wO 2009/064720 A2 |10 0 OO O I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

fﬂﬁ A0 OO0

(10) International Publication Number

WO 2009/064720 A2

(72) Inventors; and

(75) Inventors/Applicants (for US only): SURESH, Suma
[IN/US]; 2985 Warburton Avenue, Santa Clara, CA 95051
(US). MARINOY, Borislav [BG/US]; 12 Mayflower
Street, Aliso Viejo, CA 92656 (US). MAKKAR, Chitra
[IN/US]; 3166 Rodney Common, Freemont, CA 94538
(US). COIMBATORE, Saravanan [CA/US]; 818 W.
Remington Drive, Sunnyvale, CA 94087 (US). VOGEL,
Ron, S. [US/US]; 1563 Chihong Drive, San Jose, CA
95131 (US). MARINKOVIC, Vladan, Z. [RS/US];
21061 Dumetz Road, Woodland Hills, CA 91364 (US).

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 May 2009 (22.05.2009)

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2008/083117

(22) International Filing Date:
11 November 2008 (11.11.2008)

English
English

(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

60/987,206 12 November 2007 (12.11.2007) US WONG, Thomas, K. [US/US]; 1118 Mataro Ct, Pleasan-
60/988,306 15 November 2007 (15.11.2007) US ton, CA 94566 (US).

60/988,269 15 November 2007 (15.11.2007) US .

60/987,181 12 November 2007 (12.11.2007) US (74) Agents: MURPHY, Timothy, M. et al.; Bromberg & Sun-
60/987,197 12 November 2007 (12.11.2007) US stein LLP, 125 Summer Street, Boston, MA 02110-1618
60/987,174 12 November 2007 (12.11.2007) US (US).

60/987,194 12 November 2007 (12.11.2007) US (81) Designated States (unless otherwise indicated, for every

(71) Applicant (for all designated States except US): ATTUNE
SYSTEMS, INC. [US/US]; 3255 Scott Boulevard Build-
ing 2, Santa Clara, CA 94054 (US).

kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW,BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,

[Continued on next page]

(54) Title: LOAD SHARING, FILE MIGRATION, NETWORK CONFIGURATION, AND FILE DEDUPLICATION USING
FILE VIRTUALIZATION

(57) Abstract: File virtualization is used to provide

== =~ Cluster View ——— for load sharing, file migration, network configura-
|
I S | er | tion, and file deduplication in storage networks.

T [client view] |
WClusterShare:]
- I
Client [] \ DFSRaot on |
Local File System |
I
I

|

|

|

|

|

|

|

: A DFS Link poining |
| o INodeTiSharea |
| |
| | & DFS Link painting |
| to WNodeT\Share\d |
| |
|

|

|

|

DFS Link pointing |
to Wodez\Share'C |

|
Node2

DFS Link pointing |\
o \iNode3\Shere'D I\
\
WNode\Share

T

Root on Local \
File System

— ¢

Cluster —

Node1
WNodeT\Share

Node3
WNode3\Shars

Root on Local
Fils System

Root on Lacal
File Systam

[~ A Folder on Local File
System
N
A Folder on Local File
System
Virtual Folder pointing
to WHode2\Shars\C
Virtual Folder painting
fo WNode3\ShareiD

Virtual Folder painting
to WNodeT\Shars\A

Virtual Folder pointing
to WNode1\Shars\B

Falder on Local File
System

Folder on Local File
D
System

FIG. A-11

Virtual Folder painting
to WNode\Shareia,
Virlual Folder painting
fa WNodeZShare\C
Virtual Folder pointing
to WNodeiShars\D

Virtuel Folder pointing
toWNodeT\Shars\s

WO 2009/064720 A2 |00 00 0RO 100 00 000 0 0 O

EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
IL,IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, 17, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
7ZW.
Published:
(84) Designated States (unless otherwise indicated, for every —— without international search report and to be republished

kind of regional protection available): ARIPO (BW, GH, upon receipt of that report

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

LOAD SHARING, FILE MIGRATION, NETWORK CONFIGURATION,
AND FILE DEDUPLICATION USING FILE VIRTUALIZATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This PCT application claims priority from the following U.S. Provisional Patent
Applications:

U.S. Provisional Patent Application No. 60/987,174 entitled LOAD SHARING
CLUSTER FILE SYSTEM filed November 12, 2007 (Attorney Docket No. 3193/120);

U.S. Provisional Patent Application No. 60/987,197 entitled HOTSPOT
MITIGATION IN LOAD SHARING CLUSTER FILE SYSTEMS filed November
12,2007 (Attorney Docket No. 3193/122);

United States Provisional Patent Application No. 60/987,206 entitled NON-
DISRUPTIVE FILE MIGRATION filed November 12, 2007 (Attorney Docket No.
3193/121);

United States Provisional Patent Application No. 60/987,194 entitled ON
DEMAND FILE VIRTUALIZATION FOR SERVER CONFIGURATION
MANAGEMENT WITH LIMITED INTERRUPTION filed November 12, 2007
(Attorney Docket No. 3193/123);

United States Provisional Patent Application No. 60/987,181 entitled FILE
DEDUPLICATION USING STORAGE TIERS filed November 12, 2007 (Attorney
Docket No. 3193/124);,

U.S. Provisional Patent Application No. 60/988,269 entitled FILE
DEDUPLICATION USING COPY-ON-WRITE STORAGE TIERS filed on
November 15, 2007 (Attorney Docket No. 3193/125); and

U.S. Provisional Patent Application No. 60/988,306 entitled FILE
DEDUPLICATION USING A VIRTUAL COPY-ON-WRITE STORAGE TIER
filed on November 15, 2007 (Attorney Docket No. 3193/126).

This patent application also may be related to one or more of the following patent

applications:

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

United States Provisional Patent Application No. 60/923,765 entitled
NETWORK FILE MANAGEMENT SYSTEMS, APPARATUS, AND METHODS
filed on April 16, 2007 (Attorney Docket No. 3193/114).

United States Provisional Patent Application No. 60/940,104 entitled REMOTE
FILE VIRTUALIZATION filed on May 25, 2007 (Attorney Docket No. 3193/116).

United States Provisional Patent Application No. 60/987,161 entitled REMOTE
FILE VIRTUALIZATION METADATA MIRRORING filed November 12, 2007
(Attorney Docket No. 3193/117).

United States Provisional Patent Application No. 60/987,165 entitled REMOTE
FILE VIRTUALIZATION DATA MIRRORING filed November 12, 2007 (Attorney
Docket No. 3193/118).

United States Provisional Patent Application No. 60/987,170 entitled REMOTE
FILE VIRTUALIZATION WITH NO EDGE SERVERS filed November 12, 2007
(Attorney Docket No. 3193/119).

United States Patent Application No. 12/104,197 entitled FILE
AGGREGATION IN A SWITCHED FILE SYSTEM filed April 16, 2008 (Attorney
Docket No. 3193/129).

United States Patent Application No. 12/103,989 entitled FILE
AGGREGATION IN A SWITCHED FILE SYSTEM filed April 16, 2008 (Attorney
Docket No. 3193/130).

United States Patent Application No. 12/126,129 entitled REMOTE FILE
VIRTUALIZATION IN A SWITCHED FILE SYSTEM filed May 23, 2008
(Attorney Docket No. 3193/131).

All of the above-referenced patent applications are hereby incorporated herein by

reference in their entireties.

FIELD OF THE INVENTION

The inventions described herein relate generally to storage networks and, more
particularly, to load sharing, file migration, network configuration, and file deduplication

using file virtualization in storage networks.

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

BACKGROUND

In a “load balancing” cluster file system, different nodes in the cluster access the
same portion or the entirety of the shared file system. Clients of the file system are either
randomly connected to a node, or a group of clients are designated to connect to a
specific node. Each node may receive a different load of client requests for file services.
If a node is experiencing more requests than other nodes, the node may forward the
request to a node with a lower load. Ideally, each node should get similar number of file
requests from clients.

Because any node participating in the cluster can contain the authoritative state on
any given file system object, every node can be a synchronization point for a file. Since
two or more nodes may access the same file at the same time, complex distributed
concurrency algorithms are needed to resolve any access conflict. These algorithms are
hard to write and take years to become fully reliable to function properly in a production
environment.

The GPFS file system developed by IBM is an example of a Load Balancing
Cluster File System.

In a “load sharing” cluster file system, cach cluster node is responsible for serving
one or more non-overlapping portions of the cluster file system namespace. If a node
receives client requests for data outside the scope of the namespace it is serving, it may
forward the request to the node that does service the requested region of the namespace.

Since the server nodes do not share overlapped regions of the file system, only a
single server will contain the authoritative state of the portion of the file system it serves,
a single synchronization point exists. This removes the need for implementing complex
distributed concurrency algorithms.

Load sharing cluster file systems genecrally provide such things as:

1) High Availability and Redundancy: Because the file system is configured
within a cluster, cluster protection and availability are extended to the file system.

2) Reduced complexity: Since cach node has exclusive ownership of the
filesystem it servers, implementing a load sharing cluster filesystem becomes much

simpler compared to a load balancing cluster file system where complex concurrency

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

algorithms are needed for arbitration of shared access by each node to the complete file
system.

3) Increased Performance and Capacity: With the partitioning of the filesystem,
additional nodes can contribute to the serving of the filesystem thus allowing higher total
cluster capacity to serve the clients as well as improved performance under high load.
Ability to partition namespace based on need: Allows end users to hicrarchically structure
data to match the representation of their business needs.

4) Pay as you go horizontal scaling: Namespace partitioning allows capacity and
performance to expanded as there is need and in the areca where the need is greatest,
rather than globally in the cluster.

5) Enable real-time reconfiguration of the namespace: Unlike technologies like
DFS where there is no ability to transparently reconfigure the namespace or contact all
clients using the namespace, Load Sharing Cluster File Systems maintain statefull
information about all connections and are able to provide seamless namespace
reconfiguration via server side File Virtualization technology, solving one of the biggest
deployment hurdles for technologies like DFS.

Since clients do not know how the cluster namespace is partitioned among the
nodes of a cluster file system, the node that exports the entire namespace of the cluster
file system will bear the full burden and will get all of the request traffic for the cluster
file system. That node must then direct each request to the node that is responsible for the
partitioned namespace. This extra hop adds additional latency and introduces a scalability
problem. Furthermore, the workload of a Load Sharing Cluster is distributed among the
nodes based on how the cluster namespace is partitioned. Certain namespaces may
experience more workload than others, creating hotspots in the cluster file system.
However, since only one node, the node that owns the partitioned namespace, is allowed
to service requests for the partitioned namespace that it is responsible for; other nodes
with low workload are not capable of helping nodes that are busy. Finally, reconfiguring
the partitioned namespaces among the node usually involves moving data or metadata
from one node to another and this data movement is very disruptive. Thus, while it is
desirable to provide a load sharing cluster file system, these problems must be resolved

first before a Load Sharing Cluster File System becomes practical.

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Microsoft DFS allows administrators to create a virtual folder consisting of a
group of shared folders located on different servers by transparently connecting them to
one or more DFS namespaces. A DFS namespace is a virtual view of shared folders in an
organization. Each virtual folder in a DFS namespace may be a DFS link that specifies a
file server that is responsible for the namespace identified by the virtual folder, or it may
be another virtual folder containing other DFS links and virtual folders. Under DFS, a file
server that exports shared folders may be a member of many DFS namespaces. Each
server in a DFS namespace is not aware that the file server is a member of a DFS
namespace. In essence, DFS creates a loosely coupled distributed file system consisting
of one or more file servers that operate independently of each other in the namespace.

DFS uses a client-side name resolution scheme to locate the file server that is
destined to process file request for a virtual folder in a DFS namespace. The server that
exports the DFS namespace in a root virtual folder, the DFS root server, will receive all
the name resolution request traffic destined for the virtual folder.

The clients of a DFS namespace will ask the DFS root server who is the target file
server and the shared folder in the file server that corresponds to a DFS virtual folder.
Upon receiving the information, the DFS clients is responsible to redirect file requests to
the target file server and a new path name constructed from the information obtained
from the DFS root server. To reduce the load of the DFS root server, the DFS root server
does not keep track of who are the clients of the exported DFS namespace. To further
reduce the load, clients keep a cache of the association of a virtual folder and its target
server and the actual pathname in the target server. Once the client processes the client-
side resolution and connects to the target file server, the DFS server no longer
participates in the network I/O. Furthermore, if a name is in the client side DFS cache,
the client will not contact the DFS root server again for the same name until the cache is
stale, usually for about 15 minutes. This methodology allows DFS great efficiency and
optimal performance since the client is rapidly connected directly to the target file server.

Due to the client-side nature of the protocol and the fact that a connection is not
maintained from the client to the DFS server, configuration changes in the DFS
namespace cannot be propagated to the clients, especially since DFS does not maintain a
client list. Further complicating the problem, each client also uses a client-side DFS name

cache and it will not obtain the up-to-date file location information from the server unless

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

the cache is stale. Therefore, maintaining configuration inconsistency is a big challenge.
If configuration consistency is not maintained, even for a small duration, may lead to data
corruption. Thus for DFS to become a viable cluster solution, configuration consistency
must be maintained at all time.

Generally speaking, “file virtualization” is a method for a computer node to proxy
client filesystem requests to a secondary storage server that has been virtually represented
in the local portion of the file system namespace as a mounted folder.

A traditional file system manages the storage space by providing a hierarchical
namespace. The hierarchical namespace starts from the root directory, which contains
files and subdirectories. Each directory may also contain files and subdirectories
identifying other files or subdirectories. Data is stored in files. Every file and directory
is identified by a name. The full name of a file or directory is constructed by
concatenating the name of the root directory and the names of each subdirectory that
finally leads to the subdirectory containing the identified file or directory, together with
the name of the file or the directory.

The full name of a file thus carries with it two pieces of information: (1) the
identification of the file and (2) the physical storage location where the file is stored. If
the physical storage location of a file is changed (for example, moved from one partition
mounted on a system to another), the identification of the file changes as well.

For case of management, as well as for a variety of other reasons, the
administrator would like to control the physical storage location of a file. For example,
important files might be stored on expensive, high-performance file servers, while less
important files could be stored on less expensive and less capable file servers.

Unfortunately, moving files from one server to another usually changes the full
name of the files and thus, their identification, as well. This is usually a very disruptive
process, since after the move users may not be able to remember the new location of their
files. Thus, it is desirable to separate the physical storage location of a file from its
identification. With this separation, IT and system administrators will be able to control
the physical storage location of a file while preserving what the user perceives as the
location of the file (and thus its identity).

File virtualization is a technology that separates the full name of a file from its

physical storage location. File virtualization is usually implemented as a hardware

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008
appliance that is located in the data path between users and the file servers. For users, a
file virtualization appliance appears as a file server that exports the namespace of a file
system. From the file servers’ perspective, the file virtualization appliance appears as
just a normal user. Attune System’s Maestro File Manager (MFM) is an example of a
file virtualization appliance. FIG. A-1 is a schematic diagram showing an exemplary
switched file system including a file switch (MFM).
As a result of separating the full name of a file from the file’s physical storage
location, file virtualization provides the following capabilities:
1) Creation of a synthetic namespace
Once a file is virtualized, the full filename does not provide any
information about where the file is actually stored. This leads to the
creation of synthetic directories where the files in a single synthetic
directory may be stored on different file servers. A synthetic namespace
can also be created where the directories in the synthetic namespace may
contain files or directories from a number of different file servers. Thus,
file virtualization allows the creation of a single global namespace from a
number of cooperating file servers. The synthetic namespace is not
restricted to be from one file server, or one file system.
2) Allows having many full filenames to refer to a single file
As a consequence of separating a file’s name from the file’s storage
location, file virtualization also allows multiple full filenames to refer to a
single file. This is important as it allows existing users to use the old
filename while allowing new users to use a new name to access the same
file.
3) Allows having one full name to refer to many files
Another consequence of separating a file’s name from the file’s storage
location is that one filename may refer to many files. Files that are
identified by a single filename need not contain identical contents. If the
files do contain identical contents, then one file is usually designated as
the authoritative copy, while the other copies are called the mirror copies.
Mirror copices increase the availability of the authoritative copy, since even

if the file server containing the authoritative copy of a file is down, one of

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008
the mirror copies may be designated as a new authoritative copy and
normal file access can then resumed. On the other hand, the contents of a
file identified by a single name may change according to the identity of
the user who wants to access the file.

Cluster file systems may be used to meet strong growth of end user unstructured
data needs. Load sharing cluster file system is generally simpler to implement than load
balancing cluster file system. Furthermore, a cluster file system that uses partitioned
namespace to divide workload among the nodes in a cluster is a better match for the
business environment. This is because each organization in a business environment
usually has its own designated namespace. For example, engineering department may
own the namespace /global/engineering, while the marketing department owns
/global/marketing namespace. If engineering needs more resources, engineering
namespace may be further partitioned and more nodes are added for engineering, without
affecting the marketing department.

DFS is good match for a load sharing namespace. Unfortunately, it is hard to
maintain configuration consistency among all clients. It also is not a true cluster and does

not provide protection from failure.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Various embodiments of the present invention relate to load sharing, file
migration, network configuration, and file deduplication using file virtualization in
storage networks. Section A relates to load sharing cluster file systems. Section B
relates to non-disruptive file migration. Section C relates to on demand file virtualization
for server configuration management with limited interruption. Section D relates to file
deduplication using storage tiers. Section E relates to file deduplication using copy-on-

write storage tiers.

SECTION A - LOAD SHARING CLUSTER FILE SYSTEMS

Embodiments of the present invention relate generally to load sharing clusters in
which each node is responsible for one or more non-overlapping subset(s) of the cluster

namespace and will process only those requests that access file or directory objects in the

-8-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

partitioned namespace that the node controls while redirecting requests designated for
other nodes. Specific embodiments of the present invention are based on using DFS in
conjunction with File Virtualization to overcome DFS configuration consistency
deficiency as well as to provide cluster protection and availability. Exemplary
embodiments use DFS to enable clients to communicate directly with the node in the load
sharing cluster that is destined to process the request according to the partitioned
namespace that the request is for. Once the namespace for the node is resolved, DFS is
essentially out of the picture. DFS resolution is essentially used as a hint. If the DFS
configuration is changed and a node receives a request not destined for the node, the node
will forward the request to the correct owner, thus overcoming the DFS configuration
consistency problem.

In accordance with one embodiment of the present invention there is provides a
method for load sharing in an aggregated file system having a cluster of file storage
nodes and a distributed filesystem server (DFS) node, the file storage nodes collectively
maintaining a shared storage including a plurality of non-overlapping portions, cach file
storage node owning at least one of the non-overlapping portions and including for each
non-overlapping portion not owned by the file storage node a file virtualization link
identifying another file storage node for the non-overlapping portion, the DFS node
mapping cach non-overlapping portion to a file storage node. The method involves
generating client requests by a number of client nodes, cach client request identifying a
non-overlapping portion and directed to a specific file storage node based on an access to
the DFS server or information in a client cache; and for each client request received by a
file storage node, servicing the client request by the receiving file storage node if the
receiving file storage node owns the identified non-overlapping portion and otherwise
forwarding the client request by the receiving file storage node to another file storage
node identified using the file virtualization links.

In various alternative embodiments, the method may further involve migrating a
specified non-overlapping portion from a source file storage node to a destination file
server node, for example, due to reconfiguration of the cluster of based on loading of the
source file storage node. Migrating the specified non-overlapping portion may involve
establishing a file virtualization link on the destination file server node, the file

virtualization link identifying the file storage node that owns the non-overlapping

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

portion; updating the cluster resource to map the non-overlapping portion to the
destination file storage node; building metadata for the non-overlapping portion on the
destination file storage node using sparse files such that all file and directory attributes of
the non-overlapping portion are replicated on the destination file storage node without
any data, and during such building, forwarding client requests received for the non-
overlapping portion by the destination file storage node to the file storage node that owns
the non-overlapping portion based on the file virtualization link; after building the
metadata for the non-overlapping portion on the destination file storage, copying data for
the non-overlapping portion from the source file storage node to the destination file
storage node, and during such copying, servicing metadata requests received for the non-
overlapping portion by the destination file storage node using the metadata and
forwarding data requests received for the non-overlapping portion by the destination file
storage node to the file storage node that owns the non-overlapping portion based on the
file virtualization link; and after completion of the copying, designating the destination
file storage node as the owner of the non-overlapping portion and thereafter servicing
client requests received for the non-overlapping portion by the destination file storage
node. The destination file storage node may be an existing file storage node in the cluster
or may be a new file storage node added to the cluster.

In accordance with another embodiment of the present invention there is provided
a method for load sharing by a file storage node in an aggregated file system having a
plurality of file storage nodes and a distributed filesystem server (DFS) node, the file
storage nodes collectively maintaining a shared storage including a plurality of non-
overlapping portions, each file storage node owning at least one of the non-overlapping
portions and including for ecach non-overlapping portion not owned by the file storage
node a file virtualization link identifying another file storage node for the non-
overlapping portion, the DFS node mapping each non-overlapping portion to a file
storage node. The method involves receiving, by the file storage node, a client request
identifying a non-overlapping portion; when the file storage node owns the identified
non-overlapping portion, servicing the client request by the file storage node; and when
the file storage node does not own the identified non-overlapping portion, forwarding the
client request by the file storage node to another file storage node identified using the file

virtualization links

-10-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

In various alternative embodiments, the method may further involve migrating a
specified non-overlapping portion from another file storage node. Migrating the
specified non-overlapping portion may involve maintaining a file virtualization link to
the specified non-overlapping portion on the other file storage node; migrating metadata
for the specified non-overlapping portion from the other file storage node; after migrating
the metadata, migrating data for the specified non-overlapping portion from the other file
storage node; and after migrating the data, breaking the file virtualization link. While
migrating the metadata, the file storage node typically redirects requests for the specified
non-overlapping portion to the other file storage node. While migrating the data, the file
storage node typically services metadata requests for the specified non-overlapping
portion from the migrated metadata and forwards data request for the specified non-
overlapping portion to the other file storage node. After breaking the file virtualization
link, the file storage node typically services requests for the specified non-overlapping
portion from the migrated metadata and data. Migrating may be done for at least one of
load sharing and hotspot mitigation.

