

1 601 624

(21) Application No. 27943/80 (22) Filed 2 March 1978
 (62) Divided Out of No. 1 601 623
 (31) Convention Application No.
 67478 (32) Filed 4 March 1977 in
 (33) Italy (IT)
 (44) Complete Specification Published 4 November 1981
 (51) INT. CL.³ G11B 23/14 5/012 19/20
 (52) Index at acceptance
 G5R B21 B264 B346 B361 B36Y B435 B443 B444
 B452 B484 B512 B513 B60X B695 B784

(54) FLEXIBLE MAGNETIC DISC

(71) We, ING C OLIVETTI & C, Societa per Azioni, a body corporate organised and existing under the laws of Italy of Via G Jervis 77, 10015 Ivrea (Turin), Italy do hereby 5 declare the invention, for which we pray that a Patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to flexible 10 magnetic discs for use with apparatus providing a disc drive arrangement wherein a rotatable hub is adapted to engage in a central hole of the disc. Such an arrangement is used in conjunction with a writing and/or reading head 15 mounted at the end of an arm which so moves in synchronism with the hub so as to move the head generally radially with respect to the hub. Such apparatus is particularly suitable for use with the smaller size flexible discs now 20 employed for some purposes and having a diameter less than 100 mm.

An apparatus is known wherein a hub is provided with a peg engaging with a radially offset hole in the disc to rotate with it and 25 wherein the disc is rotated by a pair of opposed rollers, which nip the disc and one of which is connected to an electric motor. In this way, therefore, it is the hub that is driven by the disc, once the peg moves into the hole in the 30 rotating disc. In this apparatus, a worm is formed on the hub and engages with a worm wheel connected in turn to a screw which, by engaging with a lead nut, controls the radial movement of the writing head in synchronism 35 with the rotation of the disc and the hub.

The apparatus, however, has the disadvantage that the magnetic disc is directly coupled to the rollers and is therefore subject to considerable wear in the part in contact with them, 40 moreover, the synchronization between the head and the disc suffers from the effects of the inevitable backlash in the worm and worm wheel and the control screw and lead nut.

The object of the invention is to provide a 45 disc for use with an improved, simpler disc drive arrangement whereby synchronization between the disc and the hub is ensured.

According to the present invention, there is

provided a flexible magnetic disc for use with apparatus for writing and/or reading binary information along a spiral path on the disc by means of a writing and/or reading head movable radially with respect to the disc in synchronism with disc rotation, the disc having a central hole dimensioned to engage closely on a hub of predetermined diameter and a radial notch opening out of the hole, the circumferential width of the notch being substantially one-half of the said diameter.

The invention will be described in more detail, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is an exploded perspective view of an embodiment of the invention;

Figure 2 is a plan view, partly in section, 65 of the apparatus of Figure 1;

Figure 3 is a partial section on the line III-III in Figure 2;

Figure 4 is a front view, partly in section, 70 of the apparatus of Figure 1;

Figure 5 is a section on the line V-V in Figure 4; and

Figure 6 is a block diagram of a control circuit of the apparatus of Figure 1.

Features of the apparatus form the subject matter of our application 8376/78 (Serial No 1 601 623) out of which this application is divided.

The apparatus embodying the present invention is adapted to write and/or read binary information on a disc 10 (Figure 1) of flexible type constituted by a thin plastics base support with a diameter of about 64 mm covered with a layer of magnetizable material, for example iron oxide. The disc 10 is provided with a through central hole 11 having a diameter of about 10 mm adjacent which there is formed a radial notch 12 3 mm deep radially, with a 5 mm circumferential width and defined by a circular edge concentric with the hole 11. The apparatus comprises a base plate 15 having two lateral lugs 16 and 17 in which a spindle 18 is pivoted. On this spindle 18 is pivoted a holder 19 made, for example, of plastics material and shaped so as to present a slot 20 into which the disc 10 to be written

50

55

60

65

70

75

80

85

90

95

on and/or read can be inserted. A protective cover 25 is also pivoted on the spindle 18 by means of two lugs 22 and 23.

