US 20140025648A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0025648 A1

Corbett et al. 43) Pub. Date: Jan. 23, 2014
(54) METHOD OF OPTIMIZING DATA FLOW 30) Foreign Application Priority Data
BETWEEN A SOFTWARE APPLICATION AND
A DATABASE SERVER Feb. 22,2010 (GB) 1002961.9
Mar. 17,2010 (GB) 10044493
(71) Applicant: Data Accelerator Ltd., London (GB) Jul. 2,2010 (GB) 1011179.7

Publication Classification
(72) Inventors: Sean Corbett, [.ondon (GB); Edward

Philip Edwin Elliott, West Sussex (GB); ~ (31) Int. CL.

Matthew Clothier, Somerset (GB) GOGF 17/30 (2006.01)
(52) US.CL
CPC i GO6F 17/30371 (2013.01)
(73) Assignee: Data Accelerator Ltd., London (GB) USPC et 707/692
(57) ABSTRACT
(21) Appl. No.: 14/033,375 A method may include receiving a request for a resource on a

database server, the request being from a request initiator
coupled to a network. Redundant data in the request is iden-
tified based on the data optimization rules, where the redun-
dant data is unnecessary for the database server to satisty the
Related U.S. Application Data request for the resource. The redundant data is removed from

the request based on the data optimization rules to create an

(63) Continuation of application No. 12/862,962, filed on optimized request. The optimized request is provided, using

Aug. 25, 2010, now Pat. No. 8,543,642. the network to the database server.

(22) Filed: Sep. 20, 2013

Patent Application Publication Jan. 23, 2014 Sheet 1 of 28 US 2014/0025648 A1

~ .

FIGURE 1

s
Ry
o
&
-
T

Patent Application Publication Jan. 23, 2014 Sheet 2 of 28 US 2014/0025648 A1

Diabs s moded

Purchase : £I% chass for most Maw business mwdels i raditional
safbwesrs or wab 2.0 spps Hbe software, Subscription, rentsl, rerd W
Satesforos offerad by substription e el

Deploy CDROM or Dom ond with 2% paorte | Push or pull self servine delivery of apps
push deployment mols using Spplication Streaming

{Rnage 3 marty 10N T8 MANAYE ON-HOIng Progciive Heense control and protection
ficanging for pivaoy with worid ¢iass softwars ODRM

Support Brabis assed by corntichs whan !&m{icstisﬂ Wi

divkanagt ; ;epes a?iczr'n.
b teshing

Undate 3 party patch managestant

B 4 (3
soltiong required (o push pated st f*mxr\a 1O LR
updates deptoved once a

application chareg

Upgrats

i

can he sgomat e
pmers with the old version stomatically
reaved
Hernovg Suftware must be marasally Saftware can be mntrai%y ramaye
removard andd usege caruwst be GO 3% the uear's Hoensy has sxpir
L erdrally stopped anee 2 users the sppfication IS rw jonger nesded,
Heorme has explirad, U‘w}smi%s Thaers are no traces of the appication
applications leave many ramnants &l behind

Rakdred causing the system 0
pecome duitared and sk,

FIGURE 2

Patent Application Publication Jan. 23, 2014 Sheet 3 of 28 US 2014/0025648 A1

Mohite Ape Gata Avestarar D818 saudoaion
B{M.ﬁ AprStore 2018 o for
prive {8
200
Coment Larme nurshey of smal Soait w“’sbss @f Windows Sghar | &ay Wisdows
Inw vale apps viiug apis apuinsinding
ey high valug

EOTSUEYET

A5 ukebox
Ap_s;?ms & ~“<st

0 <‘§ & ?z‘zr mrwh
fz

AUIoTAL, EHS h‘:gh & VRl
Torelrsw, 5&

TusekBooks i, DUEINESS

nadant roanufRCtursrs
and Muobils Goentdes.

Providers with Renned ;\h,xs;\ 1<
Waeb Appetoras
| ;cerzwcs:‘s& 0 En

Bayored web apps | Aephtore wiling

Agnis, Vodefons, T - ta grtand
dAnhiHe LG, BT ol Mostars and fer

BT 1R, felgos

Fasthosts, Ag tame

Tedafonicg 8t

Market flatnre rerket wn g News hiacdoet -~ Rew Market -
Mhaturty & Sahitinn i 000 puitibition $ mutibiilion &
Stra ‘

Patent Application Publication Jan. 23, 2014 Sheet 4 of 28 US 2014/0025648 A1

s

2rpriss ApnSiore

w&r me sa. -
service walb portal
Software publishery
can alag offer new
Hoansing modsi;
2.0, Rental, Rento
Ty, Try aned Boy

Benehts to End User $im§s§>& managameant of

i(‘«y‘ﬂ'iv.:ht’:.,
grwt‘ f ey,

[
Comteat Usa customars’ axisting | Top 30 Appst MS
aofbwars licanses Uifice, Adabe

Apghication luheboy
Data Accelerstor far

s IS
H-).mt T

SFIES

echnuiogy

Poriai

NG e

QRO

fouls D Mark

oad phase farm
c Managed Apps | Integrators/IT
AppStars servives Channed

FIGURE 4

US 2014/0025648 A1

(]
j2217

21
¥

m
2o R

G dunold

#% UDGMIRG DRIBYUS
218 L UDIBZRLY ﬁe DLUg

ssucdsesyisenbey

¥ .

Jan. 23,2014 Sheet 5 of 28

weenhsy SWEY

SUOdsEY SIETY

&

yoeEido

SRR

esundsdy SPE0 ‘
B

E-S

Patent Application Publication

eaundesy pezidoy

wmaniay SWE0Y

oyl

jaenbe

S

&

Loezic
m y

\‘a

R
w
B

o SRR

ssuodsRy SVGOY

LoneREdD

&

1senbey ZWEaY

JBILY
1Saay
SGT

US 2014/0025648 A1

Jan. 23,2014 Sheet 6 of 28

8 Aol

OTEDERG0 (HI0F Aeruag T SUTEER 0 I0r comuief ZOELIC AT WIGT Aanigg
ST TR SEANLABY IS DI A5RRY
Ea) AL L RESOYE T ARAE IS EAIIRISUIYG P RS R LY

Patent Application Publication

US 2014/0025648 A1

L FAH00id

E ;

Jan. 23,2014 Sheet 7 of 28

ARG} AP

YIRS

Patent Application Publication

. e yeafiliny s s o
S e BIEIHF NG TR s g T PBEIaYE 1senbiy
SHAY

Patent Application Publication Jan. 23, 2014 Sheet 8 of 28 US 2014/0025648 A1

RUBRS

J
FIGURE 8

-y 0 = o
W ol SR
s 2 R
H O TE S
W@ ¥ G O on

o L &

§ L N

N

bl

At

&

=

R 5

B

N

2

&

&

[

US 2014/0025648 A1

Jan. 23,2014 Sheet 9 of 28

Patent Application Publication

STy A0
BEUDGSRY Bab

2

- ~

~,

& JeNoid

SHBIY
O3 150D BIEMIAS |

ssanboy S0y

US 2014/0025648 A1

Jan. 23,2014 Sheet 10 of 28

Patent Application Publication

0L 3HNSid

o P
v o 33 IR ARG

\ g fe. N
.,\ % \\wa@ \h\m y(t.wvm

s 42 ,\
,ﬁw%&m ,uw\

wh b PR : WA B YV ~ABE PHERS
.w By wmumﬁ b FEW LDRAR, HEY LAV

¥ SINE0Y PBREY Sa0Y WEnEY SAHOY

Patent Application Publication Jan. 23, 2014 Sheet 11 of 28 US 2014/0025648 A1

w0
oW E
oW Noae ¥
:3 = et o
e " 8 oo
s T o, avenypding 5o
b ol SR
oy RN 3
S oy
N &
B
e
£
N 1§
o By
.@*

% %

%
F

ROBME Poours

. 1 A80
4 %

FIGURE 11

248
L

CEELECT A8,

14

7

AT

Al

S
FN

Roohn Rusnonse
i 4
BB B

Patent Application Publication Jan. 23, 2014 Sheet 12 of 28 US 2014/0025648 A1

IS

i
B

¥

&d
1y
e
o
i

L tha oy

Patent Application Publication Jan. 23, 2014 Sheet 13 of 28 US 2014/0025648 A1

ROBHAS

;’5/

Tratis

ol
FIGURE 13

Dzva sropderaioy

insrintny

US 2014/0025648 A1

Jan. 23, 2014 Sheet 14 of 28

Patent Application Publication

L Fuiolid

A

H

Y Vasicolo o ani oty

YRR

ORISR B0

Patent Application Publication Jan. 23, 2014 Sheet 15 of 28 US 2014/0025648 A1

%

ROBMA
J 3

FIGURE 15

Lsaty Aucdiorator

T P o
= o~
& & &=

US 2014/0025648 A1

Jan. 23,2014 Sheet 16 of 28

Patent Application Publication

k 4

91 FHNSH

o

bty S HIEY enr

FORRIBIEIN RIRLY

o Ry

SGER RIS WL

4 apatdray

L

o

%

b2

o

Lb F6Notd

US 2014/0025648 A1

Jan. 23,2014 Sheet 17 of 28

Patent Application Publication

7 :
/ :
auBuny Baa | e) " :
| BuiseR0; PHUOUESY | L pueg | HRULIS |
504 SWEAE | e T
O} PIEMIC | “
1 sjBuBiS] i
© suBug ‘ B
| s3I B
. . i W03
M L5 DT ﬁﬂvwﬁwﬁﬁﬂ ¥
; | RIS |
03} (B0 TR
O] DIt . mﬂu\w mww&mcm
BRI T eam By ;
MpuLR o d . m m E., .«.ww
LU i -~} ALY
A %
O} DIRAIC 0} PRI 4 |
......................... 2
DIBULIS | BAIBG 0} (B0 SRS BB]
Gj e Hojeu UCABUIGS 8L S1BUALLISY
* 10 Buitpies @ osuodaal
SO S » UMG B3 SAIDS 10 BJRD
Buis S0 SOV U PUDE 0] JORIOE 9 O
1804 110 pigsainy oune ues euibus
WA N
R 180y 58|71 0ojeni By - (¥)

Patent Application Publication

Jan. 23,2014 Sheet 18 of 28

1/1/2010 10:00

5
7%

2 "\. - X)
YO
Ngd

A

"

S

030 10

g Foy
1/7

21

37172010 1045

US 2014/0025648 A1

FIGURE 18

Patent Application Publication Jan. 23, 2014 Sheet 19 of 28 US 2014/0025648 A1

vt
3

= A

= 3 : =

i & &

& & X
o

Srrrr

aloryior

Q
by
B
X

poX

FIGURE 19

Patent Application Publication Jan. 23, 2014 Sheet 20 of 28 US 2014/0025648 A1

o e
oy 9
o 2% ’
S £
Roe sy

Bl Chgta Acreleratny

FIGURE 20

initistor

US 2014/0025648 A1

Jan. 23, 2014 Sheet 21 of 28

Patent Application Publication

V2 Funold

SEE

i e,
#77 P,
7 g
4
,»»
/
{
SOYRIBPEIIG BIRG v Fi:its vt
.
i o
it Ot b b s N 0 00 8 5 8 S LA o Ao T g L g 0l e A A AP IS LR LN LI G CEEATPA .\t)x\}\l\\\o\
\«\,XSSS T, o,
i -
A
T
H
MR VAR YL
§
%
S S S SO
%, .
kY Busumerg
>,
;f:.f s
o, e

N

R

US 2014/0025648 A1

Jan. 23, 2014 Sheet 22 of 28

Patent Application Publication

SWERE

X

e JAN9id

OB

%

WYl

R GE T _“,
o JOPBIRDHDY o e |
UDHEBLIIGS) eyer] um@m& 1Ry
MYAA B0
&OWM(MW\M o 990 - -
S : QY MBSO e »
LORIBLEICT erea T mmm ki ey RS
MR MR Lo o
m, MY ToA
¥ M \\\\\\\\\\
B Pl - AL 5
OYRIBEION - R INBIBEODY ADYRIBEOOY (- a0 m&g
3SLAMTY IR AN ~ , MR 23
2] ‘ Y men HISUUIBG 2B N
NYAA @ WY o0
848 I v
....................................... P TTrraen HARIBIBOYY =

