PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:
G21F 9/14, 9/16, C09D 1/02
C09D 1/06, C04B 7/02

A1 (11) International Publication Number:

WO 87/06757

(43) International Publication Date: 5 November 1987 (05.11.87)

(21) International Application Number:

PCT/US87/00991

(22) International Filing Date:

1 May 1987 (01.05.87)

(31) Priority Application Numbers:

859,122 029,845

(32) Priority Dates:

2 May 1986 (02.05.86) 31 March 1987 (31.03.87)

(33) Priority Country:

US

(71)(72) Applicants and Inventors: MANDEL, Frederick, S. [US/US]; Route 3, Box 213GB, Marinette, WI 54143 (US). ENGMAN, James, A. [US/US]; 1403 1/2 Thomas Street, Marinette, WI 54143 (US). WHITING, Wayne, R. [US/US]; Route 1, Box 215A, Oconto, WI 54153 (US). NICOL, James, A. [US/US]; 3821 Matterhorn, Plano, TX 75075 (US).

(74) Agents: MARCUS, Harry, C. et al.; Morgan & Finnegan, 345 Park Avenue, New York, NY 10154 (US).

(81) Designated States: AT, AT (European patent), AU, BE (European patent), BR, CH, CH (European patent), DE, DE (European patent), DK, FI, FR (European patent), GB, GB (European patent), IT (European patent), JP, KP, NL, NL (European patent), NO, SE, SE (European patent).

Published

With international search report.

(54) Title: NOVEL COMPOSITIONS AND METHOD FOR NEUTRALIZATION AND SOLIDIFICATION OF HAZARDOUS ALKALI SPILLS

(57) Abstract

A dry particulate composition containing an organic neutralizing acid and, materials having varying absorption rates may be used to neutralize alkaline spills, and solidify the spills to render them harmless. These compositions may be applied to the spills by fire-extinguisher-like delivery devices which spread the compositions on the spills from a relatively safe distance without splattering the hazardous materials.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO-	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FI	Finland	MG	Madagascar		

NOVEL COMPOSITIONS AND METHOD FOR NEUTRALIZATION AND SOLIDIFICATION OF HAZARDOUS ALKALI SPILLS

BACKGROUND OF THE INVENTION

of U.S. Serial No. 06/859,122, which is hereby incorporated herein by reference.

1. Field of the Invention

This invention relates to novel compositions and the novel methods of their use for neutralization and clean-up of hazardous alkali spills.

2. Prior Art

past to be useful for the neutralization of alkali waste materials. Some prior art references describe methods for neutralizing alkali spills. However, these prior art compositions and methods for alkali waste neutralization entail certain disadvantages in situations in which alkali compositions spill in an industrial plant or similar cases.

United States Patent No. 3,042,622 (Kirschenbauer) describes an abrasive cleaning composition comprising a mixture of a water-insoluble

abrasive cleaning composition comprising a mixture or a water-insoluble abrasive material and an alkaline ingredient, and an acidic ingredient. The composition exhibits both alkaline and acidic cleansing properties in water. The abrasive agents 5 used in the composition include siliceous materials including silex, tripoli, pumice, volcanic ash, pumicite, bentonite, diatomaceous earth, feldspar and the like. The composition may also include a water-soluble acidic ingredient, including citric acid (column 2, line 45). These abrasive 10 compositions may be used for cleaning, such as in scouring powders, and for the removal of stains from metal surfaces. However, these compositions are useful as abrasives for cleansing, and cannot be applied to hazardous spill control. 15

United States Patent No. 3,708,429 describes cleaning compositions comprising a substantially anhydrous mixture of (a) a surface active agent, (b) an alkaline catalyst, (c) an acid release agent, and (d) a lower aliphatic alcohol. The acid release 20 agent can be encapsulated using an encapsulating material which is stable in the anhydrous composition, but which dissolves or disperses in water in order to activate the acidic material inside. The acid release agents useful in this 25 composition includes citric acid, glutaric acid and tartaric acid, as well as acid salts. This patent also states that the acidic materials may be absorbed onto solid carrier materials, e.g. acetic acid absorbed onto bentonite. These compositions are 30 described as being useful for cleaning fatty soil from dishes and for dishwashing compositions which are used diluted in water, rather than for hazardous spill neutralization.

