
(12) STANDARD PATENT (11) Application No. AU 2012327228 B2 
(19) AUSTRALIAN PATENT OFFICE 

(54) Title 
A system for high reliability and high performance application message delivery 

(51) International Patent Classification(s) 
G06F 15/16 (2006.01) G06Q 10/00 (2012.01) 

(21) Application No: 2012327228 (22) Date of Filing: 2012.12.27 

(87) WIPO No: W013/098316 

(30) Priority Data 

(31) Number (32) Date (33) Country 
11306803.5 2011.12.29 EP 
13/418,819 2012.03.13 us 

(43) Publication Date: 2013.07.18 
(43) Publication Journal Date: 2013.07.18 
(44) Accepted Journal Date: 2016.02.18 

(71) Applicant(s) 
AMADEUS S.A.S.  

(72) Inventor(s) 
De Schacht, Paul;Pare, Thomas;Pascal, Matthieu 

(74) Agent / Attorney 
Watermark Patent and Trade Marks Attorneys, SE 2 L 1 302 Burwood Rd, Hawthorn, 
VIC, 3122 

(56) Related Art 
EP 1906628 
WO 2003/062993 
US 2007/0061383



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(19) World Intellectual Property 
Organization 

International Bureau 
(10) International Publication Number 

(43) International Publication Date W O 2013/098316 Al 
4 July 2013 (04.07.2013) W I P0 I P CT 

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every 
H04L 29/08 (2006.01) kind of national protection available): AE, AG, AL, AM, 

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 

PCT/EP2012/076937 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, 
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 

27 December 2012 (27.12.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 

(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 

(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 

(30) Priority Data: ZM, ZW.  
11306803.5 29 December 2011 (29.12.2011) EP 
13/418,819 13 March 2012 (13.03.2012) US (84) Designated States (unless otherwise indicated, for every 

kind of regional protection available): ARIPO (BW, GH, 
(71) Applicant: AMADEUS [FR/FR]; 485, route du Pin Mon- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 

tard, Sophia Antipolis, F-06410 Biot (FR). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 

(72) Inventors: DE SCHACHT, Paul; 178, Impasse du TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 

Moulin, F-83440 Montauroux (FR). PARE, Thomas; 2 EE, ES, FI, FR, GB , R, H , RO, IS, IS, ST, L, LV, 

All6e du Panorama, F-06130 Grasse (FR). PASCAL, Mat- MCK,MK, MT, NL, CF, P, PT, R, GS, S, S , SM, 

thieu; R6sidence les 3 Rivi&res, 410, avenue Janvier TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 

Passero, Batiment C9, F-06210 Mandelieu (FR). ML, MR, NE, SN, TD, TG).  

(74) Agent: HAUTIER, Nicolas; Cabinet Hautier, 20, rue De Published: 
La Liberte, F-06000 Nice (FR). - with international search report (Art. 21(3)) 

(54) Title: A SYSTEM FOR HIGH RELIABILITY AND HIGH PERFORMANCE APPLICATION MESSAGE DELIVERY 

FIGURE 2 (57) Abstract: The invention provides a computer-im

-a 209(c) plemented method and a system of providing high reliab
209(b) ility and high performance application message delivery, 
203(b characterized in that it comprises the following steps per

-- A App 209(a) formed with at least one data processor: at a plurality of 

Log Server 1 Da af s log servers (203 a - b) coupled to at least an application 
Wr server (201 a - c):receiving asynchronously, from the at 

201(b) -- LogServer Billing least one application server (201 a - c), application mes
instance o Plug-in Cont I File sages containing application information; receiving asyn

APP2 207 chronously, from the at least one application server (201 
2203b) Contl 211 a - c), control messages at a predetermined interval; at 

TBF API Log Servr each of the plurality of log servers (203 a - b):storing the 
- received application messages in a current application 

LogS e Billin 209(c) data file (209) and the received control messages in a 
APP3 ins ce sApp cation control file (211); and upon receiving an open-close con

Dat fes 209(b) trol message, closing the current application data file, 
TBF API 209(a) storing said closed application data file and creating a 

new application data file as the current application data 

201(c) Read ntrol files file; comparing the control files of the plurality of log 

Correlation Sening P servers (203 a - b) for a given interval; and based on this 

CaFrawork comparison, determining from among a plurality of ap
Polls t files r plication data files (209) from each of the log servers 

C orrelation correlation resuIts (203 a - b), an application data file as a best-candidate 
219 for a given interval and forwarding the best-candidate 

file for post-processing.



WO 2013/098316 PCT/EP2012/076937 

1 

5 

10 

15 A system for high reliability and high performance application message delivery 

TECHNICAL FIELD 

20 

The present invention relates to the field of delivery of high volume of 

electronic messages. A particularly advantageous but not limitative application 

relates to airline billing transactions. In particular the invention relates to the 

delivery of high number of asynchronous messages (typically > 8,000 

25 messages per seconds) containing for instance billing information over an 

unreliable network to a plurality of log servers, where log files containing the 

billing information for a known interval are created and processing of billing 

information for the interval is performed on the log file with the lowest loss of 

billing data.  

