以减轻血压。此外，获得的产品中高浓度的血压降低肽使得这些产品非常有用用于包括进丸剂，片剂或高度浓缩的溶液或糊状物或粉末形式的膳食补充剂，将确保肽持续释放的缓释膳食补充剂令人着有特别的兴趣。根据本发明的肽可作为干粉被配制进，例如，丸剂，片剂，颗粒，小袋（sachet）或胶囊。或者，根据本发明的肽混合物可作为液体被配制进例如糖浆或胶囊。用于多种配方并且含有根据本发明的酶的组合物还可包括生理上可接受的载体，赋形剂，稳定剂，缓冲剂以及稀释剂构成的组中的至少一种化合物，这些术语按照它们通用的含义来使用，以表示协饲料包装，运送，吸收，稳定或者在佐剂的情况下增加生理作用的物质。可以与粉末形式的根据本发明的肽混合物组合使用的是不完全相同的化合物的固体背景可参在“Pharmaceutical Dosage Forms”，第二版，1，2 和 3 卷，ISBN0-8247-8044-2 Marcel Dekker，Inc 中或在 Remington’s Pharmaceutical Sciences，第 20 版，Williams&Wikins，PA，USA 中找到。对于经口施用于者，片剂和胶囊是优选使用的，其含有合适的粘合剂（例如明胶或聚乙烯醇糖醇），合适的填料（例如乳糖或淀粉），合适的润滑剂（例如硬脂酸镁），以及可选地，其它添加剂。

[0128] 相对新的经口应用方式是使用多种类型的明胶胶囊或者基于明胶的片剂。

[0129] 在本发明的另一个方面，提供了不含苯丙氨酸、色氨酸和酪氨酸的水解产物。通过使用 CMP 作为起始蛋白，获得缺乏苯丙氨酸、色氨酸和酪氨酸的水解产物。这使得该水解产物对于具有苯丙酮尿症（PKU）的个体来说是安全的。

[0130] 考虑到天然的肽与对抗高血压的相关性，本发明的新颖的、成本效率高的途径提供了对于温和降血压食品或者甚至兽用品的有吸引力的起点。因为本发明的途径还包括简单得令人吃惊的纯化步骤，因此获得能降低血压的经浓缩膳食补充剂的可能性也增大了。

[0131] 根据本发明的方法可用任何脯氨酸特异性寡蛋白酶或脯氨酸特异性内切蛋白酶
来完成。根据本发明的或根据本发明使用的肽氨酸特异性寡蛋白酶表示属于 EC3.4.21.26
的酶。根据本发明的或根据本发明使用的肽氨酸特异性内切蛋白酶表示属于丝氨酸蛋白酶
S28 家族的肽氨酸特异性内切蛋白酶 (Handbook of Proteolytic Enzymes; Barrett A. J.;
更优选地, W002/45524 的权利要求 1-5,11 和 13 提到的多肽。因此, 该肽氨酸特异性内切
蛋白酶是具有肽氨酸特异性内切蛋白水解活性的多肽, 其选自下述多肽构成的组:
[0132] (a) 具有下述氨基酸序列的多肽或其片段, 所述氨基酸序列与 SEQ ID NO: 2 的 1 至
526 位氨基酸具有至少 40% 的氨基酸序列同一性;
[0133] (b) 由下述多核苷酸编码的多肽, 所述多核苷酸在低变性条件下能与 (i) SEQ ID
NO: 1 的核酸序列或其至少在 60 个核苷酸上, 优选在 100 个核苷酸上 80% 或 90% 相同, 更
优选在 200 个核苷酸上至少 90% 相同的片段, 或 (ii) 与 SEQ ID NO: 1 的核酸序列互补的
核酸序列杂交。SEQID NO: 1 和 SEQ ID NO: 2 如 W002/45524 所示。优选地, 多肽是经分离
的形式的。
[0134] 根据本发明使用的优选的多肽具有与 SEQ ID NO: 2 的 1 至 526 位氨基酸至少
50%, 优选至少 60%, 优选至少 65%, 优选至少 70%, 进一步优选至少 80%, 进一步最优选至少
90%, 最优选至少 95%, 进一步最优选至少大约 97% 的同一性的氨基酸序列, 或者包含 SEQ
ID NO: 2 的氨基酸序列。
[0135] 优选地, 多肽由下述多核苷酸编码, 所述多核苷酸能在低变性条件下, 更优选地,
中等变性条件下, 以及最优选地, 高变性条件下, 与 (i) SEQ ID NO: 1 的核酸序列或
其片段, 或 (ii) 与 SEQ ID NO: 1 的核酸序列互补的核酸序列杂交。
[0136] 术语 “能与……杂交” 表示, 本发明的目标多核苷酸可与用作为探针的核酸序列
(例如, SEQ ID NO: 1 所示的序列或其片段, 或 SEQ ID NO: 1 的互补序列) 以显著高于背景
的水平杂交。本发明还包括编码本发明的肽氨酸特异性内切蛋白酶的多核苷酸, 以及与其
互补的核酸序列。核酸序列可以是 RNA 或 DNA, 包括基因组 DNA、合成 DNA 或 cDNA。优
选地, 核苷酸序列是 DNA, 以及最优选地, 基因组 DNA 序列。典型地, 本发明的多核苷酸包含
下述核苷酸的连续序列, 所述序列能在选择性条件下与 SEQ ID NO: 1 的编码序列或编码序
列的互补序列杂交。此类核苷酸可用本领域公知的方法合成。
[0137] 本发明的多核苷酸可以以明显高于背景的水平与 SEQ ID NO: 1 的编码序列或编码
序列的互补序列杂交。背景杂交可能例如因为 cDNA 文库中存在的其它 cDNA 而发生。本发
明的多核苷酸与 SEQ ID NO: 1 的编码序列或编码序列的互补序列之间的相互作用产生的信
号水平典型地是其它多核苷酸与 SEQ ID NO: 1 的编码序列之间相互作用强度的至少 10 倍,
优选地, 至少 20 倍, 更优选地, 至少 50 倍, 进一步更优选地, 至少 100 倍。相互作用的强度可
以例如通过对探针进行放射性标记 (例如用 32P) 来测量。典型地, 可使用低变性度 (0.3M
氯化钠和 0.03M 柠檬酸钠, 在大约 40°C 进行)、中等变性度 (例如, 0.3M 氯化钠和 0.03M 氯
化钠, 在大约 50°C 进行) 或高变性度 (例如, 0.3M 氯化钠和 0.03M 氯化钠, 在大约 60°C
进行) 条件来获得选择性杂交。
[0138] UWGCG Package 提供了 BESTFIT 程序, 其可以用来计算同一性 (例如采用其缺省设
置)。
[0139]PILEUP 和 BLAST N 算法可以用来计算序列同一性或对序列进行对齐 (line up)
（例如鉴定等同或相应的序列，例如用其缺失设置）。

