A valve (10) has a body (11) containing three ports, 16, 17, 18 and a rotor (12) is rotatable about an axis (13) to bring two passages (14, 15) in the rotor selectively into and out of registration with the body parts (16, 17, 18) the body ports opening at a cylindrical bore (19) in the body, and the rotor passages (14, 15) opening at a cylindrical periphery (20) of the rotor, the rotor passages (14, 15) spaced about said axis (13). The valve also includes: (a) axially spaced seal rings (36, 37) extending about the axis (13) between the rotor (12) and the body (11), the rings (36, 37) spaced at axially opposite sides of the passages (14, 15) and ports (16, 17, 18) to seat three seal strands (38, 39, 40) extending between the rings (36, 37) and integral therewith, with first and second strands (38, 39) spaced apart about the axis (13) at angularly opposite sides of one of the rotor passages (15), and the second strand (39) and a third strand (40) spaced apart about the axis (13) at angularly opposite sides of the second of the rotor passages (14).
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applica-
tions under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
-1-

MULTI-PORTED VALVE WITH SEALING NETWORK BETWEEN VALVE BODY AND ROTOR

This invention relates generally to valves useful for example in filtering apparatus, and more particularly concerns seal structures for such valves, which facilitate turning of valve rotors, maintain resistance to such turning, promote pressure equalization during such turning, and seal off effectively between multiple ports in a valve body in different selected rotor positions.

There is a continuing need for simplified valving devices useful in pool filtering applications, and which incorporate multiple functions as referred to, as well as facilitate long valve life, and simplified valve construction.

The present invention provides a valve comprising a body containing three ports, and a rotor rotatable in the body, the rotor rotatable about an axis to bring two passages in the rotor selectively into and out of registration with the body ports, the body ports opening at a cylindrical bore in the body, and the rotor passages opening at a cylindrical periphery of the rotor, the rotor passages spaced about said axis, including combination with said valve of:

a) axially spaced seal rings extending about said axis between the rotor and the body, the rings spaced at axially opposite sides of the passages and ports,

b) at least three seal strands extending between said rings and integral therewith, first and second strands spaced apart about said axis at angularly opposite
sides of one of said rotor passages, and the second strand and a third strand spaced apart about said axis at angularly opposite sides of the second of said rotor passages.

As will be seen, the seal rings and strands may form a harness or cage about the rotor and mounted in grooving in the rotor; a fourth strand may be provided between the first and third strands or maintain full engagement with the valve body bore and provide desired resistance to rotor turning between selected positions; the strands may be located at or about 90° intervals about the rotor axis; the strands may be spaced apart angularly to allow momentary intercommunication between circularly successive ports in the body, as the rotor turns; the strands may have local mechanical attachment to the rotor while the seal rings and remainder of the strands are free to float to accommodate to the body bore to best sealing fit advantage; and the valve may be attached to a filter vessel to accommodate to filtering and backwash modes of operation.

The invention will be more fully understood from the following description and drawings in which:

Fig. 1 is a diagrammatic view of apparatus incorporating the invention;

Fig. 2 is a perspective view of a valve shown in Fig. 1;

Fig. 3 is a plan view, in section, of the Fig. 2 valve, in one position of the valve rotor;

Fig. 4 is a view like Fig. 3 but showing the valve in another rotated position;

Fig. 5 is an elevational view, in section, of the Fig. 2 valve;

Fig. 6 is a perspective view of the Fig. 2 valve rotor and seal structure thereon;

Fig. 7 is an enlarged horizontal fragmentary section, taken on line 7-7 of Fig. 6; and

Fig. 8 is a perspective view of the seal structure.

In Figs. 2-6, a valve 10 has a body 11 and rotor.
12 rotatable in the body about central axis 13 to bring
two passages 14 and 15 in the rotor selectively into and
out of registration with ports in the body. Three such
ports are designated at 16-18, and they open at a
cylindrical bore 19 in the body. In the example, ports
16 and 18 are spaced at 180° about axis 13, and port 17
is spaced at 90° about axis 13, from each of ports 16
and 18.