(Seidenberger) is directed to the control and clean-up of liquid caustic spills by neutralization and absorption into a granular composition formed from citric acid, expanded perlite, flour, fumed silica, a pH indicator dye and water. composition is prepared by adding the pH indicator to deionized water, charging a blender with citric acid monohydrate through a crusher to break up lumps, and charging the blender with perlite. The pH indicator solution is poured in a substantially even fashion over the surface of the perlite and the components 10 mixed for about twenty minutes. Flour is added to the mixture and blended such that the flour coats and partially dries the formulation. Fumed silica is then added and the composition blended to provide a homogeneous blend. The blend is then ready to absorb 15 caustic spills. However, this method produces particles which are unsuitable for application to the spill from a safe distance.

20 SUMMARY OF THE INVENTION

This invention is directed to a novel composition and method of using the composition to neutralize and solidify hazardous alkali spills so as to prevent the spread of such a spill by absorption, neutralization and solidification from a safe distance away from the spill. The compositions of this invention limit the absorption rate so as to enable the maximum amount of alkali material to react and be neutralized.

The mode of application of the method of this invention allows the control and neutralization of hazardous spills from a distance without causing splashing of the hazardous materials during neutralization.

The novel compositions of this invention

15

20

25

contain the following: about 45 to 75% organic neutralizing acid, about 15 to 45% highly absorptive clay, about 10 to 45% less absorptive clay and about 0.5 to 10% weak water-soluble acid.

be applied to a hazardous acidic spill through a delivery device similar to a fire extinguisher. The compositions are in the form of small particles of varying sizes, but within a narrow size distribution. Preferably, they have a predominant size distribution in the range between -40 to +200 Tyler screen mesh range.

The compositions of this invention may be made by mixing the components in a blender.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The compositions of this invention preferably contain between about 45 and about 80% by weight of organic neutralizing acid in a dry particulate form such as citric acid, fumaric acid, tartaric acid or benzoic acid, between about 5 to about 45% by weight of a highly absorptive clav such as attapulgite, perlite, fullers earth or minugel and the like, between about 10 to about 45% by weight of less absorptive clay, such as attapulgas clav and the like and between about 0.5 and about 10% by weight of weak water soluble acid such as sodium dihydrogen phosphate.

The organic neutralizing acid component of the compositions of this invention serve to neutralize, absorb and solidify the alkali spills to which they are applied. After treatment, they are amenable to safe clean-up. The organic neutralizing acid may be any organic acid which is in a dry particulate form at room temperature, such as citric acid, tartaric acid, benzoic acid or fumaric acid or

a combination of such acids. Such acids are relatively insoluble. Dry particulate acids are preferable so that the composition may be dispensed readily from a distance in a fire extinguisher-like delivery device in the appropriate dispersion pattern.

The absorptive clays which are present in . 5 the composition aid in absorbing and containing the hazardous alkaline materials so as to allow the acid component to react with and neutralize them. Preferably, different clays having varying degrees of absorption rates should be used so that the largest 10 possible proportion of the alkaline materials may be given the opportunity to react and neutralize. Hence, a highly absorptive and a less absorptive clay component should be used in the composition. Highly 15 absorptive clays include Minugel-200^R, some attapulgites, perlites and fullers earth. Less absorptive clays include certain attapulgas clays and the like.

A small amount of weak, water-soluble acid in the compositions of this invention functions to 20 produce heat by reacting with the bases in the spill to allow the organic neutralizing acid to react more readily (these reactions provide heat of neutralization for the citric acid/hazardous alkali 25 reaction). Because the spill may be absorbed quickly and thus be removed from the areas where it may freely react with the neutralizing acid, a small amount of weak, water soluble acid is desirable to increase the speed of reaction. This acid also generates some heat by reacting with the alkaline 30 materials in the spill, thus providing the heat of solubilization for the sparingly-soluble organic neutralizing acids and increasing their opportunities to react with the base.