30 BACKGROUND 

In the known art it is sometimes necessary to transmit data across 

unreliable networks or using asynchronous transmission protocols such as User



2 

Datagram Protocol (UDP) as the throughput of such sessionless based network 

transactions is higher than for example, a transaction based on Transmission 

Control Protocol (TCP).  

Consider Fig. 1 , an example of a prior art system. Such a system based 

on servers 103 can execute plurality of applications 123 which transmit billing 

information . Because of the necessity of performing a number of billing 

transactions which exceeds the capacity of network 105 using synchronous 

transactions; or because of the corresponding loss of throughput as the 

application waits for an acknowledgement of the receipt of a transaction, an 

asynchronous message 125 is sent over network 105. The asynchronous 

message is or is not received by a log server 127.  

However, log server 127 is not a fault tolerant or high availability server 

and is therefore considered unreliable 127. All messages which are received are 

stored 129 in a file system 109 for processing by billing server 111 using billing 

system 131.  

It is understood that because of messaging protocol 125 used and 

unreliability 127 of log server 107 transactions may be lost.  

Thus, it is an object of the present invention to significantly improve the 

reliability of the delivery of messages while increasing or at least maintaining the 

throughput and while using non reliable networks.  

BRIEF SUMMARY OF THE INVENTION 

According to an aspect, the invention relates to a method of providing 

application message delivery, the method comprising: receiving asynchronously, 

by at least some of a plurality of log servers, a plurality of application messages 

containing application information and a plurality of control messages associated 

with the plurality of application messages over a predetermined interval, wherein 

each of the plurality of control messages is received by one or more log servers 

among the plurality of log servers; storing, at each of the plurality of log servers, 

the received application messages in a plurality of application data files and the 

received control messages in a plurality of control files; comparing, for each of the



3 

plurality of log servers, a quantity of the plurality of application messages 

asynchronously received by each of the plurality of log servers and an application 

message number from the control messages stored in the control files at each of 

the plurality of log servers in order to evaluate a quantity of stored application 

messages in each application data file of the plurality of log servers; based on the 

comparison, specifying, by a server, one of the application data files at one of the 

plurality of log servers as a best-candidate file; and forwarding, from the server, 

the best-candidate file for post-processing, wherein each control message 

includes a control message number used for identifying a sequential order for the 

plurality of control messages and an identifier of an application server that 

originated the control message, and the best-candidate file includes a quantity of 

stored application messages that is greatest in comparison with the application 

data files having fewer stored application messages.  

Thus, in case some of the application messages forwarded by the 

application servers are not received at some of the log servers, the invention 

allows determining the application data file that is the most reliable and discarding 

thereby the other application data files without requiring comparing the application 

data files.  

Advantageously, the control message comprises a timestamp of the 

application server.  

Preferably, the interval for forwarding a control message is a given time 

period.  

Advantageously, the open/close control message is a Nth control message 

in a sequence of control messages. In one embodiment, N is predetermined. In 

one embodiment, the Nth control message is the fifth control message in the 

sequence of control messages and the given time period is a two minute time 

period.  

Advantageously, the best-candidate file is chosen from a set of application 

data files for a given interval from the plurality of log servers and that have the 

same start and stop points. Preferably, the start and stop points are determined 

by the reception of open/close control messages.



4 

According to an advantageous embodiment, the best-candidate file is 

chosen from among the chosen set of files, the file with the lowest application 

message loss rate. According to an advantageous embodiment, in case some 

application data files have the same number of application messages, then the 

best-candidate file is chosen from among the application data files with the lowest 

application message loss rate, the file with the lowest control message loss rate.  

In one embodiment, the best-candidate file having lost application 

messages and not having lost more than x percent of application messages for 

the interval is augmented by the lost application messages existing in other files 

of the set of files, x being predetermined. In one embodiment, x is comprised 

between fifteen and forty five.  

In one embodiment, the application is an airline billing transaction 

application.  

According to another aspect, the invention relates to a system for high 

reliability and high performance application message delivery, the system 

comprising: 

a plurality of log servers each including: 

a first processor; and 

a first memory coupled with the first processor, the first memory 

including instructions that, when executed by the first processor, cause the 

first processor to: 

receive asynchronously, by at least some of the plurality of 

log servers, a plurality of application messages containing 

application information and a plurality of control messages 

associated with the plurality of application messages over a 

predetermined interval, wherein each of the plurality of control 

messages is received by one or more log servers among the 

plurality of log servers; and 

store, at each of the plurality of log servers, the received 

application messages in a plurality of application data files and the 

received control messages in a plurality of control files; and



5 

a server coupled to the plurality of log servers, the server including: 

a second processor; and 

a second memory coupled with the second processor, the second 

memory including instructions that when executed by the second 

processor, cause the second processor to: 

compare, for each of the plurality of log servers, a quantity of 

the application messages asynchronously received by each of the 

plurality of log servers and an application message number from the 

control messages stored in the control files at each of the plurality of 

log servers in order to evaluate a quantity of application messages 

stored in each application data file of the plurality of log servers; 

based on the comparison, specify one of the application data 

files at one of the plurality of log servers as a best-candidate file; 

and 

forward the best-candidate file for post-processing, 

wherein each control message includes a control message number used 

for identifying a sequential order for the plurality of control messages and an 

identifier of an application server that originated the control message, and the 

best-candidate file includes a quantity of stored application messages that is 

greatest in comparison with to the application data files having fewer stored 

application messages.  

