wo 2014/031452 A1 I} A1 0O A

(43) International Publication Date
27 February 2014 (27.02.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/031452 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/44 (2006.01) GO6F 11/36 (2006.01)

International Application Number:
PCT/US2013/055226

International Filing Date:
16 August 2013 (16.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/589,180 20 August 2012 (20.08.2012) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: BIRD, Christian; ¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). ZIMMERMANN,
Thomas; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: PREDICTING SOFTWARE BUILD ERRORS

120 TN

122 -]

124

100
\

110

108

1/O Device

Processor
Interface

102/

106 112 ~

1/0 Devices

(57) Abstract: Systems and methods for predicting a
software build error are described herein. In one ex-
ample, a method includes detecting a plurality of
changes in software. The method also includes identi-
fying a plurality of change lists, wherein a change list
is identitied for each of the plurality of changes in the

Display
Interface

Display Device

software. Additionally, the method includes identify-
ing a characteristic for each change list in the plural-

116~

| Memory I—
104

118

NIC

Storage

Prediction
Analysis
Module

\

Build Break
Module

\

Update
Module

114

ity of change lists. Furthermore, the method includes
calculating a plurality of probabilities based at least
in part on the characteristic of each of the plurality of
change lists, wherein each of the probabilities indic-
ates the likelihood of one of the plurality of change
lists creating the software build error. The method
also includes reporting the plurality of probabilities
of the software build error.

FIG. 1

WO 2014/031452 A1 WK 00T 000 R A0

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

PREDICTING SOFTWARE BUILD ERRORS

BACKGROUND

[0001] Software development can involve developing software code that is to be
translated into machine executable code. The translation of software code written by
developers into machine executable code can be referred to as a software build. During
software development, errors encountered during the software build can increase the
amount of time to develop software. For example, some organizations develop software
with teams of developers. In some instances, one team of developers may wait to build a
portion of a software application until a second team has built a separate portion of the
software application. If the second team of developers encounters a software build error,
the first team of developers may be delayed in building a portion of the software
application. Therefore, minimizing software build errors can prevent a delay in the
software development process.

SUMMARY

[0002] The following presents a simplified summary in order to provide a basic
understanding of some aspects described herein. This summary is not an extensive
overview of the claimed subject matter. This summary is not intended to identify key or
critical elements of the claimed subject matter nor delineate the scope of the claimed
subject matter. This summary’s sole purpose is to present some concepts of the claimed
subject matter in a simplified form as a prelude to the more detailed description that is
presented later.

[0003] An embodiment provides a method for predicting software build errors. The
method includes detecting a plurality of changes in software. The method also includes
identifying a plurality of change lists, wherein a change list is identified for each of the
plurality of changes in the software. In addition, the method includes identifying a
characteristic for each change list in the plurality of change lists. Furthermore, the method
includes calculating a plurality of probabilities based at least in part on the characteristic
of cach of the plurality of change lists, wherein each of the probabilities indicates the
likelihood of one of the plurality of change lists creating the software build error. The
method also includes reporting the plurality of probabilities of the software build error.
[0004] Another embodiment is a system for predicting software build errors. The
system includes a display device to display a plurality of probabilities, a processor to

execute processor executable code, and a storage device that stores processor executable

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

code. The system detects a plurality of changes in software. The system also identifies a
plurality of change lists, wherein a change list is identified for each of the plurality of
changes in the software. In addition, the system identifies a characteristic for each change
list in the plurality of change lists. Furthermore, the system identifies a logistic regression.
The system also uses the logistic regression to calculate the plurality of probabilities based
at least in part on the characteristic of each of the plurality of change lists, wherein each of
the probabilities indicates the likelihood of one of the plurality of change lists creating the
software build error. Additionally, the system reports the plurality of probabilities of the
software build error.
[0005] Another embodiment provides one or more tangible computer-readable storage
media comprising a plurality of instructions. The instructions cause a processor to detect a
plurality of changes in software and identify a plurality of change lists, wherein a change
list is identified for each of the plurality of changes in the software. The instructions also
cause a processor to identify a characteristic for each change list in the plurality of change
lists. Furthermore, the instructions cause a processor to calculate a plurality of
probabilities based at least in part on the characteristic of each of the plurality of change
lists, wherein each of the probabilities indicates the likelihood of one of the plurality of
change lists creating the software build error. The instructions also cause the processor to
report the plurality of probabilities of the software build error.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following detailed description may be better understood by referencing the
accompanying drawings, which contain specific examples of numerous features of the
disclosed subject matter.

[0007] Fig. 1 is a block diagram of an example of a computing system that predicts
software build errors;

[0008] Fig. 2 is a process flow diagram illustrating an example of a method for
predicting software build errors;

[0009] Fig. 3 is a block diagram illustrating an example of a prediction analysis module
used to predict software build errors;

[0010] Fig. 4 is a block diagram illustrating an example of a build break module used to
analyze software build errors;

[0011] Fig. 5 is a block diagram illustrating an example of an update module used to

update the prediction analysis module; and

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

[0012] Fig. 6 is a block diagram illustrating an example of a tangible, computer-readable
storage media that predicts software build errors.