35 Dyes may be added to exemplify the

neutralization reaction as it progresses.

The compositions of this invention are preferably applied to the hazardous spills from a fire-extinguisher-like vessel. They are preferably applied in the dry form in which they are stored.

They may be stored under pressure until used in a stored pressure vessel or they may be stored in an unpressurized vessel and pressurized by external gas through an external expellent gas cartridge.

The size distribution of the particles of
the compositions of this invention allows them to be
applied to spills in a "soft" pattern, i.e.
relatively spread out such that they cover a spill as
it spreads without splattering the spill. The
compositions should be applied from a distance of
about 10 to 15 feet. The nozzle velocity should be
between about 30 and 50 feet/second. In order to
achieve this velocity, the particles should have a
size distribution between -40 and +200 Tyler screen
mesh size.

The particulate compositions of this invention may be applied on a nitrogen gas stream. The particular specified size distribution will substantially assure the appropriate flow rate and delivery pattern.

25 The compositions of this invention contain both relatively less reactive organic acids and weak water soluble acids such as sodium dihydrogen phosphate. The sodium dihydrogen phosphate, for example, acts as a catalyst to aid the neutralization reactions. This encourages neutralization of many alkali materials which may have a higher heat of neutralization than others. This allows a controlled and complete neutralization reaction.

• EXAMPLES

The following Fxamples set forth various compositions of this invention which can be used to neutralize, absorb and solidify alkali spills. They serve to illustrate, but not to limit the claimed invention.

5	invention.	
•	15.0% Fullers Earth	Example 9 80.0% Citric Acid 9.25% Fullers Farth 9.25% Minugel 200 1.5% TCP
10	6.0% Fullers Earth	Example 10 75.0 Citric Acid 6.0% Fullers Earth 18.5% Minugel 200 1.5% TCP
15	7.5% Fullers Earth	Example 11 75.0% Citric Acid 6.5% Fullers Farth 15.5% Minugel 200 3.0% TCP
20	6.5% Fullers Earth	Example 12 75.0% Citric Acid 6.5% Fullers Farth 18.0% Minugel 200 0.5% TCP
25	Example 5 80.0% Citric Acid 10.0% Fullers Earth 10.0% Minugel 200	Example 13 80.0% Citric Acid 10.0% Fullers Farth 10.0% Minugel 200 0.5% Aluminum Octoate
25	Example 6 70.0% Citric Acid 22.5% Fullers Earth 7.5% Minugel 200	Example 14 80.0% Citric Acid 9.75% Fullers Earth 9.75% Minugel 200 0.5% Sodium Stearate
30	Example 7 80.0% Citric Acid 9.8% Fullers Earth 9.8% Minugel 200 0.4% Magnesium Stearate	Example 15 80.0% Citric Acid 9.75% Minugel 200 9.75% Attapulgas Clay 0.5% Aluminum Octoate
35	Example 8 80.0% Citric Acid 9.8% Fullers Earth 9.8% Minugel 0.4% TCP	Example 16 80.0% Citric Acid 14.2% Fullers Farth 5.3% Attapulgas Clay 0.5% Aluminum Octoate

