
USO08027907B2

(12) United States Patent (10) Patent No.: US 8,027,907 B2
Guttman et al. (45) Date of Patent: Sep. 27, 2011

(54) FIXED-INCOME SYSTEM FOR MANAGING 2003/0093343 A1* 5/2003 Huttenlocher et al. 705/35
2003/0233307 A1* 12/2003 Salvadori et al. 705/37

PRE-TRADE ACTIVITY 2004/0153389 A1* 8/2004 Lortscher, Jr. TOS/36
2004/0172356 A1 9, 2004 A 1

(75) Inventors: Edward Guttman, New York, NY (US); 2005/O197857 A1* 9/2005 Naya . 705/1

Mark Pollack, New York, NY (US); Jim 2005/0234807 A1* 10/2005 Toffey 705/37
Perrello, Madison, NJ (US); Jawaid 2006/0031157 A1 2/2006 Gianakouros et al. 705/37

2006/0136326 A1* 6/2006 Heckman et al. 705/37
E. tE. NY s Robert 2006/0173769 A1 8/2006 Vales 705/37
ector, New Brunswick, NJ (US); 2006/0200402 A1 9/2006 Digris et al.

Howard Pein, Harrison, NY (US) 2007/0192227 A1* 8/2007 Fitzpatricket al. TOS/36 R.
2009/0292638 A1* 11/2009 Hausman 705/37

(73) Assignee: Codestreet LLC, New York, NY (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this A-Team Group: CodeStreet TeamWork Targets Sales-Trader Work
patent is extended or adjusted under 35 Flow Process, http://www.a-teamgroup.com/article/codestreet
U.S.C. 154(b) by 152 days. teamwork-targets-Sales-trader-work-flow-processfihide, Dec. 1,

2004, p. 1.*
(21) Appl. No.: 11/943,543 Chapman, P: An attack on the king, Traders Magazine, Jul. 2004, pp.

1-4.
(22) Filed: Nov. 20, 2007 PCT Notification of Transmittal of The International Search Report

and The Written Opinion of the International Searching Authority,
(65) Prior Publication Data mailed Aug. 29, 2008.

US 2008/O2O8732 A1 Aug. 28, 2008 * cited by examiner

Related U.S. Application Data Primary Examiner — Bijendra K Shrestha
(60) Provisional application No. 60/860,241, filed on Nov. (74) Attorney, Agent, or Firm — Thompson Hine LLP

20, 2006. (57) ABSTRACT

51) Int. C. Methods and apparatus, including computer program prod pp 9. p program p
G06O40/00 (2006.01) ucts, for managing pre-trade activity. In general, a distribution

(52) U.S. Cl. ... T05/37 of information about what traders and customers want to do
(58) Field of Classification Search 705/37 may be known. Users may be made aware of trade ideas that

See application file for complete search history. can be proposed to a trading desk's buy-side clients. Relevant
information on the trading desk may be brought together, and

(56) References Cited the information may be processed through a set of rules that

U.S. PATENT DOCUMENTS
extract trading opportunities. On the buy side, trade ideas may
be extracted without having to have the intervention of a
sell-side salesforce. 7.024.387 B1 * 4/2006 Nieboer et al. 705/37

7,769,668 B2* 8/2010 Balabon 705/37
2003/0004859 A1 1/2003 Shaw et al. 705/37 17 Claims, 9 Drawing Sheets

11
102 03 104
-- -- --

Client Tier Middle Tier ESTier

05

an
Application

06 O
Bond GUI

407 Monitoring
Application

08 YA Entitlement
Administration
Application

Business Logic
Server 10
O

Emissary

111

Business
Services
O

JMS

U.S. Patent

102
--

Client Tier

Trader?
Salesperson
Application

Monitoring
Application

108
NA Entitlement

Administration
Application

Sep. 27, 2011

DBSOCKET

114

Sheet 1 of 9

101

103
--

Middle Tier

Business Logic
Server

Business
Services

US 8,027,907 B2

104.

EIS Tier

DB
SOCKET

Database Server

Persistence

DB
SOCKET

U.S. Patent Sep. 27, 2011 Sheet 2 of 9 US 8,027,907 B2

201
202 2O3

-- --
Clientier i Middle Tier : ES Tier

210
Trader|
Salesperson
Application Business Logic

Server A1 211

Monitoring
Application DB

SOCKET

Database Server

208 Error
YA Handling Persistence

Application DB SOCKET

DBSOCKET
Entitlement
Administration
Application

FIG 2

U.S. Patent Sep. 27, 2011 Sheet 3 of 9 US 8,027,907 B2

3 O 1 302

inference Engine Factf1)
fact 2)
fact f8)
fast 4
fact is
fact f8)
(fact f) Pittage

Working Memory

Execution Engire
The patter-matcher applies the rules in the rule-base to
the facts in working memory to construct the agenda. The

execution engine fires rules from the agenda, which
changes the contents of working memory and restarts the

Cycle,

(f1, f2, r1

305

FIG. 3

U.S. Patent Sep. 27, 2011 Sheet 4 of 9 US 8,027,907 B2

JAVA

(call thread
sleep)

advi (J. Laia I calless, sind
awa rethis car be inited

FIG. 4 sirr less

RULES
ENGINE

501
502

Fact created update/delete

Event create/updatefdete

Season Logic Server

605

604A -Ele.
se

F.G. 6
gen

Out of process rules engine

U.S. Patent Sep. 27, 2011 Sheet 5 Of 9 US 8,027,907 B2

JMS Daeron

JMS Daemon2

FIG. 7

802

JMS Daer of Emissary

Logir. JMS
aeror

FIG. 8

U.S. Patent Sep. 27, 2011 Sheet 6 of 9 US 8,027,907 B2

Emissary 1

Client3

FIG. 9

FIG. 10

U.S. Patent

1101

N

FIG 11

1102

Sep. 27, 2011

Enrin-warns

treet

r

Sheet 7 Of 9

i
1106

":

US 8,027,907 B2

NY:Erissy

-:Erissary.2

1103

TRErissary

TK:Errissary.2

U.S. Patent Sep. 27, 2011 Sheet 8 of 9 US 8,027,907 B2

U.S. Patent Sep. 27, 2011 Sheet 9 of 9

PN
try lity

US 8,027,907 B2
1.

FIXED-INCOME SYSTEM FORMANAGING
PRE-TRADE ACTIVITY

CROSS REFERENCE TO RELATED
APPLICATION

The present patent application claims priority under 35
U.S.C. S 119 to U.S. Provisional Patent Application Ser. No.
60/860,241, filed on Nov. 20, 2006, and entitled, “FIXED
INCOME SYSTEM FOR MANAGING PRE-TRADE
ACTIVITY, the entire disclosure of which is incorporated by
reference herein.

BACKGROUND

This disclosure relates generally to computer-based
mechanisms for electronic financial trading, and more par
ticularly to techniques for streamlined pre-trade processes in
fixed income securities trading.

In general, the fixed income market is a financial market
where participants may buy and sell debt securities usually in
the form of bonds. In some markets, trading in the fixed
income markets has been largely phone-based but may
change, as fixed income transactions may be executed elec
tronically. In the fixed income market, banks and brokers may
be on the sell side while asset managers, hedge funds and
corporate treasurers may be on the buy side. The sell side may
quote tradable bond prices while the buy side may be looking
for executable fixed income prices from a wide pool of liquid
ity providers.

SUMMARY

The subject matter disclosed herein provides methods and
apparatus, including computer program products, that imple
ment techniques related to a fixed-income system to manage
pre-trade activity.

In general, this document discusses a system and method
for enhancing productivity around pre-trade activity on the
sell-side fixed income trading desk. In particular, the system
may improve a distribution of information about what traders
and customers want to do and makes known to users trade
ideas that can be proposed to the trading desk's buy-side
clients. It may achieve the above goals by bringing together
all relevant information on the trading desk, and processing
the information through a set of rules that extract the trading
opportunities. The system may also be relevant to the buy side
as a mechanism to extract trade ideas without having to have
the intervention of a sell-side salesforce.

