

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2009238701 B2

- (54) Title
Multimeric forms of antimicrobial peptides
- (51) International Patent Classification(s)
C07K 14/47 (2006.01) C07K 14/435 (2006.01)
A61K 38/17 (2006.01) C12N 15/00 (2006.01)
A61P 31/04 (2006.01)
- (21) Application No: **2009238701** (22) Date of Filing: **2009.04.21**
- (87) WIPO No: **WO09/131548**
- (30) Priority Data
- (31) Number **61/046,584** (32) Date **2008.04.21** (33) Country **US**
- (43) Publication Date: **2009.10.29**
(44) Accepted Journal Date: **2013.06.20**
- (71) Applicant(s)
Agency for Science, Technology and Research; Singapore Health Services Pte Ltd
- (72) Inventor(s)
Liu, Shouping;Beuerman, Roger W.;Tan, Donald;Zhou, Lei;Li, Jing;Verma, Chandra Shekhar
- (74) Agent / Attorney
Cullens Patent and Trade Mark Attorneys, Level 32 239 George Street, Brisbane, QLD, 4000
- (56) Related Art
WO 2007/025178 A2 (UNIV NEW YORK) 1 March 2007
ARNUSCH C J ET AL: "Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides", BIOCHEMISTRY 20071120 AMERICAN CHEMICAL SOCIETY
US, vol. 46, no. 46, 20 November 2007, pages 13437-13442
SCHIBLI David J et al. The Journal of Biological Chemistry, Vol. 277, No. 10, Issue of March 8, pp. 8279-8289, 2002
WO 2007/007116 A1 (ARES TRADING SA) 18 January 2007
WO 2007/126392 A1 (SINGAPORE HEALTH SERVICES PTE LTD) 8 November 2007
HOOVER, D. M. ET AL "The Structure of Human B-Defensin-2 Shows Evidence of Higher Order Oligomerization" The Journal of Biological Chemistry, Vol. 275, No. 42, Issue of October 20, pp. 32911-32918, 2000
CAMPOPIANO, D. J. et al "Structure-Activity Relationships in Defensin Dimers" The Journal of Biological Chemistry, Vol. 279, No. 47, Issue of November 19, pp. 48671-48679, 2004

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 October 2009 (29.10.2009)

(10) International Publication Number
WO 2009/131548 A8

(51) International Patent Classification:

C07K 14/47 (2006.01) A61K 38/17 (2006.01)
C07K 14/435 (2006.01) A61P 31/04 (2006.01)
C12N 15/00 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/SG2009/000144

(22) International Filing Date:

21 April 2009 (21.04.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/046,584 21 April 2008 (21.04.2008) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants (for all designated States except US): SINGAPORE HEALTH SERVICES PTE LTD [SG/SG]; 31 Third Hospital Avenue, Bowyer Block C, #03-03, Singapore 168753 (SG). AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH [SG/SG]; 1 Fusionopolis Way, #20-01 Connexis, Singapore 138632 (SG).

Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))
— with sequence listing part of description (Rule 5.2(a))

(48) Date of publication of this corrected version:

11 March 2010

(15) Information about Corrections:

see Notice of 11 March 2010

Previous Correction:

see Notice of 14 January 2010

(72) Inventors; and

(75) Inventors/Applicants (for US only): BEUERMAN, Roger, W. [US/SG]; 11 Third Hospital Avenue, Singapore 168751 (SG). LIU, Shouping [SG/SG]; 11 Third Hospital Avenue, Singapore 168751 (SG). LI, Jing [CN/SG]; 11 Third Hospital Avenue, Singapore 168751 (SG). ZHOU, Lei [SG/SG]; 11 Third Hospital Avenue, Singapore 168751 (SG). VERMA, Chandra, Shekhar [IN/SG]; 2 Normanton Park, #11-151, Singapore 118999 (SG). TAN, Donald [SG/SG]; 11 Third Hospital Avenue, Singapore 168751 (SG).

(74) Agent: MATTEUCCI, Gianfranco; Lloyd Wise, Tiong Pagar, P O Box 636, Singapore 910816 (SG).

(54) Title: MULTIMERIC FORMS OF ANTIMICROBIAL PEPTIDES

(57) Abstract: The invention relates to multimeric forms of antimicrobial peptides, for example, defensin peptides. The multimeric forms of defensin peptides possess antimicrobial activity and may be formulated into antimicrobial compositions, pharmaceutical compositions, eyedrop composition, contact lens solution compositions for coating medical devices and the like. The invention also relates to the use of these multimeric forms of peptides, e.g. multimeric forms of defensin peptides for inhibiting and/or reducing the growth of microorganisms in general, including in a host. The invention further relates to a method of preparing multimers of peptides derived from defensins, for example hBD3.

WO 2009/131548 A8

MULTIMERIC FORMS OF ANTIMICROBIAL PEPTIDES

Field of the invention

The present invention relates to novel multimeric forms of peptides with antimicrobial properties. The invention also relates to methods of making these

5 multimers. The invention relates to the use of these multimers for inhibiting the growth of a broad spectrum of microorganisms. The invention further relates to compositions comprising these peptides.

Background of the invention

10 Defensins are cationic antimicrobial peptides and are components of the innate immune system. In humans, the alpha defensins are produced by neutrophils or the Paneth cells of the intestinal tract while the beta defensins are produced by epithelial cells. Defensins have broad spectrum anti-microbial properties against gram negative and gram positive bacteria, some fungi as 15 well as enveloped viruses.

The exact mechanism for the anti-microbial properties is not completely understood but the hydrophobicity and the net positive charge of the peptides appear to be important in its interaction and disruption of the microbial cell wall and cell membrane.

20 Several studies suggest that full length defensins may form dimers at a bacterial membrane but non-covalent forms (Hoover *et al.*, 2000; Hoover *et al.*, 2001 Schibili *et al.*, 2002) and one study suggests that dimerisation may affect antimicrobial properties (Campopiano *et al.*, 2004). However, the properties of these dimers were not studied or characterised in detail.

25 The development of antibiotic resistance is a challenge in the development of antibiotics. Although the antimicrobial activity of defensins is not completely understood, the possible mode of action of defensins suggests that microbial resistance may develop very slowly or minimally and the potential of using

defensins as antimicrobials is promising. However, defensins are also known to have toxicity to host cells, including mammalian cells which may limit their application as antimicrobials.

It is therefore desirable to develop new peptide derivatives of defensins with

5 high antimicrobial activity and low host cell toxicity.

Summary of the invention

The present invention relates to isolated multimers derived from hBD3 (SEQ ID NO: 1).

10 hBD3 (SEQ ID NO: 1)

GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK

According to a first aspect, the present invention relates to an isolated

multimer of defensin peptides of formula $(U)_n$, wherein U is a peptide

15 comprising SEQ ID NO: 2 or a fragment or variant thereof and $n \geq 2$.

SEQ ID NO: 2

GIINTLQKYYXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

X comprises any amino acid; Z comprises any amino acid or may be absent.

For example, Z may include but is not limited to lysine, ornithine or arginine. In

20 particular, Z may be lysine.

According to another aspect, the present invention relates to an isolated

multimer comprising at least two units of a peptide U, wherein the peptide U

comprises SEQ ID NO: 2 or a fragment or variant thereof.

The peptide U is repeated in the multimer. In particular, the repeating peptides

25 U are linked together covalently. Further, the peptides U may be linked

together through at least one amino acid B. Each B may be an amino acid

having at least two amine groups. For example, each B may include but is not

limited to lysine, ornithine or arginine.

The repeating unit or the peptide U in any multimer according to the present invention may be any peptide described in WO 2007/126392.

The peptide U may include peptide fragments derived from SEQ ID NO: 2. The fragments may be fragments of any length derived from SEQ ID NO: 2.

- 5 In particular, the peptide U may comprise SEQ ID NO: 3 or a fragment or variant thereof.

SEQ ID NO: 3

GIINTLQKYYXRVRGGRXAVLSLPKEEQIGKXSTRGRKXXRR
X comprises any amino acid.

10

The peptide U of the multimer may have a charge of +1 to +11.

According to another aspect, the invention relates to an isolated multimer of

formula $(U)_n B_m Z_j$, wherein U comprises SEQ ID NO: 3 or a fragment or variant

15

thereof, each B comprises at least one amino acid residue comprising at least two amine groups, Z comprises any amino acid, $n \geq 2$, $m \geq 1$ and $j \geq 0$. B may comprise an amino acid having at least two amine groups. In particular, each B includes but is not limited to lysine, ornithine or arginine.

According to one aspect of the invention, the B and Z in $(U)_n B_m Z_j$ may both

20

comprise lysine (K) and the formula may be expressed as $(U)_n K_m K_j$. According

to a further aspect, m may also equal the number $n-1$ and j may equal to 1 and

the formula of the multimer may be expressed as $(U)_n K_{n-1} K$ (or $(UK)_n$). The

peptide U in $(U)_n K_m K_j$ or $(U)_n K_{n-1} K$ may comprise SEQ ID NO: 3 or a fragment

or variant thereof.

25

The multimer(s) of the invention may be linear or branched. If the multimer $(U)_n$ is linear, the peptide U repeated n times may comprise SEQ ID NO: 2 or any fragment or variant of SEQ ID NO: 2.

For a branched multimer, for example the multimer $(U)_n B_m Z_j$, the multimer may be branched at the terminal $B_m Z_j$ residues.

The multimers according to the invention may comprise any number of repeating units of the peptide U. For example, the multimer may comprise 2 to 10, 2 to 20, 2 to 30 repeating units of the peptide U. Further, the multimer may be a dimer, trimer, tetramer, pentamer, hexamer, heptamer, octamer, nonamer 5 and decamer. In particular, n may be an even number. More in particular, n may comprise any number starting from 2 and increasing in multiples of 2.

Further, any amino acid residue of the multimer may comprise an amino acid having at least one protecting group. The protecting groups may comprise Boc, But, Fmoc, Pbf or any other protecting group.

10 The invention also relates to a method of preparing at least one multimer of the invention.

Accordingly, the invention relates to a method of preparing at least one multimer of formula $(U)_n$, wherein U is a peptide comprising SEQ ID NO: 2 or a fragment or variant thereof, the method comprising linking at least two units of 15 U together.

The multimer(s) of the invention may also be produced by recombinant DNA technology. Any part or the whole of the multimer(s) of the invention may be produced by recombinant DNA technology. For example, the peptide monomers may be synthesised separately by recombinant DNA methods and 20 then linked together to form multimers by chemical methods.

Accordingly, the present invention also relates to an isolated nucleic acid molecule encoding any part of or the whole of the multimer(s) of the invention. The nucleic acid molecule(s) may be inserted into a vector. Further, either the nucleic acid molecule(s) or the vector comprising the nucleic acid molecule(s) 25 may be introduced into a host cell for expressing any part of or the whole of the multimer(s) of the invention.

The multimer(s) of the invention may also be produced *de novo* by chemical synthesis. For example, the multimer(s) of the invention may be produced by a solid phase peptide synthesis (SPPS) method of the invention.

The invention also relates to a method of preparing at least one multimer of formula: $(U)_nB_mZ_j$, wherein U comprises SEQ ID NO: 3 or a fragment or variant thereof, each B comprises an amino acid comprising at least two amine groups, Z comprises any amino acid and $n \geq 2$, $m \geq 1$ and $j \geq 0$.

- 5 (i) providing at least one solid phase;
- 10 (ii) coupling at least a first amino acid Z to the solid phase;
- (iii) linking at least one protected amino acid residue B to the coupled first amino acid residue;
- 15 (iv) removing the protecting group(s) from the linked B residue(s);
- (v) providing additional chain extension by linking protected amino acid residues, according to the sequence of the peptide U in order from the C-terminus to the N-terminus, wherein after each linking, the protecting groups are removed for the next linking; and
- 20 (vi) terminating the linking of amino acid residues depending on the number of residues to be added.

The protected amino acid B comprises at least two side chains protected by 20 protecting groups. In particular, each B includes but is not limited to lysine, ornithine or arginine. The amino acid Z first coupled to the solid phase may also be but is not limited to lysine, ornithine or arginine.

The method may be extended to produce further multimers. For example, the 25 extended method to produce further multimers further comprises, after step (iv)

- (iv)(a) linking further protected B residues to the linked B residue(s);

+61 7 3229 3384

(iv)(b) removing the protecting group(s) from the B residues from (iv)(a);

(iv)(c) repeating step (iv)(a) and (iv)(b), or

(iv)(d) proceeding to step (v) and (vi).

The multimers formed depend on the number of amine groups in B. If the number of

- 5 amine groups in B is two, for example in lysine (K) or ornithine, the extended method may produce multimers increasing in multiples of two from the previous multimer. The multimers formed from the extended method will be four, eight, sixteen, thirty-two, sixty-four and so on.

If B is arginine (R) which has three amine groups (two primary amine groups and one

- 10 secondary amine group), the first multimer formed will be a trimer. The subsequent multimers formed using arginine will increase in multiples of three.

For each round of multimerisation, combinations of lysine or ornithine with arginine or vice versa may be used for B, and multimers with different number of repeating units may be produced.

- 15 Following completion of the synthesis of the multimer, the multimer may be released from the solid phase.

Definitions of the specific embodiments of the invention as claimed herein follow.

According to a first embodiment of the invention, there is provided an isolated multimer of defensin peptides of formula $(U)_n B_m Z_j$, wherein U comprises any one of SEQ ID

- 20 NOs: 3-58, each B comprises at least one amino acid having at least two amine groups, Z comprises any amino acid, $m \geq 1$ and $j \geq 0$, wherein the peptides U are linked together covalently through at least one amino acid B and the multimer is branched at the terminal $B_m Z_j$ residues.

According to a second embodiment of the invention, there is provided an isolated

- 25 nucleic acid molecule encoding any part of or the whole of the multimer according to the first embodiment.

+61 7 3229 3384

2009238701 20 May 2013

6a

According to a third embodiment of the invention, there is provided a vector comprising the nucleic acid molecule according to the second embodiment.

According to a fourth embodiment of the invention, there is provided a host cell comprising the nucleic acid molecule according to the second embodiment or the 5 vector according to the third embodiment.

According to a fifth embodiment of the invention, there is provided a method of preparing the multimer according to the first embodiment comprising:

- (i) providing at least one solid phase;
- (ii) coupling at least a first amino acid Z to the solid phase;
- 0 (iii) linking at least one protected amino acid residue B to the coupled Z;
- (iv) removing the protecting group(s) from the linked B amino acid residue(s);
- (v) providing additional chain extension by linking protected amino acid residues, according to the sequence of the peptide U from the C-terminus to the N-terminus, wherein after each linking, the protecting groups are removed for 5 the next linking;
- (vi) terminating the linking of amino acid residues depending on the number of residues to be added; and
- (vii) optionally, releasing the multimer from the solid phase.

According to a sixth embodiment of the invention, there is provided an isolated peptide 20 multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$, wherein U^1 and U^2 comprises a peptide sequence with $U^1 \neq U^2$, C and B each comprises an amino acid with at least two amine groups, Z comprises any amino acid, $n = 2^x$, where $x = 0$ or a positive integer, $m = 1$ or 0, and wherein U^1 or U^2 comprises SEQ ID NO: 2, wherein the peptide is branched at C.

