（54）发明名称
锥形磨刀研磨机

（57）摘要
一种研磨咖啡的装置。所述装置包含：研磨器机构，研磨物释放区域，用于使用用户选择研磨好的用户控制器，用于显示表示用户输入到用户控制器的数据的显示元件，结合到用户控制器和显示元件的用于控制研磨器机构操作的处理器元件。根据用户喜好和控制输入，所述装置适于提供关于研磨粒度和分送剂量的精细控制，且显示器的图示表现了一系列咖啡研磨功能。
1. 一种研磨咖啡的装置，所述装置包含：
研磨器机构；
研磨物释放区域；
用于使用户选择研磨喜好的用户控制器；
用于显示表示用户输入到用户控制器的所述的显示单元；
耦合到用户控制器和显示单元的用于控制研磨器机构操作的处理器元件。
2. 根据上述任一项权利要求所述装置，所述装置适于根据用户对用户控制器的输入，分送给恰当量的研磨物。
3. 根据上述任一项权利要求所述装置，其中所述显示器有一些表现一系列研磨器功能的图示。
4. 根据上述任一项权利要求所述装置，所述装置还包括耦合到处理器元件的传感器元件，用于检测放置在咖啡研磨物释放区域的容器的存在。
5. 根据上述任一项权利要求所述装置，所述装置还包括耦合到处理器元件的传感器元件，用于检测放置在研磨物释放区域的容器的存在。
6. 根据上述任一项权利要求所述装置，其中所述咖啡研磨物释放区域适于容纳容器，该容器类型例如包括手柄、过滤器或贮藏罐的组。
7. 根据上述任一项权利要求所述装置，其中所述研磨物释放区域适于容纳托盘。
8. 根据上述任一项权利要求所述装置，其中所述处理器元件能够确定放置在研磨物释放区域中的容器类型，并且相应地调整所述显示元件。
9. 根据上述任一项权利要求所述装置，其中所述处理器元件能够确定研磨物释放区域中容器托盘的存在，并且相应地调整所述显示元件。
10. 根据上述任一项权利要求所述装置，其中所述研磨器机构能够调节从而提供关于研磨粒度的精确定位和所述显示元件适于提供关于研磨粒度和研磨物释放量的图形用户反馈。
11. 根据上述任一项权利要求所述装置，其中所述用户控制器能够使用户选择研磨喜好的研磨时间设置，所述研磨喜好的研磨时间设置至少一个或更多个：研磨量；研磨粒度，处理器元件。
12. 根据上述任一项权利要求所述装置，其中所述处理器元件询问一个或更多个查阅表以确定研磨时间设置。
13. 根据上述任一项权利要求所述装置，其中当选择浓咖啡研磨粒度时，研磨量以“盎”显示，或当选择滤镜或过滤器研磨粒度时，研磨量以“杯”显示。
14. 根据上述任一项权利要求所述装置，其中所述研磨器机构是机动磨刀研磨器。
15. 根据上述任一项权利要求所述装置，其中所述研磨器机构是包括机电驱动的下部磨刀和上部磨刀的机动磨刀研磨机；且上部磨刀支架能相对于下部磨刀轴向活动从而调整研磨粒度。
16. 根据权利要求15所述装置，其中从动齿轮具有内部孔，该内部孔具有与圆周位置于上部磨刀支架外表面的细牙螺纹啮合且协作的细牙螺纹；其中所述上部磨刀支架被限制从而不能旋转，并且因此不能根据从动齿轮的旋转向上或向下轴向平移，由此相对于上部磨刀移动下部磨刀以调整研磨粒度。
17. 根据权利要求 16 所述装置，其中所述从动齿轮还包括具有辐射状指向的齿轮齿的
外部齿圈，用于啮合驱动多圈电位器的小齿轮。该多圈电位器能够使处理器元件监测小齿
轮旋转的角度，小齿轮旋转的角度被转化为显示元件上可视的指示。