[0140] 用以执行 BLAST 分析的软件可以通过 National Center for Biotechnology Information（http://www.ncbi.nlm.nih.gov/）为公众所获得。该算法包括：通过确定被查询的序列中的长度为 W 的短字，首先确定出高分数序列对 (high scoring sequence pair, HSP)，所述的短字与数据库序列中同样长度的字进行比对时匹配或能达到为正值的某阈值分数 T。T 被称为相邻字分数阈值 (neighbourhood word score threshold)。上述最初的相邻字命中 (word hit) 被作为种子对搜索进行初始化，以找到含有它们的 HSP。所述字命中在每条序列的两个方向上都延伸，直到累积比对分数 (cumulative alignment score) 能够增加。当累积比对分数从其获得的最大值降低了数倍 X；由于一个或多个分数为负的残基比对的积累，所述累积分数到了零或以下；或到达了序列的末端时，所述字命中在每个方向上的延伸就被中断。BLAST 算法的参数 W、T 和 X 确定了所述比对的敏感性、精度。所述的 BLAST 程序缺省使用的字长 (W) 为 11，BLOSUM62 计分矩阵比对 (B) 为 50，期望值 (E) 为 10，M = 5，N = 4，比较两条链。

[0141] BLAST 算法进行对两条序列间相似性的统计分析。由 BLAST 算法提供的一种对相似性的测量是最低总和概率 (smallest sum probability (P(N)))，其提供了对两段核酸链或氨基酸序列间的匹配将偶然发生的概率的指示。例如，如果第一条序列与第二条序列进行比较时的最小总和概率大约 0.01，则该序列就被认为与另一条相似。

[0142] Aspergillus 属的菌株具有食品级状态，从这些微生物获得的酶已知能形成无可质疑的食品级来源。根据另一种优选的实施方式中，酶由其生产细胞分泌，并非是非分泌的所谓胞质酶。以这种方式，可从细胞培养液中回收处于基本上纯的状态的酶，而无需昂贵的纯化步骤。优选地，酶在通常的 pI 和温度条件下具有对其底物的高亲和性。

附图说明

[0143] 图 1：在多种 pI 条件下，在苂光底物 Z-Gly-Pro-AMC 上测量的 F. meningosepticum 的脯氨酸特异性脯肽酶和来自 A. niger 的脯氨酸特异性内切蛋白酶的活性曲线。苂光在 37°C 下 30 分钟之后测量。

[0144] 图 2：从 A. niger 获得的脯氨酸内切蛋白酶的特异性情况。

[0145] 图 3：经非色谱纯化的从 A. niger 获得的脯氨酸特异性内切蛋白酶温育之后，对完整卵清蛋白 (ovalbumine) 和合成的 27 肽进行的 SDS-PAGE。

[0146] 材料和方法

[0147] 可食用酪蛋白酸钠和酪蛋白酸钾喷雾 (88 %) 从 DMV International, The Netherlands 获得。GMP 从 Arla, Denmark (Lacprodan CFMP-10, lot#P340205) 获得，合成的发酵肽从 Pepsan Systems B.V. The Netherlands 或从 Bachem, Switzerland 获得。Flavourzyme1000L Batch HPNO0218 从 Novozymes (Denmark) 获得，Sumizyme FP 从 Shin Nihon (Japan) 获得，Corolase LAP Ch. ;4123 从 AB Enzymes (UK) 获得。

[0148] 来自 A. niger 的脯氨酸特异性内切蛋白酶。

[0149] 按照 W002/45524 所述，对来自 Aspergillus niger 的脯氨酸特异性内切蛋白酶进行过量生产。在 pH4.6 的柠檬酸 / 磷酸二钠缓冲液中，于 37 摄氏度，于合成肽
Z-Gly-Pro-pNA 上检测酶活性。在 405nm 处通过分光光度方法监测反应产物。一个单位被定义为在上述检测条件下每分钟释放出1μmol 对硝基苯胺 (p-nitroanilide) 的酶的量。

[0150] 对 A. niger 来源的内切蛋白酶进行色谱纯化

[0151] 从过量生产的 A. niger 菌株获得的培养液被用于对蛋白酶的色谱纯化，以去除任何污染性的内或外蛋白酶解活力。为达到此目的，首先对发酵培养液进行离心，以去除大部分真菌生物质，然后将上清液经过多个过滤器，表述过滤器具有逐渐减小的孔径，以去除所有细胞碎片。最后，在 20 毫摩尔 / 升乙酸钠 (pH5.1) 中对获得的超滤物稀释 10 倍，施加到 Q-Sepharose FF 柱上。以 20 毫摩尔 / 升乙酸钠 (pH5.1) 中的 0 至 0.4 摩尔 / 升 NaCl 梯度来洗脱蛋白质。收集并混合展示出针对 Z-Gly-Pro-pNA 切割活性的梯度分，这按照 World Journal of Microbiology & Biotechnology11, 209-215(1995) 所述的方法来进行，但试验条件略有修改。考虑到 A. niger 来源的脯氨酸特异性内切蛋白酶的酸性 pH 最适值，酶试验在 37℃，pH4.6 下于柠檬酸 / 磷酸氢盐缓冲液中进行。汇合活性梯分之后接着进行离心，最终产生了下述制剂，其在 SDS-PAGE 上显示出单一条带，在 HP-SEC 上显示出一个峰。通过疏水相互作用色谱进行的进一步分析验证了获得的酶制剂的纯度。