Passages 14 and 15 open at 14a and 15a to the
cylindrical periphery 20 of the rotor. The rotor may
include a cylindrical wall 21 forming the two openings
14a and 15a, and extending about a hollow 22. The
illustrated rotor also includes a conduit 23 which may
be elbow shaped to include radial section 23a terminating
at opening 14, and axial section 23b terminating at
opening 24. Section 23b is substantially bounded by
hollow 22, as is clear from Fig. 5 showing the hollow
opening upwardly to the upper annular interior 25 of body
11, and to the annular interior 26 of cap 27 fastened at
28 to the body. That cap includes a central tubular stem
29 telescopically fitting the conduit section 23b at 29a, a seal 30 being provided therebetween and accom-
modating rotation of section 23b relative to stem 29 as
the rotor turns.

The rotor also includes a bottom wall 31 slidably
engaging the body bottom wall 32. An external handle 33
is attached to the rotor via connection 34 projecting
through body wall 32.

In accordance with an important aspect of the
invention, axially spaced seal rings 36 and 37 extend
about the rotor, in coaxial relation, between the body and
rotor. Upper ring 36 is spaced above the levels of the
ports 16-18 and passages 14 and 15; and lower seal ring 37
is spaced below the levels of those ports and passages.

The seal structure also includes at least three seal strands
extending between the seal rings and endwise integral ther-
with, whereby the rings and strands define a cage or harness
on the rotor. First and second of the strands 38 and 39 are
spaced apart about axis 13 at opposite sides of one of the
rotor side passages (passage 15 for example); and second and third of the strands 39 and 40 are spaced apart about axis 13 at opposite sides of the second of the rotor side passages (passage 14 for example). A fourth strand is shown at 41, located remotely from strands 38-40, and angularly spaced from the first and third strands. The rings 36 and 37 and strands 38-41 are typically integral, and consist of elastomeric material such as rubber carried by the rotor so as to protrude from corresponding grooves in the rotor and into the clearances between the rotor and body bore 19 to slidably engage that bore and seal off between the body and rotor.

As shown in the drawings, the seal rings and strands are preferably carried in grooves within the rotor, so as to protrude from those grooves into the clearances between the rotor and body bore 19. and also so as to sealingly engage that bore. See for example annular ring grooves 42 and 43, in Fig. 5; and see strand grooves 44-47 in Fig. 4. Fig. 7 shows that the strands may locally protrude at 48 through apertures 49 in the rotor wall 21 and may have integral buttons 50 overhanging the rotor wall inner side 21a to aid in retaining the strands and rings in position in the grooves.

It will be noted, as in Figs. 3 and 4, that the strands 38-41 are located at about 90° intervals about axis 13, whereby in each of the rotor positions as shown in Figs. 3 and 4, the ports 16, 17 and 18 remain mutually sealed off from one another as via clearances between the rotor and body bore; on the other hand, as the rotor is rotated, the strands 38, 39 and 40 will at times register with the ports 16, 17 and 18, so that the ports will come into momentary intercommunication (for example ports 17 and 18 will intercommunicate during part of the rotary motion of the valve rotor, and ports 16 and 17 will also intercommunicate during part of the rotary motion of the valve rotor. This enables pressure equalization between intercommunication ports during rotor turning, to aid such turning. The angular gap (as at \(\alpha \)) between circularly successive ports is less than the angular spacing \(\delta \) between successive strands, to facilitate
this result. Resistance to rotor turning is also maintained by strand 41 which continuous to fully engage the bore 19 as the rotor turns between Figs. 3 and 4 positions. Rotor centering is aided by strand 41.

Figs. 1, 2 and 5 shows an application of the valve 10 mounted to the bottom wall of a filter vessel 50. The latter is suitable for a pool water filter and may contain sand or other particulate material 51. The bottom wall 50a of vessel 50 contains a central opening 52, and that wall is clamped between flanges 53 and 54 associated with body 11 and cap 27.

Pipes 55 extend from the cap 27 and into the particulate 51 in the vessel, the pipes being perforated. A riser pipe 56 is threaded at 59 into the stem 29 and a perforate head 57 is carried at the top of pipe 56 to promote and distribute water flow through the filter media 51.

