发明名称 促红细胞生成素与聚乙二醇的偶联物

摘要

本发明公开了促红细胞生成素糖蛋白偶联物，所述偶联物包括具有至少一个自由氨基的促红细胞生成素糖蛋白，并且所述促红细胞生成素糖蛋白具有引起骨髓细胞网织红细胞和红细胞的产量的体内生物学活性。所述促红细胞生成素糖蛋白选自人促红细胞生成素和具有通过加入 1 至 6 个糖基化位点或者通过至少一个糖基化位点重排而修饰的人促红细胞生成素的一级结构的其类似物；所述糖蛋白共价连接 1 至 3 个低级烷氧基聚(乙二醇)基团，每个聚(乙二醇)基团通过式 -C(O)-X-S-Y- 的连接基团与糖蛋白共价连接，该连接基团的 C(O) 与所述氨基中的一个形成酰胺键，其中 X 和 Y 如在说明书和权利要求书中的定义，每个聚(乙二醇)部分的平均分子量是大约 20 千道尔顿至大约 40 千道尔顿，偶联物的分子量是大约 51 千道尔顿至大约 175 千道尔顿。
1. 一种偶联物，所述偶联物包括具有至少一个自由氨基的促红细胞生成素糖蛋白，并且所述促红细胞生成素糖蛋白具有引起骨髓细胞提高网织红细胞和红细胞产量的体内生物学活性，所述促红细胞生成素糖蛋白选自人促红细胞生成素和具有通过加入 1-6 个糖基化位点或者通过至少一个糖基化位点的重排而修饰的人促红细胞生成素的一级结构的类似物；所述糖蛋白共价连接 1 至 3 个低级烷氧基聚(乙二醇)基团，每个聚(乙二醇)基团通过式-C(O)-X-S-Y-的连接基团与糖蛋白共价连接，该连接基团的 C(O) 与所述氨基中的一个形成酰胺键，

\[X = -(CH_2)_k-, \]
\[k = 1 \text{ 至 } 10, \]
\[Y = \]

每个聚(乙二醇)部分的平均分子量是大约 20 千道尔顿至大约 40 千道尔顿，偶联物的分子量是大约 51 千道尔顿至大约 175 千道尔顿。

2. 根据权利要求 1 的偶联物，具有下式结构:

\[P-[NH-CO-X-S-Y-(OCH_2CH_2)_m-OR]_n \]

其中 X 和 Y 如权利要求 1 定义，m 是 450-900, n 是 1-3, R 是低级烷基, P 是缺少能与 X 形成酰胺键的一个或多个氨基的促红细胞生成素糖蛋白。

3. 根据权利要求 1 或 2 的偶联物，具有下式结构:
其中 P, R, X, m 和 n 如权利要求 2 定义。

4. 根据权利要求 1 或 2 的偶联物，具有下式

```
[\text{结构式}]
```

其中 P, R, X, m 和 n 如权利要求 2 定义。

5. 根据权利要求 1 或 2 的偶联物，其中 k 是 1-4。

6. 根据权利要求 1 或 2 的偶联物，其中 X 是-CH₂⁻。

7. 权利要求 1 或 2 的偶联物，其中 m 是 550-800 的整数。

8. 权利要求 7 的偶联物，其中 m 是 650-700 的整数。

9. 权利要求 1 或 2 的偶联物，其中 n 是 1。

10. 权利要求 1 或 2 的偶联物，其中 R 是甲基。

11. 根据权利要求 1 或 2 的偶联物，其中每个聚(乙二醇)部分的平均分子量是大约 24 千道尔顿至大约 35 千道尔顿。

12. 根据权利要求 11 的偶联物，其中每个聚(乙二醇)部分的平均分子量是大约 30 千道尔顿。

13. 根据权利要求 1 或 2 的偶联物，其中糖蛋白与一个或两个低级烷基封端的聚(乙二醇)部分共价连接。

14. 根据权利要求 1 或 2 的偶联物，其中聚(乙二醇)部分由甲氧基封端。

15. 权利要求 1 或 2 的偶联物，其中 X 是-CH₂⁻，m 是 650-700 的整数，n 是 1，R 是甲基，并且其中每个聚(乙二醇)部分的平均分子量是大约 30 千道尔顿。

16. 根据权利要求 1 或 2 的偶联物，其中促红细胞生成素糖蛋白是人促红细胞生成素。

17. 根据权利要求 1 或 2 的偶联物，其中促红细胞生成素糖蛋白通过内源基因激活表达。

18. 根据权利要求 1 或 2 的偶联物，其中促红细胞生成素糖蛋白具有 SEQ ID NO: 1 或 SEQ ID NO: 2 列出的序列。
19. 权利要求18的偶联物，其中促红细胞生成素糖蛋白具有图1(SEQ ID NO: 1)列出的序列。

20. 根据权利要求1或2的偶联物，其中糖蛋白具有通过加入1-6个糖基化位点而修饰的人促红细胞生成素的序列。

21. 根据权利要求1或2的偶联物，其中糖蛋白具有通过选自下面的修饰而进行修饰的人促红细胞生成素的序列:

\[\text{Asn}^{30}\text{Thr}^{32}; \]
\[\text{Asn}^{51}\text{Thr}^{53}; \]
\[\text{Asn}^{57}\text{Thr}^{59}; \]
\[\text{Asn}^{69}; \]
\[\text{Asn}^{69}\text{Thr}^{71}; \]
\[\text{Ser}^{68}\text{Asn}^{69}\text{Thr}^{71}; \]
\[\text{Val}^{87}\text{Asn}^{88}\text{Thr}^{90}; \]
\[\text{Ser}^{87}\text{Asn}^{88}\text{Thr}^{90}; \]
\[\text{Ser}^{87}\text{Asn}^{88}\text{Gly}^{89}\text{Thr}^{90}; \]
\[\text{Ser}^{87}\text{Asn}^{88}\text{Thr}^{90}\text{Thr}^{92}; \]
\[\text{Ser}^{87}\text{Asn}^{88}\text{Thr}^{90}\text{Ala}^{162}; \]
\[\text{Asn}^{69}\text{Thr}^{71}\text{Ser}^{87}\text{Asn}^{88}\text{Thr}^{90}; \]
\[\text{Asn}^{30}\text{Thr}^{32}\text{Val}^{87}\text{Asn}^{88}\text{Thr}^{90}; \]
\[\text{Asn}^{89}\text{Ile}^{90}\text{Thr}^{91}; \]
\[\text{Ser}^{87}\text{Asn}^{89}\text{Ile}^{90}\text{Thr}^{91}; \]
\[\text{Asn}^{136}\text{Thr}^{138}; \]
\[\text{Asn}^{138}\text{Thr}^{140}; \]
\[\text{Thr}^{125}; \]
\[\text{Pro}^{124}\text{Thr}^{125}. \]