In one general aspect, data characterizing an indication of
consummation of a trade of a bond from an emissary of a
server application is received. A notification of the consum
mation to a client application of a client tier is generated. A
request to generate an axe being a desire to buy or sell the
bond according to a set of criteria is received. Data charac
terizing a request to publish the axe from the emissary is
received. Data characterizing a match to the axe is sent.
The Subject matter may be implemented as, for example,

computer program products (e.g., as Source code or compiled
code tangibly embodied in computer-readable media), com
puter-implemented methods, and systems.

Variations may include one or more of the following fea
tures.

The server may cause the axe to be published.
The axe may be prioritized at a level lower than an order to

consummate a trade.

10

15

25

30

35

40

45

50

55

60

65

2
Data characterizing an inquiry for a bond matching the

criteria may be received from another client application. In
response to the inquiry the match may be generated.
The details of one or more embodiments are set forth in the

accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will now be described in detail
with reference to the following drawings.

FIG. 1 is a functional block diagram of a bond trading
system.

FIG. 2 illustrates a business logic tier with a remote ana
lytics services configuration.

FIG. 3 illustrates process execution by a rules engine.
FIG. 4 illustrates process execution of an in-process rules

eng1ne.
FIG. 5 illustrates process execution of an out-of-process

rules engine.
FIG. 6 shows workflow execution and interaction between

the BLS and RES.
FIGS. 7 and 8 illustrate server login processes of the sys

tem

FIG. 9 shows the sequence of messages that are published
during a typical fan out procedure.

FIG. 10 shows deployment with three fully connected
EMS (Enterprise Messaging Service) servers.

FIG. 11 illustrates communications within multiple over
lapping Zones in a geographically distributed architecture.

FIGS. 12-15 illustrate communication failure handling
techniques among interconnected servers of the system.

FIGS. 16A-B illustrate multiple hop and replication among
multiple interconnected servers of the system.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

This document describes computer-based systems and pro
cesses (hereinafter which may be simply referred to as “the
system, which may be an example system that may vary in
implementations) that may be configured to streamline the
pre-trade processes in the fixed income market. Designed as a
singular, integrated application that spans both sales and trad
ing, the system may be configured to provide users (e.g.
traders, but which may also include Salespersons of a bond
trade or buy-side portfolio managers) with one location or
interface in which they can manage their workflow. The sys
tem may enable a user to manage offerings to salespeople and
customers via multiple electronic dealer channels, and enable
salespeople to view users offerings in Support of their cus
tomers as well as manage incoming customer inquiry, while
being able to share this information at their option with trad
ers and other salespeople. Wherever functionality is provided
for a salesperson interms of identifying trading opportunities,
similar functionality may be provided for a buy side customer.
The system may provide salespeople and traders with one
location where they can manage their workflow, and enable
salespeople to view traders offerings in Support of their cus
tomers as well as manage incoming customer inquiry, sharing
this information at their option with traders and other sales
people.

US 8,027,907 B2
3

Trading-Side Features
Bond Securities Master Database
The system maintains a securities master database of cur

rent dollar-denominated bond issues in a database with a
proprietary schema. One type of database that can be used is
a relational database. The system automatically imports
REUTERS DATASCOPE Fixed Income files that have been
loaded by script from a file transfer protocol (FTP) site, but
can also Support receipt of data from other security master
database sources such as BLOOMBERG. The database
includes all relevant bond issue/issuer information required
for the bond Workflow. REUTERS DATASCOPE Fixed
Income (an FTP-delivered subset of the EJV Rack data prod
uct) includes such things as issuefissuer ratings and actions,
issue sizes, bond terms and conditions, administrative infor
mation, and issue identifiers.
Bond Queries
From the database of bond issues, a user can search for any

bond. Queries can be done in any number of unique ways to
find matching bonds. For instance, the user can specify the
issuer name or a partial issuer name or a ticker, and be
returned bonds from that issuer. Results can be narrowed by
entering coupon and maturity date information. This infor
mation need not be exact, as the application allows functions
Such as >, <, and combinations thereof across both parameters
to restrict the results returned. Bond issues may also be found
through a search against CUSIP (Committee on Uniform
Security Identification Procedures) and ISIN (International
Securities Identifying Number) identification codes.

Axe-creation
The principal workflow handled by the system for the user

is the creation, updating and deletion of axes. Axes may be
described as an indication of a desire to buy or sell a bond at
a dollar-price or a particular spread to a benchmark index
yield such as that of a US (United States) Treasury instrument
or LIBOR (London Interbank Offered Rate).
The system allows users to create an indication of interest

to sell or buy a specific bond. Within the system, the user must
first identify the bond. The most logical place from which
axes can be created is immediately following the consumma
tion of a trade. At this point, typically, a user either wants to
re-offer a bond purchased or decrement an offering sold.
Therefore, one implementation of the system includes being
integrated with the client’s trade capture system, with the
system receiving a feed of message “exhaust” from the trade
capture system in much the same way the client's settlement
system receives messages from the trade capture system.
Upon receiving notification of a consummated trade, the sys
tem will notify the relevant user(s). This notification will
either be a prompt to create a new axe or to re-offer an existing
aXC.

Once the bond is identified, the user must select the bench
mark against which the axe will be priced, the size to show,
the price/spread he'd like to offer/bid and the venues to which
he'd like to publish.
When publishing an axe, users may publish to a number of

electronic venues in addition to the primary sales force. Pos
sible venues include, but are not limited to, BONDDESK,
TRADEWEB, MARKETAXESS, BLOOMBERG, and
VALUEBOND and any other venue to which the dealer
would like to publish prices. In addition to publishing to
institutional salespeople, the system may enable a tiered
offering, allowing publication of different prices to a second
ary group of salespeople (e.g. client's regional dealer desk or
middle market salespeople).
The system allows the user to select different sizes (e.g.

quantity) and prices for each distribution channel to which

10

15

25

30

35

40

45

50

55

60

65

4
they publish offerings. The user may also direct comments to
salespeople and those external channels that allow trader
entered comments. The system provides a robust entitlement
model to allow traders to have permission to “view only
specified trading books and to “view and edit' others.
Axe management may let traders efficiently manage posi

tions and set axe pricing on multiple electronic platforms.
Salespeople may see real-time axe updates and have easy
access to prices and data.

Trade Idea Generation:
The system processes positions, trade history and market

prices stored within the system to extract relevant trading
ideas that can be proposed to a user. The system calculates
whether bonds within the system are trading cheaply, histori
cally or currently relative to other bonds, and can notify the
user. The system also indicates to the user the most logical
customers with whom to propose the trades based on their
historical trading patterns or portfolio positions. The system
may generates trade ideas automatically by processing all the
information that underlies the fixed income market, Such as
positions on the desk, customer inquiry, activity and holdings,
along with current market prices and market events, which
may replace Scratch pads and human memory with Software
algorithms that propose ideas to the user. Inquiries may be
dynamically matched against axes, notifying both traders and
salespeople when a match occurs. Salespeople and traders
may be never more than a click away from a client's portfo
lio—even when a bond is not in inventory, salespeople have
quick, convenient access to reports showing the largest hold
ers of specific issues, all bond issues of an issuer, and indi
vidual customer portfolios. Salespeople may call up instant,
customized views of "axe matches' the intersections of
inventory and customers’ holdings. The system may continu
ously monitor inventory, client holdings, historical trades,
and client inquiries to identify intersections likely to be trade
opportunities. This means that traders and salespeople may be
instantly notified when their interests align. By recognizing
Such “matches, as well as more complex relationships
between data sets, the system may deliver a steady stream of
potential trades.
Bond "Benchmark” Creation
The system enables traders to define a group of bonds that

represent most actively watched issues in the market. The
most actively watched issues in the market can be defined by
the traders, or according to any other schema. Traders can
update pricing for those issues, indicating both sides of the
market as well as their preferred side of the security (bid/offer
or both), and then publish these pricing indications to sales
people. This component replaces the typical BLOOMBERG
runs or emails that are conventionally used to disseminate this
information.
View Customer Inquiry
Traders can see customer inquiries provided to them by

salespeople regarding interest customers may have in doing
trades in the marketplace. Traders can then access a list of all
axes to which they have "edit' rights that match against an
inquiry.