18. 根据上述任一项权利要求所述装置，所述处理器元件接收用户选择的剂量调整数
据，用于微调剂量的量。

19. 根据上述任一项权利要求所述装置，所述装置还包括送料斗，用于供送研磨物到研
磨器机构。

20. 一种研磨咖啡的装置，基本上如本文参考附图所描述的。
锥形磨刀研磨机

技术领域

[0001] 本发明涉及咖啡研磨机，更具体地说是涉及到电动的咖啡研磨机。

[0002] 本发明已经被开发主要作为具有电子显示的电动的咖啡研磨机，且下文将描述关于本发明的应用。然而，应该明白的是，本发明并不限于该特定领域的使用。

背景技术

[0003] 贯穿本说明书的现有技术的任何讨论绝不应该被认为是承认这种现有技术已广为人知，或其形成成本领域公知常识的一部分。

[0004] 许多类型的咖啡研磨机已为我们所知，咖啡饮用者对于不同的目的需要各种不同的研磨方法。按照研磨粒度的顺序，咖啡饮用者需要用于浓咖啡机、渗透壶 (percolator)、滴滤机 (drip filters machine) 和法压壶的研磨咖啡。传统地，浓咖啡机的手柄能容纳一或两剂研磨的咖啡，且适配其的机器将相应地分送一或两盎司咖啡。

[0005] 渗滤壶、滴滤机和法压壶的用户需要的新鲜研磨物的量为少至一杯到多至十二杯冲煮好的咖啡。一些用户喜欢他们新磨的咖啡分送到手柄 / 手柄过滤斗 (portafilter)。其他的用户喜欢他们新磨的咖啡分送到咖啡过滤器或贮藏容器内。因此，不同的用户，甚至在单一的家庭中需要多种的咖啡研磨方法，各种不同的用量，被分送至不同的容器中。

[0006] 本发明的实施例满足这些不同的需要。

[0007] 发明目的

[0008] 本发明的目的是克服或改善至少一项现有技术的缺点，或者提供有用的替换方案。

[0009] 本发明的目的是以一种优选的形式提供有显示器的多用咖啡研磨机，这种显示器适合于多用咖啡研磨机器。

[0010] 本发明的另一个目的是以一种优选的形式提供电动的咖啡研磨机，其能根据用户的喜好和控制输入分送恰当的剂量。

[0011] 本发明的另一个目的是以一种优选的形式提供具有表现一系列咖啡研磨功能的图示的显示器。

[0012] 本发明的另一个目的是以一种优选的形式提供咖啡研磨机，其可以检测手柄 / 手柄过滤斗的存在，并且相应地调整它的显示。

[0013] 本发明的另一个目的是以一种优选的形式提供电动的咖啡研磨机，其关于研磨粒度提供精细的控制，并有显示器，其可以提供关于研磨粒度和研磨的咖啡释放量的图形用户反馈。

