(12) STANDARD PATENT (11) Application No. AU 2012327228 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(56)

Title
A system for high reliability and high performance application message delivery

International Patent Classification(s)
GOG6F 15/16 (2006.01) G06Q 10/00 (2012.01)

Application No: 2012327228 (22) Date of Filing: 2012.12.27
WIPO No: WO13/098316

Priority Data

Number (32) Date (33) Country
11306803.5 2011.12.29 EP
13/418,819 2012.03.13 us
Publication Date: 2013.07.18

Publication Journal Date: 2013.07.18
Accepted Journal Date: 2016.02.18

Applicant(s)
AMADEUS S.A.S.

Inventor(s)
De Schacht, Paul;Pare, Thomas;Pascal, Matthieu

Agent / Attorney

Watermark Patent and Trade Marks Attorneys, SE 2 L 1 302 Burwood Rd, Hawthorn,
VIC, 3122

Related Art
EP 1906628
WO 2003/062993
US 2007/0061383

wo 2013/098316 A 1[I I NPF 0RO OO O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

\

=

(10) International Publication Number

WO 2013/098316 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

4 July 2013 (04.07.2013) WIPOIPCT
International Patent Classification: (81)
HO4L 29/08 (2006.01)

International Application Number:
PCT/EP2012/076937

International Filing Date:
27 December 2012 (27.12.2012)

Filing Language: English
Publication Language: English
Priority Data:

11306803.5 29 December 2011 (29.12.2011) EP
13/418,819 13 March 2012 (13.03.2012) US

Applicant: AMADEUS [FR/FR]; 485, route du Pin Mon-
tard, Sophia Antipolis, F-06410 Biot (FR).

Inventors: DE SCHACHT, Paul; 178, Impasse du
Moulin, F-83440 Montauroux (FR). PARE, Thomas; 2
Allée du Panorama, F-06130 Grasse (FR). PASCAL, Mat-
thieu; Résidence les 3 Rivieres, 410, avenue Janvier
Passero, Batiment C9, F-06210 Mandelieu (FR).

Agent: HAUTIER, Nicolas; Cabinet Hautier, 20, rue De
La Liberte, F-06000 Nice (FR).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: A SYSTEM FOR HIGH RELIABILITY AND HIGH PERFORMANCE APPLICATION MESSAGE DELIVERY

FIGURE 2

[201(a) /

209(c)
209(b)

f 203(a) - 208(a)
Log Server 1 AR
r— 211
201(b) LogServer | Billing <
instance EKP|u9‘in Contiol File
I
/ 20 —F 207
203(b) |
Log Server 2

W és /\
LogSgréer | Billing Z 209(c)

APP3 ingjaffce JKB6-n |~ Appl|cation \
Dat files 209(b)
209(a)

201(c)
. - SFTP
Correlation Sending Billing
Batch Batch Framewark
) Polls data files from
Correlation correlation results

_J

output 217 219

(57) Abstract: The invention provides a computer-im-
plemented method and a system of providing high reliab-
ility and high performance application message delivery,
characterized in that it comprises the following steps per-
formed with at least one data processor: at a plurality of
log servers (203 a - b) coupled to at least an application
server (201 a - c):receiving asynchronously, from the at
least one application server (201 a - ¢), application mes-
sages containing application information; receiving asyn-
chronously, from the at least one application server (201
a - ¢), control messages at a predetermined interval; at
each of the plurality of log servers (203 a - b):storing the
received application messages in a current application
data file (209) and the received control messages in a
control file (211); and upon receiving an open-close con-
trol message, closing the current application data file,
storing said closed application data file and creating a
new application data file as the current application data
file; comparing the control files of the plurality of log
servers (203 a - b) for a given interval; and based on this
comparison, determining from among a plurality of ap-
plication data files (209) from each of the log servers
(203 a - b), an application data file as a best-candidate
for a given interval and forwarding the best-candidate
file for post-processing.

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

A system for high reliability and high performance application message delivery

TECHNICAL FIELD

The present invention relates to the field of delivery of high volume of
electronic messages. A particularly advantageous but not limitative application
relates to airline billing transactions. In particular the invention relates to the
delivery of high number of asynchronous messages (typically > 8,000
messages per seconds) containing for instance billing information over an
unreliable network to a plurality of log servers, where log files containing the
billing information for a known interval are created and processing of billing
information for the interval is performed on the log file with the lowest loss of
billing data.

BACKGROUND

In the known art it is sometimes necessary to transmit data across

unreliable networks or using asynchronous transmission protocols such as User

11 Jan 2016

2012327228

2

Datagram Protocol (UDP) as the throughput of such sessionless based network
transactions is higher than for example, a transaction based on Transmission
Control Protocol (TCP).

Consider Fig. 1 , an example of a prior art system. Such a system based
on servers 103 can execute plurality of applications 123 which transmit billing
information . Because of the necessity of performing a number of billing
transactions which exceeds the capacity of network 105 using synchronous
transactions; or because of the corresponding loss of throughput as the
application waits for an acknowledgement of the receipt of a transaction, an
asynchronous message 125 is sent over network 105. The asynchronous
message is or is not received by a log server 127.

However, log server 127 is not a fault tolerant or high availability server
and is therefore considered unreliable 127. All messages which are received are
stored 129 in a file system 109 for processing by billing server 111 using billing
system 131.

