(54) Title: A NON-CONTACT METHOD FOR MEASUREMENT OF STRAIN PROFILE AT A LOCATION INTERPOSED WITHIN A SOFT DEFORMABLE OBJECT WITH DYNAMIC EVOLUTION OF THE STRAIN UNDER DYNAMIC LOADING OR FRACTURE OF THE OBJECT.

(57) Abstract: The invention relates to a non-invasive method for estimation of strain profile and dynamic evolution of the strain at a location interposed inside a block of soft material, comprising: forming a tracer grid consisting of microscopic lines or regularly spaced microscopic dots on a single plane buried inside the soft block; preparation of a deformable object embedded with the tracer grid in three primary steps: i. preparing a block of crosslinked material by crosslinking a first predetermined quantity of a pre-polymer solution containing a monomer, a crosslinking agent, and an initiator and promoter all mixed in a solvent at a known stoichiometric weight ratio, the crosslinking reaction being carried out inside a mold at room temperature or at an elevated temperature, such that a block of the crosslinked material having one of a flat face and a desired curvature; ii. transferring a grid comprising of lines or dots onto the face by direct writing or transferring from an easy release surface; and iii. crosslinking a second predetermined quantity of the same pre-polymer solution on the gel surface, such that this second crosslinked material gets welded to the first one forming a monolithic block having a plane containing tracer particles embedded inside. Visualizing and recording...
the displacement of the tracer grid when the composite block is subjected to normal, shear or torsional loading or fracture by insertion of an object. The strain field is estimated from the data of displacement of the tracer grid.
A NON-CONTACT METHOD FOR MEASUREMENT OF STRAIN PROFILE AT A LOCATION INTERPOSED WITHIN A SOFT DEFORMABLE OBJECT WITH DYNAMIC EVOLUTION OF THE STRAIN UNDER DYNAMIC LOADING OR FRACTURE OF THE OBJECT

-1-

FIELD OF THE INVENTION

The invention generally relates to the technical field of deformation and fracture of soft deformable objects for example crosslinked hydrogel, elastomers. In particular, the invention relates to estimating displacement and strain profile at a location interposed within a soft deformable object. More particularly, the invention relates to a non-contact method for measurement of strain profile at a location interposed within a soft deformable object with dynamic evolution of the strain under dynamic loading or fracture of the object.

BACKGROUND OF THE INVENTION

The soft deformable objects are known to have a large number of applications, which normally deform following simple linear elastic laws or deform exhibiting more complex rheological behavior. The material may be homogeneous or heterogeneous so that the rheological properties may remain uniform or vary spatially. The material may undergo large deformation to the extent that it can undergo fracture.

Determination of deformation and strain profile inside a soft object and the dynamic evolution of these quantities, during external loading, fracture with an intruding object and deformation due to variety of internal processes are important for large number of engineering and biomedical applications. Several non-contact optical methods are known which essentially involve the use of tracer particles randomly spread or arranged in an orderly manner in the form of a rectangular grid on the surface of the object. Deformation of the object results in displacement of these particles which is visualized optically and recorded using a video camera fitted with a microscope. In many cases, instead of the tracer
particles one can use a thin transparent film which results in interference fringes when illuminated by light. The interference pattern changes on application of load on the object which is captured optically and analyzed using an image-processing software for estimation of displacement including the strain field. Notably, all these known methods are suitable for estimating strain on the surface of a body. However, many situations, for example fracture of a soft body driven by an intruding object, demands estimation of the strain field inside the body, especially that at the closest vicinity of the crack tip. Such knowledge is important for understanding a local fracture strength of the material, for driving a propagating crack along a superior materials with enhanced failure strength and so on. There is actually no known method for experimental determination of the strain value or strain profile within bulk-material or over a large volume of the material. It is in this context that we have presented here the idea of embedding a tracer grid consisting of fine lines or uniformly spaced dots on a single plane embedded inside the soft deformable body. We can then subject it to external or internal tensile/compressive shear stress, or fracture it by driving an intruder through it. The deformation of this grid in response to the load provides us the estimation of the displacement and strain profile of the material at that location. We have presented below a brief description of patents closely related to the subject of the current problem.