In filter mode (see Fig. 3), water is pumped through port 17 and via passage 14 and opening 24 upwardly into riser pipe 56, then distributed via head 57 to the filter media. The filtered water enters pipes 55, flows to interior zones 26 and 22 in the valve, and then exits via passage 15 and port 16, in Fig. 3.

In backwash mode, pressurized water enters port 17, flows via annular zones 22 and 26 (see Figs. 4 and 5) to pipes 55, flows upwardly through the media 51 to flush same, the water with soils therein then flowing to head 57 and down the riser 56 to elbow sections 23b and 23a, to exit the valve via passage 14 and port 18.
CLAIMS

1. A valve comprising a body containing three ports, and a rotor rotatable in the body, the rotor rotatable about an axis to bring two passages in the rotor selectively into and out of registration with the body ports, the body ports opening at a cylindrical bore in the body, and the rotor passages opening at a cylindrical periphery of the rotor, the rotor passages spaced about said axis, including combination with said valve of:
 a) axially spaced seal rings extending about said axis between the rotor and the body, the rings spaced at axially opposite sides of the passages and ports,
 b) at least three seal strands extending between said rings and integral therewith, first and second strands spaced apart about said axis at angularly opposite sides of one of said rotor passages, and the second strand and a third strand spaced apart about said axis at angularly opposite sides of the second of said rotor passages.

2. The valve of claim 1 wherein said seal rings and seal strands are carried by the rotor.

3. The valve of claim 2 wherein the rotor contains grooving corresponding in location with and receiving said seal rings strands.

4. The valve of claim 1 wherein said strands include a fourth strand angularly spaced from and located between said first and third strands.

5. The valve of claim 3 wherein said strands include a fourth strand angularly spaced from and located between said first and third strands.

6. The valve of claim 4 wherein said strands are located at approximately 90° intervals about said axis.

7. The valve of claim 5 wherein said strands are located at approximately 90° intervals about said axis.

8. The valve of claim 1 wherein the strands are spaced apart angularly to allow momentary intercommunication between circularly successive ports, as the rotor turns.

9. The valve of claim 3 wherein the rotor has a wall and certain of said strands have local attachment to the rotor via apertures in said wall.
10. The valve of claim 1 including a pool filter vessel attached to the valve, one passage in the rotor communicating with a first side of media in the vessel while the other passage in the rotor communicates with a second side of the media in one position of the valve rotor, and said one passage in the rotor communicating with said second side of the media while said other passage in the rotor communicates with said first side of the media in another position of the valve rotor.

11. The valve of claim 10 wherein the angular gap α between circularly successive ports is less than the angular spacing β between successive strands.
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. Cl. F16K 11/085; BOLD 29/38
U.S. Cl. 137/262.47; 210/278; 251/317.

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Cl.</td>
<td>137/262.16, 625.19, 625.23, 625.24, 625.29 625.47 210/278, 425 251/309, 310, 317, Dig. 1</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US.A 2,547,116, Published 03 April 1951</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US.A, 3,295,554, Published 03 Jan. 1967</td>
<td>10,11</td>
</tr>
<tr>
<td>A</td>
<td>US.A, 3,451,554, Published 24 June 1969</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US.A, 3,540,694, Published 17 Nov. 1970</td>
<td>1, 2, 4, 8</td>
</tr>
<tr>
<td>X</td>
<td>US.A, 3,780,736, Published 25 Dec. 1973</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US.A, 4,031,918, Published 28 June 1977</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US.A, 4,169,491, Published 02 Oct. 1979</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- "A" document defining the general state of the art
- "E" earlier document but published on or after the international filing date
- "L" document cited for special reason other than those referred to in the other categories
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but on or after the priority date claimed
- "T" later document published on or after the international filing date or priority date and not in conflict with the application, but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 17 November 1981

Date of Mailing of this International Search Report: 09 DEC 1981

International Searching Authority: ISA/US

Signature of Authorized Officer: ROBERT C. MITCHELL