It is understood that because of messaging protocol 125 used and
unreliability 127 of log server 107 transactions may be lost.

Thus, it is an object of the present invention to significantly improve the
reliability of the delivery of messages while increasing or at least maintaining the
throughput and while using non reliable networks.

BRIEF SUMMARY OF THE INVENTION

According to an aspect, the invention relates to a method of providing
application message delivery, the method comprising: receiving asynchronously,
by at least some of a plurality of log servers, a plurality of application messages
containing application information and a plurality of control messages associated
with the plurality of application messages over a predetermined interval, wherein
each of the plurality of control messages is received by one or more log servers
among the plurality of log servers; storing, at each of the plurality of log servers,
the received application messages in a plurality of application data files and the
received control messages in a plurality of control files; comparing, for each of the

11 Jan 2016

2012327228

3

plurality of log servers, a quantity of the plurality of application messages
asynchronously received by each of the plurality of log servers and an application
message number from the control messages stored in the control files at each of
the plurality of log servers in order to evaluate a quantity of stored application
messages in each application data file of the plurality of log servers; based on the
comparison, specifying, by a server, one of the application data files at one of the
plurality of log servers as a best-candidate file; and forwarding, from the server,
the best-candidate file for post-processing, wherein each control message
includes a control message number used for identifying a sequential order for the
plurality of control messages and an identifier of an application server that
originated the control message, and the best-candidate file includes a quantity of
stored application messages that is greatest in comparison with the application
data files having fewer stored application messages.

Thus, in case some of the application messages forwarded by the
application servers are not received at some of the log servers, the invention
allows determining the application data file that is the most reliable and discarding
thereby the other application data files without requiring comparing the application

data files.

Advantageously, the control message comprises a timestamp of the
application server.

Preferably, the interval for forwarding a control message is a given time
period.

Advantageously, the open/close control message is a Nth control message
in a sequence of control messages. In one embodiment, N is predetermined. In
one embodiment, the Nth control message is the fifth control message in the
sequence of control messages and the given time period is a two minute time
period.

Advantageously, the best-candidate file is chosen from a set of application
data files for a given interval from the plurality of log servers and that have the
same start and stop points. Preferably, the start and stop points are determined

by the reception of open/close control messages.

11 Jan 2016

2012327228

4

According to an advantageous embodiment, the best-candidate file is
chosen from among the chosen set of files, the file with the lowest application
message loss rate. According to an advantageous embodiment, in case some
application data files have the same number of application messages, then the
best-candidate file is chosen from among the application data files with the lowest
application message loss rate, the file with the lowest control message loss rate.

In one embodiment, the best-candidate file having lost application
messages and not having lost more than x percent of application messages for
the interval is augmented by the lost application messages existing in other files
of the set of files, x being predetermined. In one embodiment, x is comprised
between fifteen and forty five.

In one embodiment, the application is an airline billing transaction

application.

According to another aspect, the invention relates to a system for high
reliability and high performance application message delivery, the system
comprising:

a plurality of log servers each including:

a first processor; and
a first memory coupled with the first processor, the first memory
including instructions that, when executed by the first processor, cause the
first processor to:
receive asynchronously, by at least some of the plurality of
log servers, a plurality of application messages containing
application information and a plurality of control messages
associated with the plurality of application messages over a
predetermined interval, wherein each of the plurality of control
messages is received by one or more log servers among the
plurality of log servers; and
store, at each of the plurality of log servers, the received
application messages in a plurality of application data files and the
received control messages in a plurality of control files; and

11 Jan 2016

2012327228

5

a server coupled to the plurality of log servers, the server including:
a second processor; and
a second memory coupled with the second processor, the second
memory including instructions that when executed by the second
processor, cause the second processor to:
compare, for each of the plurality of log servers, a quantity of
the application messages asynchronously received by each of the
plurality of log servers and an application message number from the
control messages stored in the control files at each of the plurality of
log servers in order to evaluate a quantity of application messages
stored in each application data file of the plurality of log servers;
based on the comparison, specify one of the application data
files at one of the plurality of log servers as a best-candidate file;
and
forward the best-candidate file for post-processing,
wherein each control message includes a control message number used
for identifying a sequential order for the plurality of control messages and an
identifier of an application server that originated the control message, and the
best-candidate file includes a quantity of stored application messages that is
greatest in comparison with to the application data files having fewer stored

application messages.

Optionally, the system comprises a plurality of application servers and a
plurality of applications executing on a processor of any of the plurality of
application servers, each of the application servers having an output coupled to

an input of each of the log servers.

According to another aspect the invention solves the issues of loss by
providing a system for high reliability and high performance billing message
delivery, the system comprising:

a plurality of log servers each including:

a first processor; and
a first memory coupled with the first processor, the first memory

11 Jan 2016

2012327228

6

including instructions that, when executed by the first processor, cause the
first processor to:
receive asynchronously, by at least some of the plurality of
log servers, a plurality of billing messages each containing
information for a billing transaction and a plurality of control
messages associated with the plurality of billing messages over a
predetermined interval; and
store, at each of the plurality of log servers, the received
billing messages in a plurality of billing data files and the received
control messages in a plurality of control files, and
a server coupled to the plurality of log servers the server including:
a second processor; and
a second memory coupled with the second processor, the second
memory including instructions that, when executed by the second processor,
cause the second processor to:
compare, for each of the plurality of log servers, a quantity of
the plurality of billing messages and an application message
number from the control messages stored in the control files at each
of the plurality of log servers to evaluate a quantity of billing
messages stored in each billing data file;
based on the comparison, specify, by the server, one of the
billing data files as a best-candidate file; and
forward, from the server, the best-candidate file for post-
processing,
wherein each control message includes a control message number used
for identifying a sequential order for the plurality of control messages and an
identifier of an application server that originated the control message, and the
best-candidate file includes the quantity of stored application messages that is
greatest in comparison with the application data files having fewer stored

application messages.