+61 7 3229 3384

6b

According to a seventh embodiment of the invention, there is provided an isolated peptide trimer of formula $U^3U^2CU^1Z$; wherein U^1 , U^2 , U^3 each comprises a peptide; C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid, and wherein U^1 , U^2 or U^3 each comprises SEQ ID NO: 2, and wherein the peptide is branched at C.

5

According to an eighth embodiment of the invention, there is provided use of the isolated multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment, in eye drop composition(s) and/or solution(s) and/or contact lens solution(s).

0 According to a ninth embodiment of the invention, there is provided an antimicrobial composition comprising the multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment.

5 According to a tenth embodiment of the invention, there is provided a pharmaceutical composition comprising the multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment.

According to an eleventh embodiment of the invention, there is provided a contact lens solution comprising the multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment and/or the antimicrobial composition according to the ninth embodiment.

20 According to a twelfth embodiment of the invention, there is provided a composition capable of coating a device comprising the multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment.

According to a thirteenth embodiment of the invention, there is provided a device coated with the composition according to the twelfth embodiment.

25 According to a fourteenth embodiment of the invention, there is provided a method of inhibiting and/or reducing the growth of at least one microorganism comprising contacting the microorganism with at least one multimer according to the

+61 7 3229 3384

6c

2009238701 20 May 2013

first or sixth embodiment, or the trimer of the seventh embodiment and/or the antimicrobial composition according to the ninth embodiment.

According to a fifteenth embodiment of the invention, there is provided a method of treating at least one microbial infection comprising administering to a subject at least 5 one multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment, at least one antimicrobial composition according to the ninth embodiment and/or at least one pharmaceutical composition according to tenth embodiment.

According to a sixteenth embodiment of the invention, there is provided a method of inhibiting and/or reducing the growth of at least one microorganism in a subject 0 comprising administering to the subject at least one multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment, at least one antimicrobial composition according to the ninth embodiment and/or at least one pharmaceutical composition according to the tenth embodiment.

According to a seventeenth embodiment of the invention, there is provided use of a 5 multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment for the manufacture of an antimicrobial composition.

According to an eighteenth embodiment of the invention, there is provided use of a multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment for the manufacture of a medicament for treating microbial infections.

20 According to a nineteenth embodiment of the invention, there is provided use of a multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment for the manufacture of an eye drop composition and/or solution and/or contact lens solution.

According to a twentieth embodiment of the invention, there is provided use of a 25 multimer according to the first or sixth embodiment, or the trimer of the seventh embodiment for the manufacture of a composition for coating a device.

+61 7 3229 3384

6d

2009238701 20 May 2013

According to a twenty first embodiment of the invention, there is provided a method of preparing a peptide multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$ wherein each of U^1 and U^2 comprises a peptide with $U^1 \neq U^2$, $n = 2^x$ where $x = 0$ or a positive integer, $m = 1$ or 0, wherein U^1 or U^2 comprises SEQ ID NO: 2, wherein the peptide is branched at C;

5 comprising the steps of:

- (i) providing at least one solid phase;
- (ii) coupling at least a first amino acid Z to the solid phase;
- (iii) optionally linking at least one amino acid B to the coupled Z;
- (iv) linking at least one protected amino acid C to Z or B; wherein C comprises at least 0 two differentially protected groups;
- (v) removing a first protecting group from the linked amino acid C to expose a first reactive side chain;
- (vi) providing chain extension of a first peptide U^1 to the first reactive side chain of C;
- (vii) removing a second protecting group from the linked B amino acid to expose at 5 least a second reactive side chain; and
- (viii) providing chain extension of a second peptide U^2 to the second reactive side chain of C.

According to a twenty second embodiment of the invention, there is provided a method of preparing a peptide trimer of formula $U^3U^2CU^1Z$, wherein U^1 , U^2 and U^3 each 20 comprises a peptide, C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid, wherein U^1 , U^2 or U^3 each comprises SEQ ID NO: 2, and wherein the peptide is branched at C, the method comprising the steps of:

- (i) providing at least one solid phase;
 - (ii) coupling at least a first amino acid Z to the solid phase; and
 - 25 (iii) providing chain extension of peptide U^1 to Z;
- wherein, (A) the peptide trimer is a heterogeneous peptide of formula $U^3U^2(C)U^1Z$, the method further comprises:

+61 7 3229 3384

2009238701 20 May 2013

6e

- (iv) linking a differentially protected amino acid C to an amino acid of peptide U¹;
 - (v) removing a first protecting group from the linked amino acid C;
 - (vi) providing for chain extension of peptide U² to amino acid C;
 - (vii) removing a second protecting group from the linked amino acid C; and
- 5 (viii) providing for chain extension of peptide U³ to amino acid C;
- (B) U² = U³ = U¹, C = B, and the peptide trimer comprises formula (U¹)₂BU¹Z, the method further comprises:
- (iv) linking a protected amino acid B to an amino acid of peptide U¹;
 - (v) removing the protecting groups from the linked amino acid B; and
- 0 (vi) providing for chain extension of two peptides U¹ to the amino acid B; or
- (C) U² = U³ ≠ U¹, C = B, and the peptide comprises formula (U²)₂ BU¹Z, the method further comprises:
- (iv) linking a protected amino acid B to an amino acid of peptide U¹;
 - (v) removing the protecting groups from the linked amino acid B; and
- 5 (vi) providing for chain extension of at least two units of peptide U² to amino acid B.

The term 'comprise' and variants of the term such as 'comprises' or 'comprising' are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.

- 20 Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

Brief description of the figures

- Figure 1 illustrates the structures of the protected lysine residue Lys(Fmoc), the V2 monomer and the V2 dimer. The lysine (K) residue in bold shows the position which 25 Lys(Fmoc) were incorporated during the synthesis.

+61 7 3229 3384

6f

2009238701 20 May 2013

Figure 2 illustrates the synthesis of the V2 dimer by solid-phase peptide synthesis (SPPS).

Step (i) illustrates the removal of protecting group using 20% piperidine in DMF (N,N-Dimethylformamide).

[Text continues on page 7.]

Step (ii) illustrates the coupling reactions with 0.5 M HBTU (*N*-[1*H*-benzotriazol-1-yl]-(dimethylamino)methylene)-*N*-methylmethanaminium), 0.5 M HOBT (N-hydroxybenzotriazole), 2 M DIEA (Diisopropylethylamine) in NMP (N-methylpyrrolidone).

- 5 Fmoc(Lys) is coupled to the lysine residue bound to the resin. Step (i) is repeated. Two arginine residues (R) are then added to each chain.

Step (iii) illustrates chain extension comprising six cycles of SPPS with 0.5 M HBTU/0.5 M HOBT/2 M DIEA to incorporate the remaining amino acids of the V2 dimer.

- 10 Step (iv) illustrates the cleavage reaction to release the dimer from the resin using the cleavage agent 90%TFA (trifluoroacetic acid), 5.0% phenol, 1.5% water, 1.0% TIS (triisopropyl silane), 2.5% EDT (ethane dithiol).

RGRKVVRR (SEQ ID NO: 44) is the repeated in the dimer.

- 15 Figure 3 illustrates that the SPPS method can be used to form multimers increasing in multiples of 2. For example, dimers, tetramers, octamers and further multimers wherein the number of monomer units increases in multiples of two may be produced. The lysine (K) residue in bold italics shows the position which Lys(Fmoc) were incorporated during the synthesis.

The sequences in Figure 3 are:

- 20 RGRKVVRRKK (SEQ ID NO: 45)

RGRKVVRR (SEQ ID NO: 46)

- Figure 4 is a graph which illustrates that the V2 dimer does not show cytotoxicity toward human conjunctival epithelial cells in comparison with native hBD3. The results are from four independent experiments and data 25 points show the mean and standard deviations. The X axis indicates the peptide concentration in μ g/ml and the Y axis indicates the % cell viability.

Figure 5 illustrates the haemolytic effects of wt hBD3 and its C-terminus peptides on rabbit erythrocytes.

Figure 6 illustrates the cytotoxicity effects of wt hBFD3 and its C-terminus peptides on human conjunctival epithelial cells.

- 5 Figure 7 illustrates an exemplification of a method of preparing a heterodimer.

The sequences in Figure 7 are:

RGRKVVRR (SEQ ID NO: 44)

RGRKVVRRVV (SEQ ID NO: 46)

- 10 Figure 8 illustrates an exemplification of a method of preparing a heterotetramer.

The sequences in Figure 8 are:

RRVVKRGRK (SEQ ID NO: 58)

RGRKVVRR (SEQ ID NO: 44)

RGRKVVRRVV (SEQ ID NO: 46)

- 15 Figure 9 illustrates an exemplification of a method of preparing a homogeneous tetramer.

Definitions

Where X is found in a peptide sequence or formula, X represents any amino acid, including protected cysteine residues including but not limited to C(Acm),

- 20 C(But), C(Cam), C(t-Buthio), C(Bzl), C(4-MeO-Bzl) and C(Mmt).

Variant of a peptide or multimer refers to variations in a peptide sequence (of the multimer) wherein one or more amino acids may be substituted with other amino acids. The substitution is usually conservative, such as with amino acids that has similar properties. The variant(s) generally maintain a net

charge of +1 to +11. The variant(s) are generally active and have good antimicrobial properties and low cytotoxicity.

A protected amino acid is an amino acid with one or more of its reactive groups modified with an inert molecule, to reduce and/or prevent chemical

5 reactions of the reactive group.

Detailed description of the invention

According to a first aspect, the present invention relates to an isolated multimer of defensin peptides of formula $(U)_n$, wherein U is a peptide comprising SEQ ID NO: 2 or a fragment or variant thereof and $n \geq 2$.

10 SEQ ID NO: 2
GIINTLQKYYXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

X may comprise any amino acid; Z comprises any amino acid or may be absent. For example, Z may include but is not limited to lysine, ornithine or arginine. In particular, Z may be lysine.

15 According to another aspect, the present invention provides an isolated multimer comprising at least two units of a peptide U, wherein the peptide U comprises SEQ ID NO: 2 or a fragment or variant thereof.

The peptide U is repeated in the multimer. In particular, the repeating peptides U are linked together covalently. The peptides U may be linked together 20 through at least one amino acid B. B may comprise an amino acid having at least two amine groups. For example, B may include but is not limited to lysine, ornithine or arginine.

The repeating unit or the peptide U in any multimer according to the present invention may be any peptide described in WO 2007/126392.

25 The peptide U may include peptide fragments derived from SEQ ID NO: 2. The fragments may be fragments of any length derived from SEQ ID NO: 2. In

particular, the peptide U may comprise SEQ ID NO: 3 or fragment or variant thereof.

SEQ ID NO: 3

GIINTLQKYYXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRR

5 X comprises any amino acid.

The peptide U of the multimer may have a charge of +1 to +11.

Further, the peptide U may further comprise any one of SEQ ID NOs: 4 to 58 or fragment or variant thereof.

10 SEQ ID NO: 4 (38 aa peptide derived from hBD3 C terminus)

KYYXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 5 (36 aa peptide derived from hBD3 C terminus)

YXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

15 X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 6 (40 aa peptide derived from hBD3 C terminus)

LQKYYXRVRGGRXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 7 (29 aa peptide derived from hBD3 C terminus)

20 RXAVLSXLPKEEQIGKXSTRGRKXXRRZZ

X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 8

KEEQIGKXSTRGRKXXRRZZ (20 aa peptide derived from hBD3 C terminus)

X comprises any amino acid; Z comprises any amino acid or may be absent.

25 SEQ ID NO: 9

KXSTRGRKXXRRZZ (14 aa peptide derived from hBD3 C terminus)

X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 10 (19 aa peptide derived from hBD3 aa 8-26)

KYYXRVRGGRXAVLSXLPK

30 X comprises any amino acid

SEQ ID NO: 11

GIINTLQKYYXRVRGGR (17 aa peptide derived from hBD3 N-terminus)

X comprises any amino acid

35

SEQ ID NO: 12 (full length hBD3 derived peptide, C replaced with W)

GIINTLQKYYWRVRGGRWAVLSWLPKEEQIGKWSTRGRKWWRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 13 (full length hBD3 derived peptide, C replaced F)
GIINTLQKYYFRVRGGGRFAVLSQLPKEEQIGKFSTRGRKFFRRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 14 (full length hBD3 derived peptide, C replaced Y)
5 GIINTLQKYYYRVRGGRYAVLSYLPKEEQIGKYSTRGRKYYRRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 15 (full length hBD3 derived peptide, C replaced with S)
GIINTLQKYYSRVRGGRSAVLSSLPKEEQIGKSSTRGRKSSRRZZ
Z comprises any amino acid or may be absent.

10 SEQ ID NO: 16 (full length hBD3 derived peptide, C replaced with A)
GIINTLQKYYARVRGGRAAVLSALPKEEQIGKASTRGRKAARRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 17 (full length hBD3 derived peptide, C replaced with C(Acm))
GIINTLQKYYC(Acm)RVGGRC(Acm)C(Acm)VLSALPKEEQIGKC(Acm)STR
15 GRKC(Acm)C(Acm)RRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 18 (full length hBD3 derived peptide, C replaced with C(But))
20 GIINTLQKYYC(But)RVGGRC(But)C(But)VLSALPKEEQIGKC(But)STRGRK
C(But)C(But)RRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 19 (full length hBD3 derived peptide, C replaced with C(t-Buthio))
GIINTLQKYYC(t-Buthio)RVGGRC(t-Buthio)C(t-Buthio)VLSALPKEEQIGKC(t-
25 Buthio)STRGRKC(t-Buthio)C(t-Buthio)RRZZ
Z comprises any amino acid or may be absent

SEQ ID NO: 20 (full length hBD3 derived peptide, C replaced with C(Bzl))
30 GIINTLQKYYC(Bzl)RVGGRC(Bzl)C(Bzl)VLSALPKEEQIGKC(Bzl)STRGRKC
(Bzl)C(Bzl)RRZZ
Z comprises any amino acid or may be absent

SEQ ID NO: 21 (full length hBD3 derived peptide, C replaced with C(4-MeBzl))
GIINTLQKYYC(4-MeBzl)RVGGRC(4-MeBzl)C(4-
35 MeBzl)VLSALPKEEQIGKC(4-MeBzl)STRGRKC(4-MeBzl)C(4-MeBzl)RRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 22 (full length hBD3 derived peptide, C replaced with C(4-MeOBzl))
GIINTLQKYYC(4-MeOBzl)RVGGRC(4-MeOBzl)C(4-
MeOBzl)VLSALPKEEQIGKC(4-MeOBzl)STRGRKC(4-MeOBzl)C(4-
40 MeOBzl)RRZZ
Z comprises any amino acid or may be absent.