WY

US 2014/0025648 A1

Jan. 23,2014 Sheet 23 of 28

Patent Application Publication

SWEdd

&

LOHITULIOT
W'l

HIRIBIB00Y
i)

€7 IHNOI

&

H

NYAA

IR Iy
B

5

BOUBYELY

e

doyde

US 2014/0025648 A1

Jan. 23, 2014 Sheet 24 of 28

Patent Application Publication

SHEGY

¥ Junold

BBy

&

AT WYY

B

idt ST MY

)
H
H

ORISRy

T eeg a3l doye
- oY
i
APEIBIEIOY A esy il
BB BB wrl
- IDRISIEO0Y e
. GOURIBUY dence
b (00 .
IPRIBIBODY g _—
120 BOUBIBL doyde
‘ a0
ICTR Y
. RIS doyie
e

US 2014/0025648 A1

Jan. 23,2014 Sheet 25 of 28

Patent Application Publication

SNE0Y

GC deoid

&

UGHOBLLIOT) MY

T osieny
2
B
%
| IojpeEaoy 0 B IORIBIBO0Y e
3tcly B8
T ” 4
b4
| ICIRIBRODY iy
21B0]
£
%
IPIBRAYY e — IDJRIBIR00Y i ‘
2yl BT BPAA I BUUBYBUL {8007 docle
&%
gr—— . R
| ’ HABIBSOIY -
Ble(}
| RIRRY oYYy
2 p ERR(]

92 Jdunoid

US 2014/0025648 A1

SO
b,
| WD -
ek IDVRIBIEIOY | | IOIRISIBITY
e B | Eeg
3 ‘ w %
= =]
(o]
S
=]
=]
o k4
~N—
g % &
= RISy
1801
= A
K 4 ¥
B, ey zresle et Cleslaalyy
4 CYBIaH P ICIISIBOOY
= ST - e
S 18] 21e(] B
= % %
«% I3
g "
2 i ATIRIDIBOOY
S gl ly!
M £
£ OIS
= mpmeomy | R wﬁmw 44
o * B ALy
g ByE(] 2 i
] 7
2 :
= SWBcy
Z usancy
=
[<P]
~N—
«
[~™

Patent Application Publication Jan. 23, 2014 Sheet 27 of 28 US 2014/0025648 A1

ROBAYS

o
$o

-

Lt

Dt A

A
ffnooecrese

FIGURE 27

51a Acoaterator
&
¥

4 Dhta Arrgberator

o B
:
o
§
;
oo

o

Patent Application Publication Jan. 23, 2014 Sheet 28 of 28 US 2014/0025648 A1

FIGURE 28

US 2014/0025648 Al

METHOD OF OPTIMIZING DATA FLOW
BETWEEN A SOFTWARE APPLICATION AND
A DATABASE SERVER

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 12/862,962, filed Aug. 25, 2010, which
claims priority to Great Britain Application Nos. GB
1002961.9, filed Feb. 22,2010; GB 1004449 .3, filed Mar. 17,
2010; and GB 1011179.7, filed Jul. 2, 2010, all of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The field of the invention is methods of optimizing
data flow between a software application and a database
server. The invention can be used in web-based applications;
it allows, for example, database applications to be cloud-
based, with client applications connecting to a database
server over a relatively slow connection such as the public
Internet.

[0004] 2. Technical Background

[0005] Inthe early 1980’s software was mostly delivered as
‘pre-installed’ on hardware or as ‘Boxed’ software to be
installed from floppy disks. Slow evolution of the market saw
a steady migration of delivery to CD Rom as software
increased in size and complexity to a point at the beginning of
the millennium whereby most software could now be deliv-
ered by download over the Internet at point of purchase. Over
the last eight years further developments in adjacent tech-
nologies have heralded the arrival of mobile phone applica-
tion stores (AppStores) which not only successfully gave
consumers new ways to purchase applications (e.g. ‘try and
buy’) but also educated the wider market in general about
different ways of buying, storing and managing applications
as diverse as games and applications for business.

[0006] 3. Discussion of Related Art

[0007] Over the last 3 years especially, new developments
have seen a trend whereby providers of businesses services
(Hosters, Telcos etc.) are offering web 2.0 application stores
to their existing small and medium enterprises (SME) cus-
tomers. This is a natural progression as they have moved from
core competences, such as hosting, to managing email and
desktop services on behalf of their clients.

SUMMARY OF THE INVENTION

[0008] According to a first aspect of the invention, there is
provided a method of optimizing the interaction between an
application or database and a database server, comprising the
steps of:

[0009] a. routing data between the application or data-
base and the database server through an optimisation
system,

[0010] b. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the application or database and the database
server.

[0011] The method may be one in which the optimisation
system enables the interaction between the application/data-
base and the database server to be sufficiently optimised to
enable a practical connection to be made over a slow or high
latency link such as the Internet. The optimisation system

Jan. 23,2014

may, for example, reduce the amount of processing or opera-
tions to be performed by the server. The optimisation system
may also reduce the amount of data needed to pass between
the client application and the database server. The interaction
between the application or database and the database server
may include any one or more of the following: the flow of
data, the cessation of the flow of data, obviating the need for
data to flow, or managing the flow of data.

[0012] An implementation, called Data Accelerator, from
Data Accelerator Limited, includes one or more of the fol-
lowing features:

[0013] the database server is cloud-based, or on a local
network, or on a WAN or if the DB server is local to the
application.

[0014] the application or database is deployed, managed
or updated to end-users using application virtualisation
software.

[0015] allows the number of database servers, or the load
on the or each database server required, to be reduced.

[0016] allows the load on the or each database server to
be balanced or redirected in cases of fail-over.

[0017] the optimisation system is added to an existing
database client application or database server, and the
structure of the tables and/or files of the database run-
ning on the database server, are each substantially
unchanged by the optimisation system.

[0018] the optimisation system is not an integral part of
the client application or the database server or bespoke
coding to the client application or the database server.

[0019] the optimisation system changes either the appli-
cation/database or the database server, but not both.

[0020] the optimisation system is implemented in soft-
ware and includes a client application or a server appli-
cation.

[0021] the optimisation system is implemented in soft-
ware and includes a client application and a server appli-
cation.

[0022]
ware.

[0023] the optimisation system is located between the
application/database and the database server.

[0024] the optimisation system is located on the applica-
tion/database and/or the database server.

[0025] the optimisation system includes multiple
instances of individual optimisation systems that each
provides optimisation services.

the optimisation system is implemented in hard-

[0026] the multiple instances include a chain or mesh of
peers.
[0027] the path through the multiple instances of indi-

vidual optimisation systems is variable.

[0028] the multiple instances of individual optimisation
systems are able to communicate amongst themselves.

[0029] the multiple instances of individual optimisation
systems share diagnostics and performance information.

[0030] the multiple instances of individual optimisation
systems each understand where they are in the chain or
mesh of peers between initiator and the server.

[0031] the optimisation system can dynamically deter-
mine how effective or detrimental a specific rule is and
can choose to vary the applied rules to find the optimum
performance enhancement.

[0032] the server is a SQL server.

[0033] the data includes DBMS (Database Management
System) requests and responses.

US 2014/0025648 Al

[0034] the optimisation system reduces the number of
DBMS requests and/or responses.

[0035] the rules are accessed through a rules engine.

[0036] the rules engine decides when and how to apply
rules.

[0037] the rules define caching of queries.

[0038] the rules define how to obtain diagnostic, perfor-

mance, cached data, cachability information.

[0039] the rules define how to configure other rules.
[0040] the rules define peer to peer caching of queries.
[0041] the rules define compression.

[0042] the rules define encryption.

[0043] the rules define predictive pre-fetching.

[0044] the rules define string replacement.

[0045] the rules define query batching.

[0046] the rules define re-routing to specific database

servers for load balancing or fail-over.

[0047] the rules define request modification.

[0048] the rules pre-validate requests.

[0049] the rules define auditing and logging.

[0050] the rules automatically tune, adapt or improve.
[0051] the rules can be selectively enabled or disabled

based on factors such as initiator and server addresses or
locations, time of day, configuration, server load.

[0052] the rules are applied at different points in the
request/response stream.

[0053] the rules are custom rules.

[0054] According to a second aspect of the invention, there
is provided a method of distributing software applications,
comprising the steps of:

[0055] a. providing multiple software applications
accessible in an application store;

[0056] b. routing data between one or more of the soft-
ware applications and a database server, viaa WAN such
as the Internet, and through a data optimisation system
that applies rules to speed up the interaction between the
or each software application and the database server.

[0057] Inthis second aspect, the software applications may
include database client applications and may be distributed to
end users’ PCs; the software applications may also be distrib-
uted to system integrators.

[0058] The database server may be cloud-based. The soft-
ware applications may be deployed, managed or updated to
end-users using application virtualisation software.

[0059] According to a third aspect of the invention, there is
provided a computer system including:

[0060] a. a remotely accessible database server

[0061] b. an application or database connected over a
network to the database server, and

[0062] c. an optimisation system

[0063] in which the optimisation system analyses data
requests from the application or database and applies rules to
the data to speed up the interaction between the application or
database and the database server.

[0064] According to a fourth aspect of the invention, there
is provided computer readable media storing software defin-
ing an optimisation system to optimize the flow of data
between an application or database and a database server, the
optimisation system being operable to analyse the data and
apply rules to the data to speed up the interaction between the
application or database and the database server.

[0065] According to a fifth aspect of the invention, there is
provided a method of optimizing the interaction between a
file requestor and a file server, comprising the steps of:

Jan. 23,2014

[0066] a. routing data between the file requestor and the
file server through an optimisation system;

[0067] D. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the file requestor and the file server.

[0068] According to a sixth aspect of the invention, there is
provided a method of optimizing the interaction between a
web data requestor and a web server, comprising the steps of:

[0069] a. routing data between the web data requestor
and the web server through an optimisation system;

[0070] D. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the web data requestor and the web server.

Benefits of the Data Accelerator Implementation

Reduced Number of DBMS Servers for an
Enterprise

[0071] The main benefit to an organisation is that when a
DBMS request is sent, it can be served faster and more effi-
ciently with as minimal impact or load on the actual DBMS as
possible. The reason that the load on the DBMS needs to be
minimised is that they are traditionally expensive systems to
operate, either through licensing or the hardware that is
required in order that the responses can be served quickly
enough. By minimising load, Data Accelerator can lead to a
significant reduction in the number of DBMS servers that an
organization needs to run and can therefore lead to a signifi-
cant reduction in both costs and the environmental impact of
running those servers.

Data Base in the Cloud or Database as a Service

[0072] Thesecond main benefit is because of the extra work
that goes on at the network (and/or client) level like caching,
compression or string replacement, it is now possible to
locate the DBMS system over a slow link, either a secured
link to another site or over the internet to a cloud. Because of
the nature of the environment, the DBMS system can be
scaled cheaply. With the network optimization that Data
Accelerator carries out, moving DBMS systems into the
cloud can be made a reality for both new and legacy systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0073] FIG. 1 shows areas impacted by changes in a soft-
ware life cycle.
[0074] FIG. 2 shows areas impacted by changes in a soft-

ware life cycle, contrasting known approaches with that pos-
sible using an implementation of the invention.

[0075] FIG. 3 shows new delivery models emerging and
Data Accelerator’s proposition.

[0076] FIG. 4 shows Data Accelerator’s Product Offering
to service the markets.

[0077] FIG. 5 shows how the data optimization services can
interact with other services, initiators and DBMS (database
management system) servers. RDBMS is Relational DBMS.
[0078] FIG. 6 shows a response data set.

[0079] FIG. 7is aschematic of the approach where the rules
have not been able to stop the request from being sent to the
DBMS so the request is forwarded.

[0080] FIG. 8 shows the response is able to be served
directly from the Data Accelerator optimization server and
the DBMS system does not need to do anything.

US 2014/0025648 Al

[0081] FIG.9 shows caching of request and response data,
to return the response direct from a cache without having to
run the request on the DBMS.

[0082] FIG.10shows Query Batchingi.e. duplicate queries
which have been requested at the same time can be stopped
because the first request can be run while the duplicates are
held, when the response to the first one is sent, it can be sent
to all of the initiators; this Figure shows the requests being
held.

[0083] FIG.11shows Query Batchingi.e. duplicate queries
which have been requested at the same time can be stopped
because the first request can be run while the duplicates are
held, when the response to the first one is sent, it can be sent
to all of the initiators; this Figure shows the response being
served to multiple initiators.