11 Jan 2016

2012327228

7

Another aspect of the invention relates to a computer program product
comprising instructions capable of performing the steps of the method according

to the invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 is a system diagram of a prior art system.
FIG. 2 is a system diagram of the architecture of the present invention.
FIG. 3 is an illustration of the control message data structure.
FIG. 4 is a list of the types of control messages transmitted.
FIG. 5 is a flow chart of processing performed by an application sending
billing messages.
FIG. 6 is a flow chart of processing performed by a log server receiving
messages.
FIG. 7 is a flow chart of processing of a best-candidate log file.
FIG. 8 is a flowchart of improving the quality of a chosen best-candidate
file.
FIG. 9 is simplified illustration of an exemplary embodiment where
messages are transmitted from an application server to a cluster of four log

servers.

CONTINUES ON PAGE 8

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

8

FIG. 10 is a diagram of the internal architecture of any of the servers of the

system.

DETAILED DESCRIPTION OF THE INVENTION

It is recalled that the present invention takes care of the delivery of the
notification messages sent by applications by using a cluster of log servers.
Each application notifies all the redundant log servers at once. Each log server
splits this stream of notification messages into separate, manageable files. The
system determines continuously the most reliable files in the cluster and
transfers that file to the recipient.

Optionally the invention may comprise any one of the following
advantageous but nevertheless facultative features.

The control message comprises an identifier of a billing application.
Preferably, , the control message also comprises any one of: a timestamp of the
application server, a number of control messages transmitted by the application
(for instance billing application) and a number of application messages (for
instance billing messages) transmitted by the application. Each application has
a defined interval for forwarding a control message in a given time period and
an open/close control message is every Nth control message in the sequence
of control messages. According to an advantageous embodiment, the Nth
control message is the fifth control message in the sequence of control
messages and the given time period is two minutes. The system chooses files
for processing by a billing system by creating a best-candidate file chosen from
a set of files for a given interval from the plurality of log servers that have a
same start and stop point. Preferably, the best-candidate file is, from among the
chosen set of files, the file with the lowest message loss rate. The best-
candidate file can be augmented where messages are lost and not having lost
more than thirty percent of messages for the interval by copying in the lost
messages existing in files of the set of files other than the best-candidate file.
Preferably, upon determining from among a plurality of application data files

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

9

from each of the plurality of log servers, an application data file as a best-
candidate for a given interval, the server forwards the best-candidate file for

application processing.

Fig. 2 illustrates a system implementing the preferred embodiment of the
invention. The system has a plurality of applications 201(a)-(c). These
applications may be a plurality of different applications 201(a)-(c) running on a
single server; a single application 201(a) running on a plurality of servers 103;
or combination of multiple applications 201(a)-201(c) running on multiple
different servers. Each of applications 201(a)-(c), forwards asynchronous
application messages to log servers 203(a)-(b). An application message
contains information related to the application. For instance, the application
message may comprise data related to any one of: billing, customer profile,
customer profile etc. It will be understood that while two log servers 203(a)-(b)
are illustrated, the number of log servers is preferably more than 2. While
Applications have focused on airline billing transaction data, other types of
applications could forward other data in the system of the invention.

Each of log servers 203(a)-(b) has log server instance 205 and billing
plug-in 207 which write received application data messages into a current
application data file 209(a) and control messages to control file 211. Thus the
same application message is sent from an application server 201 (a)-(c) to all
the log servers 203(a)-(b). Possibly all the log servers 201 (a)-(c) receive the
same application message. However in practical, at least some of the
application messages may not be received by all the log servers 201 (a)-(c).

Control messages are sent at intervals described later in this document,
which cause current application data file 209(a) to be closed, creating a plurality
of application data files 209(b)-(c) each representative of billing application
messages of a given interval.

The purpose of the control messages is two-fold. First, these messages
are used to (re)synchronize the splitting of the application message stream into
files 209(a)-(c). It is crucial that each log server splits the stream at the same

points in the stream in order to create the synchronized files. Second, each

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

10

control message will be used by the correlation algorithm to select the best-
candidate amongst the synchronized files. Therefore, a summary of the control
messages is stored in a control file 211.

A billing section comprising a correlation batch 213, correlation output
215 and sending batch 217 are responsible for determining the best-candidate
of application data files 209(a)-(c) and forwarding the best-candidate to the
billing framework 219.

Fig. 3 illustrates the structure of a control message as transmitted and
stored in control file 211. The same control message is sent from an application
server 201 (a)-(c) to all the log servers 203(a)-(b). Possibly all the log servers
201 (a)-(c) receive the same control message. However in practical, at least
some of the control messages may not be received by all the log servers 201
(a)-(c).

Each control message sent by an application 201(a)-(c) comprises
preferably at least four elements.