5 A circular plate 27 with a diameter of about 65 mm is mounted rotatably by means of a central pivot 26 in a hole 28 in the base plate 15 (Figures 2 and 3). The plate 27 is shaped so as to have a top hub 30 having an internal cavity 31 and provided with a through vertical slot 29. Coaxially with the hub 30 and fixed thereto there is mounted a bush 32 having a vertical slot 33, this being also a through slot and being aligned with the slot 29 of the hub 30.

10 15 A dog 35 about 2 mm wide and adapted to engage with the radial notch 12 of the disc 10 is mounted with play on the top part of the pivot 26 and is guided by the slots 29 and 33. A spring 36 mounted on the pivot 26 keeps the dog 35 biased against a top shoulder 37 of the pivot 26.

15 20 On a first surface 40 at the bottom of the plate 27 there is formed, e.g. by moulding, a spiral guide 41 of triangular section having a constant pitch of about 1.2 mm and a developed length of about 2 m.

25 30 On a second surface 42 opposed to the bottom surface 40 there is formed, also by moulding, but projecting with respect to the surface 42, a second spiral guide 43 of rectangular section which, in contrast to the first guide, has a single turn of opposite hand arriving in the proximity of the periphery of the plate 27 from the hub 30. A rubber ring 50 is fixed to the outer edge of the plate 27. A shaft 51 of an electric motor 52 mounted on the base plate 15 is constantly in contact with the ring 50 to set the plate 27 and the disc 10 in rotation selectively.

35 40 A head 56 for magnetic writing and/or reading of information on the disc 10 is mounted at the end 57 of an arm 58 which is pivoted by means of its shaft 59 in a hole 60 in the plate 15 (Figure 4). The arm 58 bears a plate 62 fixed to the bottom thereof, the plate 62 bearing a metal cusp or point 63 adapted to engage in the groove of the spiral guide 41. Fixed to the bottom of the end 57 is a stud 64 adapted to co-operate with the upper spiral guide 43 of the plate 27.

45 50 A helical spring 65 disposed coaxially with the shaft 59 normally keeps the arm 58 biased upwardly and the point 63 engaged in the groove of the guide 41.

55 60 Pivoted on a pin 66 of the arm 58 by means of its two lugs 68 and 69 is a lever 70 bearing at one end 71 a pressure element or presser 72 opposite the head 56. A spring 74 arranged around the pin 66 normally keeps the presser 72 biased towards the head 56.

65 70 Below the plate 15 and fixed to a support 76 there is arranged a solenoid 77 having its armature 78 connected by means of links 79 to a rocking lever 81. This lever 81 is pivoted on a pin 83 and has two projections 84 co-operating with a bottom shoulder 86 of a stem 87 connected to the shaft 59.

75 80 On the underside of the plate 62 (Figures 4 and 5) there is fixed a pin 90 which is housed in a slot 91 in the plate 15 and co-operates with the end 92 of a lever 93. The lever 93 is pivoted on a pin 94 on the bottom of the plate 15 and has its other end 96 in contact with a push button 97 of a microswitch 98 fixed to the plate 15.

85 90 A stop pin 99 is fixed to the plate 15 at the end 96 of the lever 93 for limiting the oscillations of the latter.

95 100 On the base plate 15 (Figure 4) there is mounted a U-shaped bracket 100 having an upper arm 101 to which a light emitter 102 is fixed and a lower arm 103 to which a photodetector 104 is fixed. In the plate 27 (Figure 2), at one end of the lower spiral 41, there is formed a through hole 105 which is brought below the light emitter 102 at each revolution of the plate 27.

105 110 The plate 62 has an end 62A adapted to interpose itself between the emitter 102 (Figure 4) and the photodetector 104.

115 120 The motor 52 is of the low inertia type and is adapted to be supplied in such manner that the angular speed of the plate 27 increases as the writing and/or reading head 56 moves from the periphery towards the centre of the disc 10; this is to cause the relative speed between the head 56 and the disc 10 to be substantially constant. In this way, constant packing of data from the peripheral tracks to the central tracks can be maintained for optimum utilization of the recording support.