DETAILED DESCRIPTION

[0013] Various methods for predicting software build errors have been developed to
minimize delays associated with software build errors. Some methods include collecting
information regarding certain aspects of the software code such as the number of lines of
software code changed since the last software build. These methods may attempt to
determine the likelihood of a successful software build based on the collected information.
However, many of these methods focus on information derived from the software code
rather than the process of building software and the actual changes that have been made to
the software. Other methods include identifying a set of variables that may identify a
software build error. However, many of these methods rely on decision trees that use a
fixed set of variables to identify when a software build may fail.

[0014] The techniques described herein can predict a software build error based on any
suitable number of probabilities of a software build error. In some embodiments, the
techniques described herein can identify a series of changes since the last software build
and calculate a probability that each change may create a software build error. A software
build can refer to the state of building software, which includes compiling software (also
referred to herein as software code) into machine executable files and linking the machine
executable files to form an application. A software build error can include an error in the
software code that prevents the software code from being compiled into an executable file
or prevents the software code from being linked. A software build error may prevent the
software code from being translated into machine executable code, which may prevent the
software code from being incorporated in an application.

[0015] As a preliminary matter, some of the figures describe concepts in the context of
one or more structural components, referred to as functionalities, modules, features,
elements, etc. The various components shown in the figures can be implemented in any
manner, for example, by software, hardware (e.g., discrete logic components, etc.),
firmware, and so on, or any combination of these implementations. In one embodiment,
the various components may reflect the use of corresponding components in an actual
implementation. In other embodiments, any single component illustrated in the figures
may be implemented by a number of actual components. The depiction of any two or

more separate components in the figures may reflect different functions performed by a

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

single actual component. Fig. 1, discussed below, provides details regarding one system
that may be used to implement the functions shown in the figures.

[0016] Other figures describe the concepts in flowchart form. In this form, certain
operations are described as constituting distinct blocks performed in a certain order. Such
implementations are exemplary and non-limiting. Certain blocks described herein can be
grouped together and performed in a single operation, certain blocks can be broken apart
into plural component blocks, and certain blocks can be performed in an order that differs
from that which is illustrated herein, including a parallel manner of performing the blocks.
The blocks shown in the flowcharts can be implemented by software, hardware, firmware,
manual processing, and the like, or any combination of these implementations. As used
herein, hardware may include computer systems, discrete logic components, such as
application specific integrated circuits (ASICs), and the like, as well as any combinations
thereof.

[0017] As for terminology, the phrase “configured to” encompasses any way that any
kind of structural component can be constructed to perform an identified operation. The
structural component can be configured to perform an operation using software, hardware,
firmware and the like, or any combinations thereof.

[0018] The term “logic” encompasses any functionality for performing a task. For
instance, each operation illustrated in the flowcharts corresponds to logic for performing
that operation. An operation can be performed using software, hardware, firmware, etc.,

or any combinations thereof.

2% ¢ 2% ¢

[0019] As utilized herein, terms “component,” “system,” “client” and the like are
intended to refer to a computer-related entity, either hardware, software (e.g., in
execution), and/or firmware, or a combination thereof. For example, a component can be
a process running on a processor, an object, an executable, a program, a function, a library,
a subroutine, and/or a computer or a combination of software and hardware. By way of
illustration, both an application running on a server and the server can be a component.
One or more components can reside within a process and a component can be localized on
one computer and/or distributed between two or more computers.

[0020] Furthermore, the claimed subject matter may be implemented as a method,
apparatus, or article of manufacture using standard programming and/or engineering

techniques to produce software, firmware, hardware, or any combination thereof to control

a computer to implement the disclosed subject matter. The term “article of manufacture”

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

as used herein is intended to encompass a computer program accessible from any tangible,
computer-readable device, or media.

[0021] Computer-readable storage media can include but are not limited to magnetic
storage devices (e.g., hard disk, floppy disk, and magnetic strips, among others), optical
disks (e.g., compact disk (CD), and digital versatile disk (DVD), among others), smart
cards, and flash memory devices (e.g., card, stick, and key drive, among others). In
contrast, computer-readable media generally (i.c., not necessarily storage media) may
additionally include communication media such as transmission media for wireless signals
and the like.

[0022] Fig. 1 is a block diagram of an example of a computing system that predicts
software build errors. The computing system 100 may be, for example, a mobile phone,
laptop computer, desktop computer, or tablet computer, among others. The computing
system 100 may include a processor 102 that is adapted to execute stored instructions, as
well as a memory device 104 that stores instructions that are executable by the processor
102. The processor 102 can be a single core processor, a multi-core processor, a
computing cluster, or any number of other configurations. The memory device 104 can
include random access memory (e.g., SRAM, DRAM, zero capacitor RAM, SONOS,
¢DRAM, EDO RAM, DDR RAM, RRAM, PRAM, etc.), read only memory (e.g., Mask
ROM, PROM, EPROM, EEPROM, ¢tc.), flash memory, or any other suitable memory
systems. The instructions that are executed by the processor 102 may be used to predict
software build errors.