The control message comprises an application identifier 303 that
identifies the application server that is the originator of the control message.
Each application 201(a)-(c) has application identifier 303, which uniquely
identifies the application. This element allows different billed applications to
send data and control messages to the same cluster (i.e. log servers 203(a)-
(b)). The cluster can easily separate the messages per source.

Timestamp 305 defines a single reference of time in the sending
application server. All the synchronization steps will be based on timestamp 305
of the sending application server. This avoids the clock discrepancies usually
found in a cluster of servers 203(a)-(b). This feature is all the most
advantageous as the number of application servers 201(a), 201(b), 201(c) is
high.

Control message number 307 indicates the unique sequential identifier
for the current control message. This number allows the log server to know
whether the previous control message has been lost. For instance, if two control
messages successively received at a log server present control message
number 307 that differs by more than one increment, then it means that at least
one control message has not been received by said log server.

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

11

Application message number 309 indicates the number of application
messages sent by the application 201(a)-(c). As each log server knows how
many application messages it has actually received, therefore, each log server
knows how many application messages were lost based upon this value.

Type of message 311 indicates the type of control message being
forwarded.

Fig. 4 illustrates the type of control messages that are forwarded from
applications 201(a)-(c) to log servers 203(a)-(c). Application-Start 403 indicates
that an Application has started and therefore a new application data file should
be created. The corollary to such a control message is Application-Stop 409
which closes current application data file 209(a) when the application shuts
down.

Timer Interval 405 sends a message every X periods, where X is for
instance and preferably 2 minutes. Every Nth, for instance N=5 (five) checkpoint
sent by applications 201(a)-(c), called a splitting checkpoint, is used by log
servers 203(a)-(b) to split the stream: the log server closes the current
application data file 209(a) and creates a new file where it will store the next set
of sequential application messages. Such a splitting creates a stop point in one
application data file and a start point in the new application data file. Thus, a
current application data file is closed when the Nth checkpoint control message
is received and a new application data file, that becomes the current application
data file, is then created.

Each start point and stop point is associated to a control message
number 307 which allows identifying the order of transmission. Therefore, it is
easy to identify the application data files having the same start points. It is also
easy to identify the application data files having the same stop points. The
comparison of the application data files of various log servers as well as the
splitting of the stream can therefore be easily achieved.

Since checkpoints can also be lost, log servers 203(a)-(b) uses the
control message number 307 of the control message to detect such a loss.
However, the control message number also informs the log server if a splitting
point has been missed. [control message number modulo N = 0] Other values
than five could be used depending on the requirements of the system.

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

12

Where a non-splitting checkpoint is lost, the log servers 203(a)-(b) will
simply write that lost event to control file 211. Any lost event in control file 211
will decrease the reliability of the appropriate application data file.

In the event that a splitting checkpoint is lost, the log servers 203(a)-(b)
will close the current application data file 209(a) and open a new one (as if a
splitting checkpoint was received). However, the current application data file
and the new application data file will be out of synchronization, since they have
not been closed/opened at a splitting checkpoint. The control file 211 is
accordingly updated: a lost event for the missing checkpoint, the events of
creating the new file, together with the timestamp. There is no event for closing
the application data file. This will inform the correlation algorithm that a splitting
checkpoint was lost.

END-OF-PERIOD 407 control message is sent by applications 201(a)-(c)
at a time determined by the application. Typically this control message is sent at
midnight for billing applications in order to separate two working days. Basically,
this message forces a complete resynchronization between the billed
application and the log server. All internal counters are set to zero and a new
application data file and a new control file is started. It is also understood that
END-OF-PERIOD could be some other period as multiple days, a week, month
or year.

Since every control message contains the current timestamp of the billed
application, it is now trivial to find out if an END-OF-PERIOD control message
has been lost: the date in the timestamp element sent by the billed application is
no longer the same as the last received date on the log server. In this case, the
log server simulates the reception of END-OF-PERIOD messages 407, sets all
internal counters to zero and starts a new application data file. Control file 211 is
updated as if a splitting checkpoint has been missed.

The types of control messages 403-409 as stored in control files 211
allow for splitting the stream of application messages into synchronized
application data files 209(a)-209(c). If no control messages are lost, all files will
be synchronized. When control messages are lost, a number of files in the
cluster will be out-of-synchronization: some file(s) will be closed/opened at a
different timestamp. In addition to the knowledge that files are synchronized, the

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

13

system is also informed about the correctness of each file. Both facts about the
application data files will be exploited by a correlation algorithm.

A billing server 219 as implemented in the system of the present
invention must receive by determining the best-candidate of log files 209(a)-(c)
on each of log servers 203(a)-(b). The decision of the best-candidate is done by
the correlation batch 213.

The best-candidate selection is based on comparing the control file 211
of each log server 203(a)-(b). By not comparing the numerous and large
application data files 209(a)-(c), this step is executed in real time.

The system aligns the open file/close file events in different control files
211 of each log server 203(a)-(b). The alignment is based on the timestamp of

the events. A quorum of]_(n+1)/2—\ is needed to agree on an alignment. The

alignment simply indicates the files for which the stream has been split on
identical points in time. In this nominal case, the system determines the best-
candidate amongst the synchronized application data files 209(a)-(c) by
selecting the application data file that contains firstly the most messages and
secondly the least lost checkpoint messages.