[0084] FIG. 12 shows a single Data Accelerator instance.
[0085] FIG. 13 shows two Data Accelerator Instances.
[0086] FIG. 14 shows multiple Data Accelerator instances.
[0087] FIG. 15 shows that Different initiators at either the

same or separate locations can go through any route of Data
Accelerator instances.

[0088] FIG.16 showshow the Data Accelerator can change
the route to the DBMS depending on where the request came
from or a specific property of the request.

[0089] FIG. 17 shows the different points that the rules can
be applied and the flow through the application. There are a
number of different types of rules that can be applied at
different points within the request/response stream.

[0090] FIG. 18 shows that the first query was run three
times, the first time it ran, the next request included the query
“SELECT B FROM C”, but all subsequent requests were for
“SELECT D FROM E”, so the pre-caching rule on the Feb. 1,
2010 (format: day/month/year) would have added a request
for “SELECT B FROM C” which would not have been used,
so this would then not be selected for pre-caching again buton
the Mar. 1, 2010 the same query was run again so would have
been selected for pre-caching and would have had the results
ready when it was requested.

[0091] FIG. 19 shows two DBMS systems that replicate
data between themselves and the Data Accelerator sending
requests to the DBMS 1 system.

[0092] FIG. 20 shows that if the load balancing rule deter-
mines that system 1 is under too much load and it is affecting
query performance, it can switch to send requests to DBMS 2.
[0093] FIG. 21 shows how there are two separate work-
groups, Accounting and Marketing; they both use the same
DBMS but rarely run the same queries.

[0094] FIG. 22 shows a number of different configurations
that instances can have to connect to a DBMS.

[0095] FIG. 23 shows the Data Accelerator instance chain
when the laptop is out of the office.

[0096] FIG. 24 shows how the instance, when in the office
shares information and data with its peers.

[0097] FIG. 25 shows a Data Accelerator instance which
includes a WAN link.

[0098] FIG. 26 shows an example of a configuration.
[0099] FIG. 27 shows an example of a configuration.
[0100] FIG. 28 shows a table of examples for use cases for

Data Accelerator.

Jan. 23,2014

DETAILED DESCRIPTION

Section A: Overview

[0101] A problem facing current DB based apps is that they
are written on the assumption that the client is on the same
LAN as the DB. Because the LAN is assumed to be fast, there
is no optimization of the data traffic. But many people now
want to deliver their DB apps over the internet, with their DB
servers somewhere in the cloud. Software as Service apps all
require this, for example. But a DB app, designed for a server
and client talking to each other over a high bandwidth LAN,
will be very slow when working over the internet.

[0102] The conventional solution is to analyse the traffic
between client and server and get rid of bottlenecks using
bespoke coding. But that is costly.

[0103] One of the broad ideas in Data Accelerator is to
re-direct traffic between a client and DB (e.g. SQL) server so
that the traffic passes between a small app on the client and a
server component that is on a LAN with the DB server. The
small app and the server component apply traffic optimization
and traffic shaping. This should yield a generic solution that
can retro-fit to any legacy DB that needs to migrate to the
cloud or deliver software as a service.

[0104] Four core technologies are used by the small app on
the client and a server component:

[0105] 1. Compression and encryption

[0106] 2. Caching data on each client, with peer to peer
transfer of cached data between clients.

[0107] The DB side Server Component maps out which
clients are on the network and what data they each cache and
can hence restrict itself to delivering just deltas to clients as
needed. It can also trigger the peer to peer transfer of data
between clients—many of which will be on the same fast
LAN.

[0108] 3. Predictive pre-caching in which the Server Com-
ponent understands the likely flow of client side interactions
and can hence predict what data the client is likely to request
and can then send it in advance to the client side cache. This
is an adaptive process, learning incrementally, for each appli-
cation, the likely interaction flow by monitoring actual use-
age.

[0109] 4. SQL (or other DB) string replacement by index-
ing lengthy strings with compact references. The Server
Component dynamically learns what SQL strings are being
used frequently and can then tell the client to stop using
specific full strings and instead start using a compact refer-
ence. When the client adopts that compact reference, the
server component can then interpret it correctly.

[0110] Here these technologies are used individually or
collectively in the context of re-directing traffic between a
client and DB (e.g. SQL) server so that the traffic passes
between a small app on the client and a server component that
can apply traffic optimization and traffic shaping.

[0111] The present invention is implemented in a system
from Data Accelerator Limited: Data Accelerator is pioneer-
ing a new paradigm of software delivery and management
that will go further than any that exist today. Data Accelera-
tor’s solution will permit businesses to purchase not just the
limited selection of web 2.0 applications currently available,
but to have an AppStore for any kind of business, conceivably
delivering ALL of the applications needed by a business to
run a business, including database applications. The benefits,
which are explained below, are far-reaching and fundamental,
going beyond the point of increased efficiencies in initial

US 2014/0025648 Al

purchase and delivery. Achieving this goal, particularly if a
relatively slow (e.g. under 5 MB per second) network is used,
requires new ways of optimising the flow of data across the
network—for example across the network that links a data-
base client application obtained from the App Store and the
database server for that application.

[0112] One of the key reasons businesses have moved to
buying from web AppStores, is for the simplicity of both
purchase and deployment, auditing and updating. But criti-
cally, with the implementation of application virtualisation,
they are doing so to reduce the cost of the ongoing day to day
management of these applications on the desk-top, even more
so for very large enterprises. Now, by enabling all of their
business applications, including those that are not web 2.0
apps, to be delivered through web stores and streamed from
centrally hosted databases, businesses can get all of the ben-
efits associated with web 2.0 applications for the rest of their
inventory of software. This has a huge impact for almost any
company’s entire legacy IT infrastructure. The areas most
impacted by these changes in a software life cycle may be
those shown in FIG. 1 and in FIG. 2. FIG. 2 contrasts the
present approach to that possible with Data Accelerator’s
approach for each step in the lifecycle.

What Will Data Accelerator Offer the Market?

[0113] Data Accelerator’s AppStore will enable any appli-
cation, including even database applications, to be delivered
over the Internet giving users access to their applications and
their data on any Internet connection from any computer. For
small, medium and large enterprises this transition provides
an enormous cost reduction on their existing technology
infrastructure and significantly increases the productivity of
their users. (For the purpose of broad definition, an SME will
typically use a publically run AppStore and hosting in public
cloud, whilst an enterprise will typically use an internal pri-
vately run AppStore and private cloud).

[0114] With reference to FIG. 3, the new delivery models
emerging are shown in the columns headed “Mobile App-
Stores since C. 2000 and “Web AppStores 2007-Present”,
and Data Accelerator’s proposition is shown in the columns
headed “Data Accelerator AppStore 2010” and “Data Accel-
erator Appstore for Entreprise DB Apps 2010 of the Table.

[0115] In FIG. 4, Data Accelerator’s Product Offering to
service the markets is identified in the Table. Key to abusiness
oriented AppStore is the provision of database applications.
In the past, database applications have required a high band-
width (e.g. over 5 MB per second) LAN linking a powerful
server with multiple client computers. That approach is how-
ever not relevant to database applications bought from an
AppStore since those database applications will typically
have to operate efficiently over a relatively slow connection
such as the internet or wireless connectivity such as GPRS.

How are we Doing this?

[0116] Data Accelerator Limited is developing its own pro-
prietary technology, Data Accelerator, for accelerating and
optimizing the flow of data between any application and a
database server. Specifically the solution will enable practical
access to a database application across a wide area network
(WAN) or the Internet that is not currently possible or is
prohibitively slow at present. Data Accelerator is the only
known product of its type. Data Accelerator may also make
use of a leading technology in application virtualisation, such

Jan. 23,2014

as Application Jukebox from Endeavors Technolgies of Irv-
ine, Calif. Together with Data Accelerator this will create the
first of its kind in a data flow optimization model that works
for the cloud, capitalising on and meeting three principal
global market opportunities:

[0117] 1. A PC application store for any Windows applica-
tion.
[0118] This SME based offering will be targeted at tele-

phone company (Telco) operators, hardware vendors, retail-
ers and Independent Software Vendors (ISVs) to re-sell to
their end users. On top of streaming applications to users
moreover, we have the added advantage of being able to
deliver and store end-user data in the public or private cloud
because of Data Accelerator (explained below).

[0119] 2. A private application store for enterprises targeted
at system integrators to resell to their customers, managed
centrally from a private or public cloud.

[0120] Data Accelerator’s solution will aid the sales pro-
cess and return on investment (ROI) of a system integrator’s
own products or services, especially where they are managing
desktops, by reducing the cost and complexity of delivering
applications to enterprise users and the overheads of admin-
istering and paying for expensive server set-ups.

[0121] 3. An independent App Store targeted at Indepen-
dent Software Vendors (ISVs) for new and existing markets.
[0122] Those ISVs that have a database back end on their
application will normally suffer from complex and long sales
cycles and high costs of implementation as each time they sell
their software their customer also has to make an additional
investment in the database infrastructure to support the appli-
cation.

[0123] Ifthe ISV uses Data Accelerator however, they can
run a central hosted database in the Cloud for their customers
to use. This is delivered at a much lower cost to the end
customer due to economies of scale and it means that the ISV
only has to focus on selling the benefits of their software.
Then the ISV can use an application virtualisation technol-
ogy, such as Application Jukebox, to deploy their client soft-
ware and updates to the customer over a WAN. This gives
complete control over licensing to the ISV and it means that
there is a very simple implementation process for the cus-
tomer with a lower Total Cost of Ownership.

[0124] A hypothetical, fictional example of an ISV that has
this kind of problem is Bert’s Glasses, which supplies
replacement car windsceens. A significant part of their busi-
ness involves gathering data on vehicles and then making that
available to car traders, insurers and car repair centres. The
software they provide for car repair centres is called Glassbert
and has a client application and a back end database that
stores the car repair costing data for quoting to insurers. This
application is not appropriate to become a web-based appli-
cation due to the need to communicate with local large files,
such as photos of the repairs themselves. Currently Bert’s
Glasses requires each customer to install and maintain their
own SQL (Structured Query Language) server at each cus-
tomer office. This presents a large problem for them during
the sales cycle to a new customer since car repair centres have
little or no information technology (IT) knowledge and to
maintain such a server in each office costs around GBP 1,000
a year for a small SQL server. Also, the current set-up makes
updating the data a very complex and expensive process
involving sending out a CD ROM to 1,000 customers every
month to update the database. Bert’s Glasses have previously
investigated providing a central database for their customers

US 2014/0025648 Al

and know that this would reduce their sales cycle and signifi-
cantly reduce their costs of updating and supporting those
customers. However their investigations correctly found that
the database would be too slow to be used over a WAN (either
avirtual private network (VPN) or internet) so the only option
would be to use Citrix XenApp (Presentation Server) to serve
the application remotely. This would be prohibitively expen-
sive for them and add around GBP 600 per user to the cost of
their application. Given that Bert’s Glasses has 1,000 custom-
ers with approximately 10,000 users each charged GBP 1000
per year, this is over a 50% increase in the cost of implement-
ing such a solution—many GBP millions.

[0125] The other area where Data Accelerator can help
ISVs is if they have a web-based application. Any web-based
application has a back end database and as the ISV scales up
the number of users they also have to scale up the database
infrastructure; this comes at a cost that can be very high.
[0126] Data Accelerator can be used to scale the number of
users that can use a web based application without needing to
increase the number of database servers. This can reduce the
cost for the ISV and improve the performance of the web
application for the user.

Section B: Data Accelerator

What does it do?

[0127] Data Accelerator Optimizes Data Traffic Between
an SQL Server and any Client Application.

How Will it Work?

[0128] The Data Accelerator data flow optimisation system
will analyse the specific SQL traffic and perform various
proprietary optimization techniques to reduce the amount of
information sent to the SQL server and the amount of pro-
cessing required of that server.

[0129] Furthermore, Data Accelerator is a totally transpar-
ent solution that can be retrofitted on any database application
to improve speed of response times and overall query perfor-
mance over a WAN. This significantly increases the size of the
addressable market. An added benefit in terms of ease of
adoption is that Data Accelerator and application virtualisa-
tion software, such as Application Jukebox, can be imple-
mented incrementally rather than a wholesale replacement of
systems and methods at a huge cost, e.g. Virtual Desktop
Infrastructures (VDI).

What does this Mean for Enterprises?