[0023] The processor 102 may be connected through a system bus 106 (e.g., PCI, ISA,
PCI-Express, HyperTransport®, NuBus, etc.) to an input/output (I/O) device interface 108
adapted to connect the computing system 100 to one or more 1/O devices 110. The I/O
devices 110 may include, for example, a keyboard, a gesture recognition input device, a
voice recognition device, and a pointing device, wherein the pointing device may include a
touchpad or a touchscreen, among others. The I/O devices 110 may be built-in components
of the computing system 100, or may be devices that are externally connected to the
computing system 100.

[0024] The processor 102 may also be linked through the system bus 106 to a display
interface 112 adapted to connect the computing system 100 to a display device 114. The
display device 114 may include a display screen that is a built-in component of the
computing system 100. The display device 114 may also include a computer monitor,

television, or projector, among others, that is externally connected to the computing

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

system 100. A network interface card (NIC) 116 may also be adapted to connect the
computing system 100 through the system bus 106 to a network (not depicted). The
network (not depicted) may be a wide area network (WAN), local area network (LAN), or
the Internet, among others.

[0025] The storage 118 can include a hard drive, an optical drive, a USB flash drive, an
array of drives, or any combinations thereof. The storage 118 may include a prediction
analysis module 120, a build break module 122, and an update module 124. The
prediction analysis module 120 can detect any number of changes to software code and
predict the likelihood the software code contains a software build error. The prediction
analysis module 120 can predict the likelihood of software code containing a software
build error by calculating the probability that each change to the software code may cause
a software build error. The build break module 122 can build the software and detect a
software build error. If the build break module 122 detects a software build error, the
build break module 122 may also detect the change to the software code that caused a
software build error. The build break module 122 can send the changes that cause
software build errors to the update module 124. The update module 124 can store
historical information for software code changes and corresponding build errors. The
update module 124 can provide the historical information to the prediction analysis
module 120, which allows the prediction analysis module 120 to calculate accurate
predictions of software build errors.

[0026] It is to be understood that the block diagram of Fig. 1 is not intended to indicate
that the computing system 100 is to include all of the components shown in Fig. 1.
Rather, the computing system 100 can include fewer or additional components not
illustrated in Fig. 1 (e.g., additional applications, additional memory devices, additional
network interfaces, etc.). For example, the computing system 100 may include a reporting
module that can report software build information to a user, an application, or another
hardware device, among others. Furthermore, any of the functionalities of the prediction
analysis module 120, build break module 122, or update module 124 may be partially, or
entirely, implemented in hardware and/or in the processor 102. For example, the
functionality may be implemented with an application specific integrated circuit, in logic
implemented in the processor 102, or in any other device.

[0027] Fig. 2 is a process flow diagram illustrating an example of a method for
predicting software build errors. The method 200 can be implemented with a computing

system, such as the computing system 100 of Fig. 1. The computing system 100 may also

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

include a prediction analysis module 120 that can predict software build errors based on
changes to software code and historical information of previous software code changes
and previous software build results.

[0028] At block 202, the prediction analysis module 120 detects changes in software
code. In one embodiment, the prediction analysis module 120 can detect the changes to
the software code by comparing the software code to a previous version of the software
code. For example, the prediction analysis module 120 may detect changes in two
different versions of software code by identifying differences in the software code. In
other embodiments, the prediction analysis module 120 may detect changes in software
code by identifying indicators in the software code that correspond with the changes to the
software code. For example, the prediction analysis module 120 may detect changes in
software code based on comments included in the software code that correspond with
changes in the software code.

[0029] At block 204, the prediction analysis module 120 identifies a change list for each
change to the software code. In some embodiments, the prediction analysis module 120
may include multiple changes in each change list. For example, a developer may change
several lines of software code, which the prediction analysis module 120 can include in
one change list. In other embodiments, the prediction analysis module 120 may identify a
change list for each developer or each work session. For example, the prediction analysis
module 120 may identify the changes made to software code from a particular developer
and store the changes in a change list. In other examples, the prediction analysis module
120 may identify each work session that includes changes to the software code and
identify a change list for each work day for each developer.

[0030] At block 206, the prediction analysis module 120 identifies a characteristic for
cach change list. A characteristic of the change list can include any information associated
with a change in software code. In some embodiments, the characteristic may include
information derived from the software code. For example, a characteristic of the change
list may include the number of modified software code files or the number of modified
lines of software code, among others. In some embodiments, the characteristic may also
include information derived from factors related to the change in software code. For
example, a characteristic of the change list may include a determination of the developer
that made the change to the software code, the projects affected by the change, a
determination of the computing system the developer used to compile the software code,

the number or names of individuals that reviewed the change to the software code (also

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

referred to herein as a review determination), the time the change was submitted (also
referred to herein as a time determination), complexity metrics related to the change in the
software code, and dependencies based on the changed software code , among others. The
complexity metrics can include the number of characters in a line of software code, the
number of nested loops surrounding the line of software code, or any other factors that
indicate the complexity of software code.