In accordance with another embodiment of the present invention there is provided
a file storage node for use in an aggregated filesystem having a plurality of file storage
nodes and a cluster resource, the file storage nodes collectively maintaining a shared
storage including a plurality of non-overlapping portions, each file storage node owning
at least one of the non-overlapping portions and including for each non-overlapping
portion owned by another file storage node a file virtualization link identifying the other
file storage node, the cluster resource including for each non-overlapping portion a link
mapping the non-overlapping portion to a target file storage node. The file storage node
includes a network interface for receiving a client request identifying a non-overlapping
portion; and a processor configured to service the client request if the file storage node
owns the identified non-overlapping portion and to forward the client request to another
file storage node identified using the file virtualization links if the file storage node does
not own the identified non-overlapping portion.

In various alternative embodiments, the processor may be further configured to
migrate a specified non-overlapping portion from another file storage node. Migrating
the specified non-overlapping portion may involve maintaining a file virtualization link

to the specified non-overlapping portion on the other file storage node; migrating

-11-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

s

metadata for the specified non-overlapping portion from the other file storage node; after
migrating the metadata, migrating data for the specified non-overlapping portion from the
other file storage node; and after migrating the data, breaking the file virtualization link.
While migrating the metadata, the file storage node typically redirects requests for the
specified non-overlapping portion to the other file storage node. While migrating the
data, the file storage node typically services metadata requests for the specified non-
overlapping portion from the migrated metadata and forwards data request for the
specified non-overlapping portion to the other file storage node. After breaking the file
virtualization link, the file storage node typically services requests for the specified non-
overlapping portion from the migrated metadata and data. Migrating may be done for at

least one of load sharing and hotspot mitigation.

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying
drawings, in which:

FIG. A-1 is a schematic diagram showing an exemplary switched file system
including a file switch (MFM) as known in the art;

FIG. A-2 is a schematic diagram showing a cluster with shared storage as known
in the art;

FIG. A-3 is a schematic diagram showing a file virtualization based aggregated
file system as known in the art;

FIG. A-4 is a schematic diagram showing a clustered DFS namespace as known
in the art;

FIG. A-5 is a schematic diagram showing a load sharing cluster file system in
accordance with an exemplary embodiment of the present invention;

FIG. A-6 is a schematic diagram showing client interaction with a load sharing
cluster file system in accordance with an exemplary embodiment of the present invention;

FIG. A-7 is a schematic diagram showing direct client access with forwarding of
the request using file virtualization, in accordance with an exemplary embodiment of the

present invention;

-12-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

FIG. A-8 is a schematic diagram showing a situation in which file virtualization is
used to forward requests that are misdirected due to stale cache information, in
accordance with an exemplary embodiment of the present invention;

FIG. A-9 is a schematic diagram showing a load sharing cluster file system in
accordance with another exemplary embodiment of the present invention;

FIG. A-10 is a schematic diagram showing DFS redirection to an available node
in accordance with another exemplary embodiment of the present invention;

FIG. A-11 is a schematic diagram showing client I/O redirection with file
virtualization in accordance with another exemplary embodiment of the present
invention;

FIG. A-12 is a schematic diagram showing metadata migration in accordance with
another exemplary embodiment of the present invention;

FIG. A-13 is a schematic diagram showing data migration in accordance with
another exemplary embodiment of the present invention; and

FIG. A-14 is a schematic diagram showing migration completion in accordance
with another exemplary embodiment of the present invention.

Definitions. As used in this section and the accompanying claims, the following
terms shall have the meanings indicated, unless the context otherwise requires.

A “cluster” is a group of networked computer servers that all work together to
provide high performance services to their client computers.

A “node,” “computer node” or “cluster node” is a server computer system that is
participating in providing cluster services within a cluster.

A “cluster file system” is a distributed file system that is not a single server with a
set of clients, but instead a cluster of servers that all work together to provide high
performance file services to their clients. To the clients, the cluster is transparent - it is
just "the file system", but the file system software deals with distributing requests to
elements of the storage cluster.

An “active-active file system cluster” is a group of network connected computers
in which each computer (node) participates in serving a cluster file system.

Embodiments of the present invention relate generally to load sharing clusters in
which each node is responsible for one or more non-overlapping subset(s) of the cluster

namespace and will process only those requests that access file or directory objects in the

-13-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

partitioned namespace that the node controls while redirecting requests designated for
other nodes. Specific embodiments of the present invention are based on using DFS in
conjunction with File Virtualization to overcome DFS configuration consistency
deficiency as well as to provide cluster protection and availability. Exemplary
embodiments use DFS to enable clients to communicate directly with the node in the load
sharing cluster that is destined to process the request according to the partitioned
namespace that the request is for. Once the namespace for the node is resolved, DFS is
essentially out of the picture. DFS resolution is essentially used as a hint. If the DFS
configuration is changed and a node receives a request not destined for the node, the node
will forward the request to the correct owner, thus overcoming the DFS configuration
consistency problem.

In a standard shared storage cluster system, cach computer node participating in
the cluster is the owner of one or more non-overlapped regions of the shared storage. The
storage is located on a shared bus such that any node in the cluster can access any storage
region, as necded for maintaining cluster file system availability. Each non-overlapped
storage region contains a hierarchical filesystem containing a root and a shared folder.
The folder is shared using the SMB protocol. FIG. A-2 is a schematic diagram showing a
cluster with shared storage.

File Virtualization is used on each cluster node to create a uniform representation
of the aggregated filesystem such that cach local filesystem contains a folder and file
virtualization link to the filesystem of every non-overlapped storage region served by the
remaining nodes. FIG. A-3 is a schematic diagram showing a file virtualization based
aggregated file system.

A DFS Namespace is created as a Cluster Resource and for every region of the
non-overlapped shared storage, a DFS link is created in the DFSRoot. The DFS
namespace is shared using the SMB protocol. FIG. A-4 is a schematic diagram showing
a clustered DFS namespace.

FIG. A-5 is a schematic diagram showing a load sharing cluster file system in
accordance with an exemplary embodiment of the present invention. Here, cach file
server owns one or more non-overlapping portions (e.g., folders) of the aggregated
filesystem and includes file virtualization links to the folders owned by other file servers.

Specifically, Nodel owns folder A and includes file virtualization links to folder B in

- 14 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Node2 and to folder X in NodeX, Node2 owns folder B and includes file virtualization
links for folder A in Nodel and to folder X in NodeX, and Node X owns folder X and
includes file virtualization links to folder A in Nodel and to folder B in Node2.

Note that each node share and the cluster share represent a uniform view of the
cluster file system and that I/O can be satisfied at every entry point of the file system.

FIG. A-6 is a schematic diagram showing client interaction with a load sharing
cluster file system in accordance with an exemplary embodiment of the present invention.
Here, the client first sends an I/O request to the cluster resource (e.g., DFS server)
including a file pathname (\\Cluster\Share\B\file.txt in this example). The cluster
resource maps the file pathname to a file server that owns the file according to its own
view of the aggregated filesystem (which may differ from the views maintained by one or
more of the file servers for various reasons) and responds with a DFS reparse message
that redirects the client to the file server selected by the cluster resource (the file
pathname maps to Node?2 in this example). The client updates its local MUP Cache to
redirect all I/O destined for that particular pathname (i.c., \\Cluster\Share\B) to the
specified location (i.c., \\Node2\Share\B) and then performs I/O directly to
\\Node2\Share\B.

Should the client access the cluster node directly and request I/O to a portion of
the file system that is not locally owned by that node, file virtualization will proxy (i.c.,
forward or redirect) the I/O request to the correct cluster node based on the file
virtualization links maintained by the node. FIG. A-7 is a schematic diagram showing
direct client access with forwarding of the request using file virtualization, in accordance
with an exemplary embodiment of the present invention.

If an administrator alters the location of the stored data and the client has stale
entries in its DFS MUP Cache, file virtualization will perform the necessary I/O proxy on
the server. FIG. A-8 is a schematic diagram showing a situation in which file
virtualization is used to forward requests that are misdirected due to stale cache
information, in accordance with an exemplary embodiment of the present invention.
Here, folder B has been moved to Nodel but the client continues to direct requests for the
folder to Node2 based on its cached information. Node2 proxies the requests to Nodel

using file virtualization.

-15-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Thus, clients consult the DFS node to identify the target file storage node that
owns an unknown file object (e.g., a file object that has never been accessed before by
the client). Once the file object is known to a client, the client sends file accesses to the
file object directly to the identified target file storage node. The client may choose not to
consult the DFS node again to identify the target node of the known file object until the
client deemed it is necessary to consult the DFS node for the known file object again
(e.g., when the cache entry expires). Over time, the information in the DFS node, the
client caches, and/or the file storage nodes may become mismatched. As a result, a client
may send a request to a file storage node (e.g., the node that the client thinks still owns
the file object) that does not own the file object. Therefore, in embodiments of the
present invention, the file storage nodes employ file virtualization techniques to direct
misdirected file requests to the proper file storage node. It should be noted that it is
possible for the view of the global namespace maintained by a particular file storage node
to be incorrect and so one file storage node may misdirect the request to another file
storage node that does not own the file object, but each file storage node will use file
virtualization to forward the request as appropriate.

In a load sharing cluster filesystems of the type described above, each
participating node of the cluster owns exclusive access to a non-overlapped portion of the
shared file system namespace. If a node is experiencing a high number of client requests,
it generally cannot distribute any portion of those requests to other nodes in the cluster.
This may cause hotspots in the files system, where certain portions of the namespace
experience high client request volume. If the high volume of requests causes the node to
reach its performance limits, clients may experience degraded performance.

This hotspot problem may be mitigated, for example, by moving a portion of the
aggregated filesystem from one node to another and/or by repartitioning or dividing the
original namespace that experiences the hotspot problem into one or more smaller, non-
overlapping sub-namespaces. Additional new nodes may be added to the cluster, or
existing under-utilized nodes may be designated to take over the newly created
namespaces. Before the reconfiguration of the namespace is complete, the metadata and
data must be migrated from the old node to the newly created or existing newly

responsible nodes.

-16 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Traditionally, moving data to a new server is very time consuming and disruptive
to the client. During the migration, the data to be migrated is usually taken off-line and
therefore data availability is generally reduced during the migration. Also, clients of the
cluster file system must know the new configuration and the new pathname to the cluster
file system changes, causing difficulties for the client.

Thus, certain embodiments of the present invention use file virtualization and
DFS redirection as discussed above in combination with a non-disruptive server-side data
mirroring/migration technique to permit portions of the aggregated filesystem to be
moved among the nodes. These embodiments generally maintain data availability during
the migration, so clients in general will not be aware of the server side operations. Since
the migration is performed behind the cluster, the path to the data does not change. Thus,
by combining the three technologies, a load sharing cluster file system is created that
supports non-disruptive configuration changes. Furthermore, the clients of this cluster are
able to talk to the correct node that is destined to handle their requests, bypassing most of
the need for server-side namespace switching and concurrency control, resulting in a very
efficient and scalable cluster file system.

As discussed above, in a “load sharing” cluster, each cluster node is responsible
for serving one or more non-overlapping portions of the cluster file system namespace. If
a node receives client requests for data outside the scope of the namespace it is serving, it
may forward the request to the node that does service the requested region of the
namespace.

Each portion of the namespace that a node exclusively serves to clients is an
actual folder in the nodes local file system. Portions of the namespace served by other
nodes will appear as a virtual folder, internally identifying the file server and the full path
name where the virtual folder is located via File Virtualization methods.

For example, in FIG. A-9, node 1 is responsible for the namespace
\Cluster\Share\A, and \\Cluster\Share\B. They appear as real folders \A and \B in node 1
respectively. On the other hand, node 1 is not responsible for the namespaces
\Cluster\Share\C and \\Cluster\Share\D. These namespaces appear as virtual folders \C
and \D on node I respectively. Normally, node 1 only receives requests targeted for \A
and \B. However, if there is an inadvertent request directing at the virtual folder \C or \D,

possibly because of a delay in propagating a namespace configuration changes, the

-17-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

request will be redirected by node 1 to the node that is responsible for \C (node 2) and \D
(node 3) respectively.

Now say, for example, the cluster namespace is to be reconfigured so that node 2
is no longer responsible for the partitioned namespace \\Cluster\Share\D. Instead, node 3
will be the node to take on the additional responsibility of managing \\Cluster\Share\D. In
order for this change to be effective, the local filesystem folder D on Node2 will need to
be migrated to Node3. For the time being, though, Node3 will have a file virtualization
link to the folder on Node2, as shown in FIG. A-10.

In an exemplary embodiment, the first step is to use DFS to redirect client
requests to the target node that will receive the migrated data. Even though Node3 will
use File Virtualization to redirect the data requests to Node2, this will ensure that the
namespace remains available during the migration of the data files later in the process.
This is illustrated in FIG. A-11.

Over time, when the client DFS cache synchronizes with the DFSRoot (typically
around 15 minutes), client I/O requests will all go through Node3 and utilize the server-
side file virtualization link from Node3 to Node2.

The next step is to build metadata in the local file system folder on Node3 using
sparse files such that all file and directory attributes of the original data in Node2 are
replicated in Node3 without any of the data, as illustrated in FIG. A-12. In this process,
the share D on Node2 becomes a “Native with Metadata” Virtualized folder on Node3.
This allows Node3 to start serving all metadata requests from the local metadata, such as
locking, date and time, user authentication etc. Data requests remain proxied to Node2.

Once the complete Metadata is created on Node3, the data can be mirrored from
Node2 to Node3, as illustrated in FIG. A-13.

When Mirror is complete, the mirror between Node2 and Node3 is broken, as
illustrated in FIG. A-14. Migration is now complete, and the client load that was
completely on Node2 is now distributed between Node2 and Node3.

SECTION B — NON-DISRUPTIVE FILE MIGRATION

In a computer network, NAS (Network Attached Storage) file servers provide file

services for clients connected in a computer network using networking protocols like

-18-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

CIFS or any other stateful protocol (e.g., NFS-v4). Usually, when a file, directory, or a
server share is migrated from one server to another, the administrator takes the server
offline, copies the files to the destination server, and finally brings the destination server
online. The larger the amount of data been migrated, the longer the clients must wait for
the migration to complete, which leads to longer server down-time.

In today’s information age of exponentially growing server capacity and clients
spread all over the globe, the amount of down-time an administrator can afford is
constantly shrinking. It becomes almost impossible to migrate files from one server to
another. This forces storage administrators to buy servers with significantly greater
capacity (i.c., overprovision) in order to avoid/delay the need of migrating server data to
a newer, higher capacity model.

A common approach to migrate files is to start migrating files while the source
server is continued to be accessed and gradually copy all files to the destination server.
On the subsequent passes only the newly modified files and directories (since the last
pass) are copied and so on. This process is repeated until all files are migrated to the
destination server. At this point, the source server is taken offline and replaced with the
destination server, thus lowering the amount of time needed to migrate from one server to
another. Although this solution lowers the down time it does not completely solve the
problem with files that are constantly accessed or held open in exclusive mode. For those
files, the user still suffers a visible access interruption and will have to invalidate all of its
open handles and suffer service interruption during the migration of those files.

File Virtualization is a very powerful server management tool that normally is
used for mirroring and load balancing for virtualized systems. Native Volume with
Metadata is the only known way to bring File Virtualization to places where preserving
the user’s native directory structure is a must. Using File mirroring over Native Volume
with Metadata is an excellent way to provide non-disruptive migration for storage
Servers.

In accordance with one aspect of the invention there is provided a method and file
switch for non-disruptive migration of a native mode volume from a source server to a
destination server. Such non-disruptive migration involves converting, by the file switch,
the source native volume to a native with metadata volume using a local file system

managed by the file switch; converting, by the file switch, the native with metadata

-19-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

volume to a mirrored native with metadata volume including the source server and the
destination server, the destination server including a mirror copy of the native with
metadata volume; removing, by the file switch, the source server from the mirrored
native with metadata volume; and converting, by the file switch, the mirror copy of the
native with metadata volume on the destination server to a destination native volume on
the destination server.

In various alternative embodiments, converting the source native volume to the
native with metadata volume may involve for each source directory in the source native
volume, creating a corresponding local directory in the local file system including
metadata associated with the source directory copied from the source native volume; and
for each source file in the source native volume, creating a corresponding local sparse file
in the local file system including file attributes copied from the source native volume but
excluding the file contents associated with the source file. The metadata associated with
the source directory copied from the source native volume may include directory security
descriptors. Creating a local directory for a source directory may involve opening the
source directory in the source native volume; placing a lock on the source directory; and
creating the local directory and its metadata. Converting the native with metadata
volume to the mirrored native with metadata volume may involve for each local
directory, creating a corresponding destination directory in the destination server and
maintaining a mapping of the local directory to a source directory pathname for the
corresponding source directory in the source server and to a destination directory
pathname for the corresponding destination directory in the destination server; and for
cach local file, creating a corresponding destination file in the destination server
including file data copied from the source native volume and maintaining a mapping of
the local file to a source file pathname for the corresponding source file in the source
server and to a destination file pathname for the corresponding destination file in the
destination server. Each mapping may include an indicator of the number of servers
associated with the mirrored native with metadata volume. Removing the source server
from the mirrored native with metadata volume may involve disabling usage of the
source destination pathnames and the source file pathnames. Converting the mirror copy
of the native with metadata volume on the destination server to a destination native

volume may involve replicating state information for the destination directories and the

-20-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

destination files from the source native volume; disabling usage of the local directories
and local files; and advertising the destination directories and destination files as a native
volume. Converting the mirror copy of the native with metadata volume on the
destination server to a destination native volume further may involve deleting unneeded
metadata associated with the mirror copy of the native with metadata volume from the
destination server.

The foregoing and advantages of the invention will be appreciated more fully
from the following further description thereof with reference to the accompanying
drawings wherein:

FIG. B-1 is a schematic block diagram of a two server system demonstrating file
access from multiple clients;

FIG. B-2 is a schematic block diagram of a two server system where one of the
servers is taken off the grid for migration;

FIG. B-3 is a schematic block diagram of a two server system where one of the
servers was replaced by the new server after all files were copied from the old one;

FIG. B-4 depicts the process sequence of server migration with minimal
interruption;

FIG. B-5 depicts the process sequence of non-disruptive server migration;

FIG. B-6 is a practical example of a sample global namespace including the
metadata information and how the global name-space is used to calculate the target path;

FIG. B-7 is a practical example of a sample global namespace including the
metadata information and how the global name-space is used to calculate the target paths;
and

FIG. B-8 is a logic flow diagram for non-disruptive file migration by a file switch
in accordance with an exemplary embodiment of the present invention.

Definitions. As used in this section and related claims, the following terms shall
have the meanings indicated, unless the context otherwise requires:

Aggregator. An "aggregator" is a file switch that performs the function of
directory, data, or namespace aggregation of a client data file over a file array.

File Switch. A "file switch" is a device (or group of devices) that performs file
aggregation, transaction aggregation, and directory aggregation functions, and is

physically or logically positioned between a client and a set of file servers. To client

-21-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

devices, the file switch appears to be a file server having enormous storage capabilitics
and high throughput. To the file servers, the file switch appears to be a client. The file
switch directs the storage of individual user files over multiple file servers, using
mirroring to improve fault tolerance as well as throughput. The aggregation functions of
the file switch are done in a manner that is transparent to client devices. The file switch
preferably communicates with the clients and with the file servers using standard file
protocols, such as CIFS or NFS. The file switch preferably provides full virtualization of
the file system such that data can be moved without changing path names and preferably
also allows expansion/contraction/replacement without affecting clients or changing
pathnames. Attune System’s Maestro File Manager (MFM), which is represented in FIG.
B-5, is an example of a file switch.

Switched File System. A "switched file system" is defined as a network including
one or more file switches and one or more file servers. The switched file system is a file
system since it exposes files as a method for sharing disk storage. The switched file
system is a network file system, since it provides network file system services through a
network file protocol--the file switches act as network file servers and the group of file
switches may appear to the client computers as a single file server.

Native File System. A “native file system” is defined as the native file system
exposed by the back-end servers.

Native mode. A “native mode” of operation is a mode of operation where the
backend file system is exposed to the clients through the file switch such that the file
switch completely preserves the directory structure and other metadata of the back end
server. Each file server (share) represents a single mount point in the global namespace
exposed by the file switch.

File. A file is the main component of a file system. A file is a collection of
information that is used by a computer. There are many different types of files that are
used for many different purposes, mostly for storing vast amounts of data (i.e., database
files, music files, MPEGs, videos). There are also types of files that contain applications
and programs used by computer operators as well as specific file formats used by
different applications. Files range in size from a few bytes to many gigabytes and may
contain any type of data. Formally, a file is a called a stream of bytes (or a data stream)

residing on a file system. A file is always referred to by its name within a file system.

_22.

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

User File. A "user file" is the file or file object that a client computer works with
(e.g., read, write, etc.), and in some contexts may also be referred to as an "aggregated
file." A user file may be mirrored and stored in multiple file servers and/or data files
within a switched file system.

File/Directory Metadata. A “file/directory metadata," also referred to as the "the
metadata,” is a data structure that contains information about the position of a specific file
or directory including, but not limited to, the position and placement of the file/directory
mirrors and their rank. In embodiments of the present invention, ordinary clients are
typically not permitted to directly read or write the content of “the metadata”, the clients
still have indirect access to ordinary directory information and other metadata, such as
file layout information, file length, etc.. In fact, in embodiments of the invention, the
existence of “the metadata” is transparent to the clients, who need not have any
knowledge of “the metadata” and its storage.

Mirror. A "mirror" is a copy of a file. When a file is configured to have two
mirrors, that means there are two copies of the file.

Oplock. An oplock, also called an "opportunistic lock" is a mechanism for
allowing the data in a file to be cached, typically by the user (or client) of the file. Unlike
aregular lock on a file, an oplock on behalf of a first client is automatically broken
whenever a second client attempts to access the file in a manner inconsistent with the
oplock obtained by the first client. Thus, an oplock does not actually provide exclusive
access to a file; rather it provides a mechanism for detecting when access to a file
changes from exclusive to shared, and for writing cached data back to the file (if
necessary) before enabling shared access to the file.

This section relates generally to migrating file data from one storage server to

another in a non-disruptive manner using a stateful network file protocol such as CIFS.
Regular Migration
FIGs. B-1, B-2, and B-3 demonstrate how the standard (non-optimized) file
migration is done. FIG. B-1 is a schematic block diagram of network file system before

the beginning of the migration. Client11 to Clientlm are regular clients that connect to

the two back-end servers (Serverl 1 and Serverl2) through a regular IP switch over a

-23-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

standard network file system protocol CIFS and/or NFS. When the administrator takes
the server offline, he connects it directly to the destination server and begins direct file
copy from source (Server21) to the destination (Server23) as depicted in FIG. B-2. When
all files are copied, the administrator renames the destination server to the name of the
source server and finally the administrator connects the destination server in place of the

source server as shown in FIG. B-3.