SEQ ID NO: 23 (full length hBD3 derived peptide, C replaced with C(Mmt))

GIINTLQKYYC(Mmt)RVRGGRGC(Mmt)C(Mmt)VLSALPKEEQIGKC(Mmt)STRG
RKC(Mmt)C(Mmt)RRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 24 (full length hBD3 derived peptide, C replaced with modified C)

5 GIINTLQKYYXRVGRGGRXXVLSALPKEEQIGKXSTRGRKXXRRZZ

X comprises C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or
C(Mmt); Z comprises any amino acid or may be absent

SEQ ID NO: 25 (hBD3 derived 10 aa C-terminus fragment, C replaced with
10 any amino acid X)

RGRKXXRRZZ

X comprises any amino acid; Z comprises any amino acid or may be absent.

SEQ ID NO: 26 (hBD3 derived 10 aa C-terminus fragment, C replaced with W)

15 RGRKWWRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 27 (hBD3 derived 10 aa C-terminus fragment, C replaced with F)

RGRKFFRRZZ

Z comprises any amino acid or may be absent.

20 SEQ ID NO: 28 (hBD3 derived 10 aa C-terminus fragment, C replaced with Y)

RGRKYYRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 29 (hBD3 derived 10 aa C-terminus fragment, C replaced with L)

15 RGRKLLRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 30 (hBD3 derived 10 aa C-terminus fragment, C replaced with I)

RGRKIIRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 31 (hBD3 derived 10 aa C-terminus fragment, C replaced with H)

30 RGRKHHRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 32 (hBD3 derived 10 aa C-terminus fragment, C replaced with
C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or C(Mmt)..

RGRKXXRRZZ

35 X comprises C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or
C(Mmt); Z comprises any amino acid or may be absent.

SEQ ID NO: 33 (hBD3 derived 10 aa C-terminus fragment, C replaced with V)

RGRKVVRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 34 (hBD3 derived 10 aa C terminus peptide)

RGRKCCRRZZ

Z comprises any amino acid or may be absent.

SEQ ID NO: 35 (hBD3 derived 10 aa C-terminus peptide, C replaced with C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or C(Mmt)).

5 RGRKXXRRKK

X comprises C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or C(Mmt).

SEQ ID NO: 36 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with any amino acid)

10 RGRKXXRR

SEQ ID NO: 37 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with W, W2-8AA)

15 RGRKWWRR

SEQ ID NO: 38 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with F)

RGRKFFRR

20 SEQ ID NO: 39 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with Y, Y2-8AA)

RGRKYYRR

25 SEQ ID NO: 40 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with L)

RGRKLLRR

SEQ ID NO: 41 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with I)

30 RGRKIIRR

SEQ ID NO: 42 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with H)

RGRKHHRR

35 SEQ ID NO: 43 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or C(Mmt)).

RGRKCXXRR

40 X comprises C(Acm), C(But), C(t-Buthio), C(Bzl), C(4-MeBzl), C(4-MeOBzl) or C(Mmt).

SEQ ID NO: 44 (hBD3 derived C-terminus peptide excluding terminal KK, C replaced with V, V2-8AA)

45 RGRKVVRR

SEQ ID NO: 45 (V2 monomer)

RGRKVVRRKK

SEQ ID NO: 46 (V4 monomer, V4-10 AA)

RGRKVVRRVV

5

SEQ ID NO: 47 (Y4 monomer, Y4-10 AA)

RGRKYYRRYY

10 SEQ ID NO: 48 (W4 monomer, W4-10 AA)

RGRKWWRRWW

SEQ ID NO: 49 (V3 monomer)

RVRKVVRR

15 SEQ ID NO: 50 (V2R monomer)

RRRKVVRR

SEQ ID NO: 51 (V2D monomer)

RDRKVVRR

20

SEQ ID NO: 52 (E2 monomer)

RGRKEERR

SEQ ID NO: 53 (K2 monomer)

25 RGRKKKRR

SEQ ID NO: 54

RRRRRRRRRR

30 SEQ ID NO: 55

VVVV

SEQ ID NO: 56

YYYY

35

SEQ ID NO: 57

RRVVKRGR

40 SEQ ID NO: 58

RRVVKRGRK

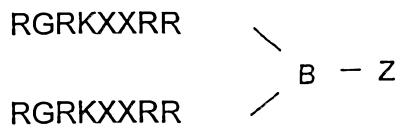
According to another aspect, the invention relates to an isolated multimer of formula $(U)_n B_m Z_j$, wherein U comprises SEQ ID NO: 3 or a fragment or variant thereof, B comprises an amino acid having at least two amine groups, Z

comprises any amino acid, $n \geq 2$, $m \geq 1$ and $j \geq 0$. In particular, each B may include but is not limited to lysine, ornithine or arginine.

According to one aspect of the invention, the B and Z in $(U)_nB_mZ_j$ may both comprise lysine (K) and the formula may be expressed as $(U)_nK_mK_j$. According

5 to a further aspect, m may also equal the number $n-1$ and j may equal to 1 and the formula of the multimer may be expressed as $(U)_nK_{n-1}K$ (or $(UK)_n$). The peptide U in $(U)_nK_mK_j$ or $(U)_nK_{n-1}K$ may comprise SEQ ID NO: 3 or a fragment or variant thereof.

10 The peptide U in the formula $(U)_nB_mZ_j$, $(U)_nK_mK_j$ or $(U)_nK_{n-1}K$ may comprise SEQ ID NO: 3 or a fragment or variant thereof, such as RGRKXXRR (SEQ ID NO: 36) or any one of SEQ ID NOs: 37-44.


For example, if $m = n-1$, $j = 1$, $B = Z = K$, U comprises SEQ ID NO: 44, the multimer has the formula (SEQ ID NO: 44) $_nK_{n-1}K$. If $n = 2$, the multimer has the formula (SEQ ID NO: 44) $_2KK$.

15 The multimer(s) of the invention may be linear or branched. If the multimer $(U)_n$ is linear, the peptide U repeated n times may comprise SEQ ID NO: 2 or any fragment or variant of SEQ ID NO: 2, such as any one of SEQ ID NOs: 3-58. For example, the multimer may comprise (SEQ ID NO: 35) $_n$, (SEQ ID NO: 36) $_n$ or (SEQ ID NO: 45) $_n$.

20 For a branched multimer, for example the multimer $(U)_nB_mZ_j$, the multimer may be branched at the terminal B_mZ_j residues.

The multimer may comprise any number of repeating units. For example, the multimer may comprise 2 to 10, 2 to 20, 2 to 30 repeating subunits. In addition, 25 the multimer may be a dimer, trimer, tetramer, pentamer, hexamer, heptamer, octamer, nonamer and decamer.

For example, for a branched dimer of formula (SEQ ID NO: 36) $_2BZ$, the branched dimer may comprise the structure:

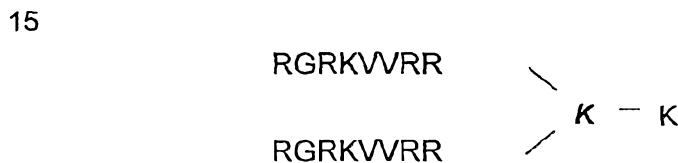
As an alternative, Z may be absent and the dimer may have the structure:

In particular, for any of the multimer according to the invention, X may be V. The V2 monomer has the sequence RGRKVVRR (SEQ ID NO: 44).

According to a further aspect, the invention also relates to a method of
10 preparing at least one multimer of formula: $(U)_n K_m Z_j$, wherein U comprises SEQ ID NO: 3 or a fragment or variant thereof, Z comprises any amino acid and $n \geq 2$, $m \geq 1$ and $j = 1$.

- (i) providing at least one solid phase;
- (ii) coupling at least a first amino acid residue Z to the solid phase;
- 15 (iii) linking at least one protected K residue to the coupled first amino acid residue;
- (iv) removing the protecting group(s) from the linked K residue(s)
- (v) providing additional chain extension by linking protected amino acid residues, according to the sequence of the peptide U in order from the
20 C-terminus to the N-terminus, wherein after each linking, the protecting groups are removed for the next linking; and
- (vi) terminating the linking of amino acid residues depending on the number of residues to be added.

The amino acid Z first coupled to the solid phase may be any amino acid. For example, Z may include but is not limited to lysine, ornithine or arginine.


Following completion of the synthesis of the multimer, the multimer may be released from the solid phase.

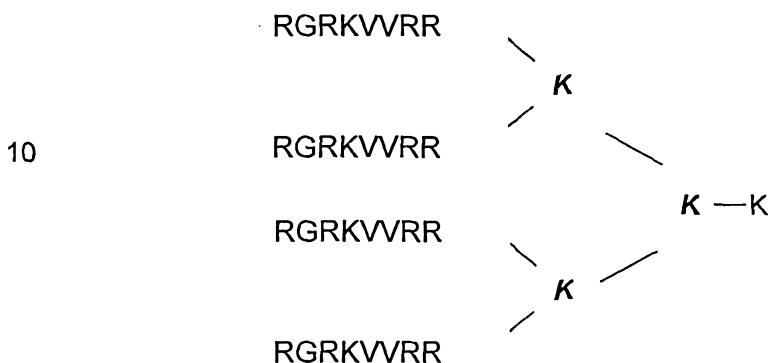
- 5 For example, performing the above steps for the peptide sequence RGRKKXXRR (SEQ ID NO: 36) will produce the following dimer. The lysine (K) residue in bold italics shows the positions which Lys(Fmoc) was incorporated during the synthesis.

In the synthesis method, the Z and lysine residues are shared between the monomer units.

In particular, when X is V and Z is K, the dimer below is produced. This dimer is the V2 dimer, (SEQ ID NO: 44)₂KK.

The method may be extended to produce further multimers. For example, the extended method to produce further multimers further comprises, after step

20 (iv)


(iv)(a) linking further protected lysine residues to the linked second lysine residue(s);

(iv)(b) removing the protecting group(s) from the lysine residues from (iv)(a);

(iv)(c) repeating step (iv)(a) and (iv)(b), or

25 (iv)(d) proceeding to step (v) and (vi).

This extended method will produce multimers increasing in multiples of two from the previous multimer. The multimers formed from the extended method will be four, eight, sixteen, thirty-two, sixty-four and so on. Repeating the additional steps of the extended method once produces a tetramer, as shown 5 below. If X is V and B and Z are K, then the tetramer is known as the V2-tetramer. The repeated unit in the V2 tetramer is RGRKVVR (SEQ ID NO: 44).

15 Further, repeating the additional steps of the extended method twice will produce an octamer. The multimer(s) of the invention may exclude the terminal K residue.

20 The multimers prepared as described above are homogeneous multimers (homo-multimers), such that a peptide monomeric unit is repeated in the multimers. The peptide multimers of the invention may be homo-dimers, homo-tetramers or other homo-multimers.

25 Further, the method of preparation may be extended to prepare heterogeneous multimers, such that the peptide units in the multimers are different. When preparing the homo-multimers, the protected amino acid B have at least two side chains protected by the same protecting group. However, for preparing a heterogeneous multimer, for example, a heterogeneous dimer, a differentially protected amino acid C may be used, wherein the side groups available for chain extension are protected by at least two different protection groups. In

this case, a first protection group may be removed to allow peptide chain extension from at least a first reactive side group. After the first peptide chain extension(s) are completed, the other protection group may be removed to allow subsequent chain extension from at least a second reactive side group.

- 5 In this way, the first peptide chain and the second peptide chain may have different amino acid sequences.

According to another aspect, the invention relates to a method of preparing a peptide multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$ wherein each of U^1 and U^2 comprises a peptide with $U^1 \neq U^2$, $n = 2^x$, where $x = 0$ or a positive integer, $m =$

- 10 1 or 0; comprising the steps of:

(i) providing at least one solid phase;

(ii) coupling at least a first amino acid Z to the solid phase;

(iii) optionally linking at least one amino acid B to the coupled Z ;

(iii) linking at least one protected amino acid C to Z or B ; wherein C comprises

- 15 at least two differentially protected groups;

(iv) removing a first protecting group from the linked amino acid C to expose a first reactive side chain;

(v) providing chain extension of a first peptide U^1 to the first reactive side chain of C ;

- 20 (vi) removing a second protecting group from the linked B amino acid to expose at least a second reactive side chain; and

(viii) providing chain extension of a second peptide U^2 to the second reactive side chain of C .

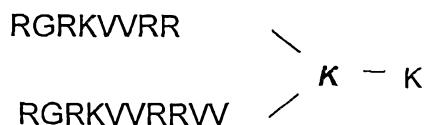
A heterogeneous peptide multimer may thus be prepared.

If the optional step (ii) is omitted, a hetero-dimer is formed. A hetero-tetramer may be prepared if the optional step (ii) is performed once. Other heterogeneous multimers may be prepared by repeating step (ii) accordingly.

According to another aspect, the invention relates to an isolated peptide multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$, wherein U^1 and U^2 comprises a peptide sequence with $U^1 \neq U^2$, C and B each comprises an amino acid with at least two amine groups, Z comprises any amino acid, $n = 2^x$, where $x = 0$ or a positive integer, $m = 1$ or 0 .

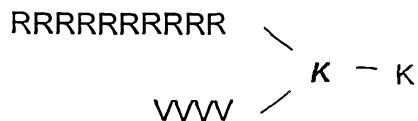
Each of C, B and Z may include but is not limited to lysine (K), ornithine or arginine (R).

In particular, U^1 or U^2 may each be a peptide comprising SEQ ID NO: 2 or a fragment or variant thereof.

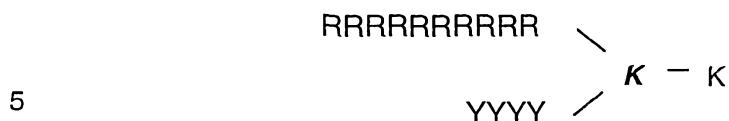

U^1 may comprise but is not limited to any one of SEQ ID NOs: 1 to 58.

U^2 may comprise but is not limited any one of SEQ ID NOs: 1 to 58.

If $n = 2$ and $m = 1$, the multimer is a heterogenous dimer of formula $[(U^1)(U^2)]CZ$.


For example, U^1 may comprise RGRKVVR (SEQ ID NO: 44) and U^2 may comprise RGRKVVRVV (SEQ ID NO: 46), C and Z are K, $m=0$, $n=2$. The structure of the heterogeneous dimer comprises:

20



For example U^1 may comprise RRRRRRRRRR (SEQ ID NO: 54) and U^2 may comprise VVVV (SEQ ID NO: 55), C and Z are K, $m=0$, $n=2$. The structure of the heterogeneous dimer comprises:

25

For example U^1 may comprise RRRRRRRRRR (SEQ ID NO: 54) and U^2 may comprise YYYY (SEQ ID NO: 56), C and Z are K, m=0, n=2. The structure of the heterogeneous dimer comprises:

If $n = 4$ and $m = 1$, the heterogenous multimer is a heterogeneous tetramer. A heteromer may be of formula $[(U^1)(U^2)]_2(C)_2B_1Z$.

The method of the invention may also be extended to synthesise other multimeric peptides, such as trimers. Both homo-trimmers and hetero-trimmers may be synthesised.