发明内容

[0014] 根据本发明的一个方面，提供一种研磨咖啡的装置，所述装置包含：

[0015] 研磨器机构；

[0016] 研磨物释放区域；
用于使用户选择研磨喜好的用户控制器；
用于显示表示用户输入到用户控制器的数据的显示元件；
耦合到用户控制器和显示元件的用于控制研磨机机构操作的处理器元件。
优选地，所述装置适于根据用户对用户控制器的输入，分送给当前的研磨物。更优选地，所述显示器有一些表现一系列研磨器功能的图示。
优选地，所述装置还包括耦合到处理器元件的传感器元件，用于检测放在咖啡研磨物释放区域的容器的存在，更优选地，所述装置还包括耦合到处理器元件的传感器元件，用于检测放置在研磨物释放区域的托盘器的存在。
优选地，所述咖啡研磨物释放区域适于容纳容器，该容器类型选自包括手柄、过滤器或贮藏罐的组。更优选地，所述研磨物释放区域适于容纳托盘器。
优选地，所述处理器元件能够确定放置在研磨物释放区域中的容器类型，并且相应地调整所述显示元件。更优选地，所述处理器元件能够确定研磨物释放区域中托盘器的存在，并且相应地调整所述显示元件。
优选地，所述研磨机机构能够调节从而提供关于研磨器的精细控制；且所述显示器适于提供关于研磨器的精确定位和研磨物释放量的图形用户反馈。
优选地，所述用户控制器能够使用户选择研磨喜好并确定相应的研磨时间设置，所述研磨喜好包括下列任一个或更多个：研磨量；研磨器；处理器元件。
优选地，所述处理器元件询问一个或更多个查阅表以确定研磨时间设置。更优选地，处理器元件接收用户选择的剂量调整数据以便精细调整剂量的量。
优选地，当选择浓咖啡研磨器时，研磨量以“份／盎(shot)”显示，或当选择渗透壶或过滤器研磨器时，研磨量以“杯”显示。
优选地，所述研磨机机构是机动磨刀研磨机。更优选地，所述研磨机机构是包括电机驱动的下部磨刀和上部磨刀的机动磨刀研磨机，且上部磨刀支架能相对于下部磨刀轴向活动从而调整研磨器。从动齿轮优选具有内部孔，该内部孔具有与周缘轴向相对的上部磨刀支架外表面的细牙螺丝啮合且协作的细牙螺丝；并且其中所述上部磨刀支架被限制从而不能旋转，并且因此不能根据从动齿轮的旋转方向上或向下轴向平移，由此相对于上部磨刀移动下部磨刀以调整研磨器。所述从动齿轮优选还包括具有辐射状取向的齿轮齿的外部齿圈，用于啮合驱动多圈电位器的小齿轮，该多圈电位器能够使处理器元件监测小齿轮旋转的角度，小齿轮旋转的角度被转化为显示元件上可视的指示。
优选地，所述装置还包括原料箱，用于向研磨物到研磨器机构。
根据本发明的一个方面，提供有显示器的多用咖啡研磨机，这种显示器适于多用咖啡研磨机。
根据本发明的一个方面，提供电动的咖啡研磨机，其能根据用户的喜好和控制输入分送给恰当的用量。
根据本发明的一个方面，提供具有表现一系列咖啡研磨功能的图示的显示器。
根据本发明的一个方面，提供咖啡研磨机，其可以检测手柄的存在，并且相应地调整它的显示。
根据本发明的一个方面，提供咖啡研磨机，其可以检测手柄的存在，并且相应地调整它的显示。
附图说明
[0036] 为了本发明得以更好地理解，提供下列附图，其中：
[0037] 图1是具有电子显示器的机动的咖啡研磨机的透视图；
[0038] 图2是咖啡研磨机的电子显示器的示意图，所有显示图标被激活；
[0039] 图3(a)到3(d)是说明各种显示特性的电子显示器的示意图；
[0040] 图4是本发明的咖啡研磨机的透视图，也说明一些它的附件；
[0041] 图5是磨刀研磨外壳和释放滑槽的透视图；
[0042] 图6是说明显示器及其与微处理器储存的查阅表之间关系的示意图表；
[0043] 图7是咖啡研磨机的电子显示器的示意图，所有显示图标被激活；
[0044] 图8A到图8F是描绘研磨时间设置的例表。

具体实施方式
[0045] 如图1显示，电的，机动的咖啡研磨机1包括基座10和它的传送带11。基座10有凹槽或存放区域12，研磨的咖啡被分送至此处。该存放区域能容纳容器，例如手柄/手柄过滤斗(portafilter)、过滤器或者贮藏箱。基座10有头部13位于凹槽12上方。头部13前面的面板或表面14展示各种用户控制器，包括(将会做进一步解释)调节释放量的可旋转旋钮15，按钮，或者其他用户控制器，用来选择适当的预设释放量16，开始/取消按钮17，以及研磨粒度选择标度盘18。研磨粒度选择标度盘机械地控制研磨机上部磨刀的竖直移动。上部磨刀和下部磨刀之间的间距确定研磨粒度。通过导致许多箭头图标中的出现在研磨粒度指示线21下面的合适的位置上，标度盘18也控制显示器20的外观(见图2)。预设量按钮16允许用户选择释放的咖啡研磨物的量。按下这个按钮导致数值显示器部分33以离散增量改变。各个显示的数值代表各种研磨类型的研磨时间。研磨时间和研磨类型和将要解释的查阅表一致的释放量相关，这些将会进一步解释。凹槽12的后表面有耦合到电气开关上部的按钮19，该电气开关关联有手柄存在时被激活。前面的面板14也展示电子显示器20。