Migration with Minimal Interruption

FIG. B-4 depicts the minimal disruption migration. All accessible files are
migrated from Serverd1 to Serverd3. Since the process can take a long time, some of the
files may get changed during migration. In the second step, those files are migrated
(again). Step two is repeated until all files are migrated or until the amount of data
remaining to be migrated falls under a predetermined amount. Finally, the migration is
completed in a way similar to the regular migration: in Step n+1 Server41l and Server43
are taken offline. In step n+2, the remaining files are copied to the destination. In the final
step (n+3), the server is renamed to the name of the source server and the destination

server is brought on-line (n+4).

Non-Disruptive Migration

For stateful file system protocols, there are two major obstacles for providing
non-disruptive migration: files that are constantly been updated and files kept open
continuously.

Generally speaking, when a file is constantly updated, the file migration is
constantly going to be triggered. If the file is relatively large the migration process will
have to start keeping track of the modified regions. Otherwise, the algorithm is never
going to be able to catch up with the modifications.

If a file is held open, its sharing mode may not allow the file to be opened by the

migration process which will prevent copying the file to the destination server.

- 924 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Normally these limitations can only be overcome by taking the server down while these
files arc been migrated. For the duration of this migration, the clients suffer a disruption
in their ability to access those files.

Embodiments of the present invention described below utilize file virtualization in
order to provide non-disruptive file/server migration. As shown in FIG. B-8, non-
disruptive file migration can be summarized in four general steps:

1) Convert the source server from a Native volume to a Native with metadata
volume (block 802).

2) Convert the native with metadata volume to a mirrored native with metadata
volume, where the second mirror resides on the destination server (block 804).

3) Convert back to a native with metadata volume by removing the source server
from the volume (block 806).

4) Finally, the native volume with metadata is converted to a simple native

volume (block 808).

Native Volume

A native volume is a basic virtualized representation of a share from the back-end
server. Its content (directories and files) are completely managed by the hosting file
server. Clients can access the virtualized volume through the global namespace or

directly by accessing the back-end server.

Native Volume with Metadata

A native volume with metadata is a natural extension of the native volume mode
with the ability to keep additional metadata information for each file/directory. “The
metadata” will keep at least the following information: the number of mirrors and a list of
the destinations where the file/directory mirror is placed.

One embodiment of this is where a local NTFS directory is used for storing all
information about the native volume. In this case, the whole remote namespace (without
the file data) is replicated inside this directory. All file attributes (including security, EA,

file size, ctc) are preserved on all mirrors as well as in the file switch namespace.

-25-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

To calculate the actual path of a file, the system replaces the top level file prefix
with the one specified in the metadata and leaves the rest of the path unchanged. This
operation is very similar to the DFS/MUP operation. FIG. B-6 is a practical example of a
sample global namespace including the metadata information and how the global

name-space is used to calculate the target path.

Mirrored Native Volume with Metadata

“Mirrored Native Volume with Metadata” is similar to the “Native Volume with
Metadata™ except there are two or more copies of the data. For the purpose of this
embodiment, only two copies are used. FIG. B-7 is a practical example of a sample
global namespace including the metadata information and how the global name-space is

used to calculate the target paths.

Basic Operations for (Mirrored) Native Volume with Metadata

CREATE NEW FILE/DIRECTORY - When create operation comes, the
operation is performed initially over the file in the Local NTFS drive. If it succeeds, a file
metadata is created as well and associated with the file/directory (e.g., stored inside an
alternate data stream) and than the operation is forwarded to all mirrors in parallel. When
all mirrors complete the operation, the operation is completed back to the client.

OPEN EXISTING FILE/DIRECTORY - When an open operation comes, the
operation is performed initially over the local NTFS file. This allows the file security
permissions to be evaluated locally and force evaluation of the sharing mode. If it
succeeds, the metadata is read, to get the file placement and mirrors after which the open
operation is forwarded simultancously to all mirrors. When all mirrors complete the open,
the open operation is completed back to the client.

READ/WRITE OPERATIONS - Data operations are submitted simultaneously to
all mirrors with the operation sent to the mirrors in their rank order. When all of them
complete the operation is acknowledged to the client. No read/write data is stored on the
local disk so there is no need to send data operations to it. RANGE-LOCK

OPERATIONS - Advisory range-locks or mandatory range-locks may be implemented.

-26-

10

15

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

If advisory range-locks are supported, than the range-lock requests are sent only to the
local NTFS volume. For mandatory range-locks, the range-lock requests are sent to the
local file and after it succeeds it is sent to all mirrors. In this case the local file acts as an
arbiter for resolving range-lock conflicts and deadlocks.

OPPORTUNISTIC LOCK (OP-LOCK) OPERATIONS - Oplock operations arc
submitted to local file and all mirrors in parallel. When (any) oplock breaks, the original
client request is completed, although nothing is completed if the oplock level was already
lowered. To produce the correct result, an exemplary embodiment starts (initially) with
an uninitialized level which is the highest oplock level. From there on, the oplock level
can only go down. Please note that it is possible the oplock level on mirror 1 to be
broken to level 2 and while we are processing it, the level can be broken to level 0 on
mirror 2. If the user acknowledges the break to level 2, it is failed immediately without
sending anything to the mirrors. It should be noted that oplock break operations are the
only operations that treats status pending as an acknowledgement that the operation
completed successfully (i.e., processing it in a work item or from a different thread is

unacceptable).

_27-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

DIRECTORY ENUMERATION - All directory operations are served by the local
name space. Since the local directory is a copy of the native directory structure,
everything that the client requires is stored there.

DELETE AND RENAME OPERATIONS - The delete/rename operations are
sent to the local directory first and after it succeeds it is sent to all file/directory mirrors
(in parallel). The operation is completed when all mirrors completes it.

DIRECTORY CHANGE NOTIFICATIONS - Directory operations are submitted
to all mirrors. Pass back the response when it comes. If there is no request to be
completed, MFM saves the responses in their arrival order. When a new dir-change-
notification request comes, it will pick the first pending response and complete it to the
client, the next one will pick the next pending and so on. It is possible for the client to
receive more than one break notification for the same change — one for the local metadata
and one for each of the mirrors. This behavior is acceptable since the directory
notifications are advisory and not time sensitive. The worst that can happen is the client
will have to reread the state of the affected files. If there is no pending completion, than
we submit directory change notification request to all mirrors that have no pending

directory notification.

Converting from Native Volume to Native with Metadata Volume

In order to convert the Native Volume to a Native with metadata, all access to the
back end server that is being converted will go through the file switch, i.c., the file switch
is an in-band device. There should be no file access that does not go through it. A data
corruption is possible in case files are been modified/accessed not through the file switch.
The file switch cannot not enforce that the access to the backend servers is done only
through the file switch.

Conversion from native to extended native is done by walking down the source
directory tree and converting the volume directory by directory. Each directory operation
usually is run by a single execution thread.

The execution thread opens the source directory, places a batch oplock on the

source directory, so it can be notified in case someone changes it. In case the batch

-28-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

oplock is broken, the thread re-adds directory to the end of the list of directories to be
processed, releases any resources it has acquired and exits.

Then the corresponding local directory and its metadata are created. The directory
is enumerated and for each of the files found a sparse file is created in the local file
system. The sparse file size corresponds to the actual file size. All other file attributes
(time, attributes, security descriptors and EAs) are copied as well. The creation of “the
metadata” for the file completes the conversion of the file.

After file enumeration completes, all directories are enumerated and for cach
directory found a new work item is created. The work items are added to the list of
directories to be converted as a batch when the enumeration is completed. This would
ensure that the sub-directory conversion will start only after the parent directory
conversion is completed and avoid any nasty concurrency problems. At some point later
when the same directory is scheduled again, any files and/or directories that have alrecady
been converted (by the previous attempts) would be skipped. This approach, although
slow, can guarantee that there would be no missed entities.

The directory oplock break status is checked after processing each directory entity
(file and/or directory). The status of the oplock break is not checked during the batch
adding of the sub-directories to the directory processing queue since this operation is
entirely local and is executed almost instantancously.

All security descriptors are copied verbatim (without looking into it) except for
the top level directory. The root directory security descriptor is converted to effective
security descriptor and than set in the local NTFS directory. This would allow the sub-
entities to properly inherit their security attributes from their parents.

This process repeats until there are no more entries in the directory list. The
number of simultancously processed directories can be limited to a predefined number to
avoid slowing the system down due to over-parallelism. While converting the volume,
the in memory structures of the currently opened files and directories maintained by the
file switch (FIG. B-5) needs to be modified to comply with the requirements of the native
with metadata volume structure.

To provide atomicity, some operations may require a temporal suspension of all
operations over the affected entity (file or directory). In this case the access to the

file/directory is suspended, the system waits for all outstanding operations (except range-

-29-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

locks with timeout) to complete and than it performs the required operation. When the

operation completes, with success or a failure, the access to the entity is restored.
Usually, the temporary access suspension is at most several hundreds of

milliseconds long, which is comparable to the network latency, and thus would not affect

the applications using those files even if they are actively using the opened file.

Operations during Conversion to Native Volume with Metadata

If the file/directory does not have metadata (i.e., it is not converted yet), the
operation is forwarded to the native volume otherwise the operations are served way it is
described in “Basic Operations for (Mirrored) Native Volume with Metadata” with
the following exceptions.

CREATE NEW FILE/DIRECTORY - This operation is performed in the local
namespace. If it succeeds, it is processed as described in “Basic Operations for
(Mirrored) Native Volume with Metadata.” If it fails, the operation is submitted to the
native volume and if it succeeds, this is an indication that the local directory has not been
created/converted yet. It will be created eventually so there really is nothing to do here.

CONVERTING THE IN-MEMORY RANGE-LOCK STRUCTURES - The
range-lock requests can be handled in one of two possible ways: as advisory locks or as
mandatory locks (Windows default). If advisory range-locks are supported, access to the
file is suspended temporarily, and all range-lock requests are submitted to the local NTFS
volume on the File Switch after which all pending requests on the source file are
cancelled. Once cancelled access to the file is restored. If mandatory range-locks are
supported, access to the file is suspended, and all range-lock requests are submitted to
local NTFS volume first, followed by the range-lock requests being submitted to the
other file mirrors. After the range-locks are granted, access to the file is restored. While
the migration is running, open file and/or directory requests should be submitted in
parallel to the local NTFS file system metadata and to the native volume. If the request
succeeds on the backend server but fails on the local volume, this is an indication that the
file/directory has not been converted yet. In this case, all parent directories inside the
Local NTFS volume need to be recreated before the operation is acknowledged to the

client.

-30 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

CONVERTING OPPORTUNISTIC LOCK (OP-LOCK) OPERATIONS -
Converting opportunistic lock operations from Native to Native Volume with metadata
involves submitting an oplock to the local NTFS volume in order to make it compliant
with the expected model.

CONVERTING ACTIVE DIRECTORY ENUMERATION - Since directory
operation is a relatively short operation, there really is nothing special that needs to be
done here. The operation would be completed eventually and then served the proper way.

RENAME OPERATIONS - There are four different rename operation
combinations based on the file conversion state and the destination directory conversion
state: both are converted, both are not converted; only the source is converted, and only
the destination is converted. Nothing special is needed if both are converted. If the
source is converted but the destination directory does not exist in the local NTFS volume,
the destination directory is created in the local volume and the rename/move operation is
performed on the native volume and on the NTFS volume. If the destination directory is
converted, but the local file is not, the file is converted after the rename operation
completes. If the destination directory is converted, but the local directory is not, the
directory name is added to the list of directories that require conversion. If the source
and the destination are not converted, the rename operation is executed over the native
volume only. After the operation completed, the destination directory is checked one
more time and in case the destination directory suddenly becomes converted, and the
entity is a file, metadata is created for it; if the entity is a directory, it is added to the list
of directories that require conversion. This behavior is done to ensure that an entity
conversion will not be missed.

CONVERTING DIRECTORY CHANGE NOTIFICATIONS - Converting the
directory change notifications from Native to Native Volume with metadata involves
submitting a directory change notification to the local NTFS volume in order to make it

compliant with the expected model.

Creating/rebuilding data mirrors for Native mode with Metadata Volume

_31-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

The directory operations and walking the tree is very similar to converting the
volume to extended-native mode. For each directory found, a new destination directory is
created and all directory attributes are copied there as well.

When the source file is opened for reading, a filter oplock is placed on the local
NTEFS file (filter oplocks are not supported across the network). If this filter oplock gets
broken because someone opened the file, the mirroring process is stopped, the
uncompleted mirrors are deleted, and the file is put on a list for later attempts to mirror.

If a file/directory open fails with a sharing violation error, this file/directory is
added to list to be processed at some time later when the file is closed or opened with
more appropriate sharing mode.

Periodically the list of files with postponed mirroring is checked and the mirroring
attempt is repeated.

After several unsuccessful attempts to mirror file data, an open file mirroring is
performed. The process starts by creating an empty file where the new mirrors are placed
and begins to copy file data. The file data is read sequentially from the beginning of the
file until the end of the file and is written to all of the mirrors (please note that no file size
increase is allowed during this phase). In addition, all client write (and file size change)
requests are replicated and sent to all mirrors. To avoid data corruption, reading the data
from the source and writing it to the mirror(s) is performed while user access to this file
is suspended. The suspension is once again performed for a relatively small interval so as
not be noticed by the user (or application).

When the file is mirrored, the file handle state is propagated to the new mirror as
well. This state includes but is not limited to: mirror file handle, range-locks and oplocks.
Range-locks are replicated to all mirrors only if mandatory range-locks are supported,
otherwise, there is nothing more that needs to be done if only advisory locks are
supported.

When a directory is mirrored, any directory change notifications request needs to

be resubmitted to the new mirror as well.

Removing the Source Server from the Mirrored Volume

_32-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

Convert back to a native with metadata volume is done atomically by
programmatically setting the source server state to “force-removed”, changing a global
state to removing a mirror and logging off from the server. All operations pending on this
server would be completed by the backend server and the file switch will silently “cat”
them without sending any of them to the client.

After this, the source server references can be removed from “the metadata”: the
directory operations and walking the tree is very similar to the way the data mirrors are
rebuild described at “Creating/rebuilding data mirrors for Native mode with
Metadata Volume”. Only the metadata structure is updated by removing the source
server references from “the metadata”. Finally, the in-memory data handle structures are
updated to remove any references to the source server. All those operations can be

performed with no client and/or application disruption.

Converting from Native with Metadata to a Native Volume

Converting starts by going through all currently opened handles and replicating
the opened state (e.g. range locks directory notifications, oplocks, etc.) over the native
volume.

When done, ALL access to the specified server set is temporarily suspended and
all open files/directories on the local NTFS directory are closed (any operations
failed/completed due to the close are ignored). The global state of the volume is set to a
pure native volume so all new open/creates should go to the native volume only.

Finally, access to the volume is restored.

At this point, the metadata directory can be moved to a separate NTFS directory
where all files and directories containing “the metadata” can be deleted and associated
resources can be freed.

All those operations are performed with no client and/or application disruption.

SECTION C - LOAD SHARING FILE SYSTEM CLUSTERS

-33-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

In a computer network, NAS (Network Attached Storage) file servers provide file
services for clients connected in a computer network using networking protocols like
CIFS or any other stateful protocol (e.g., NFS-v4). Many companies utilize various file
Virtualization Appliances to provide better storage utilization and/or load balancing.
Those devices usually sit in the data path (in-band) between the clients and the servers
and present a unified view of the name spaces provided by the back-end server. From the
client perspective, this device looks like a single storage server; for the back-end servers,
the device looks like a super client that runs a multitude of users. Since the clients cannot
see the back-end servers, the virtualization device is free to move, replicate, and even
take offline any of the user’s data, thus providing the user with a better user experience.

Earlier attempts at storage virtualization includes Microsoft Distributed File
System (DFS) for presenting a single namespace, but these solutions are out-of band
solutions where the client machine directly accesses the back-end servers but hides this
from its users and applications. Out of band solutions have the benefit of being extremely
fast, but unfortunately do not allow casy and scamless migration and or load balancing
between different back-end servers.

In-line file virtualization is the next big thing in Storage but it does come with
some drawbacks. It is difficult to almost impossible to insert the Virtualization Appliance
in the data path without visibly interrupting user and/or application access to the back-
end servers. Removing the Virtualization Appliance without disruption is as difficult as
placing it in-line.

There are some situations, such as in an I/O intensive environment, where the
latency introduced by the in-band file virtualization is deemed not acceptable. On the
other hand, only in-band file virtualization offers non-disruptive reconfiguration of a
namespace without shutting down all file servers that are affected by the changes during
the namespace reconfiguration. Thus, if users are willing not to use the full-features
provided by the in-band file virtualization, it is desirable to have a file virtualization
solution that is out-of-band during normal operation and in-band only while the
namespace is being reconfigured. Such a solution extends in-band file virtualization’s

benefit of non-disruptive namespace reconfiguration to all file servers.

_34-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

When file virtualization is about to be implemented, the administrator faces the
challenge of inserting the virtualization appliance without or with very limited
interruption to user’s access to the backend servers. By combining the knowledge of the
back-end servers load, the DFS ability to redirect user access to a newly designated
target, and the ability to force a user disconnect, the administrator is able to eliminate the
user interruption and only in a very few cases cause an interim disruption the access of
the user to the back end servers when a Virtualization Appliance is inserted in the data
path between the clients machine(s) and the backend servers.

In accordance with one aspect of the invention there is provided a method for
inserting a file virtualization appliance for maintaining consistency of the namespace
during namespace reconfiguration in a storage network having one or more storage
servers and having a distributed file system (DFS) server that exports a global namespace
consisting of file objects exported by the storage servers in the storage network, and
wherein clients of the storage network always consult the DFS server for the
identification of a storage server that exports an unknown file object before accessing,
and wherein clients of the storage network may choose to access a known file object
directly from its storage server without consulting the DFS server for its accuracy. The
method involves configuring a global namespace of the virtualization appliance to match
a global namespace exported by the distributed filesystem server; and updating the
distributed filesystem server to redirect client requests associated with the global
namespace to the virtualization appliance.

In various alternative embodiments, the method may further involve, after
updating the distributed filesystem server, ensuring that no clients are directly accessing
the file servers; and thereafter sending an administrative alert to indicate that insertion of
the virtualization appliance is complete. Ensuring that no clients are directly accessing
the file servers may involve identifying active client sessions running on the file servers;
and ensuring that the active client sessions include only active client sessions associated
with the virtualization appliance. The virtualization appliance may be associated with a
plurality of IP addresses, and ensuring that the active client sessions include only active
client sessions associated with the virtualization appliance may involve ensuring that the
active client sessions include only active client sessions associated with any or all of the

plurality of IP addresses. Ensuring that no clients are directly accessing the file servers

-35-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

may involve sending a session close command to a file server in order to terminate an
active client session unrelated to the virtualization appliance. Ensuring that no clients are
directly accessing the file servers may involve monitoring activity associated with active
client sessions; and sending an administrative alert presenting an administrator with an
option to close the active client sessions. Ensuring that no clients are directly accessing
the file servers may involve sending an alert to a client associated with an active client
session requesting that the client close the active client session. The method may further
involve automatically reconfiguring a switch to create a VLAN for the virtualization
appliance. The distributed filesystem server may be configured to follow the Distributed
File System standard. Connecting a virtualization appliance to the storage network may
include connecting a first switch to a second switch, wherein the first switch is connected
to at least one file server; connecting the virtualization appliance to the first switch;
connecting the virtualization appliance to the second switch; and for each file server
connected the first switch, disconnecting the file server from the first switch and
connecting the file server to the second switch.

In accordance with another aspect of the invention there is provided a method for
removing a virtualization appliance logically positioned between client devices and file
servers in a storage network having a distributed filesystem server. The method involves
sending a global namespace from the virtualization appliance to the distributed filesystem
server; and configuring the virtualization appliance to not respond to any new client
connection requests received by the virtualization appliance.

In various alternative embodiments, the method may further involve
disconnecting the virtualization appliance from the storage network after a predetermined
final timeout period. The method may also involve for any client request associated with
an active client session received by the virtualization appliance during a predetermined
time window, closing the client session. The predetermined time window may be
between the end of a first timeout period and the predetermined final timeout period. The
distributed filesystem server may be configured to follow the Distributed File System
standard.

The foregoing and advantages of the invention will be appreciated more fully
from the following further description thercof with reference to the accompanying

drawings wherein:

-36-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

FIG. C-1 is a schematic block diagram of a three server DFS system
demonstrating file access from multiple clients;

FIG. C-2 is a schematic block diagram of a virtualized three server system;

FIG. C-3 depicts the process sequence of adding the Virtualization Appliance to
the network;

FIG. C-4 depicts the process sequence of removing direct access between the
client machines and the back-end servers;

FIG. C-5 depicts the process sequence of restoring direct access between the
client machines and back-end servers;

FIG. C-6 is a logic flow diagram for logically inserting a virtualization appliance
between client devices and file servers in a storage network, in accordance with an
exemplary embodiment of the present invention; and

FIG. C-7 is a logic flow diagram for removing a virtualization appliance from a
storage network, in accordance with an exemplary embodiment of the present invention.

Definitions. As used in this section and related claims, the following terms shall
have the meanings indicated, unless the context otherwise requires:

File Virtualization: File virtualization is a technology that separates the full name
of a file from its physical storage location. File virtualization is usually implemented as a
hardware appliance that is located in the data path (in-band) between clients and the file
servers. For users, a file Virtualization Appliance appears as a file server that exports the
namespace of a file system. From the file servers’ perspective, the file Virtualization
Appliance appears as just a beefed up client machine that hosts a multitude of users.

Virtualization Appliance. A "Virtualization Appliance” is a network device that
performs File Virtualization. It can be in-band or out-of-band device.

DFS. Distributed File System (a.k.a. DFS) is an out-of-band solution for
presenting a single hierarchical view for a set of back-end servers. When the user data is
replicated among multiple servers, DFS allows the clients to access the closest server
based on a server ranking system. On the other hand, DFS does not provide any data
replication, so in this case some other (non-DFS) solution should be used to ensure the
consistency of the user data between the different copies of user data.

Embodiments of the present invention relate generally to a method for allowing a

file server, with limited interruption, to be in the data path of a file virtualization

-37-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

appliance when reconfiguring the namespace exported by the file server and to be out of
the data path of a file virtualization appliance to avoid incurring the latency introduced by
the file virtualization appliance during normal operations.