22. 根据权利要求1或2的偶联物，其中糖蛋白具有包括人促红细胞生成素的序列和处于人促红细胞生成素的序列的羧基末端的第二序列的序列，其中所述第二序列包含至少一个糖基化位点。

23. 根据权利要求22的偶联物，其中所述第二序列包括从人绒毛膜促性腺激素的羧基末端序列衍生的序列。
24. 权利要求 23 的偶联物，其中糖蛋白具有选自下面的序列：
(a) 具有从羧基末端延伸的如 SEQ ID NO: 3 所示的氨基酸序列 Ser
Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Pro Arg Leu Pro Gly Pro
Ser Asp Thr Pro Ile Leu Pro Gln 的人促红细胞生成素；
(b) Ser^{87}Asn^{88}Thr^{90} 修饰的 (a) 中的序列；和
(c) Asn^{10}Thr^{32}Val^{87}Asn^{88}Thr^{90} 修饰的 (a) 中的序列。

25. 根据权利要求 1 或 2 的偶联物，其中糖蛋白具有通过至少一个
糖基化位点重排而修饰的人促红细胞生成素的序列。

26. 根据权利要求 24 的偶联物，其中重排包括人促红细胞生成素
中任何 N-连接的糖基位点的缺失和人促红细胞生成素的序列的 88 位处
N-连接的糖基位点的加入。

27. 权利要求 13 的偶联物，其中糖蛋白具有通过选自下面的修饰
而修饰的人促红细胞生成素的序列：
Gln^{24}Ser^{87}Asn^{88}Thr^{90} EPO；
Gln^{38}Ser^{87}Asn^{88}Thr^{90} EPO；和
Gln^{83}Ser^{87}Asn^{88}Thr^{90} EPO。

28. 一种含有偶联物的组合物，所述偶联物的每一种包括具有至少
一个自由氨基的促红细胞生成素糖蛋白，并且所述促红细胞生成素糖蛋
白具有引起骨髓细胞提高网织红细胞和红细胞的产量的体内生物学活性，
所述促红细胞生成素糖蛋白选自人促红细胞生成素和具有通过加入 1-6
个糖基化位点或者通过至少一个糖基化位点的重排而修饰的人促红细胞
生成素的一级结构的其类似物；所述糖蛋白共价连接 1 至 3 个低级烷氧
基聚(乙二醇)基团，每个聚(乙二醇)基团通过式-C(O)-X-S-Y-的连接基团
与糖蛋白共价连接，该连接基团的 C(O) 与所述氨基中的一个形成酰胺键，

X 是 -(CH_{2})_{k} -，
k 是 1 至 10，
Y 是
每个聚(乙二醇)部分的平均分子量是大约20千道尔顿至大约40千道尔顿，偶联物的分子量是大约51千道尔顿至大约175千道尔顿；其中n是1的偶联物的百分比至少是90%。

29. 含有任一项权利要求1-27定义的偶联物的组合物，其中n是1的偶联物的百分比至少是90%。

30. 根据权利要求28或29的组合物，其中n是1的偶联物的百分比至少是92%。

31. 权利要求30的组合物，其中n是1的偶联物的百分比至少是96%。

32. 权利要求28的组合物，其中n是1的偶联物的百分比是90%-96%。

33. 含有根据任一项权利要求1-32的偶联物或组合物和药学可接受的赋形剂的药物组合物。

34. 根据任一项权利要求1-32的偶联物或组合物在制备用于治疗或预防与慢性肾衰竭患者贫血相关的疾病、艾滋病和用于治疗受化疗的癌症患者的药物中的应用。

35. 一种根据任一项权利要求1-33的偶联物或组合物的制备方法，该方法包括使巯基与促红细胞生成素糖蛋白共价连接并且使得到的活化的促红细胞生成素糖蛋白与聚(乙二醇)衍生物偶联。
说明书

促红细胞生成素与聚乙二醇的偶联物

发明背景

因为促红细胞生成素在红细胞形成中是必需的，所以激素在治疗特征在于红细胞产量低或者缺乏的血液病中是有用的。临床上，在例如慢性肾衰竭(CRF)患者贫血症的治疗中使用EPO(Eschiach, JW, Egri, JC,

发明概述

因此，本发明是一类新的 EPO 的 PEG 衍生物。本发明的生理学活性 PEG-EPO 偶联物(conjugate)包括具有至少一个自由氨基的促红细胞生成素糖蛋白，而且它具有能引起骨髓细胞提高网织红细胞和红细胞的产量的体内生物学活性，所述促红细胞生成素糖蛋白选自人促红细胞生成素和具有通过加入 1-6 个糖基化位点而修饰的人促红细胞生成素的一级结构的其类似物; 所述糖蛋白共价连接到 1 至 3 个低级烷氧基聚(乙二醇)基团上，每个聚(乙二醇)基团通过式-C(O)-X-S-Y-的连接基团与糖蛋白共价连接，该连接基团的 C(O) 与所述氨基中的一个形成酰胺键，X 是 -(CH₂)ₖ- 或 -CH₂(O-CH₂-CH₂)ₖ-, k 是 1 至 10, Y 是

\[
\begin{align*}
 &\text{或} \\
 &\text{每个聚(乙二醇)部分的平均分子量大约 20 千道尔顿至大约 40 千道尔顿，偶联物的分子量是大约 51 千道尔顿至大约 175 千道尔顿。本发明进}
\end{align*}
\]
一步提供了含有本文所述偶联物的组合物，其中组合物中n是1的偶联物的百分比至少是90%。

与未修饰的EPO(即没有连接PEG的EPO)和常规PEG-EPO偶联物相比，本发明偶联物具有提高的循环半寿期和血浆滞留时间，降低的清除率和提高的体内临床活性。本发明的偶联物具有和EPO一样的用途。特别地，本发明的偶联物以EPO被用来治疗患者的相同方式通过刺激定向类红细胞先祖在骨髓中分裂和分化而用于治疗患者。

本发明还包括治疗人贫血的方法。本发明还包括制备促红细胞生成素糖蛋白产物的方法，包括使促红细胞生成素蛋白质的赖氨酸的ε-氨基与双功能试剂共价反应，形成具有酰胺键的中间体。双功能试剂包含一个反应基团和一个保护的侧基。然后酰胺键键连的中间体与另一种活化的聚乙二醇衍生物共价反应，生成本发明的促红细胞生成素糖蛋白产物。