If no quorum is reached, the system will prefer the files for which both an
open file event and a close file event is found. In case of a lost splitting
checkpoint, there is no close event registered in the control file 211. It means
that the system will lower the quorum, but will still only consider the files that
received both the open file and close file events. The system defines the best-
candidate based on firstly the number of application messages and secondly
the number of lost checkpoint messages.

In the extreme case where not a single file has a close file event, (this
means the splitting checkpoint was missed by all log servers), the system will
prefer the files firstly with the least lost checkpoint messages and secondly the
most messages.

It is important that the next open file events to consider must
chronologically follow the close event of the currently selected best-candidate in
order to avoid sending duplicate messages to the billing server 219

The system also improves the quality of the selected best-candidate by

retrieving a part of missing messages in other synchronized files. The

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

14

improvement is only done for synchronized files where the best-candidate has
lost less than x% of the messages (i.e. the number of received messages is
greater than (100-x)%). Advantageously, 15<x<45 and more advantageously
x=30, i.e. the number of received messages is greater than 70%. If even the
best-candidate file has lost more than x% messages, it is considered that the
other application data file cannot provide the missing messages.

In the case of an eventual improvement, each checkpoint of the
synchronized files is compared. Since each checkpoint contains the number of
lost messages for the last ‘m’ minutes (for instance m = two (2)), the system can
identify which of the files has the best data block. If another than the best-
candidate contains more messages for the ‘m’ minute span, the block of
messages is extracted and replaced in the best-candidate file.

This method allows improvement of the best-candidate in a real-time
matter, since only the events in the summary control files 211 are used to
identify the best-blocks in application data files 209(a)-(c).

Fig. 5 illustrates an example of the steps taken by a thread of an
application 201(a)-(c) implementing the invention. In step 501, a process begins
and immediately sends in step 503 an Application-Start control message 403 to
log servers 203(a)-(c).

The application billing thread then iterates looking for work. In step 505, it
is determined if more than the predetermined time period, typically 2 minutes,
has elapsed since the last control message has occurred, if the answer is yes,
then Checkpoint control message 405 will be sent to log servers 203(a)-(c) in
step 507. If the answer is no, proceed to step 509 and determine if an
application message (for instance a billing application message) needs to be
sent. If the answer is yes, in step 511 send application message with the data to
log servers 203(a)-(c).

If the answer is no, proceed to step 513, where it is determined if it is a
new day, or other billing period. If the answer is yes, in step 515 send an END-
OF-PERIOD control message 407 to log servers 203(a)-(c).

If the answer is no, proceed to step 517, where it is determined if the
application program is shutting down. If the answer is yes, send an Application-

Stop control message 409 in step 519 and then end processing in step 521,

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

15

otherwise continue to iterate.

Fig. 6 illustrates an example of the steps of a program receiving log
messages on log servers 203(a)-(b). Processing begins a step 601. In step 603
it is determined if the message is an application message (for instance a billing
application message), if yes, store the application message in current log file
209(a) in step 605. If no, store the control message 301 in the control file in step
607, then determine what type of control message 301 has been received. In
step 609, determine if control message 301 is an Application-Start control
message 403, if yes, then at step 611 open a new current application data file
209(a). If no, proceed to the next step 613, where it is determined if the control
message 301 is a Checkpoint control message 4095, if yes determine if this is
the N™ (N being predetermined and being for instance five (5)) checkpoint
message 405 by checking the control message number 307 at step 615. If yes,
at step 617 close current application data file 209(a), now becoming the next
application data file in the sequence 209(b, c, ...). Open a new file as current
application data file 209(a).

If no, step 619 determines if any prior control messages were missed
and if such a message was missed, then perform step 617.

In step 621, determine if control message 301 is an END-OF-PERIOD
control message 403, if yes, then perform step 617. If no, in step 623 determine
if control message 301 is an Application-Stop. If yes, then close current
application data file 209(a) now becoming the next application data file in the
sequence 209(b, ¢, ...) in step 625. End processing in step 627.

Fig. 7 illustrates an example of a method according to the invention for
determining the best-candidate selection for log files 209(a)-(c) from each of log
servers 203(a)-(b). Starting from step 701, at step 703 determine application
data files 209(a)-(c) that have been split at the same points in time by
comparing control messages 301 in each of log servers 203(a)-(b). From the list
of application data files 209(a)-(c) that have been split at the same points in
time on each of log servers 203(a)-(b), determine 705 the log file that has the
largest number of received application messages. Preferably, in case at least
two application data files 209(a)-(c) comprise the same number of application
messages, then the system compares the number of lost control messages.

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

16

The best-candidates among the application data files 209(a)-(c) that have been
split at the same points in time on each of log servers 203(a)-(b) is the
application data files 209(a)-(c) that has the highest number of application
messages and that has the highest number of control messages.

Forward 709 the chosen application data file to the billing framework for
processing and end processing 711.

Fig. 8 illustrates a method of combining files to increase quality. If in step
705 it is determined 801 that application data files are synchronized and the
best-candidate has more than 70 % of its billing application messages but less
than 100 % of the messages, supplement any missing application messages
from the application data files for the same interval of the other log servers into
the best-candidate log file.

Figure 9 illustrates an exemplary embodiment where an application 201
sends messages to a cluster of four log servers 203 referred to as LGS #1, LGS
#2, LGS #3 and LGS #4.