Embodiments enable file virtualization to allow on-demand addition and removal
of file servers under control by the file virtualization. As a result, out-of-band file servers

can enjoy the benefit of continuous availability even during namespace reconfiguration.

Default DFS Operations

FIG. C-1 demonstrates how the standard DFS based virtualization works.
Client11 to Client14 are regular clients that are on the same network with the DFS server
(DFS1) and the back-end servers (Serverll to Serverl3). The clients and the servers
connect through a standard network file system protocol CIFS and/or NFS over a TCP/IP
switch based network.

The Clients are accessing the global name space presented by the DFS1 server.
When a client wants to access a file, the client sends its file system request to the DFS
server (DFS1) which informs the client that the file is being served by another server.
Upon this notification, the client forms a special DFS request asking for the file
placement of the file in question. The DFS server instructs the client what portion of the
file path is served by which server and where on that server this path is placed. The client
stores this information in its local cache and resubmits the original request to the
specified server. As long as there is an entry in its local cache, the client would never ask
the DFS to resolve another reference for an entity residing within that path. The cache
expiration timeout is specified by the DFS administrator and by default is set to 15
minutes. There is no way for the DFS server to revoke a cached reference or purge it
from a client’s cache.

Since the client implements the majority of the DFS functionality, there are some
significant differences in how the cache timeout is implemented depending on the
Operating System (OS) and the OS version. Some clients keep the entry in the cache for
as long as there is any activity and/or an open handle on that path; other clients are a little
bit stricter and do enforce the time out for any new opens that come after the timeout

expires. This makes it extremely difficult to predict when the client will switch to the new

-38-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

references. To avoid any inconsistencies, the administrators force a reboot on the client’s
machines or log-in to those machines, install and run a special utility that flushes the
whole DFS cache for all of the servers this client is accessing, which in turn forces the
client to consult the DFS server the next time it tries to access that/any file from the

global namespace.

File Virtualization Operations

FIG. C-2 illustrates the basic operations of a small virtualized system that consists
of four clients (Client21 to Client24), three back-end servers (Server21 to Server23) a
Virtualization Appliance, and couple of IP switches 21 and 22. When clients 21-24 try to
access a file, the Virtualization Appliance 2 resolves the file/directory path to a server, a
server share, and a path and dispatches the client request to the appropriate back-end
server 21, 22 or 23. Since the client 21 does not have direct access to the back-end
servers 21-23, the Virtualization Appliance 2 can store the files and the corresponding
directories at any place and in whatever format it wants, as long as it preserves the user
data. Some of the major functions include: moving user files and directories without user
access interruptions, mirror the user files, load balancing, and storage utilization, among

others.

Physically Adding a Virtualization Appliance to a Storage Network.

FIG. C-3 demonstrates how the virtualization device is added to the physical
network. The process includes manually bringing a virtualization device and an IP switch
in a close proximity to the rest of the network and manually connecting them to the
network.

First, administrator connects the second switch 32 to the current one 31 and
connects the Virtualization Appliance 3 to both switches and turns them on (assuming
they were not already on).

At this point, the administrator can unplug the first server 31 from the original

switch 31 and connect it to the second switch 32. Since the network file system protocols

-39-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

go over a reliable transport protocol, there would be no interruption in the
user/application activities as long as this operation completes within 2 to 5 seconds.

The same operation can be repeated with the rest of the servers. Alternatively, the
administrator can do the hardware reconfiguration during scheduled server shut down and
this way he doesn’t have to worry how fast he can perform the hardware reconfiguration.

In case the IP switch is a managed switch with available ports for connection to
the Virtualization Appliance 3, the above operations (aside from connecting the
Virtualization Appliance to the switch) can be performed programmatically without any
physical disconnect by simply reconfiguring the switch 31 to create two separate VLANS,

one to represent switch 31 and one for switch 32.

Inserting the Virtualization Appliance in the Data Path

FIG. C-4 describes the steps by which the Virtualization Appliance 4 is inserted in
the data path with no interruption or minimal interruption to users.

The operation begins with the Virtualization Appliance 4 reading the DFS
configuration from (DFS4, step1) configuring its global namespace to match the one
exported by the DFS server 4 (step2) and updating the DFS server 4 configuration (step3)
to redirect all of its global namespace to the Virtualization Appliance 4. This would
guarantee that any opens after the clients cache expires would go through the
Virtualization Appliance 4 (step 4).

There are several methods a Virtualization Appliance 4 can utilize to make sure
that clients do not access the back-end servers. This is performed (in step5) by going to
the back-end servers 41-43 and obtaining the list of user sessions established. There
should be no other sessions except the sessions originated through one of the IP addresses
of the Virtualization Appliance 4.

When all clients start accessing the back-end servers 41-43 through the
Virtualization Appliance 4, the Virtualization Appliance 4 can send an administrative
alert (e-mail, SMS, page) to indicate that the insertion has been completed, so the
administrator can physically disconnect the two switches 41 and 42 (step 7). In the case
of a managed switch, the Virtualization Appliance 4 can reconfigure the switch to

separate the two VLANS.

_40-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

In the case where there are user machines that do not want to retire a cached
entry, the Virtualization Appliance can kick the user off of a predetermined server by
sending a session close command (step6) to the server on which the user was logged on.
This would force the user’s machine to reestablish the session which triggers a refresh on
the affected cache entries.

To limit the impact of the session close several methods can be implemented. If
the user has no open files on that session, the session can be killed since the client does
not have any state other than the session itself, which the client’s machine can restore
without any visible impact. If the user has been idle for a prolonged interval of time (e.g.
2 hours), this is an indication that the user session can be forcefully closed.

If time is not a big issue, the Virtual Appliance 4 can perform a survey, monitoring the
amount of open files and traffic load coming from the offending users and present the
administrator with the option to trigger a session close when the user has the least amount
of files and/or traffic. This way, the impact on the particular user would be minimized.

Another alternative is for the Virtualization Appliance 4 is to send an e-
mail/SMG/page to the offending users, requesting them to reboot if twice the maximum
specified timeout has expired.

With the administrator physically disconnecting the links between the two

switches (switch41 and switch42), the virtual device insertion is completed.

Removing the Virtualization Appliance from the data path

Removing the Virtualization Appliance (FIG. C-5) is significantly easier than
inserting it into the network.

The process begins with the administrator physically reconnecting the two
switches (switch51 and switch52, stepl). After that, the virtual device restores the initial
DFS configuration (step2) and stops responding to any new connection establishments. In
case some changes to the back-end file and directory placements are made, the
Virtualization Appliance has to rebuild the DFS configuration based on the new changes.

After a while, all clients will log off from the Virtualization Appliance and

connect directly to the back-end servers (steps3,4,5,6).

_41-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

In case there are clients that do not go away after twice the original DFS timeout
expires, the Virtualization Appliance can start kicking users off by applying the
principles used when the appliance was inserted into the data path.

When there are no more user sessions going through, the administrator can safely
power-down and disconnect the Virtualization Appliance from both switches (step7 and
step8).

To restore the original topology, the administrator can move the back-end servers
from switch52 to switch51 (steps10,11,12). And finally, the administrator can power
down switch52 and disconnect it from switchS1.

FIG. C-6 is a logic flow diagram for logically inserting a virtualization appliance
between client devices and file servers in a storage network, in accordance with an
exemplary embodiment of the present invention. In block 602, a global namespace of the
virtualization appliance is configured to match a global namespace exported by the
distributed filesystem server. In block 604, the distributed filesystem server is updated to
redirect client requests associated with the global namespace to the virtualization
appliance. In block 606, the virtualization appliance ensures that no clients are directly
accessing the file servers and in block 608 thereafter sends an administrative alert to
indicate that insertion of the virtualization appliance is complete.

FIG. C-7 is a logic flow diagram for removing a virtualization appliance from a
storage network, in accordance with an exemplary embodiment of the present invention.
In block 702, a global namespace is sent from the virtualization appliance to the
distributed filesystem server. In block 704, the virtualization appliance is configured to
not respond to any new client connection requests received by the virtualization
appliance. In block 706, for any client request associated with an active client session
received by the virtualization appliance during a predetermined time window, the
virtualization appliance closes the client session. In block 708, the virtualization
appliance is disconnected from the storage network after a predetermined final timeout

period.

SECTION D - FILE DEDUPLICATION USING STORAGE TIERS

_42-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

In enterprises today, employees tend to keep copies of all of the necessary
documents and data that they access often. This is so that they can find the documents
and data easily (central locations tend to change at least every so often). Furthermore,
employees also tend to forget where certain things were found (in the central location), or
never even knew where the document originated (they are sent a copy of the document
via email). Finally, multiple employees may each keep a copy of the latest mp3 file, or
video file, even if it is against company policy.

This can lead to duplicate copies of the same document or data residing in
individually owned locations, so that the individual’s themselves can easily find the
document. However, this also means a lot of wasted space to store all of these copies of
the document or data. And these copies are often stored on more expensive (and higher
performance) tiers of storage, since the employees tend not to focus on costs, but rather
on performance (they will store data on the location that they can most easily remember
that gives them the best performance in retrieving the data).

Deduplication is a technique where files with identical contents are first identified
and then only one copy of the identical contents, the single-instance copy, is kept in the
physical storage while the storage space for the remaining identical contents is reclaimed
and reused. Files whose contents have been deduped because of identical contents are
hereafter referred to as deduplicated files. Thus, deduplication achieves what is called
“Single-Instance Storage” where only the single-instance copy is stored in the physical
storage, resulting in more efficient use of the physical storage space. File deduplication
thus creates a domino effect of efficiency, reducing capital, administrative, and facility
costs and is considered one of the most important and valuable technologies in storage.

US patents 6389433 and 6477544 are examples of how a file system provides the
single-instance-storage.

While single-instance-storage is conceptually simple, implementing it without
sacrificing read/write performance is difficult. Files are deduped without the owners
being aware of it. The owners of deduplicated files therefore have the same performance
expectation as other files that have no duplicated copies. Since many deduplicated files
are sharing one single-instance copy of the contents, it is important to prevent the single-
instance copy from being modified. Typically, a file system uses the copy-on-write

technique to protect the single-instance copy. When an update is pending on a

_43-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

s

deduplicated file, the file system creates a partial or full copy of the single-instance copy,
and the update is allowed to proceed only after the (partial) copied data has been created
and only on the copied data. The delay to wait for the creation of a (partial) copy of the
single-instance data before an update can proceed introduces significant performance
degradation. In addition, the process to identify and dedupe replicated files also puts a
strain on file system resources. Because of the performance degradation, deduplication
or single-instance copy is deemed not acceptable for normal use. In reality, deduplication
is of no (obvious) benefit to the end-user. Thus, while the feature of deduplication or
single-instance storage has been available in a few file systems, it is not commonly used
and many file systems do not even offer this feature due to its adverse performance
impact.

File system level deduplication offers many advantages for the IT administrators.
However, it generally offers no direct benefits to the users of the file system other than
performance degradation for those files that have been deduped. Therefore, the success
of deduplication in the market place depends on reducing performance degradation to an
acceptable level.

Another aspect of the file system level deduplication is that deduplication is
usually done on a per file system basis. It is more desirable if deduplication is done
together on one or more file systems. For example, the more file systems that are
deduped together, the more chances that files with identical contents will be found and
more storage space will be reclaimed. For example, if there is only one copy of file A in
a file system, file A will not be deduped. On the other hand, if there is a copy of file A in
another file system, then together, file A in the two file systems can be deduped.
Furthermore, since there is only one single-instance copy for all of the deduplicated files
from one or more file systems, the more file systems that are deduped together, the more
efficient the deduplication process becomes.

Thus, it is desirable to achieve deduplication with acceptable performance. It is
even more desirable to be able to dedupe across more file systems to achieve more
deduplication efficiency.

In accordance with one aspect of the invention there are provided a method and an
apparatus for deduplicating files in a file storage system having a primary storage tier and

a secondary storage tier. In such embodiments, file deduplication involves identifying a

_44 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

s

plurality of files stored in the primary storage tier having identical file contents; copying
the plurality of files to the secondary storage tier; storing in the primary storage tier a
single copy of the file contents; and storing metadata for each of the plurality of files, the
metadata associating cach of the file copies in the secondary storage tier with the single
copy of the file contents stored in the primary storage ticr.

In various alternative embodiments, identifying the plurality of files stored in the
primary storage tier having identical file contents may involve computing, for cach of the
plurality of files, a hash value based on the contents of the file; and identifying the files
having identical file contents based on the hash values. Storing the single copy of the file
contents in the primary storage tier may involve copying the file contents to a designated
mirror server; and deleting the remaining file contents from ecach of the plurality of files
in the primary storage tier. Upon a read access to one of the plurality of files, the read
access may be directed to the single copy of the file contents maintained in the primary
storage tier. Upon a write access to one of the plurality of files, the association between
the file copy in the secondary storage tier and the single copy of the file contents stored in
the primary storage tier may be broken the file copy stored in the secondary storage tier
may be modified. The modified file copy subsequently may be migrated from the
secondary storage tier to the primary storage tier based on a migration policy.

In other embodiments, deduplicating a sclected file in the primary storage tier
may involve determining whether the file contents of the selected file match the file
contents of a previously deduplicated file having a single copy of file contents stored in
the primary storage tier; when the file contents of the sclected file match the file contents
of a previously deduplicated file, deduplicating the selected file; otherwise determining
whether the file contents of the selected file match the file contents of a non-duplicate file
in the first storage tier; and when the file contents of the selected file match the file
contents of a non-duplicate file, deduplicating both the selected file and the non-duplicate
file. Determining whether the file contents of the selected file match the file contents of a
previously deduplicated file may involve comparing a hash value associated with the
selected file to a distinct hash value associated with each single copy of file contents
stored in the primary storage tier. Deduplicating the selected file may involve copying
the selected file to the secondary storage tier; deleting the file contents from the selected

file; and storing metadata for the selected file, the metadata associating the file copy in

_45-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

the secondary storage tier with the single copy of the file contents for the previously
deduplicated file stored in the primary storage tier. Deduplicating both the selected file
and the non-duplicate file may involve copying the selected file and the non-duplicate file
to the secondary storage tier; storing in the primary storage tier a single copy of the file
contents; and storing metadata for each of the first and second selected files, the metadata
associating each of the file copies in the secondary storage tier with the single copy of the
file contents stored in the primary storage tier. Storing the single copy of the file contents
for deduplicating both the selected file and the non-duplicate file may involve copying
the file contents to the designated mirror server; and deleting the remaining file contents
from the selected file and the non-duplicate file. Determining whether the file contents of
the selected file match the file contents of a non-duplicate file in the primary storage tier
may involve maintaining a list of non-duplicate files in the primary storage tier, the list
including a distinct hash value for each non-duplicate file; and comparing a hash value
associated with the selected file to the hash values associated with the non-duplicate files
in the list, and when the file contents of the selected file do not match the file contents of
any non-duplicate file, may involve adding the selected file to the list of non-duplicate
files (c.g., by storing a pathname and a hash value associated with the selected file).
Deduplicating both the selected file and the non-duplicate file may further involve
removing the non-duplicate file from the list of non-duplicate files.

Deduplication may be implemented in a file switch or other device that manages
file storage.

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying
drawings, in which:

FIG. D-1 is a logic flow diagram for file deduplication using storage tiers in
accordance with an exemplary embodiment of the present invention;

FIG. D-2 is a logic flow diagram deduplicating a selected file in accordance with
an exemplary embodiment of the present invention.

This section relates generally to a method for performing deduplication on a
global namespace using file virtualization when the global namespace is constructed from
one or more storage servers, and to enable deduplication as a storage placement policy in

a tiered storage environment.

46 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

A traditional file system manages the storage space by providing a hierarchical
namespace. The hierarchical namespace starts from the root directory, which contains
files and subdirectories. Each directory may also contain files and subdirectories
identifying other files or subdirectories. Data is stored in files. Every file and directory
is identified by a name. The full name of a file or directory is constructed by
concatenating the name of the root directory and the names of each subdirectory that
finally leads to the subdirectory containing the identified file or directory, together with
the name of the file or the directory.

The full name of a file thus carries with it two pieces of information: (1) the
identification of the file and (2) the physical storage location where the file is stored. If
the physical storage location of a file is changed (for example, moved from one partition
mounted on a system to another), the identification of the file changes as well.

For case of management, as well as for a variety of other reasons, the
administrator would like to control the physical storage location of a file. For example,
important files might be stored on expensive, high-performance file servers, while less
important files could be stored on less expensive and less capable file servers.

Unfortunately, moving files from one server to another usually changes the full
name of the files and thus, their identification, as well. This is usually a very disruptive
process, since after the move users may not be able to remember the new location of their
files. Thus, it is desirable to separate the physical storage location of a file from its
identification. With this separation, IT and system administrators will be able to control
the physical storage location of a file while preserving what the user perceives as the
location of the file (and thus its identity).

Deduplication is of no obvious benefit to the end users of a file system. Instead of
using deduplication as a management policy to reduce storage space and subsequently
cause inconvenience to the end users of the deduplicated files, this invention uses
deduplication as a storage placement policy to intelligently managed the storage assets of
an enterprise, with relatively little inconvenience to the end users.

In embodiments of the present invention, a set of file servers is designated as tier
1 where data stored in these file servers is considered more important to the enterprise.
Another (typically non-overlapping) set of file servers is designated as tier 2 storage

where data stored in these file servers is considered less important to the business. By

_47 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

using these two storage tiers to identify data important to the business, the system
administrators can spend more time and resources to provide faster access and more
frequent backup on the data stored on the tier 1 file servers.

Deduplication typically is treated as one of the storage placement policies that
decides where data should be stored, e.g., on a tier 1 or tier 2 file server.

In embodiments of the present invention, duplicated data is automatically moved
from tier 1 to tier 2. The total storage space used by the deduplicated data on tier 1 and
tier 2 remains the same (or perhaps even increases slightly). However, there is more
storage space available on tier 1 file servers as a result of deduplication, since all the
duplicated data is now stored on tier 2.

There may be performance differences between tier 1 and tier 2 file servers.
However, these differences tend to be small since the relatively inexpensive file servers
are still very capable. To maintain the same level of performance when accessing the
deduplicated files, as each set of duplicated files is moved from the tier 1 file servers, a
single instance copy of the file is left behind as a mirror copy. One of the tier 1 file
servers is designated as a mirror server where all of the mirror copies are stored. Read
access to a deduplicated file is redirected to the deduplicated file’s mirror copy. When
the first write to a deduplicated file is received, the association from the deduplicated file
stored in a tier 2 server to its mirror copy that is stored in a tier 1 server is discarded.
Accesses to the “modified” duplicated file will then resume normally from the tier 2 file
server. At a certain time, the “modified” deduplicated file is then migrated back to tier 1
storage.

Extending file virtualization to support deduplication is relatively straight
forward. First, a set of tier-1 servers is identified as a target for deduplication, and a set
of tier 2 servers is identified for receiving deduplicated data. One of the tier 1 file servers
is chosen as the mirror server. The mirror server is used to store the mirror copy of each
set of deduplicated files with identical contents.

A background deduplication process typically is run periodically within the file
virtualization appliance to perform the deduplication. Exemplary embodiments use a
shal digest computed from the contents of a file to identify files that have identical
contents. A shal digest value is a 160-bit globally unique value for any given set of data

(contents) of a file. Therefore, if two files are identical in contents (but not necessarily

_48 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

name or location), they should always have the same shal digest values. And conversely,
if two files are different in contents, they should always have different shal digest values.

An exemplary deduplication process for the namespace is as follows:

1) Each file stored in the tier 1 file servers that is idle is inspected. If the file has

already been deduped, it is skipped.

2) If the file does not have a shal digest value, it is computed and saved in the

metadata for the file.

3) A check is made if there is a mirror copy stored in the mirror server. If there is,
the file is deduped, and this algorithm loops around again with the next file on the

tier 1 file servers.

4) The shal digest value and the path name of the file are then added to an
internal list. If there is no existing entry in the internal list with an identical shal
digest value, the entry is added and this algorithm loops around again with the

next file on the tier 1 file servers..

5) If there is already an entry in the list with the identical shal digest value, the
current file, as well as the other file with the same shal digest value listed in the
internal list, will both be individually deduped and the entry in the internal list is
removed. This algorithm then loops around with the next file on the tier 1 file

SCrvers.

6) The deduplicated process will continue until all the files in the tier 1 storage are

processed.
It is possible that the shal digest value for a file marked for deduplication may

have changed before it is actually deduped. This case should occur relatively

infrequently. If it does occur, essentially the worst that can happen is that a file that

_49-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

really has no duplicate files in tier 1 gets deduplicated and migrated to tier 2. However,
the deduplicated file eventually should be migrated back to the tier 1 storage tier.
An exemplary process to dedupe a single file (called from the deduplication

process for the namespace) is as follows:

1) A check is made to see if there is a mirror copy with an identical shal digest.

2) If there is no mirror copy in the mirror server, a new mirror is made with the

shal digest and the associated file’s contents.

3) If there already is a mirror copy, the file is migrated to a tier 2 file server
according to the storage placement policy. The migrated file is marked as
deduplicated, and a mirror association is created between the migrated file and its

mirror copy.

When a non-deduplicated file that has a shal digest is opened for update, its shal
digest is immediately cleared.

When a deduplicated file is opened for update, its shal digest is immediately
cleared. The mirror association between the deduplicated copy and the mirror copy is
immediately broken. The file is no longer a deduplicated file (its deduplicated flag is
cleared), and an entry is added to a to-do list to migrate this file back to tier | storage in
the future.

When a deduplicated file is open for read, a check is made to see if there is a
mirror copy stored in the mirror server. If there is, subsequent read requests on the
deduplicated file will be switched to the mirror server for processing. Otherwise, the read
request is switched to the tier 2 file server containing the actual data of the deduplicated
file.

FIG. D-1 is a logic flow diagram for file deduplication using storage tiers in
accordance with an exemplary embodiment of the present invention. In block 202, a
deduplication device (e.g., a file switch) identifies a plurality of files stored in the
primary storage tier having identical file contents. In block 204, the deduplication device

copies the plurality of files to the secondary storage tier. In block 206, the deduplication

-50-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

device stores in the primary storage tier a single copy of the file contents. In block 208,
the deduplication device stores metadata for each of the plurality of files, the metadata
associating each of the file copies in the secondary storage tier with the single copy of the
file contents stored in the primary storage tier.