A method of preparing a peptide trimer of formula $U^3U^2CU^1Z$, wherein U^1 , U^2 and U^3 each comprises a peptide, C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid, the method comprising the steps of:

- 15 (i) providing at least one solid phase;
(ii) coupling at least a first amino acid Z to the solid phase; and
(iii) providing chain extension of peptide U^1 to Z;

wherein, (A) the peptide trimer is a heterogeneous peptide of formula $U^3U^2(C)U^1Z$, the method further comprises:

- 20 (iv) linking a differentially protected amino acid C to an amino acid of peptide U¹;
(v) removing a first protecting group from the linked amino acid C;
(vi) providing for chain extension of peptide U² to amino acid C;

(vii) removing a second protecting group from the linked amino acid C; and

(viii) providing for chain extension of peptide U^3 to amino acid C;

(B) $U^2 = U^3 = U^1$, C = B, and the peptide trimer comprises formula $(U^1)_2BU^1Z$,

5 the method further comprises:

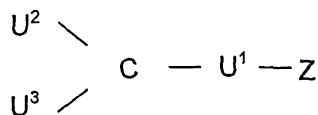
(iv) linking a protected amino acid B to an amino acid of peptide U^1 ;

(v) removing the protecting groups from the linked amino acid B; and

(vi) providing for chain extension of two peptides U^1 to the amino acid B; or

10 (C) $U^2 = U^3 \neq U^1$, C = B, and the peptide comprises formula $(U^2)_2 B(U^1)Z$, the method further comprises:

(iv) linking a protected amino acid B to an amino acid of peptide U^1 ;


(v) removing the protecting groups from the linked amino acid B; and

(vi) providing for chain extension of at least two units of peptide U^2 to amino acid B.

In the case of (A) and (C) above, a heterogenous peptide trimer may thus be prepared. In the case of (B) above, a homogeneous peptide trimer may thus be prepared.

According to another aspect, the invention relates to an isolated peptide trimer of formula $U^3U^2CU^1Z$; wherein U^1 , U^2 , U^3 each comprises a peptide sequence; C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid. In particular, the peptide is branched at amino acid C.

The structure of the isolated peptide trimer comprises:

5 Each of C, B and Z may include but is not limited to lysine (K), ornithine or arginine (R).

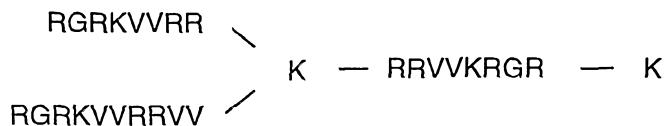
In particular, U¹, U² or U³ may each comprise SEQ ID NO: 2 or a fragment or variant thereof.

10 For example, U¹, U² or U³ may each comprise any one of SEQ ID NOs: 1 to 58. For a heterogeneous peptide trimer, two of the peptides may comprise the same sequence with the third peptide of a different sequence.

15 For the heterogeneous peptide trimer, U³U²CU¹Z, U¹, U² and U³ may be but need not be different peptide sequences. For example, U¹ and U² may comprise the same sequence while U³ may comprise a different sequence. Alternatively, U¹ and U³ may comprise the same sequence with U² having the same sequence.

If U² = U³ ≠ U¹ and C = B, the peptide is of formula (U²)₂BU¹Z.

If U¹ = U³ ≠ U², the peptide is of formula U¹U²CU¹Z.


If U¹ = U² ≠ U³, the peptide is of formula U³U¹CU¹Z.

20 However, if U¹ = U² = U³ and C = B, the peptide is of formula (U¹)₂BU¹Z (homeogeneous peptide trimer).

An example of a heterogeneous peptide trimer with and its synthesis is illustrated in Figure 8 and described in Example 1D.

Accordingly, the invention relates to an isolated peptide trimer of formula U³U²CU¹K; wherein U¹ comprises RRVVKRGR (SEQ ID NO: 57) and U² comprises RGRKVVRR (SEQ ID NO: 44) and U³ comprises RGRKVVRRVV

(SEQ ID NO: 46). This heterogeneous trimer is the V2V2V4-heterotrimer and has the structure:

5

The multimers of the present invention possess antimicrobial properties. Accordingly, the multimers may be used for inhibiting and/or reducing the growth of microorganisms.

10 The present invention also provides a method of inhibiting and/or reducing the growth of microorganisms comprising contacting the microorganism with at least one multimer of the invention.

15 The present invention also provides a method of treating at least one microbial infection comprising administering to a subject at least one multimer of the invention. The invention further provides inhibiting and/or reducing the growth of at least one microorganism in a subject comprising administering to the subject at least one multimer of the invention.

The microorganism may be a virus, fungus or bacteria.

20 Accordingly, the present invention also relates to the use of a multimer according to any aspect of the invention in the manufacture of an antimicrobial composition. The antimicrobial composition may be used for inhibiting and/or reducing the growth of at least one microorganism, for example, in a subject.

The present invention also includes the use of a multimer according to any aspect of the invention in the manufacture of a medicament for treating at least one microbial infection.

25 Accordingly, the multimer(s) of the invention may be formulated into antimicrobial compositions and/or pharmaceutical compositions. The

antimicrobial and/or pharmaceutical compositions may be formulated for topical, oral, parenteral administration or for administration by inhalation. The multimer(s) of the invention may also be formulated in eye drop composition(s) and/or solution(s) and/or contact lens solution(s).

- 5 The multimer(s) of the invention may also be formulated into compositions for coating devices. The devices include medical devices such as but not limited to a catheter, a needle, a sheath, a stent or a dressing.

- The invention further includes kit(s) comprising at least one multimer according to the invention, at least one antimicrobial composition and/or pharmaceutical
10 composition comprising at least one multimer according to the invention.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention.

EXAMPLES

- 15 Standard molecular biology techniques known in the art and not specifically described were generally followed as described in Sambrook and Russel, Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, New York (2001).

Example 1 Method for solid-phase peptide synthesis (SPPS) of multimers

- 20 (A) Synthesis of homogeneous dimer

The method for the synthesis of the peptides is adapted from Krajewski et al., (2004). Fluorenylmethoxycarbonyl (Fmoc)-protected L-amino acids and resin were purchased from Advanced Automated Peptide Protein TECHNOLOGIES, AAPPTEC (KY, US) and used with the following side-chain protective groups:

- 25 Lys(Fmoc) was incorporated only at second residue from C-terminus for synthesis of dimers, Arg(pbf), Lys(Boc), Tyr(But), Trp(Boc) and Fmoc-Lys(Boc)-Wang resin (substitution 0.72mmol/g). Syntheses of dimers were carried out on Apex 396 (Advanced ChemTech) by Fmoc chemistry.

Commercially available Fmoc-Boc-Lys-Wang resin was used as the starting point. Alternatively, coupling of the first amino acid to the Wang resin was carried out with 0.5 M DIC (N,N'-diisopropylcarbodiimide). Subsequent coupling reactions (or acylation) were carried out with 0.5M HBTU/0.5M 5 HOBT/ 2M DIEA in NMP. As an alternative, the coupling reactions may also be carried out with HBTU-HOBT in DMF at a synthesis scale of 0.08 mmol. Fmoc deprotection was carried out with 20% piperidine in DMF.

10 The resins were treated with 90% TFA (trifluoracetic acid), 5.0% phenol, 1.5% water, 1.0% TIS (triisopropyl silane), 2.5% EDT (ethane diol) to release the multimer from the resins. Alternatively, the resulting peptidyl resins may be treated with a freshly prepared mixture of TFA/TIS/phenol/Thionisole/water (90/1/2.5/5/1.5, the ratio of volume percent) for 2-3 h at room temperature.

15 The crude peptides were then precipitated by filtration into ice-cold diethyl ether, separated by centrifugation, washed three times with ice-cold ether and dried by automated evaporation of ether and other remaining or residual solvents in crude solid products in fume hood or dried under vacuum at room temperature. The precipitate dried directly from the ether resulted in a TFA (trifluoroacetic acid) salt. TFA salts may affect the pH of peptide solutions or the viability of cells in culture. Lyophilization from 2 ml 2% acetic acid replaces the 20 TFA salt with an acetic salt, which allows easier handling the other peptides and removes trace amounts of scavengers.

The scheme of the synthesis method is illustrated in Figure 2.

25 High yields of crude dimer and purified dimer may be obtained from this SPPS method. For example, yields of crude and purified V2-dimer are 90 and 27%, respectively. Further, 50 mg purified V2-dimer may be obtained based on 0.08 mmol synthesis scale.

The method described is an example of the synthesis method but modifications to the method may be made. For example, any method for the

protection and deprotection of the amino acid residues may be used in the SPPS method.

(B) Synthesis of homogeneous tetramer

The synthesis method may be extended to the synthesis of a homogeneous

5 tetramer as illustrated in Figure 9.

Following deprotection of the Fmoc-Lys linked to the immobilised NH₂-Lys(Boc), two Fmoc-Lys residues were then linked to the Lys. Further amino acids chain extension were then performed to produce a homogeneous tetramer (V2 tetramer) as illustrated. The conditions for the deprotection (step 10 i), coupling (step ii) and chain extension were the same as for the preparation of the homogeneous dimer.

(C) Synthesis of heterogeneous dimer

For the synthesis of a heterogeneous dimer as illustrated in Figure 7, the

15 differentially protected amino acid Fmoc-Lys(Aloc)-OH was used as the branched site to prepare a heterodimer. The Fmoc and Aloc groups have different reactivity with Aloc being stable under the basic conditions used to remove Fmoc.

The deprotection of the immobilised Fmoc-NH-Lys(Boc)-Wang resin was performed as described above.

20 As illustrated in Figure 7, Fmoc-Lys(Aloc)-OH was then linked to the lysine residue attached to the Wang resin (coupling step ii). Only the Fmoc group of Fmoc-Lys(Aloc) was removed (Fmoc deprotection) and extension of the first chain was performed with (step iii). When all the amino acid residues in the first chain had been linked, (i.e. the first chain completed), the Aloc group on 25 the Lys(Aloc) was removed (Aloc deprotection) using a Palladium catalyst and the second chain extension was performed. When all the amino acid residues in the second chain had been linked (i.e. second chain also completed), the product was released by acid cleavage. Any remaining protecting groups used

to protect reactive groups of the amino acid residues as appropriate (eg Boc, pbf, Mtr) during the synthesis were then removed.

(D) Synthesis of heterogeneous peptide trimer

An example of the synthesis of a heterogeneous peptide trimer is illustrated in
5 Figure 8. The first extension to the immobilised lysine (K) residue is a first peptide (U¹) of RGRKVVRR (SEQ ID NO: 57) . Subsequently, an Fmoc-Lys(Aloc)-OH is linked to the R residue at the N terminus of the peptide RGRKVVRR. The Fmoc group is then removed and a second peptide (U²) of RGRKVVRR (SEQ ID NO: 44) is added by chain extension to the first amine
10 group of the Lys(Aloc) residue. Following the second chain extension, the Aloc group is removed and a third peptide (U³) of RGRKVVRRVV (SEQ ID NO: 46) is added by chain extension to the second amine group of the Lys residue.

Alternatively, Fmoc-Lys(Fmoc)-OH may also be added after the extension of the first peptide U¹ is completed. A peptide U² may be extended in duplicate to
15 form the heterogenous trimer U²U²(K)U¹K.

For a homogeneous peptide trimer, Fmoc-Lys(Fmoc)-OH may be used after the extension of the peptide U is completed. The same peptide U may then be extended in duplicate simultaneously to form the homogeneous trimer.

Example 2 Antimicrobial assay

20 The method for testing antimicrobial activity of antimicrobial peptides used an absolute killing procedure as described below.

Preparation of test organisms

The test organisms were either reference cultures obtained from American Type Culture Collection (ATCC) or clinical isolates obtained from the
25 Department of Pathology, Singapore General Hospital. All cultures used in the study were not more than 5 passages from the source.

The bacterial cultures were grown on Trypticase Soy Agar (TSA) slants, and the yeast culture on Sabouraud Dextrose Agar (SDA) slants at 35°C for 16 hours. The organisms were harvested by centrifugation and washing twice in Phosphate buffer, pH 7.2 (United States Pharmacopeia, USP) at 20°C.

5 Test Organisms used

The following organisms were used in the study:

1. *Bacillus cereus* ATCC 11778
2. *Candida albicans* ATCC 10231
- 10 3. Clinical *Pseudomonas aeruginosa* PAE230 DR4877/07. Source: Sputum
4. Clinical *Pseudomonas aeruginosa* PAE239 DM5790/07. Source: Wound
5. Clinical *Pseudomonas aeruginosa* PAE240 DU14476/07. Source: Urine
6. Clinical *Pseudomonas aeruginosa* PAE249 DM15013. Source: Wound
7. Clinical *Pseudomonas aeruginosa* 07DM023257. Source: Eye
- 15 8. Clinical *Pseudomonas aeruginosa* 07DM023376. Source: Eye
9. Clinical *Pseudomonas aeruginosa* 07DM023155. Source: Eye
10. Clinical *Pseudomonas aeruginosa* 07DM023104. Source: Eye
11. *Pseudomonas aeruginosa* ATCC 9027
12. *Pseudomonas aeruginosa* ATCC 27853
- 20 13. *Escherichia coli* ATCC25922
14. Clinical *Escherichia coli* DB16027 Source: Blood
15. Clinical *Escherichia coli* DU46381R Source: Urine
16. Methicillin-resistant *Staphylococcus aureus* (MRSA) DM09808R Source: Eye
- 25 17. Clinical *Staphylococcus aureus* DM4001 Source: Eye
18. Clinical *Candida albicans* DF2672R Source: Urine
19. *Fusarium solani* ATCC 36031

Preparation of test solutions of compounds

- 30 The freeze-dried antimicrobial compound was dissolved in purified water and distributed into screw-capped plastic tubes at a concentration of 1,000 micrograms (μ g) per ml. These served as stock solutions and were kept at -20°C.
- 35 On the day of conducting the test, one tube of the stock solution was defrosted and diluted in purified water to a concentration of 500 μ g/ml. Thereafter, further dilutions were carried out in either USP Phosphate Buffer, pH 7.2 or other solutions (including but not limited to 10 mM sodium phosphate buffer,

pH 7.4, 10 mM potassium buffer 7.2 or 155.2 mM NaCl), to the test concentrations required, normally ranging from 6.25 µg/ml to 50 µg/ml.

Ten micro-litres (µl) of the test organism of standardised concentration was inoculated into one ml of the compound test solution of specific test

5 concentration to provide a final count of between 1×10^5 cfu/ml and 1×10^6 cfu/ml as far as possible. The inoculated test solutions were then incubated at 35°C for 4 hours. The incubation temperature and time may be varied as required.

After incubation, the antimicrobial activity of the test solutions was inactivated

10 by a 10-fold dilution in D/E Neutralising Broth (NB). Further dilutions were carried out in the NB, and plated out in TSA for bacteria, and SDA for yeast culture. The plates were incubated at 35°C for 72 hours. The viable count of the survivor organisms was then determined.