Patent number EP 0783837 B1 describes a method and an apparatus for joining successive blocks of kneaded dough in order to produce a continuous sheet of dough. The essence of the cited invention resides in mechanical mixing of several pieces of dough without any chemical interaction.
Patent number EP 1281070 A1 teaches methods, apparatus and kits for integrally labeling polymeric gels, such as polyacrylamide and agarose gels, with indicia written on a polymeric material which bonds to the gel matrix as the gel polymerizes. The gels are used for electrophoretic analysis of biological molecules like DNA, RNA and proteins.

International patent application published under WO 2008090495A1 describes a contact-less optical method of measuring strain on a skin surface when a person is shaving. In essence, the skin of a human being is known to have a pattern and which is imaged using a digital camera both in unstrained and strained conditions. The deflection of the skin is estimated by measuring deflection of the pattern.

Patent number US 6431007 describes a non-contact strain measuring method in which reference lines are drawn on the surface of low modulus porous material by using a fluorescent ink as the dye. The specimen is then viewed under an optical microscope both in loaded and unloaded conditions. The Poisson’s ratio is calculated from the strain measurements in two orthogonal directions.

Patent number US 4781455 describes a method and an apparatus for measurement of strain by optical technique. In essence, a thin transparent film of thickness 3-20 μm is adhered on the surface of an object. A beam of light produces interference pattern when projected onto the object because of superimposition of reflected and transmitted light at the boundary surface of the film. The interference pattern alters depending on loading on the film which is analyzed and measured by using an image processing software.
Patent number US 7377181 describes a method of measuring strain in which a dot pattern is made on the surface of a test specimen. During loading and unloading of the specimen, the separated distance between two dots changes which is measured and used for estimating the strain.

Patent number US 4939368 describes a method and apparatus for measuring strain of an object, the surface of which is provided with a diffraction grating. The grating is illuminated with radiation including at least two frequencies to produce an interference pattern. At least a portion of the interference pattern corresponding to at least one of the frequencies is detected and analyzed to determine the strain.

Patent number US 7779707 describes a Piezoelectric Finger Sensor that acts as an "electronic finger" capable of accurately and non-destructively measuring both the Young's compression modulus and shear modulus of tissues with gentle touches to the surface. The PEFS measures both the Young's compression modulus and shear modulus variations in tissue generating a less than one-millimeter spatial resolution up to a depth of several centimeters. This offers great potential for in-vivo early detection of diseases. A portable hand-held device is also disclosed. The PEF offers superior sensitivity.

SUMMARY OF THE INVENTION

Accordingly, there is provided a non-invasive method for estimation of strain profile and dynamic evolution of the strain at a location interposed inside a block of soft material, comprising: forming a tracer grid consisting of microscopic lines or regularly spaced microscopic dots on a single plane buried inside the soft
block; preparation of a deformable object embedded with the tracer grid in three primary steps: i. preparing a block of crosslinked material by crosslinking a first predetermined quantity of a pre-polymer solution containing a monomer, a crosslinking agent, and an initiator and promoter all mixed in a solvent at a known stoichiometric weight ratio, the crosslinking reaction being carried out inside a mold at room temperature or at an elevated temperature, such that a block of the crosslinked material having one of a flat face and a desired curvature; ii. transferring a grid comprising of lines or dots onto the face by direct writing or transferring from an easy release surface; and iii. crosslinking a second predetermined quantity of the same pre-polymer solution on the gel surface, such that this second crosslinked material gets welded to the first one forming a monolithic block having a plane containing tracer particles embedded inside. Visualizing and recording the displacement of the tracer grid when the composite block is subjected to normal, shear or torsional loading or fracture by insertion of an object. The strain field is estimated from the data of displacement of the tracer grid.

The essence of the inventive method is generation of a tracer grid at a plane embedded within the object. Loading the object externally or internally leads to deformation of the grid which is visualized and video recorded using a suitable camera. The tracer grid is embedded via following sequence of steps namely, one portion of the deformable object is prepared by crosslinking a pre-polymer solution; tracer particles or dots or tracer lines are transferred on one face of it. This face of the gel, which can be flat or curved as desired, is used as a substrate on which, another portion of the same prepolymer solution is crosslinked. During this process, the newly formed block of the crosslinked material gets chemically bonded and welded to the substrate leading to a monolithic block with an embedded array of particles on a plane interposed
within the composite block. The usefulness of this embedded tracer grid has been demonstrated by carrying out several experiments. For example, a fracture was made on the block by inserting a blunt or sharp object through the plane in which the tracer plane is embedded. The strain profile and its dynamic evolution in the vicinity of the crack have been estimated by following the displacement of the tracer grid. In another embodiment of the invention, the plane containing tracer grid was embedded inside a gel cylinder such that it remained concentric with the outer curved surface of the cylinder. When the cylinder was subjected to torsion, the rotational shear strain at the location of the tracer plane could be estimated by measuring the displacement of the tracer grid. In another embodiment of the invention, the tracer grid was embedded inside a soft indenter as a horizontal plane at the vicinity of its tip.

BRIEF DESCRIPTION OF ACCOMPANYING DRAWINGS

Figure 1 Shows a process of preparing a block of gel embedded with a plane containing tracer grid.

Figure 2 Shows the result of uniaxial compression of the embedded gel block.

Figure 3 Shows a cylindrical block of gel in which the tracer grid is embedded on a curved plane.

Figure 4 Shows an experimental concept of punching a block of gel with syringe needle.

Figure 5 Shows a flat punch driven into a cross-linked block of gel.
Figure 6 Shows a video images depicting the progress of fracture when a block of gel is punctured.

Figure 7 Shows a graph depicting normal strain as a function of distance from underformed surface of the gel.

Figure 8 Shows optical micrograph depicting evolution of regions of tensile and compressive strain in the gel.

Figure 9 Optical image showing profile of punching a block of gel.

Figure 10 Shows the top and side views of a hemispherical indenter with an embedded plane of tracer grid.

DETAILED DESCRIPTION OF THE INVENTION

Admittedly, acquiring the information about strain field over the surface of a deformable object, using tracer dot or particles is well known. The present invention however provides a process to quantify experimentally using tracer particles, the dynamic evolution of a strain field at a location interposed within the bulk of a soft solid when it is loaded externally or during fracture. Thus, the present invention is developed through combination of the concept of welding two blocks of the same crosslinkable material like hydrogel without use of any second material, and placing a tracer grid on the surface of the crosslinkable material. The hydrogel being optically transparent, it allows visualization and recordal of displacement of the tracer particles accurately with the help of a video camera. The inventive process was validated by creating a fracture on such a block of gel using a blunt object for example, a flat punch, and sharp objects
for example, hypodermic syringe needles having either a single tip or closely spaced multiple tips. These experiments have shown that strain profile in the material evolves differently in these different situations, thus signifying that the invented method may be an important tool for carrying out material research in variety of engineering and biomedical applications. In another aspect of the invention, a soft indenter embedded with the tracer grid is produced for estimating the softness or hardness of a substrate. Although, the invention uses an optically transparent material to demonstrate the possible applications, with the use of an infrared camera, it will be possible also to monitor displacement of the tracer particles interposed within a opaque object.

Figure 1 shows the sequence of steps depicting the method of preparing a block of gel embedded with a plane containing tracer grid. Figure 2 establishes that an uniaxial compression of the gel block embedded with tracer grid can result in Poisson ratio and Young’s modulus of the material of the gel. Figure 3 shows that a tracer grid is embedded on a curved plane at the bulk of a cylindrical block of gel. Torsion of the cylinder about its axis can yield torsional modulus of the gel material.

Figure 4 shows a schematic of a typical experiment. (a) An indenter, e.g. a flat bottom punch or a syringe needle is driven vertically down at a uniform speed into the gel block bonded to a rigid substrate, such that the indenter drives through the plane of tracer grid and it remains oriented symmetric to this plane. The optical micrographs of typical single and double needles are shown in (b)-(d).(e) Schematic of a typical sample of gel embedded with the plane of dot pattern. The needle is driven into the gel such that it remains symmetric to this plane.
Figure 5 shows that a flat punch is driven into a crosslinked block of polyacrylamide gel through the plane in which the tracer grid remains embedded. Images A and B show the displacement of the grid because of progress in the fracture.

Figure 6 depicts a sequence of video micrograph which interalia shows the progress of the fracture when a block of gel of modules $\mu=30\text{kPa}$ is punctured with a single tip needle of diameter $d=1.2\text{ mm}$. Optical image A to D represent time 0, 2, 4 and 6.5 sec respectively. The regions represent respectively the zones of tensile and compressive vertical strains, e_{yy}. The dotted line represents the un-deformed gel surface. The scale bar represents 1.2 mm.

Figure 7 shows Plots a-d representing normal strain e_{yy} as a function of distance x from the central axis of the needle, also with respect to vertical distance from underformed surface of the gel. Symbols: \bigcirc, Δ, \square, \bullet and \bigotimes represent respectively 4.07, 5.08, 5.82, 7.41, 8.97 and 10.54 mm from the underformed gel surface. Scale bar represents 1.2 mm.

Figure 8 is a sequence of the optical micrograph showing evolution of regions of tensile and compressive strain e_{yy} in the gel, when a double tip needle with constituent tip diameter $d=1.2\text{mm}$ and inter-tip gap $\delta=1.2\text{ mm}$ is used for puncturing a block of gel of modulus $\mu = 30\text{kPa}$. Green and yellow color signify, respectively, zones of tensile and compressive vertical strain. Optical micrographs A to C represent the strain profile at time 0.0, 5.0 and 8.25 sec respectively.

Optical image of Figure 9 shows e_{yy} profile of puncturing of a block of gel (modulus $\mu=30\text{kPa}$) by a double tip needle with systematically varied gap. A-d denotes $\delta=1.2$, 0.92, 0.45 and 0.0 mm respectively.
Optical image of Figure 10 shows the top and side views of a hemispherical indenter with an embedded plane of tracer grid.

ADVANTAGES OF THE INVENTION

1. In contrast to all conventional methods of obtaining strain of a body, the idea of obtaining deformation and strain profile at a location buried inside a deformable object is a novel idea.

2. The idea of obtaining the dynamic evolution of different components of strain at the vicinity of the crack tip inside the body is a novel idea.

3. The idea of embedding an array of tracer particles in the form of a grid or uniformly spaced dots on a plane which can be embedded inside the body is a novel idea.

4. The idea of welding of two separate bodies of the same crosslinkable material without use of any second material as glue is a novel idea.

5. The ideal of welding of two separate bodies of the same crosslinkable material for embedding a plane containing the grid of tracer dots or lines is a novel idea.

6. The idea of creating gel layer consisting of multiple layers of different modulus via successive welding of layers is a novel idea.
7. The idea of carrying out fracture of the soft gel through the said plane in order to visualize and measure the displacement of the tracer particles is a novel idea.

8. The idea of developing tests by using the said gel blocks embedded with a plane of tracer particles as model material for studying fracture of similar soft objects is a novel idea.

9. The idea of developing tests for examining the effect of closely spaced cracks driven by multiple objects on the strain field inside a crosslinkable material is a novel idea.