[0046] 如图2显示，微处理器驱动的电子显示器20适应显示各种用户选择的选择项和关于研磨机状态的警报信息。在这个例子中，显示器20的上部包括具有指示标记23的研磨粒度指示线21。如图2所建议的，该指示线代表一系列研磨粒度，其范围从最细的研磨物22(可用做精良的浓咖啡)，并以恰当的步骤增加至指示标记23，其表示最粗的研磨物，可以在法压壶或法式滤压壶中使用。出现在显示器上的精确的用语是必需的。在这两个极端之间的一系列竖直的指示标记，表示在浓咖啡机中使用的“正常”研磨物24，可以在咖啡简单滤压壶中使用的中等研磨物25以及可以在过滤器咖啡机或法压壶或滤压壶装置中使用的粗研磨物26。指示线的方向性不是必需的，只要一末端代表最粗，另一末端代表最细。各个单词27出现在指示线的上方或毗邻指示线，以提供给用户关于选择的研磨物的附加反馈。在指示线的下面是许多箭头图标28，在数量上与指示标记23数目相等。在任何时候，仅仅只显示箭头28。这个箭头对应于用户使用旋转旋钮18选择的研磨粒度。单词“细的”出现在指示线下面的左手边，且单词“粗的”出现在指示线下面的右手边。另一图示的元件29说明
通过使用量调节控制15精细调节选择的用量（按照用户输入）。在这个例子中，图示的元件29包括相应于标称上的运送的咖啡剂量的中间部分30，以及与中间线30任一边的图示的元件31、32，其表明用户削减的程度或者要求的每剂量或多或少的释放量。显示器也包括两个数值符号33，优选地位于显示器20的中间。这些数值表明用户使用预设选择按钮16要求的量或杯的数目。字符“shot”（或）或“shots”和“cup”（或）或“cups”出现在数字33的旁边。根据用户到微处理器的输入，显示正确的字符。显示器也适于提供关于故障的信息，比如咖啡运送途径34的堵塞，移除手柄握住的承托器的需要（因为其不适合于提供的研磨或方式35），以及表明因为热敏元件检测到过热的情况36，通过微处理器使装置的操作暂时停止。显示器的一部分还表明当加咖啡豆的送斗没有被固定在基座上的时候，以及需要将其固定在基座上以便基座操作37。

[0047] 图2中显示的指示线和移动的箭头提供关于粗调节旋钮18操作的重要用户反馈。为了获得研磨机上部磨刀位置的精细的机械控制，旋钮18的机械动作要适当减慢。以这种方式，需要花费好几次旋转以达到上部磨刀实际上非常小的竖直运动。旋钮18的宽运动范围通过多圈电位器感应到旋钮18的旋转运动被转化为相对小的线性显示。在这个例子中，使用了十圈电位器，且电位器施加的电阻被微处理器感应到。微处理器解释电位器的作用，并将异化装置为线性刻度上可视的描述，即相对于研磨指示线21的箭头38的相对位置。

[0048] 如图3 (a)到图3 (d)显示，研磨调节旋钮18的旋转引起图示的显示器20上发生改变。参照图3 (a)箭头图标39在指示线21的浓咖啡范围的粗端，中间的数值图标33表明用户选择10剂量。因为选择的研磨是浓咖啡研磨，所以“单位”显示器40指示“shots”（以复数形式）。