0	Exam	ple 17	Exam	ple 26	
	80.08	Citric Acid		Citric Acid	
			19 02	Fumaric Acid	
	9.75%	Attapulgas Clay	1 08	Charch	
	0.5%	Aluminum Octoate	19 59	Attapulgite Clay	
		iii amziiam oocoace		Petro AGS	•
			0.54	Petro AGS	
	Exam	ple 18	Evam	ple 27	•
5			70.08	Citric Acid	
-	16.56%	Attapulgite Clay	7.59	Fullere Parth	
	3.0%	Starch	22.5%	Minugel 200	
		Polyacrylate		74774461 200	
		<u>-</u>			
		ple 19	Exam	ple 28	
	80.08	Citric Acid	80.08	Citric Acid	
10	19.5%	Attapulgite Clay	10.0%	Fullers Farth	
	0.5%	Polyacrylate	10.0%	Minugel 200	
		_		-	
	Exam	ple 20	Fxam	ple 29	
	60.0%	Citric Acid			
	20.0%	Fumaric Acid	22.5%	Fullers Farth	
	19.28	Attapulgite Clay	7.5%	Minugel 200	
15	0.5%	Polyacrylate			
1)	5	-1- 07		-	
		ple 21	Exam	ple 30	
		Citric Acid	80.0%	Citric Acid	
	40.05	Fumaric Acid	9.8%	Fullers Farth	
	19.56	Attapulgite Clay	9.8%	Minuael 200	
	0.55	Petro AGS (mono-	U.48	Mg Stearate	
		sodium salt of		,	
20		dimethyl naphthalene sulfonate)			
		sufforace)			
	Exami	ole 22	Evam	ala 21	
			BU US	ole 31 Citric Acid	
			00.0%	Fullers Farth	
	19.5%	Attapulgite Clay		Minugel 200	
	0.5%	Petro AGS	1 509	Tricalcium	
25			2000	Phosphate (TCP)	
		•		· nosphace (· c.p.)	
	Examp	ple 23	Exam	ole 31	
	80.0%	Fumaric Acid		Citric Acid	
	19.5%	Attapulgite Clay		Fullers Farth	
	0.5%	Petro AGS		Minugel 200	
			0.4%		
30	_				
		ole 24		ole 32	
		Citric Acid		Citric Acid	
		Fumaric Acid		Fullers Farth	
	±5.0%	Attapulgite Clay		Minugel 200	•
	2.0%	Starch (grain	0.5%	Mg Stearate	
		product, modified			
25		starch and			
35		polyacrylate crystals	3		
		known commercially			
	a =-	as "S-500")			-
	0.5%	Petro AGS			

Example 25
60.0% Citric Acid
18.0% Fumaric Acid
2.0% Starch
19.5% Attapulgite Clay
0.5% Petro AGS

Table I below sets forth the results of 5 tests demonstrating the ability of the compositions of the foregoing Examples 1-17 to absorb, neutralize and solidify alkali spills. In these tests, a specified amount of alkaline material was spilled in an enclosed area. The type of alkali is set out in 10 column 2 of Table I, entitled "Rase". The volume of spill is set out in column 3, entitled "Volume (gal)". The compositions of this invention were then applied from a fire extinguisher type dispenser. The inital weight of the neutralize composition, or of 15 "agent", was measured prior to the test and is set forth in column 4 in (pounds)-(ounces). The weight of agent actually discharged was measured after the test, which depends on the size distribution of the particles, is set forth in column 5 entitled "Weight 20 Discharge . The percent discharge measures the efficiency of the discharge, column 6. The inital pH of the alkali spill measured after dispensing the agent is in column 7. The final pH of the agent/alkali spill mixture was measured after the 25 test reaction took place (column 8). Comments regarding the quality of the resulting solid and the reaction between the composition and alkali material are set forth in column 9.

Table II sets forth average particle size distributions for several of the compositions of this invention.