附图的简要描述

图1：人EPO的一级结构(165个氨基酸)。

图2：人EPO的一级结构(165个氨基酸)。

图3：通过正常血红细胞(normocyaemic)小鼠测试测定的聚乙二醇基化EPO的体内活性。

发明的详细描述

下面的术语具有下表给出的定义：

术语“促红细胞生成素蛋白质”，“促红细胞生成素”，“EPO”，或“促红细胞生成素糖蛋白”指具有图1(SEQ ID NO: 1)或2(SEQ ID NO: 2)所示序列的糖蛋白或者与其基质上源的生物学活性与刺激红细胞产生和刺激定向类红细胞先祖在骨髓中分裂和分化相关的蛋白质或多肽。如这里所使用的，术语EPO蛋白质包括例如通过定点诱变或随机突变而精密修饰的这样的蛋白质。这些术语还包括具有1-6个附加的糖基化位点的类似物，蛋白质的羧基末端具有至少一个附加的氨基酸的类似物(其中附加的氨基酸包括至少一个糖基化位点)，具有包括至少一个糖基化位点重排的氨基酸序列的类似物，例如欧洲专利公开No.640619中公开的类似物。这些术语包括天然的和重组产生的促红细胞生成素。

术语“基本上同源的”指通过一处或多处取代，缺失或添加从参考
序列变化产生的特定主观序列，例如突变序列，其净作用不导致参考和主观序列之间的不利的功能不相似性。为了本发明的目的，具有大于95%同源性，等价生物学性质和等价表达特征的序列被认为是基本上同源的。为了测定同源性目的，成熟序列的平截应该忽略不计。具有较低程度的同源性，可比较生物活性和等价表达特征的序列被认为是基本等价物。

术语EPO蛋白质的“片段”指具有EPO蛋白质的部分或片段的氨基酸序列并且具有EPO的生物学活性的任何蛋白质或多肽。片段包括EPO蛋白质酶解产生的或者通过本领域常规方法通过化学合成的蛋白质或多肽。当对人施用蛋白质或片段导致刺激红细胞产生和刺激定向类红细胞先祖在骨髓中分裂和分化，则该EPO蛋白质或者其片段是有效活性的。通过用于这样的目的的对一种或多种哺乳动物物种的常规的公知的试验，可以进行EPO蛋白质的生物活性的测定。本文描述了能够用来证实这样的生物活性的合适的试验。

术语“治疗有效量”是引起骨髓细胞提高网织红细胞和红细胞的产量的体内生物活性所必需的促红细胞生成素糖蛋白产物的量。促红细胞生成素糖蛋白产物的精确量是对象要治疗的症状的准确类型，要治疗的患者的状况，以及组合物中其它成分这样的因素的优选主题。以通过各种方法对患有特征在于红细胞产量低或缺乏的血液病人施用强有效量可以配制含有促红细胞生成素糖蛋白产物的药物组合物。促红细胞生成素糖蛋白产物的平均治疗有效量可以是不同的，并且特别应该以有资格的医生的建议和药方为基础。

本发明涉及式1代表的具有引起骨髓细胞提高网织红细胞和红细胞的产量的体内生物活性的促红细胞生成素糖蛋白产物：

$$P-[NH-CO-X-S-Y-(OCH_2CH_2)_m-OR]_n$$

其中X和Y如上定义，m是450-900，n是1-3，R是低级烷基，P是碳原子个数与X形成酰胺键的一个或多个氨基的促红细胞生成素糖蛋白。如下所述，EPO的制备和纯化是本领域公知的。EPO指天然或重组蛋白质，优选人源的，从任何常规来源例如组织、蛋白质合成，用天然或重组细胞培养的细胞培养物可获得。包括具有EPO活性的所有的蛋白质，例如突变蛋白,
另外或者修饰的蛋白质。通过在 CHO-, BHK- 或 HeLa 细胞系中表达，通过重组 DNA 技术或者通过内源基因激活，可以制备重组 EPO，即通过内源基因激活表达促红细胞生成素糖蛋白。用于制备促红细胞生成素糖蛋白产物的优选的 EPO 物质是人 EPO 物质。更优选地，所述 EPO 物质是具有图 1(SEQ ID NO: 1)或图 2(SEQ ID NO: 2)所示氨基酸序列的人 EPO，最优选具有图 1(SEQ ID NO: 1)所示氨基酸序列的人 EPO。

人促红细胞生成素蛋白质也可以修饰至少一个附加的糖基化位点，例如 1-6 个糖基化位点，例如但不限于下面所述氨基酸序列。下面的注释意思是图 1 给出的序列通过将所示的上脚注位置处的天然氨基酸取代为指
明上脚注标号左边的氨基酸而被修饰了。

Asn^{30}Thr^{32} 图 1；
Asn^{51}Thr^{53} 图 1；
Asn^{57}Thr^{59} 图 1；
Asn^{69} 图 1；
Asn^{90}Thr^{71} 图 1；
Ser^{58}Asn^{69}Thr^{71} 图 1；
Val^{87}Asn^{88}Thr^{90} 图 1；
Ser^{87}Asn^{88}Thr^{90} 图 1；
Ser^{67}Asn^{68}Gly^{99}Thr^{90} 图 1；
Ser^{87}Asn^{88}Thr^{90}Thr^{92} 图 1；
Ser^{87}Asn^{88}Thr^{90} Ala^{162} 图 1；
Asn^{69}Thr^{71}Ser^{87}Asn^{88}Thr^{90} 图 1；
Asn^{10}Thr^{32}Val^{87}Asn^{88}Thr^{90} 图 1；
Asn^{69}Ile^{90}Thr^{91} 图 1；
Ser^{87}Asn^{89} Ile^{90}Thr^{91} 图 1；
Asn^{139}Thr^{138} 图 1；
Asn^{139}Thr^{140} 图 1；
Thr^{125} 图 1；和
Pro^{124}Thr^{125} 图 1。

人促红细胞生成素蛋白质也可以是在该糖蛋白的羧基末端具有至少一
个附加的氨基酸的类似物，其中所述附加的氨基酸包括至少一个糖基化位点，即所述糖蛋白具有包括人促红细胞生成素序列和在人促红细胞生成素序列的羧基末端的第2个序列的序列，其中所述第2个序列包含至少一个糖基化位点。

附加的氨基酸可以包括从人绒毛膜促性腺激素的羧基末端衍生的肽片段。优选地，所述糖蛋白是选自下面的类似物：(a)具有羧基末端延伸的氨基酸序列 Ser Ser Ser Ser Lys Ala Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln (SEQ ID NO: 3) 的人促红细胞生成素；(b)进一步包括 Ser^{87} Asn^{88} Thr^{90} EPO 的(a)中的类似物；和(c)进一步包括 Asn^{30} Thr^{32} Val^{87} Asn^{88} Thr^{90} EPO 的(a)中的类似物。

人促红细胞生成素蛋白质也可以是具有包括至少一个糖基化位点的重排的氨基酸序列的类似物。所述重排可以包括在人促红细胞生成素中缺失任何 N-连接的糖基位点和在人促红细胞生成素氨基酸序列的 88 位处加入一个 N-连接的糖基位点。优选地，所述糖蛋白选自 Gln^{24} Ser^{87} Asn^{88} Thr^{90} EPO；Gln^{38} Ser^{87} Asn^{88} Thr^{90} EPO；和 Gln^{83} Ser^{87} Asn^{88} Thr^{90} EPO。