[0049] 如图3 (b)显示，箭头图标39表明用户选择浓咖啡研磨，但是在这个例子中，要求的剂量是“一”33。因此，微处理器引起“单位”显示器40显示“shot”而不是“shots”。

[0050] 参照图3 (c)和3 (d)这些显示表明从滤壶研磨延伸到最粗研磨的范围内的剂量显示。在这一研磨的范围内，当单元显示器33是2或更多时，“单位”显示器40为“cups”41。如图3 (d) 所见，当单元33是1时，“单位”显示器41显示“cup”。因此，要求“shots”（多壶）浓咖啡的浓咖啡饮用者的需要得到满足，同样更习惯于要求一杯或多杯咖啡的浓咖啡饮用者的需要也得到满足。

[0051] 如图4显示，凹槽或释放区域12适于容纳两个不同的手柄承托器42、43中的任何一个，其是作为本发明研磨机的附件提供的。一个承托器42适于容纳尺寸50mm和54mm的手柄，另一承托器43适于容纳尺寸58mm的手柄。不同之处在于各自的连接件(44)和手持平台45之间的距离，以及支持臂之间的距离。两个承托器都装备有钢的目标螺丝钉，板或固定装置46，其适于通过位于凹槽12后壁的磁体47定位在位置上且被保持着。当微开关48被滑开，承托器42、43的任一个正确地固定到研磨机上。微开关的启动是通过微处理器解释的，并导致显示器以及研磨机功能的改变。当通过微处理器由于微开关的启动检测到承托器，数值显示器33将只会显示一盎司或两盎的图标。这是因为选项就只是一盎或两盎手柄。用户能够使用现有的开关16在一盎或两盎之间选择。当存在承托器时，微处理器将不允许研磨机运行超过两盎。

[0052] 凹槽12也适于容纳可移除的滴水盘50。滴水盘优选是无缝的注射铸造成件，其包含半圆或其它形状的防溅区域51，其有平滑分界面到底面区域52。所述底面52平滑地转变
过渡到龙头 53 上。滴水盘 50 适于容纳有盖子 55 的贮藏罐 54。所述盖子 55 特征为有可移除的聚合塞子或舌片 56。其允许甚至当整个盖子 57 在适当位置时，贮藏罐能够装载。该滴水盘有位于后表面的触目标 58，通过位于凹槽 12 后壁的第二个磁体 59 保持在。在优选的实施例中，盖子 57 是铁磁的，因此当容器完全装满时，能够通过上部磁体 47 临时保持住。当容器装满时，容器 54 的圆柱表面和测水器 51 之间相对紧密的配合机械地稳固了容器。

[0053] 在实施例中，当贮藏罐位于适当位置，且研磨机处于确认没有啮合手柄的状态下，研磨机被适于运送多料。特定的标称的研磨的容的量/数可以由用户输入，或者可以进行手动研磨停止。