[0031] Additional examples of characteristics of the change list may include any activity
performed by other developers on source code files, or lines of source code files that have
been modified or are related to a given change list (referred to herein as an activity
determination). A characteristic of a change list may also include a representation of the
changes made by developers. For example, the changes made by developers may include
source code fragments that have been introduced, identifiers that have been referenced, or
any other descriptions of changes made to source code (referred to herein as a change
determination). Additional characteristics may also include the state of the source code
repository that a developer’s computing system was synced to when the software was built
on the developer’s computing system (also referred to herein as a developer build
determination), the tests that were executed on the developer’s computing system, and the
projects that were included as part of the software build. The prediction analysis module
120 can provide more accurate predictions by considering any number of characteristics
that correspond with a change list.

[0032] At block 208, the prediction analysis module 120 calculates a probability for
cach change in the software code. In some embodiments, the probability for each change
can represent the likelihood the change in the software code may result in a software build
error. The probability can be calculated using regression, such as logistic regression. For
example, the prediction analysis module 120 can generate a coefficient for each
characteristic related to a change list. The prediction analysis module 120 can determine
the coefficients based on historical data. For example, historical data may indicate that a
particular software developer has a 20 % probability of causing a software build error. In
this example, the prediction analysis module may assign a 20 % value as a coefficient to
the characteristic related to the software developer.

[0033] In some embodiments, the prediction analysis module 120 can combine the
probabilities of a software build error. For example, the prediction analysis module 120

may calculate the individual probabilities (P1, P2, ... PN) for each change list to cause a

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

software build error. The prediction analysis module 120 can combine the probabilities
with the Equation 1.

1 — (1-P1)(1-P2)...(1-PN) = P(Error) Eq(1)
[0034] In Equation 1, P1 through PN represent probabilities that a change list may cause
a software build error. The term P(Error) represents the likelihood that a software build
error may occur based on N changes to the software code.
[0035] In some embodiments the prediction analysis module 120 may aggregate the
characteristics of the individual change lists and calculate a combined probability of a
software build error for a plurality of change lists. For example, the prediction analysis
module 120 may detect the number of change lists in a software build. The prediction
analysis module 120 may also detect any suitable number of aggregate values associated
with the change lists. For example, three change lists may indicate that 100, 150, and 200
lines of source code have been changed. The number of changed lines of code may be
aggregated by summation into a combined number of changed lines of code, or 450
changed lines of code in the previous example. The software build may be assigned a
higher risk of causing a software build error if previous software builds with more than
400 changed lines of source code resulted in software build errors In other examples, the
prediction analysis module 120 may aggregate the characteristics of change lists by
detecting the aggregate maximum probability of a software build error, the aggregate
minimum probability of a software build error, the aggregate average probability of a
software build error, the aggregate median probability of a software build error, the
summation of probabilities of a software build error, aggregated percentiles of a software
build error, or the standard deviation of a probability of a software build error, among
others.
[0036] At block 210, the prediction analysis module 120 reports the probabilities that
cach change in software code may cause a software build error. In some embodiments, the
prediction analysis module 120 can report the probabilities for software build errors to
users, applications, or other hardware devices, among others. For example, the prediction
analysis module 120 may calculate the probability that a change to the software code may
result in a software build error is 20 %. In this example, the prediction analysis module
120 may report to a user the 20 % prediction of the likelihood the change may cause a
software build error. The process ends at block 212.
[0037] The process flow diagram of Fig. 2 is not intended to indicate that the steps of
the method 200 are to be executed in any particular order, or that all of the steps of the

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

method 200 are to be included in every case. In some examples, the changes in software
code may be detected incrementally. For example, the prediction analysis module 120
may generate a new change list for each change to software code and recalculate the
probabilities of a software build error. In other examples, the characteristics may vary as
additional changes to software code are detected. For example, the prediction analysis
module 120 may detect various characteristics, such as complexity metrics, or a change
determination, among others, for an integrated development environment. The prediction
analysis module 120 may then detect additional characteristics after a developer has
committed changes to software code. Further, any number of additional steps may be
included within the method 200, depending on the specific application. In some
embodiments, the prediction analysis module 120 may send the change lists to a build
break module 122, which can determine if a change to the software code causes a software
build error. The build break module 122 is discussed below in greater detail in relation to
Fig. 4. In other embodiments, the prediction analysis module 120 may send the change
lists to an update module 124. The update module 124 can update historical data
corresponding to change lists and software build errors. The update module 124 is
discussed below in greater detail in relation to Fig. 5.

[0038] Fig. 3 is a block diagram illustrating an example of a prediction analysis module
used to predict software build errors. The prediction analysis module 120 can be
implemented in a computing system, such as the computing system 100 of Fig. 1. In some
embodiments, the prediction analysis module 120 can include a feature extraction
component 302, a prediction generator 304, a trigger component 308, and a reporting
component 306. The components of the prediction analysis module 120 can identify and
analyze the likelihood of software build errors.