The first synchronized checkpoint 100 (checkpoint i) triggers at each of
the four log servers 203 the start of an application data file. Thus, the
application data file of the four log servers 203 have the same start point.
Application messages are also sent to the log servers 203. Each log server 203
receives these application messages and stores them in the application data file
that has just been opened. Thus, application messages are stored in application
data files 101, 102, 103, 104 by respectively the log servers LGS #1, LGS #2,
LGS #3 and LGS #4.

Every time interval 105, a new control message is sent by the application
server 201.

Some log servers may not receive a normal checkpoint. For example
LGS #2 missed checkpoint having the number i+3, LGS #3 missed checkpoint
number i+2, checkpoint number i+3, checkpoint number i+4 and LGS #4 missed
checkpoint number i+1 and checkpoint number i+3. Some log servers may also
miss synchronization checkpoint. For instance LGS #4 missed checkpoint
having the number i+5, said checkpoint being a synchronization checkpoint.
This checkpoint is an open/close control message, which triggers the closing of
the current application data file and the opening of a new application data file.

10

15

20

25

30

WO 2013/098316 PCT/EP2012/076937

17

Therefore, at log servers LGS #1, LGS #2 and LGS #3 the application data files
101, 102, 103 are closed at the same time upon reception of control message
i+5. However, at log servers LGS #4 the application data file 104 is closed later.
Thus, application data files 101, 102, 103 have the same start and stop points
and application data file 104 does not have the same stop point as the other
ones.

In this embodiment, the open/close control message is the 5™ control
message and the interval for forwarding a control message is depicted by the
arrow 105.

The best candidate file is chosen from the set of application data files
having the same start and stop points, i.e., the application data files 101, 102,
103. Among this set of application data files 101, 102, 103 the one that will be
considered as the best candidate is the one comprising the highest number of
application messages. This comparison of the number of application messages
is based on the comparison of the control files created by each log server.
Therefore, it is not necessary to compare the application data files which
requires much more time and processing capacity. In case two or more
application data files 101, 102, 103 have the same number of application
messages, then, the best candidate is the one comprising the highest number
of control messages. For instance, if application data files 102 and 103 have the
same number of application messages, this number being higher than the one
of application data files 101, then application data files 102 will be considered
as the best candidate and application data files 101, 103 and 104 will be
discarded.

Although the exemplary embodiments have been described in relation to
a particularly advantageous application i.e., delivery of billing message, all
features described and illustrated apply to other applications.

It is understood by those of ordinary skill that above system and method
can by implemented as a computer program stored on a computer readable
storage medium such as a hard drive, 903, DVD/CD-ROM 905, thumb drive 907
of Fig. 10, where the CPU 901 loads the computer program into a RAM 909
across a bus 911 and executes the program as a series of instructions

accessing the devices as described above are communicating across a network

10

WO 2013/098316 PCT/EP2012/076937

18

adapter 913 to network 105 and using a display 915 and input output devices
917 such a keyboard and mouse, etc. As the computer program is stored on a
computer readable storage medium and the verb stored means to make
permanent, propagation signals are excluded from the meaning of a computer
readable storage medium.

As can be appreciated, there are a number of benefits and technical
effects that are realized by the use of the invention. In particular, the invention
allows significantly increasing the reliability of the message through sending the
same messages to various log servers and while maintaining a high throughout
since the most reliable messages can be selected without requiring to process
large volume of data. Typically, the invention allows sending more than 10 000
transactions per second while maintain a ratio of lost message below 0.14%.

11 Jan 2016

2012327228

19

CLAIMS:

1. A method of providing application message delivery, the method
comprising:

receiving asynchronously, by at least some of a plurality of log servers, a
plurality of application messages containing application information and a plurality
of control messages associated with the plurality of application messages over a
predetermined interval, wherein each of the plurality of control messages is
received by one or more log servers among the plurality of log servers;

storing, at each of the plurality of log servers, the received application
messages in a plurality of application data files and the received control
messages in a plurality of control files;

comparing, for each of the plurality of log servers, a quantity of the plurality
of application messages asynchronously received by each of the plurality of log
servers and an application message number from the control messages stored in
the control files at each of the plurality of log servers in order to evaluate a
quantity of stored application messages in each application data file of the
plurality of log servers;

based on the comparison, specifying, by a server, one of the application
data files at one of the plurality of log servers as a best-candidate file; and

forwarding, from the server, the best-candidate file for post-processing,

wherein each control message includes a control message number used
for identifying a sequential order for the plurality of control messages and an
identifier of an application server that originated the control message, and the
best-candidate file includes a quantity of stored application messages that is
greatest in comparison with the application data files having fewer stored

application messages.

2. The method of claim 1, wherein each control message includes a

timestamp.

11 Jan 2016

2012327228

20

3. The method of claim 1, wherein one of the control messages is an
open/close control message that instructs at least one of the log servers that
receive the open/close control message to close a current one of the application
data files and open a new one of the application data files to store subsequent

application messages received by at least one of the log servers.

4. The method of claim 3, wherein the open/close control message is
received by at least one of the log servers after receiving a designated number of
control messages that are not open/close control messages.

5. The method of claim 1, wherein each application data file is a billing
transaction application and wherein each application message relates to billing of
services related to a travel industry.

6. The method of claim 3, wherein the open/close message includes an open
message number indicating an opening of the new application data file
associated with the open/close message and a close message number indicating
a closing of the current application data file associated with the open/close
message identifying the application data file in a sequence of the application data
files received by at least one of the log servers.