[0152] Kjeldahl 氮

[0153] 通过 Flow Injection 分析来测量总 Kjeldahl 氮。使用装备有 TKNmethod Cassette5000-040、Pentium4 计算机（带 SOFIA 软件）和 Tector5027Autosampler 的 Tector FIASTAR5000Flow Injection System, 在 590nm 处对从含蛋白质溶液中释放出的氮进行定量。将对应于该方法动力学范围（0.5～20mg N /1）的样品量与 95～97% 的硫酸一起放置于消化管中，用 200 摄氏度下 30 分钟，接着 360 摄氏度下 90 分钟的消化程序对 Kjeltab 进行处理。注射后，在 FIASTAR5000 系统中测量氨峰，由其可推导出测量的蛋白的量。

[0154] 氨基酸分析

[0155] 将精确称重的蛋白质材料样品溶解于稀释的酸中，通过在 Eppendorf 离心机中离心来除去沉淀。氨基酸分析在清晰的上清液上进行，这按照 Amino Acid Analysis System of Waters(Milford MA, USA) 的操作者手册指出的 PicoTag 方法来进行。为达到该目的，从液体获得合适的样品，然后干燥，对其进行蒸汽相酸水解，使用未硫氰酸苯酚衍生化。使用 HPLC 方法对存在的多种经衍生化氨基酸定量，加起来计算出称重样品中游离氨基酸的总水平。氨基酸 Cys 和 Trp 不包括在该分析获得的数据内。

[0156] LC/MS/MS 分析

[0157] 使用偶联到 P4000 泵 (Thermoquest®, Breda, the Netherlands) 上的离子阱质谱仪 (Thermoquest®, Breda, the Netherlands) 的 HPLC 被用于对通过本发明创造性的酶混合物生产的酶促蛋白水解产物中的目标肽进行定量，包括三肽 TIP, LPP 和 VPP。使用 InertsilODS3S3,3mm,150×2.1mm 柱 (Varioan Belgium, Belgium) 结合 Milli Q 水 (Millipore, Bedford, MA, USA) 中的 0.1% 甲酸 (溶液 A) 和乙腈中的 0.1% 甲酸 (溶液 B) 梯度用于洗脱，来分离形成的肽。梯度起始自 100% 的溶液 A, 保持 5 分钟, 10 分钟内线性增加至 5% 溶液 B, 紧接着在 45 分钟的线性增加至 45% 溶液 B。紧跟着回到起始条件, 保持 15 分钟以稳定。所使用的注射体积为 50 微升, 流率为每分钟 200 微升, 柱温保持为 55°C。注射样品的蛋白浓度为大约 50 微克 / 毫升。

[0158] 关于各种肽的详细信息通过使用针对目标肽的专门 MS/MS 来获得，其中使用大
约 30%的最优碰撞能。定量以 LC/MS/MS 模式进行，其中使用电喷雾正离子化模式，采用 C13+Na+ 标记的 IPP 标准，使用也采用经标记内标的校正线，用于校正矩阵效应。通过驻留时间、前体离子以及特征片段的比化来进行鉴定。

[0159] 三肽 LPP (M = 325.2) 被用于在 MS 模式中针对最优敏感度进行微调。在 MS/MS 模式中针对最优片段化进行微调，其具有 5mg/mL 的恒定注入率，导致在 MS 模式中产生质子化分子，在 MS/MS 模式中产生大概 30% 的最优碰撞能，产生 B- 和 Y- 离子系列。

[0160] 在 LC/MS/MS 之前，在环境温度和 13000rpm 下对酶促蛋白水解产物进行 10 分钟离心。经过 0.22 μm 过滤器进行过滤，用 MilliQ 水对上清液进行 1:100 的稀释。

[0161] 与多种蛋白水解混合物温育期间获得的水解程度 (DH) 使用快速 OPA 试验 (JFS, Vol 66, No5, 2001) 来监测。

[0162] 实施例 1 从 A. niger 获得的酶代表一类新的脯氨酸特异性酶

[0164] 实施例 2A. niger 脯氨酸特异性内切蛋白酶和来自 F. meningosepticum 的脯氨酸特异性肽酶在不同 pH 下的活性

[0165] 为展示从 Aspergillus 获得的脯氨酸特异性内切蛋白酶和来自 Flavobacterium meningosepticum 的脯氨酸特异性肽酶之间存在的 pH 最优值差异，我们测量了它们在不同 pH 条件下的活性。按照材料和方法一节所述获得来自 Aspergillus 的内切蛋白酶。从 Flavobacterium 获得的寡肽酶购自 ICN Biomedicals (35 个单位/mg；目录号 32082 ; Ohio, US)。

[0166] 为建立这两种酶的 pH 最优值，制备具有不同 pH 值的缓冲液。用 0.1mol/l 柠檬酸盐来制备 pH2.0 至 7.0 的缓冲液，用 0.1mol/l Tris 来制备 pH6.0 至 9.0 的缓冲液，用 0.2mol/l 甘氨酸来制备 pH8.0 至 12.0 的缓冲液。使用 HCl 或 NaOH 来调节需要的 pH 值。发色合成肽 Z-Gly-Pro-AMC (Bachem, Switzerland) 被用作为针对两种酶的底物。在
每个孔（Costar no.3631 板）中加入 85 μL 缓冲液、10 μL 酶溶液以及 5 μL 底物（60% 甲醇中 4mM Z-Gly-Pro-AMC）。A. niger 的酶的最终浓度为 32 μg/ml（3.2 毫克/毫升），F. meningosepticum 的酶的最终浓度为 0.21 μg/ml（7.4 毫克/毫升）。混合之后，令反应在 37.0℃进行 30 分钟，之后在 PerSeptive Biosciences 的 CytoFluor 多孔板读数仪上测量荧光。获得的相对数据示于图 1 中。此外，还建立了脯氨酸内切蛋白酶的温度最适值。为达到此目的，在不同温度下，用 Caseine Resorufine（Roche，第 3 版）作为底物，在含有 0.02mol/1 CaCl₂ 的 0.1mol/l 乙酸缓冲于 pH5.0 对经过纯化的酶制剂进行 2 小时温育，通过在 574nm 处的测量来对酶活加以定量。根据获得的结果，来自 A. niger 的脯氨酸特异性内切蛋白酶具有大约 50 摄氏度的温度最适值。

