发明名称
作为体内造血刺激剂的 TAT-HOXB4H 重组蛋白质及其医疗组成物

摘要
本发明公开了一种作为体内造血刺激剂的 TAT-HOXB4H 重组蛋白质及其医疗组成物，涉及一种 C-端含有组胺酸标记的 HOXB4 重组蛋白质。解决了现有技术中由培养液纯化而得到的重组蛋白质产量少且稳定性差的技术问题。本发明用以改善造血干细胞移植患者、放射线治疗患者或化疗患者恢复期的医疗组成物，至少包含一种有效量的 TAT-HOXB4H 重组蛋白质，该蛋白质的量足以直接用于体内注射，而增加使用者骨髓内造血干细胞的绝对数目。本发明应用于增加骨髓内以及周遭血液内的造血干细胞的数目。
1. 一种包含TAT-HOXB4重组蛋白的组合物在制备用于活体内授药以改善造血干细胞移植患者、放射线治疗患者或化疗患者的恢复的药物中的应用，其特征在于：所述组合物至少包含一有效量的TAT-HOXB4重组蛋白，该蛋白的量是足以增加一有需要的使用者骨髓内造血干细胞的绝对数目，其中所述的TAT-HOXB4重组蛋白是在大肠杆菌宿主表达后，以下述之方法进行纯化：(i)将表将该蛋白质的不纯溶液通入一HisTrap管柱；(ii)冲洗该HisTrap管柱；(iii)将该部分纯化的蛋白质由该HisTrap管柱溶离出而形成一部分纯化的蛋白质溶液；(iv)将该部分纯化的蛋白质溶液通入一MonoSP管柱；(v)冲洗该MonoSP管柱；(vi)将纯化的蛋白质，呈变性形式，由该MonoSP管柱溶离出，并利用硫化性化合物将溶离出的变性蛋白质以下列步骤再折迭：(i)将该溶液出的变性蛋白质与一硫化性化合物溶液混合形成一蛋白质与硫化性化合物溶液；(ii)将该蛋白质与硫化性化合物溶液去盐而得一蛋白质与硫化性化合物去盐溶液；(iii)利用超过滤制程以1000～2500g/min离心速度，依序将缓冲液置换为含1mM、2mM、3mM、4mM及5mM-环丁酮的缓冲液，将该硫化性化合物由该蛋白质与硫化性化合物去盐溶液中移除；并且该蛋白质于纯化后储存在IMDM培养基或DMEM培养基中，以提高纯化蛋白质之安定性。

2. 根据权利要求1所述的应用，其特征在于：所述有需要的使用者系为一进行自体造血干细胞移植的患者。

3. 根据权利要求1所述的应用，其特征在于：所述有需要的使用者系为一颗粒球细胞生长因子不敏感患者。

4. 根据权利要求3所述的应用，其特征在于：所述使用者系罹患先天性造血干细胞缺乏而造成的疾病。

5. 根据权利要求4所述的应用，其特征在于：所述使用者系罹患先天性再生不良贫血。

6. 根据权利要求1所述的应用，其特征在于：所述使用者指罹患血液疾病、实体瘤或免疫疾病。

7. 根据权利要求6所述的应用，其特征在于：所述血液疾病指选自淋巴瘤、白血病、霍奇金氏症以及骨髓增生性疾病所组成的族群。
作为体内造血刺激剂的TAT–HOXB4H重组蛋白质及其医疗组成物

技术领域
[0001] 本发明涉及一种C端含有组胺酸标记的HOXB4重组蛋白质，特别涉及一种C端含有六个组胺酸残基(residue)的重组蛋白质。

背景技术
[0002] 在再生医学发展蓬勃的今日，各种关于寻找器官特异干细胞或可自我更生(self-renewing)细胞的研究不断，所述可自我更生细胞中最常被研究的是造血干细胞，因为从癌症、新陈代谢疾病到免疫不全，造血干细胞皆是较好的治疗选择。
[0003] “造血”是指血液细胞生成的过程，可通过位于骨髓中的造血干细胞的分裂而取代红血球及白血球。造血干细胞(HSCs)是一群具有自我更新能力与分化为所有血球或免疫细胞能力的细胞。然而，控制造血干细胞自我更新与分化的基因机转多半仍属未知。
[0004] 目前，自成人骨髓、动员后周边血液以及脐带血移植的人类造血干细胞，已在临床上用于治疗血癌(白血病与淋巴癌)，以及用于帮助免疫系统非血癌的高剂量化疗复原。然而有效的移植需要大量的不同来源的造血干细胞，并且可能需要进行干细胞增生(expansion)。
[0005] 造血干细胞可来自骨髓、周边血液以及脐带血，取出骨髓细胞需要进行手术以及相当痛苦的步骤，因而成为较差的手段。使用周边血液细胞也有缺陷，因为很难由造血机能受损的罹病或化疗患者取得合适与足量的造血干细胞。脐带血相对容易取得并且造血干细胞的质量也较好，然而此法所能取得的造血干细胞数量仍有限。每次取得的细胞数量足够用于小孩，但要用于成人就可能不足。为解决上述问题，就必须干扰干细胞自我更生过程来加速造血干细胞体外增生。
[0006] 新近的证据指出转录调控因子在调控干细胞的基因表现、与干细胞的发育过程扮演重要角色(Orkin,S.H.,Nat.Rev.Genet 1,57-64,2000)。转录调控因子可通过与目标基因的结合与否或是本身的浓度来构成复杂的细胞生理调节机制。一群称为DNA binding homebox(HOX)的转录因子被发现在胚胎发育扮演重要角色，并且在近年来发现HOX转录因子家族在造血干细胞发育中扮演了重要作用(Buske,C.et.al.,J.Hematol.71,301-308,2000)。蒙特娄大学(University of Montreal)的盖・萨瓦格(Guy Sauvageau)博士曾经探讨骨髓中造血干细胞的HOX转录因子调控造血干细胞更新的现象，它的研究显示同位序列基因(homeobox gene)HOXB4对于造血干细胞自我更新的调控十分重要，可维持造血干细胞在骨髓中的群集大小。最早证明HOX基因会在血球细胞表现，是利用人类及老鼠的细胞株(cell line)而证实的。有些HOX基因在不同的细胞形态有明显广泛的表达，有些HOX基因则只活化表现于特定细胞中。例如：人类的HOXB串群中的八个成员会在红血球细胞发育之初表达，有些HOXB基因包括HOXB4及HOXB7也会在T细胞及B细胞表现。Sauvageau等人证实有九个HOXA基因、八个HOXB基因及四个HOXC基因会在CD34+骨髓细胞内表现，其中又以HOXB2、HOXB9及HOXA10在CD34+的细胞族群内的红血球原始细胞表现最多。另外，实验结果也检测
出在CD34⁺的细胞群体中，没有HOX基因表达。因此，“HOXB4”蛋白以最常被用于做为活性外造血干细胞（HSC）再生之有效刺激剂。近来自证实人类，“HOXB4”基因可以病毒或重组蛋白质形式来有效再生造血干细胞。TAT-HOXB4重组蛋白质，在实验室等级，已被用于再生干细胞而不会与反转录病毒植入之风险或与骨髓基质细胞共培养之风险（参见Krosl、J.等人、Nature Medicine 9,1428-1432,2003）。因此，“HOXB4”蛋白已常用于做为促进活性外造血干细胞再生之刺激剂。

[0008] 为了增加该TAT-HOXB4重组蛋白质的产率，已发展出C-端另具有一段6个组胺酸残基（His-6）标记的TAT-HOXB4重组蛋白质制备方法，其产率较原始蛋白质的纯化效率高出3-5倍。此制备方式已详细描述于PCT/CN2006/000646。

[0009] 上述TAT-HOXB4重组蛋白质可用于人类周边血液或脐带血干细胞增生，并且所增生的干细胞仍保有其多能性（pluripotency）。此外，将上述TAT-HOXB4重组蛋白质处理过的干细胞加入在非肥胖型糖尿病合并重度联合免疫缺陷小鼠（NOD/SCID）的骨髓内之后，可以在其周边白血球中发现人类白血球，由此可知小鼠免疫与造血机能已成功重建。

[0010] 然而，TAT-HOXB4重组蛋白质从未被用于做为体内造血的刺激剂，特别是，从未被用于增进造血机能重建、扩增、骨髓再生（re-population）以及增加周边循环干细胞数目，特别是在化疗或放射线治疗之后。Krosl等人（2003）以及Amsellem等人（2003）无法获得扩增造血干细胞临床研究所所需的大量高纯度且高度安定的HOXB4蛋白质。

发明内容

[0012] 本发明基于工业经考结果，当TAT-HOXB4重组蛋白质给予一有需要的使用者之后，其可增加骨髓内以及周边血液内的造血干细胞的数目。

[0013] 本发明一方面提供了一种TAT-HOXB4重组蛋白质制备方法。该方法包含：

[0014] (a)提供一宿主细胞，其包含一具有上述蛋白质编码的载体；

[0015] (b)在该宿主细胞内表现该蛋白质；

[0016] (c)收取该表现蛋白质的一不纯溶液；

[0017] (d)以下步骤由该溶液纯化该蛋白质：(i)将该溶液通入一HisTrap柱；(ii)冲洗该HisTrap柱；(iii)将该部分纯化的蛋白质由该HisTrap柱溶离出，而形成一部分纯化的蛋白质溶液；(iv)将该部分纯化的蛋白质溶液通入一MonoSP柱；(v)冲洗该MonoSP柱；(vi)将纯化的蛋白质，呈变性形式，由该MonoSP柱溶离出；
（e）利用疏水性化合物将溶出的变性蛋白质以下列步骤再筛选：(i)将该溶出
的变性蛋白质与一疏水性化合物溶液混合形成一蛋白质与疏水性化合物溶液；(ii)将该
蛋白质与疏水性化合物溶液去盐而得一蛋白质与疏水性化合物去盐溶液；(iii)利用超过滤
制程将该疏水性化合物由该蛋白质与疏水性化合物去盐溶液中移除。

本发明另一方面提供了一种促进造血干细胞由骨髓动员至周边血液的方法。该方
法包含：

a) 给予一有需要的使用者一有效量的以上述方法制造的TAT-HOXB4H重组蛋白质；

b) 允许该TAT-HOXB4H重组蛋白质增加该使用者骨髓内造血干细胞的绝对数目，由
此促进造血干细胞动员至该使用者的周边血液。

本发明再一方面提供了一种用以改善造血干细胞移植患者、放射线治疗患者或
化疗患者的恢复时间的方法。该方法包含：

a) 给予一有需要的使用者一有效量的以上述方法制造的TAT-HOXB4H重组蛋白质；

b) 允许该TAT-HOXB4H重组蛋白质增加该使用者骨髓内造血干细胞的绝对数目。

本发明再一方面提供了一种用以促进造血干细胞由一有需要的使用者的骨髓动
员至周边血液的医疗组成物。本发明的医疗组成物包含一有效量的以上述方法制造的TAT-
HOXB4H重组蛋白质，其足以增加该使用者骨髓内造血干细胞的绝对数目，由此促进造血干
细胞动员至该使用者的周边血液。

本发明所述医疗组成物可给予进行自体造血干细胞移植的患者，用以改善其造血
干细胞移植后的恢复时间。

本发明所述医疗组成物，可作为颗粒球细胞生长因子(G-CSF)的替代物，给予G-
CSF不敏感患者，用以动员造血干细胞至周边血液。

本发明所述医疗组成物可给予造血干细胞捐赠者，由此可以由捐赠者之外围血液
以较不具侵略性的方式取得足量的造血干细胞以供移植，而不须由其骨髓取得。

本发明再一方面提供了治疗先天性造血干细胞缺乏而造成的疾病，其通过全身性
给药方式，给予上述疾病患者一有效量的以以上述方法制造的TAT-HOXB4H重组蛋白质其医疗
组成物。所给予的TAT-HOXB4H重组蛋白质会增加该使用者骨髓内造血干细胞的绝对数
目。

本发明再一方面提供了一种用以改善造血干细胞移植患者恢复时间的方法。其
通过全身性给药方式，给予一有需要的使用者一有效量的以以上述方法制造的TAT-HOXB4H重
组蛋白质其医疗组成物。

本发明再一方面提供了一种用以改善放射线治疗患者或化疗患者的造血干细胞
回复的方法，其通过全身性给药方式，给予一有需要的使用者一有效量的以以上述方法制造
的TAT-HOXB4H重组蛋白质其医疗组成物。

附图说明

图1为本发明中造血干细胞(HSC)从体内扩增动员至外围血液(PB)的示意图；
图2为本发明中pTAT-HOXB4H的选殖与构建在修改过的pET21b质体内的示意图；
图3为本发明中pTAT-HOXB4H的DNA序列图；(pTAT-HOXB4H端及C-端额外的六个
组胺酸残基加底线表示，并且标上TAT)
图4为本发明中pTAT-HOXB4H的蛋白质序列图；
图5为本发明中以10%SDS-polyacrylamide凝胶(1.5mm)证明TAT-HOXB4H蛋白质的纯化，其以coomasie blue染色分析图示pTAT-HOXB4H的蛋白质序列；
[0036] 其中M:分子量标记(M),0.3μg；
[0037] lane 1:来自未诱导BL21(DE3)pLysS TAT-HOXB4H蛋白质表现细胞的细胞溶解产物,1μg蛋白质；
[0038] lane 2:来自诱导后BL21(DE3)pLysS TAT-HOXB4H蛋白质表现细胞的细胞溶解产物,1μg蛋白质；
[0039] lane 3:纯化的TAT-HOXB4H,0.7μg蛋白质；
[0040] lane 4:纯化的TAT-HOXB4H(0.2μg蛋白质)；用以表现TAT-HOXB4蛋白质(lane 5)的pTAT-HA-HOXB4质体，是加拿大蒙特利尔大学(University of Montreal)的盖•萨瓦格(Guy Sauvageau)博士所赠。
[0041] lane 3及lane 4是加入相同体积的由MonoSP管柱收集的流份(fraction)。
[0042] 图6为本发明中以SDS-polyacrylamide凝胶分析纯化后TAT-HOXB4H蛋白质的安定性图；(其储存在PBS,4℃,0小时(A)与16小时(B),其中:M代表分子量标记,0代表在4℃0小时,16代表在4℃16小时)
[0043] 图7为本发明中以SDS-polyacrylamide凝胶以及coomasie染色分析TAT-HOXB4H蛋白质储存在-4℃以及-20℃,PBS以及IMDM缓冲液的安定性图；(箭头指示TAT-HOXB4H蛋白质band)
[0044] 图8A为本发明中以流式细胞仪分析G-CSF对于小鼠骨髓中CD34+干细胞数目的刺激效果图；
[0045] 图8B为本发明中以流式细胞仪分析PBS对于小鼠骨髓中CD34+干细胞数目的刺激效果图；
[0046] 图8C为本发明中以流式细胞仪分析TAT-HOXB4H蛋白质对于小鼠骨髓中CD34+干细胞数目的刺激效果图；
[0047] 图8D为本发明中以流式细胞仪分析G-CSF对于恒河猴骨髓中CD34+干细胞数目的刺激效果图；
[0048] 图8E为本发明中以流式细胞仪分析TAT-HOXB4H蛋白质加上G-CSF对于恒河猴骨髓中CD34+干细胞数目的刺激效果图；
[0049] 图9A为本发明中以流式细胞仪分析G-CSF对于恒河猴骨髓中CD34+干细胞数目的刺激效果图；
[0050] 图9B为本发明中以流式细胞仪分析TAT-HOXB4H蛋白质对于恒河猴骨髓中CD34+干细胞数目的刺激效果图；
[0051] 图9C为本发明中以流式细胞仪分析PBS对于恒河猴骨髓中CD34+干细胞数目的刺激效果图；
[0052] 图10为本发明中TAT-HOXB4H蛋白质对于NOD-SCID小鼠的造血回复影响图；
[0053] 图11为本发明中TAT-HOXB4H蛋白质对于接受Cisplatin化疗后Balb/c小鼠的造血回复影响图。

具体实施方式
[0054] 下面结合附图和具体实施例对本发明的实施例作进一步的详细说明。
I. TAT-HOXB4H蛋白质

本发明由一卵升培养液纯化而得的TAT-HOXB4H重组蛋白质总量约为6-10毫克，而本发明的TAT-HOXB4H蛋白质纯化方法具有体内给予蛋白质所需提升的产率。本发明的TAT-HOXB4H蛋白质，即使在血清培养4星期后，仍显出明显较佳的安定性，此处将TAT-HOXB4H蛋白质用于临床研究的关键。

本发明所提供的TAT-HOXB4H蛋白质的制造方法，具有能够提高产率以及安定性的优点，使得上述蛋白质可用于体内给药。此TAT-HOXB4H蛋白质为包含三个基因片段(element)(TAT、HOXB4以及组胺酸标记)的构体(construct)。HOXB4是转录调控因子HOX家族的一员，其可促进造血干细胞增生。TAT使得HOXB4部分得以被输送至细胞内，组胺酸标记可使重组表现源的初始纯化产率增加，本发明的制造方法可进一步增加蛋白质产率。

pTAT-HOXB4H的构筑如图2所示，DNA序列系如图3所示。TAT-HOXB4H重组蛋白质系指C端含有六个组胺酸残基(residue)标记(参见图4)的TAT-HOXB4融合蛋白质。

除非另外指明，蛋白质的氨基酸序列(或称“初级结构”或“初级序列”)是由氨基酸至羧基端。在非生物系统(例如使用固态合成者)，蛋白质(包含双硫(半胱氨酸)键位置)的初级结构可由使用者自订。

“删除(deletion)”是指氨基酸(或核苷酸)序列由于缺失一个或一个以上的氨基酸残基(或核苷酸)所造成的改变。“插入(insertion)或增加”是指氨基酸(或核苷酸)序列的改变造成在一分子或其表现物，较与一参照序列(例如自然存在分子所发现的序列)，增加一个或一个以上的氨基酸残基(或核苷酸)。“取代”是指一个或一个以上的氨基酸(或核苷酸)被不同的氨基酸(或核苷酸)取代。

与本发明序列相似或同源(例如序列有70%相同)的序列也是本发明的一部分。在某些实施例中，序列相同度可以是90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高。此外，实质相同也存在于当核酸片段可以与其互补链杂交(例如在高度严格的条件下)时。核酸可出现在全细胞、细胞溶解物或呈半纯化或纯化形式。

两序列间“同源性”或“序列相似性”(两者在此处可交换使用)的计算方法如下所示。先将序列以最适合比较的方式对齐(例如可在第一或第二氨基酸(或核苷酸)序列加上缺口(gap)以最适合比较，并且比较时可去掉不同源的片段)。在本发明的一个优选实施例中，参照序列用于对齐比较的长度可以是参照序列长度的至少30%、较佳至少40%、更佳至少50%、更佳至少60%、更佳至少70%、80%、90%、100%。然后比较对应位置上的氨基酸残基(或核苷酸)。当第一序列以及第二序列相对应位置相同的氨基酸残基(或核苷酸)时，则在该位置相同(在此氨基酸(或核苷酸)“相同”指等同于氨基酸(或核苷酸)“同源”)。两序列之间的相同度百分比指两序列间共同拥有相同位置的数目的函数，其需考虑为了最佳化对齐所加入的缺口的数目与每一段缺口的长度。

两序列之间的序列比较与相同百分比可以利用一数学算法达成。在本发明的一个优选实施例中，两氨基酸序列之间的相同百分比可以利用已并入GCG软件包(http://www.gcg.com)GAP程序的Needleman and Wunsch(1970)(J.Mol.Biol.48:444-453)算法决定，使用Blossum 62matrix或PAM250matrix以及16、14、12、10、8、6或4的缺口加权与1、2、3、4、5或6的长度加权。在本发明的另一个优选实施例中，两氨基酸序列之间的相同百分比可以利用GCG软件包(http://www.gcg.com)决定，使用NWSgapdna.CMP matrix以及40、50、60、
70或80的缺口加权与1.2.3.4.5或6的长度加权。一组优选的参数组（当不确定哪些参数可用以决定一分子是否为本发明相同或同源的序列时，可使用此组参数）为：使用Blossum62 scoring matrix以及12的缺口罚分（penalty）4的缺口延及罚分与5的框架误移（frame shift）缺口罚分。两氨基酸（或核苷酸）序列之间的相同百分比也可以利用已并入ALIGN程序（2.0版）的E.Meyers和W.Miller（1989）CABIOS.4:11-17算法决定，使用PAM120 weight residue table以及12的缺口长度罚分与4的缺口罚分。

【0063】II.TAT-HOXB4H重组蛋白质制造方法

【0064】A.选殖与表理

【0066】本发明还提供了一种将核苷酸送入宿主细胞的方法。对于原核细胞，适合的转化技术包含磷酸钙、DEAE-Dextran、电穿孔、脂小体介导转化以及利用反转录病毒或其他病毒，例如：牛痘病毒（vaccinia）或杆状病毒（baculovirus）。对于细菌细胞，适合的技术包含氯化钙转化（transformation）、电穿孔以及利用脂小体介导转化以及利用噬菌体转染。DNA送入之后，可以接着以选择方法（例如药物抵抗）来选择含有核苷酸的细胞。

【0067】B.纯化与在再折迭

【0068】TAT-HOXB4H蛋白质可以利用本领域任何已知的适当手段由重组宿主细胞单离。例如：当蛋白质被分泌时，其可以由细胞上清液中分离；或者蛋白质可由细胞溶解产物中分离。

【0069】TAT-HOXB4H蛋白质可以利用层析法纯化，其包含：(a)将细胞溶解产物或细胞上清液（假如蛋白质可被分泌）通入一HisTrap管柱；(b)以一缓冲液冲洗该HisTrap管柱；(c)将该部分纯化的蛋白质由该HsTrap管柱溶离出；(d)将由HisTrap管柱收到的部分纯化的蛋白质通入一MonoSP管柱；(e)以一缓冲液冲洗该MonoSP管柱；(f)将纯化的蛋白质由MonoSP管柱溶离出。

【0070】细胞溶解产物或细胞上清液（假如蛋白质可被分泌）可以在4℃下以20,000xg离心30分钟使其澄清。将上清液调整至10mM咪唑并加入HisTrap螯合管柱（Amersham Pharmacia），以8M尿素、20mM HEPES、0.5mM DTT,100mM NaCl pH8.0缓冲溶液以及10mM咪唑冲洗管柱，以移除未结合蛋白质。部分纯化的蛋白质可利用高浓度的咪唑以及盐由该HisTrap管柱溶离。
[0071] 进一步纯化指将由HisTrap管柱收到的纯化的蛋白质通过MonoSP管柱（Amersham Pharmacia），以4M尿素，20mM HEPES，50mM NaCl pH6.5缓冲溶液—缓冲溶液冲洗管柱，以移除未结合蛋白质。结合的TAT-HOXB4H可利用高浓度的盐溶液。此纯化步骤所得的TAT-HOXB4H蛋白质系呈变性形式。

[0072] 接着，利用疏水性化合物将由HisTrap管柱溶出的变性的TAT-HOXB4H蛋白质以下列步骤再折迭：(i) 将该溶出的变性蛋白质与一疏水性化合物溶液混合形成一蛋白质与疏水性化合物溶液；(ii) 将该蛋白质与疏水性化合物溶液去盐而得一蛋白质与疏水性化合物去盐溶液；(iii) 利用超过滤制程将该疏水性化合物由该蛋白质与疏水性化合物去盐溶液中移除。

[0074] 在本发明的一个实施例中，包含HOXB4H蛋白质的去盐溶液中的疏水性化合物系由5-10次的缓冲溶液转换(每次以1000–2500xg离心10分钟)来移除，该缓冲溶液转换系由低至高浓度的大分子疏水性物质(例如环糊精(cyclodextrin))溶液进行，藉此使变性的HOXB4H蛋白质再折迭恢复成天然形式(native form)。

[0075] 在本发明又一实施例中，纯化的TAT-HOXB4H蛋白质可储存在IMDM(HyClone)培养基(储存缓冲溶液1)中，4°C或–20°C。

[0076] 在本发明又一实施例中，纯化的TAT-HOXB4H蛋白质可储存在DMEM(HyClone)培养基(储存缓冲溶液2)中，4°C或–20°C。

[0077] 在本发明又一实施例中，TAT-HOXB4H蛋白质C端的组胺酸标记可以在进行体内给药的前移除。

[0078] 在本发明又一实施例中，TAT-HOXB4H蛋白质N端的组胺酸标记可以在进行体内给药的前移除。

[0079] 在本发明又一实施例中，TAT-HOXB4H蛋白质N端的及C端的组胺酸标记可以在进行体内给药的前移除。

[0080] C. 制备医疗组成物

[0081] 当与药学上可接受的载剂结合时，TAT-HOXB4H可作为医疗组成物使用。除了TAT-HOXB4H蛋白质与载剂之外，此医疗组成物可包含各式各样的稀释剂，填充剂，盐类，缓冲剂，安定剂，助溶剂以及本领域中其它已知的材料。“药学上可接受”是指不会干扰活性剂生物活性的有效性的无毒材料。载剂的特性视给药途径而定。

[0082] 由于剂量均一以及服用方便，将组成物配方成剂型中单形式系较有利的。剂量单元形式在此处指，用于被治疗对象单一剂量的物理上可分开的单元。每一单元含有一预先设定量的活性剂，用以结合所要的医药载体，产生所要的治疗效果。本发明剂量单元形式的规格系活性剂的独特性质、所要达成的特定治疗效果而定。

[0083] 典型的给药路径，包含口服、外用、非肠道(例如舌下或口含)、舌下、直肠、阴道以及鼻内。“非肠道(parenteral)”在此处包含皮下的(subcutaneous)、皮内的
(intracutaneous)、静脉内的(intravenous)、肌肉注射(intramuscular)、胸骨内的(intrasheral)、胃海绵体内注射、鼻内的(infracapillare)、耳道内(intrameata)、尿道内(intraurethral)注射以及任何适当的注射技术。医疗组成物指配方成容许其所含有的活性剂在给予患者时具有生物可利用性。医疗组成物可以一个或一个以上的剂量单元给予患者，例如一个剂型可以是单一剂量单元，而以喷雾剂形式的容器容含有数个剂量单元。

[0084] 当以口服给予治疗有效量的TAT-HOXB4H蛋白质时，结合剂可以是以缓释剂、胶囊、药物、溶液或试剂(elixir)的形式。当以剂型形式给药时，本发明的医疗组成物可另包含固体载体例如明胶，或佐剂。剂型、胶囊、药物可含有5％至95％的结合剂(binding agent)，优选为含有25％至90％的结合剂。也可加入显色剂或调味剂。可使用膜衣层。当以液体形式给药时，可加入液体载体例如水、石油(petroleum)、动物油或植物油(例如花生油、矿物油、大豆油、芝麻油)或合成油。以液体形式的医疗组成物可另包含生理食盐水、葡萄糖或其它糖类溶液或二醇例如乙二醇、丙二醇或聚乙二醇。当以液体形式给药，医疗组成物可含有0.5％至90％的结合剂，优选为含有1％至50％的结合剂。

[0085] 当以静脉、皮肤或皮下注射给予一治疗有效量的TAT-HOXB4H蛋白质时，可以是无色透明的非肠道(parenterally)可接受的水溶液的形式。制备具有应有的pH值、等张性、安定性的非肠道可接受蛋白质溶液，属于该技术领域的公知技术。在某些实施例中，用于静脉、皮肤或皮下注射的医疗组成物可包含等张载体，例如：氯化钠注射液、林格氏液、葡萄糖注射液、葡萄糖及氯化钠注射液、乳酸林格注射液或其它本领域公知的载体。本发明的医疗组成物还可包含安定剂、防腐剂、缓冲剂、抗氧化剂或其它本领域公知的添加剂。

[0086] 在进行本发明治疗方法或使用本发明时，先将治疗有效量的TAT-HOXB4H蛋白质给予使用者，例如哺乳类动物，当然，也可以是人类。"治疗有效量"在此处指该医疗组成物中活性剂的总量足以产生积极的效果，例如症状减轻、治愈或增加治愈率。当用单一活性剂且单独给药时，"治疗有效量"单指该活性剂。当用于一组合时，"治疗有效量"指所有活性剂足以产生治疗效果的总余量，不论该些活性剂指系列性组合给药或同时组合给药。

[0087] TAT-HOXB4H蛋白质在本发明医疗组成物中的含量视欲治疗症状的严重性与本质、患者先前接受的治疗本质以及患者的年龄及性别而定。最后，主治医师可以决定个别患者活性剂给药量。刚开始，主治医师可以给予低剂量的活性剂，并观察患者的反应。可给予较大剂量的活性剂直到患者得到适当的治疗效果，此时一般不会再增加剂量。用以实施本发明方法的医疗组成物可含有每公斤体重约1g至约1mg的TAT-HOXB4H蛋白质。给予使用者的剂量范围可选自1μg/kg至1mg/kg、1μg/kg至0.5mg/kg、1μg/kg至0.1mg/kg、10μg/kg至0.5mg/kg、10μg/kg至0.1mg/kg、100μg至0.5mg/kg、250μg/kg至0.5mg/kg。此外，剂量范围可选自50μg至100μg, 100μg至500μg, 500μg至50μg, 1mg至50mg。使用本发明医疗组成物的静脉注射时间视欲治疗的疾病严重性以及个别患者的特异反应而定。在本发明又一实施例中，施以本发明TAT-HOXB4H蛋白质的时间可以是12至24小时的连续静脉注射。在本发明又一实施例中，本发明TAT-HOXB4H蛋白质可持续使用，只要患者继续在进行化疗或放射线治疗。TAT-HOXB4H蛋白质可以静脉注射10-100μg/kg，一天两次，4-5至5天。一次治疗循环可能就够以在体内扩增造血干细胞。最后，主治医师可以决定使用本发明医疗组成物的适当静脉注射时间。

[0088] 化合物毒性以及治疗效价可以标准的药剂学程序以细胞培养或实验动物决定，例
说明 书

如LD₅₀（总数50％致死剂量）以及ED₅₀（总数50％有效治疗剂量）。毒性以及治疗间的剂量比例即为治疗指数，其可以LD₅₀/ED₅₀表示。细胞培养与实验动物的数据可以用来评估用于人类的剂量范围。化合物剂量可以在包含ED₅₀且毒性小或无毒的循环浓度范围内，视所使用的剂型与给药途径，剂量可在上述情况下变化。TAT-HOXB4H的有效治疗剂量可以由细胞培养试验初步估计。在动物模型中，剂量可以达到包含IC₅₀（也即测试蛋白质达到最大症状抑制一半的浓度）的循环血浆浓度范围，就如同细胞培养决定的方式。血浆浓度可以利用高效液相层析测定。任何特定剂量的效果可以籍由适当的生物检测法（Bioassay）监测。适合的生物检测法包含，但不限于，利用标记有荧光探针（例如FITC）的CD34⁺干细胞抗体来量测在单核细胞内的CD34⁺干细胞，以及利用流式细胞仪量测在有髓和无髓造血干细胞中的LY5细胞比例。本发明的多核苷酸与蛋白质系预期可展现下述的一个或一个以上的用途或生物活性。本发明蛋白质的用途或活性可以由给药或使用此蛋白质的方式提供，也可由给药或使用编码此蛋白质的多核苷酸的方式（例如基因疗法或适用于送入DNA的载体）提供。

0089 11. 体内造血刺激方法

0090 A. 需要治疗的患者

0091 本发明的治疗方法可用于治疗自体免疫疾病、免疫不全症以及血液疾病。此外，本发明的治疗方法可用于改善造血干细胞移植后的恢复时间。本发明的治疗方法可用于治疗罹患淋巴瘤、白血病、慢性粒细胞性白血病的患者。此外，造血干细胞缺乏而造成的先天性疾病以及再生不良贫血也可以本发明的治疗方法用于治疗。

0092 此外，本发明的治疗方法可用于造血干细胞捐献者以及暴露于细胞生长因子（G-CSF）不敏感患者。

0093 在本发明又一实施例中，TAT-HOXB4H是被用来动员造血干细胞的唯一活性剂，并且氟尿嘧啶（5-FU）并未给予捐献者，不论是作为预处理或综合治疗计划。

0094 可以用本发明医疗组成物治疗的额外的疾病或增加细胞存放相关的症状包括恶性肿瘤及相关疾病的进行及/或转移，例如早幼粒细胞白血病（包括急性白血病，例如：急性淋巴细胞性白血病，急性髓细胞性白血病（包括髓细胞，早幼粒细胞，粒细胞，单核细胞，红白血病））和慢性粒细胞性白血病（例如：慢性粒细胞（颗粒细胞）白血病和慢性淋巴细胞白血病），骨髓形成异常症(myelodysplastic syndrome)，真性红细胞增多症(polycthyemia vera)，淋巴瘤（例如：骨癌及淋巴瘤和异红细胞症），多发性骨髓瘤，Waldenström巨球蛋白血症以及实体瘤，包括肉瘤和癌瘤，例如：纤维肉瘤，黏液肉瘤，脂肪肉瘤，软骨肉瘤，骨肉瘤，骨质瘤，血管肉瘤，内皮细胞肉瘤，淋巴管肉瘤，淋巴管内皮瘤，滑膜瘤，间皮瘤，尤文氏瘤，平滑肌肉瘤，横纹肌肉瘤，结肠癌，胰腺癌，乳腺癌，卵巢癌，前列腺癌，鳞状细胞癌，基底细胞癌，腺癌，汗腺癌，皮脂腺癌，乳头状癌，乳头状腺癌，囊腺癌，鳞癌，支气管癌，肾细胞癌，肝癌，胆道癌，绒癌，精母细胞癌，胚胎癌，妊娠癌，子宫颈癌，并及肺癌，小细胞肺癌，膀胱癌，上皮癌，胶质瘤，星形细胞癌，畸胎瘤，颅咽管瘤，室管膜瘤，松果腺瘤，血管母细胞瘤，听神经瘤，胶质瘤，黑色素瘤，神经母细胞瘤以及视网膜母细胞瘤。

0095 本发明并不限于特定的方法，实验计划，细胞株，动物物种或属或下述的试剂。所用来描述特定实施例的术语不能以限定本发明的范围，本发明的范围应以权利要求书的范围为准。此处使用的，单数形式的“一”与“该”，除非文意另有所指外，也包含复数个。因此，举例来说，“一个细胞”是指一个或多个细胞，并且包括本技术领域中已知的均等物。
[0096] 除非另有定义，否则所有的技术和科学所用词汇具有与本发明所涉及技术领域中熟悉之概念相同的含义。虽然任何方法、组件和材料相似或均等于在此描述的，都可用于实践或试验本发明，优选的方法，组件和材料于现状描述。所有此处提及的刊物和专利在此并入用以描述和公开，以补为例，描述于刊物内的构造和方法，可与目前所描述的发明结合。先前以及本文中讨论的刊物仅提供作为本案有效日期前的公开。所有皆不可解释为承认发明人无法凭借先前发明来预见此公开。

[0097] 定义：

“干细胞”是一种多能或多潜能细胞，其有能力自我更新，可以保持未分化，以及成为已分化。干细胞，至少在动物自然存在的一生中，可以无限分裂。干细胞并非末期分化，即它们不是在分化途径末端。当干细胞分裂，每个子细胞，可仍然仍然是一个干性细胞或可以走向出一条导致末期分化的路。"嵌合体"干细胞是指干细胞的一部分DNA属于一个异种生物体。

[0098] "造血"细胞是指涉及造血过程（也即前体细胞形成成熟血液细胞的过程）的一种细胞。成人，造血发生在骨髓。在发育早期，在不同发育阶段，造血发生在不同的地点。原始血液细胞出现于卵黄囊，后来，血液细胞形成在肝、脾和骨髓。造血有复杂的调控，包括激素（例如红血球生成素，生长因子（例如集落刺激因子和细胞因子（例如介白素））。

[0100] 此处使用的“载体”是指能够运送另一种核酸的核酸分子，该另一种核酸连接于该核酸分子上的一种类型的载体是一个“质体”，这指的是一个圆形双股DNA环，额外的DNA片段可接合在其中。另一种类型的载体是病毒载体，其中额外的DNA片段可接合在病毒基因体中。某些载体有能力在所送入的宿主细胞中的自主复制（例如具有一个细菌复制来源的细菌载体和辅助质粒（episomal）哺乳动物载体）。其它载体（例如非附加质粒（episomal）哺乳动物载体）可以在送入宿主细胞时整合到宿主细胞的基因体中，从而随着宿主基因体复制。此外，某些载体，是有能力指挥其连接的基因表现。这种载体在此是称为“重组表现载体”（或简单地说“表现载体”）。一般使用，用于DNA重组技术的表现载体通常是以质体的形式。在本发明中，“质体”与“载体”可以互换使用，因为质体是常用的形式。然而，本发明包括具有等同功能的其它形式的载体。例如病毒载体（例如复制缺陷的反转录病毒、腺病毒和腺相关病毒）。

[0101] 此处使用的“转化”是指将一个外源多核苷酸送入宿主细胞，不论用什么方法送入；举例来说，直接吸收转化、转染以及感染等。特定的转染方法见于下文。外源多核苷酸可能是插入载体的形式（例如：质粒），或者可能被整合到宿主基因体中。

[0102] 一般而言，“蛋白质”是指任何两个或两个以上的个别氨基酸由胜肽键（peptide bond）接合的聚合物（不论是否自然发生）。该胜肽键指当键结在一个氨基酸（或氨基酸残基）的α碳的羧酸基的羧基碳原子，与键结在相邻氨基酸（或氨基酸残基）的α碳的胺基的氨基氮原子，所形成的共价键结。该胜肽键连接及其所包含的原子（即α碳原子、羧基碳原子（以及其氧原子取代基）以及氨基氮原子（以及其氮原子取代基）形成蛋白质的“多胜肽骨架”。此外，此处使用的“蛋白质”可以理解为包括“多胜肽”以及“胜肽”（其有时可以交互使用）。同样，蛋白质片段、类似物、衍生物以及突变体可在此称为“proteins”，除非另有说明，也应被视为是“蛋白质”。蛋白质“片段”是指包含少于一个蛋白质所有氨基酸残基的成分胜肽。可以理解的是，蛋白质“片段”可能是一个在N端、C端或内部（例如受天然的剪接（splicing）所致）截短的蛋白质，可以是突变物及/或衍生物。蛋白质“功能区块（domain）”
也是一个片段，其包含赋予蛋白质生化活性所需的氨基酸残基，对应于自然存在的蛋白质。

【0103】“重组”在此处指一个核酸分子，基因组，基因，病毒，单体，或合成的，其一部分
或全部的多核苷酸并非天然。“重组”相对于一蛋白质或多肽而言，指由重组多核苷酸表
现产生的多胜肽。

【0104】一个“单离的”、“纯化的”、“实质上单离的”或“实质上纯化的”分子（如一个多胜肽
或核苷酸）指被人为操作使相较于自然有较高的浓度。举例来说，当标的蛋白质被单离、纯
化，实质上单离或实质上纯化，指至少有50%，70%，75%，80%，85%，90%，91%，92%，
93%，94%，95%，96%，97%，98%，99%或以上的天然存在的非标的蛋白质物质被移除。此外
处使用的“单离的”、“纯化的”、“实质上单离的”或“实质上纯化的”分子包括重组分子。

【0105】SCID“小鼠”指重度联合免疫缺陷（SCID）小鼠模型，SCID会造成免疫系统发育的严
重缺陷。无论是T或B淋巴细胞，这些小鼠皆不足或完全缺乏。该SCID突变似乎损害抗原受体基
因的重组，导致缺乏功能性的T与B淋巴细胞。其它造血细胞类型可正常发展和运作。SCID小鼠
随时支持正常淋巴细胞分化，并且可与来自同基因或异基因小鼠的正常淋巴细胞重组或与人类
淋巴细胞重组。这些小鼠还支持异基因和或人类基因肿瘤的生长。因此，SCID小鼠允许一些人类
肿瘤的扩散生长，特别是血液系统疾病以及恶性黑色素瘤，因此可用于研究恶性肿瘤。

【0106】“使用者”、“个人”、“宿主”以及“病人”在此处互换使用，用以指活的动物，包括
人类和非人类的动物。使用者可能是，举例来说，一个拥有免疫细胞的有机体，该免疫细胞
能对抗源刺激产生反应，并且能对由细胞表面的受体结合传递的刺激和抑制信号产生反
应。使用者可以是一个哺乳类动物，例如人或非人类的哺乳动物，例如狗，猫，猪，牛，绵羊，
山羊，马，大鼠以及小鼠。“使用者”并不排除，相对于疾病或各方面，完全正常的个人。

【0107】“治疗”指的是一个治疗性或预防性的措施。治疗可施加于具有医疗疾病和
者的使用者或最终会得到疾病者，用以预防、治疗、延迟、减少严重性或改善一个或一个以上疾病或反
发发生的疾病的状态，或用以延长使用者生存期间使其超过没有治疗所预期的生存期间。

【0108】“治疗有效性”是指主化合物可引起预期反应（例如经由研究员、兽医、医生或其它
的临床医师所认定的组织、制度、动物、动物或人类的生物或医学反应）的量。

【0109】以下具体的例子是，以被视为仅仅是说明性的，无论在任何情况皆不是用以限定
本发明的其它技术领域中普通技术人员可基于本申请文件的叙述而实施本发明。

【0110】实例例1：pET21b-His—TAT—HINX4—His质体的构筑

【0111】（a）N-端及C-端含有组胺酸标记及TAT讯号胜肽的pET21b质体的修改N-端含有组
胺酸标记及TAT讯号胜肽的pET21b表达载体由在pET21b质体插入下列寡核苷酸而得：

【0112】5’-TATGCACACCCACCACACTACGCGCCAAGAAACCGCCAGCGGCCGCGCGGCGGCGGCGGCGGCG

【0113】5’-CTACGGCGCTGGCGGCAGTTCTGCGCGTATGCTGTTGCTGCTACGAC—3’（正股
sense）及

【0114】（b）将HINX4选殖入修改后的pET21b表现质体

【0115】含有HINX4开放读框（ORF）以及额外六组胺酸编码序列的DNA片段，以MCC54130质
体（GenDiscovery.Taipei.Taiwan.Cat.No.5533346）为模板，利用聚合酶链式反应（PCR）放大而得，将PCR所得的HINX4cDNA片段次选殖（subclone）到修改后的pET21b表现质
体，构筑的质体以及核酸序列如图2及图3所示。
实例例2: 在大肠杆菌表现TAT-HOXB4H重组蛋白质

将pET21b-His-TAT-HOXB4-His 表达质粒转化至BL21 (DE3)pLysS (Novagen) 大肠杆菌株。令经转化的细胞于37℃下生长过夜。将过夜培养物稀释成起始OD300值为0.05，并置于37℃下生长至OD600值为0.5，接着以1mM 异丙基硫代-β-D-半乳糖苷 (IPTG) 于37℃下进行诱导表达3小时，期间伴随剧烈摇晃。

实例例3: TAT-HOXB4H重组蛋白质的纯化

在诱导作用后，将细胞以离心收集并再悬浮于缓冲液A(8M 尿素, 20mM HEPE，0.5mM DTT 及100mM NaCl pH8.0) 中。将细胞悬浮液通过French press三次，并将细胞溶解产物以20,000 × g于4℃下离心30分钟使其澄清。将上清液调整至10mM 咪唑并加样至HisTrap整合管柱 (Amersham Pharmacia)。将结合的蛋白以50,100及250mM制备于缓冲液A中的咪唑进行洗脱。将含有TAT-HOXB4H的流份 (fraction) 加样至存在缓冲液B(4M 尿素，20mM HEPE 及50mM NaCl pH6.5) 的MonoSP管柱，以1.5mM NaCl 及20mM HEPE (pH8.0) 洗脱。

实例例4: TAT-HOXB4H重组蛋白质的复性 (renaturation)

实例例12: 将溶离流份中的TAT-HOXB4H蛋白质溶解并变性于一含有变性盐类 (例如胍盐酸盐 (guanidine hydrochloride)) 的溶液，然后将其与D-PBS-T缓冲溶解液 (含有0.1% Triton X-100 的浓度磷酸盐缓冲溶解液) 混合。TAT-HOXB4H蛋白质液与D-PBS-T缓冲溶解液的比例为1:4。将所成的混合液加入以水 (10ml or 3ml) 前处理的10K蛋白浓缩管柱 (centricon tube) (50ml or 15ml)，离心3000r pm, 10分钟。在进行步骤中，变性盐类被D-PBS-T缓冲液置换，D-PBS-T缓冲液中的Triton X-100 可与HOXB4H蛋白的疏水性 (hydrophobic) 区域结合。

实例例12: 接着以10K蛋白浓缩管柱 (centricon tube) 进行超过滤或缓冲溶解液置换步骤10次，以1000-2500g/min离心速度，依序将缓冲液置换为含1mM, 2mM, 3mM, 4mM及5mM β-环糊精 (beta-cyclodextrin) 的IMDM储存缓冲液，其中于各离心速度下以每次浓度置换离心两次。收集浓缩管柱中留存的样品，并保存于-20℃冰箱。

实例例13: 纯化后TAT-HOXB4H蛋白质的均一性系以SDS-polyacrylamide凝胶以及coomassie染色分析。如图5所示，经HisTrap 和 MonoSP纯化的TAT-HOXB4H较原始TAT-HOXB4H蛋白质的产率增加大约3-5倍。pTAT-HA-HOXB4质体，系加拿大多特大学 (University of Montreal) 的盖·萨瓦格 (Guy Savageau) 博士所赠。pTAT-HA-HOXB4质体系系转化至BL21 (DE3)plys S (Novagen)，TAT-HOXB4H蛋白质的纯化系如Krosli等人 (2003) 所述。

实例例5: TAT-HOXB4H重组蛋白质的安定性

TAT-HOXB4H的安定性系以SDS-polyacrylamide凝胶分析，储存在PBS，-4℃中安定。

实例例6: TAT-HOXB4H重组蛋白质对于Balb/c小鼠的造血影响

TAT-HOXB4H重组蛋白质对于造血干细胞由骨髓动员至外周血液的影响。利用Balb/c小鼠研究。每天四次皮下注射4天给予小鼠TAT-HOXB4H重组蛋白质 (在PBS中)。为了解剂量反应性，试验组(n=21) 的剂量为1μg, 5μg, 10μg, 15μg...to 100μg/kg体重。一组
对照组只施打PBS，另一组对照组则每天两次皮下注射4天5μg/kg体重的G-CSF。

[0129] 取各组周边血液进行流式细胞仪分析，可得到CD34⁺干细胞在单核细胞(MNC)中的比例。结果以平均值±标准差的形式列于表一。

[0130] 表一

<table>
<thead>
<tr>
<th>组别</th>
<th>TAT-HOXB4H(g/kg)</th>
<th>CD34⁺/MNC(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0±0.03</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.3±0.05</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.45±0.03</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>0.42±0.01</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0.38±0.05</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>0.41±0.02</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>0.35±0.21</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>0.33±0.11</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>0.29±0.16</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>0.46±0.01</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>0.45±0.02</td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>0.42±0.06</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>0.44±0.02</td>
</tr>
<tr>
<td>14</td>
<td>65</td>
<td>0.41±0.04</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>0.41±0.03</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>0.49±0.01</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>0.45±0.04</td>
</tr>
<tr>
<td>18</td>
<td>85</td>
<td>0.46±0.07</td>
</tr>
<tr>
<td>19</td>
<td>90</td>
<td>0.44±0.02</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
<td>0.41±0.01</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td>0.42±0.05</td>
</tr>
<tr>
<td>对照组(PBS)</td>
<td>0</td>
<td>0.0002</td>
</tr>
<tr>
<td>对照组(G-CSF)</td>
<td>0</td>
<td>0.5±0.03</td>
</tr>
</tbody>
</table>

[0132] 周边血液内CD34⁺/MNC的比例系列于表一。接受TAT-HOXB4H的第3-21实验组(剂量至少为10μg/kg体重以上)显示类似于注射G-CSF对照组的动员效果。

[0133] 取实验组3(TAT-HOXB4H剂量为10μg/kg体重)小鼠的骨髓以及注射G-CSF与PBS的对照组小鼠的骨髓，以CD34⁺FITC-conjugated抗体(Becton Dickinson)表型，并以流式细胞仪分析。注射TAT-HOXB4H的小鼠骨髓(图8C)，其CD34⁺干细胞比注射G-CSF与PBS的小鼠骨髓多，这些结果显示注射TAT-HOXB4H重组蛋白质可以同时增加小鼠骨髓中以及周围血液中的造血干细胞。

[0134] 实例7：TAT-HOXB4H重组蛋白质对于恒河猴的造血影响

[0135] TAT-HOXB4H重组蛋白质在猴类的效力系利用成年的公恒河猴研究。试验组1(n=5)系每天四次静脉注射4天给予TAT-HOXB4H重组蛋白质(剂量10μg/kg体重)。试验组11(n=
5) 系每天四次静脉注射4天给予TAT-HOXB4H重组蛋白质（剂量10μg/kg体重）以及皮下注射G-CSF（剂量5μg/kg体重）。对照组I只施打PBS。对照组II则每天两次皮下注射4天G-CSF（剂量5μg/kg体重）。取所有猴子的周边血液进行流式细胞仪分析，可得到CD34⁺干细胞在单核细胞（MNC）中的比例。结果列于表二。

<table>
<thead>
<tr>
<th>组别</th>
<th>CD34⁺/MNC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. TAT-HOXB4H (10 g/kg)</td>
<td>0.62</td>
</tr>
<tr>
<td>II. TAT-HOXB4H (10 g/kg) + G-CSF (5 g/kg)</td>
<td>0.38</td>
</tr>
<tr>
<td>对照组I (PBS)</td>
<td>0.07</td>
</tr>
<tr>
<td>对照组II (G-CSF, 5 g/kg)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

如表二所示，只接受TAT-HOXB4H的猴子（实验组I）显示出比注射G-CSF的猴子（对照组II）更好的动员效果。同时注射TAT-HOXB4H以及G-CSF的猴子（实验组II）显示出比注射G-CSF的猴子（对照组II）的动员效果好一点。

取注射TAT-HOXB4H、G-CSF以及PBS的猴子骨髓样本，以CD34⁺FITC-conjugated抗体 (Becton Dickinson) 表型，并以流式细胞仪分析。注射TAT-HOXB4H的猴子骨髓（图9C），其CD34⁺干细胞系远多于注射G-CSF的猴子骨髓（图9A）、注射TAT-HOXB4H+G-CSF的猴子骨髓（图9B）及注射PBS的猴子骨髓（图9D）中的CD34⁺干细胞。

实例例8：TAT-HOXB4H重组蛋白质对于NOD-SCID小鼠的造血回复影响

将10⁴Lin⁻/CD34⁺细胞以及经放射线照射的10⁵CD34⁺辅助细胞注射到NOD-LtSz−/− scid/scid(NOD−SCID)小鼠（经放射线照射2.5 Gy）中。将上述小鼠随机分为两组，一组(n = 28)每日静脉注射两次TAT-HOXB4H蛋白（剂量10μg/kg体重），另一组(n = 28)每日注射两次PBS,植后,以人类CD45⁺细胞存在鼠的血液中的比例为0.1%以上的小鼠数目来评估造血回复。如图10所示，注射TAT-HOXB4H重组蛋白质的小鼠可观察到较佳的造血回复。

实例例9：TAT-HOXB4H重组蛋白质对于接受Cisplatin化疗后BALb/c小鼠的造血回复影响

重复以Cisplatin静脉注射五周大BALb/c小鼠, 直到其外围血液中Ly5(murine CD45)细胞数目为原始数目的10%。将注射过Cisplatin的小鼠随机分为两组，一组(n = 28)每日静脉注射两次TAT-HOXB4H蛋白（剂量10μg/kg体重），另一组(n = 28)每日注射两次PBS。以流式细胞仪周期性增量分析所有小鼠外围血液中存在的Ly5细胞。造血回复比例系以外围血液中的Ly5细胞数目相对于原始数目的比例来评估。如图11所示，注射TAT-HOXB4H重组蛋白质的小鼠可观察到较佳的造血回复。

这些实验中使用的动物模型已在本技术领域中被确认为可用以预测人类患者的结果, 例如: Broxmeyer等人(2005)The Journal of Experimental Medicine, 201, 1307-
以上所述，仅为本发明的具体实施方式，但本发明的保护范围不局限于此，任何熟悉本技术领域的技术人员在本发明的技术范围内，可轻易想到变化或替换，都应涵盖在本发明的保护范围之内。因此，本发明的保护范围应该以权利要求的保护范围为准。
pTAT-HOXB4H DNA 序列

图3
TAT-HOXB4H 蛋白质序列

TAT
MH\textcolor{red}{HHHHH}HYGRKRRQRR

LPSDHSPGYYAGGQRRRESSFQPEAGFGRRRAACTVQRYAACRDGPPP

PPP PPP PPP GLSPRAPAPPAGALLPEPQGRCRCEAVSSPPPPPCAZ

NPLHPSPHSACKEPVVYPWVRKVHVSTVNPNYAGGEPKRSRTAYTRQ

QVLELEKEFHYNRYLRRRVEIAHAHCLSERQIKIWFQNRRMKWKKDH

KLPNTKIRSGGAAGSAGPPGRPNGPRALLE\textcolor{red}{HHHHH}

图4

![TAT-HOXB4H gel analysis](image)

图5

<table>
<thead>
<tr>
<th>kDa</th>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
图8
图9
图10

图11