1995 年 3 月 1 日公开的 Elliot 的欧洲专利公开 No.640619 中公开了具有附加的糖基化位点的促红细胞生成素类似物，该文献的内容在此引入作为参考。

在式 1 中，R 可以是任何低级烷基，其意思是指具有 1-6 个碳原子的直链或支链烷基，例如甲基、乙基、异丙基等。优选的烷基是甲基。

在式 1 中，X 是 -(CH₂)ₖ- 或 -(CH₂(O-CH₂-CH₂)ₖ)-，其中 k 是 1 至大约 10。优选地，k 是 1 至大约 4，更优选地 k 是 1 或 2。最优选地，X 是 -(CH₂)-。

在式 1 中，Y 是

![化学结构式]

或

![化学结构式]
优选地，Y是

5

或

最优选地，Y是

10

在式1中，选择m的数，使得得到的式1的偶联物具有可与未修饰的EPO相当的生理活性，其活性可以与未修饰的EPO的相应的活性相同，或者大于未修饰的EPO的相应的活性，或者是未修饰的EPO的相应的活性的一部分。m代表PEG单元中环氧乙烷残基的数目。一个PEG亚基-(OCH₂CH₂)-具有大约44道尔顿的分子量。因此，偶联物的分子量(不包括EPO的分子量)取决于m数目。“大约”某一数目的分子量指分子量在通过常规分析技术测定的数目的合理范围内。m是大约450至大约900范围内的整数(相当于20-40kDa分子量)，优选地，m是大约550至大约800(大约24-35kDa)，最优选地，m是大约650至大约700(大约29至大约31kDa)。

在式1中，n数是通过酰胺键与PEG单元共价键合的促红细胞生成素蛋白质中赖氨酸的ε-氨基的数目。本发明的偶联物每个EPO分子可以具有一个，两个或三个PEG单元。n是1-3范围内的整数，优选n是1或2，更优选n是1。

优选的促红细胞生成素糖蛋白产物由下式代表:
其中 P, R, X, m 和 n 如上定义。

最优选的促红细胞生成素糖蛋白产物由下式代表:

其中 P, R, X, m 和 n 如上定义。

其它优选的促红细胞生成素糖蛋白产物由下式代表:

其中 P 和 n 如上定义。

最优选的促红细胞生成素糖蛋白产物由下式代表:
其中 P 和 n 如上定义。

优选的化合物是其中 X 是-(CH₂)ₖ 的那些化合物，尤其是其中 k 是 1-4 的那些化合物，最优选其中 X 是-(CH₂)₃ 的那些化合物。

本发明还涉及其中 m 是 550-800 的整数，优选地 m 是 650-700 的整数的上述偶联物。

本发明优选的化合物是其中 n 是 1 和/或 R 是甲基的那些化合物。

另外，本发明涉及其中每个聚(乙二醇)部分的平均分子量是大约 24 千道尔顿至大约 35 千道尔顿，更优选至大约 30 千道尔顿的上述化合物。

此外，本发明涉及其中糖蛋白与一个或两个低级烷氨基封端的聚(乙二醇)部分共价连接，更优选与一个低级烷氨基封端的聚(乙二醇)部分共价连接的化合物。

在优选的实施方案中，聚(乙二醇)部分由甲基封端。

在最优选的实施方案中，本发明涉及其中 X 是-(CH₂)₃，m 是 650-700 的整数，n 是 1，R 是甲基，并且其中每个聚(乙二醇)部分的平均分子量是大约 30 千道尔顿的上述化合物。

在另一个实施方案中，本发明涉及一种治疗人贫血的方法，其包括对人施用治疗有效量的式 1 代表的促红细胞生成素糖蛋白产物。

在另一个实施方案中，本发明涉及一种具有引起骨髓细胞提高网织红细胞和红细胞的产量的体内生物学活性的促红细胞生成素糖蛋白产物的制备方法，包括步骤:

(a) 使式 P-[NH₃]ₙ 代表的促红细胞生成素蛋白质的赖氨酸的 ε-氨基与式 Z-CO-X-S-Q 代表的双功能试剂共价反应，形成式 P-[NH-CO-X-S-Q]ₙ 代表的具有酰胺键的中间体，其中 P 是缺少形成酰胺键的氨基的促红细胞生成素蛋白质；n 是 1-3 范围的整数；Z 是反应基团，例如羧基-NHS 酯；X 是-(CH₂)ₖ-或-CH₂(O-CH₂-CH₂)ₖ，其中 k 是 1 至大约 10；Q 是保护基团，例如烷酰基，例如乙醛基。

(b) 使来自步骤(a)的具有酰胺键的该中间体与式 W-[OCH₂CH₂]m-OR 代表的活化的聚乙二醇衍生物共价反应，形成下式代表的促红细胞生成素糖蛋白产物:
其中 W 是 Y 的硫基反应形式; m 是大约 450 至大约 900 范围的整数; R 是低级烷基; Y 是

或

在该实施方案中，所述双功能试剂优选是 N-琥珀酰亚胺基-S-乙酰基硫基丙酸酯或 N-琥珀酰亚胺基-S-乙酰基硫基乙酸酯，Z 优选是 N-羟基琥珀酰亚胺，活化的聚乙二醇衍生物 W-[OCH₂CH₂]ₘ-OR 优选选自碘-乙酰基-甲氧基-PEG，甲氧基-PEG-乙烯基砜，和甲氧基-PEG-马来酰亚胺。

本发明的另一个实施方案涉及含有偶联物的组合物，所述偶联物包括具有至少一个自由氨基并且具有引起骨髓细胞提高组织红细胞和红细胞的产量的体内生物学活性的促红细胞生成素糖蛋白，所述促红细胞生成素糖蛋白选自人促红细胞生成素和具有通过加入 1-6 个糖基化位点或者通过至少一个糖基化键中一个糖基化位点重排而修饰的人促红细胞生成素的初级结构的类似物; 所述糖蛋白共价连接 1 至 3 个低级烷氧基聚(乙二醇)基团，每个聚(乙二醇)基团通过式-C(O)-X-S-Y-的连接基团与糖蛋白共价连接，该连接基团的 C(O)与所述氨基中的一个形成酰胺键，