Optionally, the system comprises a plurality of application servers and a 

plurality of applications executing on a processor of any of the plurality of 

application servers, each of the application servers having an output coupled to 

an input of each of the log servers.  

According to another aspect the invention solves the issues of loss by 

providing a system for high reliability and high performance billing message 

delivery, the system comprising: 

a plurality of log servers each including: 

a first processor; and 

a first memory coupled with the first processor, the first memory



6 

including instructions that, when executed by the first processor, cause the 

first processor to: 

receive asynchronously, by at least some of the plurality of 

log servers, a plurality of billing messages each containing 

information for a billing transaction and a plurality of control 

messages associated with the plurality of billing messages over a 

predetermined interval; and 

store, at each of the plurality of log servers, the received 

billing messages in a plurality of billing data files and the received 

control messages in a plurality of control files, and 

a server coupled to the plurality of log servers the server including: 

a second processor; and 

a second memory coupled with the second processor, the second 

memory including instructions that, when executed by the second processor, 

cause the second processor to: 

compare, for each of the plurality of log servers, a quantity of 

the plurality of billing messages and an application message 

number from the control messages stored in the control files at each 

of the plurality of log servers to evaluate a quantity of billing 

messages stored in each billing data file; 

based on the comparison, specify, by the server, one of the 

billing data files as a best-candidate file; and 

forward, from the server, the best-candidate file for post

processing, 

wherein each control message includes a control message number used 

for identifying a sequential order for the plurality of control messages and an 

identifier of an application server that originated the control message, and the 

best-candidate file includes the quantity of stored application messages that is 

greatest in comparison with the application data files having fewer stored 

application messages.



7 

Another aspect of the invention relates to a computer program product 

comprising instructions capable of performing the steps of the method according 

to the invention.  

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS 

FIG. 1 is a system diagram of a prior art system.  

FIG. 2 is a system diagram of the architecture of the present invention.  

FIG. 3 is an illustration of the control message data structure.  

FIG. 4 is a list of the types of control messages transmitted.  

FIG. 5 is a flow chart of processing performed by an application sending 

billing messages.  

FIG. 6 is a flow chart of processing performed by a log server receiving 

messages.  

FIG. 7 is a flow chart of processing of a best-candidate log file.  

FIG. 8 is a flowchart of improving the quality of a chosen best-candidate 

file.  

FIG. 9 is simplified illustration of an exemplary embodiment where 

messages are transmitted from an application server to a cluster of four log 

servers.  

CONTINUES ON PAGE 8



WO 2013/098316 PCT/EP2012/076937 

8 

FIG. 10 is a diagram of the internal architecture of any of the servers of the 

system.  

5 DETAILED DESCRIPTION OF THE INVENTION 

It is recalled that the present invention takes care of the delivery of the 

notification messages sent by applications by using a cluster of log servers.  

Each application notifies all the redundant log servers at once. Each log server 

10 splits this stream of notification messages into separate, manageable files. The 

system determines continuously the most reliable files in the cluster and 

transfers that file to the recipient.  

Optionally the invention may comprise any one of the following 

advantageous but nevertheless facultative features.  

15 The control message comprises an identifier of a billing application.  

Preferably, , the control message also comprises any one of: a timestamp of the 

application server, a number of control messages transmitted by the application 

(for instance billing application) and a number of application messages (for 

instance billing messages) transmitted by the application. Each application has 

20 a defined interval for forwarding a control message in a given time period and 

an open/close control message is every Nth control message in the sequence 

of control messages. According to an advantageous embodiment, the Nth 

control message is the fifth control message in the sequence of control 

messages and the given time period is two minutes. The system chooses files 

25 for processing by a billing system by creating a best-candidate file chosen from 

a set of files for a given interval from the plurality of log servers that have a 

same start and stop point. Preferably, the best-candidate file is, from among the 

chosen set of files, the file with the lowest message loss rate. The best

candidate file can be augmented where messages are lost and not having lost 

30 more than thirty percent of messages for the interval by copying in the lost 

messages existing in files of the set of files other than the best-candidate file.  

Preferably, upon determining from among a plurality of application data files



WO 2013/098316 PCT/EP2012/076937 

9 

from each of the plurality of log servers, an application data file as a best

candidate for a given interval, the server forwards the best-candidate file for 

application processing.  

5 Fig. 2 illustrates a system implementing the preferred embodiment of the 

invention. The system has a plurality of applications 201(a)-(c). These 

applications may be a plurality of different applications 201 (a)-(c) running on a 

single server; a single application 201 (a) running on a plurality of servers 103; 

or combination of multiple applications 201(a)-201(c) running on multiple 

10 different servers. Each of applications 201(a)-(c), forwards asynchronous 

application messages to log servers 203(a)-(b). An application message 

contains information related to the application. For instance, the application 

message may comprise data related to any one of: billing, customer profile, 

customer profile etc. It will be understood that while two log servers 203(a)-(b) 

15 are illustrated, the number of log servers is preferably more than 2. While 

Applications have focused on airline billing transaction data, other types of 

applications could forward other data in the system of the invention.  