[0130] Reduced Number of DBMS (Database Manage-
ment Servers) for an Enterprise

[0131] The main benefit to an organisation is that when a
DBMS request is sent, it can be served faster and more effi-
ciently with minimal impact or load on the actual DBMS. The
reason that the load on the DBMS needs to be minimised is
that they are traditionally expensive systems to operate, either
through licensing or the hardware that is required in order that
the responses can be served quickly enough. With Data
Accelerator we can, in one variant, use the far cheaper and
more abundant processing power of the users’ PC (e.g. the
optimisation system can include a client component running
on client PCs, taking advantage of the computational power
of'those PCs). By minimising load, Data Accelerator can lead
to a significant reduction in the number of DBMS servers that

Jan. 23,2014

an organization needs to run leading to a significant reduction
in both costs and the environmental impact of running those
servers.

Databases in the Cloud or Database as a Service

[0132] The second main benefit is because of the improve-
ments that Data Accelerator gives at the network level (such
as caching, compression or string replacement) it is now
possible to locate the DBMS system over a slow link, either a
secured link to another site, a VPN or over the internet to a
cloud. Because of the nature of the environment, the DBMS
system can be scaled cheaply. With the network optimization
that Data Accelerator achieves, moving DBMS systems into
the cloud can be made a reality for both new and legacy
systems.

How is the Benefit Measured?

[0133] The benefit will depend on the application itself but
in the real world would allow a financial application that
would normally takes a user 10 minutes to log into over the
internet using conventional techniques to be reduced to a few
seconds or allow a large enterprise to reduce their number of
severs by up to 10 times. With each customer, the exact saving
will be accurately demonstrable with live data feedback that
can measure and quantify the saving and efficiency benefit on
each application for every client in real time.

[0134] Because Server Virtualisation only reduces the
number of physical hardware boxes but not the amount of
computing power required, the benefits accruing through
Data Accelerator will be a much greater improvement. Server
Virtualisation has swept the market over the last 5 years,
hence the growth of VMware and Citrix, showing us the
potential of the market for fast adoption.

Where and how Will it be Applied and Installed?

[0135] The server software will be a standalone application
that can be installed on either the SQL server or any other
server on the same local area network (LAN) segment of the
SQL Server. The client side will be able to be installed as an
application or as a client install on each PC, or a combination
of'both. The client will be installable in user mode, meaning
without the requirement for Administrator rights on the end
PC. IT departments will of course also be able to use Data
Accelerator for all their corporate database applications to
improve performance, extending the use of applications to
home users and branch offices and reduce the costs of their
server infrastructure or in fact to any employee who needs to
be mobile.

What Techniques Lie Behind the Implementation of
the Invention?

[0136] The SQL data will be cached and we are developing
techniques to automatically prefetch the subsequent SQL
data that is needed for any given application query. When
responding to a query, the client will get the results from a
local client’s cache if available and only the differential will
be sent over the WAN. The key part of this method is that the
SQL server and application will not be aware of the optimi-
zation taking place. Data Accelerator is a totally transparent
solution that can be retrofitted on any database application to
improve speed of response times and overall query perfor-
mance over a WAN. This of course massively increases our
addressable market since it will be applicable to all historic

US 2014/0025648 Al

database applications currently running It achieves this by
rerouting the SQL traffic that normally flows directly between
the client application and the SQL server. With Data Accel-
erator now the SQL traffic flows via our additional client and
server application so that we can dynamically add in optimi-
zation techniques to the communication.

[0137] The diagrammatic example of FIG. 5 shows how the
data optimization services can interact with other services,
initiators and DBMS servers: the optimization servers are
labelled in FIG. 5 as ‘Optimization Points’.

[0138] There will be four main optimization techniques
used on the SQL traffic and these will improve over time.
These are:

[0139] Peer to Peer Caching of queries
[0140] Compressions and Encryption
[0141] Predictive Pre-fetching
[0142] String replacement
How Will it Improve Over Time?
[0143] The initial release will contain the framework and

rules to accelerate database connection but it will have to be
manually configured to a specific application. The following
releases will allow the acceleration (i.e. the applicable opti-
misation rules) to automatically adapt, improve and/or tune
itself to any application. Subsequent releases will also use the
network effect data (the aggregated data from all customers)
that is generated from the users of the application to help us
further improve the acceleration.

Section C: Application Juke Box

What does it do?

[0144] Application Jukebox streams applications or any
files to a Windows desktop from a server with central control
and management over the application and its license. Once
the application is on the users’ desktop, it is virtualized,
meaning only the parts of it required to work while running
the application are temporarily available and therefore there
are restrictions to stop the application from conflicting with
other applications on the desktop, thus preventing support
issues. Also, this protects the software from piracy.

Why do we Need it?

[0145] Using Data Accelerator to centralise the database or
move it into the cloud, removes the requirement for onsite
database servers and onsite support for those servers. Com-
bining this with application virtualisation like Application
Jukebox also allows the client application to be managed and
supported centrally rather than onsite. Thus the combined
benefit allows a total centrally managed solution thereby
giving reduction in cost and increased productivity.

Application Jukebox

[0146] The product gives the good control mechanisms for
the virtualised delivery of an application as well as a flexible
combination of Integrated or Isolated Virtualisation capabili-
ties. It has Digital Rights Management for preventing piracy
and controlling billing and the use of the application, which in
turn enables us to have innovative new revenue models and
safely enter emerging markets.

Jan. 23,2014

How Will Application Jukebox be Integrated with
Data Accelerator?

[0147] Application Jukebox is used for delivering the
binary files for applications or data while Data Accelerator is
used for the transfer of structured information between an
application and its database. The integration of these products
will allow any type of application to be delivered and forusers
to be able to access the back end data for the application.

Section D: More Technical Detail

[0148] Data Accelerator is a system that intercepts requests
that are being sent to a relational database, decomposing the
request in order to understand the request and applying a set
of rules in order to improve the performance of the request.
This can be applied to any Relational Database Management
System (DBMS) database system. It enables, for example,
legacy DBMS platforms to be migrated efficiently to cloud-
based operation.

[0149] A set of rules can be applied to optimize the request
so that the initiator of the request gets the results as quickly as
possible. The present implementation of the invention is
predicated on the fact that requests sent to a DBMS are often
unnecessary duplicates, the requests often return a large
amount of data that may or may not be actually used and the
DBMS systems do not take into account external factors such
as the performance of the network, the load on the DBMS and
whether the client already has some or all the data it needs to
fulfil the request. Instead of getting the DBMS system to run
every request, an implementation of the invention can for
example analyse the request and decide on a course of action
that can either avoid having the DBMS re-run the query,
thereby saving the time it takes to execute the query and the
time it takes to transfer over the network, or it can alter the
request and/or the response in order to serve the response
more efficiently. We will refer to this as an optimization
system, optimization server or optimization point. These
optimization systems can be implemented in hardware, soft-
ware, or a combination: for example, they may be imple-
mented in a computer running appropriate software; the com-
puter is located between the initiator and the DBMS.
Similarly, they may form part of the DBMS, for example
being part of the software controlling the DBMS, or be part of
the software running on the initiator’s computer. Or they may
be distributed across the DBMS, the initiators” computers, or
one or more intermediary servers. In each case, the existing
client application (running on the initiator’s computers) and
the server (the DBMS) are substantially unchanged by the
optimisation system; this is very different from conventional
and costly bespoke coding approaches to data flow optimisa-
tion.

[0150] Multiple implementations of the invention (each
providing optimization services) may (optionally) be used at
different network points between the initiator of the request
and the DBMS. When routing is done between two or more of
the systems that each provide optimization services, then
these systems (i.e. optimization systems) can include addi-
tional information either in or around the request for upstream
or downstream optimization services in order to learn more
about the request and responses so that they can understand
the effectiveness of any rule applied and also offer other
guidance about results of the optimization and possible fur-
ther optimizations.

US 2014/0025648 Al

[0151] When there are other versions of the optimization
services running which are not in the direct path between the
initiator and the DBMS, such as separate clients on a peer-
to-peer network, then they may optionally also share both
request and response data as well as information to learn
about the effective methods of optimizations described
above. Rules can be selectively enabled or disabled based on
anumber of factors such as initiator and DBMS addresses, the
locations, time of day, configuration or other methods such as
server load. An example of how the optimization services can
interact with other services, initiators and DBMS servers is
shown in FIG. 5: the optimization servers are labelled in FIG.
5 as ‘Optimization Points’.

DETAILED DESCRIPTION OF THE PREFERRED
IMPLEMENTATION

[0152] Data Accelerator provides the interception, analysis
and database traffic optimization described in the preceding
sections. To re-cap on the fundamentals, the traditional
approach for database systems (DBMS) is for the initiator of
arequest to send every request to a DBMS and for that system
to run every single request. In one example, the present imple-
mentation of the invention challenges this orthodoxy by
requiring that the requests and responses have rules applied to
them to limit what is actually run on the DBMS, running
queries more intelligently and making better use of network
bandwidth to improve performance for users of DBMS sys-
tems. The example of the approach can be summarised as
intelligently “intercept and analyse then respond, change or
ignore” at the Data Accelerator optimization server. FIG. 7 is
a schematic of the approach where the rules have not been
able to stop the request from being sent to the DBMS so the
request is forwarded. FIG. 8 shows the response is able to be
served directly from the Data Accelerator optimization server
and the DBMS system does not need to do anything. Typi-
cally the responsiveness of a DBMS system is affected by a
number of factors such as, query compilation, load, data
access (reading and writing to disks) and network response
time. By using a rules based framework that is able to intel-
ligently learn how to apply the rules to give the maximum
performance benefit, significant savings can be made whilst
still having a scalable DBMS architecture.

[0153] The Data Accelerator can apply many different
kinds of rules, such as any one or more of the rules in this
non-exhaustive list:

[0154] Caching of request and response data, to return
the response direct from a cache without having to run
the request on the DBMS—see FIG. 9.

[0155] Pre-Caching of requests can take place so when a
request has been seen before with other requests, those
other requests can be sent to the DBMS so when the
initiator requires them, they are available immediately.

[0156] Query Batching i.e. duplicate queries which have
been requested at the same time can be stopped because
the first request can be run while the duplicates are held,
when the response to the first one is sent, it can be sent to
all of the initiators. See FIG. 10 which shows the
requests being held and FIG. 11 which shows the
response being served to multiple initiators.

[0157] Compression of the request and/or the response
which will decrease the time it takes to send the actual
data over the network.

[0158] Replacement of common strings to minimise the
data travelling over the network.

Jan. 23,2014

[0159] Re-Routing of requests to separate specific
DBMS systems to provide a load balancing feature

[0160] Re-Routing ofrequests over separate specific net-
work paths depending on which one is online and fastest.

[0161] Request modification which will modify queries
to only request the data that is required, for example
adding a TOP X clause to a query that only requires a
certain amount of data but requests more than it needs.

[0162] Pre-Validating the request for errors such as
incorrect syntax of the query language being used or for
security issues, so these can be failed before even having
to get the DBMS to fail the request.

[0163] To address issues such as auditing and logging, a
rule can be put in place to call the auditing or logging
systems so that these can still be used.

[0164] To address issues such as security over WAN
links a rule can be put in place to encrypt the traffic
between two Data Accelerator instances.

[0165] These and other rules give numerous advantages
over the existing method of having a DBMS run each and
every request that it receives, the specific advantages include:

[0166] Lowering the actual cost and ownership cost of
high performance DBMS systems, notably:

[0167] The cost of having to have additional and more
powerful hardware.

[0168] The power costs associated with more physical
servers and more powerful servers.

[0169] The personnel cost of having to maintain the equip-
ment and keep it running optimally

[0170] 'Typically with DBMS systems, because of the
amount of data that is transferred over the network, using
awide area link to connect to the DBMS is not possible,
however using the Data Accelerator you can host your
DBMS system anywhere in the world.

[0171] As the Data Accelerator reduces the amount of
requests being sent to the DBMS, the requests that it
does have to deal with get more resources to complete in
a more efficient manner, so even queries that cannot be
helped by the rules framework will still complete faster.

[0172] Some examples should help to show how wasteful
traditional systems are and how they can be optimized. The
first example is of a national healthcare provider who without
Data Accelerator would have to either host their DBMS inone
location and use an expensive remote virtualization solution
or have a DBMS in each branch office and replicate data
around between branches which can be inefficient, prone to
failure and expensive. Using the present implementation of
the invention they can connect directly from each client via a
local Data Accelerator instance, which applies any caching
and pre-caching rules it can or compresses and encrypts all
traffic connecting over the WAN to the Data Accelerator
instance at the DBMS site where it is uncompressed and
unencrypted and forwarded onto the DBMS. The response is
similarly compressed and encrypted before sending back.