15 As an inoculum control, the test organism was inoculated, parallel to the Test, into the buffer used in the preparation of the test solutions instead and incubated under the same condition as the Test. The viable count of the inoculum control was determined as for the Test.

The antimicrobial activity of the compound was expressed as log reduction
20 calculated by subtracting the log number of colony forming units (cfu) of the test organism survivor after 4 hours' exposure time at 35°C from the log number of cfu of the inoculum control of the test organism.

The method described above was used for Examples 3-7 and in particular, the method for gentamicin in Example 6 is similar except that gentamicin was
25 substituted for the antimicrobial compound.

Example 3 Antimicrobial activity of V2 dimer against *P. aeruginosa* ATCC 9027

The antimicrobial properties of the V2 dimers were tested on *Pseudomonas aeruginosa* ATCC 9027.

- 5 The V2 dimer shows antimicrobial activity against *P. aeruginosa* ATCC 9027 in USP Phosphate buffer (prepared according to US Pharmacopeia Convention) at physiological pH 7.2. The antimicrobial activity was efficient, showing large reductions in the bacterial population. (See Table 1). The inoculating amount of bacteria was $\sim 10^7$ organisms and at 4 hours of contact time at 12.5 $\mu\text{g}/\text{ml}$ of
- 10 V2 dimer, the solution was almost sterilised.

Table 1 Antimicrobial activity against *P. aeruginosa* ATCC 9027 (Log Reduction) in USP Phosphate buffer pH 7.2 at 35°C

Diluent for dilution of sample from 100 $\mu\text{g}/\text{ml}$ to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Test Concentration $\mu\text{g}/\text{ml}$	4 hrs	4 hrs	4 hrs
25.0	> 6.54	> 6.38	ND
12.5	> 6.54	> 6.38	ND
6.25	2.82	1.84	3.04
3.125	0.59	0.22	0.69

- 15 The salt solution of the USP buffer used above is dilute compared to physiological conditions, and therefore the antimicrobial activity of the V2 dimer was also tested at physiological salt conditions using 10 mM phosphate buffer pH 7.2. The V2 dimer also maintained high antimicrobial activity against *P. aeruginosa* ATCC 9027 at physiological salt concentration (Table 2).

Table 2 Antimicrobial Activity against *Pseudomonas aeruginosa* ATCC 9027 (Log Reduction) in 10 mM Potassium Phosphate Buffer pH 7.2 at 35°C.

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Potassium Phosphate Buffer
Test Concentration ug /ml	
50.0	5.63
25.0	5.63
12.5	2.93
6.25	2.20
3.125	2.00

In addition, the antimicrobial activity of the V2 dimer was also assayed under high salt concentration of 155.2 mM NaCl. The results indicated that the V2

5 dimer at concentrations of 12.5 to 50 µg /ml had antimicrobial activity at high salt concentration.

Table 3 Antimicrobial Activity against *Pseudomonas aeruginosa* ATCC 9027 (Log Reduction) at 35°C

Diluent for dilution of sample from 100ug/ml to test concentration	155.2 mM NaCl	155.2 mM NaCl	155.2 mM NaCl
Test Concentration µg /ml	4 hrs	4 hrs	4 hrs
50.0	ND	5.23	2.82
25.0	2.82	2.78	1.71
12.5	1.71	2.14	0.78
6.25	0.78	ND	ND
3.125	ND	ND	ND

ND – not determined.

Example 4 Comparison of the V2 dimer with hBD3 derived peptide monomers.

10 amino acid peptide monomers derived from hBD3 as described previously (WO 2007/126392) were also assayed for their activity against *P. aeruginosa*

15 ATCC 9027.

The antimicrobial properties of the monomers of V2, L2, C2, F2 and H2 in USP phosphate buffer were studied and shown in Table 4.

Table 4. Antimicrobial Activity of 10 amino acid peptide monomers against *Pseudomonas aeruginosa* ATCC 9027 (Log Reduction) at 35°C.

Concentration ug /ml	V2		L2	C2	F2	H2
	4hrs	6hrs	4hrs	4hrs	4hrs	4hrs
200.00	ND	ND	ND	0.41	0.33	0.29
100.00	ND	ND	0.78	0.57	0.61	0.62
50.00	3.97	5.62	1.15	0.63	0.87	ND
25.00	3.33	ND	1.09	ND	ND	ND
12.5	3.23	ND	0.95	ND	ND	ND
6.25	3.80	ND	1.17	ND	ND	ND
3.125	0.50	ND	1.01	ND	ND	ND
1.558	0.35	ND	0.89	ND	ND	ND

ND- not determined

5 Note: 0.5 log reduction equals to 68% bacteria being killed; 1 log reduction equals to 90% bacteria being killed; 2 log reduction equals to 99% bacteria being killed; 3 log reduction equals to 99.9% bacteria being killed.

10 Comparing the results of the V2 dimer in Table 1 to the V2 monomer in Table 4 the V2 dimer shows a much higher efficiency in killing than the V2 monomer. The V2 dimer showed a >6 log reduction (Table 1) at a concentration of 12.5 µg/ml at 4 hours compared to the V2 monomer which shows a 3.23 log reduction at 12.5 µg/ml and only a 3.97 log reduction at 50 µg/ml (Table 4).

15 Example 5 Antimicrobial activity of V2 dimer against clinical isolates of *P. aeruginosa*

The antimicrobial activity of the V2 dimer was also tested against several clinical isolates of *P. aeruginosa* from the sputum, wound, urine and the eye. The V2 dimer also showed antimicrobial activity against these clinical isolates (See Tables 5-8), suggesting that the V2 primer may be effectively used 20 against actual clinical specimens.

Table 5 Antimicrobial activity of V2 dimer against clinical strains of *P. aeruginosa* (Log Reduction) isolated from sputum at 35°C

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	PA1 - PAE 230 DR4877/07 Source: Sputum	PA1 - PAE 230 DR4877/07 Source: Sputum	PA1 - PAE 230 DR4877/07 Source: Sputum
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs
50.0	4.53	> 5.52	> 5.49
25.0	4.44	5.22	> 5.49
12.5	3.02	3.65	5.07
6.25	2.21	2.41	3.12
3.125	1.49	1.99	2.41

Table 6 Antimicrobial activity of V2 dimer against clinical strains of *P. aeruginosa* (Log Reduction) isolated from wound at 35°C

5

(A) Data for *P. aeruginosa* PAE239 DM5790/07

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	PA2 - PAE 239 DM5790/07 Source: Wound	PA2 - PAE 239 DM5790/07 Source: Wound	PA2 - PAE 239 DM5790/07 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs
50.0	1.35	1.58	1.97
25.0	1.21	1.56	1.40
12.5	1.18	1.52	1.26
6.25	1.12	1.29	1.22
3.125	1.16	1.27	1.22

(B) Data for *P. aeruginosa* PAE249 DM15013

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2

Type of Clinical Pseudomonas aeruginosa	PA4 - PAE 249 DM15013 Source: Wound	PA4 - PAE 249 DM15013 Source: Wound	PA4 - PAE 249 DM15013 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs
50.0	5.08	4.57	>4.99
25.0	4.69	4.34	>4.99
12.5	3.96	4.19	4.60
6.25	3.13	2.41	3.18
3.125	2.12	2.00	1.71

Table 7 Antimicrobial activity of V2 dimer against clinical strains of *P. aeruginosa* (Log Reduction) isolated from urine at 35°C

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	PA3 - PAE 240 DU14476/07 Source: Urine	PA3 - PAE 240 DU14476/07 Source: Urine	PA3 - PAE 240 DU14476/07 Source: Urine
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs
50.0	2.08	1.88	1.72
25.0	1.58	1.52	1.56
12.5	1.21	1.52	1.42
6.25	1.25	1.52	1.28
3.125	1.15	1.52	1.13

5 Table 8 Antimicrobial activity of V2 dimer against *P. aeruginosa* (Log Reduction) isolated from the eye at 35°C IN USP phosphate buffer

(A) Data for *P. aeruginosa* 07DM02357

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	Ps-A 07DM02357 Source: Eye	Ps-A 07DM02357 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs
50.0	2.41	5.53
25.0	1.76	3.66

12.5	1.75	3.17
6.25	1.60	2.35
3.125	1.37	1.94

(B) Data for *P. aeruginosa* 07DM023376

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	Ps-B 07DM023376 Source: Eye	Ps-B 07DM023376 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs
50.0	2.39	2.25
25.0	1.81	2.18
12.5	1.76	2.15
6.25	1.38	1.88
3.125	1.07	1.16

5 (C) Data for *P. aeruginosa* 07DM023155

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	Ps-C 07DM023155 Source: Eye	Ps-C 07DM023155 Source: Eye	Ps-C 07DM023155 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs
50.0	4.97	3.58	4.30
25.0	3.14	3.23	3.52
12.5	2.77	3.21	2.89
6.25	2.71	2.23	2.77
3.125	1.91	2.00	2.33

(D) Data for *P. aeruginosa* 07DM023104

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	Ps-D 07DM023104 Source: Eye	Ps-D 07DM023104 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs
50.0	3.45	4.53
25.0	3.42	3.92
12.5	2.82	3.48
6.25	2.68	2.89
3.125	1.71	2.27

5 The antimicrobial activity of V2 dimer was also tested for clinical isolates from at physiological salt conditions using 10 mM phosphate buffer. V2 dimer also showed antimicrobial activity against clinical isolates from the eye in repeated experiments (Table 9A, 9B and 9C), the wound, sputum and urine in repeated experiments (Table 10A and B), suggesting that the V2 dimer can also be used against clinical isolates under physiological conditions.

10 Table 9 Antimicrobial activity of V2 dimer against *P. aeruginosa* (Log Reduction) isolated from the eye at 35°C IN 10 mM potassium phosphate buffer at 35°C

(A)

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Sodium Phosphate Buffer	10 mM Phosphate Buffer	10 mM Sodium Phosphate Buffer	10 mM Sodium Phosphate Buffer
Type of Clinical Pseudomonas aeruginosa	Ps-A 07DM02357 Source: Eye	Ps-B 07DM023376 Source: Eye	Ps-C 07DM023155 Source: Eye	Ps-D 07DM023104 Source: Eye

Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	2.92	2.23	3.47	3.77
25.0	2.05	1.87	3.14	2.09
12.5	1.04	1.29	1.60	1.47
6.25	0.97	1.18	1.62	1.04
3.125	0.56	0.45	0.94	0.61

(B)

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Potassium Phosphate Buffer			
Type of Clinical Pseudomonas aeruginosa	Ps-A 07DM02357 Source: Eye	Ps-B 07DM023376 Source: Eye	Ps-C 07DM023155 Source: Eye	Ps-D 07DM023104 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	1.77	1.51	3.06	1.54
25.0	1.36	1.45	2.99	1.49
12.5	0.78	1.35	1.68	1.19
6.25	0.69	1.12	1.41	1.09
3.125	0.62	0.76	0.79	0.73

5 (C)

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer
Type of Clinical Pseudomonas aeruginosa	Ps-B 07DM023376 Source: Eye	Ps-C 07DM023155 Source: Eye	Ps-D 07DM023104 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs

50.0	2.28	2.62	1.39
25.0	1.90	2.33	0.97
12.5	0.95	1.70	0.46
6.25	1.01	1.14	0.13
3.125	0.64	0.09	-0.54

Table 10 Antimicrobial activity of V2 dimer against clinical isolated *P. aeruginosa* (Log Reduction) isolated from wound, sputum and urine at 35°C IN 10 mM postassium phosphate buffer

5 (A)

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer
Type of Clinical Pseudomonas aeruginosa	PA1 - PAE 230 DR4877/07 Source: Sputum	PA2 - PAE 239 DM5790/07 Source: Wound	PA3 - PAE 240 DU14476/07 Source: Urine	PA4 - PAE 249 DM15013 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	2.54	1.21	1.28	3.01
25.0	2.03	0.78	1.11	2.02
12.5	1.14	0.58	0.72	1.30
6.25	0.66	0.40	0.61	0.97
3.125	0.21	0.06	0.29	0.26

(B)

Diluent for dilution of sample from 100ug/ml to test concentration	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer	10 mM Potassium Phosphate Buffer
Type of Clinical Pseudomonas aeruginosa	PA1 - PAE 230 DR4877/07 Source: Sputum	PA1 - PAE 230 DR4877/07 Source: Sputum	PA2 - PAE 239 DM5790/07 Source: Wound	PA2 - PAE 239 DM5790/07 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs

50.0	2.54	2.36	1.21	1.59
25.0	2.03	1.97	0.78	1.27
12.5	1.14	1.26	0.58	0.77
6.25	0.66	0.97	0.40	0.62
3.125	0.21	0.64	0.06	0.49

Example 6 Comparison of antimicrobial activity of V2 dimer and gentamicin

A comparison of the antimicrobial activity of V2 dimer and gentamicin was made against clinical isolates of *Pseudomonas aeruginosa*.

In the first study, both V2 dimer and gentamicin were tested against clinical

5 isolates from wound and sputum and compared (See Table 5). The study showed that for the wound isolate, V2 dimer has comparable activity to gentamicin. For the sputum isolate, V2 dimer showed higher antimicrobial activity.

10 Table 11 Comparision of the antimicrobial activity (Log Reduction) V2 dimer with gentamicin against clinical *P. aeruginosa* isolates from sputum and wound at 35°C:

	V2-dimer	V2-dimer	Gentamicin	Gentamicin
Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer	USP Phosphate Buffer	USP Phosphate Buffer	USP Phosphate Buffer
Type of Clinical <i>Pseudomonas aeruginosa</i>	PA1 - PAE 230 DR4877/07 Source : Sputum	PA2 - PAE 239 DM5790/07 Source: Wound	PA1 - PAE 230 DR4877/07 Source: Sputum	PA2 - PAE 239 DM5790/07 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	>4.79	2.52	0.39	3.31
25.0	>4.79	2.69	0.54	3.04
12.5	>4.79	2.36	0.65	3.03
6.25	>4.79	2.28	0.35	3.07
3.125	>4.79	2.04	0.22	3.02

In a second study, the antimicrobial activity of both V2 dimer and gentamicin were tested against clinical isolates from urine and sputum and compared (See Table 6). The V2 dimer also showed comparable activity to gentamicin against these two isolates.

- 5 Table 12 Comparision of the antimicrobial activity (Log Reduction) V2 dimer with gentamicin against clinical *P. aeruginosa* isolates from urine and wound at 35°C :

	V2-dimer	V2-dimer	Gentamicin	Gentamicin
Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Type of Clinical Pseudomonas aeruginosa	PA3 - PAE 240 DU14476/07 Source: Urine	PA4 - PAE 249 DM15013 Source: Wound	PA3 - PAE 240 DU14476/07 Source: Urine	PA4 - PAE 249 DM15013 Source: Wound
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	1.81	5.19	4.57	2.63
25.0	1.51	3.86	4.18	2.60
12.5	1.40	3.75	3.88	2.50
6.25	1.22	3.73	3.76	2.41
3.125	1.11	3.77	3.66	2.28

- 10 In a third study, the antimicrobial activity of both V2 dimer and gentamicin were tested against clinical isolates from the eye (See Table 13). This study shows that V2 dimer and gentamicin have comparable activity against *P. aeruginosa* isolates from the eye.