Each of log servers 203(a)-(b) has log server instance 205 and billing 

plug-in 207 which write received application data messages into a current 

20 application data file 209(a) and control messages to control file 211. Thus the 

same application message is sent from an application server 201 (a)-(c) to all 

the log servers 203(a)-(b). Possibly all the log servers 201 (a)-(c) receive the 

same application message. However in practical, at least some of the 

application messages may not be received by all the log servers 201 (a)-(c).  

25 

Control messages are sent at intervals described later in this document, 

which cause current application data file 209(a) to be closed, creating a plurality 

of application data files 209(b)-(c) each representative of billing application 

messages of a given interval.  

30 The purpose of the control messages is two-fold. First, these messages 

are used to (re)synchronize the splitting of the application message stream into 

files 209(a)-(c). It is crucial that each log server splits the stream at the same 

points in the stream in order to create the synchronized files. Second, each



WO 2013/098316 PCT/EP2012/076937 

10 

control message will be used by the correlation algorithm to select the best

candidate amongst the synchronized files. Therefore, a summary of the control 

messages is stored in a control file 211.  

A billing section comprising a correlation batch 213, correlation output 

5 215 and sending batch 217 are responsible for determining the best-candidate 

of application data files 209(a)-(c) and forwarding the best-candidate to the 

billing framework 219.  

Fig. 3 illustrates the structure of a control message as transmitted and 

stored in control file 211. The same control message is sent from an application 

10 server 201 (a)-(c) to all the log servers 203(a)-(b). Possibly all the log servers 

201 (a)-(c) receive the same control message. However in practical, at least 

some of the control messages may not be received by all the log servers 201 

(a)-(c).  

Each control message sent by an application 201(a)-(c) comprises 

15 preferably at least four elements.  

The control message comprises an application identifier 303 that 

identifies the application server that is the originator of the control message.  

Each application 201(a)-(c) has application identifier 303, which uniquely 

identifies the application. This element allows different billed applications to 

20 send data and control messages to the same cluster (i.e. log servers 203(a)

(b)). The cluster can easily separate the messages per source.  

Timestamp 305 defines a single reference of time in the sending 

application server. All the synchronization steps will be based on timestamp 305 

of the sending application server. This avoids the clock discrepancies usually 

25 found in a cluster of servers 203(a)-(b). This feature is all the most 

advantageous as the number of application servers 201(a), 201(b), 201(c) is 

high.  

Control message number 307 indicates the unique sequential identifier 

for the current control message. This number allows the log server to know 

30 whether the previous control message has been lost. For instance, if two control 

messages successively received at a log server present control message 

number 307 that differs by more than one increment, then it means that at least 

one control message has not been received by said log server.



WO 2013/098316 PCT/EP2012/076937 

11 

Application message number 309 indicates the number of application 

messages sent by the application 201 (a)-(c). As each log server knows how 

many application messages it has actually received, therefore, each log server 

knows how many application messages were lost based upon this value.  

5 Type of message 311 indicates the type of control message being 

forwarded.  

Fig. 4 illustrates the type of control messages that are forwarded from 

applications 201 (a)-(c) to log servers 203(a)-(c). Application-Start 403 indicates 

that an Application has started and therefore a new application data file should 

10 be created. The corollary to such a control message is Application-Stop 409 

which closes current application data file 209(a) when the application shuts 

down.  

Timer Interval 405 sends a message every X periods, where X is for 

instance and preferably 2 minutes. Every Nth, for instance N=5 (five) checkpoint 

15 sent by applications 201(a)-(c), called a splitting checkpoint, is used by log 

servers 203(a)-(b) to split the stream: the log server closes the current 

application data file 209(a) and creates a new file where it will store the next set 

of sequential application messages. Such a splitting creates a stop point in one 

application data file and a start point in the new application data file. Thus, a 

20 current application data file is closed when the Nth checkpoint control message 

is received and a new application data file, that becomes the current application 

data file, is then created.  

Each start point and stop point is associated to a control message 

number 307 which allows identifying the order of transmission. Therefore, it is 

25 easy to identify the application data files having the same start points. It is also 

easy to identify the application data files having the same stop points. The 

comparison of the application data files of various log servers as well as the 

splitting of the stream can therefore be easily achieved.  

Since checkpoints can also be lost, log servers 203(a)-(b) uses the 

30 control message number 307 of the control message to detect such a loss.  

However, the control message number also informs the log server if a splitting 

point has been missed. [control message number modulo N = 0] Other values 

than five could be used depending on the requirements of the system.



WO 2013/098316 PCT/EP2012/076937 

12 

Where a non-splitting checkpoint is lost, the log servers 203(a)-(b) will 

simply write that lost event to control file 211. Any lost event in control file 211 

will decrease the reliability of the appropriate application data file.  