实施例 3 从 A. niger 获得的脯氨酸特异性内切蛋白酶的特异性

针对色肽底物的集合体，对从含有多个拷贝的表达盒（见 W002/45524）的 A. niger 酵株获得的粗制酶样品和经过色谱纯化的酶样品进行检验，以建立被编码的内切蛋白酶的特异性。在 AAXpNA 底物上对该酶的内切蛋白水解活性加以检验。如果 X-pNA 肽键被切割的话，“pNA”（对硝基苯胺）底物会导致颜色改变；“X”代表不同的天然氨基酸残基。

在含有 20CaCl₂ 的 0.1M 乙酸缓冲液（pH4.0）中对 AAX-pNA 底物的贮液（150mmol/1）进行 100X 稀释。于 405nm 处在 TECAN GeniosMTP Reader（Salzburg, Vienna）中于 40 摄氏度进行的 10 分钟动力学测量记录了光学密度的增加，在 Excel 中对产生的数据进行进一步处理获得了图 2 所示的图。从结果可以清楚看出，从 A. niger 获得的内切蛋白酶对于脯氨酸肽键具有高度特异性，其对丙氨酸肽键具有副活性。粗制的和经过色谱纯化的制剂显示了相似的活性情况。

可以看出：氨基肽酶、羧基肽酶或非脯氨酸特异性内切蛋白酶对从 A. niger 获得的内切蛋白酶的污染不显著（见实施例 5）。实施例 4 从 A. niger 获得的脯氨酸特异性内切蛋白酶可以水解大的蛋白以及小的肽，其因此是真正的内切蛋白酶

由于特殊的结构特征，属于 S9 家族的脯氨酸肽酶不能消化大于 30 个氨基酸的肽。该限制对于应当尽可能迅速高效地水解不同蛋白的酶来说是明显的缺点。为了解从 A. niger 获得的脯氨酸特异性内切蛋白酶是否显示出与底物分子大小相关的同样的局限性，我们将会从 A. niger 的经色谱纯化脯氨酸内切肽酶与小的合成肽和大的卵清蛋白分子一起温育，并且通过 SDS-PAGE 对形成的水解产物进行了分析。

所用的合成肽是序列 NII2-FRASDNRVIDPGKVEILTTIRLHPR-COOH 的 27 肽，其是 Pepscan 公司（Lelystad, The Netherlands）的赠品。如其氨基酸序列所显示的，该肽含有 2 个脯氨酸残基，一个在肽的中间一个在肽的羧基末端附近。

所用的完整卵清蛋白分子（Pierce Injact, 含有 20mg 冻干物质的小管）由 385 个氨基酸构成，其分子量为 42750Da。该分子含有 14 个脯氨酸残基，其中一个位于该分子最后的 C 末端，并且不能被脯氨酸特异性内切蛋白酶所切割。

在 50℃用经纯化的从 A. niger 获得的脯氨酸特异性内切蛋白酶与卵清蛋白和寡肽分别进行温育。在若干次时间间隔取样，再使用 SDS-PAGE 进行分析。

用含有 20mM CaCl₂ 的 0.1M 乙酸缓冲液（pH4）对具有 4.5 单位/ml 活性的经色
谱纯化的从A. niger 获得的脯氨酸特异性内切蛋白酶进行 100 倍稀释。将卵清蛋白溶解于乙酸缓冲液（pH 4）中，至浓度为 1mg/ml (22 μM)。将 27 肽溶解于同样的缓冲液中，达到 0.48mg/ml 的浓度 (152 μM)。卵清蛋白和 27 肽溶液的摩尔浓度被选为使得两种溶液含有相同摩尔浓度的可切割脯氨酸残基。卵清蛋白含有 13 个可能的脯氨酸切割位点，而 27 肽仅有两个。两种底物溶液各取 0.5ml，与 10 μl (0.45 毫升) 酶溶液在 Eppendorf 热混合仪于 50°C 进行温育。在若干时间间隔后，从温育混合物中取 10 μl 样品，保持在 20°C，直到进行 SDS-PAGE。用于 SDS-PAGE 和染色的所有材料都购自 Invitrogen。根据厂商说明书，使用 SDS 缓冲液来制备样品，根据厂商说明书，使用 MES-SDS 缓冲体系，在 12% Bis-Tris 凝胶上进行分离。使用 Simply Blue Safe Stain (Colloidal Coomassie G250) 进行染色。

[0177] 从图 3 中可见，在最初 4.75 小时的温育中，卵清蛋白被从 Aspergillus 获得的酶切割为大约 35-36kD 的离散条带（第 3 道）。溶液的温育期间导致进一步破坏为多种分子量的更小产物（第 7 道）。

[0178] 此外，27 肽迅速降解，这可从第 4、6 和 8 道中与第 2 道相比更浑浊模糊的条带来判断。产物的非常小的分子量位移（比较第 8 和 9 道）可能是由于对肽的羧基末端精氨酸残基的切割造成。区别为大约 2000（在 Alphalmager2000 系统上使用 Alphalmager 3.3d 软件来测量的），精氨酸具有 174 的分子量。该小分子量位移可能是肽碎片的进一步。

[0179] 产物的进一步降解可从 SDS 凝胶条带强度的降低来观察到。进一步降解的产物并不可见，因为用 Coomassie Brilliant Blue 不可能对具有大约 1000 的分子量的组分进行凝胶染色。从该实验可以推断出，与属于 S9 家族的已知脯氨酸残肽酶不同，较之大得多的蛋白，从 A. niger 获得的脯氨酸尤其是内切蛋白酶对切割小尺寸肽没有特别偏好。因此，从 A. niger 获得的酶代表真实的内切蛋白酶，以及用于水解不同类型蛋白的优选的酶。