[0173] The benefit of this approach is that the healthcare
provider simply needs one site which keeps costs low whilst
still getting the performance they need. Typically when a
patient goes to reception their details are first loaded so the
receptionist’s traffic can be prioritised by the Data Accelera-
tor, as the data that is required is common i.e. there are a
number of requests which get the patient records (e.g. names,
address, date of birth etc.) the pre-caching can have a massive
benefit. As the patient moves to the specific department, the
information is already available at the local cache so it can be

US 2014/0025648 Al

served immediately. This shows a situation where the Data
Accelerator can be used where imperfect solutions were pre-
viously used.

[0174] The second example is of a global insurance com-
pany which has a number of reports showing the daily claims
and policy sales data which are run by various levels of
management every day. By using the Data Accelerator they
are able to drastically reduce the amount of processing that
the DBMS system needs to do during the online day so it can
be used for other processing or a cheaper system can be put in
place. The hierarchy of managers who view the reports are:

[0175] 1xGlobal Director
[0176] 5xRegional Directors
[0177] 50xCountry Managers—FEach region has an aver-

age of 10 countries
[0178] 2500xDistrict Managers—FEach Country has an
average of 50 districts
[0179] There is one report for each manager so the global
director has a global report, regional directors have a report
and each country manager has their own report etc. A report
consists of one DBMS request. Typically each person views
their own report, their peers reports (district managers peers
are those in their country and not in all countries) and also
their direct subordinates.
[0180] The data is refreshed once overnight and without the
present implementation of the invention and request caching
the amount of requests the DBMS needs to cope with is:
[0181] Global Director=6 Reports—1 Global Report
and 5 Regional Reports
[0182] Regional Directors=275 Reports—Fach regional
director views the 5 regional reports and their own coun-
tries reports
[0183] County Managers=27500 Reports—Each coun-
try manager views all 50 country reports and their own
districts
[0184] District Managers=25000 Reports—Fach dis-
trict manager views their own reports and all the districts
in their own country
[0185] Total Requests=52781
[0186] If however we use caching, so that reports are only
run once, then we simply count the number of reports that are
available:

[0187] 1 Global Report
[0188] 5 Regional Reports
[0189] 50 Country Reports
[0190] 500 District Reports
[0191] Total Requests=556
[0192] That is 1.053% of the number of original requests.

Because the same reports are run every day, once the data has
been refreshed the Data Accelerator can employ pre-caching
to generate the data the reports require before anyone has even
requested the first report. Deploying this for enterprise report-
ing solutions often means that it is possible to restrict the use
of complicated and expensive pre-aggregating solutions such
as online analytical processing (OLAP) cubes.

[0193] For a final example we can take a look at a web site
which shows dynamic pages directly from a DBMS system.
The site is 24/7 and has pages modified by editors as well as
data feeds constantly updating pages. By using the Data
Accelerator they are able to improve the performance of the
site and ensure that the resources needed to serve the site are
reduced so the running costs are cheaper.

Jan. 23,2014

[0194] A page consists of, a site header, site footer, a site
tree and the page itself where each item is a separate DBMS
request.
[0195] On average:
[0196] 1 Page every 5 minutes is added or deleted which
changes the site tree

[0197] The header or footer are changed once every 7
days

[0198] The site receives 50 page views a minute
[0199] The situation without Data Accelerator is that the
DBMS handles 2,000 requests/minute which are:

[0200] 50xSite Tree

[0201] 50xSite Header

[0202] 50xSite Footer

[0203] 50xPages
[0204] This equates to 12,000 requests per hour, 288,000

per day and 2,016,000 requests a week.

[0205] Using Data Accelerator, depending on which pages
are shown, in the worst case scenario, where the page
requested is always the page that has been modified there is
still a massive reduction in requests:

[0206] 1xSite Tree—every 5 minutes

[0207] 1xSite Header—every 7 days

[0208] 1xSite Footer—every 7 days

[0209] 1xPage—every 5 minutes (if the changed page is

not requested then this can be even lower)
[0210] This equates to 12 requests per hour, 288 requests
per day and 2,018 DBMS requests every week. This is a
reduction in the worst case scenario to 0.1% of the original
requests.
[0211] The Data Accelerator optimisation system can work
as either the only instance between an initiator and an DBMS
or as part of a chain involving two or more instances; using
multiple instances allows rules to do things to the request that
they could not otherwise (compress, encrypt etc.) and share
diagnostics and performance information between the
instances. FIG. 12 shows a single Data Accelerator instance,
FIG. 13 shows two Data Accelerator Instances and FIG. 14
shows multiple instances.
[0212] The path through a chain of Data Accelerator
instances is not fixed but variable. Different initiators at either
the same or separate locations can go through any route of
Data Accelerator instances: see FIG. 15. FIG. 16 shows how
the Data Accelerator can change the route to the DBMS
depending on where the request came from or a specific
property of the request. The Data Accelerators must be aware
of other instances both up and down stream because some
rules such as the compression rule will modify the request and
it must be uncompressed before reaching the destination
DBMS server otherwise the request would be invalid.
[0213] When the Data Accelerator sends a packet that has
been modified, it wraps the contents of the packet in a specific
message that the Data Accelerator will remove before for-
warding to the DBMS or the initiator. In order that the Data
Accelerator instances can know what rules they are allowed to
apply to a packet, it uses a number of methods to understand
where it is in the chain between the initiator and DBMS. One
such method is for the first Data Accelerator instance in a
chain to send a specially crafted DBMS request up the stream
and to monitor for the response. Each instance has its own
unique id. The first instance creates a request such as
“SELECT uniquelD”, the second adds its own id so it
becomes “SELECT uniquelD, uniquelD” each instance in

US 2014/0025648 Al

the chain adds its own id then when the response is received,
the order of the instances unique id in the result set shows
where it is in the stream.
[0214] Because Data Accelerator instances are aware of the
chain and of other instances they are able to communicate
between themselves within the network channel that has
already been opened for the initiator. These messages allow
the instances to share information about the requests and
responses, such as how quickly they are being received at
each point. With this information instances can dynamically
determine how effective or detrimental a specific rule has
been in a particular case so can choose to vary the applied
rules (either not apply the rule or change the parameters to the
rule or even test a different rule) to find the optimum perfor-
mance enhancements. It is this dynamic learning that means
Data Accelerator instances can consistently add benefit over
time.
[0215] In order to analyse requests that are being sent to a
DBMS, the Data Accelerator will extract the command that is
being sent such as “SELECT A, B, C FROM XYZ” or the
DBMS specific command in their own language such as
Procedural Language/SQL (PL/SQL) for Oracle or Transact-
SQL (T-SQL) for Microsoft SQL Server and use the com-
mand as the basis for applying the different rules that it has
available.
[0216] There are a number of different types of rules that
can be applied at different points within the request/response
stream. Section E below expands on these rules. FIG. 17
shows the different points that the rules can be applied and the
flow through the application. The rules are as follows:
[0217] Initiator In-Flight Rules
[0218] The request is received and rules such as the caching
rule can decide to allow the request or serve a response
directly from cache
[0219] Initiator Post-Send Rules
[0220] The request has been sent so rules such as the pre-
caching rule can send other requests which may well be
needed
[0221] DBMS In-Flight Rules
[0222] Theresponse is received from the DBMS; rules such
as the compression rule can be applied before it is sent to a
downstream Data Accelerator instance.
[0223] DBMS Post-Send Rules
[0224] The response has been sent so the diagnostics rule
can determine how good a job it did and how it could have
been better.
[0225] We can follow a request with a specific example:
[0226] 1. A request comes in and the protocol specific
parser determines that the command is “SELECT a, b, ¢
FROM xyz”.
[0227] 2. The initiator In-Flight rules are applied
[0228] a. The caching rule determines that it is in cache
but has expired so cannot serve it
[0229] b. The compression rule determines that there is
an upstream Data Accelerator instance and the network
link is slow so the data is compressed and wrapped in a
Data Accelerator packet.

[0230] 3. The request is sent upstream.
[0231] 4. The Initiator Post-Send rules are applied
[0232] a. The pre-caching rule determines that normally

when this is sent, there are an additional 5 commands
which are always run so it schedules the next 5 requests,
the 5 requests are sent through the normal set of rules so
caching and compression etc. can still be applied.

Jan. 23,2014

[0233] 5. While the Initiator Post-Send rules are in
progress, the response is received from the upstream servers.
It is then passed through the DBMS server in-flight rules.
[0234] a. The compression rule determines that the data
is compressed and there are no downstream Data Accel-
erator servers so the data is uncompressed.

[0235] 6. The response is then sent back to the initiator
[0236] 7. The DBMS Post-Send rule is then applied
[0237] a. A diagnostics rule determines that the upstream

link is a fast link and there is little or no latency so after
running a test to compare how long it takes to compress
data and how long to send over the network, the com-
pression rule is turned off for upstream packets less than
1 k in size.

[0238] b. The pre-caching rule discovers that only 4 of
the 5 commands it expected have been used and this has
been the case for the last 5 times the specific request was
sent so the caching rule has been modified to only
request the 4 queries instead of the original 5.

[0239] The key is that the Data Accelerator provides the
rules but also diagnostics and in-built learning to change the
rules dynamically to react to events as they happen.

Section E: The Optimisation Rules

[0240] We now look at how each of the individual rules
work to provide the benefits already mentioned.

Simple Caching Rule

[0241] If we start with the simple caching rule, there are
three parts, the actual caching of data called the “cache data
rule”, the serving of cached data called the “cache serve rule”
and the diagnostics component “cache diagnostics and man-
agement”.

[0242] Inorder that the Data Accelerator can cache data, the
cache data rule runs after the response has been sent back to
the initiator because, at this point the Data Accelerator has
seen the request that was sent and the response that was
returned, it has everything it needs to cache the data. There are
a number of different types of cache that can be used, these
include an in-process and out-of-process or separate machine
cache and on permanent storage such as a hard disk. The
cache is effectively a hash table lookup with the key being
either the SQL command from the request or a hash of that
SQL command. Depending on the type of cache, it will either
store a pointer to the first response packet or it will store the
actual packets as an array.

[0243] Before aresponse can be added to the cache, the rule
must determine whether a request is actually cacheable.
There are a number of factors which affect whether or not
something is cacheable, there are certain types of SQL com-
mand which are inherently non-cacheable, for example an
UPDATE or INSERT request, if this was cached and not
forwarded onto the DBMS it could cause data corruption
which is not acceptable. Other commands need to be looked
at in the context that they are being used, for example an
DBMS will have a command to retrieve the current date and
time. If a request is sent to get all records in the future,
depending on when the query was next run and if any records
were added or deleted, it may or may not have a different set
of results. Ifit is determined that the request can be cached, it
is stored in the actual cache. If it cannot be cached, then we
still store the request so further requests don’t have to be
verified.

US 2014/0025648 Al

[0244] Once a request/response are stored in a cache, the
cache serve rule can be applied to requests as they arrive but
before they are sent onto the DBMS, if the request is in the
cache, it is verified to ensure that it is still valid, for example
there have not been rows added to, deleted from or modified
in the cached response. The users’ permissions are then veri-
fied to ensure that they have the correct level of security to
access the response and if they are allowed access then the
response is returned.

[0245] The cache diagnostics and management rule’s role
is to verify how well the cache has worked for a specific
request, to manage the cache size by expiring unused or not
often used requests as well as expiring items which are no
longer valid. To work out how effective a cached response
was, it compares the total time it took the DBMS to return the
response and compare it to how long it took to verify that it
was still valid, check security and return the cached
response—if the request is such that it is small and responds
almost instantly then it may not be worth caching. If the
diagnostics determine that caching the request is not adding a
benefit, it will still monitor later requests to see if at any time
it does become worth caching.

[0246] To see if a request is still valid the rule has a record
of the items that the request used within the DBMS and
monitors those for changes, if'the changes affect the response
then it can either decide to just evict the item from the cache
or it can re-run the query so it has the latest response available
in cache.

[0247] To manage the size of the cache, every time an item
is served a counter is incremented and the time noted, if an
item hasn’t been used for a set amount of time or it is only
rarely used then it can be evicted from the cache.