In the event that a splitting checkpoint is lost, the log servers 203(a)-(b) 

5 will close the current application data file 209(a) and open a new one (as if a 

splitting checkpoint was received). However, the current application data file 

and the new application data file will be out of synchronization, since they have 

not been closed/opened at a splitting checkpoint. The control file 211 is 

accordingly updated: a lost event for the missing checkpoint, the events of 

10 creating the new file, together with the timestamp. There is no event for closing 

the application data file. This will inform the correlation algorithm that a splitting 

checkpoint was lost.  

END-OF-PERIOD 407 control message is sent by applications 201 (a)-(c) 

at a time determined by the application. Typically this control message is sent at 

15 midnight for billing applications in order to separate two working days. Basically, 

this message forces a complete resynchronization between the billed 

application and the log server. All internal counters are set to zero and a new 

application data file and a new control file is started. It is also understood that 

END-OF-PERIOD could be some other period as multiple days, a week, month 

20 or year.  

Since every control message contains the current timestamp of the billed 

application, it is now trivial to find out if an END-OF-PERIOD control message 

has been lost: the date in the timestamp element sent by the billed application is 

no longer the same as the last received date on the log server. In this case, the 

25 log server simulates the reception of END-OF-PERIOD messages 407, sets all 

internal counters to zero and starts a new application data file. Control file 211 is 

updated as if a splitting checkpoint has been missed.  

The types of control messages 403-409 as stored in control files 211 

allow for splitting the stream of application messages into synchronized 

30 application data files 209(a)-209(c). If no control messages are lost, all files will 

be synchronized. When control messages are lost, a number of files in the 

cluster will be out-of-synchronization: some file(s) will be closed/opened at a 

different timestamp. In addition to the knowledge that files are synchronized, the



WO 2013/098316 PCT/EP2012/076937 

13 

system is also informed about the correctness of each file. Both facts about the 

application data files will be exploited by a correlation algorithm.  

A billing server 219 as implemented in the system of the present 

invention must receive by determining the best-candidate of log files 209(a)-(c) 

5 on each of log servers 203(a)-(b). The decision of the best-candidate is done by 

the correlation batch 213.  

The best-candidate selection is based on comparing the control file 211 

of each log server 203(a)-(b). By not comparing the numerous and large 

application data files 209(a)-(c), this step is executed in real time.  

10 The system aligns the open file/close file events in different control files 

211 of each log server 203(a)-(b). The alignment is based on the timestamp of 

the events. A quorum of [(n+1)/2] is needed to agree on an alignment. The 

alignment simply indicates the files for which the stream has been split on 

identical points in time. In this nominal case, the system determines the best

15 candidate amongst the synchronized application data files 209(a)-(c) by 

selecting the application data file that contains firstly the most messages and 

secondly the least lost checkpoint messages.  

If no quorum is reached, the system will prefer the files for which both an 

open file event and a close file event is found. In case of a lost splitting 

20 checkpoint, there is no close event registered in the control file 211. It means 

that the system will lower the quorum, but will still only consider the files that 

received both the open file and close file events. The system defines the best

candidate based on firstly the number of application messages and secondly 

the number of lost checkpoint messages.  

25 In the extreme case where not a single file has a close file event, (this 

means the splitting checkpoint was missed by all log servers), the system will 

prefer the files firstly with the least lost checkpoint messages and secondly the 

most messages.  

It is important that the next open file events to consider must 

30 chronologically follow the close event of the currently selected best-candidate in 

order to avoid sending duplicate messages to the billing server 219 

The system also improves the quality of the selected best-candidate by 

retrieving a part of missing messages in other synchronized files. The



WO 2013/098316 PCT/EP2012/076937 

14 

improvement is only done for synchronized files where the best-candidate has 

lost less than x% of the messages (i.e. the number of received messages is 

greater than (100-x)%). Advantageously, 15<x<45 and more advantageously 

x=30, i.e. the number of received messages is greater than 70%. If even the 

5 best-candidate file has lost more than x% messages, it is considered that the 

other application data file cannot provide the missing messages.  

In the case of an eventual improvement, each checkpoint of the 

synchronized files is compared. Since each checkpoint contains the number of 

lost messages for the last 'm' minutes (for instance m = two (2)), the system can 

10 identify which of the files has the best data block. If another than the best

candidate contains more messages for the 'm' minute span, the block of 

messages is extracted and replaced in the best-candidate file.  

This method allows improvement of the best-candidate in a real-time 

matter, since only the events in the summary control files 211 are used to 

15 identify the best-blocks in application data files 209(a)-(c).  

Fig. 5 illustrates an example of the steps taken by a thread of an 

application 201 (a)-(c) implementing the invention. In step 501, a process begins 

and immediately sends in step 503 an Application-Start control message 403 to 

log servers 203(a)-(c).  

20 The application billing thread then iterates looking for work. In step 505, it 

is determined if more than the predetermined time period, typically 2 minutes, 

has elapsed since the last control message has occurred, if the answer is yes, 

then Checkpoint control message 405 will be sent to log servers 203(a)-(c) in 

step 507. If the answer is no, proceed to step 509 and determine if an 

25 application message (for instance a billing application message) needs to be 

sent. If the answer is yes, in step 511 send application message with the data to 

log servers 203(a)-(c).  