[0180] 实施例 5：对血压降低及生产中氨的酶和污染性酶活性加以定量

[0181] 根据本发明，可以连续从 GMP 回收 IPP，在单一的一步过程中获得相对纯的 IPP。可以通过从不同类型的酶制剂，从 GMP 获得含有 IPP 二分体。例如，通过将 GMP 与纯的脯氨酸特异性内切蛋白酶，或者纯的脯氨酸特异性内切蛋白酶加纯的氨基肽酶，或者纯的脯氨酸特异性肽酶加纯的另一种纯的内切肽酶（例如枯草杆菌蛋白酶或胶原酶）或纯的氨基肽酶组合脯氨酸特异性肽酶氨基肽酶（例如来自日本 Amano, Japan 的商业“Umamizyme”制剂中的），或者含有不同种类的蛋白水解活性的复杂酶制剂一起温育来进行。在本实施例中，对三种商业酶制剂测试它们的多种蛋白水解活性。用 FLavourzyme100OL Batch HPN00218 (Novozymes), Sumizyme FP (Shin Nihon, Japan) 和 Corolase LAP Ch. 1023 (AB Enzymes,UK)。已知 Flavourzyme 和 Sumizyme FP 是除了非特异性内切蛋白酶水解活性和羧基肽解活性之外还含有多种氨基肽酶活性的复杂酶制剂。Corolase LAP 代表相对纯的，克隆的并且过量表达的有氨基酸氨基肽酶活性，其来自 Aspergillus。

[0182] 基本上纯试剂：在所用的温育条件下污染性内切蛋白酶和污染性羧基肽酶或污染性氨基肽酶的活性最小或者优选不存在。下述试验程序被用于定量此类污染性内切蛋白酶、氨基肽酶和羧基肽酶活性。

[0183] 该实验流程的基线是通过数种选择性发色反应的集合形成的。因为脯氨酸特异性寡和内切蛋白酶能从肽 Z-AAP-pNA 释放出 pNA，因此该特殊的抗被用于对想要的脯氨酸特
异数内切蛋白水解活性和定。因为很多外切蛋白酶能从 Z-AAAF-pNA 和 Z-AAAR-pNA 释
放 pNA，因此这两种肽被用于对污染性的、非酶氨酸特异性内切蛋白水解活性加以定位。因
为存在于 β-酮酰胺分子中的肽 QNIP 和 VVPP 向 IPP 和 VPP 的转化分别需要能高效除去
Gln 和 Val 残基的氨基肽酶，因此肽 Q-pNA 和 V-pNA 被用于对到样的氨基肽酶活性加以定
位。因为很多羧基肽酶能从肽释放 Phe 和 Arg 残基，因此含有这些残基的肽被选用来对污
染性羧基肽酶活性加以测定。但是，对于测量羧基肽酶而言没有合适的发色基团，从而不得
不开发出使用合成肽 Z-AR 和 Z-AR 的替代方法。该替代方法下文要提供。在所有这些合成肽
中，“Z”代表卡氯替基，“pNA”代表发色团对硝基苯胺。所有发色肽都从 Pepscan(Lelystad,
The Netherlands) 获得。肽 Z-AR 和 Z-AR 购自 Bachem (Switzerland)。所有温育都在 40℃
进行。稀释的酯制剂被重新计算为商业产品的浓度。

【0184】测量氨基肽酶活性

【0185】将 100% DMSO 中的 150mmol/l V-pNA 和 Q-pNA 肽液在 0.1M BisTris 缓冲液 (pH6)
中稀释 80 倍，制作成 1:1 的比例含有 V-pNA 和 Q-pNA 的 3.75mmol/l V-pNA+Q-pNA 底物溶液。
将该氨基肽酶底物溶液按 200 μl 一份移取入微滴定板 (MTP) 的各个孔中。预先在 40℃
于 Tecan Genios MTP (Salzburg, Vienna) 中温育 MTP, 在 Magellan 软件下运行。通过加入
50 μl 合适的酶溶液来起始反应，使得温育在 3mM 的底物浓度下发生。典型地，使用 1:50 稀
释的液体酶样品 Flavourzyme, Corolase LAP 和脯氨酸特异性内切蛋白酶。对于的 Sumizyme
FP 产品，使用 1% 溶液。

【0186】通过 Tecan Genios MTP 在 405nm 处对黄颜色加以测量，这是作为对氨基酸 pNA
键进行切割的结果发展的，接着进行至少 20 个动力学循环（大约 10 分钟）。该软件产生作为
OD405/ 分钟获得的数据。

【0187】测量脯氨酸特异性酶活性

【0188】该测量基本与氨基肽酶试验一样来进行，但是在该试验中，Z-AAAAF-pNA 被用作为
唯一底物，其终浓度为 3mmol/l。通过将 pH6 缓冲液中的悬浮液加热至 50-55℃来溶解该底
物，得到室温下清澈的溶液。测量在 40℃进行。

【0189】典型地，使用 1:50 稀释的液体酶样品 Flavourzyme, Corolase LAP, Sumizyme FP
以 1% 溶液来使用。典型地，脯氨酸特异性内切蛋白酶以 1:5000 稀释来使用。

【0190】软件产生以 OD405/ 分钟表示的数据。

【0191】测量污染性非脯氨酸特异性内切蛋白酶活性

【0192】该测量也按照与对氨基肽酶试验的描述基本一样的方式来进行，但是，在该检
验中，1:1 比例以及 3mol/l 终浓度的 Z-AAAAF-pNA 和 Z-AAAR-pNA 被用作为底物。底物
Z-AAAAP-pNA 在所用的 pH6.0 的检验条件下极少可溶，但是具有枯草杆菌蛋白酶的检验温育
却能使得底物迅速溶解，伴随 pNA 释放。测量在 40℃进行。但是，为了弥补该弱的可溶性，
对 MTP 读数器加以程序调整，使其在动力学循环之间摇动。