[0054] 如图 5 所示，手动的磨刀研磨机 60 包括电机驱动的下部磨刀 61 和上部磨刀 62。在这个例子中，手动的研磨粒子的调节旋钮 18 是可旋转的。变速箱进而旋转传动齿轮 64，其作用于齿轮 65 上，这些齿在自或从动齿轮 66 的主要开口处围绕形成。从动齿轮 66 有内部孔，该内部空具有与细牙螺纹 68 螺合及协作的细牙螺纹 67，细牙螺纹 68 位于上部磨刀架或者支架 69 外表面。旋转旋钮 18 能够对从动齿轮 66 的旋转控制产生非常微小的影响。从动齿轮通过与外壳 70 为一体化的凸块 71，在研磨外壳 70 上保持旋转移动。每个凸块有齿 72，其与主齿轮 66 周期且内部的齿轮 73 螺合。因此主齿轮 66 能够旋转但不能轴向平移。然而，上部磨刀支架 69 不能旋转，从而根据主齿轮 66 的旋转要么向上要么向下地平移。在这个例子中，支架 69 有一对平行方向的斜夹 74，其与在导向齿轮上形成的网状部件 75 螺合，导向齿轮是研磨机外壳的一部分且围绕着下部磨刀 61。上部磨刀支架 69 和上部磨刀 62 通过凸和凹卡口元件 77、78 可拆卸地相互连接，其允许上部磨刀 62 旋转一圈的一部分，例如，三分之一圈，从而从支架 69 上移除或重新插入支架 69 中。通常“U”型把手 79 与从上部磨刀的上表面突出的一对耳状物 80 协作。因此，不论上部磨刀支架在什么位置，上部磨刀自身能够轻易地移除或重新插入，而没有改变其与下部磨刀 61 的间隔。支架 69 还包括上部垂直方向的轴轮 81，用来接收上部磨刀的顶部凸缘 82。支架 69 也包括具有外部细螺纹 68 的中间部分，以及直径减小的 83 的下部部件，其包括斜夹 74 以及用于啮合研磨机外壳的下部导向轴。

[0055] 主或从动齿轮 66 还包括具有辐射状方向的齿轮齿 85 的外部齿轮圈 84。连续的齿圈是通过齿 85 螺合小齿轮 86 形成的，小齿轮驱动十圈电位器 87。电位器 88 的输出被研磨机的微处理器监测到，且小齿轮 86 旋转的角度被转变为显示器 20 可视的指示，其表示研磨粒子，因而直接表示下部磨刀 61 和上部磨刀 62 之间的竖直间隙。小齿轮 86 也能耦合到监测主齿轮 66 旋转程度的其他形式上，包括用于提供研磨粒子相似指示的齿轮机构。

[0056] 图 6 说明研磨机的微处理器具体如何确定一种给定研磨粒子的研磨时间。具体的，用户能够通过使用释放量调节旋钮 15 增加或减少释放量以调节冲煮的强度。如图 6 建议，研磨指示线被分解成多个范围（在这个例子中有四个）：浓咖啡范围 90，冲洗壶范围 91，过滤器咖啡范围 92 以及法压壶范围 93。每个范围与储存在研磨机微处理器中的查阅表 94 相关联。图 6 中的该查阅表 94 用图表表示了相应于浓咖啡范围 90。该查阅表包含储存的时间值 95，其对应于给定的用户要求剂量 96 和给定的用户选择剂量调节值 97。在图 6 中，该查阅表包含 12 栏，每一栏相应于特定的用户要求剂量。如前所述，用户要求剂量 98 在显示器 20 的中间描述。在该例子中，用户要求三盎司浓咖啡。该查阅表为每一要求
剂量储存了十一种不同的值。这些值在图6中以列的形式显示。在特定栏中的这十一种存储值的每一个都相应于该列的研磨时间的调节。在这个例子中，标称研磨时间在第6行99给出。从而可以看出三盘咖啡豆的标称的研磨时间时18秒。然而，在这个例子中，用户选择了最大的强度，相应于第11行97。这导致研磨时间为20.5秒95。

[0057] 参照图7，应该明白的是显示器200（最初在图2中显示）的外观能够包含可选的形式。

[0058] 参照图8A到图8F，说明研磨时间的六个独立的矩阵表（310,320,330,340,350,360）可以通过该装置保持。在这个实施例中：

[0059] 矩阵表（310,320）相应于用于分送到承托器中的热咖啡研磨物的研磨时间范围；
[0060] 矩阵表（330）相应于用于分送到贮藏箱中的热咖啡研磨物的研磨时间范围；
[0061] 矩阵表（340）相应于用于分送到的滤壶咖啡研磨物的研磨时间范围；
[0062] 矩阵表（350）相应于用于分送到的过滤器咖啡研磨物的研磨时间范围；
[0063] 矩阵表（360）相应于用于分送到滤壶中的法压壶咖啡研磨物的研磨时间范围；
[0064] 应该明白的是咖啡研磨装置能够包含表示一个或多个矩阵表的数据。例如，两个矩阵表能相应于在现有单元中分送热咖啡研磨物的范围，一个矩阵表相应于分送热咖啡研磨物到贮存罐，单壁，双壁，滤器，过滤器和法压壶中的范围。对于每一种咖啡研磨范围有独立的矩阵表，且应该明白的是更多或更少的矩阵表能够收录在研磨装置中。