X 是-(CH₂)ₖ-或-CH₂(O-CH₂)₂-CH₂)ₖ-, k 是 1 至 10,

Y 是
每个聚(乙二醇)部分的平均分子量是大约 20 千道尔顿至大约 40 千道尔顿，偶联物的分子量是大约 51 千道尔顿至大约 175 千道尔顿，其中 n 是 1 的偶联物的百分比至少是 90%。优选地，组合物含有如上定义的偶联物，其中 n 是 1 的偶联物的百分比至少是 90%，更优选，其中 n 是 1 的偶联物的百分比至少是 92%，甚至更优选地，其中 n 是 1 的偶联物的百分比至少是 96%，最优选地，其中 n 是 1 的偶联物的百分比是 90%-96%。

此外，本发明涉及含有如上定义的偶联物或组合物和药学上可接受赋形剂的药物组合物，涉及如上定义的偶联物或组合物在制备用于治疗或预防与慢性肾衰竭患者(DRF)贫血，艾滋病相关的疾病，和治疗接受化疗的癌症患者的药物中的用途。另外，本发明涉及预防和/或治疗与慢性肾衰竭患者(DRF)，艾滋病和接受化疗的癌症患者贫血相关的疾病的如上定义的组合物和步骤。

本发明还涉及制备如上定义偶联物或组合物的方法，该方法包括使硫羟基与促红细胞生成素糖蛋白共价连接，并且将得到的活化的促红细胞生成素糖蛋白与聚(乙二醇)(PEG)衍生物偶联。另外，本发明涉及用如上所述的方法制备的如上定义的偶联物和组合物，并涉及用于治疗与慢性肾衰竭患者(DRF)，艾滋病和接受化疗的癌症患者贫血相关的疾病的如上定义的偶联物和组合物。

表达 EPO 蛋白质的方法

促红细胞生成素(EPO)是刺激红细胞生成的人源糖蛋白。其制备和治疗应用例如详细描述于美国专利 No.5547933 和 5621080, EP-B0148605,

纯化人 EPO 蛋白质的方法

在 EP-A0267678 中, 对于在无血清培养基中制备的 EPO 在透析后的纯化, 描述了在 S-Sepharose 上进行离子交换层析, 在 \(C_8\) 柱子上进行制备反相 HPLC 和凝胶过滤层析。与此相关, 可以用在 S-Sepharose 上快速流过的离子交换层析代替凝胶过滤层析步骤。还提议在离子交换层析之前进行在 Blue Trisacryl 柱子上的染料层析。

Nobuo, I. 等, 生物化学杂志(J.Biochem) 107 (1990) 352-359 描述了重组 EPO 的纯化方法。在该方法中, 在纯化步骤之前用下面的溶液处理 EPO: Tween®20, 苯基甲基磺酰氯, 乙基马来酰胺, 胰蛋白酶抑制剂 A, 硫酸铜和草氨酸。
多篇参考如1996年11月14日公开的Burg的WO96/35718公开了一
种在无血清发酵方法中制备促红细胞生成素的制备方法(EPOsf)。下文举
例解释了作为聚乙二醇基化作用的起始材料的EPO的制备方法。

测定EPO和EPO偶联物的特异活性的生物学测试

通过本领域公知的各种测试可以测定EPO或根据本发明的EPO偶
联物的特异活性。本发明的纯化的EPO蛋白质的生物学活性如此，使得
通过注射对人患者施用EPO蛋白质导致与没有注射的或对照组的受试者
相比骨髓细胞增加网织红细胞和红细胞的产量。通过根据Pharm.
Spec. Issue Erythropoietin BRP Bio1997(2)的方法可以检测根据本发明获得
的和纯化的EPO蛋白质或者其片段的生物学活性。

实施例4描述了测定EPO蛋白质的另一种生物测试方法，正常血
红细胞(normocytthaemic)小鼠测试

聚乙二醇基化EPO的制备方法

式1代表的促红细胞生成素糖蛋白的制备方法包括使硫基与EPO
共价连接(“活化”)并且使得到的活化EPO与一种聚(乙二醇)(PEG)衍
生物偶联。制备根据本发明的聚乙二醇化EPO的第一步包括通过EPO
的NH2基团共价连接硫基。用分别携带保护的硫基和另外的反应基团例
如活化酯(例如琥珀酰亚胺酯)，酸酐，磺酸酯，羧酸的卤化物和磺酸的
双功能试剂进行EPO的活化。用本领域公知的基团例如乙酰基保护硫
基。通过形成酰胺键这些双功能试剂能与赖氨酸的ε-氨基反应。下面给
出了该反应的第一步:

\[
\text{EPO} - \text{NH}_2 + \text{Z} - \text{X} - \text{S} - \text{CH}_3 \xrightarrow{\text{EPO}} \text{H} - \text{X} - \text{S} - \text{CH}_3
\]

EPO, n 和 X 如上定义，Z 是本领域公知的反应基团，例如下式的
N-羟基
琥珀酰亚胺(NHS)取代基
在优选的实施方案中，通过与具有琥珀酰亚胺基部分的双功能试剂反应进行赖氨酸的ζ氨基的活化。所述双功能试剂可以带有不同的间隔基团，例如-(CH₂)ₖ-或-CH₂(O-CH₂-CH₂)ₖ-部分，其中k是1至大约10，优选1至大约4，更优选1或2，最优选1。这些试剂的例子是N-琥珀酰亚胺基-S-乙酰基硫基丙酸酯(SATP)和N-琥珀酰亚胺基-S-乙酰基硫基乙酸酯(SATA)。

乙酰基硫基烷基-羧酸-NHS-酯，如

2-(乙酰基硫基)-(乙氧基)ₖ-乙酸-NHS-酯

其中k如上定义。

通过判断反应参数即蛋白质(EPO)浓度和蛋白质/双功能试剂之比可以选择加给 EPO 分子的疏基数目。优选地，通过对每一个 EPO 分子共价连接 1-5 个疏基，更优选地对每一个 EPO 分子共价连接 1.5-3 个疏基来活化 EPO。这些范围指疏基对 EPO 蛋白质总体的统计学分布。

例如在 pH6.5-8.0 的缓冲溶液，例如 10mM 磷酸钾，50mM NaCl, pH7.3 中进行该反应。可以在 DMSO 中加入双功能试剂。反应完全后，优选 30 分钟后，通过加入赖氨酸而中止反应。通过本领域公知方法例如透析或柱过滤可以分离过量的双功能试剂。通过例如 Grasetti, D.R. 和 Murray, J.F., 应用生物化学: 生物技术杂志(J. Appl. Biochem. Biotechnol)119, 41-49(1967)中描述的光度法则可以测定加给 EPO 的疏基的平均数。

上述反应之后共价连接活化的聚乙二醇(PEG)衍生物。合适的 PEG 衍生物是具有大约 20 至大约 40kDa，更优选大约 24 至大约 35kDa，最优选大约 30kDa 平均分子量的活化 PEG 分子。

\[
\text{I} - \text{N} - \text{C} - \text{O} - \text{O} - \text{C} - \text{N} - \text{OR} \quad \text{或} \quad \text{S} - \text{O} - \text{C} - \text{O} - \text{C} - \text{N} - \text{OR}
\]