-10 -

TABLE I

0					INDL	- 1			
	Example	Base	Volume (gal)	Wt. Agent	Wt. Discharge	% Discharge	pH(1)	pH(f)	Solid
5	1	NaOH	2	24 - 9	22 - 13	92.9	12.70	12:83	soft rud; good ab- sorption; fast reaction
,	2	NaOH	2	24 - 8	23 - 12	96.9	12.67	12.99	Poor absorption until mixed; fast complete reation
	3	NaOH	2	24 - 4	23 - 1	95.2	13.09	12.94	Solid after setting up
10	3A	NaOH	2	24 - 8	23 - 8	95.9	8.46	10.57	Liquid until mixed - nice solid; fast, good reation
	3B	NaOH	2	23 - 4		100	11.83	13.27	Applied with shovel
15	4	NaOH	1.8	24 - 8	23 - 6	95.4	12.6	12.65	Solidified with time; fast reaction
	4 A	KOH	1.86	24 ~ 4	23 - 0	94.8	6.05	5.78	Fast, complete reaction; moderate heat; poor absorption;
20	3C	NaOH	1.68	24 - 8	23 - 8	95.9	10.07	10.63	Soupy until mixed; good absorption; fast reaction
	3D	NaOH	1.80	24 - 8	23 - 4	94.9	12.25	12.30	Good absorption; fast reaction
25	5	NaOH	7.86	24 - 8	23 - 2	94.4	11.40	11.41	Poor at end of discharge
	5A	KOH	1.78	24 - 8	22 - 2		4.93	4.72	Liquid in pan - little solid; fast reaction
30	6	KOH	1.97	23 - 6	21 - 8	92.0	5.95	5.75	Very poor discharge; fast reaction; poor absorption
	7	NaOH	1.90	24 - 8	22 - 10	92,3		••	No reaction
	7A	NaOH	1.98	24 - 8	23	93.9			No reaction

- 11 -

TABLE I (continued)

	Example	Base	Volume (gal)	Wt. Agent	Wt. Discharge	% Discharge	pH(1)	pH(f)	Solid
5	8	NaOH	1.83	24 - 8	22 - 2	90.3	6.67	6.78	Reacted before beginning stir; good absorption and reaction
	9	NaOH	1.91	24 - 8	22 - 11	92.6	12.47	12.43	Poor flow at end of discharge; good absorption and reaction
10	10	NaOH	1.90	24 - 8	23 - 2	94.4	11.59	12.19	Poor flow at end of discharge; good absorption and reaction
15	11	NaOH	1.81	24 - 8	22 - 6	95.4	10.06	9.12	Solid very hard when dry; good absorption and reaction
	12	NaOH	1.76	26 - 2	24 - 10	94.3	12.16	12.60	Fast reaction - not hot; good absorption
20	12A	NH ₄ OH	2.05	23 - 12	22 - 14	96.3	4.05	3.94	Cut off ammonia vapors; fast reaction; poor absorption
25	13	NaOH	2.04	23 - 11	22 - 3	93.67	12.19	12.50	Better discharge; dustier than minugel; fast, non-violent reaction
•	14	NaOH	2.01	24 - 8	15 - 10	63.78	12.45	12.76	High reaction of short duration
30	15	NaOH	1.98	25 - 10	24 - 0	93.7	10.22	10.19	Good range, reacted before mix; non-violent; and absorption
	15A	кон	1.71	23 - 15	22 - 1	92.2	4.75	4.52	Good range; relatively fast, mild reaction

TABLE I (continued)

					INDEE 1 (C	on cinaca /			
	Example	Base	Volume (gal)	Wt. Agent	Wt. Discharge	% Discharge	pH(1)	pH(f)	Solid
5	16	NaOH	2.05	25 - 10	23 - 10	92.2	5.42	5.42	Flow dropped off at end; fast, mild reaction
	17	NaOH	2.08	25 - 12	24 - 5	94.4	12.35	12.73	Good discharge; good reaction and absorption
10	17A	кон	2.15	25 - 11	24 - 5	94.7	4:02	4.05	Fast, mild reaction; poor absorption
	17B	NH ₄ OH	2.19	26 - 6	25 - 0	94.8	6.83	6,93	Slight drop in range, no ammonia smell
15	17C	KOH	2.59	26 - 2			5.58	5.60	Good discharge; good reaction; poor absorption
	170	КОН	2.96	26 - 0	24 - 10	94.7	6.75	6.67	Good discharge; good reaction; poor absorption
20	17E	KOH	3.31	26 - 0	24 - 12	95.2	12.81	12.90	Good discharge; good reaction
	17F	NH ₄ OH	2.47	26 - 0	24 - 8	94.7	4.59	4.60	No ammonia odor after application; fast reaction, poor absorption
25	17G	NH ₄ OH	3.09	25 - 8	23 - 14	93.6	4.80	4.78	Fast reaction
	18	NaOH	-	-	-	-	9.5	5.85	Good
	19	NaOH	-	-	-	-	5.85	5.9	Good - wet solid.
30	20	NaOH	-	-	-	-	12.5	9.1	Good - mild reaction - wet solid.
	21	NaOH	-	-	-	-	9.01	4.95	Good soak up - wet solid - no visible rxn.
35	22	Na OH	-	-	-	-	12.28	4.95	Good soak up - wet solid - no visible rxn.