Intelligent Caching Rule

[0248] The next rule is the intelligent cache rule; this is
similar to the simple cache rule in that it has three components
and in fact can share a cache with the simple caching. In some
situations the simple caching is not as effective as it could be.
For example if the response to a request changes, the entire
response is discarded. With the intelligent rule, it can assess
how much of the response has changed and if it is under a
certain percentage, which is determined by the diagnostics
component, the cached response will be modified so that it is
up to date. Where this is of most use is where a chain of Data
Accelerator instances are being used perhaps, one close to the
DBMS and others at remote offices, the intelligent caching
rule can just request the portions of packets that have been
changed from the upstream instance that is close to the DBMS
so that the minimal amount of data is sent over the network to
the local instance, which then merges the changes and then
returns the cached response as required. The cache data rule
works in exactly the same way as the basic caching rule, in
that it determines the cacheability and stores it in a hash table.
[0249] The cache serve rule and the diagnostic rules how-
ever need a much more complex method to determine if the
results can be merged or simply discarded. The rules will
decide on whether to do a merge based on factors including
the size of the response in that a small response may be
quicker to get direct from the DBMS. It also takes into con-
sideration how much of the data has changed. It does this by
getting an upstream Data Accelerator instance to physically
re-run the request. Once the upstream instance gets the
response, it can analyse each packet in turn to see if it has
changed at all and if it has what percentage of the packet is

Jan. 23,2014

different. Once the rule knows how much of the data has
changed, it can determine what to do and how complicated it
is. Some changes are more complicated, for example, if the
size of a packet has changed, either due to extra rows being
returned, or a string changed then details like the packet size
and protocol specific information need updating, but if some-
thing has changed but the length of the packet is the same i.e.
swapping “Company A” for “Company B” then it is simply a
matter of swapping the “A” for “B” which is an easier modi-
fication to make.

Compression Rule

[0250] If we now look at how the compression is imple-
mented, compression relies on there being a chain of Data
Accelerator instances between the initiator and DBMS, at the
very least there needs to be two instances, one to compress
and one to decompress the packets. Either the request or the
response can be compressed but typically requests are small
enough that compression is usually ignored. The compression
piece is made up of'three rules, the “compress rule”, “decom-
press rule” and the “compression diagnostics”.

[0251] The diagnostics component analyses network band-
width within the chain of Data Accelerator instances to dis-
cover what speed each of the up and down stream networks
are running so a score based on the performance can be used.
Over time the performance will be verified to ensure if any-
thing changes, or if there is a particularly busy period on a
portion of the network, it is taken into consideration. The
diagnostics component also checks to see how long it takes to
compress/decompress packets and compares that to the time
it takes to send over the network to find the best ratio of packet
size/compression size over CPU cost to decide what to com-
press and what to ignore.

[0252] The compression rule will use both the network
performance and the CPU compression cost ratios to deter-
mine whether a specific request or response should be com-
pressed. If it is to be compressed it takes the packet(s), com-
presses and wraps the compressed data in a Data Accelerator
compression envelope which can then be forwarded. The
wrapper which contains the data is then sent either up or down
stream depending on whether or not it was a request or
response which was compressed.

[0253] The decompression rule examines each request and
response to determine if they are compressed or not. If they
are compressed, the rule will determine whether the link
contains a Data Accelerator instance. If there is no instance
that exists then the data is always uncompressed. If an
instance does exist then the data is still uncompressed but
only so that rules like the caching rule can be applied at each
level; in this case the uncompressed data is not forwarded.

Pre-Caching Rule

[0254] Thenextruleis the pre-caching rule. This is made up
of one component, which intercepts requests after they have
been forwarded upstream or to the DBMS. The rule is based
around a map of requests that have previously been run
through the instance. Each request that has been run links to
the next request that was sent, if that same series of links had
been made before then the pre-caching rule can run the next
set of queries.

[0255] Ifyoulook at FIG. 18 we see that the first query was
run three times. The first time it ran, the next request included
the query “SELECT B FROM C”, but all subsequent requests

US 2014/0025648 Al

were for “SELECT D FROM E”, so the pre-caching rule on
the 2/1/2010 (format: day/month/year) would have added a
request for “SELECT B FROM C” which would not have
been used, so this would then not be selected for pre-caching
again but on the 3/1/2010 the same query was run again so
would have been selected for pre-caching and would have had
the results ready when it was requested.

[0256] The criteria the pre-caching uses for selecting or
removing requests from pre-caching is based on how many
times a sequence of queries has been run as well as how
expensive to run a request is. If a series of requests complete
very quickly then it may well be worth pre-caching those even
if they are not always used. Conversely if a request takes a
long time to complete then it might not be worth running it
just in case it is used.

[0257] Pre-Caching can also look for patterns in requests.
For example if a request came in with the SQL command
“SELECT * FROM Country WHERE
CountryName=‘England’”” and then the next request was for
“SELECT * FROM Employees WHERE CountrylD=1024"
it is likely that the CountrylD was returned from the first
query. The pre-caching rule can then get a list of all Coun-
tryName and CountryID fields by querying the Country table
directly, so when a request such as “SELECT * FROM Coun-
try WHERE CountryName=*Wales’” the id could be inserted
into the next query “SELECT * FROM Employees WHERE
CountryID=??".

Query Batching

[0258] The next rule is the query batching rule which will
stop duplicate queries running at the same time. This rule runs
after the request has been received and before it has been sent
to the upstream instance or DBMS. The rule has a list of
currently executing requests and if the current request is
already being run then it is held. The rule waits on the
response from the request that is already executing and puts
the new request on hold, adding it to a list of waiting requests.
When the response returns, the rule copies the response to
each waiting request.

[0259] The query batching rule needs to employ the same
definition of cacheability that the caching rules use to decide
whether or not something is cacheable because some things
like INSERT or UPDATE queries need to be run on the server
whether or not they are duplicates.

String Replacement Rule

[0260] The string replacement rule works by replacing
common strings with specific id’s which allows the rule to
minimise the amount of data that is sent over the network. For
example if a company name appears in a number of queries
then depending on the length of the company name it can save
quite a lot of network traffic by replacing “Company Name
Corporation” with “:1:” or some similar identifier. This can
work with either the request or the response and relies on
there being more than one Data Accelerator instance in the
chain: one to replace the strings and one to restore them.

[0261] If a packet contains string replacements then it is
wrapped in a replacement envelope. When an instance
receives a packet for forwarding, if there is an appropriate up
or downstream Data Accelerator instance, it will replace the
strings so it can apply any other rules on the instance but
forward the original message. If however the upstream is the

Jan. 23,2014

DBMS or the downstream is the initiator then the strings are
put back into the message and forwarded on.

DBMS Load Balancing Re-Routing

[0262] The re-routing rule monitors the load of a DBMS
and chooses to run the query on the least used DBMS system.
The re-routing rule requires some configuration and some
specific requirements of the DBMS. The rule must have the
details of the DBMS systems that can handle specific requests
and the databases themselves must be able to handle requests
no matter where the request ends up. Examples of these are
read only databases or where transactions are copied to each
database. FIG. 19 shows two DBMS systems that replicate
data between themselves and the Data Accelerator sending
requests to the DBMS 1 system. If the load balancing rule
determines that system 1 is under too much load and it is
affecting query performance, it can switch to send requests to
DBMS 2 as shown in FIG. 20.

Re-Routing of Requests Over Separate Network
Paths

[0263] This rule needs to be configured with multiple
upstream Data Accelerator instances which can be connected
via separate network routes. It has two components, the diag-
nostics rule and the redirector rule. The diagnostics rule con-
stantly checks the performance of both up and downstream
routes to score each one based on performance. The redirector
works by intercepting requests before they are sent upstream
and sends them via the fastest route at that time. It works with
responses by intercepting them before they are sent back
downstream in the same way.

Request Modification

[0264] This rule works by taking the request that was sent
and modifying it to send a request that only asks for the
minimum amount of data that is actually required. This rule
does require that it is configured with a list of SQL. commands
it can modify. When a request arrives, it is checked against a
list of SQL commands which can be modified, if it can be
changed it swaps the portion of the SQL command that can be
changed with the replacement query and then the response is
rebuilt and then forwarded on. This rule does not apply to
responses.

[0265] An example of a query that can be modified is a
search screen that only shows a small number of records at a
particular time and for each page re-runs the query which
selects all records in the system. The query “SELECT *
FROM B” could be modified to “SELECT TOP 10* FROM
B”, the benefit of this rule depends on the actual queries and
how the initiators are using the results.

Pre-Validation Rule

[0266] The pre-validation rule takes the request, retrieves
the SQL command and runs it through a series of checks to
ensure that the request can actually be completed. If it finds
that it cannot be completed then it returns the DBMS specific
error message/code. The rule runs after the request has been
received and before it is forwarded onto the upstream DBMS.
[0267] The checks it can carry out include a syntax check
on the command to validate that the DBMS will actually
accept the request. It can check that the request includes an
actual command and is not just a comment, i.e. in a typical
DBMS system “/* SELECT * FROM A*/” will not return a

US 2014/0025648 Al

result as the command is commented out. It can also verify
that the user has the permissions to run the query which will
always result in a failure. The main benefit of this rule is that
commands which are not valid do not need to travel over the
network or to the DBMS for it to fail it outright.

Encryption Rule

[0268] The encryption rule requires that there be at least
two Data Accelerator instances in the chain and typically the
rule encrypts the traffic, both the request and the response
when sending the data over an unsecured network like the
internet. There are two parts to the encryption, the encrypt
rule and the decrypt rule. When the request is received but
before it is sent upstream towards the DBMS, the last thing
that happens is that the data is encrypted if the link requires it.
The encrypted data is wrapped in an encryption envelope and
as the encryption is the last rule to run, the data may or may
not be compressed or otherwise changed by an earlier rule. As
each instance receives the request, if it is encrypted it decrypts
it so the other rules can be applied. When it forwards the
message, depending on whether or not the link is secure it
either re-encrypts and sends the encryption envelope or sim-
ply forwards the unencrypted data. The type and level of
encryption that can be used on a link are configurable and can
be different depending on which link is used, for example on
one link the rule could use Secure Hash Algorithm SHA-2
over Transport Layer Security TLS 2.0 but on another link use
MD-5 (Message-Digest algorithm 5) over Secure Sockets
Layer SSL 1.

Custom Rules

[0269] To ensure that things like auditing or logging occur
in a DBMS system a custom rule can be put in place to run a
specific command on the system as events occur in the Data
Accelerator. In a typical system, there would be some audit-
ing when a user carried out a specific action, for example if
someone retrieved all the annual wages of all employees, it
would need to be audited but if the caching rule had been
applied then the request would not have arrived at the DBMS
to be logged. The custom rules item is configured with a list of
queries or events such as DBMS load balancing or network
path re-routing and then a list of actions such as writing to a
log file or sending a separate request to the DBMS.

Peer to Peer

[0270] If we now take a look at how the Data Accelerator
instances in a chain or on a network can help each other by
sharing diagnostics information and data between themselves
and how that then can increase their effectiveness.

[0271] For individual rules to be most effective they typi-
cally use a diagnostic component to find optimum method of
working to get the fastest response for the initiator, often
where one instance has calculated something it is useful to the
other instances that are available. There are two methods for
communicating between Data Accelerator instances, the first
is when the instance is not sure if the upstream point is another
instance or the actual DBMS and it sends an DBMS request
with the information that the Data Accelerator needs but that
will not actually do anything if it does reach the DBMS. We
can demonstrate this when an instance wants to enumerate the
chain of instances and find the speed of each network link, it
can send a request such as: “SELECT ‘1 January 2010 09:43:

Jan. 23,2014

22.02° As DAlnstance4 AA5888240B4448e9E20-
62A8F70CF595, current_date As ServerTime”

[0272] The DAlnstance4AA5888240B4448e9E20-
62A8F70CF595 is the unique id of the Data Accelerator
Instance, when the response comes back, it will include the
time the request was started and the time on the server, and
this gives an indication of how long it took to get a response
from the network. When there is a chain of Data Accelerator
instances, each instance adds its own uniquelD and time so
the request actually ends up as “SELECT ‘1 January 2010
09:43:22.02° As DAlnstance4AA5888240B4448e9E20-
62A8F70CF595, ‘1 January 2010 09:43:22.04° As
DAlnstance936C4368DE18405881707A22FDBCFES9, ‘1
January 2010 09:43:23.09° As
DAlnstance8F4AAEASAE4D544cd9B56DF16F7563913,
current_date As ServerTime” The response from this will be
a data set such as is shown in FIG. 6.