[0039] In some embodiments, the prediction analysis module 120 can accept any
suitable number of change lists as input. As discussed above, a change list can include
any appropriate number of changes to software code. The prediction analysis module 120
can send the change lists to a feature extraction component 302. The feature extraction
component 302 can determine any appropriate number of characteristics associated with a
change in software code. For example, the feature extraction component 302 may identify
characteristics associated with each change list. In some examples, the feature extraction
component 302 can identify characteristics such as the number of modified software code
files, the number of modified lines of software code, the developer that made the change to

the software code, the projects affected by the change, the computing system the developer

10

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

used to compile the software code, the number of individuals that reviewed the change to
the software code, the time the change was submitted, complexity metrics related to the
change in the software code, and dependencies based on the changed software code,
among others. The feature extraction component 302 can send the change list and the
corresponding characteristics to a prediction generator 304.

[0040] The prediction generator 304 can calculate probabilities for software build errors
based on the characteristics of the change lists. As discussed above in relation to Fig. 2,
the probabilities for software build errors can be calculated using a type of regression or
using machine learning models including but not limited to support vector machines,
Naive Bayes, or decision trees, among others. In some embodiments, the probabilities for
software build errors are calculated based on linear regression or on logistic regression. In
other embodiments, the probabilities can be combined to calculate a likelihood of a
software build error based on the combined probabilities for each change list causing a
software build error. In some embodiments, the prediction generator 304 can send the
probabilities of a software build error to a reporting component 306 and a trigger
component 308.

[0041] The reporting component 306 can provide feedback to a user, an application, or a
hardware device using any suitable number of methods. In some embodiments, the
feedback can include the probability that a change list may cause a software build error.
The reporting component 306 may provide feedback through a message sent to the display
device, a dialog box generated in IDE, an email notification, or a newsfeed, among others.
[0042] The trigger component 308 can initiate or request additional actions based on the
probability of a software build error. For example, the trigger component 308 may
provide feedback to developers through the reporting component 306. The feedback may
request additional review of software code that has a high probability of creating a
software build error. In some examples, the feedback can identify particular
characteristics of a change list and the corresponding probability of creating a software
build error. The feedback may recommend additional review of a particular change list, to
build additional projects before submitting the changes to source code, or to run additional
tests prior to submission, among others. In some embodiments, the trigger component 308
can also request additional check-in or quality logic gates during the build process. For
example, the trigger component 308 may include a build component 310 that compiles and
links software code to form machine executable applications. The trigger component 308

may instruct the build component 310 to include additional quality logic gates, which may

11

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

prevent a software build error. The additional quality logic gates may also assist in
determining the cause of a software build error.

[0043] In some embodiments, the trigger component 308 may also provide instructions
to the build component 310 that control a software build. For example, the trigger
component 308 may instruct the build component 310 to build software by grouping
change lists together that share a low-risk of creating a software build error. The trigger
component 308 can identify change lists that have a low-risk of causing a software build
error based on probabilities that each change list may cause a software build error. In
some embodiments, the trigger component 308 may also instruct the build component 310
to build high-risk change lists prior to building low-risk change lists. The trigger
component 308 can also identify change lists that have a high-risk of causing a software
build error based on probabilities that indicate a change list is likely to cause a software
build error. For example, the trigger component 308 may send high-risk change lists to
multiple computing systems, which can allow the high-risk change sets to be built in
parallel. The trigger component 308 may provide faster feedback to a reporting
component 306 regarding high-risk change lists when the high-risk change lists are built in
parallel.

[0044] In some embodiments, the trigger component 308 can also send the change list to
an update module 312 if the build component 310 does not return a software build error.
The update module 122 can store historical data regarding change lists and the success or
failure of software builds based on the change lists. In some embodiments, the trigger
component 308 may receive a single change list indicating that a single change list
incorporates the changes made to software code. The trigger component 308 may send the
results of the build to an update module 122 if the build succeeds or fails. The update
module 122 can then update the historical data to reflect whether the change list caused a
software build error. In other embodiments, the trigger component 308 can send the
change list to a build break module 122 when the build component 310 returns a software
build error. The build break module 122 can identify the change list that caused the
software build error and provide feedback to developers. The build break module 122 is
discussed in greater detail below in relation to Fig. 4.

[0045] It is to be understood that the block diagram of Fig. 3 is not intended to indicate
that the prediction analysis module 120 is to include all of the components shown in Fig.
3. Rather, the prediction analysis module 120 can include fewer or additional components

not illustrated in Fig. 3. For example, the prediction analysis module 120 may not include

12

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

a build component 310. Rather, the functionality of the build component 310 may be
implemented by a processor, or any other suitable hardware device.

[0046] Fig. 4 is a block diagram illustrating an example of a build break module used to
analyze software build errors. The build break module 122 can be implemented in a
computing system, such as the computing system 100 of Fig. 1. In some embodiments,
the build break module 122 can include a filter component 402, a prediction component
404, a validation component 406, a reporting component 408, and a version control
component 410. The components of the build break module 122 can analyze software
build errors.

[0047] The build break module 122 can accept any suitable number of changes to
software code and build logs produced by a build component. The build logs can include
information generated during the build process. For example, the build logs may include
information that indicates certain portions of the software code that did not produce a
software build error. In some embodiments, the filter component 402 can exclude any
changes to the software code that are known not to be responsible for the software build
error. For example, the filter component 402 may identify any changes included in
previous builds that did not result in a software build error. In other embodiments, the
filter component 402 may perform dynamic analysis based on historical data stored in an
update module 122. The filter component 402 can send a set of candidate change lists that
may have caused the software build error to the prediction component 404.