FIG. D-2 is a logic flow diagram deduplicating a selected file in the primary
storage tier in accordance with an exemplary embodiment of the present invention. In
block 302, the deduplication device, determines whether the file contents of the selected
file match the file contents of a previously deduplicated file having a single copy of file
contents stored in the primary storage tier. When the file contents of the selected file
match the file contents of a previously deduplicated file (YES in block 304), then the
deduplication device deduplicates the selected file in block 306, for example, by copying
the selected file to the secondary storage tier, deleting the file contents from the selected
file, and storing metadata for the selected file associating the file copy in the secondary
storage tier with the single copy of the file contents for the previously deduplicated file
stored in the primary storage tier. When the file contents of the selected file do not match
the file contents of any previously deduplicated file (NO in block 304), then the
deduplication device determines whether the file contents of the selected file match the
file contents of a non-duplicate file in the first storage tier in block 308. When the file
contents of the selected file match the file contents of a non-duplicate file (YES in block
310), then the deduplication device deduplicates both the selected file and the non-
duplicate file, for example, by copying the selected file and the non-duplicate file to the
secondary storage tier, storing in the primary storage tier a single copy of the file
contents, and storing metadata for each of the first and second selected files associating
cach of the file copies in the secondary storage tier with the single copy of the file
contents stored in the primary storage tier. When the file contents of the selected file do
not match the file contents of any non-duplicate file (NO in block 310), then the
deduplication device may add the selected file a list of non-duplicate files.

It should be noted that file deduplication as discussed herein may be implemented
using a file switches of the types described above and in the provisional patent
application referred to by Attorney Docket No. 3193/114. 1t should also be noted that

embodiments of the present invention may incorporate, utilize, supplement, or be

-51-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008
combined with various features described in one or more of the other referenced patent

applications.

SECTION E - FILE DEDUPLICATION USING COPY-ON-WRITE STORAGE
TIERS

Section D discloses a method of deduplication where duplicated files in one or
more file servers in tier-1 storage are migrated to one or more file servers in tier-2
storage. As a result, the storage space occupied by duplicated files in tier-1 storage is
reclaimed, while storage space in less expensive tier-2 storage is consumed for storing the
duplicated files migrated from tier-1. Furthermore, a mirror copy from each set of
duplicated files is left in the tier-1 storage for maintaining read performance. The
performance degradation that exists on update operation on deduplicated file is
eliminated since COW is not needed. While the deduplication method specified in the
co-pending application does not actually save total storage space consumed by the
duplicate files, it makes it easier for end-users to accept deduplication since they will
experience, at most, a very minor inconvenience. Furthermore, the number of files in
tier-1 storage is reduced by deduplication, resulting in faster backup of tier-1 file servers.

However, in some cases, the actual removal of all duplicated files is unlikely to
cause any inconvenience to end-users. For example, the contents of music or image files
are never changed once created and are therefore good candidates for deduplication. In
another case, files that have not been accessed for a long time are also good candidates,
since they are unlikely to be changed again any time soon.

Therefore, it would be desirable to provide deduplication of specified classes of
files.

It would be desirable to achieve deduplication with acceptable performance. It is
even more desirable to be able to dedupe across more file systems to achieve higher
deduplication efficiency. Furthermore, to reduce inconvenience experienced by end-
users due to the performance overhead of deduplication, deduplication itself should be
able to be performed on a selected set of files, instead of on every file in one or more

selected file servers. Finally, in the case where end-users are unlikely to experience

-52-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

inconvenience due to deduplication, deduplication should result in less utilization of
storage space by eliminating the storage of identical file copies.

In accordance with one aspect of the invention there is provided a method and file
virtualization appliance for deduplicating files using copy-on-write storage tiers.
Deduplicating files involves associating a number of files from the primary storage tier
with a copy-on-write storage tier having a designated mirror server and deduplicating the
files associated with the copy-on-write storage tier, such deduplicating including storing
in the designated mirror server of the copy-on-write storage tier a single copy of the file
contents for each duplicate and non-duplicate file associated with the copy-on-write
storage tier; deleting the file contents from each deduplicated file in the copy-on-write
storage tier to leave a sparse file; and storing metadata for each of the files, the metadata
associating each sparse file with the corresponding single copy of the file contents stored
in the designated mirror server.

In various alternative embodiments, associating a number of files from the
primary storage tier with a copy-on-write storage tier may involve maintaining the copy-
on-write storage tier separately from the primary storage tier and migrating the number of
files from the primary storage tier to the copy-on-write storage tier. Maintaining the
copy-on-write storage tier separately from the primary storage tier may involve creating a
synthetic namespace for the copy-on-write storage tier using file virtualization, the
synthetic namespace associated with a number of file servers, and wherein migrating the
number of files from the primary storage tier to the copy-on-write storage tier comprises
migrating a selected set of files from the synthetic namespace to the copy-on-write
storage tier. Associating a number of files from the primary storage tier with a copy-on-
write storage tier alternatively may involve marking the number of files as being
associated with the copy-on-write storage tier, wherein the copy-on-write storage tier is a
virtual copy-on-write storage tier. Associating a number of files from the primary storage
tier with a copy-on-write storage tier may involve maintaining a set of storage policies
identifying files to be associated with the copy-on-write storage tier and associating the
number of files with the copy-on-write storage tier based on the set of storage policies.
Storing a single copy of the file contents for each duplicate and non-duplicate file may
involve determining whether the file contents of a selected file in the copy-on-write

storage tier match the file contents of a previously deduplicated file having a single copy

-53-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

of file contents stored in the designated mirror server and when the file contents of the
first selected file do not match the file contents of any previously deduplicated file,
storing the file contents of the selected file in the designated mirror server. Determining
whether the file contents of a selected file in the copy-on-write storage tier match the file
contents of a previously deduplicated file having a single copy of file contents stored in
the designated mirror server may involve comparing a hash value associated with the
selected file to a hash values associated with the single copies of file contents for the
previously deduplicated files stored in the designated mirror server.

Deduplicating files may further involve purging unused mirror copies from the
designated mirror server. Purging unused mirror copies from the designated mirror
server may involve suspending file deduplication operations; identifying mirror copies in
the designated mirror server that are no longer in use; purging the unused mirror copies
from the designated mirror server; and enabling file deduplication operations. Identifying
mirror copies in the designated mirror server that are no longer in use may involve
identifying mirror copies in the designated mirror server that are no longer associated
with existing files associated with the copy-on-write storage tier. Identifying mirror
copies in the designated mirror server that are no longer associated with existing files in
the copy-on-write storage tier may involve constructing a list of hash values associated
with existing files in the copy-on-write storage tier; and for each mirror copy in the
designated mirror server, comparing a hash value associated with the mirror copy to the
hash values in the list of hash values, wherein the mirror copy is deemed to be an unused
mirror copy when the hash value associated with the mirror copy is not in the list of hash
values.

The method may further involve processing open requests for files associated
with the copy-on-write storage tier, such processing of open requests comprising:

receiving from a client an open request for a specified file associated with the
copy-on-write storage tier;

when the specified file is a non-deduplicated file:

creating a copy-on-write file handle for the specified file;
marking the copy-on-write file handle as ready; and

returning the copy-on write file handle to the client;

-54-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

when the specified file is a deduplicated file having a mirror copy of the file
contents stored in the designated mirror server:
opening the specified file;
creating a copy-on-write file handle for the specified file;
marking the copy-on-write file handle as not ready;
returning the copy-on write file handle to the client;
when the open request is for read:
obtaining a mirror file handle for the mirror copy from the
designated mirror server;
associating the mirror file handle with the copy-on-write file
handle;
opening the mirror copy;
marking the copy-on-write handle as ready, if the open mirror copy
is successful; and
marking the copy-on-write handle as ready with error, if the open
mirror copy is unsuccessful; and
when the open request is for update:
filling the contents of the specified file from the mirror copy of the
file contents stored in the designated mirror server; and
marking the copy-on-write handle as ready.
The mirror file handle for the mirror copy may be obtained from the designated
mirror server based on hash values associated with the specified file and the mirror copy.
The contents of the specified file may be filled from the copy of the file contents
stored in the designated mirror server using a background task.
The method may further involve processing file requests for files associated with
the copy-on-write storage tier. Such processing may involve:
receiving from the client a file request including the copy-on-write file handle;
when the copy-on-write file handle is marked as not ready:
suspending the file request until the contents of the specified file have
been refilled from the mirror copy;
marking the copy-on-write file handle as ready if the contents of the

specified file have been refilled successfully; and

-55.-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

marking the copy-on-write file handle as ready with error if the contents of
the specified file have been refilled unsuccessfully;

when the copy-on-write file handle is marked as ready with error, returning an
error indication to the client;

when the file request is a read operation and the copy-on-write file handle is
associated with a mirror file handle:

using the mirror file handle to retrieve data from the mirror copy stored in
the designated mirror server; and
returning the data to the client;

when the file request is a read operation and the copy-on-write file handle is not

associated with a mirror file handle:
using the copy-on-write file handle to retrieve data from the file; and
returning the data to the client;

when the file request is a write operation, using the copy-on-write file handle to
write data to the file in the copy-on-write storage tier; and

otherwise sending the file request to the file virtualization appliance.

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying
drawings, in which:

FIG. E-1 is a logic flow diagram for file deduplication using copy-on-write
storage tiers in accordance with an exemplary embodiment of the present invention.

Embodiments of the present invention relate generally to using a copy-on-write
storage tier to reclaim storage space of all duplicated files and recreate the contents of a
duplicated file from its mirror copy when an update is about to occur on the duplicated
file.

A traditional file system manages the storage space by providing a hierarchical
namespace. The hierarchical namespace starts from the root directory, which contains
files and subdirectories. Each directory may also contain files and subdirectories
identifying other files or subdirectories. Data is stored in files. Every file and directory
is identified by a name. The full name of a file or directory is constructed by

concatenating the name of the root directory and the names of each subdirectory that

-56 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

s
finally leads to the subdirectory containing the identified file or directory, together with
the name of the file or the directory.

The full name of a file thus carries with it two pieces of information: (1) the
identification of the file and (2) the physical storage location where the file is stored. If
the physical storage location of a file is changed (for example, moved from one partition
mounted on a system to another), the identification of the file changes as well.

For ease of management, as well as for a variety of other reasons, the
administrator would like to control the physical storage location of a file. For example,
important files might be stored on expensive, high-performance file servers, while less
important files could be stored on less expensive and less capable file servers.

Unfortunately, moving files from one server to another usually changes the full
name of the files and thus, their identification, as well. This is usually a very disruptive
process, since after the move users may not be able to remember the new location of their
files. Thus, it is desirable to separate the physical storage location of a file from its
identification. With this separation, IT and system administrators will be able to control
the physical storage location of a file while preserving what the user perceives as the
location of the file (and thus its identity).

Embodiments of the present invention utilize a Copy-On-Write (COW) storage
tier in which every file in any of the file servers in the storage tier is eventually
deduplicated, regardless whether there is any file in the storage tier that has identical
contents. This is in contrast with the typical deduplication, where only files with
identical contents are deduped.

Storage policies are typically used to limit the deduplication to only a set of files
selected by the storage policies that apply to a synthetic namespace comprising one or
more file servers. For example, one storage policy may migrate a specified class of files
(e.g., all mp3 audio and jpeg image files) to a COW storage tier. Another example is that
all files that have not been referenced for a specified period of time (¢.g., over six
months) are migrated to a COW storage tier. Once the files are in the COW storage tier,
deduplication is done on every file, regardless whether any file with duplicated contents
exists.

In an exemplary embodiment, extending file virtualization to support

deduplication using the COW storage tier operates generally as follows. First, a synthetic

_57-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

namespace is created via file virtualization, and is comprised of one or more file servers.
A set of storage policies is created that selects a set of files from the synthetic namespace
to be migrated to the COW storage tier.

A set of file servers are selected to be in the COW storage tier. One of the file
servers in a COW storage tier will also act as a mirror server. In exemplary
embodiments, a mirror server is storage that may contain the current, past, or both current
and past mirror copies of the authoritative copy of files stored at the COW storage tier.
In exemplary embodiments, each mirror copy in the mirror sever is associated with a
hash value, e.g., identified by a 160-bit number, which is the shal digest computed from
the contents of the mirror copy. A shal digest value is a globally unique value for any
given set of data (contents) of a file. Therefore, if two files are identical in contents (but
not necessarily name or location), they should always have the same shal digest values.
And conversely, if two files are different in contents, they should always have different
shal digest values.

The mirror server is a special device. While it can be written, the writing of it is
only performed by the file virtualization appliance itself, and each write to a file is only
done once. Users and applications only read the contents of files stored on the mirror
server. Basically, the mirror server is a sort of write once, read many (WORM) device.
Therefore, if the mirror server were replicated, users and applications could read from
any of the mirror servers available. By replicating the mirror server, one can increase the
availability (if one mirror server is unavailable, another mirror server can service the
request) and performance (multiple mirror servers can respond to reads from users and
applications in parallel, as well as having mirror servers that are closest to the requester
service the request).

Once a file is stored in a COW storage tier, the file will eventually be
deduplicated. For example, if there is no update made to any files in a COW storage tier,
then after a certain duration, all files in the COW storage tier will be deduped. After a
file is deduped, the file becomes a sparse file where essentially all of the file’s storage
space is reclaimed while all of the file’s attributes, including its size, remain.

A background deduplication process typically is run periodically within the file
aggregation appliance to perform the deduplication. An exemplary deduplication process

for a COW storage tier is as follows:

-58 -

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

10

15

20

25

30

1) Each file stored in a COW storage tier is inspected.

2) If the file is not idle, the file is skipped, and the deduplication process proceeds
with the next file stored in the COW storage tier.

3) If the file has already been deduped, the file is skipped, and the deduplication

process proceeds with the next file stored in the COW storage tier.

4) If the file does not have a shal digest value, the value is computed and saved in

the metadata for the file.

5) The file is deduped.

6) If the dedupe of the single file failed with an error code, then the deduplication
process logs the full name of the single file together with the error code in a log
file. The deduplication process will continue with the next file stored in the COW

storage tier.
7) If the dedupe of the single file returned with a success code, then this algorithm
loops around again with the next file. The deduplication process will continue

until all the files in the COW storage are processed.

An exemplary process to dedupe a single file (called from the deduplication

process for the namespace) is as follows:

1) The shal digest is retrieved from the metadata of the file.

2) A check is made to see if there is a mirror copy with an identical shal digest in

the mirror server.

-59-

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

10

15

20

25

30

3) If there is no mirror copy in the mirror server, a new mirror copy is made with
the shal digest and the file’s contents. If there is no space on the mirror server for

this new mirror copy, then this dedupe of a single file fails with an error code.
4) The storage space of the original file is released, resulting in a sparse file. The
deduped file is marked as deduplicated, and the dedupe process returns with a

success code.

When a file in COW storage tier is opened, the open request is actually sent to the

MFM that manages the COW storage tier. An exemplary process to open a file is as

follows:

1) Open the COW file. If the open is not successful, an error code is returned.

The open operation is complete.

2) Otherwise, the file handle from opening a file in the COW storage tier is called
the COW file handle. Notice that once a COW file is deduped, it becomes a

sparse file and does not contain any data.

3) If the open of the COW file is successful and if the file is not a deduped file,
the COW file handle is returned and the open operation is complete.

4) If the open of the file is successful and if the file is deduped, the COW file
handle is marked as not ready and this handle is returned to the user. The open

operation then continues as described below:

5) If the open is for read, then the shal digest is retrieved from the metadata and
the shal digest for the file is then used to obtain a mirror file handle from the
mirror server. If a mirror file handle is returned, the mirror file handle is
associated with the COW file handle and the COW file handle is marked as ready.
6) If the open mirror file fails, the file is marked as ready (but with error). The

open operation is complete.

-60 -

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

10

15

20

25

30

7) If the open is for update, a background process will be informed to fill the
contents of a COW file from the file’s mirror copy stored in the mirror server.

The open operation is complete.

When a file request is sent to the MFM, it includes a COW file handle.

Exemplary steps for handling a file identified by the COW file handle are as follows:

1) If the COW file handle is marked as not ready, the request will be suspended
until the COW file handle is ready (i.e. the file to be opened is made non-sparse,
and the data from the mirror copy was copied into the original file in the COW

storage).

2) If the COW file handle is marked as ready (but with error), an I/O error is

returned.

3) If the request is a read operation and if the mirror file handle exists, the mirror
file handle is used to retrieve the data. Otherwise, the COW file handle is used to
retrieve the data. The result from either the COW file or the mirror server is

returned to the user.

4) If the request is a write operation, the COW file handle is used to write the data
to the COW storage.

5) If the request is an I/O control call sent from the background copy process
informing that the contents of a COW file has been refilled from its mirror copy,
the file is marked as ready. Otherwise, the file is marked as ready (but with
error). Those suspended processes waiting for the not ready flag to be cleared

will be woken up and their operations resumed.

6) Otherwise, all operations are sent to the MFM and processed by MFM.

_61-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

As more mirror file copies are added into the mirror server, the past mirror file
copies will need to be purged from the mirror server or the mirror server will eventually
run out of storage space. An exemplary process to purge past mirror copies from the

mirror server is as follows:

1) If the deduplication process is running, terminate that process and try again

later.

2) Set up a lock to prevent the deduplication process from running.

3) Construct a list of in-use mirrors as follows:

a) Each file stored in a COW storage tier is inspected.

b) If the file is not idle, the file is skipped, and the purge process proceeds
with the next file stored in the COW storage tier.

¢) If the file does not have a shal digest value, the file is skipped, and the

purge process proceeds with the next file stored in the COW storage tier.

d) Obtain the shal digest value from the file and add this value to the in-

use mirror list.

¢) This algorithm loops around again with the next file. The purge process

will continue until all the files in the COW storage are processed.

4) After the in-user mirror list is constructed, the process to locate and purge past

mirror file copies from the mirror server is as follows:

a) Each mirror copy stored in a COW storage tier is inspected.

b) Obtain the shal digest value of the mirror.

_62-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

¢) If the shal digest value is not found in the in-user mirror list, purge the

mirror from the mirror server

d) This algorithm loops around again with the next mirror. The purge
process will continue until all of the mirror copies in the mirror server are

processed.

5) The lock to prevent the deduplication process from running is released.

Some enterprises or locations may not have multiple storage tiers available to
setup a copy-on-write storage tier, or not have enough available storage in an available
tier to store the large amount of mp3 and image files that a storage policy would dictate
be stored on the copy-on-write storage tier. A new storage tier is just that, a new storage
tier to create and manage.

Therefore, an alternative embodiment removes the restriction that the copy-on-
write storage tier is a separate and real physical storage tier. The copy-on-write storage
tier may just be some part of another storage tier, such as tier-1 or tier-2 storage, thus
becoming a virtual storage tier. Rather than copying files to an actual storage tier, files
could be marked as a part of the virtual storage tier by virtue of a metadata flag, hereafter
referred to as the COW flag. If the COW flag is false, the file is just a part of the storage
tier the file resides within. If the COW flag is true, the file is not part of the storage tier
the file resides within. Rather, the file is part of the virtual copy-on-write storage tier.

Some advantages of this approach are that the files need not be copied to a
physical tier of storage first, before deduplication. Furthermore, the IT administrator
continues to just manage a single tier (or the same number of tiers as they were managing
previously).

In addition to these advantages, all of the advantages of a physically separate
COW tier discussed above generally continue to hold, including achieving deduplication
with acceptable performance, the ability to dedupe across more file systems to achieve
higher deduplication efficiency, and reducing the inconvenience experienced by end-

users due to the performance overhead of deduplication based on a storage policy of

-63-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

deduping a selected set of files, while still resulting in less utilization of storage space by
climinating the storage of identical file copies.

As before, every file within the virtual copy-on-write storage tier will eventually
be deduped, regardless whether there is any file in the virtual storage tier that has
identical contents. This is in contrast with the typical deduplication, where only files
with identical contents are deduped.

As above, a set of storage policies is created that selects a set of files from the
synthetic namespace to be migrated to the virtual COW storage tier. If the files already
reside on the tier which co-resides with the virtual COW storage tier, then no actual
migration is performed. Rather, the COW flag within the metadata indicating that the file
has been migrated to the virtual COW storage tier is set. If the file resides on a different
storage tier than the virtual COW storage tier, then a physical migration is performed to
the COW storage tier. Again, the COW flag within the metadata indicating that the file
has been migrated to the virtual COW storage tier is set.

Alternatively, there may be a single virtual COW storage tier for all physical
storage tiers within the namespace. In this case, when a storage policy indicates that a
file should be migrated to the virtual COW storage tier, no physical migration is ever
performed. The COW flag within the metadata indicating that the file has been migrated
to the virtual COW storage is set. In this way, there generally is no need to select a set of
file servers to be in the COW storage tier.

There is still the need to select one of the file servers to act as a mirror server.

Once a file is stored in the virtual COW storage tier, the file will eventually be
deduped. In other words, if there is no update made to any files in a virtual COW storage
tier, then after a certain duration, all files in the virtual COW storage tier will be deduped.
After a file is deduped, the file becomes a sparse file where all of the file’s storage space
is reclaimed while all of the file’s attributes, including its size, remain. Since the file just
resides within a regular storage tier, the storage space that is reclaimed is the valuable tier
storage space the file used to occupy.

As above, a background deduplication process typically is run periodically within
the MFM to perform the deduplication. An exemplary deduplication process for a virtual

COW storage tier is as follows:

-64-

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

10

15

20

25

30

1) Each file stored in the storage tier (or namespace) is inspected.

2) If the file is not in the virtual COW storage tier as indicated by the COW flag
in the metadata, then the file is skipped, and the deduplication process proceeds

with the next file stored in the storage tier (or namespace).

3) If the file is not idle, the file is skipped, and the deduplication process proceeds

with the next file stored in the storage tier (or namespace).

4) If the file has already been deduped, the file is skipped, and the deduplication

process proceeds with the next file stored in the storage tier (or namespace).

5) If the file does not have a shal digest value, the value is computed and saved in

the metadata for the file.

6) The file is deduped.

7) If the dedupe of the single file failed with an error code, then the deduplication
process logs the full name of the single file together with the error code in a log
file. The deduplication process will continue with the next file stored in the

storage tier (or namespace).
8) If the dedupe of the single file returned with a success code, then this algorithm
loops around again with the next file. The deduplication process will continue

until all the files in the storage tier (or namespace) are processed.

An exemplary process to dedupe a single file (as called by the deduplication

process above) is essentially unchanged from the process described above. An exemplary

process to dedupe a single file is as follows:

1) The shal digest is retrieved from the metadata of the file.

-65-

10

15

20

25

30

WO 200

9/064720 PCT/US2008/083117

3193-132W0-966152

11/11/2008

2) A check is made to see if there is a mirror copy with an identical shal digest in

the mirror server.