7. The method of claim 6, further comprising:

comparing an open/close message associated with each application data
file received by each log server to determine the best-candidate file chosen from
among the plurality of application data files when at least two application data
files have an equivalent quantity of application messages, wherein the best-
candidate file includes both an open message and a close message.

8. The method of claim 7, further comprising:
retrieving a portion of lost application messages for the best-candidate file

from application data files not determined as the best-candidate file when the

11 Jan 2016

2012327228

21

best-candidate file has lost less than a specified proportion of application

messages included in the plurality of application files.

9. The method of claim 6, further comprising:

terminating, by at least one of the log servers, the current application data
file when the close message is received;

generating, by at least one of the log servers, the new application data file
when the open message is received; and

synchronizing, by at least one of the log servers, the application messages
by terminating the current application data file and opening the new application

data file based on the close message and the open message.

10. The method of claim 1, wherein the comparing step comprises:
decreasing a quantity of messages that are to be compared for each
application data file by selecting each control file to compare the control
messages included in each control file rather than comparing the application
messages included in each application data file; and
comparing control files in real-time due to a reduction in the control
messages that are compared in association with the comparison of the control

files.

11. The method of claim 1, wherein the application messages are billing
messages, and the application information is information for a billing transaction.

12. A system for high reliability and high performance application message
delivery, the system comprising:
a plurality of log servers each including:
a first processor; and
a first memory coupled with the first processor, the first memory
including instructions that, when executed by the first processor, cause the
first processor to:
receive asynchronously, by at least some of the plurality of

11 Jan 2016

2012327228

22

log servers, a plurality of application messages containing
application information and a plurality of control messages
associated with the plurality of application messages over a
predetermined interval, wherein each of the plurality of control
messages is received by one or more log servers among the
plurality of log servers; and
store, at each of the plurality of log servers, the received
application messages in a plurality of application data files and the
received control messages in a plurality of control files; and
a server coupled to the plurality of log servers, the server including:
a second processor; and
a second memory coupled with the second processor, the second
memory including instructions that when executed by the second
processor, cause the second processor to:
compare, for each of the plurality of log servers, a quantity of
the application messages asynchronously received by each of the
plurality of log servers and an application message number from the
control messages stored in the control files at each of the plurality of
log servers in order to evaluate a quantity of application messages
stored in each application data file of the plurality of log servers;
based on the comparison, specify one of the application data
files at one of the plurality of log servers as a best-candidate file;
and
forward the best-candidate file for post-processing,
wherein each control message includes a control message number used
for identifying a sequential order for the plurality of control messages and an
identifier of an application server that originated the control message, and the
best-candidate file includes a quantity of stored application messages that is
greatest in comparison with to the application data files having fewer stored

application messages.

13. The system of claim 12, wherein each control message includes a

timestamp.

11 Jan 2016

2012327228

23

14. The system of claim 13, wherein the instructions, when executed by the
second processor, further cause the second processor to:

compare each control message number associated with each control
message to determine the best-candidate file chosen from the plurality of
application data files, wherein the best-candidate file includes a greatest quantity

of control messages with the control message numbers received in sequence.

15. The system of claim 12, wherein one of the control messages is an
open/close control message that instructs at least one of the log servers that
receive the open/close message to close the current application data file and
open a new application data file to store subsequent application messages
received by at least one of the log servers.

16. The system of claim 15, wherein the open/close message includes an
open message number indicating an opening of the application data file
associated with the open/close message and a close message number indicating
a closing of the application data file associated with the open/close message
identifying the application data file in a sequence of the application data files

received by at least one of the log servers.

17. The system of claim 16, wherein the instructions, when executed by the
second processor, further cause the second processor to:

compare the open/close message associated with each application data
file received by at least one of the log servers to determine the best-candidate file
when at least two of the application data files have an equivalent quantity of
application messages, and the best-candidate file includes both an open

message and a close message.

18. The system of claim 17, wherein the instructions, when executed by the
second processor, further cause the second processor to:

retrieve a portion of lost application messages for the best-candidate file
from application data files not determined as the best-candidate file when the

11 Jan 2016

2012327228

24

best-candidate file has lost less than a specified proportion of application

messages included in the plurality of application files.

19. The system of claim 16, wherein the instructions, when executed by the
first processor, cause the first processor to:

terminate a current application data file when the close message is
received;

generate a new application data file when the open message is received;
and

synchronize each application message by terminating the current
application data file and opening a new application data file based on the close
message and the open message received by at least one of the log servers.

20. The system of claim 12, wherein the instructions, when executed by the
second processor, further cause the second processor to:

decrease a quantity of messages that are to be compared for each
application data file by selecting each control file to compare the control
messages included in each control file rather than comparing the application
messages included in each application data file; and

compare control files in real-time due to a reduction in messages that are

compared associated with a comparison of control files.