125 130 For a strictly constant relative speed between the disc and the head, the supply voltage of the motor 52 would have to vary as a function of time in accordance with a rather complex law. It has been observed, however, that by means of the choice of a suitable voltage increasing linearly in time from a predetermined threshold, the variations in speed with respect to a mean value are sufficiently contained.

The supply circuit of the motor 52 (Figure 6) comprises a constant-voltage generator 107 and a linear ramp generator 108 which have their outputs connected to the inputs of an adder 109. The output of the adder 109 is connected to an input of an amplifier 110 having its output connected to one terminal of the motor 52. The other terminal of the motor 52 is earthed through a resistor R_e having a value equal to the internal resistance of the motor 52 itself. At one end of the resistor R_e there is picked off a positive feedback signal which is sent to a second input of the amplifier 110 to be added algebraically to the signal arriving from the adder 109. At a third input of the amplifier there arrives a start/stop signal ST for the motor 52 which enables the amplifier.

An enabling signal AB which is provided from a flip-flop 106 is sent to the linear slope generator 108. The inputs of the flip-flop 106

is sent to the linear slope generator 108. The inputs of the flip-flop 106 are constituted by a reset signal RS generated by the microswitch 98, which is at 1 level when it is closed by the lever 93, and by the set signal VC generated by the photodetector 104, which is at 1 level when it is activated by the light of the emitter 102.

The apparatus operates in the following manner. In the inoperative position, the plate 27 is stationary and the arm 58 is disposed shifted towards the periphery of the plate (Figures 1 and 2) and upwardly (Figure 3) owing to the action of the spring 65; the metal point 63 is disposed so that it is inserted in the spiral guide 41.

Let it be assumed that it is desired to write and/or read binary information on a magnetic disc 10. To introduce the disc 10 into the apparatus, the holder 19 is raised with respect to the plate 27 (this position being shown in chain-dotted lines in Figure 4). In this position, the level 70 bearing the pressure element 72 is raised with respect to the arm 58 through the action of the holder 19.

The disc is introduced into the slot 20 of the holder 19 and then brought into axial alignment with the hub 30 by lowering the holder 19. In this position, the disc 10 is pressed against the writing and/or reading head 56 by the presser 72 under the action of the spring 74. If the notch 12 is above the dog 35, it is immediately engaged by the dog, while in the opposite event the disc 10 pushes the dog 35 downwardly in opposition to the action of the spring 36.

The electric motor 52 is then supplied and sets the plate 27 in rotation. More particularly, the signal ST (Figure 6) is brought to 1 level in any known manner and enables the amplifier 110. Initially, since the signal VC is at 0 level and the signal RS is at 1 level, the signal AB is at 0 level and the slope generator 108 does not supply any voltage; only the voltage supplied by the generator 107 therefore reaches the amplifier 110 and the motor 52 imparts to the plate 27 a constant angular speed proportional to the voltage of the generator 107. If the dog 35 is not already engaged, because of the play present between the dog 35 and the notch 12 it already engages with the radial notch 12 from the first revolution of the plate 27, the play present between the dog 35 and the notch 12 itself being considerable, and thus causes the disc 10 to rotate. When the plate 27 rotates on its pivot 26, the arm 58 also rotates on its shaft 59, since the metal point 63 is inserted in the spiral guide 41; in this way, the head 56 moves radially with respect to the disc 10 in synchronism with the rotation of the latter and with each angular position of the disc there is associated a precise angular position of the head.

After two revolutions of the plate 27, the pin 90 of the plate 62 disengages itself from the lever 93, the microswitch 98 (Figure 5) opens through the action of the internal spring of its push button 97 and the signal RS goes to 0 level.

Moreover, the end 106 of the plate 62 (Figure 2) moves away from the photodetector 104 and as soon as the hole 105 passes below the emitter 102 the signal VC changes to 1 level. This signal VC also acts as a start signal for the writing and/or reading of data on the disc 10.