3) If there is no mirror copy in the mirror server, a new mirror copy is made with
the shal digest and the file’s contents. If there is no space on the mirror server for

this new mirror copy, then this dedupe of a single file fails with an error code.
4) The storage space of the original file is released, resulting in a sparse file. The
deduped file is marked as deduplicated, and the dedupe process returns with a

success code.

When a file is opened, the open request is actually sent to an MFM that manages

the partition of the namespace. An exemplary process to open a file is as follows:

1) Determine if this is a COW file by checking the COW flag indicating if this file
is part of the virtual COW storage tier. If not, return the results of the normal

open call.

2) Open the COW file. If the open is not successful, an error code is returned.

The open operation is complete.

3) Otherwise, the file handle from opening a file in the virtual COW storage tier is
called the COW file handle. Notice that once a COW file is deduped, it becomes
a sparse file and does not contain any data. Also notice that this COW file handle

is really the normal file handle for opening the file in its normal place.

4) If the open of the COW file is successful and if the file is not a deduped file,
the COW file handle is returned and the open operation is complete.

5) If the open of the file is successful and if the file is deduped, the COW file
handle is marked as not ready and this handle is returned to the user. The open

operation then continues as described below:

- 66 -

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

10

15

20

25

30

6) If the open is for read, then the shal digest is retrieved from the metadata and
the shal digest for the file is then used to obtain a mirror file handle from the
mirror server. If a mirror file handle is returned, the mirror file handle is
associated with the COW file handle and the COW file handle is marked as ready.
If the open mirror file fails, the file is marked as ready (but with error). The open

operation is complete.
7) If the open is for update, a background process will be informed to fill the
contents of a COW file from the file’s mirror copy stored in the mirror server.

The open operation is complete.

When a file request is sent to the MFM, it must include a file handle. Exemplary

steps for handling a file are as follows:

1) If the file is a COW file (determined by checking the COW flag indicating
COW storage tier), then continue using the file handle as the COW file handle.

Otherwise, handle the file request as normal.

2) If the COW file handle is marked as not ready, the request will be suspended
until the COW file handle is ready (i.e. the file to be opened is made non-sparse,
and the data from the mirror copy was copied into the original file in the COW

storage).

3) If the COW file handle is marked as ready (but with error), an 1/O error is

returned.

4) If the request is a read operation and if the mirror file handle exists, the mirror
file handle is used to retrieve the data. Otherwise, the COW file handle is used to
retrieve the data. The result from either the COW file or the mirror server is

returned to the user.

_67-

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

5) If the request is a write operation, the COW file handle is used to write the data
to the COW storage.

6) If the request is an I/O control call sent from the background copy process
informing that the contents of a COW file has been refilled from its mirror copy,
the file is marked as ready. Otherwise, the file is marked as ready (but with
error). Those suspended processes waiting for the not ready flag to be cleared

will be woken up and their operations resumed.

7) Otherwise, all operations are sent to the MFM and processed by the MFM.

As more mirror file copies are added into the mirror server, the past mirror file
copies will need to be purged from the mirror server or the mirror server will eventually
run out of storage space. An exemplary process to purge past mirror copies from the

mirror server is as follows:

1) If the deduplication process is running, terminate the purge past mirror process

and try again later.

2) Set up a lock to prevent the deduplication process from running.

3) Construct a list of in-use mirrors as follows:
a) Each file stored in the storage tier or namespace is inspected
b) If the file is not part of the virtual COW storage tier, the file is skipped,
and the purge process proceeds with the next file in the storage tier (or

namespace)

c) If the file is not idle, the file is skipped, and the purge process proceeds

with the next file stored in the storage tier (or namespace).

-68-

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

d) If the file does not have a shal digest value, the file is skipped, and the
purge process proceeds with the next file stored in the storage tier (or

namespace).

¢) Obtain the shal digest value from the file and add this value to the in-

use mirror list.
f) This algorithm loops around again with the next file. The purge process
will continue until all the files in the storage tier (or namespace) are
processed.
4) After the in-user mirror list is constructed, the process to locate and purge past
mirror file copies from the mirror server is performed as indicated in the co-patent
application File Deduplication Using Copy-On-Write Storage Tiers:
a) Each mirror copy stored in a mirror server is inspected.

b) Obtain the shal digest value of the mirror.

c) If the shal digest value is not found in the in-use mirror list, purge the

mirror from the mirror server
d) This algorithm loops around again with the next mirror. The purge
process will continue until all of the mirror copies in the mirror server are
processed.

5) The lock to prevent the deduplication process from running is released.

It should be noted that the in-user mirror list in an actual embodiment may be

implemented as a hash table, a binary tree, or using other data structures commonly used

by the people skilled in the art to achieve acceptable find performance.

-69-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

As described here, it is still possible that the mirror server completely fills up
(even though past mirror copies are purged). Therefore, the mirror server should be as
large as possible, to accommodate at least one copy of all files that can exist in the COW
storage tier. Otherwise, the mirror server may run out of space, and further deduplication
will not be possible.

The related application entitled Remote File Virtualization Data Mirroring, a
mechanism to purge mirror copies from the mirror server (any mirror copy can be purged
at any given time, since an authoritative copy exists elsewhere) discusses a process for
purging past mirror copies from the mirror server. Such purging of in-use mirror copies
generally cannot be used in embodiments of the present invention. This is because a file
that has been deduped in the COW storage tier only exists as a sparse file (no data in the
file) and as a mirror copy. Thus, the mirror copy is actually the authoritative copy of the
data contents of the deduped file. An in-use mirror copy is not purged because, among
other things, it is difficult to locate and restore the contents of all the COW files that have
the same identical mirror copy.

FIG. E-1 is a logic flow diagram for file deduplication using copy-on-write
storage tiers in accordance with an exemplary embodiment of the present invention. In
block 201, the file virtualization appliance associates a number of files from the primary
storage tier with a copy-on-write storage tier having a designated mirror server. In block
203, the file virtualization appliance stores in the designated mirror server a single copy
of the file contents for each duplicate and non-duplicate file associated with the copy-on-
write storage tier. In block 205, the file virtualization appliance deletes the file contents
from each deduplicated file in the copy-on-write storage tier to leave a sparse file. In
block 207, the file virtualization appliance stores metadata for each of the files, the
metadata associating each sparse file with the corresponding single copy of the file
contents stored in the designated mirror server. In block 209, the file virtualization
appliance purges unused mirror copies from the designated mirror server from time to
time. In block 211, the file virtualization appliance processes open requests for files
associated with the copy-on-write storage tier including creating COW files handles for
such files. In block 213, the file virtualization appliance processes file requests for files

associated with the COW storage tier based on COW file handles.

-70 -

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

It should be noted that file deduplication as discussed herein may be implemented
using a file switches of the types described above and in the provisional patent
application referred to by Attorney Docket No. 3193/114. It should also be noted that
embodiments of the present invention may incorporate, utilize, supplement, or be
combined with various features described in one or more of the other referenced patent

applications.

MISCELLANEOUS

It should be noted that terms such as “client,” “server,” “switch,” and “node” may
be used herein to describe devices that may be used in certain embodiments of the present
invention and should not be construed to limit the present invention to any particular
device type unless the context otherwise requires. Thus, a device may include, without
limitation, a bridge, router, bridge-router (brouter), switch, node, server, computer,
appliance, or other type of device. Such devices typically include one or more network
interfaces for communicating over a communication network and a processor (e.g., a
microprocessor with memory and other peripherals and/or application-specific hardware)
configured accordingly to perform device functions. Communication networks generally
may include public and/or private networks; may include local-area, wide-area,
metropolitan-area, storage, and/or other types of networks; and may employ
communication technologies including, but in no way limited to, analog technologies,
digital technologies, optical technologies, wireless technologies (e.g., Bluetooth),
networking technologies, and internetworking technologies.

It should also be noted that devices may use communication protocols and
messages (e.g., messages created, transmitted, received, stored, and/or processed by the
device), and such messages may be conveyed by a communication network or medium.
Unless the context otherwise requires, the present invention should not be construed as
being limited to any particular communication message type, communication message
format, or communication protocol. Thus, a communication message generally may
include, without limitation, a frame, packet, datagram, user datagram, cell, or other type

of communication message.

-71-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

It should also be noted that logic flows may be described herein to demonstrate
various aspects of the invention, and should not be construed to limit the present
invention to any particular logic flow or logic implementation. The described logic may
be partitioned into different logic blocks (e.g., programs, modules, functions, or
subroutines) without changing the overall results or otherwise departing from the true
scope of the invention. Often times, logic elements may be added, modified, omitted,
performed in a different order, or implemented using different logic constructs (e.g., logic
gates, looping primitives, conditional logic, and other logic constructs) without changing
the overall results or otherwise departing from the true scope of the invention.

The present invention may be embodied in many different forms, including, but in
no way limited to, computer program logic for use with a processor (¢.g., a
microprocessor, microcontroller, digital signal processor, or general purpose computer),
programmable logic for use with a programmable logic device (e.g., a Field
Programmable Gate Array (FPGA) or other PLD), discrete components, integrated
circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means
including any combination thereof. In a typical embodiment of the present invention,
predominantly all of the described logic is implemented as a set of computer program
instructions that is converted into a computer executable form, stored as such in a
computer readable medium, and executed by a microprocessor under the control of an
operating system.

Computer program logic implementing all or part of the functionality previously
described herein may be embodied in various forms, including, but in no way limited to,
a source code form, a computer executable form, and various intermediate forms (e.g.,
forms generated by an assembler, compiler, linker, or locator). Source code may include
a series of computer program instructions implemented in any of various programming
languages (e.g., an object code, an assembly language, or a high-level language such as
Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating
environments. The source code may define and use various data structures and
communication messages. The source code may be in a computer executable form (e.g.,
via an interpreter), or the source code may be converted (e.g., via a translator, assembler,

or compiler) into a computer executable form.

_72-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

The computer program may be fixed in any form (e.g., source code form,
computer executable form, or an intermediate form) either permanently or transitorily in
a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g.,
PCMCIA card), or other memory device. The computer program may be fixed in any
form in a signal that is transmittable to a computer using any of various communication
technologies, including, but in no way limited to, analog technologies, digital
technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The computer program may be
distributed in any form as a removable storage medium with accompanying printed or
electronic documentation (e.g., shrink wrapped software), preloaded with a computer
system (e.g., on system ROM or fixed disk), or distributed from a server or electronic
bulletin board over the communication system (e.g., the Internet or World Wide Web).

Hardware logic (including programmable logic for use with a programmable logic
device) implementing all or part of the functionality previously described herein may be
designed using traditional manual methods, or may be designed, captured, simulated, or
documented electronically using various tools, such as Computer Aided Design (CAD), a
hardware description language (¢.g., VHDL or AHDL), or a PLD programming language
(e.g., PALASM, ABEL, or CUPL).

Programmable logic may be fixed either permanently or transitorily in a tangible
storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM,
EEPROM, or Flash-Programmable RAM), a magnetic memory device (¢.g., a diskette or
fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The
programmable logic may be fixed in a signal that is transmittable to a computer using any
of various communication technologies, including, but in no way limited to, analog
technologies, digital technologies, optical technologies, wireless technologies (e.g.,
Bluetooth), networking technologies, and internetworking technologies. The
programmable logic may be distributed as a removable storage medium with
accompanying printed or electronic documentation (e.g., shrink wrapped software),

preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed

-73-

WO 2009/064720 PCT/US2008/083117

3193-132W0-966152
11/11/2008

from a server or electronic bulletin board over the communication system (e.g., the
Internet or World Wide Web).

The present invention may be embodied in other specific forms without departing
from the true scope of the invention. Any references to the “invention” are intended to
refer to exemplary embodiments of the invention and should not be construed to refer to
all embodiments of the invention unless the context otherwise requires. The described

embodiments are to be considered in all respects only as illustrative and not restrictive.

-74-

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

What 1s claimed is:

1. In an aggregated filesystem having a cluster of file storage nodes and a distributed
filesystem server (DFS) node, the file storage nodes collectively maintaining a shared
storage including a plurality of non-overlapping portions, each file storage node owning
at least one of the non-overlapping portions and including for each non-overlapping
portion not owned by the file storage node a file virtualization link identifying another
file storage node for the non-overlapping portion, the DFS node mapping each non-
overlapping portion to a file storage node, a method for load sharing by the file storage
nodes, the method comprising:

generating client requests by a number of client nodes, each client request
identifying a non-overlapping portion and directed to a specific file storage node based
on an access to the DFS server or information in a client cache; and

for each client request received by a file storage node, servicing the client request
by the receiving file storage node if the receiving file storage node owns the identified
non-overlapping portion and otherwise forwarding the client request by the receiving file

storage node to another file storage node identified using the file virtualization links.
2. A method according to claim 1, further comprising;:
migrating a specified non-overlapping portion from a source file storage node to a

destination file server node.

3. A method according to claim 2, wherein the specified non-overlapping portion is

migrated due to reconfiguration of the cluster.

4. A method according to claim 2, wherein the specified non-overlapping portion is

migrated based on loading of the source file storage node.

5. A method according to claim 2, wherein migrating a specified non-overlapping

portion from a source file storage node to a destination file server node comprises:

75

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

establishing a file virtualization link on the destination file server node, the file
virtualization link identifying the file storage node that owns the non-overlapping
portion;

updating the cluster resource to map the non-overlapping portion to the
destination file storage node;

building metadata for the non-overlapping portion on the destination file storage
node using sparse files such that all file and directory attributes of the non-overlapping
portion are replicated on the destination file storage node without any data, and during
such building, forwarding client requests received for the non-overlapping portion by the
destination file storage node to the file storage node that owns the non-overlapping
portion based on the file virtualization link;

after building the metadata for the non-overlapping portion on the destination file
storage, copying data for the non-overlapping portion from the source file storage node to
the destination file storage node, and during such copying, servicing metadata requests
received for the non-overlapping portion by the destination file storage node using the
metadata and forwarding data requests received for the non-overlapping portion by the
destination file storage node to the file storage node that owns the non-overlapping
portion based on the file virtualization link; and

after completion of the copying, designating the destination file storage node as
the owner of the non-overlapping portion and thereafter servicing client requests received

for the non-overlapping portion by the destination file storage node.

6. A method according to claim 5, wherein the destination file storage node is an

existing file storage node in the cluster.

7. A method according to claim 5, wherein the destination file storage node is a new

file storage node added to the cluster.

8. In an aggregated filesystem having a plurality of file storage nodes and a
distributed filesystem server (DFS) node, the file storage nodes collectively maintaining a
shared storage including a plurality of non-overlapping portions, each file storage node

owning at least one of the non-overlapping portions and including for each non-

76

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

overlapping portion not owned by the file storage node a file virtualization link
identifying another file storage node for the non-overlapping portion, the DFS node
mapping each non-overlapping portion to a file storage node, a method for load sharing
by a file storage node, the method comprising:

receiving, by the file storage node, a client request identifying a non-overlapping
portion;

when the file storage node owns the identified non-overlapping portion, servicing
the client request by the file storage node; and

when the file storage node does not own the identified non-overlapping portion,
forwarding the client request by the file storage node to another file storage node

identified using the file virtualization links.

9. A method according to claim 8, further comprising;:

migrating a specified non-overlapping portion from another file storage node.

10. A method according to claim 9, wherein migrating a specified non-overlapping
portion from another file storage node comprises:

maintaining a file virtualization link to the specified non-overlapping portion on
the other file storage node;

migrating metadata for the specified non-overlapping portion from the other file
storage node;

after migrating the metadata, migrating data for the specified non-overlapping
portion from the other file storage node; and

after migrating the data, breaking the file virtualization link.
11. A method according to claim 10, further comprising:
while migrating the metadata, redirecting requests for the specified non-

overlapping portion to the other file storage node.

12. A method according to claim 10, further comprising:

77

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

while migrating the data, servicing metadata requests for the specified non-
overlapping portion from the migrated metadata and forwarding data request for the

specified non-overlapping portion to the other file storage node.

13. A method according to claim 10, further comprising:
after breaking the file virtualization link, servicing requests for the specified non-

overlapping portion from the migrated metadata and data.

14. A method according to claim 9, wherein migrating the specified non-overlapping
portion from the other file storage node is done for at least one of load sharing and

hotspot mitigation.

15. A file storage node for use in an aggregated filesystem having a plurality of file
storage nodes and a distributed filesystem (DFS) node, the file storage nodes collectively
maintaining a shared storage including a plurality of non-overlapping portions, each file
storage node owning at least one of the non-overlapping portions and including for each
non-overlapping portion not owned by the file storage node a file virtualization link
identifying another file storage node for the non-overlapping portion, the DFS node
mapping each non-overlapping portion to a file storage node, the file storage node
comprising:

a network interface for receiving a client request identifying a non-overlapping
portion; and

a processor configured to service the client request if the file storage node owns
the identified non-overlapping portion and to forward the client request to another file
storage node identified using the file virtualization links if the file storage node does not

own the identified non-overlapping portion.

16. A file storage node according to claim 15, wherein the processor is further

configured to migrate a specified non-overlapping portion from another file storage node.

17. A file storage node according to claim 16, wherein the processor is configured to

migrate a specified non-overlapping portion from another file storage node by

78

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

maintaining a file virtualization link to the specified non-overlapping portion on the other
file storage node; migrating metadata for the specified non-overlapping portion from the
other file storage node; after migrating the metadata, migrating data for the specified non-
overlapping portion from the other file storage node; and after migrating the data,

breaking the file virtualization link.

18. A file storage node according to claim 17, wherein the processor is configured to
redirect requests for the specified non-overlapping portion to the other file storage node

while migrating the metadata.

19. A file storage node according to claim 17, wherein the processor is configured to
service metadata requests for the specified non-overlapping portion from the migrated
metadata and forward data request for the specified non-overlapping portion to the other

file storage node while migrating the data.

20. A file storage node according to claim 17, where in the processor is configured to
service requests for the specified non-overlapping portion from the migrated metadata

and data after breaking the file virtualization link.

21. Inaswitched file system having a file switch in communication with a plurality of
file servers including at least a source server and a destination server, where the source
server manages a source native volume, a method for non-disruptive migration of the
native volume from the source server to the destination server, the method comprising:

converting, by the file switch, the source native volume to a native with metadata
volume using a local file system managed by the file switch;

converting, by the file switch, the native with metadata volume to a mirrored
native with metadata volume including the source server and the destination server, the
destination server including a mirror copy of the native with metadata volume;

removing, by the file switch, the source server from the mirrored native with
metadata volume; and

converting, by the file switch, the mirror copy of the native with metadata volume

on the destination server to a destination native volume on the destination server.

79

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

22. A method according to claim 21, wherein converting the source native volume to
the native with metadata volume comprises:

for each source directory in the source native volume, creating a corresponding
local directory in the local file system including metadata associated with the source
directory copied from the source native volume; and

for each source file in the source native volume, creating a corresponding local
sparse file in the local file system including file attributes copied from the source native

volume but excluding the file contents associated with the source file.

23. A method according to claim 22, wherein the metadata associated with the source

directory copied from the source native volume comprises directory security descriptors.

24. A method according to claim 22, wherein creating a local directory for a source
directory comprises:

opening the source directory in the source native volume;

placing a lock on the source directory; and

creating the local directory and its metadata.

25. A method according to claim 21, wherein converting the native with metadata
volume to the mirrored native with metadata volume comprises:

for each local directory, creating a corresponding destination directory in the
destination server and maintaining a mapping of the local directory to a source directory
pathname for the corresponding source directory in the source server and to a destination
directory pathname for the corresponding destination directory in the destination server;

for each local file, creating a corresponding destination file in the destination
server including file data copied from the source native volume and maintaining a
mapping of the local file to a source file pathname for the corresponding source file in the
source server and to a destination file pathname for the corresponding destination file in

the destination server.

80

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

26. A method according to claim 25, wherein each mapping includes an indicator of

the number of servers associated with the mirrored native with metadata volume.

27. A method according to claim 25, wherein removing the source server from the
mirrored native with metadata volume comprises:
disabling usage of the source destination pathnames and the source file

pathnames.

28. A method according to claim 25, wherein converting the mirror copy of the native
with metadata volume on the destination server to a destination native volume comprises:
replicating state information for the destination directories and the destination
files from the source native volume;
disabling usage of the local directories and local files; and

advertising the destination directories and destination files as a native volume.

29. A method according to claim 28, wherein converting the mirror copy of the native
with metadata volume on the destination server to a destination native volume further
comprises:

deleting unneeded metadata associated with the mirror copy of the native with

metadata volume from the destination server.

30. A file switch for non-disruptive file migration in a switched file system having a
plurality of file servers including at least a source server and a destination server, where
the source server manages a source native volume, the file switch comprising:

a network interface for communication with the file servers; and

a processor coupled to the network interface and configured to convert the source
native volume to a native with metadata volume using a local file system managed by the
file switch; convert the native with metadata volume to a mirrored native with metadata
volume including the source server and the destination server, the destination server
including a mirror copy of the native with metadata volume; remove the source server

from the mirrored native with metadata volume; and convert the mirror copy of the native

81

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

with metadata volume on the destination server to a destination native volume on the

destination server.

31. A file switch according to claim 30, wherein the processor is configured to
convert the source native volume to the native with metadata volume by creating, for
each source directory in the source native volume, a corresponding local directory in the
local file system including metadata associated with the source directory copied from the
source native volume; and creating, for each source file in the source native volume, a
corresponding local sparse file in the local file system including file attributes copied
from the source native volume but excluding the file contents associated with the source

file.

32. A file switch according to claim 31, wherein the metadata associated with the
source directory copied from the source native volume comprises directory security

descriptors.

33. A file switch according to claim 31, wherein the processor is configured to create
a local directory for a source directory by opening the source directory in the source
native volume; placing a lock on the source directory; and creating the local directory and

its metadata.

34. A file switch according to claim 30, wherein the processor is configured to
convert the native with metadata volume to the mirrored native with metadata volume by
creating, for each local directory, a corresponding destination directory in the destination
server and maintaining a mapping of the local directory to a source directory pathname
for the corresponding source directory in the source server and to a destination directory
pathname for the corresponding destination directory in the destination server; and
creating, for each local file, a corresponding destination file in the destination server
including file data copied from the source native volume and maintaining a mapping of
the local file to a source file pathname for the corresponding source file in the source
server and to a destination file pathname for the corresponding destination file in the

destination server.

82

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

35. A file switch according to claim 34, wherein each mapping includes an indicator

of the number of servers associated with the mirrored native with metadata volume.