If the answer is no, proceed to step 513, where it is determined if it is a 

new day, or other billing period. If the answer is yes, in step 515 send an END

30 OF-PERIOD control message 407 to log servers 203(a)-(c).  

If the answer is no, proceed to step 517, where it is determined if the 

application program is shutting down. If the answer is yes, send an Application

Stop control message 409 in step 519 and then end processing in step 521,



WO 2013/098316 PCT/EP2012/076937 

15 

otherwise continue to iterate.  

Fig. 6 illustrates an example of the steps of a program receiving log 

messages on log servers 203(a)-(b). Processing begins a step 601. In step 603 

it is determined if the message is an application message (for instance a billing 

5 application message), if yes, store the application message in current log file 

209(a) in step 605. If no, store the control message 301 in the control file in step 

607, then determine what type of control message 301 has been received. In 

step 609, determine if control message 301 is an Application-Start control 

message 403, if yes, then at step 611 open a new current application data file 

10 209(a). If no, proceed to the next step 613, where it is determined if the control 

message 301 is a Checkpoint control message 405, if yes determine if this is 

the Nth (N being predetermined and being for instance five (5)) checkpoint 

message 405 by checking the control message number 307 at step 615. If yes, 

at step 617 close current application data file 209(a), now becoming the next 

15 application data file in the sequence 209(b, c, ...). Open a new file as current 

application data file 209(a).  

If no, step 619 determines if any prior control messages were missed 

and if such a message was missed, then perform step 617.  

In step 621, determine if control message 301 is an END-OF-PERIOD 

20 control message 403, if yes, then perform step 617. If no, in step 623 determine 

if control message 301 is an Application-Stop. If yes, then close current 

application data file 209(a) now becoming the next application data file in the 

sequence 209(b, c, ...) in step 625. End processing in step 627.  

Fig. 7 illustrates an example of a method according to the invention for 

25 determining the best-candidate selection for log files 209(a)-(c) from each of log 

servers 203(a)-(b). Starting from step 701, at step 703 determine application 

data files 209(a)-(c) that have been split at the same points in time by 

comparing control messages 301 in each of log servers 203(a)-(b). From the list 

of application data files 209(a)-(c) that have been split at the same points in 

30 time on each of log servers 203(a)-(b), determine 705 the log file that has the 

largest number of received application messages. Preferably, in case at least 

two application data files 209(a)-(c) comprise the same number of application 

messages, then the system compares the number of lost control messages.



WO 2013/098316 PCT/EP2012/076937 

16 

The best-candidates among the application data files 209(a)-(c) that have been 

split at the same points in time on each of log servers 203(a)-(b) is the 

application data files 209(a)-(c) that has the highest number of application 

messages and that has the highest number of control messages.  

5 Forward 709 the chosen application data file to the billing framework for 

processing and end processing 711.  

Fig. 8 illustrates a method of combining files to increase quality. If in step 

705 it is determined 801 that application data files are synchronized and the 

best-candidate has more than 70 % of its billing application messages but less 

10 than 100 % of the messages, supplement any missing application messages 

from the application data files for the same interval of the other log servers into 

the best-candidate log file.  

Figure 9 illustrates an exemplary embodiment where an application 201 

sends messages to a cluster of four log servers 203 referred to as LGS #1, LGS 

15 #2, LGS #3 and LGS #4.  

The first synchronized checkpoint 100 (checkpoint i) triggers at each of 

the four log servers 203 the start of an application data file. Thus, the 

application data file of the four log servers 203 have the same start point.  

Application messages are also sent to the log servers 203. Each log server 203 

20 receives these application messages and stores them in the application data file 

that has just been opened. Thus, application messages are stored in application 

data files 101, 102, 103, 104 by respectively the log servers LGS #1, LGS #2, 

LGS #3 and LGS #4.  

Every time interval 105, a new control message is sent by the application 

25 server 201.  

Some log servers may not receive a normal checkpoint. For example 

LGS #2 missed checkpoint having the number i+3, LGS #3 missed checkpoint 

number i+2, checkpoint number i+3, checkpoint number i+4 and LGS #4 missed 

checkpoint number i+1 and checkpoint number i+3. Some log servers may also 

30 miss synchronization checkpoint. For instance LGS #4 missed checkpoint 

having the number i+5, said checkpoint being a synchronization checkpoint.  

This checkpoint is an open/close control message, which triggers the closing of 

the current application data file and the opening of a new application data file.



WO 2013/098316 PCT/EP2012/076937 

17 

Therefore, at log servers LGS #1, LGS #2 and LGS #3 the application data files 

101, 102, 103 are closed at the same time upon reception of control message 

i+5. However, at log servers LGS #4 the application data file 104 is closed later.  

Thus, application data files 101, 102, 103 have the same start and stop points 

5 and application data file 104 does not have the same stop point as the other 

ones.  

In this embodiment, the open/close control message is the 5th control 

message and the interval for forwarding a control message is depicted by the 

arrow 105.  

10 The best candidate file is chosen from the set of application data files 

having the same start and stop points, i.e., the application data files 101, 102, 

103. Among this set of application data files 101, 102, 103 the one that will be 

considered as the best candidate is the one comprising the highest number of 

application messages. This comparison of the number of application messages 

15 is based on the comparison of the control files created by each log server.  