最优选地，使用(烷氧基-PEG-马来酰亚胺)，例如甲氧基-PEG-马来酰亚胺，活化 PEG 物质(MW30000; Shearwater Polymers, Inc.)。烷氧基-PEG-马来酰亚胺的结构如下:

\[
\text{N} - \text{C} - \text{O} - \text{O} - \text{C} - \text{N} - \text{OR}
\]
其中 R 和 m 如上定义。

最优选的衍生物是

其中 R 和 m 如上定义。

在缓冲水溶液例如 10mM 磷酸钾，50mM NaCl, 2mM EDTA, pH6.2 中，在巯基保护基原位裂解之后进行与烷氧基-PEG-马来酰亚胺的偶联反应。例如 25℃下用 DMSO 中的羟胺，pH6.2 反应大约 90 分钟可以进行保护基团的裂解。对于 PEG 修饰，活化的 EPO/烷氧基-PEG-马来酰亚胺摩尔比应该是大约 1: 3 至大约 1: 6，优选地 1: 4。通过加入半胱氨酸并且使残留的巯基(-SH)与 N-甲基马来酰亚胺或者能形成二硫键的其它合适的化合物可以中止反应。因为所有的残留的活化巯基与保护基团例如 N-甲基马来酰亚胺或者其它合适的保护基团反应，所以本发明的偶联物中的 EPO 糖蛋白可以含有这样的保护基团。一般情况下，这里描述的方法将产生具有不同数目的保护基保护的不同数目的巯基的分子的混合物，取决于没有与 PEG-马来酰亚胺偶联的糖蛋白上的活化的巯基的数目。

当用来封闭聚乙二醇化蛋白质上的残留巯基时 N-甲基马来酰亚胺形成相同类型的共价键，而二硫化合物将导致分子内硫化/二硫化交换反应，形成封闭剂二硫桥偶联。该封闭反应类型的优选的封闭剂是氧化的谷胱甘肽(GSSG), 半胱氨酸和胱胺。使用半胱氨酸时，没有另外的静电荷引入到聚乙二醇化蛋白质之中，而使用封闭剂 GSSG 或胱胺则导致另外的负电荷或正电荷。

通过本领域公知的方法，例如柱色谱法，可以对式 1 的化合物进行进一步纯化，包括分离一，二和三-聚乙二醇化 EPO 物质。
药物组合物

根据本发明制备的促红细胞生成素糖蛋白产物可以通过本领域公知的方法用药学可接受载体或赋形剂制成适合注射的药物组合物。例如，合适的组合物公开于WO97/09996，WO97/40850，WO98/58660和WO99/07401。用于配制本发明的产物的优选的药学可接受载体是人血清白蛋白，人血浆蛋白质等。本发明的化合物可以在含有等张剂例如132mM氯化钠的10mM磷酸钠/钾缓冲液pH7中配制。任选地，药物组合物可以含有防腐剂。药物组合物可以含有不同量的促红细胞生成素，例如10-1000微克/毫升，例如50微克或400微克。

治疗特征在于红细胞产量低或缺乏的血液病

使用本发明的促红细胞生成素糖蛋白产物，导致在人体中生成红细胞。因此，施用促红细胞生成素糖蛋白产物以补充在红细胞的产生中非常重要的该EPO蛋白质。可以配制含有促红细胞生成素糖蛋白产物的药物组合物，以非常有效地通过各种方法对患有特征在于红细胞产量低或缺乏的血液病(或者是单一症状或疾病或者是部分症状或疾病)的人患者施药。通过注射例如皮下或静脉内注射可以施用药物组合物。促红细胞生成素糖蛋白产物的平均量可以不同，并且特别应该由有资格的医生的建议和药方为基础。该偶联物的精确量是要治疗的症状的准确类型，要治疗的患者的状况，以及组合物中其它成分这样的因素的优选主题。例如，可以施用0.01-10微克/千克体重，优选地0.1-1微克/千克体重，例如每星期给药一次。

本申请始终参考很多公开出版物。为了更完全描述本领域背景，这些公开出版物所公开的内容在这里引作参考。

通过下面的实施例更详细描述本发明，这些实施例只是证明目的而不是限制本发明的化合物的制备和本发明的组合物。

实施例

实施例1：人EPO的发酵和纯化
a) 种菌制备和发酵

对培养物显微镜检查是否存在污染的微生物, 并且测定细胞密度。在每一个分裂步骤进行这种检测。

初始生长期后, 用新鲜培养基将细胞培养物稀释至起始细胞密度并且进行另一个生长周期。重复该过程, 直到每个玻璃旋转瓶获得大约 2 升体积的培养物。大约 12 次倍增之后, 获得 1-5 升该培养物, 其然后用作 10 升接种发酵罐的种菌。

3-5 天之后, 10 升发酵罐中的培养物可以用作 100 升接种发酵罐的种菌。

再培养 3-5 天之后, 100 升发酵罐中的培养物可以用作 1000 升接种发酵罐的种菌。

b) 收获和细胞分离

采用批量反复进料方法, 即当达到期望的细胞密度时, 收集大约 80%的培养物。用新鲜培养基补充残留的培养物并且培养直到再次收集。一次生产周期包括最多 10 次顺序收集: 9 次部分收集和 1 次发酵最后总收集。每 3-4 天进行收集。

将测定过的体积转移到冷却容器中。离心或过滤分离细胞并弃除。

该离心步骤的含有上清液的 EPO 线内过滤并且收集到第二个冷却容器
中，再纯化过程每一次收集分开进行。

在 1996 年 11 月 14 日公开的 Burg 的 WO96/35718 中公开了 EPO-蛋白质的典型纯化方法。下面举例说明该纯化方法。

a) 蓝琼脂糖凝胶层析

蓝琼脂糖(Pharmacia)由表面共价键合 Cibacron 蓝染料的琼脂糖小球组成。因为与大多数非蛋白质污染物(一些蛋白质杂质和 PVA)相比，EPO 更强地结合蓝琼脂糖，因此在该步骤中可以富集 EPO。通过逐步提高盐浓度和 pH 值进行蓝琼脂糖柱的洗脱。

将用氢氧化钠再生并且用平衡缓冲液(氯化钠/钙和乙酸钠)平衡过的 80-100 升蓝琼脂糖装入柱子。装入酸化的和过滤过的发酵罐上清液。上样完之后，首先用与平衡缓冲液类似的含有更高浓度的氯化钠的缓冲液冲洗柱子，并且连续用 Tris-碱缓冲液洗。用 Tris-碱缓冲液洗脱产物，并且根据总洗脱曲线一个个一个级分收集。

b) 丁基 Toyopearl 层析

丁基 Toyopearl 650C(Tosohaas)是共价偶联了脂肪族丁基残基的聚苯乙烯基体。因为与大多数杂质和 PVA 相比 EPO 更强地结合该凝胶，所以用含有异丙醇的缓冲液洗脱。