[0048] The prediction component 404 can detect the likelihood that a change list caused
the software build error. As discussed above in relation to Fig. 2, the probabilities for
software build errors can be calculated using any suitable type of regression, such as
logistic or linear regression. In some embodiments, the prediction component 404 can
calculate probabilities that each change list caused a software build error.

[0049] In some embodiments, the prediction component 404 can send the change lists
and the probabilities that cach change list caused a software build error to a validation
component 406. The validation component 406 can recreate the build with each change
list. In some embodiments, the validation component 406 may first select the change lists
with the highest probabilities of causing a software build error. The validation component
can recreate the software build and determine if the change list causes a software build
error. The validation component 406 may then select the change lists with the lower
probabilities of causing a software build error. In other embodiments, the validation

component 406 may use a binary search or delta debugging to determine the change lists

13

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

that cause a software build error. The validation component 406 can determine the change
lists that cause software build errors and send the change lists to the reporting component
408. The reporting component 408 can send the change lists and the software build errors
to a display device, a dialog box generated in IDE, an email notification, or a newsfeed,
among others.

[0050] The reporting component 408 can also send the change lists and the software
build errors to a version control component 410. The version control component 410 can
remove any modifications to the software code that results in a software build error. For
example, the version control component 410 can remove any changes to software code
that prevents the software code from being compiled and linked into a machine executable
application. The reporting component 408 can also send the change lists and the software
build errors to the update module 122, which is discussed below in greater detail in
relation to Fig. 5.

[0051] It is to be understood that the block diagram of Fig. 4 is not intended to indicate
that the build break module 122 is to include all of the components shown in Fig. 4.
Rather, the build break module 122 can include fewer or additional components not
illustrated in Fig. 4. For example, the build break module 122 may not include a
validation component 406. Rather, the functionality of the validation component 406 may
be implemented by a processor, or any other suitable hardware device.

[0052] Fig. 5 is a block diagram illustrating an example of an update module used to
update the prediction analysis module. The update module 124 can be implemented in a
computing system, such as the computing system 100 of Fig. 1. In some embodiments,
the update module 124 can include a feature extraction component 502, a historical
database 504, and an update predictor module 506.

[0053] In some embodiments, the update module 124 can detect change lists and build
outcomes associated with the change lists. The update module 124 can then use a feature
extraction component 502 to extract characteristics related to the change lists. For
example, the feature extraction component 502 may extract characteristics such as the
developer that made the change to the software code, the projects affected by the change,
the computing system the developer used to compile the software code, the number of
individuals that reviewed the change to the software code, or the time the change was
submitted, among others.

[0054] The feature extraction component 502 can send the change lists, build outcomes,

and characteristics to a historical database 504. The historical database 504 can store

14

10

15

20

25

30

WO 2014/031452 PCT/US2013/055226

change lists and characteristics of change lists in a table along with the build outcome. In
some embodiments, the historical database 504 can send data to the prediction analysis
module 120, which allows the prediction analysis module 120 to calculate accurate
probabilities of the likelihood a change list may cause a software build error. In other
embodiments, the historical database 504 can also send the change lists, the build
outcomes and the characteristics of change lists to an update predictor module 506. The
update predictor module 506 can train a prediction model based on historical data and
send the prediction model to the prediction analysis module 120 when the prediction
model has an accuracy above a threshold.

[0055] It is to be understood that the block diagram of Fig. 5 is not intended to indicate
that the update module 124 is to include all of the components shown in Fig. 5. Rather,
the update module 124 can include fewer or additional components not illustrated in Fig.
5. For example, the update module 124 may not include an update predictor module 506.
Rather, the functionality of the update predictor module 506 may be implemented by a
processor, or any other suitable hardware device.

[0056] Figure 6 is a block diagram showing a tangible, computer-readable storage media
600 that predicts software build errors. The tangible, computer-readable storage media 600
may be accessed by a processor 602 over a computer bus 604. Furthermore, the tangible,
computer-readable storage media 600 may include code to direct the processor 602 to
perform the steps of the current method.

[0057] The various software components discussed herein may be stored on the tangible,
computer-readable storage media 600, as indicated in Fig. 6. For example, the tangible
computer-readable storage media 600 can include a prediction analysis module 606, a
build break module 608, and an update module 610. The prediction analysis module 606
can detect any number of changes to software code and predict the likelihood the software
code contains a software build error. The build break module 608 can analyze software
build errors to determine the likelihood a change to software code has caused a build
break. The update module 610 can store historical information for software code changes
and corresponding software build errors. The update module 610 can provide the
historical information to the prediction analysis module 120, which allows the prediction
analysis module 120 to calculate accurate predictions regarding software build errors.
[0058] It is to be understood that any number of additional software components not

shown in Fig. 6 may be included within the tangible, computer-readable storage media 600,

15

WO 2014/031452 PCT/US2013/055226

depending on the specific application. Although the subject matter has been described in
language specific to structural features and/or methods, it is to be understood that the
subject matter defined in the appended claims is not necessarily limited to the specific
structural features or methods described above. Rather, the specific structural features and

methods described above are disclosed as example forms of implementing the claims.