Table 13 Comparision of the antimicrobial activity (Log Reduction) V2 dimer with gentamicin against clinical *P. aeruginosa* isolates from urine and wound at 35°C :

5

	V2-dimer	V2-dimer	Gentamicin	Gentamicin
Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2			
Type of Clinical Pseudomonas aeruginosa	Ps-C 07DM023155 Source: Eye	Ps-D 07DM023104 Source: Eye	Ps-C 07DM023155 Source: Eye	Ps-D 07DM023104 Source: Eye
Test Concentration ug /ml	4 hrs	4 hrs	4 hrs	4 hrs
50.0	4.31	>4.33	>4.61	>4.33
25.0	3.80	>4.33	>4.61	>4.33
12.5	3.17	4.02	>4.61	>4.33
6.25	3.11	3.75	>4.61	>4.33
3.125	2.74	3.35	>4.61	>4.33

Taken together, the above studies suggest that V2 dimer and gentamicin have comparable antimicrobial activity and the V2 dimer may be used with an efficacy equivalent to gentamicin against microorganisms.

10 Example 7 Antimicrobial activity of V2 dimer against other organisms.

(A) *Candida albicans* ATCC 10231

The antimicrobial activity of V2 dimer against *Candida albicans* ATCC 10231 was tested. *C. albicans* at 7.2×10^5 CF U in USP phosphate buffer were mixed with different concentrations of V2 dimer and incubated for 4 hours at 35°C. The results show that V2 dimer at 50 ug, 25 ug and 12.5 ug/ml achieved 3.6 to 4 log reductions against *C. albicans* ATCC 10231. (Table 14)

15

Table 14 Antimicrobial Activity against *Candida albicans* ATCC 10231 (Log Reduction) at 35°C

Test Concentration of V2 dimer (μ g/ml)	Time (hours)	Mean Log reduction
50	4	3.94
25	4	4.01
12.5	4	3.62
6.25	4	2.30
3.125	4	0.71

5 (B) *Bacillus cereus* ATCC 11778

The antimicrobial activity of V2 dimer against *Bacillus cereus* ATCC 11778 was tested. V2 dimer showed antimicrobial activity against *B. cereus* (Table 15)

10 Table 15 Antimicrobial Activity against *Bacillus cereus* ATCC 11778 (Log Reduction) at 35°C

Diluent for dilution of sample from 100 μ g/ml to test concentration	USP Phosphate Buffer pH 7.2	USP Phosphate Buffer pH 7.2
Test Concentration ug /ml	4 hours	4 hours
50.0	2.29	1.70
25.0	2.76	2.04
12.5	2.75	1.32
6.25	0.86	1.26

(C) Clinical *Escherichia coli* DB0016027R

In addition, the V2 dimer was able to produce reductions against the multiple 15 antibiotic resistant strain of *E. coli* DB0016027R (clinically isolated from blood) which has an antibiogram profile of resistance to gentamicin, ampicillin and other antibiotics.

Table 16 Antimicrobial Activity against *E. coli* DB0016027R (Log Reduction) at 35°C

Diluent for dilution of sample from 100ug/ml to test concentration	USP Phosphate Buffer pH 7.2
Test Concentration ug /ml	4 hours
50.0	2.83
25.0	2.52
12.5	2.68
6.25	2.45
3.125	2.60

5 V2 dimer's antimicrobial property against *C. albicans* and other bacteria suggests that it may be an effective broad spectrum antimicrobial. Further, V2 dimer's efficacy against a multiple antibiotic resistant strain of *E. coli* suggests that it may be an effective therapeutic agent against where other antibiotics cannot be used.

10 Example 8 Cytotoxicity of V2 dimer

The cytotoxicity of V2 dimer were tested against human conjunctival cells according to the method described in WO 2007/126392 and compared with native hBD3. Figure 4 shows that V2 dimer has reduced cytotoxicity to human conjunctival cells in comparison with wildtype hBD3. Wildtype hBD3 was 15 cytotoxic at concentrations of about 15 µg/ml, however, the V2 dimer was not cytotoxic at concentrations of 100 µg/ml. The cytotoxicity profile of the V2 dimer was comparable to that of the monomer peptides from WO 2007/126392

The reduced cytotoxicity of V2 dimer to human conjunctival cells and the high antimicrobial activity of the V2 dimer suggest that this dimer could be used in a 20 host for treating microbial infections and/or reducing the growth of microorganism in the host. Other dimers of the peptides from WO 2007/126392 are similarly expected to also show high antimicrobial activity and low cytotoxicity.

Example 9 Minimum Inhibitory Concentration (MIC) determination by broth macrodilution technique

MICs was determined by broth macrodilution method modified from that described by the National Committee for Clinical Laboratory Standards (NCCL). The Mueller Hinton Broth (MHB) at 1/6 strength and without addition of Ca^{2+} and Mg^{2+} was used for dilution. Serial twofold dilutions of V2 dimer solution ws prepared in MHB (1/6 strength) in test tubes. 1 ml of inoculum of test organisms in MHB (1/6 strength) was added to 1 ml of each dilution of V2 dimer to yield as final concentration of 10^4 to 10^5 colony forming units/ml in each test tube. The tubes were incubated at 35°C for 16 to 20 hours. A positive control containing only the borth and organism, and a negative control tube containing only the broth were also incubated in parallel to the test samples. The above was repeated for each different test organism in separate experiments. The MIC of V2 dimer peptide for each clinical isolate or reference organism was read as the lowest concentration of peptide that inhibited visible growth of the test organism.

The MIC was also determined for other peptides and compared to gentamicin. The MIC results are shown in Tables 17-20.

Table 17 MIC (ug/ml) results of V2-dimer, Y2-dimer, W2-dimer and gentamicin against different strains of Gram-negative bacteria *Pseudomonas aeruginosa* and *Escherichia coli*

Test Organism	V2-dimer	Y2-dimer	W2-dimer	V2-tetramer	Gentamicin
<i>Pseudomonas aeruginosa</i> ATCC 27853	12.5				
Clinical <i>Pseudomonas aeruginosa</i> DM 023104 Source : Eye	12.5	12.5	12.5	6.25	
Clinical <i>Pseudomonas aeruginosa</i> DM 023155 Source : Eye	12.5	25	12.5	6.25	
Clinical <i>Pseudomonas aeruginosa</i> 07DM 023257 Source : Eye	12.5	12.5	12.5	12.5	

Clinical <i>Pseudomonas aeruginosa</i> 07DM023376 Source : Eye	12.5	25	25	6.25	
Clinical <i>Pseudomonas aeruginosa</i> PAE 230 DR4877/07 Source : Sputum	12.5	12.5	12.5	12.5	400
Clinical <i>Pseudomonas aeruginosa</i> PAE 239 DM5790/07 Source : Wound	12.5	12.5	12.5	12.5	25
Clinical <i>Pseudomonas aeruginosa</i> PAE 240 DU14476/07 Source : Urine	6.25	6.25	12.5	6.25	
Clinical <i>Pseudomonas aeruginosa</i> PAE 249 DM15013 Source : Wound	6.25	12.5	6.25	6.25	
<i>Escherichia coli</i> ATCC25922	12.5	12.5	25	12.5	
Clinical <i>Escherichia coli</i> DB16027 Source : Blood	6.25	6.25	12.5	6.25	0.78
Clinical <i>Escherichia coli</i> DU46381R Source : Urine	6.25	12.5	6.25	6.25	

5 Table 18 MIC (ug/ml) results of V2-dimer, Y2-dimer, W2-dimer and Gentamicin against different strains of Gram-positive bacteria *Staphylococcus ureus*, *Bacillus cereus* and fungi *Candida albicans*, *Fusarium solani*

Test Organism	V2-dimer	Y2-dimer	W2-dimer	V2-tetramer	Gentamicin
Methicillin-resistant <i>staphylococcus aureus</i> (MRSA) DM09808R Source : Eye	12.5				12.5
Clinical <i>Staphylococcus aureus</i> DM4001 Source : Eye	12.5	12.5	12.5	12.5	
<i>Bacillus cereus</i> ATCC 11778	12.5				
<i>Candida albicans</i> ATCC10231	12.5	25	12.5	12.5	
Clinical <i>Candida albicans</i> DF2672R Source : Urine	12.5	12.5	12.5	12.5	
<i>Fusarium solani</i> ATCC 36031	25	12.5	12.5	3.125	

Table 19 MIC (ug/ml) results of several C-terminus monomers against different strains of Gram-negative bacteria *Pseudomonas aeruginosa* and *Escherichia coli*

Test Organism	Y2 - 8AA	V2 - 8AA	W2 - 8AA	V4 monomer	Y4 monomer
<u><i>Pseudomonas aeruginosa</i></u>					
ATCC 27853					
Clinical <i>Pseudomonas aeruginosa</i>	>50	>50	25	>50	50
DM 023104 Source : Eye					
Clinical <i>Pseudomonas aeruginosa</i>	>50	>50	50	>50	25
DM 023155 Source : Eye					
Clinical <i>Pseudomonas aeruginosa</i> 07DM 023257	>50	>50	>50	>50	>50
Source : Eye					
Clinical <i>Pseudomonas aeruginosa</i>	50	>50	25	>50	>50
07DM023376 Source : Eye					
Clinical <i>Pseudomonas aeruginosa</i>	>50	>50	>50	>50	>50
PAE 230 DR4877/07					
Source : Sputum					
Clinical <i>Pseudomonas aeruginosa</i>	>50	>50	>50	>50	50
PAE 239 DM5790/07					
Source : Wound					
Clinical <i>Pseudomonas aeruginosa</i>	6.25	25	12.5	>50	25
PAE 240 DU14476/07					
Source : Urine					
Clinical <i>Pseudomonas aeruginosa</i>					
PAE 249 DM15013 Source : Wound					
Escherichia coli ATCC25922	25				
Clinical <i>Escherichia coli</i>					
DB16027 Source : Blood	25				
Clinical <i>Escherichia coli</i>					
DU46381R Source : Urine	25				

Table 20 MIC (ug/ml) results of several C-terminus monomers against different strains of Gram-positive bacteria *Staphylococcus ureus*, *Bacillus cereus* and fungi *Candida albicans*, *Fusarium solani*

Test Organism	Y2 - 8AA	V2 - 8AA	W2 - 8AA	V4 monomer	Y4 monomer
Methicillin-resistant staphylococcus aureus (MRSA) DM09808R Source : Eye					
Clinical Staphylococcus aureus DM4001 Source : Eye	>50	>50	12.5	>50	12.5
<u><i>Bacillus cereus</i></u>					
ATCC 11778					
Candida albicans ATCC10231	25	>50	12.5	25	12.5
Clinical Cadida albicans DF2672R Source : Urine	50	>50	12.5	>50	25
<i>Fusarium solani</i> ATCC 36031	50	>100	25	>100	12.5

References

- 5 Campopiano D.J., Clarke, D. J., Polfer, N. C., Barran, P.E., Langley, R.J., Gvan. J. R., Maxwell, A., and Dorin, J. R. (2004) Structure-activity relationships in defensin dimers: a novel link between beta-defensin tertiary structure and antimicrobial activity. *J. Biol. Chem* 279(47):48671-9.
- 10 Hoover D.M., Rajashankar K. R., Blumenthal R., Puri A., Oppenheim J. J., Chertov O. and Lubkowski J., (2000) The structure of human beta-defensin-2 shows evidence of higher order oligomerization. *J. Biol. Chem.* 275(42):32911-8.
- 15 10 Hoover D.M., Chertov O. and Lubkowski J., (2001) The structure of human beta-defensin-1: insights into structural properties of beta-defensins. *J. Biol. Chem.* 276(42):39021-6.
- 15 Krajewski K., Marchand C., Long, Y-Q., Pommier, Y. and Roller, P. P. (2004) Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicin *Bioorganic and Medicinal Chemistry Letters* 14: 5595-5598.
- 20 20 National Committee for Clinical Laboratory Standards (1987) Methods for determining bactericidal activity of antimicrobial agents by National Committee for Clinical Laboratory Standards (Villanova, PA).
- 25 Schibli D. J., Hunter H. N. Aseyev V., Starner T, D. Wiencek J. M., McCray Jr P. B., Tack B. F. and Vogel H. J. (2002) The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against *Staphylococcus aureus* *J. Biol. Chem.* 276(42) :8279-8289

+61 7 3229 3384

50

CLAIMS

1. An isolated multimer of defensin peptides of formula $(U)_nB_mZ_j$, wherein U comprises any one of SEQ ID NOs: 3-58, each B comprises at least one amino acid having at least two amine groups, Z comprises any amino acid, $m \geq 1$ and $j \geq 0$, wherein the peptides U are linked together covidentally through at least one amino acid B and the multimer is branched at the terminal B_mZ_j residues.
2. The isolated multimer according to claim 1, wherein the peptide U has a charge of +1 to +11.
3. The isolated multimer according to any one of the preceding claims, wherein the peptide U comprises any one of SEQ ID NOs: 36 to 44 or fragment or variant thereof.
4. The isolated multimer according to any one of the preceding claims, wherein each B comprises lysine, ornithine or arginine.
5. The isolated multimer according to any one of the preceding claims, wherein $m = n-1$, $j = 1$, $B = Z = K$, the multimer has the formula $(U)_{n-1}K$, and U comprises any one of SEQ ID NOs: 36 to 44.
6. The isolated multimer according to claim 4, wherein $n = 2$, the multimer has formula $(U)_2KK$ and U comprises any one of SEQ ID NOs: 36 to 44.
7. The isolated multimer according to any one of claims 1 to 4, wherein $m = n-1$, $j = 1$, $B = Z = K$, U comprises SEQ ID NO: 44, and the multimer has formula (SEQ ID NO: 44) $_{n-1}K$.
8. The isolated multimer according to claim 7, wherein $n = 2$, and the multimer has formula (SEQ ID NO: 44) $_2KK$.
9. An isolated nucleic acid molecule encoding any part of or the whole of the multimer according to any one of the preceding claims.
10. A vector comprising the nucleic acid molecule according to claim 9.

2009238701 20 May 2013

+61 7 3229 3384

51

11. A host cell comprising the nucleic acid molecule according to claim 9 or the vector according to claim 10.
12. A method of preparing the multimer according to any one of claims 1 to 8 comprising:
- (i) providing at least one solid phase;
 - (ii) coupling at least a first amino acid Z to the solid phase;
 - (iii) linking at least one protected amino acid residue B to the coupled Z;
 - (iv) removing the protecting group(s) from the linked B amino acid residue(s);
 - (v) providing additional chain extension by linking protected amino acid residues, according to the sequence of the peptide U from the C-terminus to the N-terminus, wherein after each linking, the protecting groups are removed for the next linking;
 - (vi) terminating the linking of amino acid residues depending on the number of residues to be added; and
 - (vii) optionally, releasing the multimer from the solid phase.
13. The method according to claim 12, further comprising, after step (iv):
- (iv)(a) linking further protected B residues to the linked B residue(s);
 - (iv)(b) removing the protecting group(s) from the B residues from (iv)(a);
 - (iv)(c) repeating step (iv)(a) and (iv)(b), or
 - (iv)(d) proceeding to step (v) and (vi).
14. The method according to claim 12 or 13, wherein each B comprises lysine, arginine or ornithine.
15. The method according to any one of claims 12 to 14, wherein the peptide U comprises SEQ ID NO: 3.
16. The method according to any one of claims 12 to 14, wherein the peptide U comprises any one of SEQ ID NOs: 36 to 44.