Update Ticker
Traders (and salespeople) are provided with a view of all

pricing and spread changes for existing axes as well as new
axes created by traders via an Update Ticker. They can scroll
back the Update Ticker to see all changes and updates to axes
and inquiry over a prior period. Traders can choose to update
those salespeople (or customers directly) via email or
BLOOMBERG with a single mouse click.
When salespeople create an inquiry based on interest from

their customer, traders are notified via the update ticker. Trad

US 8,027,907 B2
5

ers are also notified if one or more axes they are entitled to edit
have matched against an inquiry. Traders may navigate from
the inquiry update directly to the specific inquiry from the
Update Ticker.

If salespeople indicate pricing on a “specific' bond inquiry
(as opposed to a group of bonds' inquiry where generalized
bond parameters for one or more bonds may be defined),
traders must approve and publish the correct price out to the
remaining sales force (assuming the salesperson originally
published the inquiry to other salespeople).

Dynamic Portfolio System Issue Query
The system maintains a proprietary database of investors

holdings as well as basic customer contact information. This
component of the system is referred to as the Dynamic Port
folio System (DPS). The system automatically imports
EMAXX holdings from a source such as LIPPER via a script
from an FTP site. The system also allows salespeople or other
users to import customer holdings provided in spreadsheets.
Details of the import function are provided in further detail
below.

From this holdings database, traders can run certain queries
to access the investors’ holdings. In one implementation, this
data is used to view a list of known investors who hold some
bonds of a particularissue. In much the same way that a trader
can specify a bond issue for which he would like to create an
axe, the trader can identify bond issues and do an investor
search, identifying all investors who hold (or recently held)
that issue. With respect to the DPS, traders have the same
functional capabilities as do salespeople. The DPS will be
discussed in greater detail below.

Dynamic Portfolio System Issuer Query
The system allows traders to query the database to identify

those investors that have accumulated holdings across a num
ber of issues from one issuer. So, for example, a trader can
focus on who the largest investors are in CONAGRA as a
whole, rather than just who are the largest investors of a
particular CONAGRA issue.

Dynamic Portfolio System Investor query
The system allows traders to search a list of a large number

of investors provided by EMAXX, as well as any not covered
by EMAXX but uploaded by the clients’ sales force, and view
the bondholdings of that investor. The data is configured such
that it can be viewed on a Sub-account by Sub-account basis.

Quick Filter
Users can apply a filter to axes in the MarketView, by

defining up to six filtering parameters. These parameters can
display results based on either the intersection or the union of
the parameters, or combinations of both. Parameters for fil
tering include, but are not limited to: ask/bid price, ask/bid
spread, ask/bid yield, coupon, coupon type, dealer, domicile,
industry, issuance date, issue size, issuer, market, maturity,
MOODY's rating, position, quantity ask/bid, S&P (standard
and poor) rating, series, Subindustry, ticker, trader, and trad
ing book. A link is provided from the Quick Filter to the
Detailed Filter and Search so that re-keying of search param
eters is unnecessary.

Detailed Filter & Search
Users can search the complete universe of securities in the

systems Security Master Database. Up to six parameters can
be defined, with the results being either the intersection or the
union of the parameters, or combinations thereof. Returned
results can be set to identify those securities that are also axes.
These axes can be displayed with or without their axe-specific
fields (quantity, spread, benchmark, yield, etc). Bonds in the
Security Master Database that are not axes do not contain

10

15

25

30

35

40

45

50

55

60

65

6
certain fields (bid and ask quantity, for example). Searches on
these parameters are not allowed within the Detailed Filteras
they would be meaningless.
The system is preferably implemented according to an

architecture in which clients have their own key software
components and services. In some implementations, instead
of an end-to-end Solution, the system provides a critical mass
of key services based on an open Service Oriented Architec
ture (SOA) built using proven technologies. SOA may be
described as a federation of cooperating and loosely coupled
services, implemented using technologies not only Such as
DCOM (Distributed Component Object Model), CORBA
(Common Object Request Broker Architecture), Sockets,
FTP, etc., but extended with standards-based technologies
such as JMS (JAVA Message Service), Web Services/SOAP
(sometimes referred to as Service Oriented Architecture Pro
tocol), XML (eXtensible Markup Language), etc.
The system core can be architected based on a pragmatic

SOA. For example, rather than using Web Services (with
severe performance implications), the reference implementa
tion uses proven JMS technology. However, one or more
external services can be non-JMS based. In Such cases, an
adapter layer will be provided to address the integration
requirements of the specific protocol.

System Core
Client applications are tightly integrated with desktop soft

ware commonly used by trading and sales desks. For
example, client applications can leverage desktop tools such
as Microsoft Excel. The system core is platform neutral, is
able to efficiently distribute large quantities of data, and is
able to scale to hundreds of concurrent users, while being able
to be easily maintained and upgraded.
The system is designed as a three-tier distributed system.

The three tiers include the client (view) tier, the business tier
(controller), and the Enterprise Information System (EIS)
(model) tier, which are may reflect a model-view-controller
paradigm. Communication among the three tiers is accom
plished via exchange of request and response messages. The
transport layer in the client and business tier is highly abstract.
This allows the actual transport implementation to be
Swapped with relative ease. For example, even though the
classic SOA is based on Web Services/SOAP. in one imple
mentation the system uses JMS as it provides better perfor
mance, Scalability, security, and management. However, if
necessary, the JMS transport can be augmented or replaced
entirely with equivalent Web Services/SOAP transports.

Business services have been designed to Support both local
(in-process) and distributed implementations. The design
provides some key abstractions—namely, well-defined inter
faces—that help to create and integrate different implemen
tation of a service.

FIG. 1 is a functional block diagram of a bond trading
system 101. As shown in FIG. 1, the system is embodied as an
application, and is organized in three logical tiers:
The client tier 102: The applications user interface respon

sible for managing the interaction with the end users.
The middle/business logic tier 103: A server to process

requests made by the users in the presentation tier. This
tier provides access to business services. Business ser
vices may be hosted in-process or remotely.

The Enterprise Information System (EIS) tier 104: The EIS
tier that provides access to the database and any existing
enterprise systems.

In implementations, the client tier may include four main
components: 1) Trader/Salesperson/Analyst application; 2)
System Monitoring; 3) Reference data and 4) entitlement
administration. The business logic tier has three major com

US 8,027,907 B2
7

ponents: 1) Emissary; 2) Business Services; and 3) Rules
Engine. The EIS tier includes two components: 1) Database:
and 2) Other enterprise information repositories such as
LDAP (Lightweight Directory Access Protocol), file system,
etc. These tiers will now be explained in further detail below. 5
As an example implementation, in FIG. 1, the client tier

102 includes a trader/salesperson application 105, which
includes a bond graphical user interface (GUI) 106; a moni
toring application 107; and an entitlement administration
application 108. The middle tier 103 includes a business logic
server 109, which includes an Emissary 110 and business
services 111; and a rules engine server 112, which includes an
Emissary 113 and rules engine 114. The EIS tier 104 includes
a database server 115, which includes persistence 116.

Although the business logic tier is shown in FIG. 1 as being
in-process, one or more of the actual implementations may be
hosted remotely. For instance, if an external analytics engine
is present and has been architected as a true service—e.g. it
exposes its functionality via a well-defined API (application 20
programming interface) that can be accessed by out-of-pro
cess clients, the business logic tier can be easily configured to
call out to the analytics service at appropriate points while a
request is processed. In fact, the business logic tier will not
notice any difference between an in-process and a remote 25
analytics engine. FIG. 2 shows the scenario described above.

FIG. 2 illustrates a business logic tier 203 with a remote
analytics services configuration. In a system 201 of FIG. 2, a
client tier 202 includes an error handling application and
logic (middle) tier 203 includes a combination of a business
logic server 210, which includes an Emissary 211 and busi
ness services 212; and an analytics server 213, which includes
analytics 214.

Client Tier
In general, a client tier includes applications that interact

with the Middle Tier via request/response messages. Typi
cally, these client applications are graphical user interfaces
(GUIs), such as the bon GUI 106 of FIG. 1. However, any
application that implements the message API can interact 40
with the Middle Tier.