36. A file switch according to claim 34, wherein the processor is configured to
remove the source server from the mirrored native with metadata volume by disabling

usage of the source destination pathnames and the source file pathnames.

37. A file switch according to claim 34, wherein the processor is configured to
convert the mirror copy of the native with metadata volume on the destination server to a
destination native volume by replicating state information for the destination directories
and the destination files from the source native volume; disabling usage of the local
directories and local files; and advertising the destination directories and destination files

as a native volume.

38. A file switch according to claim 37, wherein the processor is configured to
convert the mirror copy of the native with metadata volume on the destination server to a
destination native volume further by deleting unneeded metadata associated with the

mirror copy of the native with metadata volume from the destination server.

39. In astorage network having one or more storage servers and having a distributed
file system (DFS) server that exports a global namespace consisting of file objects
exported by the storage servers in the storage network, and wherein clients of the storage
network always consult the DFS server for the identification of a storage server that
exports an unknown file object before accessing, and wherein clients of the storage
network may choose to access a known file object directly from its storage server without
consulting the DFS server for its accuracy, a method of inserting a file virtualization
appliance for maintaining consistency of the namespace during namespace
reconfiguration, the method comprising:

configuring a global namespace of the virtualization appliance to match a global

namespace exported by the distributed filesystem server; and

83

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

updating the distributed filesystem server to redirect client requests associated

with the global namespace to the virtualization appliance.

40. A method according to claim 39, further comprising:

after updating the distributed filesystem server, ensuring that no clients are
directly accessing the file servers; and

thereafter sending an administrative alert to indicate that insertion of the

virtualization appliance is complete.

41. A method according to claim 40, wherein ensuring that no clients are directly
accessing the file servers comprises:

identifying active client sessions running on the file servers; and

ensuring that the active client sessions include only active client sessions

associated with the virtualization appliance.

42. A method according to claim 41, wherein the virtualization appliance is
associated with a plurality of IP addresses, and wherein ensuring that the active client
sessions include only active client sessions associated with the virtualization appliance
comprises ensuring that the active client sessions include only active client sessions

associated with any or all of the plurality of IP addresses.

43. A method according to claim 40, wherein ensuring that no clients are directly
accessing the file servers comprises:
sending a session close command to a file server in order to terminate an active

client session unrelated to the virtualization appliance.

44. A method according to claim 40, wherein ensuring that no clients are directly
accessing the file servers comprises:

monitoring activity associated with active client sessions; and

sending an administrative alert presenting an administrator with an option to close

the active client sessions.

84

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

45. A method according to claim 40, wherein ensuring that no clients are directly
accessing the file servers comprises:
sending an alert to a client associated with an active client session requesting that

the client close the active client session.

46. A method according to claim 40, further comprising:
automatically reconfiguring a switch to create a VLAN for the virtualization

appliance.

47. A method according to claim 39, wherein the distributed filesystem server is

configured to follow the Distributed File System standard.

48. A method according to claim 39, wherein connecting a virtualization appliance to
the storage network includes:

connecting a first switch to a second switch, wherein the first switch is connected
to at least one file server;

connecting the virtualization appliance to the first switch;

connecting the virtualization appliance to the second switch; and

for each file server connected the first switch, disconnecting the file server from

the first switch and connecting the file server to the second switch.

49. A method for removing a virtualization appliance logically positioned between
client devices and file servers in a storage network having a distributed filesystem server,
the method comprising:

sending a global namespace from the virtualization appliance to the distributed
filesystem server; and

configuring the virtualization appliance to not respond to any new client

connection requests received by the virtualization appliance.
50. A method according to claim 49, further comprising:

disconnecting the virtualization appliance from the storage network after a

predetermined final timeout period.

85

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

51. A method according to claim 49, further comprising:
for any client request associated with an active client session received by the

virtualization appliance during a predetermined time window, closing the client session.

52. A method according to claim 51, wherein the predetermined time window is

between the end of a first timeout period and the predetermined final timeout period.

53. A method according to claim 49, wherein the distributed filesystem server is

configured to follow the Distributed File System standard.

54. In afile storage system having a primary storage tier and a secondary storage tier,
a method of deduplicating files from the primary storage tier, the method comprising:

identifying a plurality of files stored in the primary storage tier having identical
file contents;

copying the plurality of files to the secondary storage tier;

storing in the primary storage tier a single copy of the file contents; and

storing metadata for each of the plurality of files, the metadata associating each of
the file copies in the secondary storage tier with the single copy of the file contents stored

in the primary storage tier.

55. A method according to claim 54, wherein identifying the plurality of files stored
in the primary storage tier having identical file contents comprises:

computing, for each of the plurality of files, a hash value based on the contents of
the file; and

identifying the files having identical file contents based on the hash values.

56. A method according to claim 54, wherein storing the single copy of the file
contents in the primary storage tier comprises:

copying the file contents to a designated mirror server; and

deleting the remaining file contents from each of the plurality of files in the

primary storage tier.

86

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

57. A method according to claim 54, further comprising:
upon a read access to one of the plurality of files, directing the read access to the

single copy of the file contents maintained in the primary storage tier.

58. A method according to claim 54, further comprising:

upon a write access to one of the plurality of files, breaking the association
between the file copy in the secondary storage tier and the single copy of the file contents
stored in the primary storage tier and modifying the file copy stored in the secondary

storage tier.

59. A method according to claim 58, further comprising:
subsequently migrating the modified file copy from the secondary storage tier to

the primary storage tier based on a migration policy.

60. A method according to claim 54, wherein deduplicating a selected file in the
primary storage tier comprises:

determining whether the file contents of the selected file match the file contents of
a previously deduplicated file having a single copy of file contents stored in the primary
storage tier;

when the file contents of the selected file match the file contents of a previously
deduplicated file, deduplicating the selected file;

otherwise determining whether the file contents of the selected file match the file
contents of a non-duplicate file in the first storage tier; and

when the file contents of the selected file match the file contents of a non-

duplicate file, deduplicating both the selected file and the non-duplicate file.

61. A method according to claim 60, wherein determining whether the file contents of
the selected file match the file contents of a previously deduplicated file comprises:
comparing a hash value associated with the selected file to a distinct hash value

associated with each single copy of file contents stored in the primary storage tier.

87

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

62. A method according to claim 60, wherein deduplicating the selected file
comprises:

copying the selected file to the secondary storage tier;

deleting the file contents from the selected file; and

storing metadata for the selected file, the metadata associating the file copy in the
secondary storage tier with the single copy of the file contents for the previously

deduplicated file stored in the primary storage tier.

63. A method according to claim 60, wherein deduplicating both the selected file and
the non-duplicate file comprises:

copying the selected file and the non-duplicate file to the secondary storage tier;

storing in the primary storage tier a single copy of the file contents; and

storing metadata for each of the first and second selected files, the metadata
associating each of the file copies in the secondary storage tier with the single copy of the

file contents stored in the primary storage tier.

64. A method according to claim 63, wherein storing the single copy of the file
contents for deduplicating both the selected file and the non-duplicate file comprises:
copying the file contents to the designated mirror server; and
deleting the remaining file contents from the selected file and the non-duplicate

file.

65. A method according to claim 63, wherein determining whether the file contents of
the selected file match the file contents of a non-duplicate file in the primary storage tier
comprises:

maintaining a list of non-duplicate files in the primary storage tier, the list
including a distinct hash value for each non-duplicate file; and

comparing a hash value associated with the selected file to the hash values

associated with the non-duplicate files in the list.

66. A method according to claim 65, further comprising:

88

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

when the file contents of the selected file do not match the file contents of any

non-duplicate file, adding the selected file to the list of non-duplicate files.

67. A method according to claim 66, wherein adding the selected file to the list of
non-duplicate files comprises:

storing a pathname and a hash value associated with the selected file.

68. A method according to claim 65, deduplicating both the selected file and the non-
duplicate file further comprises:

removing the non-duplicate file from the list of non-duplicate files.

69. Apparatus for deduplicating files in a file storage system having a primary storage
tier and a secondary storage tier, the apparatus comprising:

at least one communication interface for communicating with storage devices in
the primary and secondary storage tiers; and

a processor configured to identify a plurality of files stored in the primary storage
tier having identical file contents; copy the plurality of files to the secondary storage tier;
store in the primary storage tier a single copy of the file contents; and store metadata for
cach of the plurality of files, the metadata associating each of the file copies in the
secondary storage tier with the single copy of the file contents stored in the primary

storage tier.

70. Apparatus according to claim 69, wherein the processor is configured to identify
the plurality of files stored in the primary storage tier having identical file contents by
computing, for each of the plurality of files, a hash value based on the contents of the file;

and identifying the files having identical file contents based on the hash values.

71. Apparatus according to claim 69, wherein the processor is configured to store the
single copy of the file contents in the primary storage tier by copying the file contents to
a designated mirror server; and deleting the remaining file contents from each of the

plurality of files in the primary storage tier.

89

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

72. Apparatus according to claim 69, wherein the processor is further configured to
direct a read access for one of the plurality of files to the single copy of the file contents

maintained in the primary storage tier.

73. Apparatus according to claim 69, wherein the processor is further configured to
break the association between a specified file copy in the secondary storage tier and the
single copy of the file contents stored in the primary storage tier and modify the file copy

stored in the secondary storage tier upon a write access to the specified file.

74. Apparatus according to claim 73, wherein the processor is further configured to
subsequently migrate the modified file copy from the secondary storage tier to the

primary storage tier based on a migration policy.

75. Apparatus according to claim 69, wherein the processor is configured to
deduplicate a selected file in the primary storage tier by determining whether the file
contents of the selected file match the file contents of a previously deduplicated file
having a single copy of file contents stored in the primary storage tier; when the file
contents of the selected file match the file contents of a previously deduplicated file,
deduplicating the selected file; otherwise determining whether the file contents of the
selected file match the file contents of a non-duplicate file in the first storage tier; and
when the file contents of the selected file match the file contents of a non-duplicate file,

deduplicating both the selected file and the non-duplicate file.

76. Apparatus according to claim 75, wherein the processor is configured to
determine whether the file contents of the selected file match the file contents of a
previously deduplicated file by comparing a hash value associated with the selected file
to a distinct hash value associated with each single copy of file contents stored in the

primary storage tier.
77. Apparatus according to claim 75, wherein the processor is configured to

deduplicate the selected file by copying the selected file to the secondary storage tier;

deleting the file contents from the selected file; and storing metadata for the selected file,

90

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

the metadata associating the file copy in the secondary storage tier with the single copy of

the file contents for the previously deduplicated file stored in the primary storage tier.

78. Apparatus according to claim 75, wherein the processor is configured to
deduplicate both the selected file and the non-duplicate file by copying the selected file
and the non-duplicate file to the secondary storage tier; storing in the primary storage tier
a single copy of the file contents; and storing metadata for each of the first and second
selected files, the metadata associating each of the file copies in the secondary storage

tier with the single copy of the file contents stored in the primary storage tier.

79. Apparatus according to claim 78, wherein the processor is configured to store the
single copy of the file contents for deduplicating both the selected file and the non-
duplicate file by copying the file contents to the designated mirror server; and deleting

the remaining file contents from the selected file and the non-duplicate file.

80. Apparatus according to claim 78, wherein the processor is configured to
determine whether the file contents of the selected file match the file contents of a non-
duplicate file in the primary storage tier by maintaining a list of non-duplicate files in the
primary storage tier, the list including a distinct hash value for each non-duplicate file;
and comparing a hash value associated with the selected file to the hash values associated

with the non-duplicate files in the list.

81. Apparatus according to claim 80, wherein the processor is further configured to
add the selected file to the list of non-duplicate files when the file contents of the selected

file do not match the file contents of any non-duplicate file.
82. Apparatus according to claim 81, wherein the processor is configured to add the

selected file to the list of non-duplicate files by storing a pathname and a hash value

associated with the selected file.

91

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

83. Apparatus according to claim 80, wherein the processor is further configured to
remove the non-duplicate file from the list of non-duplicate files upon deduplicating both

the selected file and the non-duplicate file.

84. Apparatus according to claim 69, wherein the apparatus is a file switch, and

wherein the storage devices are file servers managed in part by the file switch.

85. A method of deduplicating files from a primary storage tier by a file virtualization
appliance in a file storage system, the method comprising:
associating a number of files from the primary storage tier with a copy-on-write
storage tier having a designated mirror server; and
deduplicating the files associated with the copy-on-write storage tier, such
deduplicating including:
storing in the designated mirror server a single copy of the file contents for
cach duplicate and non-duplicate file associated with the copy-on-write storage tier;
deleting the file contents from each deduplicated file in the copy-on-write
storage tier to leave a sparse file; and
storing metadata for each of the files, the metadata associating each sparse
file with the corresponding single copy of the file contents stored in the designated mirror

SCrver.

86. A method according to claim 85, wherein associating a number of files from the
primary storage tier with a copy-on-write storage tier comprises:

maintaining the copy-on-write storage tier separately from the primary storage
tier; and

migrating the number of files from the primary storage tier to the copy-on-write

storage tier.

87. A method according to claim 86, wherein maintaining the copy-on-write storage
tier separately from the primary storage tier comprises creating a synthetic namespace for
the copy-on-write storage tier using file virtualization, the synthetic namespace

associated with a number of file servers, and wherein migrating the number of files from

92

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

the primary storage tier to the copy-on-write storage tier comprises migrating a selected

set of files from the synthetic namespace to the copy-on-write storage tier.

88. A method according to claim 85, wherein associating a number of files from the
primary storage tier with a copy-on-write storage tier comprises:
marking the number of files as being associated with the copy-on-write storage

tier, wherein the copy-on-write storage tier is a virtual copy-on-write storage tier.

89. A method according to claim 85, wherein associating a number of files from the
primary storage tier with a copy-on-write storage tier comprises:

maintaining a set of storage policies identifying files to be associated with the
copy-on-write storage tier; and

associating the number of files with the copy-on-write storage tier based on the

set of storage policies.

90. A method according to claim 85, wherein storing in the designated mirror server a
single copy of the file contents for each duplicate and non-duplicate file associated with
the copy-on-write storage tier comprises:

determining whether the file contents of a selected file in the copy-on-write
storage tier match the file contents of a previously deduplicated file having a single copy
of file contents stored in the designated mirror server; and

when the file contents of the first selected file do not match the file contents of
any previously deduplicated file, storing the file contents of the selected file in the

designated mirror server.

91. A method according to claim 90, wherein determining whether the file contents of
a selected file in the copy-on-write storage tier match the file contents of a previously
deduplicated file having a single copy of file contents stored in the designated mirror
Server comprises:

comparing a hash value associated with the selected file to hash values associated
with the single copies of file contents for the previously deduplicated files stored in the

designated mirror server.

93

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

92. A method according to claim 85, further comprising:

purging unused mirror copies from the designated mirror server.

93. A method according to claim 92, wherein purging unused mirror copies from the
designated mirror server comprises:
suspending file deduplication operations;
identifying mirror copies in the designated mirror server that are no longer in use;
purging the unused mirror copies from the designated mirror server; and

enabling file deduplication operations.

94. A method according to claim 93, wherein identifying mirror copies in the
designated mirror server that are no longer in use comprises:
identifying mirror copies in the designated mirror server that are no longer

associated with existing files associated with the copy-on-write storage tier.

95. A method according to claim 94, wherein identifying mirror copies in the
designated mirror server that are no longer associated with existing files in the copy-on-
write storage tier comprises:

constructing a list of hash values associated with existing files in the copy-on-
write storage tier; and

for each mirror copy in the designated mirror server, comparing a hash value
associated with the mirror copy to the hash values in the list of hash values, wherein the
mirror copy is deemed to be an unused mirror copy when the hash value associated with

the mirror copy is not in the list of hash values.

96. A method according to claim 85, further comprising:
receiving from a client an open request for a specified file associated with the
copy-on-write storage tier;
when the specified file is a non-deduplicated file:
creating a copy-on-write file handle for the specified file;

marking the copy-on-write file handle as ready; and

94

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

returning the copy-on write file handle to the client;
when the specified file is a deduplicated file having a mirror copy of the file
contents stored in the designated mirror server:
opening the specified file;
creating a copy-on-write file handle for the specified file;
marking the copy-on-write file handle as not ready;
returning the copy-on write file handle to the client;
when the open request is for read:
obtaining a mirror file handle for the mirror copy from the
designated mirror server;
associating the mirror file handle with the copy-on-write file
handle;
opening the mirror copy;
marking the copy-on-write handle as ready, if the open mirror copy
is successful; and
marking the copy-on-write handle as ready with error, if the open
mirror copy is unsuccessful; and
when the open request is for update:
filling the contents of the specified file from the mirror copy of the
file contents stored in the designated mirror server; and

marking the copy-on-write handle as ready.

97. A method according to claim 96, wherein the mirror file handle for the mirror
copy is obtained from the designated mirror server based on hash values associated with

the specified file and the mirror copy.
98. A method according to claim 96, wherein the contents of the specified file are
filled from the copy of the file contents stored in the designated mirror server by a

background task.

99. A method according to claim 96, further comprising:

receiving from the client a file request including the copy-on-write file handle;

95

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

when the copy-on-write file handle is marked as not ready:
suspending the file request until the contents of the specified file have
been refilled from the mirror copy;
marking the copy-on-write file handle as ready if the contents of the
specified file have been refilled successfully; and
marking the copy-on-write file handle as ready with error if the contents of
the specified file have been refilled unsuccessfully;
when the copy-on-write file handle is marked as ready with error, returning an
error indication to the client;
when the file request is a read operation and the copy-on-write file handle is
associated with a mirror file handle:
using the mirror file handle to retrieve data from the mirror copy stored in
the designated mirror server; and
returning the data to the client;
when the file request is a read operation and the copy-on-write file handle is not
associated with a mirror file handle:
using the copy-on-write file handle to retrieve data from the file; and
returning the data to the client;
when the file request is a write operation, using the copy-on-write file handle to
write data to the file in the copy-on-write storage tier; and

otherwise sending the file request to the file virtualization appliance.

100. A file virtualization appliance for deduplicating files from a primary storage tier
in a file storage system, the file virtualization appliance comprising:

a network interface for communication with the file servers; and

a processor coupled to the network interface and configured to associate a number
of files from the primary storage tier with a copy-on-write storage tier having a
designated mirror server and to deduplicate the files associated with the copy-on-write
storage tier, such deduplicating including:

storing in the designated mirror server a single copy of the file contents for each

duplicate and non-duplicate file associated with the copy-on-write storage tier;

96

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

deleting the file contents from each deduplicated file in the copy-on-write storage
tier to leave a sparse file; and

storing metadata for each of the files, the metadata associating each sparse file
with the corresponding single copy of the file contents stored in the designated mirror

SCrver.

101. A file virtualization appliance according to claim 100, wherein the processor is
configured to associate a number of files from the primary storage tier with a copy-on-
write storage tier by maintaining the copy-on-write storage tier separately from the
primary storage tier and migrating the number of files from the primary storage tier to the

copy-on-write storage tier.

102. A file virtualization appliance according to claim 101, wherein the processor is
configured to maintain the copy-on-write storage tier separately from the primary storage
tier by creating a synthetic namespace for the copy-on-write storage tier using file
virtualization, the synthetic namespace associated with a number of file servers, and
wherein migrating the number of files from the primary storage tier to the copy-on-write
storage tier comprises migrating a selected set of files from the synthetic namespace to

the copy-on-write storage tier.

103. A file virtualization appliance according to claim 100, wherein the processor is
configured to associate a number of files from the primary storage tier with a copy-on-
write storage tier by marking the number of files as being associated with the copy-on-
write storage tier, wherein the copy-on-write storage tier is a virtual copy-on-write

storage tier.

104. A file virtualization appliance according to claim 100, wherein the processor is
configured to associate a number of files from the primary storage tier with a copy-on-
write storage tier by maintaining a set of storage policies identifying files to be associated
with the copy-on-write storage tier and associating the number of files with the copy-on-

write storage tier based on the set of storage policies.

97

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

105. A file virtualization appliance according to claim 100, wherein the processor is
configured to store a single copy of the file contents for each duplicate and non-duplicate
file associated with the copy-on-write storage tier by determining whether the file
contents of a selected file in the copy-on-write storage tier match the file contents of a
previously deduplicated file having a single copy of file contents stored in the designated
mirror server and when the file contents of the first selected file do not match the file
contents of any previously deduplicated file, storing the file contents of the selected file

in the designated mirror server.

106. A file virtualization appliance according to claim 105, wherein the processor is
configured to determine whether the file contents of a selected file in the copy-on-write
storage tier match the file contents of a previously deduplicated file having a single copy
of file contents stored in the designated mirror server by comparing a hash value
associated with the selected file to hash values associated with the single copies of file

contents for the previously deduplicated files stored in the designated mirror server.

107. A file virtualization appliance according to claim 100, wherein the processor is

further configured to purge unused mirror copies from the designated mirror server.

108. A file virtualization appliance according to claim 107, wherein the processor is
configured to purge unused mirror copies from the designated mirror server by
suspending file deduplication operations; identifying mirror copies in the designated
mirror server that are no longer in use; purging the unused mirror copies from the

designated mirror server; and enabling file deduplication operations.

109. A file virtualization appliance according to claim 108, wherein the processor is
configured to identify mirror copies in the designated mirror server that are no longer in
use by identifying mirror copies in the designated mirror server that are no longer

associated with existing files associated with the copy-on-write storage tier.

110. A file virtualization appliance according to claim 109, wherein the processor is

configured to identify mirror copies in the designated mirror server that are no longer

98

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

associated with existing files in the copy-on-write storage tier by constructing a list of
hash values associated with existing files in the copy-on-write storage tier and for each
mirror copy in the designated mirror server, comparing a hash value associated with the
mirror copy to the hash values in the list of hash values, wherein the mirror copy is
deemed to be an unused mirror copy when the hash value associated with the mirror copy

is not in the list of hash values.

111. A method according to claim 100, wherein the processor is further configured to
process open requests for files associated with the copy-on-write storage tier, such
processing of open requests comprising:
receiving from a client an open request for a specified file associated with the
copy-on-write storage tier;
when the specified file is a non-deduplicated file:
creating a copy-on-write file handle for the specified file;
marking the copy-on-write file handle as ready; and
returning the copy-on write file handle to the client;
when the specified file is a deduplicated file having a mirror copy of the file
contents stored in the designated mirror server:
opening the specified file;
creating a copy-on-write file handle for the specified file;
marking the copy-on-write file handle as not ready;
returning the copy-on write file handle to the client;
when the open request is for read:
obtaining a mirror file handle for the mirror copy from the
designated mirror server;
associating the mirror file handle with the copy-on-write file
handle;
opening the mirror copy;
marking the copy-on-write handle as ready, if the open mirror copy
is successful; and
marking the copy-on-write handle as ready with error, if the open

mirror copy is unsuccessful; and

99

10

15

20

25

30

WO 2009/064720 PCT/US2008/083117

when the open request is for update:
filling the contents of the specified file from the mirror copy of the
file contents stored in the designated mirror server; and

marking the copy-on-write handle as ready.