21. A system for high reliability and high performance billing message delivery,
the system comprising:
a plurality of log servers each including:
a first processor; and
a first memory coupled with the first processor, the first memory
including instructions that, when executed by the first processor, cause the
first processor to:
receive asynchronously, by at least some of the plurality of
log servers, a plurality of billing messages each containing
information for a billing transaction and a plurality of control

messages associated with the plurality of billing messages over a

11 Jan 2016

2012327228

25

predetermined interval; and
store, at each of the plurality of log servers, the received
billing messages in a plurality of billing data files and the received
control messages in a plurality of control files, and
a server coupled to the plurality of log servers the server including:
a second processor; and
a second memory coupled with the second processor, the second
memory including instructions that, when executed by the second processor,
cause the second processor to:
compare, for each of the plurality of log servers, a quantity of
the plurality of billing messages and an application message
number from the control messages stored in the control files at each
of the plurality of log servers to evaluate a quantity of billing
messages stored in each billing data file;
based on the comparison, specify, by the server, one of the
billing data files as a best-candidate file; and
forward, from the server, the best-candidate file for post-
processing,
wherein each control message includes a control message number used
for identifying a sequential order for the plurality of control messages and an
identifier of an application server that originated the control message, and the
best-candidate file includes the quantity of stored application messages that is
greatest in comparison with the application data files having fewer stored

application messages.

AMADEUS S.A.S

WATERMARK PATENT AND TRADE MARKS ATTORNEYS

P38987AU00

PCT/EP2012/076937

WO 2013/098316

1/9

(342

N

621

wajshs
3|y woy
dn syod
yJomawel)
Buiig

(332

\

wayshs

3y uo
suonesyijou

$310)S
Janiss Boj

601

LZ)

"\

Janiss 6o
3|qelJun

Scl

N

€cl

N

0}

L0L

ainpnJseyul

}IOMJaU B|qelja4un
JaA0 suonedllou puss

suopeoldde
pajliq Auew

LIV d0NRid
I ADNOI4

€0l

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316 PCT/EP2012/076937
2/9

FIGURE 2
201(a) / 209(c)
[209(b)
[* 203(a) - 209(a)

APP1 icatio

a files
— 211

LogServer |, Billing /
Control File
205 203L

instance gk Plug-in
b) \ -
o Control File 21
__ TBF AP Log Server 2 / J
W

[
/ _

APP2

207

< J—
LogS Blllm \ 209(c)
APP3 ms/taf\ce C g-in | N Appl|cation \
= Data files 209(b)
1 ~
TBF API — 209(a)
N
201(c) Readgf£ontrol files
) / —) SFTP
Correlation < Sending > Billing
Batch Batch [« Framework
_ Polls data files from
Correlation correlation results
213 — 215 output 217 _J

219

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316

311

301 \

3/9

FIGURE 3

j 303

APPLICATION ID j 305

TIME STAMP / 307

CONTROL MSG NUM / 309

DATA MSG NUM i
TYPE OF MSG e

FIGURE 4

403

APPLICATION START /S “05

CHECKPOINT S w07

END-OF-PERIOD _ 405
APPLICATION STOP S

SUBSTITUTE SHEET (RULE 26)

PCT/EP2012/076937

WO 2013/098316

START

SEND
APPLICATION
START MSG

2 MIN LAS

505

501

\f_ 503

4/9

FIGURE 5

PCT/EP2012/076937

SEND CHECKPONT CONTROL

C-MSG

MSG

\/_ 507

BILLING

509

> SEND BILLING DATA MSG

DATA?

\/_ 511

NEW PERIOD?

513

SEND END OF PERIOD
CONTROL MSG

\f 515

END
PROCESSING?2

Y

\J

517

SEND
APPLICATION
STOP MSG

\f_ 519

STOP

521

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316

START

WRITE BILLING
DATATO
CURRENT DATA
FILE

601

603

\w/—G%

621

623

PCT/EP2012/076937
5/9
FIGURE 6
STORE
CONTROL MSG 607
IN CONTROL ~
FILE
609
START? y
N f 617
6 CLOSE AND
RENAME
CURRENT DATA
FILE
N

END OF
PERIOD?

l

OPEN CURRENT
DATA FILE

N

CLOSE CURRENT
DATA FILE

STOP

627

SUBSTITUTE SHEET (RULE 26)

611

WO 2013/098316 PCT/EP2012/076937

6/9

FIGURE 7

START 701

COMPARE CONTROL MESSAGES ON EACH LOG SERVER AND PRODUCE A LIST OF
FILES SPLIT AT THE SAME MOMENT TIME

\f 703

DETERMINE FROM THE LIST OF LOG FILES SPLIT AT THE SAME TIME, THE FILE
WITH THE LARGEST NUMBER OF MESSAGES

\f_ 705

FORWARD THE DETERMINED FILE TO THE BILLING FRAMEWORK FOR
PROCESSING

\f— 709

STOP 711

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316 PCT/EP2012/076937
719

FIGURE 8
705

DETERMINE FROM THE LIST OF LOG FILES SPLIT AT THE SAME TIME, THE FILE WITH THE LARGEST
NUMBER OF MESSAGES

IF BEST CANDIDATE LOG FILE <100% OF MSGS AND > 70%. THEN COPY MESSAGE FROM
OTHER LOG FILES INTO BEST-CANDIDATE LOG FILE

\
T

801

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316 PCT/EP2012/076937

8§/9

103

203

LGS #1

LGS #2

LGS #3
LGS #4

i+7

Application data file delimited by checkpoints

O Received checkpoints

FIGURE 9

SUBSTITUTE SHEET (RULE 26)

WO 2013/098316 PCT/EP2012/076937

9/9

911

/ 917

10
DEVICE

913

915

N
i

FIGURE 10

o)
o
<)
\ <§t
o
~ n
o
3
> <]
[a W
] Q
b [x2]
= o
=) a

SUBSTITUTE SHEET (RULE 26)

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