The GUI may take an optimistic approach to the manipu
lation of business objects. The creation, update or deletion of
a business object does not need to be confirmed by the back
end before it is immediately reflected in the GUI. Conflicts 45
are resolved at the server. Conflicts are expected to be rare and
the responsiveness of the GUI should not suffer in order to
accommodate this work case scenario. When a conflict is
detected—e.g. two clients updating the same business
object—an error message is sent to the GUI that needs to 50
update its state.

Middle Tier
The Emissary and Business Services are grouped together

into the Business Logic Server (BLS). Within the BLS, the
Emissary is the point of contact for communicating with the 55
user, servicing user requests, maintaining user State, applying
entitlements, and distributing information to the users. The
Emissary makes calls to the Business Services component
which is responsible for the management of domain business.
These services are typically not aware of the user. 60

Communication between these two components is prefer
ably via a synchronous API interface, although other inter
faces may be used. The synchronous API provides a layer of
indirection so that both local and distributed implementations
can be provided. A local implementation can be based on 65
normal JAVA classes, while a distributed implementation can
be based on a distributed call, such as a call to a distributed

10

15

30

35

8
process using JMS, SOAP or J2EE (JAVA 2 ENTERPRISE
EDITION) Session Bean over RMI (Remote Method Invoca
tion).

There are differences between synchronous/asynchronous
processing models. Asynchronous behavior imposes signifi
cant design and development overhead. For example, access
ing an asynchronous service implies that the caller must be
prepared to receive the response at Some point intime after the
request has been Submitted. As a result, the caller may be
required to cache the session state. Furthermore, the caller
may need to be prepared to roll back state changes if the
request fails. On the other hand, the synchronous interface
may allow for the caller to know if the call succeeded or if an
exception was raised. This may be very useful in terms of
grouping closely together the call to the business service and
any compensating actions based on the failure of call to the
business service. It also may make testing the business service
API much easier.

In some cases, a business service will only be available
asynchronously. For Such cases, a wrapper service is pro
vided. This wrapper service encapsulates the complexity of
asynchronous processing and presents a synchronous inter
face to the Emissary. As a result, the Emissary is unaware that
it is interacting with an asynchronous business service.

Business objects provide the domain model and encapsu
late the data as well as behavior. These business objects are
plain old JAVA objects (POJO). The business server API is
largely written in terms of these business objects. Other sys
tem services, such as communication or monitoring, are also
based on the same Abstract Factory design as the Business
Services. Most, if not all, of the software developed can run
both in and out of an application server container. As a result,
the use of EJB (Enterprise JAVABEANS) becomes a deploy
ment choice rather than an integral part of the architecture.

Rules Engine
In preferred implementations, the rule engine includes an

inference engine, an execution engine, a working memory,
and a rule base. This basic architecture is shown in FIG. 3. A
rule base consists of the rules that have been loaded into the
engine. Rules are typically loaded when the engine is initial
ized. The working memory contains all facts that have been
loaded into the engine. Unlike the rule base, working memory
is more volatile. For example, when a rule is fired it may
change the working memory by asserting, updating, or
retracting facts.
The pattern matcher is responsible for applying rules to the

contents of working memory to create the conflict set—e.g.
the set of unordered rules that are candidates for execution.
After constructing the conflict set, the inference engine
applies various strategies—only some of which are exposed
via the rules engine API to order the conflict set and create
the agenda. The rule engine takes into account the specificity
of rules and the relative age of the premises in the working
memory during conflict resolution. Finally, the first rule on
the agenda is fired (possibly altering the working memory)
and the entire process is repeated.

FIG. 3 illustrates process execution by a rules engine 301.
The rules engine 301 includes an inference engine 302, which
includes a pattern matcher 303 and agenda 304; an execution
engine 305; a working memory 306; and a rule base 307. In
the rules engine 301, the pattern matcher 303 applies rules in
the rule base 307 to facts in working memory 306 to construct
the agenda 304. Rules from the agenda 304 may be executed
by the execution engine 305, which may change contents of
working memory 306 and may restart a cycle of process
execution.

US 8,027,907 B2

The rules-based system Jess (JAVA Expert System Shell) is
used in Some implementations of the rules engine because
business logic is externalized, allowing rules engine behavior
to be modified by editing rule files rather than modifying
application code. Further, Jess uses the Rete algorithm for
efficiently matching rules against working memory. And,
since Jess is written from the ground up in JAVA, it provides
excellent Support for integration with JAVA applications.
FIG. 4 illustrates process execution of an in-process rules
engine. As shown in FIG. 4, JAVA applications 401 can call
into a Jess rules engine 402 and Jess scripts of the Jess rules
engine 402 can call into the JAVA applications 401.
The rules engine may be used to identify matching between

inventory, client holdings, inquiries, and historical trades as
part of workflows. In the context of the system a fact may
refers to business objects of interest. For example, trades,
axes, and inquiries can all be considered facts.

In Process Rules Engine
When deployed with the in-process rules engine configu

ration, the Business Logic Server contains an embedded rules
engine. As shown in FIG. 5, in this configuration the BLS
interacts directly with the rules engine. FIG. 5 illustrates
process execution of an out-of-process rules engine. In FIG.
5, the business logic server 501 includes an embedded rules
engine 502, where fact creation, updating, and deletion and
event creation, updating, and deletion are within the business
logic server 501, and events are sent to clients 503.

This configuration can be used by applications where the
number of rules is Small and the rate of change in facts is low.
Since this deployment configuration has a direct impact on
the BLS performance a recommended configuration is the
out-of-process rules engine, as described below.

Out of Process Rules Engine
In the out-of-process rules engine configuration, the BLS

integrates with the Rules Engine Server (RES). This provides
high Scalability and is a preferred configuration. As a number
of rules and facts grows, the RES may be deployed on high
performance hardware. Accordingly, the rule base can be
partitioned amongst multiple RES processes—each RES pro
cess potentially running on separate hardware—to achieve
the desired performance levels.

FIG. 6 shows workflow execution and interaction between
a BLS 601 and RES 602. As shown in FIG. 6, interaction
between the BLS 601 and the RES 602 includes well-defined
workflows. First, whenever a new fact is created/deleted/
updated by the BLS 601, a notification 603 is sent to the RES
602. This notification causes the RES 602 to update 604 the
working memory of a rules engine 605. Second, whenever a
rule is activated in the rules engine 605 and a new fact is
created/deleted/updated 606, the RES 602 sends a notifica
tion 607 to the BLS 601. In turn, the BLS delivers this noti
fication 608 to clients 609.
JMS Destinations
Clients may send login requests to an Emissary on the

following login destination (non-exclusive queue):
CSASERVERLOGIN.
The JMS configuration on the client machine only includes

the information necessary to connect to the login JMS dae
mon and the name of the login destination. Login requests
sent by the client contain a response destination (temporary
queue)—the Emissary sends the login response message to
this temporary destination.

FIG.7 shows Client1701 sending a login request 702 to the
login JMS daemon 703. In this implementation, there are two
Emissary processes 704, 705 listening for login requests. One
of the two Emissary processes—in this case, Emissary 1

10

15

25

30

35

40

45

50

55

60

65

10
704—accepts the login request. JMS queue semantics guar
antee that exactly one Emissary process will receive a login
request.

After accepting a client login request, an Emissary hosting
the client session may send the JMS connection, topic, and
queueinformation to the client in the login response message.
The client uses the JMS connection, topic, and queue infor
mation to establish communication channels with its Emis
sary. All further communication between the client and its
Emissary happens over these communication channels. In
effect this strategy may act as a dispatcher of client connec
tion requests and balance load amongstall available Emissary
and EMS (Enterprise Messaging Service; e.g., Such as
TIBCO) servers.

This bootstrap procedure allows a client to configure itself
dynamically. In addition, the system can be scaledon multiple
levels—by adding additional JMS daemons and/or by adding
additional Emissary processes. In fact, the system adminis
trator can reconfigure the system without any modification to
the client configuration.