2009238701 20 May 2013

+61 7 3229 3384

52

- 2009238701 20 May 2013
17. An isolated peptide multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$, wherein U^1 and U^2 comprises a peptide sequence with $U^1 \neq U^2$, C and B each comprises an amino acid with at least two amine groups, Z comprises any amino acid, $n = 2^x$, where $x = 0$ or a positive integer, $m = 1$ or 0 , and wherein U^1 or U^2 comprises SEQ ID NO: 2, wherein the peptide is branched at C.
 18. An isolated peptide trimer of formula $U^3U^2CU^1Z$; wherein U^1 , U^2 , U^3 each comprises a peptide; C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid, and wherein U^1 , U^2 or U^3 each comprises SEQ ID NO: 2, and wherein the peptide is branched at C.
 19. The isolated peptide trimer of claim 18, wherein $U^2 = U^3 \neq U^1$, C = B and the peptide comprises $(U^2)_2 BU^1Z$.
 20. The isolated peptide trimer of claim 18, wherein $U^1 = U^3 \neq U^2$ and the peptide comprises formula $U^1U^2CU^1Z$.
 21. The isolated peptide trimer of claim 18, wherein $U^1 = U^2 \neq U^3$ and the peptide comprises formula $U^3U^1CU^1Z$.
 22. The isolated peptide trimer of claim 18, wherein $U^1 = U^2 = U^3$, C = B, and the peptide comprises formula $(U^1)_2 BU^1Z$.
 23. Use of the isolated multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 in eye drop composition(s) and/or solution(s) and/or contact lens solution(s).
 24. An antimicrobial composition comprising the multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22.
 25. A pharmaceutical composition comprising the multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22.

+61 7 3229 3384

26. The antimicrobial composition according to claim 24 or the pharmaceutical composition according to claim 25, wherein the composition is formulated for topical, oral, parenteral administration or for administration by inhalation.
27. The antimicrobial composition according to claim 24 or 26 or the pharmaceutical composition according to claim 25 or 26; wherein the composition is suitable for eyedrops and/or contact lens solution.
28. A contact lens solution comprising the multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 and/or the antimicrobial composition according to claim 24 or 26.
29. A composition capable of coating a device comprising the multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22.
30. A device coated with the composition according to claim 29.
31. The device according to claim 30 wherein the device comprises a medical device.
32. The device according to claim 30 or 31 wherein the device comprises a catheter, a needle, a sheath, a stent or a dressing.
33. A method of inhibiting and/or reducing the growth of at least one microorganism comprising contacting the microorganism with at least one multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 and/or the antimicrobial composition according to claim 24 or 26.
34. A method of treating at least one microbial infection comprising administering to a subject at least one multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22, at least one antimicrobial composition according to claim 24 or 26 and/or at least one pharmaceutical composition according to claim 25 or 26.

2009238701 20 May 2013

+61 7 3229 3384

- 2009238701 20 May 2013
35. A method of inhibiting and/or reducing the growth of at least one microorganism in a subject comprising administering to the subject at least one multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22, at least one antimicrobial composition according to claim 24 or 26 and/or at least one pharmaceutical composition according to claim 25 or 26.
 36. Use of a multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 for the manufacture of an antimicrobial composition.
 37. The use according to claim 36, wherein the antimicrobial composition is for inhibiting and/or reducing the growth of at least one microorganism in a subject.
 38. Use of a multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 for the manufacture of a medicament for treating microbial infections.
 39. Use of a multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 for the manufacture of an eye drop composition and/or solution and/or contact lens solution.
 40. Use of a multimer according to any one of claims 1 to 8 and 17, or the isolated trimer according to any one of claims 18 to 22 for the manufacture of a composition for coating a device.
 41. The use according to claim 40, wherein the device is a medical device.
 42. The use according to claim 40 or 41, wherein the device is a catheter, a needle, a sheath, a stent or a dressing.
 43. A method of preparing a peptide multimer of formula $[(U^1)(U^2)]_{n/2}(C)_{n/2}B_mZ$ wherein each of U^1 and U^2 comprises a peptide with $U^1 \neq U^2$, $n = 2^x$ where $x = 0$ or a positive integer, $m = 1$ or 0 , wherein U^1 or U^2 comprises SEQ ID NO: 2, wherein the peptide is branched at C; comprising the steps of:
 - (i) providing at least one solid phase;

+61 7 3229 3384

2009238701 20 May 2013

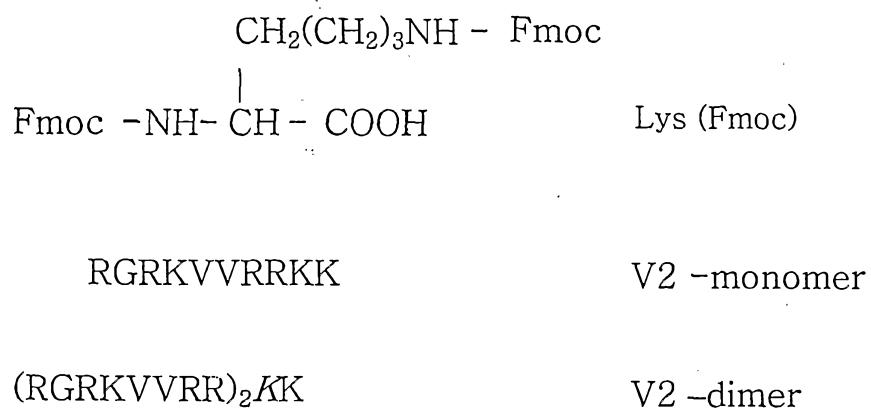
- (ii) coupling at least a first amino acid Z to the solid phase;
- (iii) optionally linking at least one amino acid B to the coupled Z;
- (iv) linking at least one protected amino acid C to Z or B; wherein C comprises at least two differentially protected groups;
- (v) removing a first protecting group from the linked amino acid C to expose a first reactive side chain;
- (vi) providing chain extension of a first peptide U^1 to the first reactive side chain of C;
- (vii) removing a second protecting group from the linked B amino acid to expose at least a second reactive side chain; and
- (viii) providing chain extension of a second peptide U^2 to the second reactive side chain of C.
44. A method of preparing a peptide trimer of formula $U^3U^2CU^1Z$, wherein U^1 , U^2 and U^3 each comprises a peptide, C comprises an amino acid comprising at least two amine groups and Z comprises any amino acid, wherein U^1 , U^2 or U^3 each comprises SEQ ID NO: 2, and wherein the peptide is branched at C, the method comprising the steps of:
- (i) providing at least one solid phase;
 - (ii) coupling at least a first amino acid Z to the solid phase; and
 - (iii) providing chain extension of peptide U^1 to Z;
- wherein, (A) the peptide trimer is a heterogeneous peptide of formula $U^3U^2(C)U^1Z$, the method further comprises:
- (iv) linking a differentially protected amino acid C to an amino acid of peptide U^1 ;
 - (v) removing a first protecting group from the linked amino acid C;
 - (vi) providing for chain extension of peptide U^2 to amino acid C;
 - (vii) removing a second protecting group from the linked amino acid C; and
 - (viii) providing for chain extension of peptide U^3 to amino acid C;

+61 7 3229 3384

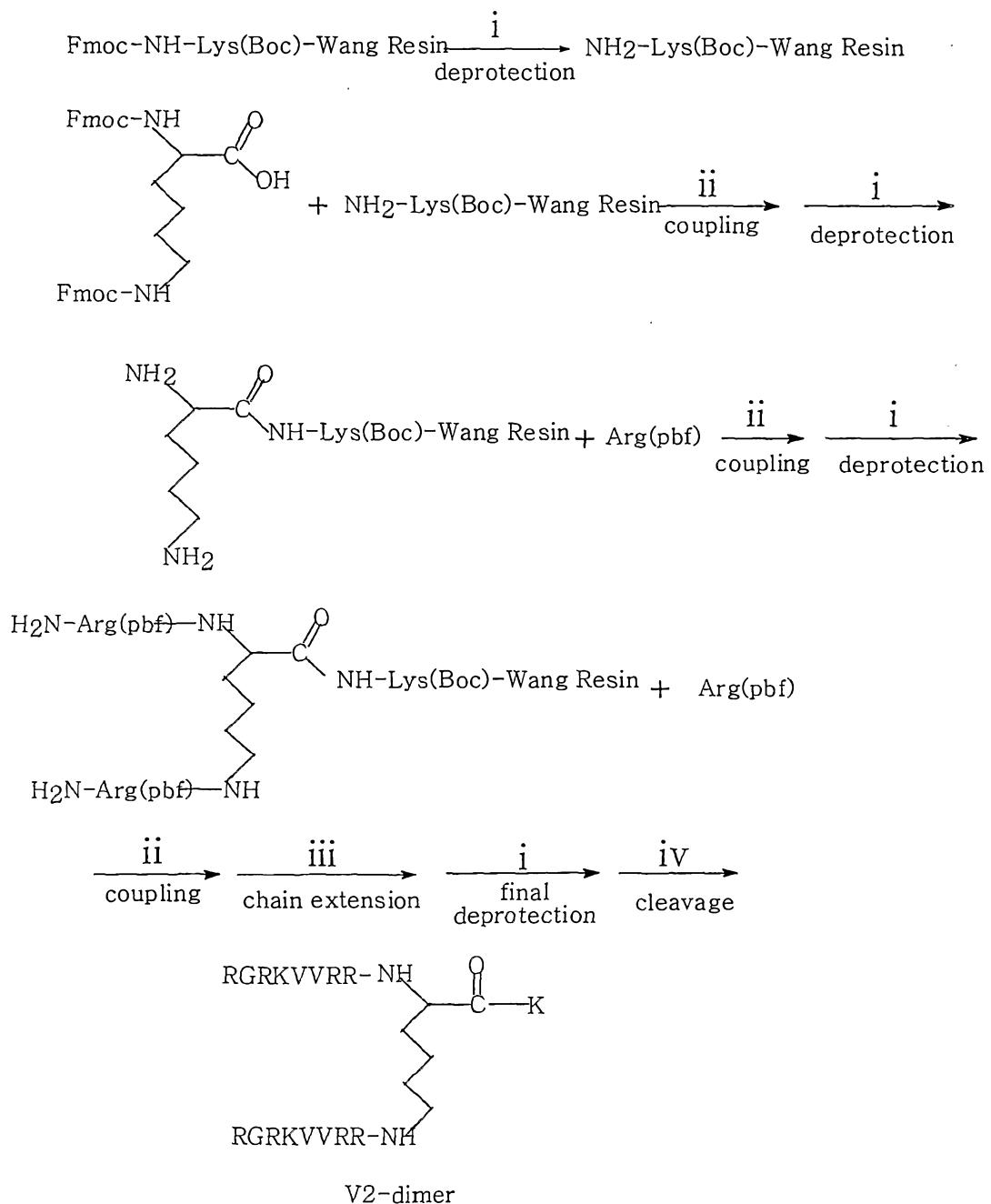
56

2009238701 20 May 2013

(B) $U^2 = U^3 = U^1$, C = B, and the peptide trimer comprises formula $(U^1)_2BU^1Z$, the method further comprises:


- (iv) linking a protected amino acid B to an amino acid of peptide U^1 ;
- (v) removing the protecting groups from the linked amino acid B; and
- (vi) providing for chain extension of two peptides U^1 to the amino acid B;
or

(C) $U^2 = U^3 \neq U^1$, C = B, and the peptide comprises formula $(U^2)_2BU^1Z$, the method further comprises:


- (iv) linking a protected amino acid B to an amino acid of peptide U^1 ;
- (v) removing the protecting groups from the linked amino acid B; and
- (vi) providing for chain extension of at least two units of peptide U^2 to amino acid B.