Therefore, it is not necessary to compare the application data files which 

requires much more time and processing capacity. In case two or more 

application data files 101, 102, 103 have the same number of application 

messages, then, the best candidate is the one comprising the highest number 

20 of control messages. For instance, if application data files 102 and 103 have the 

same number of application messages, this number being higher than the one 

of application data files 101, then application data files 102 will be considered 

as the best candidate and application data files 101, 103 and 104 will be 

discarded.  

25 Although the exemplary embodiments have been described in relation to 

a particularly advantageous application i.e., delivery of billing message, all 

features described and illustrated apply to other applications.  

It is understood by those of ordinary skill that above system and method 

can by implemented as a computer program stored on a computer readable 

30 storage medium such as a hard drive, 903, DVD/CD-ROM 905, thumb drive 907 

of Fig. 10, where the CPU 901 loads the computer program into a RAM 909 

across a bus 911 and executes the program as a series of instructions 

accessing the devices as described above are communicating across a network



WO 2013/098316 PCT/EP2012/076937 

18 

adapter 913 to network 105 and using a display 915 and input output devices 

917 such a keyboard and mouse, etc. As the computer program is stored on a 

computer readable storage medium and the verb stored means to make 

permanent, propagation signals are excluded from the meaning of a computer 

5 readable storage medium.  

As can be appreciated, there are a number of benefits and technical 

effects that are realized by the use of the invention. In particular, the invention 

allows significantly increasing the reliability of the message through sending the 

same messages to various log servers and while maintaining a high throughout 

10 since the most reliable messages can be selected without requiring to process 

large volume of data. Typically, the invention allows sending more than 10 000 

transactions per second while maintain a ratio of lost message below 0.14%.



19 

CLAIMS: 

1. A method of providing application message delivery, the method 

comprising: 

receiving asynchronously, by at least some of a plurality of log servers, a 

plurality of application messages containing application information and a plurality 

of control messages associated with the plurality of application messages over a 

predetermined interval, wherein each of the plurality of control messages is 

received by one or more log servers among the plurality of log servers; 

storing, at each of the plurality of log servers, the received application 

messages in a plurality of application data files and the received control 

messages in a plurality of control files; 

comparing, for each of the plurality of log servers, a quantity of the plurality 

of application messages asynchronously received by each of the plurality of log 

servers and an application message number from the control messages stored in 

the control files at each of the plurality of log servers in order to evaluate a 

quantity of stored application messages in each application data file of the 

plurality of log servers; 

based on the comparison, specifying, by a server, one of the application 

data files at one of the plurality of log servers as a best-candidate file; and 

forwarding, from the server, the best-candidate file for post-processing, 

wherein each control message includes a control message number used 

for identifying a sequential order for the plurality of control messages and an 

identifier of an application server that originated the control message, and the 

best-candidate file includes a quantity of stored application messages that is 

greatest in comparison with the application data files having fewer stored 

application messages.  

2. The method of claim 1, wherein each control message includes a 

timestamp.



20 

3. The method of claim 1, wherein one of the control messages is an 

open/close control message that instructs at least one of the log servers that 

receive the open/close control message to close a current one of the application 

data files and open a new one of the application data files to store subsequent 

application messages received by at least one of the log servers.  

4. The method of claim 3, wherein the open/close control message is 

received by at least one of the log servers after receiving a designated number of 

control messages that are not open/close control messages.  

5. The method of claim 1, wherein each application data file is a billing 

transaction application and wherein each application message relates to billing of 

services related to a travel industry.  

6. The method of claim 3, wherein the open/close message includes an open 

message number indicating an opening of the new application data file 

associated with the open/close message and a close message number indicating 

a closing of the current application data file associated with the open/close 

message identifying the application data file in a sequence of the application data 

files received by at least one of the log servers.  

7. The method of claim 6, further comprising: 

comparing an open/close message associated with each application data 

file received by each log server to determine the best-candidate file chosen from 

among the plurality of application data files when at least two application data 

files have an equivalent quantity of application messages, wherein the best

candidate file includes both an open message and a close message.  

8. The method of claim 7, further comprising: 

retrieving a portion of lost application messages for the best-candidate file 

from application data files not determined as the best-candidate file when the



21 

best-candidate file has lost less than a specified proportion of application 

messages included in the plurality of application files.  

9. The method of claim 6, further comprising: 

terminating, by at least one of the log servers, the current application data 

file when the close message is received; 

generating, by at least one of the log servers, the new application data file 

when the open message is received; and 

synchronizing, by at least one of the log servers, the application messages 

by terminating the current application data file and opening the new application 

data file based on the close message and the open message.  

10. The method of claim 1, wherein the comparing step comprises: 

decreasing a quantity of messages that are to be compared for each 

application data file by selecting each control file to compare the control 

messages included in each control file rather than comparing the application 

messages included in each application data file; and 

comparing control files in real-time due to a reduction in the control 

messages that are compared in association with the comparison of the control 

files.  

11. The method of claim 1, wherein the application messages are billing 

messages, and the application information is information for a billing transaction.  