Requests
All requests from clients may be published on the follow

ing queue: CSA.<ServerID-REQUEST. Since all requests
may be sent to a single well-defined queue, it is possible to
assign priorities to messages. For example, in a trading sys
tem one might assign a higher priority to order messages as
compared to instrument search messages. Position update
and allocation (PAS) messages from external services are
published on the following queue: CSA.SERVER.PAS
where PAS stands for Position and Allocation Service.

Trades capture (TCS) messages from external services are
published on the following queue: CSA.SERVER.TCS
where TCS stands for Trade Capture Service. Business events
generated by remote (out of process) rule engines are pub
lished on the following topic: CSA. SERVER.EVENTS.

Every request sent to the Emissary can be viewed (logi
cally) as consisting of the following components: principal
(user), action, and business object. For example, in a typical
trading system a user might Submit a request to create (action)
a market order (business object). An entitlement check may
be a matter of determining whether the principal is authorized
to perform the specified action on the business object.

Response
Axe publication to external venues is done on the following

queue: CSA.SERVER.ADS where ADS stands for Axe
Distribution Service. Messages published to internal venues
by the Emissary can either be directed to a specific user
(point-to-point semantics) or to a group of users (broadcast
semantics).
A message published to a single user is published on one of

the following topics: CSA.CLIENT.<UserID> where
<UserID is an identifier of the client whose session is being
established. This topic is used to send messages to a single
client for asynchronous delivery. This topic is for situations
where the client wants to send a request and does not want to
wait for a response from the Emissary, and also where client
specific error messages are sent by the Emissary. A request
message can have its JMSReplyTo property set. If the
JMSReplyTo property is set on a request message the
response is sent to this destination.
A message targeted to a group of users is published on the

following topic: CSA.CLIENT.<Role> where <Role> is
one of the user roles defined in the system. A role is a logical
way to group system users. For example, in a trading system
the roles TRADER and SALES might be roles defined. Role
based publication allows the Emissary to “fan out' messages

US 8,027,907 B2
11

in an efficient manner—e.g. a single message is published per
role and all users in that role receive that message.
A message targeted to clients interested in activity on a

particular logical business grouping Such as an account, a
trading book or research stream is published on the following
topic: CSA.CLIENT.<interest> where <interest> is an ele
ment with an enumeration Such as a list of accounts, trading
books, research streams etc. This distribution partitioning is
Suitable for a wide range of applications where real-time
information is distributed according to a relatively fixed par
titioning of interest.

Further efficiency can be gained by intelligent use of JMS
selectors. For example, Suppose a trade message is published
on the topic CSA.CLIENT where ORDBKI is the name of the
book in which the trade is being booked. A client wishing to
receive notification of all activity in ORDBKI would simply
subscribe to this topic. However, suppose another client
wishes to receive all trade activity in ORDBKI for bonds from
issuer DaimlerChrysler. This client could register a selector
with EMS server on the topic CSA.CLIENT ORDBKI the
selector would filter out all messages that are not trade mes
sages and which do not carry the ticker symbol DCX. Of
course, the Emissary would be required to put the message
type (e.g. trade) and the ticker symbol of the issuer as prop
erties of the message. This is an optimization because filtering
is done on the EMS server instead of on the client.

FIG. 8 illustrates server login processes of the system. As
shown in FIG. 8, after a client session has been established, all
communication between the client 801 and the host Emissary
802 is brokered by the Emissary’s JMS daemon 803. In a
typical deployment, where the number of users is Small, a
login JMS daemon and JMS daemon that brokers non-login
messages may be one and the same.

Heartbeat Messages
Emissary processes publish heartbeat messages on the fol

lowing topic: CSA.CLIENT.HEARTBEAT the heartbeat
message contains the name of the emissary, the heartbeat
interval, flag to indicate whether the Emissary has encoun
tered severe errors, and a description of the error condition.
Any client that wishes to monitor the health of an Emissary
can Subscribe to heartbeat messages from that Emissary
instance.

Emissary processes Subscribe to heartbeat messages on the
following topic: CSA.SERVER.HEARTBEAT the heart
beat message contains the name of the emissary, flag to indi
cate whether the client has encountered severe errors, and a
description of the error condition. For example, the position
update service will publish heartbeats on this topic.
JMS Configuration
JMS configuration is externalized from the code by XML

deployment descriptors. In particular, the configuration
required on the client tier has been minimized in order to
allow easy management of deployed client applications. The
only JMS configuration required on the client is the URL
(uniform resource locator) of the JMS daemon to which the
application needs to connect. All other JMS configuration—
TOPIC, QUEUE, etc. is sent to the client by the server after
login is complete.
The Middle Tier configures its JMS artifacts using XML

deployment descriptors. These full-featured deployment
descriptors allow configuration of all aspects of the JMS
layer e.g. CONNECTION, SESSION, TOPIC, QUEUE,
etc. The JMS artifacts are created when the Emissary process
StartS.

Session Management
The middle tier is responsible for managing user sessions.

However, the client tier has to be session aware for handling

10

15

25

30

35

40

45

50

55

60

65

12
certain error conditions. For example, if Client1 is connected
to Emissary 1, Suppose that Emissary 1 has published a mes
sage to Client1 and that Client1 fails before consuming the
message. Furthermore, Suppose that the message is persistent
and does not expire. Now, Client1 restarts. The message from
the terminated session will be delivered to Client1. In this
case, Client1 must discard all messages that are not from the
current session.

Heartbeat
Heartbeats are used to detect the presence or absence of

client processes. The ability to detect when a client process is
no longer active can be helpful in managing abnormal session
termination. In some implementations, the capabilities of the
transport layer are leveraged to manage client sessions. The
transport layer can be configured to publish monitor mes
sages, such as when a client attempts to connect to the JMS
daemon or when a client connection is disconnected.

Middle Tier Operation
The flow and organization of the processing in the Emis

sary is substantially as follows. A message may be received
from the EMS daemon, and compared against selection cri
teria in order to select a processing pipeline. The processing
pipeline is responsible for implementing all of the function
ality required by the use case in servicing the user request.
Most pipeline elements are reusable across use cases, such as
session and entitlement check as well as encapsulating send
ing messages to users or other external systems.
Some pipeline elements are use case specific, typically

those that deal with the creation or manipulation of some
business entity. The operations that take place on the business
objects, primarily CRUD (Create, Read, Update, and Delete)
manipulation, are done by classes that sit behind a set of
interfaces known as “Business Services.” These services are
grouped into several Subsystems, such as an interface for
Offering manipulation and another for Trade manipulation. In
most cases, a data mapper is used to transfer data between the
domain model and the database. The data mapper allows the
database schema and the object model to evolve indepen
dently.
An Emissary writes the state of all its hosted sessions in the

database and not cache any state related to a client session in
memory. As a result, each Emissary can be viewed as a set of
stateless session beans (SLSB). When an Emissary process
terminates, all sessions being hosted by that Emissary are
orphaned. Requests from these orphaned sessions cannot be
serviced. All orphaned sessions have to be reestablished by
logging into another Emissary. The re-login may be initiated
by the client and this is the simplest way to migrate orphan
sessions to another Emissary. However, the list of Sessions
that were being hosted by the terminated Emissary is avail
able in the database. This information can be used to seam
lessly migrate orphaned user sessions to another Emissary
process. Here is the sequence of steps that would occur to
accomplish the migration of orphaned sessions to another
Emissary: a connection between an Emissary and its JMS
daemon is terminated (this may happen if the Emissary fails,
or the network connection between the Emissary and its dae
mon fails, or the JMS daemon itself fails); in the last case
(failure of the JMS daemon) the client immediately knows of
the failure because its own connection to the failed JMS
daemon is terminated and the client can re-initiate login; in
the first two cases clients whose session is being hosted at the
failed Emissary are unaware that the Emissary has failed, they
experience request timeouts; all Emissary processes Sub
scribe to EMS advisory messages; an EMS server can be
configured to publish advisory messages whenever some
event of interest occurs (e.g., EMS can be configured to

US 8,027,907 B2
13

publish advisory messages whenever a client connects to the
daemon or disconnects from the daemon); another Emissary
that is connected to the same JMS daemon as the failed
Emissary receives an advisory message from EMS: the
receiving Emissary extracts the name of the failed Emissary
from the advisory message; the receiving Emissary loads the
state of the orphaned sessions from the database; and the
receiving Emissary notifies the clients of the orphaned ses
sions that they should forward all requests to it instead of the
failed daemon. In a typical deployment a single Emissary will
interact with a single database. However, in a geographically
distributed deployment it might be desirable to push the
persistent data as close to the local Emissary as possible. This
may be necessary to avoid a performance hit of database
accesses over a WAN (wide area network). At the very least,
it is imperative that read-only data—e.g. security reference
data—be delivered to the Emissary from a local database.