将用氢氧化钠再生，用 Tris-碱缓冲液洗涤并且用含有异丙醇的 Tris-碱缓冲液平衡过的 30-40 升丁基 Toyopearl 650C 装入柱子。

将蓝琼脂糖洗脱液调节至柱平衡缓冲液中的异丙醇的浓度并且装载到柱子上。然后用具有提高的异丙醇浓度的平衡缓冲液冲洗柱子。用洗脱缓冲液(具有较高异丙醇含量的 Tris-碱缓冲液)洗脱产物并且根据总洗脱曲线一个个一个级分收集。

c) 羟基磷灰石超凝胶(Ultrogel)层析

羟基磷灰石超凝胶(Biosepra)由在琼脂糖基体中掺入以提高机械性能的羟基磷灰石组成。EPO 对羟基磷灰石具有低的亲合力，因此与蛋白质杂质相比可以以更低的磷酸盐浓度洗脱出来。

将用磷酸钠/氯化钙缓冲液和氢氧化钠之后用 Tris-碱缓冲液再生的 30-40 升羟基磷灰石超凝胶装入柱子。然后用含有低含量异丙醇和氯化钠的 Tris-碱缓冲液平衡。
将含有丁基 Toyopearl 层析洗脱液的 EPO 装载到柱子上。然后用平衡缓冲液和没有异丙醇与氯化钠的 Tris-碱缓冲液冲洗柱子。用含有低浓度磷酸钾的 Tris-碱缓冲液洗脱产物并且根据总洗脱曲线一个一个级分收集。
5 d) 在多孔层实心球 C4 上的反相 HPLC

RP-HPLC 材料多孔层实心球 C4(Vydac)由表面带有 C4-烷基链的二氧化硅凝胶颗粒组成。从蛋白质杂质分离 EPO 是以疏水性相互作用的强度的不同为基础。用在稀释的三氟乙酸中的乙腈梯度进行洗脱。

使用不锈钢柱子(装了 2.8-3.2 升 VydacC4 二氧化硅凝胶)进行制备 HPLC。通过加入三氟乙酸来酸化羟基硅灰石超凝胶洗脱液，并且装载到 VydacC4 柱子上。使用在稀释的三氟乙酸中的乙腈梯度进行洗涤和洗脱。收集级分并且立即用磷酸盐缓冲液中和。集中 IPC 限制内的 EPO 级分。

e) DEAE 琼脂糖层析

DEAE 琼脂糖(Pharmacia)材料由二乙基氨基乙基(DEAE)组成-基团在琼脂糖小球表面共价键合。离子相互作用介导 EPO 与 DEAE 基团的结合。乙基和三氟乙酸通过柱子没有保留。将这些物质洗出之后，通过用低 pH 的乙酸盐缓冲液冲洗柱子来去除痕量杂质。然后用中性磷酸盐缓冲液冲洗柱子，并且用提出的离子强度的缓冲液洗脱 EPO。

用 DEAE 琼脂糖高流速装填柱子。调节柱体积以保证以 3-10 毫克 EPO/毫升凝胶范围装载 EPO。用水和平衡缓冲液(磷酸钠/钾)冲洗柱子。加载 HPLC 洗脱液的合并的级分并且用平衡缓冲液冲洗柱子。然后用冲洗缓冲液(乙酸钠缓冲液)冲洗柱子。接着用平衡缓冲液冲洗柱子。接着，用洗脱缓冲液(氯化钠，磷酸钠/钾)从柱子上洗脱 EPO，并且根据总洗脱曲线一个一个级分收集。

将 DEAE 琼脂糖柱子的洗脱液调节具有具体的导电率。将得到的药物物质灭菌过滤到聚四氟乙烯瓶中并且在-70℃下贮存。

实施例 2: 硫基与 EPO 共价连接

该实施例公开了硫基与 EPO 共价连接的反应条件的确定。为了确认反应条件，向 EPO 溶液，这里是向 1 毫升 10mM 磷酸钾，50mM 氯化钠，
pH7.3 中的 5 毫克/毫升 EPO，加入不同量的含有保护的巯基的试剂，这里是 SATA 或 SATP(溶解于 DMSO, ad 10 毫克/毫升)。将反应搅拌大约 30 分钟(25℃)，并且通过加入 1M 赖氨酸溶液(10mM)中止反应。通过用 10mM 磷酸钾, 50mM 氯化钠和 2 mM EDTA, pH6.2 透析去除过量的 SATA 和 SATP。用羟胺去除保护的乙酰基之后，根据 Grasseti, D.R. 和 Murray, J.F. 在生物化学.生物技术应用杂志(J. Appl. Biochem. Biotechnol.)中描述的方法用二硫基二吡啶光度法测定与 EPO 共价连接的巯基的数目。

下面给出每个 EPO 分子共价连接的巯基的数目。

<table>
<thead>
<tr>
<th>EPO: SATA 或 SATP 摩尔比</th>
<th>羧基摩尔数/EPO 摩尔数</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO: SATA=1:3</td>
<td>1.5</td>
</tr>
<tr>
<td>EPO: SATA=1:5</td>
<td>2.4</td>
</tr>
<tr>
<td>EPO: SATA=1:6</td>
<td>3.2</td>
</tr>
<tr>
<td>EPO: SATP=1:3</td>
<td>1.3</td>
</tr>
<tr>
<td>EPO: SATP=1:5</td>
<td>2.5</td>
</tr>
<tr>
<td>EPO: SATP=1:6</td>
<td>3.7</td>
</tr>
</tbody>
</table>

实施例 3: 用甲氧基-PEG-马来酰亚胺修饰活化的 EPO

A) EPO 的活化

根据实施例 2 用 SATA(摩尔比: EPO/SATA=1/5)活化根据实施例 1 制备的 100 毫克 EPO(正常血红细胞(normocyt haemic)小鼠测试测定为 190000 IU/毫克)。如实施例 1 所述通过透析从副产物象-N-羟基-琥珀酰亚胺或没有反应的 SATA 分离携带共价连接的保护的巯基的产物 EPO(“活化 EPO”)。获得 10mM 磷酸钾, 50mM 氯化钠和 2 mM EDTA, pH6.2 中 4.5 毫克/毫升活化 EPO 溶液。