The signal VC, on changing to 1 level, changes over the flip-flop 106. The signal AB, going to 1 level, then enables the generator 108, which supplies a voltage increasing linearly as a function of time to the amplifier 110 through the adder 109. In this way, the angular speed of the plate 27 increases linearly as the head 56 is brought towards the centre of the plate 27 and the relative speed between the head 56 and the disc 10 is maintained substantially constant. More particularly, the data utilizes a zone of the disc in which the ratio between the maximum diameter and the minimum diameter is 2.1 : 1 and the additional voltage supplied by the slope generator 108 when the head is on the minimum diameter is equal to 1.1 times the voltage of the generator 107. In this way, the relative speed is slightly lower than the nominal value when the head is in the outermost zones and slightly higher when the head is in the central zones of the disc 10.

The packing of the data along the recording track is substantially constant in this way and equal to about 38.5 bits/mm.

When writing and/or reading has taken place, irrespective of the position reached by the head 56 with respect to the disc 10, the electromagnet 77 is energized in known manner and, attracting the armature 78, produces the lowering of the arm 58 through the medium of the links 79 and the lever 81 in opposition to the action of the spring 59. In this way, the head 56 separates itself from the disc 10, the point 63 leaves the guide 41 and the stud 64 co-operates with the upper spiral 43. Under the effect of the rotation of the plate 27, the spiral 43 brings the arms 58 towards the inoperative position, and, when the bottom pin 90 co-operates with the end 92 of the lever 93, the latter, turning anticlockwise, closes the microswitch 98 and the signal RS returns to 1 level, resetting the flip-flop 106. The signal RS also commands the deenergization of the electromagnet 77. The motor 52 is then stopped, bringing the signal ST to 0 level.

The apparatus is thus brought back to the initial position and the disc 10 can be withdrawn from the holder 19.

To prevent the disc 10 being damaged when it is not inserted in the apparatus, it is normally contained in an envelope 200 (Figure 1) of thin card which has a side 201 a little larger than the diameter of the disc 10 and a larger side 202 substantially larger than the diameter.

The envelope 200 comprises an upper part 205 of substantially rectangular shape to which is fixed a label 207 indicating the contents of the disc and a lower part 206 of substantially square shape into which the disc 10 is inserted

70

75

80

85

90

95

100

105

110

115

120

125

130

from an intermediate slit 203.

The lower part 206 is provided with a circular opening 204 for viewing the disc contained therein. In this way there can be written on the 5 label 207, without any special expedients being employed, all the details relating to the information recorded on the disc, without damaging the magnetic support, and the envelope can moreover be handled easily to be filed or 10 enclosed with a document if necessary.

WHAT WE CLAIM IS:

1. A flexible magnetic disc for use with apparatus for writing and/or reading binary information along a spiral path on the disc 15 by means of a writing and/or reading head movable radially with respect to the disc in synchronism with disc rotation, the disc having a central hole dimensioned to engage closely on a hub of predetermined diameter and a 20 radial notch opening out of the hole, the circumferential width of the notch being substantially one-half of the said diameter.
2. A disc according to claim 1, the disc

diameter being about six times the first said diameter.

3. A disc according to claim 1 or 2, the hole having a diameter of about 10 mm.

4. A disc according to claim 1, 2 or 3, the radial depth of the notch being about 3 mm.

5. An assembly of a disc according to any preceding claim and a hub and dog for the said apparatus, the hub having the said predetermined diameter and the dog having a width of substantially two-fifths of the circumferential width of the notch, being fixed 35 radially and shiftably axially of the hub and being axially biased to engage loosely in the notch on the fly during the first revolution of the hub.