Date: 20 May 2013

Figure 1

2/8

Figure 2

3/8

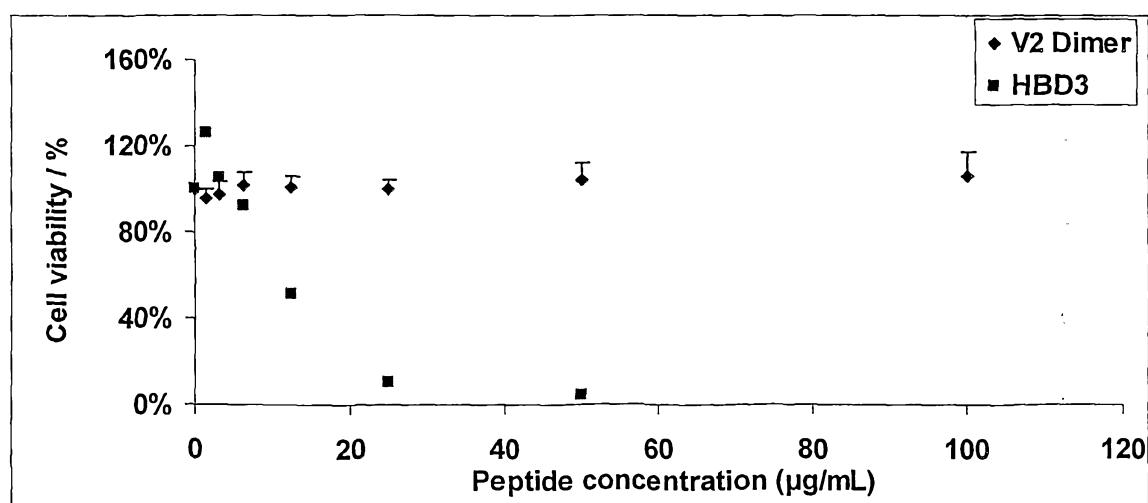
Figure 3

RGRKVVRRKK

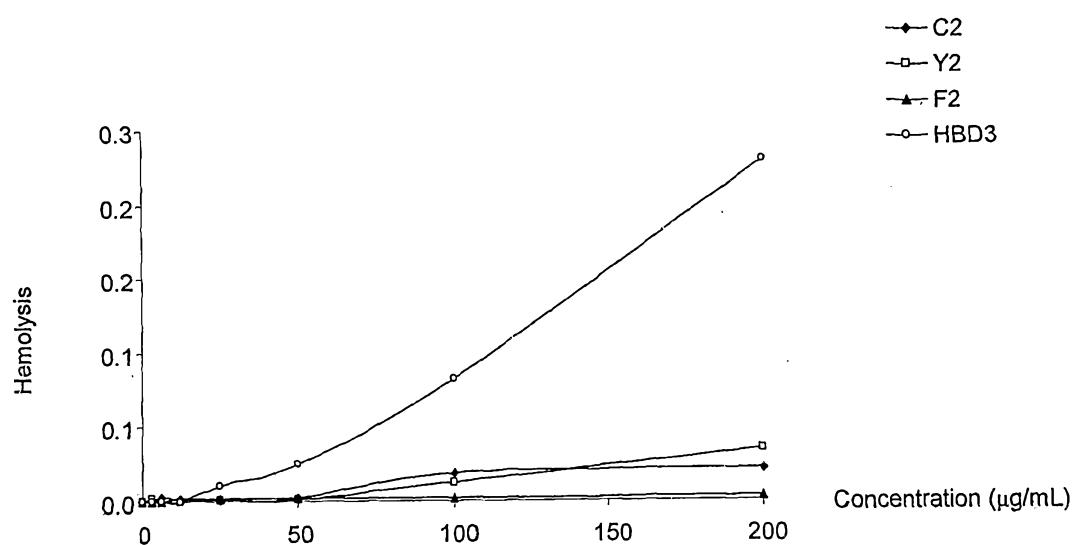
V2-monomer

(RGRKVVRR)₂KK

V2-dimer

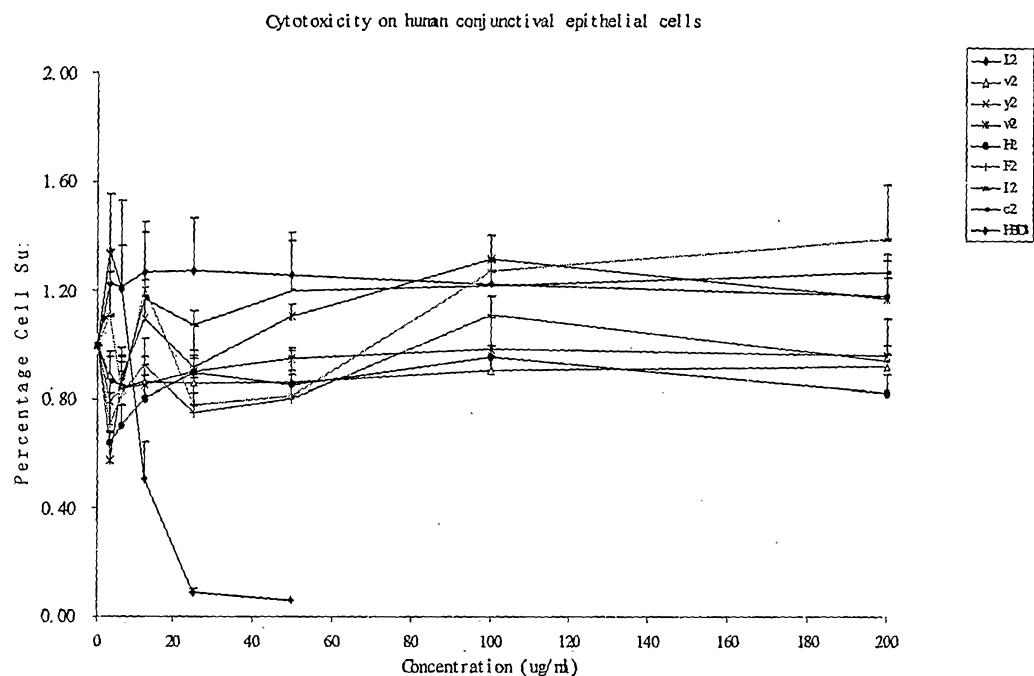

(RGRKVVRR)₄(K)₃K

V2-tetramer


(RGRKVVRR)₈(K)₇K

V2-Octamer

Figure 4



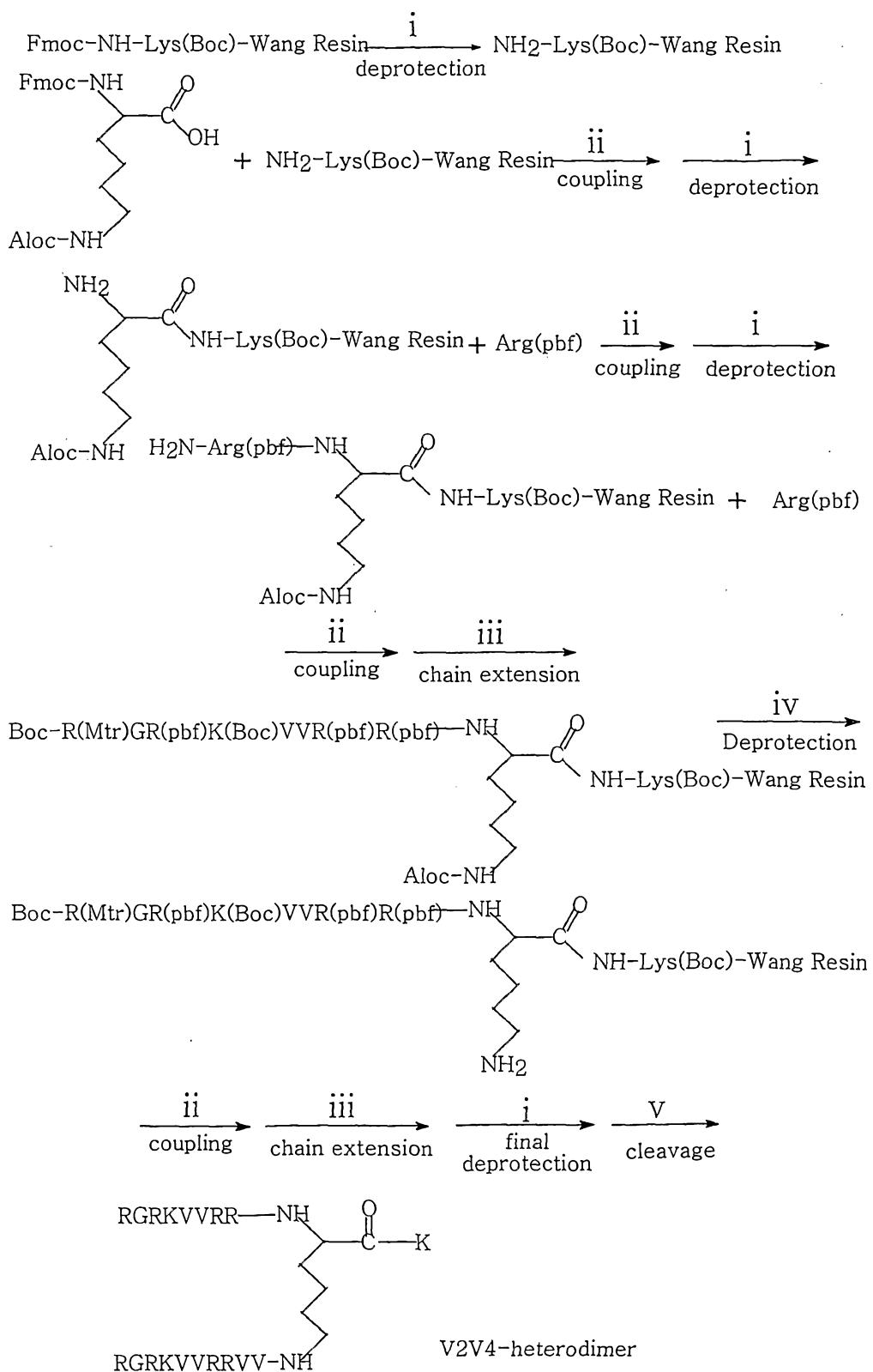

4/8

Figure 5

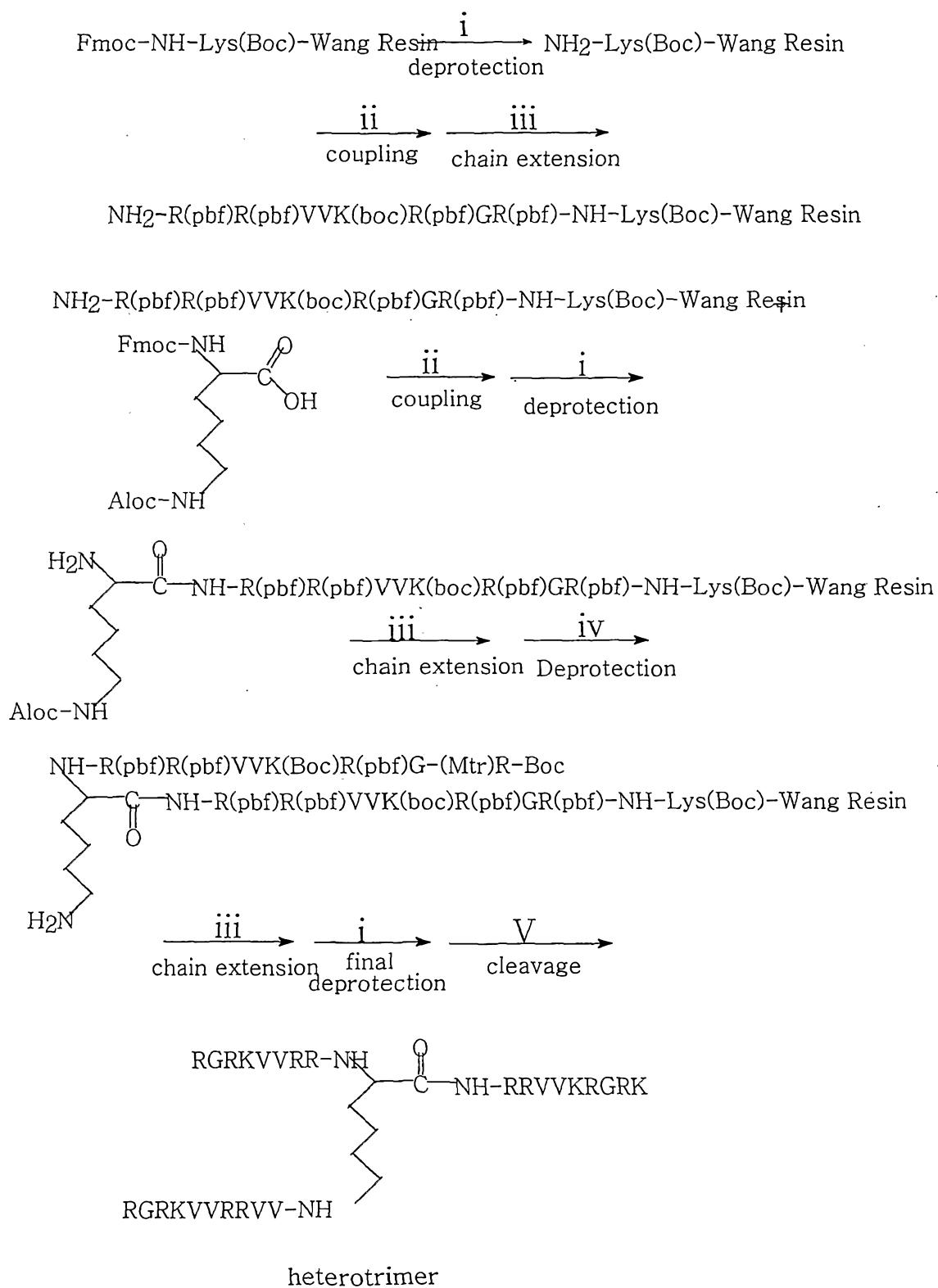
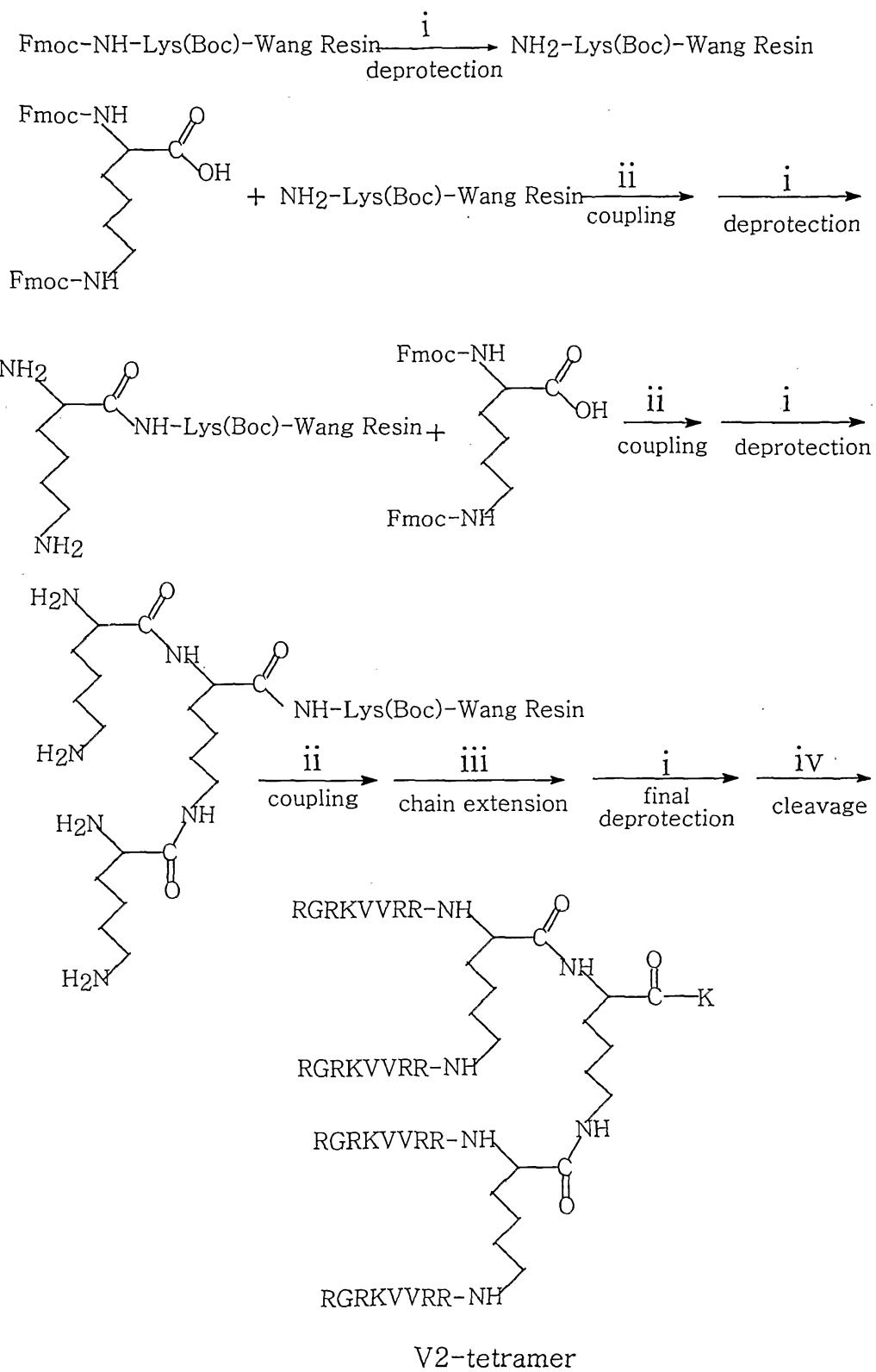

5/8

Figure 6



6/8
Figure 7

7/8

Figure 8

8/8

Figure 9