B) 活化 EPO 的聚乙二醇化作用。

将 380 毫克具有上述“最优选的”结构的甲氧基-PEG-马来酰亚胺 (MW30000; Shearwater Polymer, Inc., Huntsville(Alabama, USA))溶解于含有 95 毫克活化 EPO(4.5 毫克/毫升, 于 10mM 磷酸钾, 50mM 氯化钠和 2 mM EDTA, pH6.2 中的上述溶液中)。活化 EPO 与甲氧基-PEG-马来酰亚胺之间最终摩尔比是 1: 4。通过向上述溶液加入 1M 羟胺水溶液(ad 30mM,
pH6.2), 将活化 EPO 的共价连接的保护的巯基去保护。该溶液的反应混合物中得到的活化 EPO 包含自由巯基(-SH)。巯基去保护之后立即进行现在包含自由巯基(-SH)的活化 EPO 和甲氧基-PEG-马来酰亚胺之间的偶联反应 90 分钟(搅拌，25℃)。通过向反应混合物中加入 0.2M 2mM 半胱氨酸水溶液中止偶联反应。30 分钟之后，通过加入 DMSO 中的 0.5M N-甲基马来酰亚胺达到 5mM 的浓度保护没有与甲氧基-PEG-马来酰亚胺反应的活化 EPO 的过量的自由巯基。30 分钟之后，用 10mM 磷酸钾, pH7.5 将现在含有聚乙二醇化 EPO 物质所得到的反应混合物透析 ≥15 小时。

C) 聚乙二醇化 EPO 物质的纯化

关于从反应混合物分离聚乙二醇化 EPO 物质，进行下面的纯化方法：用 10mM 磷酸钾, pH7.5 平衡 50 毫升 Q-琼脂糖 ff 柱。将步骤 B)获得的反应混合物装载到柱子上(流速：每小时 3 柱体积(CV))。为了分离没有反应的甲氧基-PEG-马来酰亚胺试剂, 用 5CV 的 10mM 磷酸钾, pH7.5 冲洗柱子。以每小时 3CV 的流速, 用由 5CV 的缓冲液 A(10mM 磷酸钾, pH7.5) 和 5CV 的缓冲液 B(10mM 磷酸钾, 500mM 氯化钠, pH7.5)组成的渐增盐梯度洗脱，分离聚乙二醇化 EPO 物质。根据氯化钠梯度，首先洗脱出聚乙二醇化 EPO 物质(三-, 二-和一-聚乙二醇化 EPO 物质)，接着洗脱出没有聚乙二醇化 EPO 物质。集中含有聚乙二醇化 EPO 物质(三-, 二-和一-聚乙二醇化 EPO 物质)的洗脱液分级，并且过滤(用 0.2 微米过滤器灭菌过滤)。

在考马斯染色的 SDS-PAA 凝胶(Laemmli, 自然(Nature)227, 680-685(1970))上评价三-, 二-和一-聚乙二醇化 EPO 物质的内含物和纯度，同时根据 Beer-Lambert 定律在 280nm 处测定蛋白质浓度。通过 SDS-PAA 凝胶电泳测定的 EPO 物质的平均分子量是大约 68 千道尔顿(一-聚乙二醇化 EPO 物质)，大约 98 千道尔顿(二-聚乙二醇化 EPO 物质)，和大约 128 千道尔顿(三-聚乙二醇化 EPO 物质)。

通过层析法，例如通过大小排斥层析(Superdex, pg200; Pharmacia)，可以实现三-, 二-和一-聚乙二醇化 EPO 物质的进一步分离。

通过实施例 4 描述的方法进行含有三-, 二-和一-聚乙二醇化 EPO 物质的洗脱液的体内生物学活性的测定。
实施例 4: 通过正常血红细胞(normocythaemic)小鼠测试测定聚乙二醇化 EPO 的体内活性

正常血红细胞(normocythaemic)小鼠生物测试是本领域公知的(Pharm. Europa Spec. Issue Erythropoietin BRP Bio1997(2)), 并且 Ph. Eur. BRP 的促红细胞生成素的专题论文公开了一种方法。用 BSA-PBS 稀释样品。对 7-15 周龄的正常健康小鼠皮下施用 0.2 毫升含有如实施例 2 所述三-，二-和一-聚乙二醇化 EPO 的 EPO 级分。自给药后 72 小时起过 4 天, 通过穿刺术从尾静脉抽血并且稀释, 使得 1 毫升 0.15 微摩尔凹啶橙染色溶液中存在 1 微升血样。染色时间是 3-10 分钟。在流式细胞仪中通过分析红荧光直方图显微荧光法进行网织红细胞计数。以独立图表给出网织红细胞计数(每 30000 分析的红细胞)。对于给出的数据, 每个组包括每天 5 只小鼠, 小鼠只抽血一次。

对小鼠施用根据实施例 3 的与 EPO 偶联的甲氧基-PEG-马来酰亚胺,未修饰的 EPO 和缓冲液。图 3 给出了结果。通过对每只小鼠使用同剂量的明显增加量的网织红细胞和网织红细胞最大量的位移表征，结果表明聚乙二醇化 EPO 物质的卓越活性和延长的半寿期。
序列表

＜110＞ 霍夫曼-拉罗奇有限公司

＜120＞ 促红细胞生成素与聚乙二醇的偶联物

＜130＞ PC01520

＜160＞ 3

＜170＞ PatentIn Ver. 2.0

＜210＞ 1
＜211＞ 165
＜212＞ PRT
＜213＞ 人

＜400＞ 1
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 1 5 10 15
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Cys Ala Glu His
 20 25 30
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 35 40 45
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 50 55 60
Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
 65 70 75 80
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gin Leu His Val Asp
 85 90 95
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Arg Ala Leu
 100 105 110
Gly Ala Gin Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
 115 120 125
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val

30
130 135 140
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
145 150 155 160
Cys Arg Thr Gly Asp
165

<210> 2
<211> 166
<212> PRT
<213> 人

<400> 2
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 1 5 10 15
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
 20 25 30
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 35 40 45
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 50 55 60
Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
 65 70 75 80
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 85 90 95
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Leu Leu Arg Ala Leu
100 105 110
Gly Ala Gin Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
115 120 125
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
130 135 140
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
145 150 155 160
Cys Arg Thr Gly Asp Arg
165
<210> 3
<211> 28
<212> PRT
<213> 人

<400> 3
Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg
 1 5 10 15

Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln
 20 25
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg
5 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys
Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala
10 Glu His Cys Ser Leu Asn Glu Asn Ile Thr
Val Pro Asp Thr Lys Val Asn Phe Tyr Ala
Trp Lys Arg Met Glu Val Gly Gln Gln Ala
Val Glu Val Trp Glu Leu Ala Leu Leu
15 Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro
20 Leu Gln Leu His Val Asp Lys Ala Val Ser
Gly Leu Arg Ser Leu Thr Thr Leu Arg
10 Ala Leu Gly Ala Gln Lys Ala Ile Ser
Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu
25 Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg
Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
Cys Arg Thr Gly Asp

图 1
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys

Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr

Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala
Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser

Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser
Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
Cys Arg Thr Gly Asp Arg

图 2
图 3