40

REDDIE & GROSE

Chartered Patent Agents

16 Theobalds Road

London

WC1X 8PL

45

Agents for the Applicants

FIG. 1

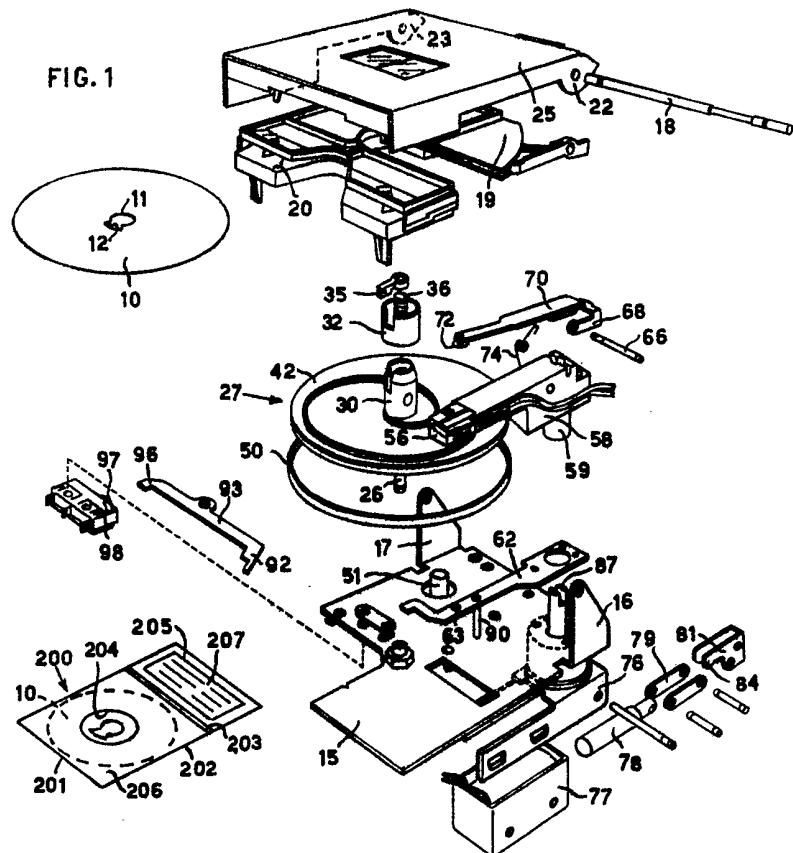
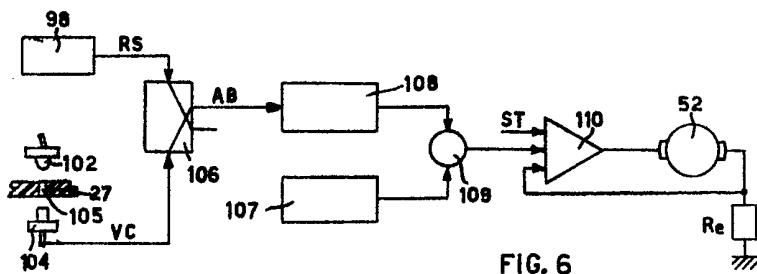
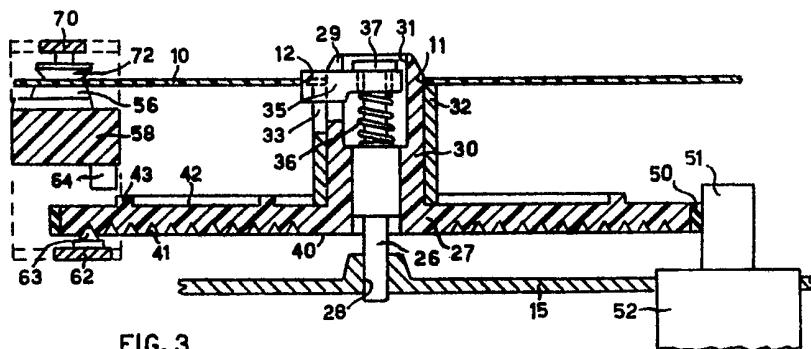
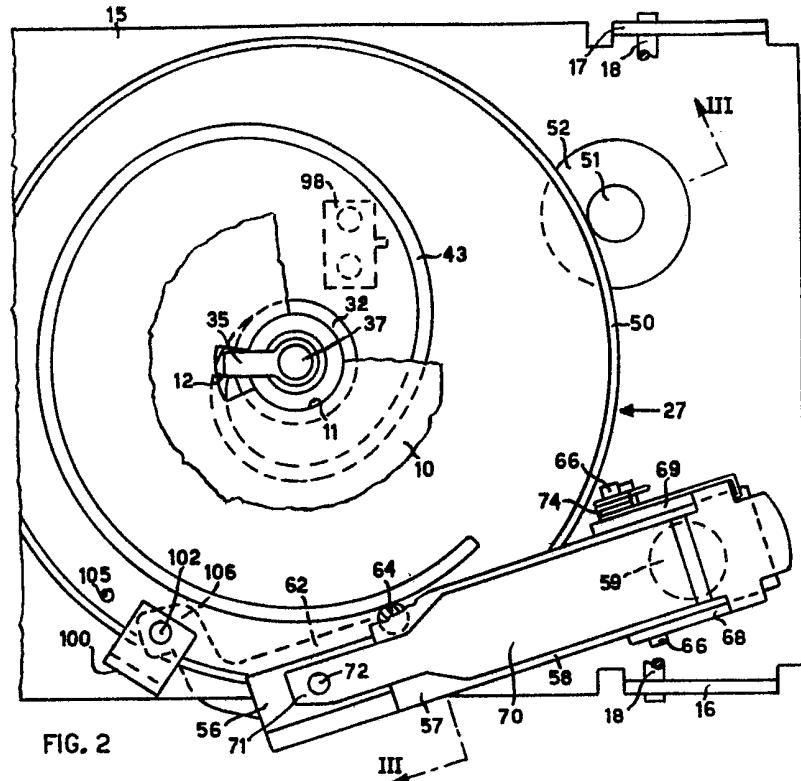