[0065] 应该明白的是说明的咖啡研磨机是下列任一种或者是更多：

[0066] 一种具有适合于多用咖啡研磨机的显示器的通用咖啡研磨机；和/或
[0067] 一种可以根据需要输入的量的电动咖啡研磨机；和/或
[0068] 一种提供显示的图示的显示器；和/或
[0069] 一种提供关于研磨料的精制控制，并具有能提供关于研磨料和研磨物咖啡释放量的图形用户反馈的显示器的电动咖啡研磨机。

[0070] 一种提供关于研磨料的精制控制，并具有能提供关于研磨料和研磨物咖啡释放量的图形用户反馈的显示器的电动咖啡研磨机。

[0071] 虽然本发明通过参考具体的例子得以描述，但是本领域技术人员要明白的是本发明可以以许多其他形式体现。

[0072] 本说明书中提到的“一个实施例”或“实施例”意味着描述的与该实施例有关的特别的特征、结构或特性被包括在本发明的至少一个实施例中。从而，在本说明书各个地方出现的词组“在一个实施例中”或“在实施例中”不是必须指同一种的实施例。此外，本公开中一个或更多实施例中特定特征、结构或特性可以以任何合适方式组合，这对本领域技术人员是显然的。

[0073] 在权利要求和说明书中，"包括"、"含有"或"其包括"中任一术语是开放术语，意味着包括至少下列的元件／特征，但不排除其他的。从而，当其在权利要求中使用时，术语"包括"，不应该被解释为限制于其后所列的构件或元件或步骤。例如，表述“装置包括A和B”的范围不应该限制为该装置只由元件A和B组成。这里使用的“包含”或“其包含”中任一术语是开放术语，其意味着包含至少下列的元件／特征，但不排除其他的。从而，包含和包括是同义的。

[0074] 类似地，应该注意的是术语概括，当其用在权利要求中时，不应该被解释为只限制于直接的连接。术语“概括”和“连接”，连同它们的衍生词可以被使用。应该理解的是这些
术语不是有意的作为彼此的同义词。因此，表述“装置A耦合到装置B”的范围不应该被限制于其中装置A的输出端直接连接到装置B的输入端的装置或系统。这意味着A的输出端和B的输入端之间存在通道，其可以是包括其他装置或构件的通道。“耦合”可以意味着两个或更多元件要么是直接的物理接触，要么两个或更多元件不是直接彼此接触，但是仍然彼此协作或相互作用。

除非另有说明，这里使用的顺序形容词“第一”、“第二”、“第三”等来描述共同的对象，仅仅表示提到类似对象的不同实例，不是有意暗示这个描述的对象在时间上，空间上，次序上，或者任何形式方面必须以给定的顺序。

除非另有说明，这里使用的术语“水平的”、“竖直的”、“左边的”、“右边的”、“向上的”和“向下的”，以及其形容词和副词衍生词（例如，“水平地”、“向右地”、“向上地”等），仅仅涉及面向读者的特定附图中所示结构的取向，或者正常使用时合适的结构取向。类似地，术语“向内地”和“向外地”通常适当地指相对于它的长轴，或旋转轴的表面的方向。

类似地，应当明白，为了达到使本公开流畅或辅助理解各种创造性方面中的一个或更多个的目的，对本发明的示例性实施例，本发明的各种特征的上述描述有时组合在单个实施例、附图或对称的描述中。然而，本公开的方法不能解释为反映如下意图，即要求保护的发明需要考虑在哪个权利要求中清楚地叙述的更多特征。相反地，如下的权利要求反映创造性方面在于少于单个公开实施例的所有特征。从而，所附权利要求因此在此明确并入具体实施方式中，且每个权利要求本身作为本发明的一个单独的实施例。