【0193】软件仍产生以 OD405/ 分钟表示的数据。

【0194】测量污染性非脯氨酸肽酶活性

【0195】因为不可获得敏感的发色肽用于测量羧基肽酶活性，因此使用基于 Boehringer
方案的方法，来对羧基肽酶 C 加以定量。

【0196】将乙醇中的 150mmol/l Z-A-F 和 Z-A-R 的两种贮液在 0.1M Bis Tris 缓冲液 (pH6)
中稀释 80 倍，制作以 1:1 的比例含有 Z-A-F 和 Z-A-R 的 3.75mmol/l Z-A-F+Z-A-R 底物溶液。然后取 200 μl 底物溶液，移入 eppendorf 管，在 40℃预先温育。通过加入 50 μl 合适的酶稀释液来起始反应。典型地，对于 Flavourzyme 和 Corolase LAP 和脯氨酸特异性内切蛋白酶，使用 1:50 的稀释液。对 Sumizym FP，使用 1% 的溶液。5 分钟之后，通过加入 250 μl 辛三酮（ninyhydrine）试剂来终止反应。辛三酮试剂由溶解于 15ml DMSO 中的 60mg 还原辛三酮（hydrindantin）和 400mg 辛三酮（Merck）制成，向其中加入 5ml 4.0mol/l 的乙酸钾缓冲液 (pH5.2)。4.0mol/l 的乙酸钾缓冲液是通过溶解 LiOH (Sigma) 之后用冰醋酸（Merck）将溶液 pH 调节至 pH5.2 来制得的。[0197] 终止反应之后，在 95℃对每份样品加热 15 分钟，以促进颜色形成，随后用纯的乙醇稀释 10 倍。在 Uvikon 分光光度计中于 578nm 对形成的颜色加以测量。以与活性样品同样的方式制作空白对照，但是辛三酮试剂和酶的加入被颠倒进行。为对羧基肽酶活性产生的游离氨基酸加以定量，氨基酸 L- 苯丙氨酸被用于产生校正曲线。以与样品同样的方式，即，小管中 250 μl，对在缓冲液 (pH6) 中含有 0.1875、0.375、0.75、1.5 和 3.0mol/l/L- 苯丙氨酸 (Sigma) 的溶液进行处理。从获得的 OD578 值，在 Excel 中构建曲线。使用该曲线来计算含有 Z-A-F 和 Z-A-R 底物的样品中存在的游离氨基酸的浓度。从获得的值，可以计算出羧基肽酶活性，按微摩尔每分钟每份检验的酶的量计。[0198] 计算活性比

[0199] 为建立用于本发明方法的多种酶制剂的适宜性，对相关酶活性的系数 (quotient) 加以计算。在基于 MTP 读数器的试验中，通过 pNA 随时间的释放来表征酶活性，即按 ΔOD/ 分钟计。通过 MTP 读数器获得的酶活力的系数是通过简单地除以针对同样数量的酶获得的 ΔOD/ 分钟值来计算的。

[0200] 但是，在羧基肽酶试验的情况下，产生的 OD 不能直接与基于 MTP/pNA 的试验产生的 ΔOD/ 分钟加以比较。此时首先将测得的 OD 转化为每分钟释放的 μmol 氨基酸 (μmol/ 分钟)。然后将释放的 pNA 的 ΔOD/ 分钟转化为 μmol/ 分钟。为达到此目的，将测得的 OD 转化为 L- 苯丙氨酸 (Sigma) 稀释为 0.25、0.125、0.0625 和 0.0312 和 0.015 mmol/l/L- 苯丙氨酸 (Sigma) 的溶液进行处理。在 Excel 中由获得的数据构建校正曲线。从该校正曲线将 ΔOD/ 分钟转化为 μmol/ 分钟，使得基于 pNA 的测量可与基于辛三酮的测量相比较。

[0201] 在上述试验中产生的数据的基础上，对所用的多种酶制剂进行分析。提供的每种酶制剂中存在的脯氨酸特异性寡蛋白水解活性或脯氨酸特异性内切蛋白水解活性数据表示于表 1“脯氨酸特异性活性”一栏中。对于想要的氨基肽酶活性 (AP/Trol Spec Act) 和脯氨酸羧基肽酶 (Endo/Trol Spec Act) 的数据的等同于脯氨酸特异性活性之比来显示。在每种酶制剂中存在的想要的氨基肽酶的相对于脯氨酸羧基肽酶的活性以 (AP/CPI) 显示。

[0202] 明显地，检验的商业酶制剂没有哪种含有任何显著的脯氨酸特异性寡蛋白水解或脯氨酸特异性内切蛋白水解活性。此外，检验的所有商业酶制剂都含污染性羧基肽酶和内切蛋白水解活性。酶组合 Cl 由将应用于存在的每克蛋白质性底物上的 4 个单位的脯氨酸特异性内切蛋白酶加 130 微升的商业 Corolase LAP 构成，其产生高产率 ACE 抑制性 IPP、VPP 和 LPP 蛋白，其凭借其非常低水平的污染性羧基肽酶和内切蛋白水解活性凸显出来。

[0203] 表 1:
<table>
<thead>
<tr>
<th></th>
<th>腺嘌呤核苷酸特异性活性 (Prol Spec Activity*)</th>
<th>CPD/Prol Spec act</th>
<th>AP/Prol spec act</th>
<th>Endo/Prol spec act</th>
<th>AP/CPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumizyme</td>
<td>0.004</td>
<td>21.7</td>
<td>1.2</td>
<td>1.7</td>
<td>0.06</td>
</tr>
<tr>
<td>Flavourzyme</td>
<td>0.0007</td>
<td>253.5</td>
<td>25.6</td>
<td>35.5</td>
<td>0.10</td>
</tr>
<tr>
<td>Corolase LAP</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>A. niger 腺嘌呤核苷酸特异性</td>
<td>100</td>
<td></td>
<td>0.005</td>
<td>0.000001</td>
<td>0.000004</td>
</tr>
<tr>
<td>C1</td>
<td>75</td>
<td>0.001</td>
<td>0.00031</td>
<td>0.000391</td>
<td>0.25</td>
</tr>
</tbody>
</table>