Pipeline Design
The processing stages upon receipt of an incoming user

request are handled by a processing pipeline. This pipeline
design is based on a so-called “Pipes and Filters' architec
tural pattern, in which the task of a system is divided into
several sequential processing steps. Each processing step is
implemented by a filter component. The filters are connected
by pipes, and the output of one filter is used as the input to the
Subsequent filter. The sequence of filters connected by pipes
is collectively known as a processing pipeline.
A familiar example of this pattern comes from program

codes where commands like Is and sort are joined by a pipe
in order to perform linked processing steps. Translating this
design to an object model yields a Module object that repre
sents the filter and a data structure, PipelineData, which is
passed to each Module’s processing method. The collection
of Modules that gets sequentially executed is represented by
a Pipeline. The execution of the pipeline consists of sequen
tially calling each Module’s processing method. In the case of
a processing exception, a rollback method is called on each
Module in the pipeline. The modules are called in reverse
order and exclude the module from which the exception was
thrown.

Reactor Design
In message-based middleware the message callback func

tion is called upon receipt of a message and the logic to
determine what processing steps should be taken is deter
mined by examining the contents of the message. The Reactor
architectural pattern is used to organize the logic that deter
mines what processing pipeline will be executed.
The pattern has two key participants; a Handler and a

Reactor. The Reactor receives asynchronous messages from a
messaging system and reacts to the stimulus by querying a set
of registered Handlers to determine if they are eligible to
process the message. The Handler encapsulates the selection
criteria of the message that must be satisfied in order to
execute a specified processing pipeline, an optional select of
a synchronous lock based on message field value, and an
exception module that is called in case of a pipeline exception
after a pipeline rollback.

Message Processing
When an incoming message is received, a MessageReactor

examines the message and determines which of the registered
MessageHandlers should process the message. The Message
Handler is defined by several properties, the message selector
(optional), error handler, required incoming message type
(optional), and a processing pipeline.
Normal Flow
The following processing steps occur in the message han

dler for normal processing: 1. Unmarshal the incoming JMS

10

15

25

30

35

40

45

50

55

60

65

14
message to a MessageForge/RMsg message object; 2. Com
pare received RMsg against the handler's message selector;
3. Compare received RMsg class to the one specified by the
handler; 4. Validate received incoming RMsg; 5. Execute the
target pipeline. 6. Upon Successful execution send a Server
Response message indicating to the client.

Error Flow
The following processing steps occur in the message han

dler for processing abnormal conditions:
1. Incoming JMS message cannot be unmarshaled to an

RMsg. Send a ServerResponse message indicating the error
to the client. Log error message on the server.

2. No matching pipeline. Call the generic error handler to
send a ServerResponse message indicating the error is sent to
the client and an error message is logged on the server. This
error is categorized using the key, NO-MATCHING-SELEC
TOR-ERROR

3. Validation of RMsg fails, matching pipeline error mod
ule is called setting the PipelineException to the ErrorCode
VALIDATION-ERROR.

4. Handler throws a PipelineException or a DAOException
is thrown. Call the MessageHandler's error handler. The
ErrorHandler is responsible for notifying the user about the
error that occurred. There will generally be three categories of
eO handlers: GenericErrorHandler, <Business
Object>ErrorHandler, and Login ErrorHandler. The
GenericFrrorHandler is responsible for sending a ServerRe
sponse message type. The <BusinessObject>ErrorHandler is
used when a request is made to update or delete a business
object. It sends a <BusinessObject>Error message type that
extends the ServerResponse message but in addition contains
the latest state of the business object. The Login ErrorHandler
is responsible for sending a ServerLoginResponse message
type since all login errors are treated equally.

If there is an error while executing the error handler, a
ServerResponse message indicating the error is sent to the
client and an error log message is logged on the server. This
error is categorized using the key, ERROR-HANDLER
NOT-EXECUTED. If the latest state of the BusinessObject
can not be retrieved, typically because there was a database
error that caused the pipeline to stop executing, then the
<BusinessObject>Error will indicate this by setting the
“ContainsNewstate' field to false.

In the case of not being able to convert to an RMsg (#1 in
Error Flow), the JMS destination of the client is determined
by looking in the JMS Properties for the field UserID. The
other property fields, Workflow, Action, and CorrelationID
are also extracted from the JMS Properties to create the Serv
erResponse message.

In the case that the JMS destination of the client can not be
determined using the field UserID, the error message is sent
on the TOPIC CSCLIENTADMIN. If other required prop
erty fields, Workflow, Action, and CorrelationID are not
present, they are set to the special value “UNKNOWN’.

Before a module in the pipeline is invoked, the Message
Handler has already checked that the incoming RMsg mes
sage is 1) Not Null, 2) Valid, and 3) of the correct class
expected by the module. Therefore, modules can safely
downcast the object returned from the method PipelineDat
a.getIncoming Message() removing their need to performany
error checking, allowing them to concentrate on performing
the 'Sunny-day Scenario.

Message Distribution
Incoming request messages—i.e. messages from a client to

an Emissary—are routed to the Emissary that is hosting the
client session. Outgoing response messages—i.e. messages

US 8,027,907 B2
15

from an Emissary to clients—are either directed to a specific
client (point-to-point) or fanned out (publish-subscribe).

FIG. 9 shows the sequence of messages that are published
during a typical fan out. Client2901 publishes a request in
Step 1. The JMS daemon 902 delivers the request to the
Emissary 903 in Step 2. The Emissary 903 processes the
request and publishes a fan out response in Step 3. The JMS
daemon 902 delivers the response to all subscribers 901,904,
905 in Step 4.

In a deployment with multiple JMS daemons, it is neces
sary to provide a mechanism for inter-daemon routing of
messages in order to provide correct message fan out (pub
lish-subscribe). Otherwise, messages published on one JMS
daemon will not be delivered to clients connected to other
JMS daemons. One implementation includes having each
Emissary publish messages to all known JMS daemons. In
order to do this, each Emissary would have to connect to every
JMS daemon and publish each message to all JMS daemons.
Alternatively, the built-in message routing capabilities of the
EMS can be leveraged, which allows routes to be established
between EMS servers. Each route connects two EMS servers
and forwards messages between corresponding destinations
(e.g. destinations of the same type, with the same name) two
servers. Routes can be either 1-hop or multi-hop. Every time
a message is forwarded on a route its hop count is incre
mented. As the name 1-hop Suggests, messages can get for
warded at most one hop.

FIG. 10 shows a deployment with three fully connected
EMS servers 1001, 1002, 1003. Each server in this deploy
ment forwards its messages to every other server. A message
published to server A 1001 on the 1-hop route will get for
warded by server A 1001 to servers B 1002 and C 1003.
However, the message that was routed to servers B 1002 and
C 1003 will not get forwarded any further since the routes are
1-hop.
Messages on multi-hop can get forwarded more than one

hop. This creates the potential for cycles. Consider the
deployment described above with fully interconnected serv
ers. A 1001, B 1002, and C 1003. If the routes between the
servers were multi-hop then a cycle would exist because a
message published could reach a server by more than one
path. For example, a message published to server A 1001 on
the multi-hop route will get forwarded by server A 1001 to
servers B 1002 and C 1003. Servers B 1002 will, in turn,
forward the message to C1003. Thus, C1003 will receive the
message via two distinct paths.
When a deployment is geographically distributed, with

each geographic location running multiple JMS daemons,
connecting the two locations may be best achieved by setting
up Zones. Zones allow complex routing to be developed using
1-hop routes. Basically, when a message crosses Zone bound
aries its hop count is reset to zero. FIG. 11 illustrates a con
figuration in which there are two Zones NY 1101 and TK
1102. In addition, there is an overlapping Zone WW 1103.
When a NY: Emissary 1 1104 publishes a message to

NY:JMS:Daemon1 1105, the message travels one hop to
NY:JMS:Daemon2 1106. When the message reaches
NY:JMS:Daemon2 1106, it crosses into Zone WW 1103 and
its hop count is reset to Zero. Since the hop count of the
message is zero, NY:JMS: Daemon2 1106 forwards the mes
sage to TK:JMS: Daemon1 1107 where the message crosses
Zone boundaries again and enters Zone TK 1102. TK:JMS:
Daemon1 1107 forwards the message to TK:JMS: Daemon2
1108.