12. A system for high reliability and high performance application message 

delivery, the system comprising: 

a plurality of log servers each including: 

a first processor; and 

a first memory coupled with the first processor, the first memory 

including instructions that, when executed by the first processor, cause the 

first processor to: 

receive asynchronously, by at least some of the plurality of



22 

log servers, a plurality of application messages containing 

application information and a plurality of control messages 

associated with the plurality of application messages over a 

predetermined interval, wherein each of the plurality of control 

messages is received by one or more log servers among the 

plurality of log servers; and 

store, at each of the plurality of log servers, the received 

application messages in a plurality of application data files and the 

received control messages in a plurality of control files; and 

a server coupled to the plurality of log servers, the server including: 

a second processor; and 

a second memory coupled with the second processor, the second 

memory including instructions that when executed by the second 

processor, cause the second processor to: 

compare, for each of the plurality of log servers, a quantity of 

the application messages asynchronously received by each of the 

plurality of log servers and an application message number from the 

control messages stored in the control files at each of the plurality of 

log servers in order to evaluate a quantity of application messages 

stored in each application data file of the plurality of log servers; 

based on the comparison, specify one of the application data 

files at one of the plurality of log servers as a best-candidate file; 

and 

forward the best-candidate file for post-processing, 

wherein each control message includes a control message number used 

for identifying a sequential order for the plurality of control messages and an 

identifier of an application server that originated the control message, and the 

best-candidate file includes a quantity of stored application messages that is 

greatest in comparison with to the application data files having fewer stored 

application messages.  

13. The system of claim 12, wherein each control message includes a 

timestamp.



23 

14. The system of claim 13, wherein the instructions, when executed by the 

second processor, further cause the second processor to: 

compare each control message number associated with each control 

message to determine the best-candidate file chosen from the plurality of 

application data files, wherein the best-candidate file includes a greatest quantity 

of control messages with the control message numbers received in sequence.  

15. The system of claim 12, wherein one of the control messages is an 

open/close control message that instructs at least one of the log servers that 

receive the open/close message to close the current application data file and 

open a new application data file to store subsequent application messages 

received by at least one of the log servers.  

16. The system of claim 15, wherein the open/close message includes an 

open message number indicating an opening of the application data file 

associated with the open/close message and a close message number indicating 

a closing of the application data file associated with the open/close message 

identifying the application data file in a sequence of the application data files 

received by at least one of the log servers.  

17. The system of claim 16, wherein the instructions, when executed by the 

second processor, further cause the second processor to: 

compare the open/close message associated with each application data 

file received by at least one of the log servers to determine the best-candidate file 

when at least two of the application data files have an equivalent quantity of 

application messages, and the best-candidate file includes both an open 

message and a close message.  

18. The system of claim 17, wherein the instructions, when executed by the 

second processor, further cause the second processor to: 

retrieve a portion of lost application messages for the best-candidate file 

from application data files not determined as the best-candidate file when the



24 

best-candidate file has lost less than a specified proportion of application 

messages included in the plurality of application files.  

19. The system of claim 16, wherein the instructions, when executed by the 

first processor, cause the first processor to: 

terminate a current application data file when the close message is 

received; 

generate a new application data file when the open message is received; 

and 

synchronize each application message by terminating the current 

application data file and opening a new application data file based on the close 

message and the open message received by at least one of the log servers.  

20. The system of claim 12, wherein the instructions, when executed by the 

second processor, further cause the second processor to: 

decrease a quantity of messages that are to be compared for each 

application data file by selecting each control file to compare the control 

messages included in each control file rather than comparing the application 

messages included in each application data file; and 

compare control files in real-time due to a reduction in messages that are 

compared associated with a comparison of control files.  

21. A system for high reliability and high performance billing message delivery, 

the system comprising: 

a plurality of log servers each including: 

a first processor; and 

a first memory coupled with the first processor, the first memory 

including instructions that, when executed by the first processor, cause the 

first processor to: 

receive asynchronously, by at least some of the plurality of 

log servers, a plurality of billing messages each containing 

information for a billing transaction and a plurality of control 

messages associated with the plurality of billing messages over a



25 

predetermined interval; and 

store, at each of the plurality of log servers, the received 

billing messages in a plurality of billing data files and the received 

control messages in a plurality of control files, and 

a server coupled to the plurality of log servers the server including: 

a second processor; and 

a second memory coupled with the second processor, the second 

memory including instructions that, when executed by the second processor, 

cause the second processor to: 

compare, for each of the plurality of log servers, a quantity of 

the plurality of billing messages and an application message 

number from the control messages stored in the control files at each 

of the plurality of log servers to evaluate a quantity of billing 

messages stored in each billing data file; 

based on the comparison, specify, by the server, one of the 

billing data files as a best-candidate file; and 

forward, from the server, the best-candidate file for post

processing, 

wherein each control message includes a control message number used 

for identifying a sequential order for the plurality of control messages and an 

identifier of an application server that originated the control message, and the 

best-candidate file includes the quantity of stored application messages that is 

greatest in comparison with the application data files having fewer stored 

application messages.  

AMADEUS S.A.S 

WATERMARK PATENT AND TRADE MARKS ATTORNEYS 

P38987AU00




















	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