16

WO 2014/031452 PCT/US2013/055226

CLAIMS

1. A method for predicting a software build error, comprising:

detecting a plurality of changes in software;

identifying a plurality of change lists, wherein a change list is identified for each of
the plurality of changes in the software;

identifying a characteristic for each change list in the plurality of change lists;

calculating a plurality of probabilities based at least in part on the characteristic of
cach of the plurality of change lists, wherein each of the probabilities indicates the
likelihood of one of the plurality of change lists creating the software build error; and

reporting the plurality of probabilities of the software build error.

2. The method of claim 1, comprising:

building the software;

detecting the software build error;

determining a change from the plurality of changes in the software that resulted in
the software build error; and

reporting the change that resulted in the software build error.

3. The method of claim 2, comprising updating a prediction generator used for
predicting the software build error based on the change that resulted in the software build

Crror.

4. The method of claim 2, comprising removing the change that resulted in the

software build error from the software.

5. The method of claim 1, wherein calculating the plurality of probabilities comprises
calculating a regression that indicates the likelihood that each of the plurality of

probabilities is to result in the software build error.

6. The method of claim 1, comprising:

identifying a plurality of high-risk change lists based on the plurality of
probabilities;

sending each of the plurality of high risk change lists to a separate computing
system with instructions to build the software based on the high-risk change list; and

detecting the high-risk change lists that cause the software build error.

17

WO 2014/031452 PCT/US2013/055226

7. A system for predicting a software build error, comprising:
a display device to display a plurality of probabilities;
a processor to execute processor executable code;
a storage device that stores processor executable code, wherein the processor
executable code, when executed by the processor, causes the processor to:
detect a plurality of changes in software;
identify a plurality of change lists, wherein a change list is identified for
cach of the plurality of changes in the software;
identify a characteristic for each change list in the plurality of change lists;
identifying a regression;
using the regression to calculate the plurality of probabilities based at least
in part on the characteristic of each of the plurality of change lists, wherein each of
the probabilities indicates the likelihood of one of the plurality of change lists
creating the software build error;
report the plurality of probabilities of the software build error; and

recommend an action to reduce the probability of the software build error.

8. The system of claim 7, wherein the plurality of characteristics comprise any
combination of a complexity metric, a software developer determination, a computing
system determination, a time determination, a review determination, an activity

determination, a developer build determination, and a change determination.

9. One or more computer-readable storage media comprising a plurality of
instructions that, when executed by a processor, cause the processor to:

detect a plurality of changes in software;

identify a plurality of change lists, wherein a change list is identified for each of
the plurality of changes in the software;

identify a characteristic for each change list in the plurality of change lists;

calculate a plurality of probabilities based at least in part on the characteristic of
cach of the plurality of change lists, wherein each of the probabilities indicates the
likelihood of one of the plurality of change lists creating the software build error;

report the plurality of probabilities of the software build error; and

recommend an action to reduce the probability of the software build error.

18

WO 2014/031452 PCT/US2013/055226

10. The one or more computer-readable storage media of claim 9, wherein the plurality
of instructions, when executed by the processor, cause the processor to:

build the software;

detect the software build error;

determine a change from the plurality of changes in the software that resulted in
the software build error; and

report the change that resulted in the software build error.

19

WO 2014/031452

PCT/US2013/055226
110 \
/O Devices '|
b L

- 108 4""/0 Device
rocessor Interface
102~ 106 112 ~
Display
Memory Interface
104~ 118
~ 118 NIC
Storage
120 — Prediction
Analysis
Module
122
™ Build Break
Module
124 —
\ Update
Module

FIG. 1

1/6

Display Device

114-/

WO 2014/031452 PCT/US2013/055226

202
/’

Detect Changes in Software Code

'

204
Identify a Change List for Each Change in /
Software Code

'

Identify a Characteristic for Each Change List

'

208
Calculate a Probability for Each Change in /
Software Code

'

Report the Probabilities

206
/‘

210
/‘

212
End

N
(@)

FIG. 2

2/6

PCT/US2013/055226

WO 2014/031452

€ 'Old

A
YOEQPaS4
> Jusuodwo)
Buioday
SO ~oLe \-90¢
eaig p|in
eeig pIng Jusuodwo) 206
zeL— piing [
Juswnedwo)
Jojelauss)
Rl o105 «—{ UOnNoBRINX] |e——
3|NPOJ Jusuodwo) uoRIpald .
ajepd IET
il . 0€ <
174" ~/ 80¢ |npoj sisAjeuy uonoipaid

/owr

3/6

PCT/US2013/055226

WO 2014/031452

¥ "Old

SINPOA
ajepdn

vel

~/

Jusuodwio)
|0JJUOT) UOISIOA
N
\NO#
Juauodwo) Jusuodwod Jusuodwon Juauodwo?)
bupioday | | uomepiep [~ | uonoperd [| sewd [|
80 - 90y < Oy <