Fully Connected Deployments
FIGS. 12-15 illustrate communication failure handling

techniques among interconnected servers of the system. In

5

10

15

25

30

35

40

45

50

55

60

65

16
general, routing messages between JMS daemons can be
achieved in several ways. Consider FIG. 12 in which four
servers 1201, 1202, 1203,1204—within the same Zone—are
connected via m-hop routes. A message published on a server
is routed to all the other servers. A network failure occurring
between servers B 1302 and C 1303, as shown in FIG. 13,
partitions the deployment into two groups. Routing still
occurs between severs within the groups. For example, a
message published on server A1301 will reach server B 1302.
However, no routing occurs across groups. For example, mes
sage published on server A1301 will not reach server C1303
or Server D1304.
A way to avoid this type of partitioning is to deploy fully

interconnected servers. FIG. 14 shows four servers 1401,
1402, 1403, 1404 fully connected via 1-hop routes. As before,
a message published on any server is routed to all other
servers. Note, m-hop routes cannot be used with this routing
topology because it would create a cycle in the routing graph.
A cycle exists if there is more than one routing path between
two servers. If the routes in FIG. 14 were m-hop then redun
dant paths would exist between server A 1401 and C 1403
(one direct, one through server B 1402, and one through
server D 1404).
A network failure between two servers in a fully intercon

nected deployment does not partition the routing graph. The
impact on routing is limited to the two affected servers. FIG.
15 shows the error scenario. A message published on server A
1501 will reachall other servers 1502,1503, 1504. A message
published on server B 1502 (or C 1503) will reach all other
servers except server C 1503 (or B 1502, respectively). As a
result, this routing topology is resilient to failures.
As explained above, with a Zone (region), a fully-intercon

nected deployment provides optimal performance and resil
iency to network failures. Two or more Zones can be con
nected via a single 1-hop route as shown in FIGS. 16A-B. As
shown in FIG. 16A, the fully-interconnected NY 1601 and
TK 1602 zones are connected via a 1-hop route between
Emissary C 1603 (in NY 1601 Zone) and Emissary D 1604 (in
TK 1602 Zone). FIG. 16B illustrates multiple hop and repli
cation 1605 among multiple interconnected servers of the
system. Replication 1605 across databases 1606, 1607 of the
Zones 1601, 1602 may allow for data to be synchronized
and/or shared across the Zones.

Selectors
In addition to the ability to route message traffic between

EMS servers, it is possible to set up selectors on routes. A
selector allows only a Subset of published messages to be
routed. The use of selectors reduces network traffic and
ensures that only relevant messages are forwarded. Selectors
can be pre-configured or installed on demand.

System Monitoring
In some implementations, the JAVA Management Exten

sion (JMX) technology is used to monitor and manage the
Emissary. SpringFramework Supports exposing a manage
ment API. Every bean that is managed and configured via
SpringFramework can be automatically exposed as a man
aged bean.

Heartbeats
Heartbeats are typically used to detect the presence (or

absence) of client processes. The ability to detect when a
client process is no longer active can help in session manage
ment. Heartbeats allow servers to detect abnormal client ter
mination.

Duplicate Session Detection
Connections to the EMS server have a (optional) ClientID

attribute. Each ClientID is guaranteed to be unique within an

US 8,027,907 B2
17

EMS server. An attempt to open a connection with an existing
ClientID throws an exception.

Enterprise Information Tier
The system includes persistence technology that can work

both inside and outside of EJB containers, using JTA (JAVA
Transaction API) transactions if inside and JDBC (JAVA
DATABASE CONNECTIVITY) transactions if outside.
Critical data entities in the system—such as trades and axes—
are persisted in a relational database, in which application
objects are mapped to the relational database. The following
design patterns can be used: Domain Model, Identify, Data
Mapper and Optimistic Offline Locking.
Domain Model
The domain model is an object model of the domain that

will incorporate both behavior and data. Every business
entity—e.g. TraderAXe, Inquiry, etc.—is modeled as a busi
ness object. A business object encapsulates both data and
behavior. The Domain Model facilitates development
because developers will be working with business objects
rather than database artifacts.

Identity
At any given moment in time a business object will either

be transient or persistent. A transient business object is an
object that has been created in memory but has not yet been
persisted. Once a business object is persisted, its identity must
be unique within its class hierarchy—no two persisted busi
ness objects within a class hierarchy may have the same
identify. Business object identity is represented by unique
keys. This unique key is automatically generated by the per
sistent store. In preferred implementations, each persistent
business object has a JAVA long field (Decimal in Cit) that
will uniquely identify the instance. This field called ID is
generated automatically, using the available database capa
bilities, when the object is persisted.

Optimistic Offline Locking
Business objects are typically shared amongst clients. For

example, two traders could be viewing the same business
object. This sharing of business object is not solely for view
ing purposes. Multiple users could simultaneously modify
the same business object. Such changes are detected by the
system when they occur, and clients whose updates have
failed are notified.

Version
Each persisted business object has a JAVA long field (Deci

mal in C#) associated with it. This version is used to imple
ment optimistic offline locking. For example, Suppose two
clients attempt to simultaneously modify a business object
with the same ID and Version. Only one update succeeds in
the database, and the client that submitted the failed update is
notified of the failure.

Data Mapper
At some point in their lifecycle, objects from the Domain

Model have to be persisted into a database. The Data Mapper
layer moves data between objects from the Domain Model
and a database while keeping them independent of each other.

In addition to the built-in lifecycle management of cached
objects, the persistence interface allows the system to explic
itly evict cached objects from memory. This feature is impor
tant for situations where the persistent store is modified by an
external process. For example, if Position business objects are
cached in the Emissary and an end-of-day (HOD) process
modifies Position business objects in the database directly,
the cached objects are no longer consistent with the database.
In such scenarios it is important for the Emissary to be able to
easily evict objects from its cache. In this example, the FOD
process would notify the Emissary that it has updated all
Position objects—in response, the Emissary could simply

5

10

15

25

30

35

40

45

50

55

60

65

18
evict all Position business objects from its cache. Accord
ingly, the next time a Position is requested by the Emissary, a
cache-miss will cause it to be loaded from the database.

Second, when the client sends a request that requires access
to reference data, the client request contain only the identity
of the reference object. Since an object reference simply
translates to a foreign key in a relational database, the unique
ID of the reference object is sufficient to create the necessary
database mappings correctly.

Entitlements
Entitlements are primarily enforced by the Middle Tier. All

reference data delivered to the client are based on entitle
ments. In addition, the Middle Tier is responsible for check
ing entitlements for key workflows, and for filtering out sub
sets of data content based on entitlements. Clients will
typically have an existing entitlement service. As described
elsewhere in this document, integration with external services
is easily accomplished using the service oriented architecture
of the system.

While clients may require their own entitlement infrastruc
ture to be leveraged, where this is not so, a flexible entitlement
framework is provided by the system. This entitlement frame
work consists of the entitled data types, actions, roles, users,
groups (of users), etc. The framework is flexible enough to
accommodate varied client requirements.

Data Driven Entitlements
The system entitlement framework defines a flexible data

model. This data model allows client specific entitlements to
be implemented by creating appropriate entries in the data
base. Below describes the key abstractions of the flexible data
model provided by an entitlement framework of the system.

Datatype
An entitled data type is any business object that can par

ticipate in the entitlement model. It may be important to
identify business objects for which users will be granted
entitlements. For example, a typical trading system might
entitle users to trading books, accounts (counterparty), sec
tors, etc.