此外，虽然这里描述的许多实施例包括一些特征但不包括被包括在其他实施例中的其他特征，但是不同实施例的特征的结合在本发明的范围内，且形成不同的实施例，这些会被该领域其他人所理解。例如，在所附权利要求中，任一要求包括的实施例能以任何组合方式使用。

此外，一些实施例在这里描述为方法或方法的元素组合，其能通过计算机系统的处理器或者通过执行功能的其他装置实现。因此，为了执行这种方法或方法的元素，具有必要的指示的处理器形成了执行该方法或方法的元素的装置。此外，这里所述设备实施例中的元件是用于执行以下功能的装置的示例，该功能由该元件为了实现本发明而执行。

这里提供的描述，提出来众多具体的细节。然而，应该理解的是本发明的实施例可以没有这些具体的细节实行。在其他的实施例中，已为人熟知的方法，结构和技术没有详细地显示，目的是为了避免使该描述的意思难以理解。

因此，虽然已经描述了本发明优选的实施例，但是本领域技术人员将看出在没有偏离本发明的精神下，此外还可做出其他的和进一步的更改，且意图要求将所有这些改变和更改保持在本发明的范围之内。例如，上述方案仅仅代表可能被使用的程序。功能性可以加入或从方框中删除，且操作可以在功能块之间交换。一些步骤可以加入在本发明范围内描述的方法或从其删除。

应该明白的是本发明的实施例本质上是由这里公开的特征组成。可替换的是，本发明的实施例是由这里公开的特征组成。其中示例性适当公开的本发明可以在缺乏在此没有明确地公开的任何元件时实行。
图 3B

图 3C
图 7
<table>
<thead>
<tr>
<th>单位(s)</th>
<th>列量选择</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图8A

图8B

图8C

图8D
### 图8D

<table>
<thead>
<tr>
<th>过滤器单位 (s)</th>
<th>剂量选择</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>-5</td>
<td>nnn</td>
</tr>
<tr>
<td>-4</td>
<td>nnn</td>
</tr>
<tr>
<td>-3</td>
<td>nnn</td>
</tr>
<tr>
<td>-2</td>
<td>nnn</td>
</tr>
<tr>
<td>-1</td>
<td>nnn</td>
</tr>
<tr>
<td>0</td>
<td>nnn</td>
</tr>
<tr>
<td>+1</td>
<td>nnn</td>
</tr>
<tr>
<td>+2</td>
<td>nnn</td>
</tr>
<tr>
<td>+3</td>
<td>nnn</td>
</tr>
<tr>
<td>+4</td>
<td>nnn</td>
</tr>
<tr>
<td>+5</td>
<td>nnn</td>
</tr>
<tr>
<td>平均速度</td>
<td>nnn</td>
</tr>
</tbody>
</table>

### 图8E
<table>
<thead>
<tr>
<th>压力调整</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>nn.n</td>
</tr>
<tr>
<td>-4</td>
<td>nn.n</td>
</tr>
<tr>
<td>-3</td>
<td>nn.n</td>
</tr>
<tr>
<td>-2</td>
<td>nn.n</td>
</tr>
<tr>
<td>-1</td>
<td>nn.n</td>
</tr>
<tr>
<td>0</td>
<td>nn.n</td>
</tr>
<tr>
<td>+1</td>
<td>nn.n</td>
</tr>
<tr>
<td>+2</td>
<td>nn.n</td>
</tr>
<tr>
<td>+3</td>
<td>nn.n</td>
</tr>
<tr>
<td>+4</td>
<td>nn.n</td>
</tr>
<tr>
<td>+5</td>
<td>nn.n</td>
</tr>
</tbody>
</table>

平均速度 nn.n nn.n

图 8F