TABLE I (continued)

					1 (6	on critica,			
	Example	Base	Volume (gal)	Wt. Agent	Wt. Discharge	% Discharge	pH(f)	pH(f)	Solid
5	23	NaOH	-	-	-	•	11.4	4.49	Good soak up - wet solid - no visible rxn.
	24	NaOH	-	-	-	-	11.9	5.62	Very good dry solid, good rxn. and good soak up.
10	25	NaOH	-	-	-	-	7.8	5.5	Very dry, spongy solid, good soak up and good rxn.
	26	NaOH	-	-	-	-	12.0	9.1	Wet solid, good soak-up and good reaction.
15	27	NaOH	2	23.06	-	95.9	13.09	12.94	Poor initial absorption until mixed; very liquid - solid after setting up; faster rxn. without magnesium stearate.
20	28	Na OH	1.86	23.2	•	93.4	11.41	13.5	Very poor discharge, no distance; liquid in pan, little solid.
25	29	NaOH	1.95	23.375	-	92	5.75	13	Very poor discharge, no flow at end-long discharge time-stearate needed for flow to stop leaks.
30	30	NaOH	1.9	24.5	-	92.3	-	•	No reaction
50	31	NaOH	1.83	24.5	-	90.3	6.78	14	Heat during discharge reacted before beginning to stir.
35	32	NaOH	1.91	24.5	-	92.6	12.47	12.43	Nozzle leaked.

- 14 -

0						TARLE I	<u>I</u>				
	Example	% Citric	Acid		20	Sieve 40	Size 100	200	325	PAN	PULK
	11	75				7.94	82.25	5.23	1,65	2.92	110
5	14	80			·	8.86	86.24	3.10	0.24	1.56	120
	12	75				4.79	69,32	9.30	4.55	12.04	117
	13	80				8.03	84.49	3.99	0.66	2.83	119
	B12A-1	80				4.72	89.50	3,58	0.28	1.92	113
10	i		(AVERA	GE DISC	HARGE)						
	15	80		92.95		3.97	83.06	6.56	1.30	5.11	116
	17	80		94.63	0.02	9.98	76.45	6.90	0.84	5.80	114
	17A	80		94.7	0.02	8.04	78.04	7.15	2.54	4.24	716
15	17F	80		93.97		3.98	80.78	6.53	2.61	6.10	118
		OVERALL		94.08							
	25A	65			0.06	18.56	76.3	3.5	1.5	0.90	126

20

25

30

15

20

25

octoate.

water soluble acid.

WHAT IS CLAIMED IS:

- 1. A composition for neutralizing and solidifying hazardous alkali spills comprising about 45 to 80% organic neutralizing acid, about 5 to 45% highly absorptive clay, about 10 to 45% less
- 5 absorptive clay and about 0.5 to 10% weak water-soluble acid.
 - 2. A composition according to claim 1 wherein organic neutralizing acid is in a dry particulate form and is selected from the group consisting of
- 10 citric acid, tartaric acid, fumaric acid and benzoic acid.
 - 3. A composition according to claim 1 wherein said highly absorptive clay is selected from the group consisting of attapulgite, perlite, fullers earth and minugel.
 - 4. A composition according to claim 1 wherein said less absorptive clay is attapulgas clay.
 - 5. A composition according to claim 1 wherein said weak water soluble acid is selected from the group consisting of sodium dihydrogen phosphate, magnesium stearate, sodium stearate and aluminum
 - 6. A composition according to claim 1 comprising between about 60 and 80% by weight of organic neutralizing acid, between about 5 and 15% highly absorptive clay, between about 10 and 20% less absorptive clay and between about 0.5 and 1% weak
- 7. A composition for absorbing neutralizing and solidifying alkali spills comprising about 80% by weight citric acid, about 9.75% minugel, about 9.75% attapulgas clay and about 0.5% aluminum octoate.
 - 8. A method of neutralizing and solidifying hazardous alkali spills comprising applying a
- 35 composition to the spill comprising about 45 to 75%

0	organic neutralizing acid, about 15 to 45% highly
	absorptive clay, about 10 to 45% less absorptive clay
	and about 0.5 to 10% weak water-soluble acid such
	that the spill is neutralized and solidified.

9. A method according to claim 2 wherein said application is accomplished by delivering said composition to said spill under pressure on a nitrogen gas propellant from a fire-extinguisher-like delivery device.

10. A composition according to claim 1 which is in the form of dry particles having a size distribution between -40 and +200 Tyler screen mesh size range.

15

20

25

30

35

INTERNATIONAL SEARCH REPORT

International Application No PCT/US87/00991

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3 According to International Patent Classification (IPC) or to both National Classification and IPC IPC 4 G21F 9/14, 9/16; CO9D 1/02,06; CO4B 7/02 U.S.C.L. 252/628, 631, 192, 193; 106/74, 78, 89, 97, 98, Dig. 4 II. FIELDS SEARCHED Minimum Documentation Searched 4 Classification System Classification Symbols U.S. 252/626, 628, 631, 189, 190, 193, 8; 210/681, 682, 751 169./9, 45, 46, 47, 71 106/74, 78, 97, 98, Dig. 2, Dig 4; 134/3, 28 Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched 5 LEXPAT 1975→DATE USPAT 1975→DATE III. DOCUMENTS CONSIDERED TO BE RELEVANT 14 Citation of Document, 16 with indication, where appropriate, of the relevant passages 17 Relevant to Claim No. 18 Category * Y US, A, 4,524,835 Published 25 June 1985, 1-10 (Mingrone) (see entire document Α US, A, 4,249,949 Published 10 February 1981, 1-10 (Wooler) Y US, A, 4,234,432 Published 18 November 1980, 1-10 (Tarpley, Jr.) (see entire document) A US, A, 4,207,116 Published 10 June 1980, 1-10 (Been, et al.) A US, A, 4,174,292 Published 13 November 1979, 1-10 (Seidenberger, et al.) γ US, A, 4,105,576 Published 08 August 1978, 1-10 (Seidenberger) (see entire document) Α US, A, 4,095,988 Published 20 June 1978, 1-10 (Jancek, et al.) Α US, A, 3,980,588 Published 14 September 1976, 1-10 (Thompson) (continued) "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the * Special categories of cited documents: 15 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report 3 Date of the Actual Completion of the International Search 2 07 JUL 1987 25 June 1987 Signature of Authorized Officer 20 International Searching Authority 1 ISA/US HOWARD 1. LOCKER

Form PCT/ISA/210 (second sheet) (May 1986)

EXAMINER **GROUP ART UNIT 223**

International Application No.

PCT/IJS87/00991

III. DOCU	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE	/[IS87/0099] ET)
Category •	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No
A	US, A, 3,837,872 Published 24 September 1974, (Conner)	1-10
A	U\$, A, 3,708,429 Published O2 January 1973, (Hall)	1-10
A	US, A, 3,196,106 Published 20 July 1965, (Haden, Jr. et al)	1-10
Y	US, A, 3,090,749 Published 21 May 1963, (Warnock) (see entire document)	1-10
A	US, A, 3,042,622 Published 03 July 1962, (Kirschenbauer)	1-10
-		