Attribute
Entitled attributes may be defined for each entitled data

type. Each attribute may have a name, a type, and a list of
permitted values. It might not be necessary to define entitled
attributes for every property of an entitled data type. For
example, a trading book might contain many properties out of
which only a handful participate in entitlements. Only those
properties that participate in the entitlement model have to be
defined. Entitled attributes can be defined as either required or
optional. Required attributes must be provided by the entitled
data type to the entitlement engine at run time.

Action
An entitled action is an operation that can be performed on

an entitled data type. For example, a typical trading system
will support entitled (CRUD) actions such as create, read
(view), update and delete.
Type
The system Supports both positive and negative entitle

ments. A positive entitlement asserts that the entitled attribute
must have (contains) the specified value. In contrast, a nega
tive asserts that the entitled attribute must not have (contains)
the specified value.

Role
The system entitlement model allows roles to be defined. A

role is the most general grouping of entitlements. For
example, a typical trading system might have roles Such as
trader, salesperson, administrator, etc. Each role can be
assigned its own set of entitlements.

US 8,027,907 B2
19

Group
The next level for grouping of entitlements is entitled

groups. An entitled group is a collection of entitled users. An
entitled group can have a parent entitled group. In addition to
its own set of entitlements, each entitled group inherits its
parent's entitlements. Finally, roles can be assigned to an
entitled group. As expected, each entitled group will inherit
the entitlements of its role(s).

User
The final level of grouping of entitlements is entitled users.

Each entitled user in the system can be granted fine grained
entitlements. Each entitled user inherits the entitlements
granted to any entitled group of which the user is a member.
The subject matter described herein can be implemented in

digital electronic circuitry, or in computer Software, firm
ware, or hardware, including the structural means disclosed
in this specification and structural equivalents thereof, or in
combinations of them. The subject matter described herein
can be implemented as one or more computer program prod
ucts, i.e., one or more computer programs tangibly embodied
in a computer-readable medium, e.g., in a machine-readable
storage device, for executionby, or to control the operation of
data processing apparatus, e.g., a programmable processor, a
computer, or multiple computers.
A computer program (also known as a program, Software,

Software application, or code) can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, Subroutine,
or other unit Suitable for use in a computing environment. A
computer program does not necessarily correspond to a file. A
program can be stored in a portion of a file that holds other
programs or data, in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, Sub-programs, or portions of code). A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.
The processes and logic flows described in this specifica

tion, including the method steps of the Subject matter
described herein, can be performed by one or more program
mable processors executing one or more computer programs
to perform functions of the subject matter described herein by
operating on input data and generating output. The processes
and logic flows can also be performed by, and apparatus of the
Subject matter described herein can be implemented as, spe
cial purpose logic circuitry, e.g., an FPGA (field program
mable gate array) or an ASIC (application-specific integrated
circuit).

Processors suitable for the execution of a computer pro
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Media Suitable for
embodying computer program instructions and data include
all forms of volatile (e.g., random access memory) or non
Volatile memory, including by way of example semiconduc
tor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto-optical disks; and CD-ROM and

10

15

25

30

35

40

45

50

55

60

65

20
DVD-ROM disks. The processor and the memory can be
Supplemented by, or incorporated in, special purpose logic
circuitry.
To provide for interaction with a user, the subject matter

described herein can be implemented on a computer having a
display device, e.g., a CRT (cathode ray tube) or LCD (liquid
crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback pro
vided to the user can be any form of sensory feedback, e.g.,
visual feedback, auditory feedback, or tactile feedback; and
input from the user can be received in any form, including
acoustic, speech, or tactile input.
The subject matter described herein can be implemented in

a computing system that includes a back-end component
(e.g., a data server), a middleware component (e.g., an appli
cation server), or a front-end component (e.g., a client com
puter having a graphical user interface or a web browser
through which a user can interact with an implementation of
the subject matter described herein), or any combination of
Such back-end, middleware, and front-end components. The
components of the system can be interconnected by any form
or medium of digital data communication, e.g., a communi
cation network. Examples of communication networks
include a local area network (“LAN”) and a wide area net
work (“WAN), e.g., the Internet.
The computing system can include clients and servers. A

client and server are generally remote from each other in a
logical sense and typically interact through a communication
network. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.
The subject matter described herein has been described in

terms of particular embodiments, but other embodiments can
be implemented and are within the scope of the followings.
For example, operations can differ and still achieve desirable
results. In certain implementations, multitasking and parallel
processing may be preferable. Other embodiments are within
the scope of the following claims.

What is claimed:
1. A computer-implemented method comprising:
receiving data characterizing an indication of consumma

tion of a trade of a bond from an emissary of a server
application;

determining an interest of a customer to perform a second
trade of a second bond related to the bond and based at
least in part on the indication of the consummation and
portfolio positions of the customer,

generating a notification to a client application of a client
tier, wherein the notification is indicative of the interest;

receiving a request to generate an axe indicating a desire of
the customer to buy or sell the second bond according to
a set of criteria;

receiving data characterizing a request to publish the axe
from the emissary; and

sending data characterizing an axe match, the axe match
representing the intersection of the customer's axe with
another customer's holdings or expressed interest.

2. The method of claim 1 further comprising a server caus
ing the axe to be published.

3. The method of claim 1 further comprising prioritizing
the axe at a level lower than an order to consummate a trade.

4. The method of claim 1 further comprising receiving
from another client application data characterizing an inquiry
for a bond matching the criteria and generating the axe match
in response to the inquiry.

US 8,027,907 B2
21

5. A computer program product, tangibly embodied on a
computer-readable medium, the product comprising instruc
tions to cause a data processing apparatus to perform opera
tions comprising:

receiving data characterizing an indication of consumma
tion of a trade of a bond from an emissary of a server
application;

determining an interest of a customer to perform a second
trade of a second bond related to the bond and based at
least in part on the indication of the consummation of the
trade and portfolio positions of the customer,

generating a notification to a client application of a client
tier, wherein the notification is indicative of the interest;

receiving a request to generate an axe indicating a desire of
the customer to buy or sell the second bond according to
a set of criteria;

receiving data characterizing a request to publish the axe
from the emissary; and sending data characterizing an
axe match, the axe match representing the intersection of
the customer's axe with another customer's holdings or
expressed interest.

6. The product of claim 5, wherein the operations further
comprise a server causing the axe to be published.

7. The product of claim 5, wherein the operations further
comprise prioritizing the axe at a level lower than an order to
consummate a trade.

8. The product of claim 5, wherein the operations further
comprise receiving from another client application data char
acterizing an inquiry for a bond matching the criteria and
generating the match in response to the inquiry.

9. The method of claim 2, wherein the axe is published as
a tiered offering, wherein the axe varies in price based upon
the entity to which the axe is published.

10. The method of claim 1, wherein the notification indi
cates the interest of the customer in performing multiple
trades.

5

10

15

25

30

35

22
11. The method of claim 1, wherein the set of criteria does

not include price.
12. A computer-implemented method comprising:
receiving data indicating a consummation of a trade of a

first bond;
processing the data utilizing a processor, wherein the pro

cessing is with respect to historical data associated with
a customer to identify trading ideas for the customer,

wherein the historical data comprises positions of the cus
tomer,

presenting the trading ideas to a user;
identifying a Suggested trading idea selected from the trad

ing ideas relevant to the customer, where the step of
identifying is the intersection of a set of criteria with
historical data;

generating an axe in response to an indication of a desire of
the customer to buy or sell a second bond according to
the set of criteria; and

performing an axe match between the axe and another
customer's holdings or expressed interest.

13. The computer-implemented method of claim 12, the
historical data comprising trade history of the customer and
inquiries of the customer.

14. The computer-implemented method of claim 13, the
historical data further comprising market history and market
eVentS.

15. The computer-implemented method of claim 12,
wherein generating the axe includes offering the axe at mul
tiple prices.

16. The computer-implemented method of claim 12, where
the historical data comprises the data indicating consumma
tion of the trade of the first bond.

17. The computer-implemented method of claim 12, fur
ther comprising:

matching an inquiry expressing an indication of interest to
buy or sell a bond against the axe.

k k k k k