9|NPON ea.g pling

KNNF

4/6

WO 2014/031452

124
\

PCT/US2013/055226

502
\

Update Module

506
\

Feature
—+—»| Extraction
Component

Update
Predictor
Module

504

Historical
Database

FIG. 5

5/6

WO 2014/031452 PCT/US2013/055226

— 606
Prediction Analysis Module|”™ |

602 ~

| 608
Processor Build Break Module ||

604 610
Update Module |

FIG. 6

6/6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055226
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/44 GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X T.L. GRAVES ET AL: "Predicting fault 1-10
incidence using software change history",
TEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
vol. 26, no. 7, 1 July 2000 (2000-07-01),
pages 653-661, XP055091237,

ISSN: 0098-5589, DOI: 10.1109/32.859533
abstract

1. Introduction;

page 1

1.1 Software Analysis fault;

page 1 - page 2

1.2 Product Measures

1.3 Process Measures;

page 2 - page 3

2 CHANGE MANAGEMENT DATA

6age 2 - page 3
3.1 Generalized Linear Models
3.2 Simulations to Assess Significance;

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered

to be of particular relevance the principle or theory underlying the invention

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "v* document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
17 December 2013 07/01/2014
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, . .
F:.x:((+31-7g) 340-3016 Eftimescu, Nicolae

Form PCT/ISAf210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055226

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

page 3 - page 4
4 RESULTS;
page 4 - page 7
5 SUMMARY;
page 7

ERIK ARISHOLM ET AL: "Predicting
fault-prone components in a java legacy
system",

PROCEEDINGS OF THE 2006 ACM/IEEE
INTERNATIONAL SYMPOSIUM ON INTERNATIONAL
SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING , ISESE '06,

1 January 2006 (2006-01-01), page 8,
XP055091193,

New York, New York, USA

DOI: 10.1145/1159733.1159738

ISBN: 978-1-59-593218-1
abstract

1. Introduction;
page 8
2. Methodology
2.1 Goal
.2 Fault-proneness factors
.3 Dependent and independent variables
.4 Assumptions and caveats
.5 Design of the study
.6 Data analysis;
age 9 - page 11
RESULTS

1 Principal Component Analysis
2 Univariate Analysis

3 Multivariate Analysis

4 Cost-Benefit Analysis;

ge 11 - page 14

a
. THREATS TO VALIDITY

2
2
2
2
2
p
3
3
3
3
3
p
4
page 14

5. RELATED WORK;
page 14 - page 15
6. CONCLUSIONS;
page 15 - page 16

1-10

Form PCT/ISA/210 (continuation of second sheet) [April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055226

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X MOSER R ET AL: "A comparative analysis of 1-10
the efficiency of change metrics and
static code attributes for defect
prediction",

SOFTWARE ENGINEERING, 2008. ICSE '08.
ACM/IEEE 30TH INTERNATIONAL CONFERENCE ON,
IEEE, PISCATAWAY, NJ, USA,

10 May 2008 (2008-05-10), pages 181-190,
XP031449073,

ISBN: 978-1-4244-4486-1

abstract

1. INTRODUCTION;

page 181 - page 182

2. RELATED WORK

page 182
3. CLASSIFICATION ACCURACY AND
COST-SENSITIVE CLASSIFICATION

3.1 Assessing Classification Accuracy
3.2 Cost-Sensitive Classification;
page 183 - page 184

4, DATA AND EXPERIMENTAL SET-UP;

page 184 - page 186

5. EXPERIMENTS

5.1 Standard Defect Prediction

5.2 Cost-Sensitive Defect Prediction ;
page 186 - page 188

6. LIMITATIONS

7. DISCUSSION AND CONCLUSIONS;

page 188 - page 189

A US 2009/089755 A1 (JOHNSON DARRIN P [US] 1-10
ET AL) 2 April 2009 (2009-04-02)
abstract
paragraph [0002]
paragraph [0024]
paragraph [0043]
paragraph [0068]
paragraph [0096]

paragraph [0017]
paragraph [0040]
paragraph [0066]
paragraph [0094]
paragraph [0112]

A LUCAS LAYMAN ET AL: "Iterative 1-10
identification of fault-prone binaries
using in-process metrics",

PROCEEDINGS OF THE SECOND ACM-IEEE
INTERNATIONAL SYMPOSIUM ON EMPIRICAL
SOFTWARE ENGINEERING AND MEASUREMENT, ESEM
'08,

1 January 2008 (2008-01-01), page 206,
XP055092376,

New York, New York, USA

DOI: 10.1145/1414004.1414038

ISBN: 978-1-59-593971-5

abstract

the whole document

Form PCT/ISA/210 (continuation of second sheet) [April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055226

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

HAMDI A AL-JAMIMI ET AL: "Efficient
prediction of software fault proneness
modules using support vector machines and
probabilistic neural networks",
SOFTWARE ENGINEERING (MYSEC), 2011 5TH
MALAYSIAN CONFERENCE IN, IEEE,

13 December 2011 (2011-12-13), pages
251-256, XP032102565,

DOI: 10.1109/MYSEC.2011.6140679

ISBN: 978-1-4577-1530-3

the whole document

1-10

Form PCT/ISA/210 (continuation of second sheet) [April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/055226
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009089755 Al 02-04-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