112. A method according to claim 111, wherein the processor is configured to obtain
the mirror file handle for the mirror copy from the designated mirror server based on hash

values associated with the specified file and the mirror copy.

113. A method according to claim 111, wherein the processor is configured to fill the
contents of the specified file from the copy of the file contents stored in the designated

mirror server using a background task.

114. A method according to claim 111, wherein the processor is further configured to
process file requests, such processing of file requests comprising:
receiving from the client a file request including the copy-on-write file handle;
when the copy-on-write file handle is marked as not ready:
suspending the file request until the contents of the specified file have
been refilled from the mirror copy;
marking the copy-on-write file handle as ready if the contents of the
specified file have been refilled successfully; and
marking the copy-on-write file handle as ready with error if the contents of
the specified file have been refilled unsuccessfully;
when the copy-on-write file handle is marked as ready with error, returning an
error indication to the client;
when the file request is a read operation and the copy-on-write file handle is
associated with a mirror file handle:
using the mirror file handle to retrieve data from the mirror copy stored in
the designated mirror server; and
returning the data to the client;
when the file request is a read operation and the copy-on-write file handle is not

associated with a mirror file handle:

100

WO 2009/064720 PCT/US2008/083117

using the copy-on-write file handle to retrieve data from the file; and
returning the data to the client;
when the file request is a write operation, using the copy-on-write file handle to
write data to the file in the copy-on-write storage tier; and

otherwise sending the file request to the file virtualization appliance.

101

WO 2009/064720

&

Client

%

Client

&

Client

MFM

FIG. A-1

PCT/US2008/083117

©

Windows 2003
Server

©

Windows 2000
Server

@

Network Appliance
Filer

-

NAS

-

NAS

—

NAS

PRIOR ART

1/30

WO 2009/064720

Shared Storage

PCT/US2008/083117

B -~ X

. ~ -
| ~ \\\ ,/ \\ /// '

N S~ ’ ~ Pid 4 |
. N ~o s, N Pl il
_] - S T e — L — S — L= +4 .. =

N sS4 ~X s,
N rd - - N ya
N 7 ~ - N ,
N 7 ~a - N,
NS ~ - N
pas > P
VAN - ~. N
4 N - ~ 4 S
s N S 4 N
7 < ~ 7 ~
— — VARLS Cluster ——
- - N e S~o AN
7 -
+7_ Node AN ~"Node2 RN NodeX
“ WNode1\Share N \WNode2\Share ~ D \\WNodeX\Share
N ~ A~
4 D

Root on Local \
File System
>

Folder on Local File
System

Root on Local
File System
e

System

Folder on Local File

\ Root on Local
File System
(>

Folder on Local File
System

FIG. A-2

PRIOR ART

2/30

WO 2009/064720

r—————-—-—

r———————— —

Node1

\\Nede1\Share

Root on Local
File System

Folder on Local File
System

Virtual Folder peinting
to WNode2\Share\B

Virtual Folder peinting
to WNodeX\Share\X

PCT/US2008/083117

—_——————————— — —

Node2
\WNode:

2\Share

Root on Local
File System

Virtual Folder pointing
to WNode1\Share\A

Folder on Local File
System

Virtual Folder pointing
to WNodeX\SharelX

FIG. A-3

PRIOR ART

3/30

NodeX

WNodeX\Share

Root on Local
File System

Virtual Folder pointing
to WNode 1\Share\A

Virtual Folder pointing
to WNode2\Share\B

Folder on Local File
System

WO 2009/064720

— — — — Cluster View = — — —

Cluster
[client view]
\\Cluster\Share

|

|

|

|

N ‘ |

| _

DFSRoot on :

Local File System |

|

DFS Link pointing |
to Wodef\Share\A |
- |
DFS Link pointing :
to \Node2\Share\B |
_ |
DFS Link pointing |
to WNodeX\Share\X |

4/30

PRIOR ART

PCT/US2008/083117

WO 2009/064720 PCT/US2008/083117

— — — — Cluster View = — — —

Cluster
~ [client view]
. W\Cluster\Share

DFSRoot on
Local File System

DFS Link pointing
to WNode 1\Share\A

DFS Link pointing
to WNode2\Share\B
y L
- _ I
_-7 DFS Link pointing B
- to WNodeXishare\x |\
- - —
e S e I\
_—— \
———————— - ~
r—————————— C|u5ter—————————1
Node1 Node2 NodeX I
| WNode1\Share \WNode2\Share WNodeX\Share
\ Root on Local \ Root on Local Root on Local I
I File System File System File System
Folder on Local File Virtual Folder pointing g Virtual Folder pointing |
I System to WNode1\Share\A to WNode1\Share\A
Virtual Folder pointing Folder on Local File E Virtual Folder pointing I
| to WNode2\Share\B System] to \WNode2\Share\B
L L | L I
Virtual Folder pointing Virtual Folder pointing Folder on Local File I
I to INodeX\SharetX to WNodeX\SharetX System
S |
FIG. A-5

5/30

Local File System

WO 2009/064720 PCT/US2008/083117
10 Request to WClustenShare\Bfile.txt — — — — Cluster View — — — -
/ |
Cluster |
\ [client view] |
Q \WCluster\Share |
Client \ _]
DFS: \Cluster\Share\B II \WNode2\Share\B DFSRoot on |
|
|
|

DFS Link pointing |
to WNode1\Share\A I
- |
DFS Link pointing |
N to WNode2\Share\B
€ ved Y = |
Ve _ |
_- < DFS Link pointing !
_ - to WNodeX\Sharetx \
- e, ——— I
——— \
—_—————— ~
I——————— ———Cluster—————————-l
Node1 Node2 NodeX
WNode1\Share \WNode2\Share WNodeX\Share

Root on Local Root on Local

Root on Local

File System

Folder on Local File
System

Virtual Folder pointing
to WNode2\Share\B

Virtual Folder pointing
to WNodeX\Share\X

File System

Virtual Folder pointing
o WNode1\Share\A

Folder on Local File
System

Virtual Folder pointing

1o WNodeX\Share\X

FIG. A-6

6/30

\
|
|

File System

Virtual Folder pointing
to WNode1\Share\A

Virtual Folder pointing
to WNode2\Share\B

(> . ’
Folder on Local File
X
System

e e e e e e e e— e— —

WO 2009/064720

Client

I/O request to
\\Node1\Share\Bffile.txt

Node1
\\Node1\Share

File Virtualization .y
to folder B

Folder on Local File
System

Virtual Folder pointing
to \Node2\Share\B

Virtual Folder pointing
to \WNodeX\Share\X

FIG. A-7

7/30

Node2

PCT/US2008/083117

Cluster = == o

\\Node2\Share

Virtual Folder pointing
to WNode1\Share\A

Folder on Local File
System

Virtual Folder pointing

to WNodeX\Share\X

Local File System

DFS MUP Cache
Redirected I/O session

WO 2009/064720 PCT/US2008/083117
— — — = Cluster View — — — =
DFS MUP Cache [15 minute] Cluster :
\\Cluster\Share\B II \\Node2\Share\B o [client view]]
s \\Cluster\Share |
Client _ |
DFSRoot on |
|
|
|

DFS Link pointing |
to WNode1\Share\A I

DFS Link pointing |
to WNode2\Share\B I
// _ |
_- - DFS Link pointing |
- to WNodeXiSharetx |
- - I\
\
hS
————C]uster—————————.l
Node2 NodeX I
I WNode1\Share \WNode2\Share WNodeX\Share
N \ W File Virtualization = N |
\ | To moved folder B |
Folder on Local File n Virtual Folder pointing n Virtual Folder pointing |
System - 1o WNode1\Share\A - 1o WNode1\Share\A
Virtual Folder pointing E Virtual Folder pointing E Virtual Folder pointing I
to WNode2\Share\B 1o WNode1\Share\B to WNode2\Share\B
Virtual Folder pointing Virtual Folder pointing Folder on Local File I
to WNodeX\Share\X to \NodeX\Share\X System
FIG. A-8

8/30

WO 2009/064720 PCT/US2008/083117
r — — — - Cluster View — — —
Cluster
[client view]
\WCluster\Share

|

|

|

|

- |
DFSRoot on |

Local File System |
B |
|

|

|

|

|

DFS$ Link pointing
to WNode1\Share\A

DFS$ Link pointing
to \\Node1\Share\B |

B |
DFS Link pointing |

to Wode2\Share\C |
Vi L
e -
- N |
P DFS$ Link pointing |
- o WNode2iShareD |
- l_______ e I
e —- \
I:__________C|uster—————————
Node1 Node2 Node3
\\Node1\Share WNode2\Share WNode3\Share
\ Root on Local Root on Local Root on Local
File System File System

BIE

Folder on Local File
System

Folder on Local File
System

Virtual Folder painting
to WNode2\Share\C

Virtual Folder pointing

B-1-B

Virtual Folder pointing
to WNode1\Share\A

Virtual Folder pointing
to WNode1\Share\B

Folder on Local File
System

Folder on Local File

L1 3

File System

Virtual Folder pointing
to WNode1\ShareVa

Virtual Folder pointing
to Wode1\Share'\B

Virtual Folder pointing
to WNode2\Share\C

Virtual Folder pointing
to WNode2\Share\D

I
3
B

to WNode2\Share\D

System

1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

FIG. A-9

9/30

WO 2009/064720 PCT/US2008/083117

r — — — - Cluster View — — —

Cluster
[client view]
\WCluster\Share

|

|

|

|

- |
DFSRoot on |

Local File System |
B |
|

|

|

|

|

DFS$ Link pointing
to WNode1\Share\A

DFS$ Link pointing
to \\Node1\Share\B |

B |
DFS Link pointing |

to Wode2\Share\C |
Vi L
e -
- N |
P DFS$ Link pointing |
- o WNode3ishareD |
- I — e I
e —- \
I:__________C|uster—————————
Node1 Node2 Node3
\\Node1\Share WNode2\Share WNode3\Share
\ Root on Local Root on Local Root on Local
File System File System

File System

Folder on Local File
System

N
1

I

I

I

)) I
pventaing oo |
I

I

I

I

I

I

I

to WNode1\ShareVa

Folder on Local File
System

Virtual Folder pointing
to Wode1\Share'\B

Virtual Folder pointing
to WNode1\Share\B

Bl
-I-B

Folder on Local File
System

Virtual Folder pointing
to WNode2\Share\C

Virtual Folder painting
to WNode2\Share\C

i1l
2

Folder on Local File
System

Virtual Folder painting
to WNode3\Share\D

Virtual Folder pointing
to WNode2\Share\D

I
3
B

FIG. A-10

10/30

WO 2009/064720

Node1

\\Node1\Share

Root on Local
File System

Folder on Local File
System

Folder on Local File
System

Virtual Folder painting
to WNode2\Share\C

n Virtual Folder pointing

to WNode3\Share\D

Node2

Node2\Share

\
Folder on Local File
System

PCT/US2008/083117

r— — — - Cluster View — — —»
. I]
— Cluster
T [client view]
WCluster\Share
> / —
Client I . I DFSRoot on

DFS Link pointing
to \WNode1\Share\A

|

|

|

|

|

|
Local File System |
- |
|

|

L |
- |
DFS Link pointing |
to \Wode1iShare\B |
B |
DFS Link pointing |
to WNode2\Share'C |

DFS$ Link pointing I\‘

Root on Local
File System

Virtual Folder pointing
to WNode1\Share\A

Virtual Folder pointing
to WNode1\Share\B

Folder on Local File
System

FIG. A-11

11/30

Node3
WNode:

Virtual Folder pointing
to Wode1\Share'\B

3\Share

Root on Local
File System

Virtual Folder pointing
to Wode1\Share\A

Virtual Folder pointing
to WNode2\Share\C

Virtual Folder pointing
to WNode2\Share\D

to \INode3\Share\D |
\

1
I
I
I
I
I
I
I
I
I
I
I
I

WO 2009/064720 PCT/US2008/083117
r——-—- Cluster View — — —4
Cluster
[client view]
WCluster\Share
7DFSRoot on

3201

DFS Link pointing
to WNode1\Share\A

|

|

|

|

|

|
Local File System |
B |
|

|

L |
- |
DFS Link pointing |
to WNode1\Share\B |
B |
DFS Link pointing |

to WNode2\Share\C |
g - |
s -
e
PR DFS Link pointing |
- to WNode3\SharelD |}
-
- | o Iy
- N
e \
I___________C|uster_________
Node1 Node2 Node3
\\Node1\Share WNode2\Share \WNode3\Share
\ Root on Local Root on Local Root on Local

File System

Folder on Local File
System

Folder on Local File
System

Virtual Folder pointing
to WNode2\Share\C

n Virtual Folder pointing

to WNode3\Share\D

E Virtual Folder pointing
to WNode1\Share\B
System
Folder on Local File
System

File System

Virtual Folder pointing
to WNode1\Share\A

Folder on Local File

Build Metadata

B

————— —— — — — — — — — —

\

Virtual Folder pointing
Virtual Folder pointing
to WNode2\Share\C

File System

Virtual Folder pointing
to WNode1\Share\A

to WNode1\Share\B

Virtual Folder with
Metadata pointing
to WNode2\Share\D

FIG. A-12

12/30

WO 2009/064720

I____———————Cluster

Node1

\\Node1\Share

Root on Local
File System

Folder on Local File
System

Folder on Local File
System

Virtual Folder pointing
to WNode2\Share\C

Virtual Folder pointing
to WNode3\Share\D

Node2

— — — - Cluster View

Cluster

PCT/US2008/083117

|

[client view]
WCluster\Share

|

|

|

|

|
DFSRoot on |
Local File System |
B |
|

|

|

|

|

DFS Link pointing
to WNode1\Share\A

DFS Link pointing

to Wode1\Share\B |
B |

DFS Link pointing |

to WNode2\Share\C |

DFS Link pointing \

to \WNode3\Share\D |

WNode2\Share

Siel-1-

Root on Local

File System

Virtual Folder pointing
to WNode1\Share\A

Virtual Folder pointing
to WNode1\Share\B

Folder on Local File
System

Folder on Local File
System

Node3

\WNode3\Share

~N Move Data -

(build local mirror)

E Virtual Folder with

Root on Local
File System

to WNode2\Share\C

Metadata pointing
to WNode2\Share\D
+ local mirror

k

Virtual Folder pointing

n to WNode\Share\A

Virtual Folder pointing

to WNode1\Share\B

Virtual Folder pointing

——————— — — — — — — —

FIG

.A-13

13/30

WO 2009/064720 PCT/US2008/083117
r———" Cluster View — — —4
Cluster
[client view]
WCluster\Share
7DFSRoot on

DFS Link pointing
to WNode1\Share\A

|

|

|

|

|

|

Local File System |
- |
|

|

|

|

|

DFS Link pointing
to Wode1\Share\B |

B |
DFS Link pointing |

to WNode2\Share\C |
7 L
e -
-
P DFS Link pointing |
- to WNode3\SharelD !
- l___=——_ — n
e \
I_——————————C|uster_________
Node1 Node2 Node3
\\Node1\Share WNode2\Share \WNode3\Share
\ Root on Local \ Root on Local \ Root on Local

2l
s

|

|

|

| .
| r e
| i S
| System
|
|
|
|
|
|

File System

Folder on Local File

Folder on Local File

Virtual Folder pointing
to WNode2\Share\C

Virtual Folder pointing
to WNode3\Share\D

File System

Virtual Folder pointing
to WNode1\Share\A

Virtual Folder pointing
to WNode1\Share\B

Folder on Local File
System

Virtual Folder pointing
to WNode3\Share\D

Break Mirror

~ xS~

File System

Virtual Folder pointing
to WNode1\Share\A

E Virtual Folder pointing
to WNode1\Share\B

Virtual Folder pointing
to WNode2\Share\C

Folder on Local File
System

——————— — — — — — — —

FIG. A-14

14/30

WO 2009/064720 PCT/US2008/083117

Client 11 Client 12 Client 13 Client Tm

s?&

witch1

:

Server 11 Server 12
\Srviishi W\Srv2\sh1
FIG. B-1 PRIOR ART

15/30

WO 2009/064720 PCT/US2008/083117

Client 21 Client 22 Client 23 Client 2m

)
%@

=

Server 21 Server 23 Server 22
\Srviish1 \\Dst\sh1 \Srv2\sh1
FIG. B-2 PRIOR ART

16/30

WO 2009/064720 PCT/US2008/083117

Client 31 Client 32 Client 33 Client 3m

BISL

witch3

/

Server 31 Server 33 Server 32
WSrviishi \\Dst\sh1 \Srv2\sh1
FIG. B-3 PRIOR ART

17/30

WO 2009/064720 PCT/US2008/083117

Client 41 Client 42 Client43 - - - Client4m

_;%

Server 41 Server 43 Server 42
\Srviishi \Dst\sh1 3 W\Srv2\sh1
\Srviish1l

FIG. B-4 PRIOR ART

18/30

WO 2009/064720 PCT/US2008/083117

Client 51 Client 52 Client 53 - - - Client 5m
File
Switch
Server 51 Server 53 Server 52
\Srviish1 \\Dst\sh1 \Srv2\sh1
FIG. B-5
Global Namespace Path Metadata Info Target Path
WMFM\Native\Srv 1\Dir1 WSrviish1 WSrvish1\Dir1
WMFM\Native\Srv1\Dir2 WSrviish1 WSrvish1\Dir2
WMFM\Native\Srv 1\Dir2\File 1. TXT WSrviish1 WSrvish1\Dir2\File 1. TXT
FIG. B-6
Global Namespace Path Metadata Info Target Path(s)
Mimors Destination Path
WMFM\Native\Srv 1\Dir1 1 WSrv1ish1 WSrvish1\Dir1
WMFM\Native\Srv1\Dir2 1 WSrv1ish1 WSrvish1\Dir2
WMFM\Native\Srv 1\Dir2\File 1. TXT 1 WSrv1ish1 WSrvish1\Dir2\File 1. TXT
WMFM\Native\Srv1\MirroredDir 2 WSrviish1 WSrvish1\MirroredDir
WDstish1 \Dst\sh1\MirroredDir
WMFM\Native\Srv1\MirroredDir\Mirr. txt 2 WSrviish1 WSrvtish1\MirroredDir\Mirr txt
W\Dstish1 \Dst\sh1\MirroredDir\Mirr.bxt

FIG. B-7

19/30

WO 2009/064720

Convert the source native volume to a native
with metadata volume

A

Convert the native with metadata volume to a
mirrored native with metadata volume including
the source server and the destination server

A

Remove the source server from the mirrored
native with metadata volume

A

Convert the mirror copy of the native with
metadata volume on the destination server to a
destination native volume on the destination
server

FIG. B-8

20/30

PCT/US2008/083117

802

804

806

808

WO 2009/064720

Client 12

Client 11 Client 13

PCT/US2008/083117

Client 14

ifﬁ

| i'
er 11

Server 3

Serv Server 2

FIG. C-1

21/30

WO 2009/064720 PCT/US2008/083117

Client 21 Client 22 Client 23

Virtualization
Appliance2

Server 22 Server 23

FIG. C-2

22/30

WO 2009/064720 PCT/US2008/083117

Clint 31

1

Clint 32

Client 33 Client 34

Virtualization
Appliance3

FIG. C-3

23/30

WO 2009/064720 PCT/US2008/083117

Client 41 Client 42 Client 43 Client 44

Virtualization
Applianced

Server 41

FIG. C4

24/30

WO 2009/064720 PCT/US2008/083117

Client 51 Client 52 Client 53

Client 54

Virtualization
Appliance5

Server 1 Server 2 Saar3

FIG. C-5

25/30

WO 2009/064720 PCT/US2008/083117

Configure a global namespace of the
virtualization appliance to match a global 602
namespace exported by the distributed
filesystem server

Update the distributed filesystem server 604
to redirect client requests associated
with the global namespace to the
virtualization appliance

606
Ensure that no clients are directly
accessing the file servers
4
Send an administrative alert to indicate 608

that insertion of the virtualization
appliance is complete

FIG. C-6

26/30

WO 2009/064720

Send a global namespace from the
virtualization appliance to the distributed
filesystem server

Configure the virtualization appliance
to not respond to any new client
connection requests received by the
virtualization appliance

/

For any client request associated with
an active client session received by the
virtualization appliance during a
predetermined time window, close the
client session

Disconnect the virtualization appliance
from the storage network after a
predetermined final timeout period

FIG. C-7

27/30

PCT/US2008/083117

702

704

706

708

WO 2009/064720 PCT/US2008/083117

Identify a plurality of files stored in a primary 202
storage tier having identical file contents
. . 204
Copy the plurality of files to a secondary storage tier
Store a single copy of the file contents 206
in the primary storage tier
208

Store metadata for each of the files
associating each file copy in the secondary storage tier
with the single copy of the file contents stored
in the primary storage tier

FIG. D-1

28/30

WO 2009/064720

PCT/US2008/083117

Determine whether the file contents of a selected file in
the primary storage tier match the file contents of a
previously deduplicated file having a single copy of file
contents stored in the primary storage tier

302

Match? 304

NO
YES

Deduplicate the selected file

306

P

Determine whether the file contents of the selected file match 308

the file contents of a non-duplicate file in the first storage tier

Match? 310

NO

YES

Deduplicate the selected file and the non-
duplicate file

Add selected file to list of non-duplicate

files

FIG. D-2

29/30

312

314

WO 2009/064720

Associate files from the primary storage tier
with a copy-on-write storage tier having a
designated mirror server

Store in the designated mirror server a single
copy of the file contents for each duplicate and
non-duplicate file associated with the COW
storage tier

Delete the file contents from each deduplicated
file in the copy-on-write storage tier to leave a
sparse file

Store metadata for each of the files associating
each sparse file with the corresponding single
copy of the file contents stored in the
designated mirror server

Purge unused mirror copies from the
designated mirror server

Process open requests for files associated with
the COW storage tier including creating COW
file handles for such files

Process file requests for files associated with
the COW storage tier based on COW file
handles

FIG. E-1

30/30

201

203

205

207

209

211

213

PCT/US2008/083117

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings

