WO 2006/116594 A1 | 0|00 000 0 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 November 2006 (02.11.2006)

TR
O 00 O O

(10) International Publication Number

WO 2006/116594 Al

(51) International Patent Classification:

HO4L 12/56 (2006.01)
(21) International Application Number:
PCT/US2006/016008
(22) International Filing Date: 25 April 2006 (25.04.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/116,018 27 April 2005 (27.04.2005) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
UsS 11/116,018 (CON)
Filed on 27 April 2005 (27.04.2005)

(71) Applicant (for all designated States except US): LEVEL
5 NETWORKS, INC. [GB/US]; 840 West California Av-
enue, Suite 240, Sunnyvale, California 94086 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): POPE, Steve
[GB/GB]; 25 Greville Road, Cambridge, England CB1

3QK (GB). RIDDOCH, David [GB/GB]; 68 Tenison
Road, Cambridge, England CB1 2DW (GB). YU, Ching
[US/US]; 2952 Gala Court, Santa Clara, California 95051
(US). ROBERTS, Derek [US/US]; 25 Metcalfe Road,
Cambridge, England CB4 2DB (US).

Agents: WOLFELD, Warren, S. et al.; HAYNES BEF-
FEL & WOLFELD LLP, P.O. Box 366, Half Moon Bay,
California 94019 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US
(patent), UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: PACKET VALIDATION IN VIRTUAL NETWORK INTERFACE ARCHITECTURE

118
/_

(57) Abstract: Roughly described, a
network interface device receiving data
packets from a computing device for

BUS transmission onto a network, the data

| ~1210
DMA

PAYLOAD CONTROLLER

TCPor 4
uDP

packets having a certain characteristic,
transmits the packet only if the sending
queue has authority to send packets
having that characteristic. The data packet
characteristics can include transport
protocol number, source and destination
port numbers, source and destination IP

116
(‘

/1220

HEADER

IP HEADER
\/ LOGIC

Y

HEADER
VALIDATION

addresses, for example. Authorizations can
be programmed into the NIC by a kernel
routine upon establishment of the transmit

I
|

1218
a |

queue, based on the privilege level of
the process for which the queue is being

/-1222 established. In this way, a user process

FIFO
CONTROL
LOGIC

™

1214
T FIFo

AUTHORIZATIONS
DATABASE

can use an untrusted user-level protocol
stack to initiate data transmission onto
the network, while the NIC protects the

1216

PHY

112

NETWORK

remainder of the system or network from
certain kinds of compromise.

WO 2006/116594 A1 II}110 Y A000H0 T 0000000

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — with amended claims

7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

EBuropean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, SI, SK, TR), OAPI (BE, BJ, CE, CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:

— with international search report

WO 2006/116594 PCT/US2006/016008

1

PACKET VALIDATION IN VIRTUAL NETWORK INTERFACE ARCHITECTURE

BACKGROUND
1. Field of the Invention

[0001] The invention relates to network interfaces, and more particularly to mechanisms for
validating network traffic sent or received by user level libraries in a virtual network architecture.

2. Description of Related Art

[0002] A typical computer system includes a processor subsystem (including one or more
processors), a memory subsystem (including main memory, cache memory, etc.), and a variety of
"peripheral devices" connected to the processor subsystem via a peripheral bus. Peripheral
devices may include, for example, keyboard, mouse and display adapters, disk drives and CD-
ROM drives, network interface devices, and so on. The processor subsystem communicates with
the peripheral devices by reading and writing commands and information to specific addresses
that have been preassigned to the devices. The addresses may be preassigned regions of a main
memory address space, an I/O address space, or another kind of configuration space.
Communication with peripheral devices can also take place via direct memory access (DMA), in
which the peripheral devices (or another agent on the peripheral bus) transfers data directly
between the memory subsystem and one of the preassigned regions of address space assigned to
the peripheral devices.

[0003] Most modern computer systems are multitasking, meaning they allow multiple
different application programs to execute concurrently on the same processor subsystem. Most
modern computer systems also run an operating system which, among other things, allocates
time on the processor subsystem for executing the code of each of the different application
programs. One difficulty that might arise in a multitasking system is that different application
programs may wish to control the same peripheral device at the same time. In order to prevent
such conflicts, another job of the operating system is to coordinate control of the peripheral
devices. In particular, only the operating system can access the peripheral devices directly;
application programs that wish to access a peripheral devices must do so by calling routines in

the operating system. The placement of exclusive control of the peripheral devices in the

WO 2006/116594 PCT/US2006/016008

2

operating system also helps to modularize the system, obviating the need for each separate
application program to implement its own software code for controlling the hardware.

[0004] The placement of exclusive control of the peripheral devices in the operating system
also permits management of another potential difficulty, that of improper control or handling of
the peripheral device. For network interface devices, for example, improper or inappropriate
control of the devices could compromise other applications running in the computer system, or
could compromise or otherwise negatively impact operation of the network to which the device
is connected. In established operating systems, much of the software code for controlling these
devices has evolved over a number of years and has been updated and improved in response to
numerous tests by numerous people on numerous types of network interface devices. The
software code in the operating system has therefore developed a certain level of trust: users,
network administrators, network architects and other network devices can presume that the great
majority of packets originating from this software code will conform to network protocol
specifications. Additional code for controlling each particular peripheral device is incorporated
into the operating system in the form of a device driver specific to the particular peripheral
device. Device drivers are usually written by or in association with the manufacturer of the
particular peripheral device, so they too are afforded a certain level of trust.

[0005] Most operating systems include a core portion, usually called a kernel, which
performs many of the most fundamental functions of the operating system. Typically it is the
kernel which performs hardware initializations, setting and resetting the processor state,
adjusting the processor internal clock, initializing the network interface device, and other direct
accesses of the hardware. The kernel executes in kernel mode, also sometimes called trusted
mode or a privileged mode, whereas application level processes execute in a user mode.
Typically it is the procéssor subsystem hardware itself which ensures that only trusted code, such
as the kernel code, can access the hardware directly. The processor enforces this in at least two
ways: certain sensitive instructions will not be executed by the processor unless the current
privilege level is high enough, and the processor will not allow user level processes to access
memory locations (including memory mapped addresses associated with specific hardware
resources) which are outside of a user-level physical or virtual address space already allocated to

the process.

WO 2006/116594 PCT/US2006/016008

3

[0006] Asused herein, a "privileged mode process" is a process that has sufficient privilege
that it will not be prevented from directly accessing potentially sensitive resources, such as a
network interface device. Also as used herein, the term "kernel space" or "kernel address space"
refers to the address and code space of the executing kernel. This includes kernel data structures
and functions internal to the kernel. The kernel can access the memory of user processes as well,
but "kernel space" generally means the memory (including code and data) that is private to the
kernel and not accessible directly by any user process. The term "user space", or "user address
space", refers to the address and code space allocated by a code that is loaded from an executable
and is available to a user process, excluding kernel private code data structures. As used herein,
all four terms are intended to accommodate the possibility of an intervening mapping between
the software program's view of its own address space and the physical memory locations to
which it corresponds. Typically the software program's view of its address space is contiguous,
whereas the corresponding physical address space may be discontiguous and out-of-order, and
even potentially partly on a swap device such as a hard disk drive. Address spaces are sometimes
referred to herein as "virtual" address spaces, in order to emphasize the possibility of such
mappings.

[0007] Although parts of the kernel may execute as separate ongoing kernel processes, much
of the kernel is not actually a separate process running on the system. Instead it can be thought of
as a set of routines, to some of which the user processes have access. A user process can call a
kernel routine by executing a system call, which is a function that causes the kernel to execute
some code on behalf of the process. The "current process" is still the user process, but during
system calls it is executing "inside of the kernel", and therefore has access to kernel address
space and can execute in a privileged mode. Kernel code is also executed in response to an
interrupt issued by a hardware device, since the interrupt handler is found within the kernel. The
kernel also, in its role as process scheduler, switches control between processes rapidly using the
clock interrupt (and other means) to trigger a switch from one process to another. Each time a
kernel routine is called, the current privilege level increases to kernel mode in order to allow the
routine to access the hardware directly. When the kernel relinquishes control back to a user
process, the current privilege level returns to that of the user process.

[0008] When a user level process desires to communicate with a network interface device

(NIC), conventionally it can do so only through calls to the operating system. The operating

WO 2006/116594 PCT/US2006/016008

4

system implements a system level protocol processing stack which performs protocol processing
on behalf of the application, and also performs certain checks to make sure outgoing data packets
have authorized characteristics and are not malformed. In particular, an application wishing to
transmit a data packet using TCP/IP calls the operating system API (e.g. using a send() call) with
data to be transmitted. This call causes a context switch to invoke kernel routines to copy the data
into a kernel data buffer and perform TCP send processing. Here protocol is applied and fully
formed TCP/IP packets are enqueued with the interface driver for transmission. Another context
switch takes place when control is returned to the application program. Note that kernel routines
for network protocol processing may be invoked also due to the passing of time. One example is
the triggeﬁng of retransmission algorithms. Generally the operating system provides all OS
modules with time and scheduling services (driven by the hardware clock interrupt), which
enable the TCP stack to implement timers on a per-connection basis. The operating system
performs context switches in order to handle such timer-triggered functions, and then again in
order to return to the application.

[0009] It can be seen that network transmit and receive operations can involve excessive
context switching, and this can cause significant overhead. The problem is especially severe in
networking environments in which data packets are often short, causing the amount of required
control work to be large as a percentage of the overall network processing work.

[0010] One solution that has been attempted in the past has been the creation of user level
protocol processing stacks operating in parallel with those of the operating system. Such stacks
can enable data transfers using standard protocols to be made without requiring data to traverse
the kernel stack. In one implementation, TCP and other protocols are implemented twice: once
built into the kernel and once built into a user level transport library accessible to application
programs. In order to control and/or communicate with the network interface device an
application issues API (application programming interface) calls. Some API calls may be
handled by the user level transport libraries, and the remainder can typically be passed on
through the interface between the application and the operating system to be handled by the
libraries that are available only to the operating system. For implementation with many operating
systems it is convenient for the transport libraries to use existing Ethernet/IP based control-plane

structures: e.g. SNMP and ARP protocols via the OS interface.

WO 2006/116594 PCT/US2006/016008

5

[0011] There are a number of difficulties in implementing transport protocols at user level.
Most implementations to date have been based on porting pre-existing kernel code bases to user
level. Examples of these are Arsenic and Jet-stream. These have demonstrated the potential of
user-level transports, but have not addressed a number of the problems required to achieve a
complete, robust, high-performance commercially viable implementation.

[0012] One particular problem with user-level transport libraries is that in bypassing many of
the routines normally performed in the kernel, they also lose the trust normally accorded those
routines. This is because the kernel no longer has control of the user-level routines and cannot
enforce their identity with those in the kernel. Users or application programs are able to modify
the user-level transport routines, or replace them with others provided by a third party. As a
result, the support of user-level transport libraries to bypass kernel routines and avoid context
switches, increases the risk of malformed or even malicious traffic driven onto the network.
[0013] Part of the risk of permitting user-level transport libraries can be overcome by
virtualizing the network interface device in such a way that each process is aware of only its own
resources. The hardware can be virtualized in such a way that one process cannot transmit or
receive data on behalf of another, nor can one process see the data belonging to another process.
But this kind of virtualization does not prevent a process from transmitting problematic data
packets out onto the network through its own assigned resources; hence trust is still not ensured.
[0014] Thus existing arrangements that support user level transport processing do not
adequately solve the problem that they can cause data to be handled in a way that may
compromise the integrity of the system, and in particular can cause data to be transmitted over a
network without proper authorization.

[0015] According to a preferred embodiment of the invention, roughly described, a network
interface device receiving data packets from a computing device for transmission onto a network,
the data packets having a certain characteristic, transmits the packet only if the sending queue has
authority to send packets having that characteristic. The data packet characteristics can include
transport protocol number, source and destination port numbers, source and destination IP
addresses, for example. Authorizations can be programmed into the NIC by a kernel routine upon
establishment of the transmit queue, based on the privilege level of the process for which the

queue is being established. In this way, a user process can use an untrusted user-level protocol

WO 2006/116594 PCT/US2006/016008

6

stack to initiate data transmission onto the network, while the NIC protects the remainder of the
system from certain kinds of compromise.

[0016] Inaccordance with particular embodiments of the present invention, and as set out in
the appended claims, a method is provided for interfacing a computing device with a network
interface device. According to the method, a first sending process of the computing device
initiates establishment of a first transmit queue, and in response thereto, a privileged mode
process establishes the first transmit queue in a virtual address space of the first sending process.
The first sending process enqueues a first data packet onto the first transmit queue for
transmission onto a network, without involvement of any privileged mode routines. The network
interface device receives at least part of the first data packet from the first transmit queue, and .
makes a first determination of whether transmission of the first data packet onto the network is
authorized. The network interface device transmits the first data packet onto the network only if
SO.

[0017] In an embodiment, the first data packet has a first set of characteristics, and first
determination includes determining whether the first sending process has authority to transmit
data packets having the first set of characteristics onto the network.

[0018] The first set of characteristics can include a particular network transport protocol, in
which case the first determination can include determining whether the first sending process is
authorized to transmit data packets using the particular network transport protocol.

[0019] The first set of characteristics can include a particular source port number (such as an
IP source port number), in which case the first determination can include determining whether
the first sending process is authorized to transmit data packets using the particular source port
number.

[0020] The first set of characteristics can include a particular destination port number (such
as an [P destination port number), in which case the first determination can include determining
whether the first sending process is authorized to transmit data packets using the particular
destination port number.

[0021] The first set of characteristics can include a particular source address (such as an IP
source port address), in which case the first determination can include determining whether the
first sending process is authorized to transmit data packets using the particular source address.

[0022] The first set of characteristics can include a particular destination address (such as an

WO 2006/116594 PCT/US2006/016008

7

IP destination address), in which case the first determination can include determining whether the
first sending process is authorized to transmit data packets using the particular destination
address. |

[0023] In an embodiment, the first sending process may be a user level process. In response
to the first sending process initiating establishment of a first transmit queue, a privileged mode
process (such as the kernel) programs authorization rights for the first transmit queue into the
network interface device. The first determination made by the network interface device can then
include the network interface device examining the authorization rights for the first transmit
queue.

[0024] In such an embodiment, and further where the first data packet has a first set of
characteristics, the first determination can include determining whether the first transmit queue
has authority to transmit data packets having the first set of characteristics onto the network.
[0025] The first set of characteristics can include a particular network transport protocol, in
which case the first determination can include determining whether the first transmit queue is
authorized to transmit data packets using the particular network transport protocol.

[0026] The first set of characteristics can include a particular source port number (such as an
IP source port number), in which case the first determination can include determining whether
the first transmit queue is authorized to transmit data packets using the particular source port
number.

[0027] The first set of characteristics can include a particular destination port number (such
as an IP destination port number), in which case the first determination can include determining
whether the first transmit queue is authorized to transmit data packets using the particular
destination port number.

[0028] The first set of characteristics can include a particular source address (such as an IP
source port address), in which case the first determination can include determining whether the
first transmit queue is authorized to transmit data packets using the particular source address.
[0029] The first set of characteristics can include a particular destination address (such as an
IP destination address), in which case the first determination can include determining whether the
first transmit queue is authorized to transmit data packets using the particular destination address.
[0030] Inan embodiment, the first sending process also notifies the network interface device,

without invoking any privileged mode routines, of the availability of the first data packet in the

WO 2006/116594 PCT/US2006/016008

first transmit queue.

[0031] In accordance with another embodiment, a second sending process can also initiate
establishment of a transmit queue, being a second transmit queue. In response, a privileged mode
process establishes the second transmit queue in a virtual address space of the second sending
process. The second sending process can enqueue a second data packet onto the second transmit
queue for transmission onto the network, the second data packet having a second set of
characteristics. The network interface device, receiving at least part of the second data packet
from the second transmit queue, makes a second determination of whether the second sending
process has authority to transmit data packets having the second set of characteristics onto the
network. The network interface device transmits the second data packet onto the network only if
S0.

[0032] In an embodiment, the second sending process is a user level process. In response to
the second sending process initiating establishment of a second transmit queue, a privileged
mode process programs authorization rights for the second transmit queue into the network
interface device. The second determination made by the network interface device can then
include examining the authorization rights for the second transmit queue.

[0033] In an embodiment, if the NIC determines that the sending process lacks authority to
send a data packet having particular characteristics, and only part of the data packet has been
retrieved from the sending queue, then the retrieval of the remainder of the data packet can be
aborted.

[0034] In accordance with embodiments of the invention, network interface apparatus is
provided for use with a plurality of transmit queues allocated among a plurality of different
processes in a computer system. The network interface apparatus comprises a database
indicating, for each given one of the transmit queues, whether data packets having a first set of
characteristics are permitted to be transmitted onto the network from the given transmit queue.
[0035] Preferably the database further indicates, for each given one of the transmit queues,
whether data packets having a second characteristic are permitted to be transmitted onto the
network from the given transmit queue.

[0036] The first set of characteristics can include, for example, a network transport protocol,
a source port number, a destination port number, a source address and/or a destination address.

[0037] According to certain embodiments of the invention, a kit is provided which includes

WO 2006/116594 PCT/US2006/016008

9

both a network interface device and instructions for use on a computing device. The instructions
could be provided for example on a CD or other storage media or set of media, or they could be
provided in the form of a web address or other information using which the instructions could be
downloaded. The instructions are such that, in response to a first sending process of the
computing device initiating establishment of a first transmit queue, a privileged mode process of
the computing device establishes the first transmit queue in a virtual address space of the first
sending process. The instructions are further such that, in response to the first sending process
enqueueing a first data packet onto the first transmit queue for transmission onto a network, the
first data packet having a first characteristic, the network interface device receives at least part of
the first data packet without involvement of any privileged mode routines of the computing
device. The network interface device includes means for determining whether the first sending
process has authority to transmit data packets having the first characteristic onto the network, and
means for transmitting the first data packet onto the network only if the first determination is
positive.

BRIEF DESCRIPTION OF THE DRAWINGS
[0038] The invention will be described with respect to specific embodiments thereof, and
reference will be made to the drawings, in which:
[0039] Fig. 1 is a simplified block diagram of a typical computer system incorporating
features of the invention.
[0040] Fig. 2 is another view of the computer system of Fig. 1.
[0041] Fig. 2A illustrates an example bus mapping table of Fig. 2.
[0042] Fig. 3 is a flowchart example of steps that an application process might follow in the
system of Figs. 1 and 2 for the creation and transmission of IP packets onto a network.
[0043] Fig. 4 is a flowchart of steps that might be performed during the library initialization
step of Fig, 3.
[0044] Fig. 5 is a block diagram of data structures used by the system of Figs 1 and 2 in order
to support separate transmit and receive queues for different VNICs.
[0045] Fig. 6 is a flowchart illustrating significant steps performed by the kernel resource
allocation routine of Fig. 4.
[0046] Figs. 7 and 8 illustrate alternative example authorizations databases maintained in the
NIC of Fig. 1.

WO 2006/116594 PCT/US2006/016008

10

[0047] Fig. 9 is a flowchart detail of the user socket routine in Fig. 3.
[0048] Fig. 10 is a flowchart detail of the bind routine in Fig. 3.
[0049] Fig. 11 is a flowchart detail of the sendTo routine in Fig. 3.
[0050] Fig. 12 is a functional block diagram of certain structures on a NIC which can be used
to perform packet validation for transmission of data packets.
[0051] Fig. 13 is a flowchart of typical steps taken on the NIC 116 for transmission of data
packets arriving from multiple queues.

DETAILED DESCRIPTION
[0052] The following description is presented to enable any person skilled in the art to make
and use the invention, and is provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodiments will be readily apparent to
those skilled in the art, and the general principles defined herein may be applied to other
embodiments and applications without departing from the spitit and scope of the present
invention. Thus, the present invention is not intended to be limited to the embodiments shown,
but is to be accorded the widest scope consistent with the principles and features disclosed
herein.
[0053] Fig. 1 is a simplified block diagram of a typical computer system 110 which can
communicate via a network 112 with other computer systems such as 130, 132 and 134.
Computer system 110 includes a network interface card (NIC) 116 communicating via a
communication channel 118 with a host subsystem 114. The host subsystem 124 includes a
processor subsystem 120 which includes at least one processor, a host memory subsystem 122,
and a core logic subsystem 124. The core logic subsystem 124 provides bridges among the
processor subsystem 120, the host memory subsystem 122 and the communication channel 118.
The host subsystem 114 may also include other devices 126 in communication with the
communication channel 118. As used herein, the host subsystem 114 is considered to be one type
of "computing device". Other types of computing devices include non-reconfigurable processing
devices for which network connectivity is desired.
[0054] The network interface card 116 provides an interface to outside networks, including
an interface to the network 112, and is coupled via network 112 to corresponding interface
devices in other computer systems. The physical hardware component of network interfaces are

referred to herein as network interface cards (NICs), although they need not be in the form of

WO 2006/116594 PCT/US2006/016008

11

cards: for instance they could be in the form of integrated circuits (ICs) and connectors fitted
directly onto a motherboard, or in the form of macrocells fabricated on a single integrated circuit
chip with other components of the computer system.

[0055] Network 112 may comprise many interconnected computer systems and
communication links. These communication links may be wireline links, optical links, wireless
links or any other mechanism for communication of information. While in one embodiment
network 112 is the Internet, in other embodiments, network 112 may be any suitable computer
network or combination of networks. In and embodiment described herein, network 112 supports
an Ethernet protocol.

[0056] Host memory subsystem 122 typically includes a number of memories including a
main random access memory (RAM) for storage of instructions and data during program
execution, and a read only memory (ROM) in which fixed instructions and data are stored. One
or more levels of cache memory may also be included in the host memory subsystem 122. For
simplicity of discussion, the host memory subsystem 122 is sometimes referred to herein simply
as "host memory". As used herein, virtual memory is considered part of the host memory
subsystem even though part of it may be stored physically at various times on a peripheral
device.

[0057] The communication channel 118 provides a mechanism for allowing the various
components and subsystems of computer system 110 to communicate with each other. In one
embodiment the communication channel 118 comprises a PCI bus. Other embodiments may
include other buses, and may also include multiple buses.

[0058] Computer system 110 itself can be a varying types including a personal computer, a
portable computer, a workstation, a computer terminal, a network computer, a television, a
mainframe, a server or any other data processing system or user devices. Due to the ever-
changing nature of computers and networks, the description of computer system 110 depicted in
Fig. 1 is intended only as a specific example for purposes of illustrating an embodiment of the
present invention. Many other configurations of computer system 110 are possible having more
or less components, and configured similarly or differently than, the computer system depicted in
Fig. 1.

[0059] Fig. 2 is another view of the computer system 110, presented to better illustrate

software and functional features. The computer runs an operating system 221 which is capable of

WO 2006/116594 PCT/US2006/016008

12

supporting application processes 222 also running on the computer. As used herein, a "process"
is a program, for example an application program, in execution. A process may run multiple
"threads", which can also be thought of as lightweight processes. A library 223 of instructions is
stored by the computer and available to the applications. The part of the library usable for
communications with the NIC 116 is termed a transport library 224. Included in the operatihg
system kernel is a driver component 225: a dedicated set of instructions which allow for data
transfer with the NIC 116. Each application would normally take the form of a software program
running on the computer, but it could be embedded in firmware. Some operating systems include
applications in addition to fundamental operating system code. Aspects of the system that are not
described herein may be as set out in PCT publication No. W02004/025477, incorporated herein
by reference in its entirety.

[0060] The NIC 116 can support resources of a number of types: i.e. resources having
capabilities of different natures. Examples include DMA queues, event queues, timers and
support resources for remote apertures of the type described in W02004/025477. Each type of
resource (231-234) is provided from a dedicated hardware resource pool which can support
numerous instances of resources of the respective type. In order for such an instance to be made
operational it must be conﬁgured'by means of instructions from the computing device 114, as
described in more detail below.

[0061] The NIC 116 communicates with the computing device 114 over the bus 118. In this
example the bus is a PCI bus, but the invention is not limited to such a bus. Data transmitted over
the PCI bus 118 is associated with a destination address and is received by whichever entity that
is connected to the bus has had that address allocated to it. In a typical PC implementation the
addresses are allocated in pages of 4 or 8 kB. One or more of these pages may be allocated to the
NIC 116. Blocks 251 and 252 represent allocated pages on the PCI bus 118.

[0062] The NIC 116 has a bus interface controller 235, a resource configuration unit 236 and
a bus mapping table 237. The resource configuration unit processes communications received
from the computer that provide instructions on the allocation, re-allocation and de-allocation of
resources on the NIC 116, and configures the resources in accordance with such instructions. The
kernel driver 225 stores a record of which resources on the NIC 116 are allocated. When a
resource is to be allocated the driver 225 identifies a suitable free resource of the required type on

the NIC 116 and transmits an allocation instruction to the NIC 116. The instruction identifies the

WO 2006/116594 PCT/US2006/016008

13

resource and specifies the details of how it is to be allocated, including details of the internal
configuration of the resource (e.g. in the case of a timer the amount of time it is to run for). That
instruction is passed to the resource configuration unit. The resource configuration unit then
loads the specified configuration into the identified resource. The instruction also includes an
ownership string, which may be an identification of which application or process on the
computer is using the resource. The resource configuration unit stores these in a row of the bus
mapping table. An example of entries in the bus mapping table is shown in Fig. 2A and is
described in more detail below. When a resource is to be re-allocated the relevant entries in the
resource's own configuration store and in the bus mapping table are altered as necessary. When a
resource is to be de-allocated it is disabled and any rows .of the bus mapping table that relate to it
are deleted.

[0063] The general operation of the system of Figs. 1 and 2 for the transfer of data to and
from the network will now be described.

[0064] During setup of the system one or more pages (251, 252) on the bus 118 are allocated
to the NIC 116. Part of this address space (page 251) can be used by the kernel driver 225 to send
instructions to the NIC 116. Other pages (e.g. page 252) can be used for communication between
application processes such as application 222 and the resources 231-234. The resource
configuration unit 236 stores a record of the pages that are allocated to the NIC 116 for use by
resources. Note that in some embodiments, some or all of the functions of the resource
configuration unit 236 may alternatively be provided by the kernel driver 225 itself.

[0065] When an application 222 wishes to open a data connection over the network it calls a
routine in the user level transport library 224 to cause the NIC resources that are required for the
connection to be allocated. Standard types of network connection require standard sets of
resources; for example: an event queue, transmit (TX) and receive (RX) DMA queues, and a set
of DMA'able memory buffers. . For example a typical set may contain one TX queue, one RX
queue, two timers, and on the order of 100 DMA memory buffers.

[0066] The user level transport library 224 includes routines that can be called directly by the
application process 222 and that initiate the allocation of such standard sets of resources,
including set numbers of resources of different types. The transport library also includes routines
that allow a resource of each type to be allocated, re-allocated or de-allocated individually. The

presence of both these types of instruction means that standard connections can be set up

WO 2006/116594 PCT/US2006/016008

14

efficiently, and yet non-standard groups of resources can be created, and existing connections can
be reconfigured on a resource-by-resource basis. As used herein, a "user level stack” is any
protocol processing software that runs in unprotected mode. A "protocol stack" is the set of data
structures and logical entities associated with the networking interfaces. This includes sockets,
protocol drivers, and the media device drivers.

[0067] The routines for allocation, re-allocation and de-allocation of resources require access
to restricted memory mapped addresses, such as page 251 for sending configuration instructions
to the NIC 116. Since the user level transport library 224 lacks the necessary privilege level to
perform these accesses, these routines in the user level transport library 224 make calls to the
kernel driver 225. In a Unix environment, for example, such calls might take the form of TOCHI() .
system calls. These calls cause an initial context switch to a kernel level process, which in turn
communicate the instructions to the NIC 116 for the allocation of the resources as specified in
the routines. Those instructions specify the identity of the application or process with which the
resources are to be associated, and the nature of the resources. The instructions are processed by
the resource configuration unit 236 of the NIC 116.

[0068] A feature of the system of Fig. 2 is that the space on the bus 118 that is allocated to
the NIC 116 can be split dynamically between the resources on the bus 118. Once one or more
pages 252 have been allocated to the NIC 116 for use by resources those resources can be
allocated one or more individual sub-page addresses within that page, corresponding to locations
as illustrated at 253, 254. Thus each resource can have a part of the total space allocated to it. A
record of which part of the total space is allocated to which resource is stored in the bus mapping
table 237. The effect is that a single page of the bus can be used for communication to resources
of multiple types and/or resources that relate to multiple connections and/or resources that are
associated with multiple applications or processes on the computer 114. As a result, the total bus
space can be used relatively efficiently.

[0069] The usage of the allocated bus space 252 is managed by the kernel driver 225. When a
resource is to be allocated the RCU identifies using a data store whose content it manages an
unused block in the space on the bus that has already been allocated for use by resources of the
NIC 116, the space being of the size required for the resource. It then stores in that data store the
identity of the resource ("resource ID") , the address of the block within the allocated space

("sub-page ID), and the identity of the application or process that is to use the resource ("process

WO 2006/116594 PCT/US2006/016008

15

tag"); and sends a message to the resource configuration unit (RCU) 236 to cause it to store
corresponding data in the bus mapping table 237 (as shown in Fig. 2A). If the RCU finds that
table 237 indicates the address to be already occupied then it returns an error code to the driver.
The sub-page address may need to be supplemented with the address of the page in which the
sub-page lies if that cannot be inferred a§ a result of only a single page having been allocated for
use by the resources. If the total space allocated for use by resources is insufficient then the
kernel driver allocates it more space. Having allocated the resources, the RCU returns a success
message to the kernel driver. The allocated page and sub-page addresses are returned to and
mapped into the virtual address space of the user level process that requested the resources in
order that it can access them by means of that data. Another context switch then takes place back
to the user level calling process.

[0070] An application that has had resources allocated to it can access them by sending data
(e.g. by means of load/store cycles through a virtual memory mapping) to the relevant bus page,
at the sub-page address corresponding to the respective resource. Since these addresses are part
of the application's virtual address space, no context switch to any kernel level processes are
required in order to perform these accesses. Any data sent to pages allocated to resources is
picked off the bus 118 by the bus interface controller 235. It directs that data to the appropriate
one of the resources 231-234 by performing a look-up in the table 237 to identify the identity of
the resource to which the sub-page address has been allocated. An application can also access a
resource by means other than a bus write: for example by means of direct memory access
(DMA). In those instances, the NIC 116 checks that the identity of the application/process from
which the access has been received matches the identity indicated in the table 237 for the
resource. If it does not match, the data is ignored. If it matches, it is passed to the relevant
resource. This adds to security and helps to prevent corruption of the resources by other
applications. ‘

[0071] The set of resources allocated to an application or process may be considered to
constitute a virtual network interface (VNIC).

[0072] Once a virtual interface has been composed, it may be reconfigured dynamically. As
one example of dynamic reconfiguration, a resource that is no longer required may be freed-up.
To achieve this the application using the resource calls a de-allocation routine in the user level

transport library 223. The de-allocation routine calls the kernel driver 225, which instructs the

WO 2006/116594 PCT/US2006/016008

16

RCU to de-allocate the resource by disabling it, clearing its status and deleting its row in the
table 237.

[0073] As another example of dynamic reconfiguration, additional resources may be added to
the VNIC. The process is analogous to that described above for initial composition of the VNIC.
[0074] As yet another example of dynamic reconfiguration, resources may be passed from
one application or process to another. This is most useful in the situation where a single
application has multiple processes and wants to pass control of a resource from on process to
another, for example if data from the network is to be received into and processed by a new
process. To achieve this the application using the resource calls a re-allocation routine in the
transport library 223. The re-allocation routine calls the kernel driver 225, which instructs the
RCU to re-allocate the resource modifying its row in the table 237 to specify the identity of the
application or process that is taking over its control.

[0075] In some instances it may be desirable for resources of one type to communicate with
resources of another type. For example, data received from the network 240 may be being passed
to an application 222 for processing. The application has a queue 226 in a memory 227
connected to the bus 118. The queue is managed in part by the transport library 223, which
provides a DMA queue resource 231 on the NIC 116 with an ﬁp-to-date pointer to the next
available location on the queue 226. This is updated as the application reads data from the queue
226. When data is received from the network it is passed to an event queue resource 232, which
writes it to the location identified by the pointer and also triggers an event such as an interrupt on
the computing device 114 to indicate that data is available on the queue. In order for this to
happen the event queue resource 232 must learn the pointer details from the DMA queue
resource 231. This requires data to be passed from the DMA queue resource to the event queue
resource.

[0076] To achieve this the "process tag" column of the table 237 can be treated more
generally as an ownership tag, and can link the DMA queue to the related event queue. To
achieve this the ownership tag of the event queue can be set to the identity of the related DMA
queue. When the DMA queue needs to pass data to the related event queue it can identify the
event queue from the table 237 by performing a look-up on its own identity in the ownership tag

column,

WO 2006/116594 PCT/US2006/016008

17

[0077] Data intended to be passed from one resource to another can be checked by the bus
controller 235 to ensure that it is compatible with the settings in the table 237. Specifically, when
data is to be sent from one resource to another the bus controller checks that there is a row in the
table 237 that has the identity of the resource that is the source of the data in the ownership tag
field, and the identity of the resource that is the intended destination of the data in the resource
ID field. If there is no match then the data is prevented from reaching its destination. This
provides additional security and protection against corruption. Alternatively, or in addition, it
may be permitted for one resource to transmit data to another if both are in common ownership:
in this example if their resource ID fields indicate that they are owned by the same process,
application or other resource.

[0078] The identities of resources linked in this way can also be reconfigured dynamically by
means of the re-configuration routines in the transport library.

[0079] Fig. 3 is an example broad outline of steps that an application process might follow in
the system of Figs. 1 and 2 for the creation and transmission of IP packets onto the network 112.
This flowchart covers only the TCP and UDP transport level protocols; other embodiments can
support other protocols, including but not limited to SCTP, RTP, ICMP and IGMP.

[0080] In a step 310, when the application first starts up, its libraries are initialized. This
includes the user level transport library 224, which is initialized into the application's virtual
address space.

[0081] Step 312 begins an example sequence of steps in which the application process uses a
UDP transport protocol. In step 312 the application makes a call to the socket() routine of the
user level transport library 224, specifying that it would like a UDP socket. In step 314, the
application process binds the socket to a port using a call to the bind() routine of the user level
transport library 224, and in step 316, it begins writing its transmit data into the applications
buffers in the application's virtual address space. In step 318, after sufficient data has been
written into the buffers for one or more data packets, the application process makes a call to the
sendTo() routine of the user level transport library 224, specifying the socket handle, the buffer
or buffers, the destination IP address and the destination port to which the packet is to be sent.
Steps 316 and 318 are repeated many times, most likely interspersed with many other functions

performed by the application process. When the application has finished with the socket that it

WO 2006/116594 PCT/US2006/016008

18

had created in step 312, then in step 320, the application makes a call to the close() routine of the
user level transport library 224 in order to close the socket.

[0082] Alternatively to the UDP sequence beginning with step 312, step 322 begins an
example sequence of steps in which the application process uses a TCP transport protocol. In
step 322, instead of calling the socket routine of the user level transport library 224 to specify the
UDP protocol, it calls the socket routine to specify the TCP protocol. In step 324 the application
process calls the bind() routine similarly to step 314, in order to bind the socket to a port. In step
326, since the transport protocol is now TCP, the application process calls the connect() routine
of the user level transport library 224, in order to form a TCP connection with a specified
destination IP address and port. In step 328 the application process writes transmit data into
buffers in the application program's virtual address space, similarly to step 316, and in step 330,
when ready, the application process calls the send() routine of the user level transport library 224
in order to have the data packet processed according to the TCP protocol and transmitted out to
the network via network interface card 116. Again, steps 328 and 330 can be repeated many
times, and when the application process has finished with the socket, it calls the close() routine
of the user level transport library 224 (step 332).

[0083] As can be seen, of all the steps illustrated Fig. 3, only the step 310 of initializing the
transport library 224 need involve a context switch to a kernel level process. In many
embodiments, all of the remaining steps can be performed by the user level transport library 224
without involvement of the kernel driver 225. While this feature can help improve performance
markedly, it also creates a risk that non-standard or third-party transport libraries will be installed
for the application program in place of trusted code. As will be seen, the network interface card
116 itself protects against one of more of the risks that might arise.

[0084] Fig. 4 is a flowchart of steps that might be performed during the library initialization
step 310 of Fig. 3. In step 410, the user level transport library 224 is loaded into the application's
virtual address space. In a conventional system, the transport library loaded in step 410 might be
a very thin layer (or incorporated within another general purpose library such as glibc), which
does little more than make calls to the kernel driver 225 and return any results to the application.
In the system of Figs. 1 and 2, however, the transport library loaded in step 410 is more

sophisticated in that it includes the user level routines described herein. To the extent that the

WO 2006/116594 PCT/US2006/016008

19

user level transport library loaded in step 410 bypasses or performs functions differently than as
described herein, the system can protect against certain kinds of errors.

[0085] Instep 412, as part of the initialization of the user level transport library, a resource
allocation routine in the kernel driver 225 is invoked. The kernel level routine is required for
allocating resources in the network interface card and the host memory subsystem 122, since
these resources are outside the virtual address space of the application, or involve direct hardware
accesses that advisedly are restricted to kernel processes. After resource allocation, the user level
driver initialization routine 310 may perform a number of other steps before it returns to the
application in step 414.

[0086] . The kernel resource allocation routine 412 allocates memory and an initial set of .
resources for the application program, and maps these into the application's virtual address space.
Before discussing the particular steps performed by the kernel resource allocation routine 412, it
will be useful to understand some of the formats in which the system maintains its queue
structures.

[0087] Fig. 5 is a block diagram of various data structures used by the system of F igs 1 and 2
in order to support separate transmit and receive queues for each of the VNIC. The diagram
indicates which structures exist in host memory 122 and which exist on the NIC 116. The
transmit and receive data buffers, the transmit and receive DMA descriptor queues, as well as
one or more event queues, are all resident in host memory 122 and made up of generalized
buffers which can be discontiguous and interspersed with each other in host memory 122. In Fig.
5, the buffers being used as transmit data buffers are identified as "TX DATA BUF #n", and the
buffers being used for a transmit queue are identified as "TX QUEUE BUF #n". The buffers
being used for the event queue are identified as "TX EV QUEUE BUF #n". Additional buffers in
host memory 122, not shown explicitly in Fig. 5, are used for receive data buffers and for a
receive queue. One process may have any number of transmit, receive and event queues, and all
of them share the pool of generalized buffers that have been mapped into that process's virtual
address space. Other processes us a different pool of generalized buffers mapped into their
respective virtual address spaces

[0088] Individual buffers may be either 4k or 8k bytes long in one embodiment, and they are
chained together into Jogically contiguous sequences by means of physically contiguous

descriptors in a buffer descriptor table 510 stored in the NIC 116. For example, one transmit

WO 2006/116594 PCT/US2006/016008

20

queue might occupy buffers 512, 514 and 516 in host memory 122, which are discontiguous and
possibly out-of-order regions of memory. They are chained together into a single logically
contiguous space by the physically contiguous entries 518, 520 and 522 in the buffer descriptor
table 510. The entries 518, 520 and 522 are written and managed by the host 114 and are viewed
as a wrap-around ring. So for example, if the host wishes to define a transmit buffer list 312
having 64k entries for transmit data buffer descriptors, and each buffer is 4k in size, then the host
will allocate a physically contiguous sequence of 16 entries in buffer descriptor table 510 for this
transmit buffer list. Similarly, one event queue might occupy buffers 526, 528 and 530 in host
memory 122. These buffers are discontiguous and possibly out-of-order in host memory, but are
chained together into a single logically contiguous wrap-around space by the physically
contiguous entries 532, 534 and 536 in the buffer descriptor table 510. The buffer descriptor
table 510 is indexed by "buffer ID", and each of its entries identifies, among other things, the
base address of the corresponding buffer in host memory 122.
[0089] Inorder to keep track of the state of each of the transmit, receive and event queues for
the many user-level applications that might be in communication with NIC 116 at the same time,
the NIC 116 includes a transmit queue descriptor table 540, a receive queue descriptor table 541,
and an event queue descriptor table 542. Each transmit queue has a corresponding transmit queue
ID, which is used as an index into the transmit queue descriptor table 540. The designated entry
in the transmit queue descriptor table 540 is the starting point for describing the state and other
characteristics of that particular transmit queue, as viewed by the NIC 116. Each such entry
identifies, among other things:

* whether the queue is a kernel queue, user queue or another kind of queue;

* the size of the queue (number of transmit data buffer descriptors it can contain)

* the ID of the event queue associated with this transmit queue;

* buffer ID of base buffer for this transmit queue;

* "device centric" read and write pointers into this transmit queue.
The host 114 maintains "host centric” versions of the read and write pointers as well, and when it
is ready to have transmit data transmitted, it so notifies the NIC 116 by writing its updated host
centric transmit queue write pointer into the address on the NIC of the device centric transmit

queue write pointer for the particular transmit queue.

WO 2006/116594 PCT/US2006/016008

21

[0090] In order to retrieve current transmit data from a particular transmit queue in host
memory 122, the NIC 116 first uses the ID of the particular transmit queue to look up, in the
transmit queue descriptor table 540, the buffer ID of the base buffer containing the transmit
descriptor queue. The NIC 116 also obtains from the same place, the current device centric buffer
list read pointer into that transmit descriptor queue. It then uses the base buffer ID as a base, and
the device centric buffer list read pointer high order bits as an offset, into the buffer descriptor
table 510, to obtain the base address in host memory 122 of the buffer that contains the particular
transmit buffer list 312. The NIC then uses that base address as a base, and the device centric
buffer list read pointer low order bits times the number of bytes taken up per descriptor as an
offset, to retrieve from host memory 122 the current entry in the particular transmit descriptor
queue.

[0091] The current entry in the particular transmit descriptor queue contains, among other
things:

* the buffer ID of the current transmit data buffer;

* a byte offset into the current transmit data buffer; and

* a number of bytes to be transmitted from the current transmit data buffer.
The NIC 116 then uses the buffer ID of the current transmit data buffer as another index into
buffer descriptor table 510 to retrieve the buffer descriptor for the buffer that contains the current
transmit data. Note this buffer descriptor is an individual entry in buffer descriptor table 510;
unlike the descriptors for buffers containing transmit queues or transmit event queues, this buffer
descriptor is not part of a ring. The NIC 116 obtains the physical address in host memory 122 of
the current transmit data buffer, and then using that physical address as a base, and the byte offset
from the transmit descriptor queue entry as an offset, it determines the physical starting address
in host memory 122 of the current data to be transmitted.
[0092] The system handles receive queues in a similar manner.
[0093] The transmit queue descriptor table 540 entry designated by the transmit queue ID, as
previously mentioned, also contains the ID of the transmit event queue associated with the
particular transmit queue. Similarly, the receive queue descriptor table 541 entry designated by
the receive queue ID contains the ID of the event queue associated with the particular receive

queue. All of the event queues for all the applications 222 are described by respective entries in

WO 2006/116594 PCT/US2006/016008

22

the event queue descriptor table 542. The entry in the event queue descriptor table 542 identified
by a queue ID from the transmit or receive queue descriptor table 540 or 541 is the starting point
for describing the state and other characteristics of that particular event queue 318, as viewed by
the NIC 116.

[0094] Note that as illustrated in Fig. 5, whereas each slot (e.g. 532, 534, 518) shown in the
buffer descriptor table 510 represents a single descriptor, each slot (e.g. 526, 528, 514) in the
host memory 122 represents a memory "page" of information. A page might be 4k or 8k bytes
long for example, so if a transmit data buffer descriptor in a transmit queue occupies either 4 or 8
bytes, then each slot 512, 514 or 516 as shown in Fig. 5 might hold 512, 1k or 2k transmit data
buffer descriptors.

[0095] Fig. 6 is a flowchart illustrating significant steps performed by the kernel resource
allocation routine 412. If the user level transport library 224 fails to call this routine, then the
addresses to which the user level transport library 224 would have to access in order to bypass
subsequent trusted kernel routines will not be accessible to the user level process since they will
not have been mapped into the application's virtual address space. In step 610, the kernel begins
by allocating memory for the generalized buffers that will be used to hold the transmit, receive
and event queues. It then maps the buffers into the application's virtual address space so that the
application can read and write to them directly. In step 612, the kernel routine installs descriptors
for these buffers in the buffer descriptor table 510.

[0096] In step 614, the kernel routine allocates a minimum set of the buffers for each of the
transmit, receive and event queues requested, and programs their buffer IDs into the transmit,
receive and event queue descriptor tables 540, 541 and 542. In step 616, the kernel routine
determines the "doorbell" address in the NIC 116 for each of the transmit and receive queues,
and maps them as well into the application's virtual address space. The doorbell address is the
address to which the application will write a value, in order to notify the NIC either that a
transmit buffer is ready or that a receive buffer can be released. For transmit queues, the doorbell
address is the address of the device centric transmit queue read pointer in the transmit queue
descriptor table 540 entry for the particular transmit queue. For receive queues, the doorbell
address is the address of the device centric receive queue write pointer in the receive queue

descriptor table 541 entry for the particular receive queue.

WO 2006/116594 PCT/US2006/016008

23

[0097] In step 618, the kernel routine programs into the NIC 116 certain access rights
(authorization rights) that are to be associated with the particular transmit queue. These are the
authorization rights to which the NIC 116 will look in order to determine whether a particular
sending process has authority to send packets having certain characteristics, and the kernel
routine programs them in dependence upon the privilege level of the process that made the kernel
resource allocation call. Note that although the privilege level of an application process running
in the computer system 114 is maintained on a per-process basis, the authorization rights are
maintained on the NIC 116 on a per-queue basis. This enables the NIC 116 to validate outgoing
transmit packets without having to know anything about the particular operating system running
in the host computer or the privilege mechanisms that it uses. As used herein, when the NIC
checks the authorization rights of a particular sending queue, it is also checking the authorization
rights of the process that owns the particular sending queue, because the former were
programmed into the NIC by the kernel in dependence upon the latter.

[0098] In different embodiments, the NIC can refer to different characteristics of a transmit
data packet in order to determine whether the transmit queue has sufficient authority to send it. In
one embodiment, the NIC checks only whether the packet is formed according to an allowed
transport protocol. For example, in one embodiment user level processes may be permitted to
send packets using only the TCP or UDP transport protocols, and no others. Each data packet has
a header field which identifies the transport protocol according to which it was formed, and the
NIC can compare that protocol number with those that have been programmed into the NIC 116
as being allowed for the transmit queue from which the dqta packet was retrieved.

[0099] If the total array of transport protocols supported by the NIC 116 is short enough, then
a field may be allocated in each entry of the transmit queue descriptor table 540 for identifying
the allowed protocols. For example if only eight protocols are supported, and eight-bit field
might be used, with each bit representing one of the protocols. If a bit is active, then the
corresponding transport protocol is allowed,; if it is inactive, then it is not.

[00100] Alternatively, the allowed protocols may be listed in a separate authorizations
"database" maintained in the NIC 116, such as that shown in Fig. 7. In Fig. 7, the authorizations
database takes the form of a table in which each entry contains a queue ID and an indication of
an allowed protocol for that queue. If several different protocols are allowed for particular queue,

then the queue ID appears in several different entries in the table. When the NIC 116 is checking

WO 2006/116594 PCT/US2006/016008

24

the validity of a transmit packet from a particular transmit queue, it searches the table for an entry
that contains both the transmit queue ID and the transport protocol according to which the packet
was formed (retrieved from the packet header). If the table does contain such an entry, then the
packet is valid. If not, then the packet is rejected. (As used herein, the term "database" does not
necessarily imply any unity of structure. For example, two or more separate databases, when
considered together, still constitute a "database" as that term is used herein.)

[00101] In other embodiments, the NIC can validate other characteristics of a transmit data
packet. For example it can validate the source IP address, the source port number, the destination
IP address and destination port number, either instead of or additionally to the allowed protocols.
Fig. 8 illustrates an example authorizations database that can support validating all such
characteristics. As shown in Fig. 8, each entry in the database table contains six fields: source IP
address, source port iumber, destination IP address, destination port number, queue ID and
allowed protocol number. In order to keep table short, some of these fields may be filled with
indications of numeric ranges, rather than only a specific number. For example, in some systems
only privileged processes can transmit packets indicating that they were sourced from a port
number in the range 0-1023. In this case, the "source port" field of the table a Fig. 8 might
contain only a single bit indicating whether source port numbers within the range 0-1023 are
permitted. As with an embodiment using the Fig. 7 table, when the NIC 116 is checking the
validity of a transmit packet from a particular transmit queue, it searches the table of Fig. 8 for a
single entry that contains (or includes, if numeric ranges are specified) the source IP address, the
source port number, destination IP address, destination port number and the allowed protocol (all
taken from the packet header), as well as the ID of the transmit queue from which the packet was
retrieved. If the table does contain such an entry, then the packet is valid. If not, then it is
rejected.

[00102] Returning to Fig. 6, after the kernel resource allocation routine programs the
authorization rights for the transmit queue into the NIC 116, it returns to the application with
handles for the resources allocated, with the base virtual addresses of the transmit, receive and
event queues, and virtual memory addresses corresponding to the doorbells allocated in the
transmit and receive queue descriptor tables 540 and 541 (step 620).

[00103] Fig. 9 is a flowchart of the user level routine in the transport library 224 for
establishing a socket. The socket routine is called in both steps 312 and 322 of Fig. 3. In step

WO 2006/116594 PCT/US2006/016008

25

910, the routine first determines whether the user level transport library 224 contains the code
necessary to support the specified protocol. If not, then in step 912, makes a system call to pass
the request on to the kernel to handle. If it does support the specified protocol, then in step 914 it
allocates its internal state for the new socket. In step 916 the routine returns to the application
program with a handle for the new socket. Note that in a conventional system, in which the
socket routine invokes a kernel level process, the kernel may check at this time whether the
calling process has authority to use the specified protocol number. This call, and the
accompanying context switches, are unnecessary in the system Figs. 1 and 2 since any illegal
protocols will be detected and rejected downstream by the NIC 116.

[00104] Fig. 10 is a flowchart of the user level routine transport library 224 for binding a port
number to a socket. The bind routine is called in both steps 314 and 324 of Fig. 3. In step 1010,
the routine first determines whether the caller provided a port number. If not, then in step 1012, a
port number is assigned. If the caller did specify a port number, then in step 1014, the routine
determines whether the port number is legal for the current user process.

[00105] At least four different mechanisms might be used in the same or different
embodiments to ensure that different processes do not interfere with each other's use of particular
IP address/port number combinations, and that user processes do not impropetly operate through
physical or logical port numbers or other resources that should be reserved for the kernel. In one
mechanism, a system-wide policy exists which allocates all port numbers within a particular
range to the user stack only. The user level bind() routine can be designed to immediately accept
only those requests from a user level process to bind to one of such port numbers, or to
immediately pass such requests on to the kernel to handle.

[00106] In asecond mechanism, during the resource allocation step 412, performed during
initialization of a particular instance of the user level driver, the kernel allocates a unique IP
address for that instance to use as it wishes. If each instance of the user level driver has its: own
exclusively assigned IP address, then the instance can manage the available port numbers for use
with that IP address without risking interference with any other process. This mechanism is
useful only if there are sufficient numbers of IP addresses available to the computer system to
allocate to the various requesting processes. Again, this mechanism can be used in conjunction
with the first, to reject or pass on to the kernel all user level requests to bind to a kernel-only port

number, regardless of the exclusivity of an assigned IP address.

WO 2006/116594 PCT/US2006/016008

26

[00107] Ina third mechanism, again during initialization of a particular instance of the user
level driver, the initialization routine makes a number of anticipatory bind() calls to the kernel in
order to form a pool of port numbers that the user level driver instance can later allocate to the
application program upon receipt of bind() calls to the user level driver. This mechanism can
succeed with far fewer IP addresses available to the computer system, but also undesirably
involves a context switch (during library initialization) for each port number to be added to the
pool.

[00108] In yet a fourth mechanism, no IP address/port number combinations are pre-allocated
to the particular instance of the user level driver. Instead, the user level bind() routine invokes the
kernel bind() routine for each user level bind() call received. This mechanism utilizes IP
address/port number combinations most conservatively, but may require more context switches
than any of the first, second and third mechanisms. In an embodiment, this fourth mechanism is
used only as a backup, for example if the user level process requires more port numbers than
were made available using the anticipatory bind() calls in the third mechanism.

[00109] Ifin step 1014 the user level bind() routine determines that the requested port number
is not available to the current instance of the user level driver, or otherwise cannot determine
whether is available, then in step 1016, the routine makes a call to the kernel bind() routine to
pass the request on to the kernel to handle. If the fourth mechanism above is the only way that the
particular embodiment avoids conflicting or illegal allocation of address/port number
combinations, then step 1016 will be taken during every user level call to the bind() routine 1000.
Otherwise, step 1016 will be taken only as a backup if pre-allocated port numbers have been
exhausted, or if the routine otherwise cannot determine that the requested port number is
available.

[00110] If the specified port number is legal, or if a port number was assigned by the routine
in step 1012, then in step 1018 the routine updates the application's state internally, to bind the
port number with the specified socket. The routine returns to the caller in step 1020,

[00111] Although the user level bind routine of Fig. 10 attempts to prevent the allocation of
problematical port numbers to user level processes as described above, it will be appreciated that
a different implementation of the user level bind routine may not be as careful. It is a feature of
the invention that the NIC 116 can be designed to detect and reject transmit packets which do

designate a source port number that is illegal, or for which the sending process lacks sufficient

WO 2006/116594 PCT/US2006/016008

27

privilege to use. Therefore, no damage will occur if transport library routines are used which do
not follow the steps set forth, as long as any errors they cause are of a type that the NIC 116 is
designed to detect downstream. ,

[00112] Fig. 11 is a flowchart of the user level sendTo routine called in step 318 of Fig. 3.
This routine is called for UDP protocol packets for which no connection to a destination IP
address or port is established. The routine therefore takes as arguments not only the socket
handle and the data buffer address, but also the destination IP address and destination port
number. Referring to Fig. 11, in step 1110, the routine first applies the transport protocol,
forming a UDP header and an IP header. It then forms a transmit descriptor pointing to the
headers and to the data buffer identified by the caller. In step 1112, the routine pushes the
transmit descriptor onto the transmit queue by writing the transmit descriptor into the next
available entry in transmit queue buffers 512, 514 or 516 (Fig. 5). The routine then updates its
own host centric transmit queue write pointer. In step 1114, the routine writes its updated
transmit queue write pointer into the NIC 116 at the doorbell address that had been previously
associated with the current transmit queue. In step 1116, the routine returns to the caller.

[00113] Note that all the steps of Fig. 11 take place entirely within the vfrtual address space of
the current user level process. There is no need to copy data into the kernel address space, nor is
there any need to perform a context switch to a kernel process either to perform the protocol
processing, to enqueue the new UDP packet, or two notify the NIC 116 of the availability of a
new packet in the transmit queue. Additionally, as with the user level socket and bind routines, a
user level transport library routine which does not perform the steps faithfully as set forth in Fig.
11 will not cause the transmission of malformed or illegal packets to the extent the NIC 116 is
designed to rejected them during the validation process performed on the NIC 116,

[00114] Fig. 12 is a functional block diagram of certain structures on the NIC 116 which can
be used to perform packet validation for transmission of data packets. The structures include a
DMA controller 1210 which controls the retrieval of transmit data packets from the host memory
subsystem 122. Data packets, as they arrive, are enqueued into a transmit FIFO 1214. From the
head of the transmit FIFO 1214, data packets are presented to a physical interface 1216 which
performs any further protocol processing (such as appending an Ethernet header) and writes them
out onto the network 112. The transmit FIFO 1214 also has associated therewith FIFO control

logic 1218, which includes read and write pointers into the transmit FIFO 1214 as well as other

WO 2006/116594 PCT/US2006/016008

28

functions described hereinafter. The NIC 116 also includes header validation logic 1220 which
observes the contents of data packets as they arrive from the bus 118 and are placed into the
transmit FIFO 1214. The header validation logic 1220 makes reference to the authorizations
database 1222 described previously.

[00115] In operation, as a data packet is received from the bus 118, the first section received is
the IP header. This section contains the source and destination IP addresses, as well as an
identification of the transport layer protocol. Next comes the transport layer header, which
contains the source and destination port numbers. Based on this information, the header
validation logic 1220 compares the data packet characteristics to those in the authorizations
database 1222 to determine whether the data packet arriving from the bus 118 is authorized. If it
is not, then the header validation logic 1220 can cause the DMA controller 1210 to abort the
current transfer, and can also cause the FIFO control logic;, 1218 to unwind its write pointer back
to the end of the previous packet in the transmit FIFO 1214.

[00116] Fig. 13 is a flowchart of typical steps taken on the NIC 116 for transmission of data
packets arriving from multiple queues. Initially, the NIC implements an algorithm for choosing
among the multiple transmit queues for the next queue to service. This algorithm is unimportant
for an understanding of the invention, and therefore is not described. In step 1310, the algorithm
selects one particular transmit queue to examine.

[00117] Instep 1312, the NIC 116 determines whether the device centric write pointer for the
current transmit queue modulo-exceeds the device centric read pointer for current transmit
queue. These values are available to be NIC in the transmit queue descriptor table 540 entry for
the current transmit queue, and the test will be positive if one of the transport librarys 224 or 225
has updated the device centric write pointer to notify the NIC of the availability of the data
packet for transmission. The term "modulo-exceeds" is used herein to accommodate wrap-around
(circular) queues. That s, the device centric write pointer "modulo-exceeds" the device centric
read pointer for a queue if the write pointer exceeds the read pointer, modulo the queue length.
[00118] If the test of step 1312 is negative, then in step 1314, the NIC 116 proceeds to
examine the next transmit queue according to its algorithm.

[00119] Ifthe test of step 1312 is positive, then in step 1316, the NIC 116 reads one or more
transmit descriptors from the current transmit queue, beginning at the entry pointed to by the

device centric read pointer. In step 1318, the NIC 116 programs the DMA controller 1210 to

WO 2006/116594 PCT/US2006/016008

29

retrieve the packet from host memory 122 into transmit FIFO 1214. In step 1320, during the
retrieval process, the NIC examines the header information on the packet as it is being retrieved,
and tests the current queue's authority to send packets having the characteristics of that being
retrieved. If the NIC 116 determines that the packet is authorized (step 1322) , then in step 1324,
after packet retrieval, the NIC 116 will updated its device centric transmit queue read pointer.
The NIC 116 then writes a transmit completion event into the event queue associated with the
current transmit queue, for eventual retrieval by the user level process. In some embodiments, the
NIC 116 might wait to complete retrieval of a number of transmit data packets before writing a
"batched" transmit completion event covering all of them. The process then returns to step 1310
for the queue selection algorithm to select the same or another transmit queue. Eventually, in step .
1328 the NIC 116 transmits the packet from the head of the transmit FIFO 1214 out onto the
network 112.

[00120] Ifin step 1322 it is determined that the current packet is not authorized to be sent
from the current transmit queue, then in step 1326, the header validation logic 1220 (Fig. 12)
causes the DMA controller 1210 to abort the current transfer, thereby freeing up the bus 118. It
also notifies the FIFO control logic 1218 to unwind the transmit FIFO queue write pointer as
previously described. The NIC 116 may also report an error back to the application program.
[00121] It can be seen that the NIC 116 transmits packets onto network 112 only if the
sending transmit queue is authorized to transmit packets having the characteristics for which
header validation logic 1220 checks. In some embodiments still other requirements might be
necessary before the NIC will allow the packet to go out.

[00122] As used herein, "identification" of an item of information does not necessarily require
the direct specification of that item of information. Information can be "identified" in a field
simply by referring to the actual information through one or more layers of indirection, or by
identifying one or more items of different information which are together sufficient to determine
the actual item of information. In addition, the term "indicate" is used herein to mean the same as
"identify".

[00123] The foregoing description of preferred embodiments of the present invention has been
provided for the purposes of illustration and description. It is not intended to be exhaustive or to
limit the invention to the precise forms disclosed. Obviously, many modifications and variations

will be apparent to practitioners skilled in this art. In particular, and without limitation, any and

WO 2006/116594 PCT/US2006/016008

30

all variations described, suggested or incorporated by reference in the Background section of this
patent application are specifically incorporated by reference into the description herein of
embodiments of the invention. The embodiments described herein were chosen and described in
order to best explain the principles of the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended that the scope of the

invention be defined by the following claims and their equivalents.

WO 2006/116594 PCT/US2006/016008

31

CLAIMS

1. A method for interfacing a computing device with a network interface device,
comprising the steps of:

a first sending process of the computing device initiating establishment of a first transmit
queus;

a privileged mode process, in response to the step of the first sending process initiating
establishment of a first transmit queue, establishing the first transmit queue in a virtual address
space of the first sending process,

the first sending process enqueueing a first data packet onto the first transmit queue for
transmission onto a network, without involvement of any privileged mode routines;

the network interface device receiving at least part of the first data packet from the first
transmit queue for transmission onto the network;

the network interface device making a first determination of whether transmission of the
first data packet onto the network is authorized; and

the network interface device transmitting the first data packet onto the network only if the

first determination is positive.

2, A method according to claim 1, wherein the first data packet has a first set of
characteristics,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process

has authority to transmit data packets having the first set of characteristics onto the network.

3. A method according to claim 2, wherein the first set of characteristics includes a
particular network transport protocol,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process
is authorized to transmit data packets using the particular network transport protocol.

4, A method according to any preceding claim, wherein the first set of characteristics

includes a particular source port number,

WO 2006/116594 PCT/US2006/016008

32

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process
is authorized to transmit data packets having the particular source port number.

5. A method according to any preceding claim, wherein the first set of characteristics
includes a particular destination port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process
is authorized to transmit data packets having the particular destination port number.

6. A method according to any preceding claim, wherein the first set of characteristics
includes a particular source address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process
is authorized to transmit data packets having the particular source address.

7. A method according to any preceding claim, wherein the first set of characteristics
includes a particular destination address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending process

is authorized to transmit data packets having the particular destination address.

8. A method according to claim 1, wherein the first sending process is a user level
process,

further comprising the step of a privileged mode process, in response to the step of the
first sending process initiating establishment of a first transmit queue, programming
authorization rights for the first transmit queue into the network interface device,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device examining the authorization rights for the first
transmit queue.

9. A method according to claim 8, wherein the first data packet has a first set of
characteristics,

and wherein the step of the network interface device making a first determination

comprises the step of the network interface device determining whether the first transmit queue

WO 2006/116594 PCT/US2006/016008

33

has authority to transmit data packets having the first set of characteristics onto the network.

10. A method according to claim 9, wherein the first set of characteristics includes a
particular network transport protocol,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit queue is
authorized to transmit data packets using the particular network transport protocol.

11. A method according to any of claims 8 and 9, Wherein the first set of
characteristics includes a particular source port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit queue is
authorized to transmit data packets having the particular source port number.

12. A method according to any of claims 9, 10, and 11, wherein the first set of
characteristics includes a particular destination port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit queue is
authorized to transmit data packets having the particular destination port number.

13. A method according to any of claims 9, 10, 11 and 12, wherein the first set of
characteristics includes a particular source address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit queue is
authorized to transmit data packets having the particular source address.

14. A method according to any of claims 9, 10, 11, 12 and 13, wherein the first set of
characteristics includes a particular destination address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit queue is
authorized to transmit data packets having the particular destination address.

15. A method according to any preceding claim, wherein the step of the network
interface device receiving at least part of the first data packet comprises the step of the network

interface device retrieving at least part of the first data packet from the first transmit queue.

WO 2006/116594 PCT/US2006/016008

34

16. A method according to any preceding claim, further comprising the step of the
first sending process notifying the network interface device, without invoking any privileged
mode routines, of the availability of the first data packet in the first transmit queue.

17. A method according to any preceding claim, further comprising the steps of:

a second sending process initiating establishment of a second transmit queue;

a privileged mode process, in response to the step of the second sending process initiating
establishment of a second transmit queue, establishing the second transmit queue in a virtual
address space of the second sending process;

the second sending process enqueueing a second data packet onto the second transmit
queue for transmission onto the network, the second data packet having a second set of
characteristics;

the network interface device receiving at least part of the second data packet from the
second transmit queue;

the network interface device making a second determination of whether the second
sending process has authority to transmit data packets having the second set of characteristics
onto the network; and

the network interface device transmitting the second data packet onto the network only if
the second determination is positive.

18. A method according to claim 17, wherein the second sending process is a user
level process, further comprising the step of a privileged mode process, in response to the step of
the second sending process initiating establishment of a second transmit queue, programming
authorization rights for the second transmit queue into the network interface device,

and wherein the step of the network interface device making a second determination
comprises the step of the network interface device examining the authorization rights for the
second transmit queue.

19. A method according to any preceding claim, wherein the step of the network
interface device receiving at least part of the first data packet comprises the step of the network
interface device retrieving at least part of the first data packet from the first transmit queue,

further comprising the step of aborting retrieval of the first data packet if the first
determination is negative.

20. Network interface apparatus, for use with a plurality of transmit queues allocated

WO 2006/116594 PCT/US2006/016008

35

among a plurality of different processes in a computer system, comprising a database indicating,
for each given one of the transmit queues, whether data packets having a first set of
characteristics are permitted to be transmitted onto the network from the given transmit queue.

21. Apparatus according to claim 20, wherein the database further indicates, for each
given one of the transmit queues, whether data packets having a second characteristic are
permitted to be transmitted onto the network from the given transmit queue.

22. Apparatus according to either of claims 20 and 21, wherein the first set of
characteristics includes a network transport protocol.

23. Apparatus according to any of claims 20, 21 and 22, wherein the first set of
characteristics includes a source port number.

24. Apparatus according to any of claims 20, 21, 22 and 23, wherein the first set of
characteristics includes a destination port number.

25. Apparatus according to any of claims 20, 21, 22, 23 and 24, wherein the first set
of characteristics includes a member of the group consisting of a source address and a destination
address. ‘

26. AKkitincluding a network interface device and instructions for use on a computing
device,

the instructions being such that:

in response to a first sending process of the computing device initiating establishment of
a first transmit queue, a privileged mode process of the computing device establishes the first
transmit queue in a virtual address space of the first sending process,

and in response to the first sending process enqueueing a first data packet onto the first
transmit queue for transmission onto a network, the first data packet having a first characteristic,
the network interface device receives at least part of the first data packet without involvement of
any privileged mode routines of the computing device;

and the network interface device including means for determining whether the first
sending process has authority to transmit data packets having the first characteristic onto the
network, and means for transmitting the first data packet onto the network only if the first

determination is positive.

WO 2006/116594 PCT/US2006/016008
36

AMENDED CLAIMS
received by the International Bureau on 11 October 2006 (11.10.2006)

1. A method for interfacing a computing device with a network interface device,
comprising the steps of:

a first sending process of the computing device initiating establishment of a first
transmit queue;

a kernel mode process, in response to the step of the first sending process initiating
establishment of a first transmit queue, establishing the first transmit queue in a virtual
address space of the first sending process,

the first sending process enqueueing a first data packet having a first set of
characteristics onto the first transmit queue for transmission onto a network, without
involvement of any kernel mode routines;

the network interface device receiving at least part of the first data packet from the
first transmit queué for transmission onto the network;

the network interface device making a first determination of whether transmission of
data packets having the first set of characteristics onto the network is authorized; and

the network interface device transmitting the first data packet onto the network only if

the first determination is positive.

2. A method according to claim 1, wherein the step of the network interface
device making a first determination comprises the step of the network interface device
determining whether the first sending process has authority to transmit data packets having

the first set of characteristics onto the network.

3. A method according to claim 2, wherein the first set of characteristics includes
a particular network transport protocol,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending

process is authorized to transmit data packets using the particular network transport protocol.

4. A method according to any preceding claim, wherein the first set of
characteristics includes a particular source port number,
and wherein the step of the network interface device making a first determination

comprises the step of the network interface device determining whether the first sending

AMENDED SHEET (ARTICLE 19)

WO 2006/116594 PCT/US2006/016008
37

process is authorized to transmit data packets having the particular source port number.

5. A method according to any preceding claim, wherein the first set of
characteristics includes a particular destination port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending

process is authorized to transmit data packets having the particular destination port number.

6. A method according to any preceding claim, wherein the first set of
characteristics includes a particular source address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending

process is authorized to transmit data packets having the particular source address.

7. A method according to any preceding claim, wherein the first set of
characteristics includes a particular destination address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first sending

process is authorized to transmit data packets having the particular destination address.

8. A method according to claim 1, wherein the first sending process is a user
level process,

further comprising the step of a kernel mode process, in response to the step of the
first sending process initiating establishment of a first transmit queue, programming
authorization rights for the first transmit queue into the network interface device,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device examining the authorization rights for the

first transmit queue.

9. A method according to claim 8, wherein the first data packet has a first set of
characteristics,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit

queue has authority to transmit data packets having the first set of characteristics onto the

AMENDED SHEET (ARTICLE 19)

WO 2006/116594 PCT/US2006/016008
38

network.

10. A method according to claim 9, wherein the first set of characteristics includes
a particular network transport protocol,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit

queue is authorized to transmit data packets using the particular network transport protocol.

11. A method according to any of claims 8 and 9, wherein the first set of
characteristics includes a particular source port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit

queue is authorized to transmit data packets having the particular source port number.

12. A method according to any of claims 9, 10, and 11, wherein the first set of
characteristics includes a particular destination port number,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whéther the first transmit

queue is authorized to transmit data packets having the particular destination port number.

13. A method according to any of claims 9, 10, 11 and 12, wherein the first set of
characteristics includes a particular source address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit

queue is authorized to transmit data packets having the particular source address.

14, A method according to any of claims 9, 10, 11, 12 and 13, wherein the first set
of characteristics includes a particular destination address,

and wherein the step of the network interface device making a first determination
comprises the step of the network interface device determining whether the first transmit

queue is authorized to transmit data packets having the particular destination address.

15. A method according to any preceding claim, wherein the step of the network

interface device receiving at least part of the first data packet comprises the step of the

AMENDED SHEET (ARTICLE 19)

WO 2006/116594 PCT/US2006/016008
39

network interface device retrieving at least part of the first data packet from the first transmit

queue.

16. A method according to any preceding claim, further comprising the step of the
first sending process notifying the network interface device, without invoking any kernel

mode routines, of the availability of the first data packet in the first transmit queue.

'17. A method according to any preceding claim, further comprising the steps of:

a second sending process initiating establishment of a second transmit queue;

a kernel mode process, in response to the step of the second sending process initiating
establishment of a second transmit queue, establishing the second transmit queue in a virtual
address space of the second sending process;

the second sending process enqueueing a second data packet onto the second transmit
queue for transmission onto the network, the second data packet having a second set of
characteristics;

the network interface device receiving at least part of the second data packet from the
second transmit queue;

the network interface device making a second determination of whether the second
sending process has authority to transmit data packets having the second set of characteristics
onto the network; and

the network interface device transmitting the second data packet onto the network only

if the second determination is positive.

18. A method according to claim 17, wherein the second sending process is a user
level process, further comprising the step of a kernel mode process, in response to the step of
the second sending process initiating establishment of a second transmit queue, programming
authorization rights for the second transmit queue into the network interface device,

and wherein the step of the network interface device making a second determination
comprises the step of the network interface device examining the authorization rights for the

second transmit queue.
19. A method according to any preceding claim, wherein the step of the network

interface device receiving at least part of the first data packet comprises the step of the

network interface device retrieving at least part of the first data packet from the first transmit

AMENDED SHEET (ARTICLE 19)

WO 2006/116594 PCT/US2006/016008
40

queue,
further comprising the step of aborting retrieval of the first data packet if the first

determination is negative.

20. Network interface apparatus, for use with a plurality of transmit queues
allocated among a plurality of different processes in a computer system, comprising a
database indicating, for each given one of the transmit queues, whether data packets having a
first set of characteristics are permitted to be transmitted onto the network from the given

transmit queue.

21. Apparatus according to claim 20, wherein the database further indicates, for
each given one of the transmit queues, whether data packets having a second characteristic are

permitted to be transmitted onto the network from the given transmit queue.

22. Apparatus according to either of claims 20 and 21, wherein the first set of

characteristics includes a network transport protocol.

23. Apparatus according to any of claims 20, 21 and 22, wherein the first set of

characteristics includes a source port number.

24. Apparatus according to any of claims 20, 21, 22 and 23, wherein the first set of

characteristics includes a destination port number.

25. Apparatus according to any of claims 20, 21, 22, 23 and 24, wherein the first
set of characteristics includes a member of the group consisting of a source address and a

destination address.

26. AXit including a network interface device and instructions for use on a
computing device,

the instructions being such that:

in response to a first sending process of the computing device initiating establishment
of a first transmit queue, a kernel mode process of the computing device establishes the first
transmit queue in a virtual address space of the first sending process,

and in response to the first sending process enqueueing a first data packet onto the first

AMENDED SHEET (ARTICLE 19)

WO 2006/116594 PCT/US2006/016008
41

transmit queue for transmission onto a network, the first data packet having a first
characteristic, the network interface device receives at least part of the first data packet
without involvement of any kernel mode routines of the computing device;

and the network interface device including means for determining whether the first
sending process has authority to transmit data packets having the first characteristic onto the
network, and means for transmitting the first data packet onto the network only if the first

determination is positive.

AMENDED SHEET (ARTICLE 19)

PCT/US2006/016008

WO 2006/116594

1/13

reL—

L "OId

0L~

INILSAS . INILSAS INILSAS
Y¥3LNdINOD y¥3a1NdWOD | | ¥3Lndwoo
2~ J/V zeL- 0 \ \~o0¢!
- -
A
Y
WIISAS 931NdNOD aydvo
JOV4HILINI
- + -
11—
SI0IAIA 51901 Eww_w%mmam
Y3HLO ETe s N Leon
071~ T H _—
NILSASENS

VLl

WO 2006/116594

213

PCT/US2006/016008

221
- f'222
oS APPLICATIONS | 297
RESOURCE :
(ERNEL | ALLOCATION RELATED LIBRAR|:§3\2261 Y
DRIVER |REQUESTSIRESPONSES RES
' LIBRARY
225/ 254 \~224 |QUEUE
251 253 252 /
118J/
236
~237 [reu | e
BUS
MAPPING
TABLE
ik 232 /233 234

FIG. 2

~114

>116

240

WO 2006/116594

SUB-PAGE

3/13

- RESOURCE

PROCESS

PCT/US2006/016008

ADDRESS ID TAG ROW
OOF0 OIAQ 0010 1
OOF2 OIA1 0010 2

OOF4

OlA2

FIG.

0011

2A

WO 2006/116594 PCT/US2006/016008

4/13
@PLICATION START U9
—310
GNITIALIZE LIBRARIES)
//_312\\ f-322
< socket(protocol=UDP)) C socket(protocol=TCP))
l 314 324
@ind(socket handle, portD @nd(socket handle, po@
/‘326
connect(socket handle,
316 dest. IP, dest.Port)
WRITE TRANSMIT DATA
INTO APPLICATION'S
BUFFER(S) /-328
318 WRITE TRANSMIT DATA
sendTo(socket handle, lNTOg‘SE;&%ﬁSON S
buffer, dest. IP, dest.Port
: [
I send(socket handle,
I buffer)
I]
I I
I |
I I
v /320 v /-332

Glose(socket handle)) (close(socket handle))

FIG. 3

WO 2006/116594

PCT/US2006/016008

5/13

310

INITIALIZATION

* Va 410

LOAD USER LEVEL
TRANSPORT
LIBRARY

CJSER LEVEL DRIVER

|

|
‘ 412
Y -

resource(alloc)

|
|
|
i 414

RETURN TO
APPLICATION

FIG. 4

PCT/US2006/016008

WO 2006/116594

6/13

[(135440 + @l 4ng) ¥.Ld ILIYM ININD Y1va XL .
| G 9Old
#angvivaxy e
_ |
228 (13s440
9L6—= - | 0¢S | +@i4ng3sva) ¥ld
— ¢#4Ng3ININO XL —
Jlc _ ~< an3no
= zeangananoxt 4, J| - el | XL
. 75 o .
— 1#4093N3NOXL T _ +dl
. nall(T1avL 0.6 4nd 3svs) 0§
I{| ¥01dMOs3a dld| 37gqv1 ¥oldi¥osaa
6% ‘2 4Ng V1VA XL _ Y344n4d JLINM I ——
_ J In3aNd
056 —f= €#4N83NINDAI 3 _ Inand
——————<«—| L XY
_ -
= = ~a
AT #4ng3anand Ad
8cg AL_ anNanod
IN3A3
929 — = 1#4n93NaNO AT = _ S
— <«—1/ 2¥S 31gvL u 379vL
wrm ¥OLdI¥0s3da 9L yoLdMosaa
zzz—¥ THONIN 1SOH 3N3NO LN3IAT AN aN3aNo X

10d

WO 2006/116594 PCT/US2006/016008

713

resource(alloc)
(KERNEL ROUTINE)

412

~ 610
ALLOCATE MEMORY FOR DATA BUFFERS FOR
TX, RX & EVENT QUEUES;

MAP INTO APPLICATION'S VIRTUAL ADDRESS
SPACE

l ~ 612

PROGRAM DATA BUFFER ADDRESSES INTO
NIC BUFFER DESCRIPTOR TABLE

l ~ 614

PROGRAM BUFFER IDs INTO TX, RX AND
EVENT QUEUE DESCRIPTOR TABLES;

l ~ 616

MAP DOORBELL ADDRESSES INTO
APPLICATION'S VIRTUAL ADDRESS SPACE

l . 618
PROGRAM ACCESS RIGHTS FOR TX QUEUE
INTO NIC
l — 620

RETURN TO APPLICATION WITH

-RESOURCE HANDLE(S)

-BASE VIRTUAL ADDRESSES OF TX, RX AND EVENT
QUEUES

-VIRTUAL DOORBELL ADDRESSES

FIG. 6

WO 2006/116594

8/13

PCT/US2006/016008

ALLOWED
QUEUEID | proTocoL
FIG. 7
ALLOWED
SRCIP | SRCPORT | DESTIP [DESTPORT| QUEUEID | ArorocoL

FIG. 8

WO 2006/116594 PCT/US2006/016008

9/13

Ve 900

socket(protocol)
(USER LEVEL ROUTINE)

910

912

LIBRARY
SUPPORTS
PROTOCOL?

INVOKE KERNEL)

914
/.

ALLOCATE STATE
FOR SOCKET

916
~

< RETURN SOCKET

HANDLE

FIG. 9

WO 2006/116594 PCT/US2006/016008

10/13

/‘1000

bind(socket handle, port)
(USER LEVEL ROUTINE)

/1012
PORT NO. ASSIGN A
PROVIDED? PORT NO.

PORT NO.
LEGAL?

UPDATE
APPLICATION'S
STATE

1020
~

(RETURN PORT NO.

FIG. 10

WO 2006/116594 PCT/US2006/016008

11/13

—318

sendTo(socket handle, buffer, dest.IP, dest.Port)
(USER LEVEL ROUTINE)

1108
KNOWN INVOKE
KERNEL OR
IMPROPER RN
?
ARGUMENTS v

1110

APPLY TRANSPORT PROTOCOL; FORM A TX
DESCRIPTOR POINTING TO ALL PACKET PIECES

l /-1112

PUSH TX DESCRIPTOR ONTO TX QUEUE; UPDATE
TX QUEUE WRITE POINTER

l /-1114

WRITE UPDATED TX QUEUE WRITE POINTER TO
NIC DOORBELL ADDRESS

l 1116
(' RETURN)

FIG. 11

WO 2006/116594

12/13

PCT/US2006/016008

FIG. 12

/-118 BUS
1210 '/-116
PAYLOAD DMA
CONTROLLER
TCP or
UDP T /1220
HEADER HEADER
IP HEADER » \VALIDATION
\/ LOGIC
|
\/ 1218 |
i
4 | 1222
T FIFO
1214 < AUTHORIZATIONS
FIFO -— CONTROL
LOGIC DATABASE
l /-1216
PHY
112
NETWORK

WO 2006/116594

PCT/US2006/016008

13/13
/‘1310

SELECT THIS TX

QUEUE TO EXAMINE

DEVICE
CENTRIC WT POINTER>
DEVICE CENTERIC RD
POINTER?

EXAMINE
ANOTHER
QUEUE

NIC READS TX DESCRIPTOR(S) FROM TX QUEUE
BEGINNING AT DEVICE CENTRIC RD PTR

l' /-1318
NIC PROGRAMS DMA CONTROLLER TO RETRIEVE

PACKET FROM HOST MEMORY INTO TX FIFO

¢ —1320

DURING RETRIEVAL, NIC TESTS QUEUE'S
AUTHORITY TO SEND CURRENT PACKET

1326
-

ABORT DMA
TRANSFER
(REPORT ERROR)

AUTHORIZED?

/-1 324

AFTER PACKET RETRIEVAL, NIC UPDATES
DEVICE CENTRIC TX QUEUE RD POINTER; NIC
WRITES (BATCHED) TX COMPLETION EVENT INTO
ASSOCIATED EVENT QUEUE

t _—1328
NIC TRANSMITS PACKET FROM TX FIFO OUT

THROUGH PHY PORT
FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/016008

A. CLASSIFICATION OF SUBJECT MATTER
N, > HGAL 12756

According to International Patent Classification (IPC) or 1o both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant io claim No.

figures 1,2,4,8,11
column 3, 1ines 50-59
column 5, Tines 7-41
column 6, Tines 20-50
column 10, Tines 31-65
column 13, Tines 50~-66
column 17, Tines 6-37
column 25, lines 58-67
column 26, Tines 8-12

X US 5 790 804 A (OSBORNE ET AL)
4 August 1998 (1998-08-04)

1-26

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

'L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

*P' document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
_m%r]]ts, such combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actual compietion of the international search

7 August 2006

Date of mailing of the intemational search report

11/08/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mircescu, A

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/016008

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 4 805 134 A (CALO ET AL)
14 February 1989 (1989-02-14)
figures 6,9,11

column 1, Tines 58-68

column 2, Tines 1-41

column 5, lines 15-64

column 13, Tines 5-40

column 16, lines 3-42

column 18, lines 33-65

US 5 677 910 A (DELANEY ET AL)
14 October 1997 (1997-10-14)
figures 1-3

column 1, Tines 55-67

column 2, Tines 1-60

column 4, lines 22-47

column 5, Tines 30-57

column 6, lines 40-64

column 8, Tines 20-44

1-26

1-26

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/016008
Patent document Publication Patent family Publication
Cited in search report date member(s) date
US 5790804 A 04-08-1998 JP 8180001 A 12-07-1996
US 4805134 A 14-02-1989 EP 0228634 A2 15-07-1987
JP 62163155 A 18-07-1987
JP 62163155 T1 18-07-1987
US 5677910 A 14-10-1997 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