[0273] Eachinstance can theninstantly see whereitisinthe
chain and also that the speed of the link between the 2nd and
3rd instances is a slow link so they can make better decisions
based on this knowledge.

[0274] Also if the first instance receives a request such as
this, it then knows there is a downstream Data Accelerator
instance and instead of re-running the query, after combining
the request it received with the results it already has it can
simply share the updated results with both the initiator and the
upstream servers.

[0275] The second method of communication is where an
instance knows that another instance exists and wants to
either find out what it knows or wants to pass on some infor-
mation, it creates a connection using the DBMS network
method but instead of the network packet that the DBMS
expects, it sends a Data Accelerator control packet. The con-
trol packet instructs the instance, not to forward packets up or
down stream but to pass the packet onto the specified rule. The
rules are given the information in the control packet and it acts
on that as required. If we take a look at this in detail with an
example of the caching rule, FIG. 21 shows how there are two
separate workgroups, Accounting and Marketing, they both
use the same DBMS but rarely run the same queries. Each
department has their own Data Accelerator instance which
connects directly to the DBMS. Because there is no chain the
instances cannot communicate by sending requests up the
chain. Instead they create a connection using the standard
DBMS method and use this to send control packets. In the
case of caching, where a request comes in from the Marketing
which has already been served to Accounting, the caching
rule, as well as checking its own cache can ask the Accounting
instance if it has the query cached, if it does it can serve it
without having to send the request to the DBMS.

[0276] Because the Data Accelerator can work and share
information in this peer-to-peer way or via the instance chain,
it can build a powerful network of shared data and knowledge.
FIG. 22 shows a number of different configurations that
instances can have to connect to a DBMS. If each of the
initiators runs the same query, initiator A runs it for the first
time so DAl and DA2 both store it in their caches. Then
initiator B sends the request. It has a local instance of Data
Accelerator and that doesn’t contain the response in cache
and because of the network configuration it cannot talk to
DAL. The request is forwarded to DA4. DA4 has a network
link to DA2 and DA7 so it sends a control packet to both
instances to see if they have the request. DAl returns the
response and DA4 then carries out the standard checks (is it

US 2014/0025648 Al

allowed and has it expired). If the response is acceptable then
it is returned to DA3 which sends it back to the initiator after
caching the request itself. The initiator C then sends the
request. Again DA6 does not have a copy so it forwards it to
DA7, and DA7 does not have a copy but does have a link to
DA4 which it knows has previously requested the query so it
asks DA4 for the response. DA4 returns the response from its
own cache. DA7 verifies and sends back to DA6 which caches
the result and returns it to the initiator. At this point if initiator
C resends the request it is served immediately from DA6. The
initiator D then sends the request. DA8 does not have it in
cache and has no peers it can connect to so forwards it on to
DAS. This instance also does not have it in cache, but it does
have a downstream instance that has the response but the link
downstream is a slow WAN link so it needs to make a decision
as to whether to send the request back down the link to DA4
orto send it to the DBMS. This decision is based on how long
the query took to run on the server, how much data is in the
response and how slow the WAN link is between DA4 and
DAS.

[0277] Another scenario for the Data Accelerator is in a
sales office where the salesmen have laptops. Each laptop has
a local instance and when they are on the road this is mainly
used for compressing the data. When the laptops are in the
office, they can share their caches with the other laptops in the
office. FIG. 23 shows the Data Accelerator instance chain
when the laptop is out of the office and FIG. 24 shows how the
instance, when in the office shares information and data with
its peers.

[0278] The links that the Data Accelerator can work over
can be local connections so the instance runs on the initiators
computer as a windows service, a UNIX daemon or whatever
type of process is best for the underlying operating system. It
can run over LAN links which are typically fast or it can run
over slower WAN links (eg. in FIG. 25) or links over public
networks in cloud based systems. When running over unse-
cure networks the Data Accelerator can use encryption to
secure both the requests and response data.

Section F: Use Cases

[0279] Finally if we take a look at the different applications
for the Data Accelerator we can see who may use it and in
what situations.

Examples for Use Cases for Data Accelerator

[0280] Data Accelerator can use the techniques described
to help reduce the amount of queries that a database server has
to make in order to produce the required results. This could be
by serving the entire request from Cache or by requesting
only portions of the information that has changed. Also cli-
ents can get the cached results from other clients using peer to
peer.

[0281] An example of this may be a huge multi-terabyte
database containing information from a supermarket’s store
card usage. When a team or internal staff are mining data from
the database in order to track trends of customers or products,
they may need to repeat many of the same queries but each
time with some additional or different information required.
By caching the results of the requests each time a team mem-
ber runs a query they only need the database server to return
any new results that no one else has already requested. With
such a large database there is a significant amount of time
required for each query and these apply significant load to the

Jan. 23,2014

database server. This could mean that if a report is made up of
100 queries that each take around seconds to complete, with-
out Data Accelerator the time to run a report or mine the
required data is 50 minutes. But if the first 80 queries are
cacheable and take sub-second to respond through data accel-
erator, the queries complete in 11 minutes and 20 seconds.

[0282] Another example of how Data Accelerator can
reduce the load on a database server is for a reporting appli-
cation. An organisation has a large database with a record of
new and historical customer purchases. Each week the man-
agers within the organisation run a report of the purchases
made and compare that to historical data. Normally the data-
base server would have to return all of the data required for the
reports. Using Data Accelerator when a user runs the report
they can access all the historical data from cached queries that
have been run before, and the database server is only accessed
to run a small query for the current week’s data.

[0283] When a database server is replicating to other data-
base servers or if it is running a backup Data Accelerator can
be used to reduce the need for existing data or portions of data
to be requested from the database server. This can result in a
significant reduction in the load on a database server as the
only queries that are run on the database are for data that has
been added or changed since the last replication or backup.

[0284] The second main use for Data Accelerator is to help
reduce the load on the connection from the client application
to the database servers. This is achieved by using the various
techniques described for each connection that the client
makes to the database server, and eliminating the need for the
connection where possible. By being able to improve the
performance of the connection between the client and the
database server it is possible to move the database server from
a local network connection onto a slower WAN connection.
This could mean that the database server is moved into a
public datacentre or public cloud environment or for an enter-
prise it may mean that the database server is able to be cen-
tralised into a private datacentre or private cloud environ-
ment. For either a public or private datacentre or cloud Data
Accelerator will deliver improved performance and lower
costs for all types of connection speeds. FIG. 28 shows a
matrix of various scenarios; an example for each scenario is
given below.

Example 1a (see FIG. 28)

[0285] A university may have its application that tracks
students’ submissions of work and results currently running
with a database server on each campus and the use of a
Remote Desktop connection for students to log in from
remote locations. The application without Data Accelerator is
too slow to work without a high speed local network connec-
tion between the client application and the database server.
The current infrastructure is very expensive to run and the
experience for end users who connect remotely is very poor.
By using Data Accelerator the database can be moved into a
public cloud that provides low cost infrastructure and the
campus locations and remote users or students can access the
data using the client application on their local machine. To
simplify the deployment of the client software application
streaming can be used from a web page deployment. A typical
use is for a tutor to download a students essay, which is stored
in a binary format inside the database, so it can be marked.
When the tutor is at home and using a dsl connection, it can
take the tutor up to 5 minutes per essay but with the data

US 2014/0025648 Al

accelerator using the rules to optimize the traffic, the same
request can take as little as 25 seconds.

Example 1b (see FIG. 28)

[0286] Car repair garages require software to accurately
estimate the cost of repairing damage to a vehicle and this
price must be in correlation with amount the insurance com-
panies are prepared to pay for such a repair. In order to cost a
job there is an industry database with all part costs and labour
estimates. Currently each car repair workshop has to install a
database server as the application is too slow when running
overa WAN connection. For example to open a contact and an
estimate takes 44 seconds on a local network and 1 minute 53
seconds on a WAN connection. The problem with having a
database server in each car repair workshop is that it is costly
to install and maintain and also it is complex to update the
database each month with the latest database. By using Data
Accelerator the database can be moved into a public cloud
environment but the performance of the application can be
nearly the same as with a local server. The example above
would only take 49 seconds over a standard ADSL connection
with Data Accelerator.

Example 1c (see FIG. 28)

[0287] If a user is accessing an application over a mobile
broadband, 3G or GPRS connection the problems caused by
slow WAN performance are increased significantly. So if a
user wanted to access the database server over a mobile
broadband connection with the example above it would take
several minutes on without Data Accelerator. With Data
Accelerator it is possible to deliver near local network per-
formance even over a very slow GPRS connection. This
would apply to many types of applications that are used by
mobile users, for example sales quotation applications.

Private Cloud

[0288] Enterprise organisations are more likely to want to
centralise database servers into an internal private datacentre
or private cloud.

Example 2a (see FIG. 28)

[0289] An example of this would be a healthcare applica-
tion for recording doctors practise records about patient vis-
its, appointments and bills. This application would currently
require a server to be installed in each physical location. For
a large hospital group this could mean a large number of
servers on large hospital sites, servers in each practise which
may include some rural locations, and many other ancillary
buildings. The cost of deploying and managing this large
number of database servers would be very significant. Even if
each building were connected using a high speed leased line,
the problems caused by latency and general lack of bandwidth
are enough to make the application unusable without a local
database server. With Data Accelerator it is possible to
remove all database servers and to maybe even downgrade
some connections, then having a single database server or a
server farm located in a private cloud environment. This
would result is a significant reduction in costs.

Example 2b (see FIG. 28)

[0290] An example of an application with a connection
using a standard DSL line to a private cloud would be a

Jan. 23,2014

Vetinary Clinic that has multiple branches with the animal
database located at the head office. The Clinic is connected to
head office over an ADSL line that has a maximum speed of
2.9 Mega Bits per second. The request to get animal history
screen consists or 4 requests, 3 cacheable, 1 not. Without
compression and caching it takes 2 minutes to open the his-
tory screen. With caching and compressions, after the details
have been loaded once it only takes 5 seconds; the first time
without caching but with compression takes 1 minute.

Example 2¢ (see FIG. 28)

[0291] As mentioned above any of these examples would
be even more affected by the connection performance when
used on a mobile internet connection (3G, GPRS etc.) Using
Data Accelerator would also mean the mobile users would be
able to access the application. This could be on either a laptop
with a data card or even on a version of the application that
runs on a smart phone or mobile phone device.

[0292] An additional benefit of Data Accelerator is that for
connections that have any kind or packet loss or unreliability,
especially mobile internet connections that are affected by
network coverage, the connection is automatically re-estab-
lished and the application can carry on working once the
connection is working again. Normally many applications
will crash or end if the connection is dropped even for a short
time. By having Data Accelerator intercepting the connection
it can prevent the application from being aware of the con-
nection problem.

Section G: Additional Uses

[0293] The process of intercepting DBMS requests,
decomposing the request and applying a set of rules to
improve the performance can also be applied to other systems
outside of DBMS specific requests. Two other types of system
include opening files over a network and web or HTTP
requests.
[0294] The performance of opening files stored on a remote
file server (which is anything that can store files) across a slow
network is often poor and the difference between that and of
opening files when they are local to the requestor is very
noticeable. The data accelerator can decompose the requests
for files from a file requestor (anything that can request a
file—and hence includes end-users, applications, databases
etc.) and pass the request to the rules engine which can apply
any rules that are appropriate to improve the responsiveness
of' the client application. For example when a client requests
a list of all the files in a directory on a remote share that is
located over a slow or unsecure link the Data Accelerator can
apply the following rules:
[0295] The cache serve rule to see if it already has a list
which it can immediately return
[0296] The cache serve rule can also see if a file was in
cache but has changed and request the portions ofthe file
which have changed to minimise the cost of re-caching
the data
[0297] The cache date rule to cache the response so it is
available for future requests
[0298] The pre cache rule can request all the files in the
directory so they are immediately available when a
future request is made
[0299] The compression rule can apply compression to
the file so that the data that is needed can be requested as
quick as possible

US 2014/0025648 Al

[0300] The encryption rule can be applied so documents
and files can be carried securely over a public network.
[0301] A real world example of this would be a human
resources (hr) department in a global blue chip company: the
hr officers will store both general forms and also documents
that relate to specific employees which vary in size and are
confidential such as appraisal documents and details of
behavioural and misconduct cases against employees. The hr
officers will be based in remote offices and often travel to
other offices and require fast access to the documents. Using
the Data Accelerator means that the documents can be stored
in one secure location and the users can access documents
quickly and securely over remote links.
[0302] Web requests (from, generically, a ‘web data
requestor’) can also apply the same set of rules that file
requests can use because many webs requests contain static
data which do not change such as images, documents and
code files like html or css files. Traditional web caching
services work by determining whether or not a resource has
changed since it was last requested by using the [f-Modified-
Since HTTP header, whereas the Data Accelerator can be
more forceful in applying more complex rules for example
with a standard HTTP Get request that returns a html page,
some images and some links:

[0303] The pre-cache rule can determine which images
are required for the page and request them before the
client does

[0304] The pre-cache rule can follow the links on the
page and request those pages so that they are already in
cache if the requestor follows a link.