FIG. 6

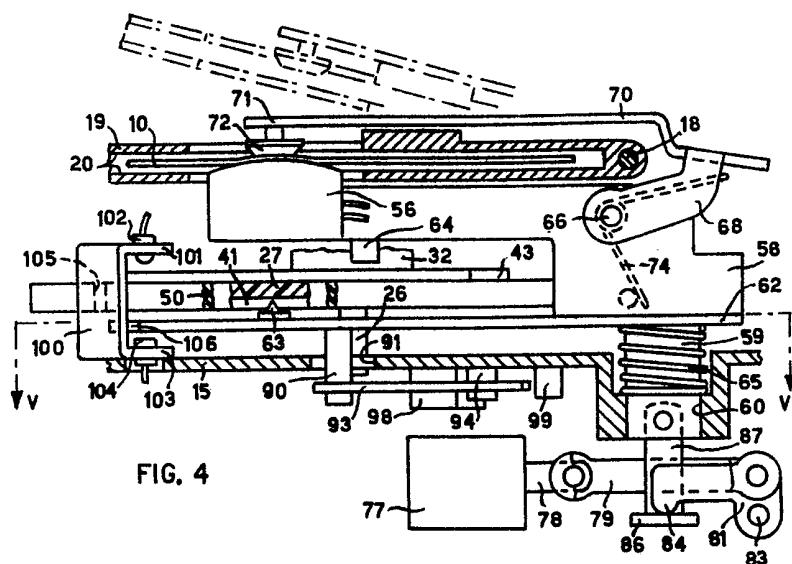


FIG. 4

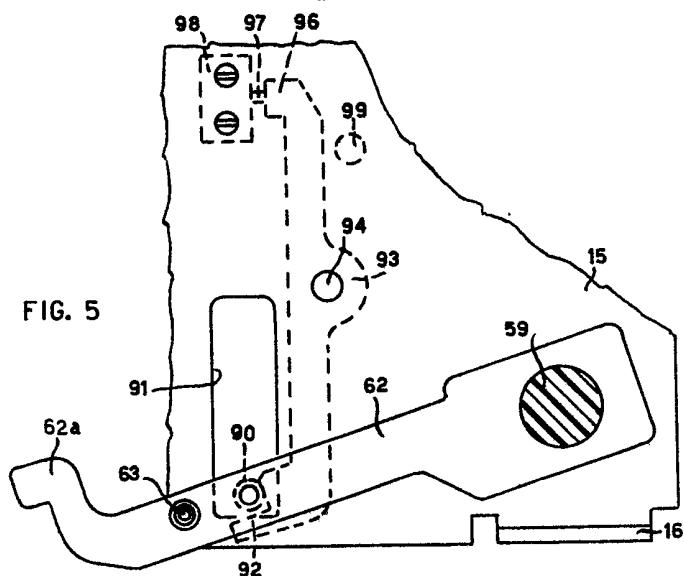


FIG. 5