[0205] "Sumizyme" 是在 1% 溶液中测量的，Flavourzyme 和 Corolase 作为 1:50 的稀释液测量。从 *A. niger* 获得的腺嘌呤核苷酸特异性活性作为 1:5000 稀释液，C1 作为 1:3773 的稀释液来测量。然后将数据计算为提供的产品中存在的活性。

[0206] 基于其高含量的氨基肽酶或腺基肽酶活性，用 GMP 与复合酶混合物 Sumizyme FP 和 Flavourzyme 温育消化液可产生高水平的游离氨基酸。这些游离氨基酸预期可带来异味，这是增加的 Maillard 反应的结果。此外，这些酶制剂中存在的非核苷酸或非腺苷酸特异性内切蛋白水解活性将导致终产物中额外的且可能具有生物活性的肽的溶解，由此对 IPP 的纯的血压降低作用造成干扰。为使得所有这些不想要的副反应最小化，基本上纯的腺嘌呤核苷酸特异性蛋白酶与基本上纯的氨基肽酶的组合是优选的。进一步优选的是仅使用基本上纯的腺嘌呤核苷酸特异性内切蛋白酶。

[0207] 实施例 6 从酪蛋白酸盐分离 GMP 和 IPP

[0208] 从奶酪乳清获得可商购的 GMP。在该过程中，将奶与凝乳酶温育，以从 α-酪蛋白释放出水可溶的 GMP 部分。由此，酪蛋白酸盐沉淀，形成凝乳，从可商购的酪蛋白酸盐进行分离。该途径的优点在于，在选择性移除 GMP 后，剩下的酪蛋白酸盐分级可用于其它应用。根据本发明，按照本领域已知的方法，对（脱脂）奶进行酸化，以选择性沉淀酪蛋白级分。沉淀的级分包括所有酪蛋白，即，a、b、κ（包括 GMP 部分）和 γ-酪蛋白。从“甜乳清”级分分离形成的这种酪蛋白凝乳，对其进行洗涤，以除去残余的乳清组分和酸化过程产生的离子。脱水之后，通过中和使得酪蛋白凝乳重新溶解，例如，使用 KOH 进行中和，以产生相关的“酪蛋白酸盐”。

[0209] 在 31 摄氏度下，将 10% (w/v) 的酪蛋白酸钾溶液（大约 pH6.4）与牛凝乳酶温育 1 小时，以从 κ-酪蛋白释放出 GMP 部分。在该情况下，使用每克酪蛋白酸盐 2.2IMCU 的 Maxiren（DSM Food Specialities，Delft，The Netherlands）。对得到的溶液进行一个或多个过滤步骤，以将溶解的、低分子量 GMP 部分与含有酪蛋白和凝乳酶的大分子量级分分开。将含有 GMP 的透析物酸化至 pH4.5，加入浓度为相对每克存在的蛋白质而言 4 个单位的从
A. niger 获得的脯氨酸特异性内切蛋白酶。温度增加至 55 摄氏度，以使得酶活性最大化，温度进行 3 小时。然后通过蒸发浓缩得到的溶液，加热至 95 摄氏度 5 分钟，以使得脯氨酸特异性内切蛋白酶失活。最后，对加热的浓缩物进行超滤，以除去尽可能多的沉淀蛋白质，并进行喷雾干燥。根据对经喷雾干燥的材料进行的 LC/MS/MS 分析，将 IPP 浓度定量为每克酪蛋白酸盐起始材料 0.6 毫克 IPP。

[0210] 实施例 7 在单个温育步骤中从 GMP 释放 IPP

[0211] 进行一系列温育，展示出，来自 A. niger 的脯氨酸特异性内切蛋白酶与 Sumizyme FP 能够用于从 GMP 释放血压降低多肽 IPP。在该实验中，使用可商购的 GMP 制剂（Lacprodan CGMP-10, lot#P340205，来自 Arla, Denmark）。根据本文，获得的粉末含有大约 85% 的 GMP 含量为约 80%（存在的蛋白质的 80%）的蛋白，即，1 克 Lacprodan CGMP-10 粉末含有大约 0.85×0.8 = 0.7 克纯的 GMP。

[0212] 将 GMP 溶解于去矿物质水中（50 克 GMP，在 450ml 水中）。该溶液的 pH 是 6.7。取 135ml 该溶液，用 4N HCl 调节至 pH4，加入额外的水，使得达到 150ml 的体积以及 10% 固体的 GMP 浓度。取 45ml pH6.7 的溶液，用 4N HCl 调节至 pH6，取 90ml，用 4N KOH 调节至 pH8。向两种溶液中加入额外的水，也达到 GMP 固体浓度为 10%。用脯氨酸特异性内切蛋白酶进行的温育在 pH4.0 进行，因为 pH4 是该酶的最优 pH。因为 Sumizyme FP 由多种内切蛋白酶、氨肽酶和羧肽酶（都具有各自的 pH 最优值），因此该温育在不同的 pH 条件下进行。

[0213] 将三种溶液调节至不同的 pH 值，按照下表所示进行与多种酶的温育。使用浓度为 0.4U/ml（大约 4.2U/克蛋白）的脯氨酸特异性内切蛋白酶，和终浓度为 1mg/ml（大约 10.4mg/克蛋白）的 Sumizyme FP。所有温育都在 50ml Greiner 锥形瓶中于设定为 40℃ 的水浴中在温和搅拌下进行 6 小时。温育之后，将样品都保持为 -20℃ 冷冻状态，直到进行 LC/MS/MS 分析。后一分析中获得的数据示于下表中，使用 IPP、VPP 和 LPP 参考溶液来进行测量。