FUTURE APPLICATIONS

1. For designing gel based optical load sensor for measuring very small loads

2. For designing indenters embedded with a tracer grid for variety of applications, e.g. measuring local modulus of a substrate

3. Safety valves and optical switches

4. For gel labeling useful for gel electrophoresis purposes

5. For preparing gel block with discontinuously varying pore sizes and other properties for gel electrophoresis purposes.
WE CLAIM:

1. A non-invasive method for estimation of strain profile and dynamic evolution of the strain at a location interposed inside a block of soft material, comprising:
 - forming a tracer grid consisting of microscopic lines or regularly spaced microscopic dots on a single plane buried inside the soft block;
 - preparation of a deformable object embedded with the tracer grid in three primary steps:
 i. preparing a block of crosslinked material by crosslinking a first predetermined quantity of a pre-polymer solution containing a monomer, a crosslinking agent, and an initiator and promoter all mixed in a solvent at a known stoichiometric weight ratio, the crosslinking reaction being carried out inside a mold at room temperature or at an elevated temperature, such that a block of the crosslinked material having one of a flat face and a desired curvature;
 ii. transferring a grid comprising of lines or dots onto the face by direct writing or transferring from an easy release surface; and
 iii. crosslinking a second predetermined quantity of the same pre-polymer solution on the gel surface, such that this second crosslinked material gets welded to the first one forming a monolithic block having a plane containing tracer particles embedded inside.
Visualizing and recording the displacement of the tracer grid when the composite block is subjected to normal, shear or torsional loading or fracture by insertion of an object. The strain field is estimated from the data of displacement of the tracer grid.
2. The method as claimed in claim 1, wherein the soft object is optically transparent or opaque.

3. The method as claimed in claim 1, wherein the tracer grid is made of ink of a conventional table top printer, fluorescent dye, microscopic particles, quantum dots, single or multi-walled carbon nanotubes but not excluding others.

4. The method as claimed in claim 1, wherein the tracer grid is embedded on a flat or a curved surface.

5. The method as claimed in claim 1, wherein a soft indenter is produced which can be used for estimation of softness of fragile materials for example, soft tissue but not excluding others.

6. The method as claimed in claim 1 wherein the dynamic evolution of the strain field at a location buried inside the body is estimated.

7. The method as claimed in claim 1, wherein the change in the strain field can be estimated because of soft or hard inclusions inside the body.

8. The method as claimed in claim 1, which allows estimation of Poisson ratio at the bulk of a material.

9. The method as claimed in claim 1, wherein monolithic crosslinked layer comprising several layers of similar or dissimilar rheological properties is generated.
10. The method as claimed in claim 1 wherein the strain field at a location buried inside a body can be estimated when an external object or a set of objects with desired relative spacing and orientation are driven through it.
Figure - 7

Figure - 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G01L1/24 G01N21/00 G01B11/16

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G01L G01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP S61 28808 A (TOYODA GOSEI KK) 8 February 1986 (1986-02-08) abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2007/096705 A2 (LOGSTOR AS [DK]; KIRKEGAARD KIM S [DK]; HANSEN LARS BO [DK]) 30 August 2007 (2007-08-30) abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 2012/250001 A1 (TANAKA YOHSUKE [JP]) 4 October 2012 (2012-10-04) figure 3</td>
<td>1-10</td>
</tr>
</tbody>
</table>

- **Special categories of cited documents**:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- **Other notes**:
 - "X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y*" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search: 4 September 2014

Date of mailing of the international search report: 12/09/2014

Name and mailing address of the ISA:
European Patent Office, P.B. 5018 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040, Fax: (+31-70) 340-3016

Authorized officer: Vytlacilová, Lenka
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP S6128808 A</td>
<td>08-02-1986</td>
</tr>
<tr>
<td>WO 2007096705 A2</td>
<td>30-08-2007</td>
<td>AT 489421 T</td>
<td>15-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1762588 T3</td>
<td>14-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007096705 A2</td>
<td>30-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011065175 A1</td>
<td>03-06-2011</td>
</tr>
</tbody>
</table>