[0305] The cache serve rule can determine whether to
serve something from cache based on actual content
rather than the web servers last modified time.

[0306] The cache serve rule can also request portions of
files which have changed as opposed to the complete file

[0307] We can also apply the standard rules to:

[0308] The compression rule can compress in situations
where the web server is not configured to compress data
and smarter compression algorithms can compress data
further than HTTP compression mat typically uses gzip,
reducing the time it takes to send it over the network.

[0309] The encryption rule can provide secure commu-
nication over the public internet without the need to use
HTTPS/SSL on the client or web server, easing the
management on the server and the security on the client.

[0310] Anexample of where a company that might employ
the data accelerator to optimize web requests could be a
publisher who keeps an electronic copy of their books in html
format. Users who are remote can read the books but without
the Data Accelerator there is often a delay for the next page
and for images in the book. The Data Accelerator can use the
pre-caching rule to automatically start downloading the next
page or chapter so that it is immediately available as well as
downloading the images required. The full suite of rules can
also be applied so the request and response is compressed and
encrypted so it can be carried over public networks.

Note

[0311] It is to be understood that the above-referenced
arrangements are only illustrative of the application for the
principles of the present invention. Numerous modifications
and alternative arrangements can be devised without depart-
ing from the spirit and scope of the present invention. While
the present invention has been shown in the drawings and

Jan. 23,2014

fully described above with particularity and detail in connec-
tion with what is presently deemed to be the most practical
and preferred example(s) of the invention, it will be apparent
to those of ordinary skill in the art that numerous modifica-
tions can be made without departing from the principles and
concepts of the invention as set forth herein.

Concepts
[0312] Key Concept A—Covers the Core Data Optimisa-
tion Concept
[0313] Method of optimizing the interaction between an

application or database and a database server, comprising the
steps of:

[0314] a. routing data between the application or data-
base and the database server through an optimisation
system,

[0315] D. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the application or database and the database
server.

Concepts Re the Key Functional Advantages

[0316] Optimisation system enables the interaction
between the application/database and the database
server to be sufficiently optimised to enable a practical
connection to be made over a slow or high latency link
such as the Internet.

[0317] Optimisation system reduces the amount of pro-
cessing or operations to be performed by the server

[0318] Optimisation system reduces the amount of data
needed to pass between the client application and the
database server.

[0319] Interaction is the flow of data; the cessation of the
flow of data; obviating the need for data to flow; man-
aging the flow of data.

Concepts Re the Key Applications

[0320] Database server is cloud-based, or on a local net-
work, or on a WAN or if the DB server is local to the
application.

[0321] application or database is deployed, managed or
updated to end-users using application virtualisation
software.

[0322] Method allows the number of database servers, or
the load on the or each database server required, to be
reduced.

[0323] Method allows the load on the or each database
server to be balanced or redirected in cases of fail-over.

Concepts that Differentiate Over Bespoke DB
Coding

[0324] Optimisation system is added to an existing data-
base client application or database server, and the struc-
ture of the tables and/or files of the database running on
the database server, are each substantially unchanged by
the optimisation system.

[0325] Optimisation system is not an integral part of the
client application or the database server or bespoke cod-
ing to the client application or the database server.

[0326] Optimisation system changes either the applica-
tion/database or the database server, but not both.

US 2014/0025648 Al

Concepts Re the Optimisation System Structure

[0327] Optimisation system is implemented in software
and includes a client application or a server application.

[0328] Optimisation system is implemented in software
and includes a client application and a server applica-
tion.

[0329] Optimisation system is implemented in hard-
ware.
[0330] Optimisation system is located between the

application/database and the database server.

[0331] Optimisation system is located on the applica-
tion/database and/or the database server.

[0332] Optimisation system includes multiple instances
of individual optimisation systems that each provide
optimisation services.

[0333] The multiple instances include a chain or mesh of
peers.
[0334] Path through the multiple instances of individual

optimisation systems is variable.

[0335] Multipleinstances of individual optimisation sys-
tems are able to communicate amongst themselves.

[0336] Multipleinstances of individual optimisation sys-
tems share diagnostics and performance information.

[0337] Optimisation system can dynamically determine
how effective or detrimental a specific rule is and can
choose to vary the applied rules to find the optimum
performance enhancement.

[0338] Multipleinstances of individual optimisation sys-
tems each understand where they are in the chain or
mesh of peers between initiator and the server.

[0339] Server is a SQL server.
[0340] Data includes DBMS requests and responses.
[0341] Optimisation system reduces the number of

DBMS requests and/or responses.

Concepts Re the Rules

[0342] Rule accessed through a rules engine.

[0343] Rules engine decides when and how to apply
rules.

[0344] Rules define caching of queries.

[0345] Rules define how to obtain diagnostic, perfor-

mance, cached data, cachability information.

[0346] Rules define how to configure other rules.
[0347] Rules define peer to peer caching of queries.
[0348] Rules define compression.

[0349] Rules define encryption.

[0350] Rules define predictive pre-fetching.

[0351] Rules define string replacement.

[0352] Rules define query batching.

[0353] Rules define re-routing to specific database serv-

ers for load balancing or fail-over.

[0354] Rules define re-routing to specific network paths
for speed.

[0355] Rules define request modification.

[0356] Rules pre-validate requests.

[0357] Rules define auditing and logging.

[0358] Rules automatically tune, adapt or improve.

[0359] Rules can be selectively enabled or disabled

based on factors such as initiator and server addresses or
locations, time of day, configuration, server load.
[0360] Rules are applied at different points in the
request/response stream.
[0361] Rules are custom rules.

Jan. 23,2014

[0362] Key Concept B—Covers the App Store
[0363] Method of distributing software applications, com-
prising the steps of:

[0364] a. providing multiple software applications
accessible in an application store;

[0365] b. routing data between one or more of the soft-
ware applications and a database server, viaa WAN such
as the Internet, and through a data optimisation system
that applies rules to speed up the interaction between the
or each software application and the database server.

Additional Concepts

[0366] Software applications includes database client
applications.

[0367] Applications are distributed to end users’ PCs.

[0368] Applications are distributed to system integra-
tors.

[0369] Database server is cloud-based.

[0370] Applications are deployed, managed or updated

to end-users using application virtualisation software.
[0371] Key Concept C—Similar in Scope to Key Concept
A, but to a System and not the Method Performed by the
System
[0372] A computer system including:

[0373] a. a remotely accessible database server

[0374] b. an application or database connected over a
network to the database server, and

[0375] c. an optimisation system

[0376] in which the optimisation system analyses data
requests from the application or database and applies rules to
the data to speed up the interaction between the application or
database and the database server.

[0377] Key Concept D—Similar in Scope to Key Concept
A, but to the Software Media Storing the Data Accelerator
Type Code

[0378] Computer readable media storing software defining
an optimisation system to optimize the flow of data between
an application or database and a database server, the optimi-
sation system being operable to analyse the data and apply
rules to the data to speed up the interaction between the
application or database and die database server.

[0379] Key Concept E—Optimizing the Interaction
Between a File Requestor and a File Server

[0380] Method of optimizing the interaction between an
application or database and a file server, comprising the steps
of:

[0381] a. routing data between the file requestor and the
file server through an optimisation system;

[0382] D. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the file requestor and the file server.

[0383] Key Concept F—Optimizing the Interaction
Between a Web Data Requestor and a Web Server

[0384] Method of optimizing the interaction between an
application or database and a web server, comprising the steps
of:

[0385] a. routing data between the web data requestor
and the web server through an optimisation system;

[0386] D. the optimisation system analysing the data and
applying rules to the data to speed up the interaction
between the web data requestor and the web server.

US 2014/0025648 Al

What is claimed is:

1. A method comprising:

receiving a request for a resource on a database server, the

request being from a request initiator coupled to a net-
work;

identifying, based on data optimization rules, redundant

data in the request, the redundant data being unnecessary
for the database server to satisty the request for the
resource;

removing, based on the data optimization rules, the redun-

dant data from the request to create an optimized
request;

providing, using the network, the optimized request to the

database server.

2. The method of claim 1, wherein the data optimization
rules instruct caching the redundant data to produce a cached
portion of the request, the optimized request comprising the
cached portion of the request.

3. The method of claim 2, wherein the data optimization
rules instruct satisfying at least a portion of the request with
the cached portion of the request.

4. The method of claim 1, wherein the data optimization
rules instruct compressing the request to produce the opti-
mized request.

5. The method of claim 1, wherein the data optimization
rules instruct compressing the request based on one or more
of a performance measure of the network and a processing
measure of the request initiator.

6. The method of claim 1, wherein the data optimization
rules instruct pre-caching the request if the resource has been
previously requested by the request initiator.

7. The method of claim 1, wherein the data optimization
rules instruct:

determining if the request corresponds to a duplicate

request in a substantially similar time window as the
request; and

stopping queries associated with the request if the request

correspond to the duplicate request.

8. The method of claim 1, wherein the data optimization
rules instruct:

finding common strings in the request; and

replacing each of the common strings with a replacement

identifier, thereby reducing a size of the optimized
request.

9. The method of claim 1, wherein the data optimization
rules instruct:

identifying database commands in the request that can be

replaced with simpler database commands;

replacing the database commands with the simpler data-

base commands.

10. The method of claim 1, wherein the data optimization
rules instruct encrypting the request in an encryption enve-
lope, thereby reducing a size of the optimized request.

11. The method of claim 1, wherein identifying the redun-
dant data comprises gathering the data optimization rules
from a rules datastore.

12. The method of claim 1, further comprising:

receiving, using the network, a response comprising the

resource from the database server in response to the
optimized request;

Jan. 23,2014

optimizing, based on the data optimization rules, the

response to produce an optimized response;

providing the optimized response to the request initiator.

13. The method of claim 12, wherein the data optimization
rules instruct:

caching the redundant data to produce a cached portion of

the request;

determining, based on the response, if the cached portion

of the request has changed;

merging the changed portion of the response with the

cached portion of the request.

14. The method of claim 12, wherein the data optimization
rules instruct decompressing the response to produce the
optimized response.

15. The method of claim 1, wherein the method is per-
formed locally to the request initiator.

16. The method of claim 1, wherein the method is per-
formed remotely to the request initiator.

17. The method of claim 1, wherein the method is per-
formed at a plurality of locations on the network.

18. The method of claim 1, wherein the request initiator is
agnostic to the method.

19. A system comprising:

a request initiator;

a data accelerator coupled to the request initiator and to a

network;

a rules datastore coupled to the data accelerator;

wherein, in operation:

the request initiator provides a request for a resource on
a database server;
the data accelerator:
receives a request for a resource on a database server,
the request being from a request initiator coupled to
a network;
identifies, based on data optimization rules, redun-
dant data in the request, the redundant data being
unnecessary for the database server to satisfy the
request for the resource;
removes, based on the data optimization rules, the
redundant data from the request to create an opti-
mized request;
provides, using the network, the optimized request to
the database server.

20. The system of claim 19, wherein the data accelerator is
one of a plurality of data accelerators for the network.

21. A system comprising:

means for receiving a request for a resource on a database

server, the request being from a request initiator coupled
to a network;

means for identifying, based on data optimization rules,

redundant data in the request, the redundant data being
unnecessary for the database server to satisfy the request
for the resource;

means for removing, based on the data optimization rules,

the redundant data from the request to create an opti-
mized request;

means for providing, using the network, the optimized

request to the database server.

#* #* #* #* #*