[0214] 表 2 用 MaxiPro 和 Sumizyme FP 对 GMP 溶液进行的温育

<table>
<thead>
<tr>
<th>温育编号</th>
<th>10% GMP 溶液的 Mls</th>
<th>10 个单位/ml 脯氨酸特异性酶溶液的 Mls</th>
<th>25mg/ml Sumizyme FP 溶液的 Mls</th>
<th>温育混合物的 pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>-</td>
<td>6.7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>-</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

[0216] 表 3 对多种 GMP 溶液进行酶温育的肽产量

[0217]
说 明 书

<table>
<thead>
<tr>
<th>号</th>
<th>IPP</th>
<th>VPP</th>
<th>LPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>微克/ml</td>
<td>微克/克</td>
<td>微克/ml</td>
</tr>
<tr>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>2</td>
<td>1657</td>
<td>2367</td>
<td>nd</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>389</td>
<td>556</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>570</td>
<td>814</td>
<td>44</td>
</tr>
</tbody>
</table>

[0218] 微克/ml = 每ml110% GMP溶液的相应肽的微克数
[0219] 微克/克 = 每克GMP蛋白的相应肽的微克数
[0220] nd = 检测不到
[0221] 从获得的结果可以清楚看出，与纯的脯氨酸特异性内切蛋白酶的温育产生了含有IPP的产物，而不含肽VPP和LPP。该未优化温育中释放的IPP的量代表了存在于GMP中的IPP部分的大约50%。
[0222] 最重要地，用复杂Sumizyme FP酶进行的温育也导致从GMP形成IPP。根据我们的数据，在pH8的条件下效率最高。用Sumizyme FP时IPP的产量低于用脯氨酸特异性内切蛋白酶进行温育时的情况，这一事实仅仅反映了该实验中Sumizyme FP酶剂量不够的状况。相当令人吃惊的是，Sumizyme FP不仅从Sacprodan材料产生IPP，而且还产生VPP和LPP。因为仅在β-酪蛋白氨基酸序列中存在VPP和LPP，所以它们的存在清楚表明了下述事实：获得的GMP材料中已含有β-酪蛋白。
[0223] 实施例8
[0224] 为展示从GMP获得的含IPP的水解产物的感官益处，进行了品尝实验。在该实验中，将三种不同的底物，即GMP、酪蛋白酸钠和脱脂奶与来自A.niger的脯氨酸特异性内切蛋白酶一起温育。使用该纯的酶，仅存在于k酪蛋白中的IPP可被切割（见WO2006/005757）。全部三种温育都含有同样的蛋白质浓度——3.5%（w/w）蛋白质，也都含有同样量的酶，即4个单位/克蛋白。为防止酪蛋白沉淀，将溶液的pH调节至6.2。进行3小时的温育，然后通过短暂加热处理来终止温育。
[0225] 在所有三种水解产物中都存在显著的沉淀。离心以除去这些沉淀之后，通过由5人构成的受过培训的小组来品尝清澈的（含有IPP的）上清液。用硫酸奎宁溶液对小组成员进行了训练，溶液为下述浓度：15mg/L硫酸奎宁＞苦味强度＝1,20mg/L硫酸奎宁＞苦味强度＝2,30mg/L硫酸奎宁＞苦味强度＝3,50mg/L硫酸奎宁＞苦味强度＝4。该小组对每份水解产物的苦味进行评分，从0（无苦味）至4（非常苦）。在品尝之前给予组员15mg/L的硫酸奎宁参考样品，其被定为苦味强度值＝1。酪蛋白水解产物在品尝小组的所有成员都评价为非常苦，即4。脱脂乳水解产物也被小组的所有成员评分3。在品尝GMP水解产物时，小组成员都给了1的分数。考虑到GMP水解产物预期还产生最高浓度的IPP，根据本发明的方法的惊人优点得以清楚呈现。
[0226] 实施例9通过发酵从GMP释放IPP
[0227] US6,428,812中已描述了从发酵培养液回收ACE抑制肽期间遇到的多种加工困难
以及经发酵奶制品的不良口感。在本实施例中，我们展示出：GMP 分子是适合通过发酵生产 IPP 的合适底物。

在该研究中使用了两种乳酸细菌菌株，Lactobacillus acidophilus **LAFTI® L10** 以及 Lactobacillus casei **LAFTI® L26** (DSM Food Specialties, Australia)。两种菌株都在厌氧罐中，于 CO₂+N₂ 气氛下 (AnaeroGen™, Oxoid) 下于 37°C 在 MRS 培养基 (Oxoid) 中培养 24 小时。然后将得到的预培养物接种进发酵培养基“a”或发酵培养基“ay”。发酵培养基“a”含有 Tween80 (1mg/l)、K₂HPO₄ (2g/l)、NaAc (3g/l)、柠檬酸三钠 (2g/l)、MgSO₄·7H₂O (0.2g/l)、MnSO₄·4H₂O (0.05g/l)、葡萄糖 (20g/l)、GMP (Lacprodan, Arla) 22g/l 发酵培养基 ay 还含有酵母提取物 (4.0g/l)。在上文所述的条件下对新接种的发酵培养基“a”和“ay”再温育 24 小时。之后，离心这些发酵培养基，通过 LC/MS 针对三肽 IPP、LPP 和 VPP 的存在对上清液加以分析。如表 4 所示，仅在与菌株 L10 的温育时，可探测到 0.3mg/L 水平的 IPP 的存在。LPP 和 VPP 不存在。对样品 1 和 5 的品尝没有揭示显著异味。

[0229] 表 4：通过发酵从 GMP 释放 IPP

<table>
<thead>
<tr>
<th>管</th>
<th>发酵培养基</th>
<th>菌株</th>
<th>IPP 生产</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>L10</td>
<td>有</td>
</tr>
<tr>
<td>2</td>
<td>ay</td>
<td>L10</td>
<td>有</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>L26</td>
<td>没有探测到</td>
</tr>
<tr>
<td>4</td>
<td>ay</td>
<td>L26</td>
<td>没有探测到</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>没有接种体，作为对照</td>
<td>没有探测到</td>
</tr>
</tbody>
</table>

31
图 1

图 2
图 3