ENSEMBLE DE STABILISATION INTERVERTEBRALE POUR ARTHRODESE COMPRENANT UN ELEMENT INTRA-DISCAL GONFLABLE, ET MATERIEL ANCILLAIRE CORRESPONDANT.

Cet ensemble de stabilisation intervertébrale comprend :
- au moins une vessie gonflable (30) propre à être introduite dans l’espace intervertébral situé entre deux vertèbres adjacentes (V1, V2) ;
- des moyens d’introduction, de type cathéter, d’au moins un matériau durcissable dans la ou chaque vessie gonflable, de manière à former au moins un ballonnet durci (50) ; et
- au moins un hauban postérieur (40), destiné à relier les deux vertèbres adjacentes, ce hauban étant propre à agir sur la forme définitive d’au moins un ballonnet durci (50), durant la prise d’un matériau durcissable correspondant.
ENSEMBLE DE STABILISATION INTERVERTEBRALE POUR ARTHRODÈSE COMPRENANT UN ELEMENT INTRA-DISCAL GONFLABLE, ET MATERIEL ANCILLAIRE CORRESPONDANT

La présente invention concerne un ensemble de stabilisation intervertébrale pour arthrodèse comprenant un élément intra-discal gonflable, ainsi qu'un matériel ancillaire permettant la pose de cet ensemble de stabilisation.

L'invention se place dans le cadre de l'arthrodèse intervertébrale, et non pas celui de la prothèse. En d'autres termes, l'invention vise un bon positionnement vertébral, en vue d'une fusion osseuse, et non pas un mouvement permanent. On notera cependant que, dans le cadre de l'arthrodèse, il existe une possibilité d'amortissement des chocs et des vibrations transmis à l'articulation intervertébrale.

Il est déjà connu d'utiliser une vessie, qui est introduite dans l'espace intervertébral afin de remplacer tout ou partie du nucléus pulposus, qui est la région hydraulique du disque intervertébral, à savoir celle qui génère la dynamique de pression intra-discale. Dans ces conditions, l'injection sous pression d'un matériau approprié induit un éloignement des plateaux vertébraux, qui semble susceptible de restaurer cette dynamique.

La solution ci-dessus est par exemple connue de WO-A-2007/056724, qui décrit un dispositif de remplacement de ce nucléus, qui comprend un cathéter, par lequel un matériau durcissable peut être injecté dans une vessie gonflable. Selon l'enseignement de ce document, il s'agit tout d'abord de placer les deux vertèbres adjacentes en position de lordose, en appliquant une distraction permanente en avant de l'espace intervertébral. A cet effet, le patient est placé dans une position appropriée durant l'anesthésie. Un matériau biocompatible est alors injecté dans la vessie, puis fait l'objet d'un durcissement de manière à créer une sorte de prothèse de nucléus pulposus.

Cette solution connue présente cependant certains inconvénients, notamment dans la mesure où elle ne permet pas de restaurer une stabilité satisfaissante des étages vertébraux qu'elle se propose de traiter. En
particulier, dans ce document antérieur, l’accent est uniquement mis sur l’écartement intervertébral.

Ceci étant précisé, l’invention vise à remédier à ces inconvénients. A cet effet, elle a pour objet un ensemble de stabilisation intervertébrale comprenant :

- au moins une vessie gonflable propre à être introduite dans l’espace intervertébral situé entre deux vertèbres adjacentes ;
- des moyens d’injection, de type cathéter, d’au moins un matériau durcissable dans la ou chaque vessie gonflable, de manière à former au moins un ballonnet durci dont chacun est formé de la vessie dilatée et du matériau à l’état durci ; et
- au moins un hauban postérieur, destiné à relier lesdites deux vertèbres adjacentes, le ou chaque hauban étant propre à agir sur la forme définitive d’au moins un ballonnet durci, durant la prise d’un matériau durcissable correspondant.

Selon d’autres caractéristiques :
- il est en outre prévu un pivot antérieur, placé à l’avant de l’espace intervertébral ;
- on prévoit au moins une vessie antérieure, destinée à former au moins un ballonnet antérieur durci constituant ledit pivot, ainsi qu’au moins une vessie postérieure, le ou chaque hauban postérieur étant propre à agir sur la forme définitive d’au moins un ballonnet durci postérieur, formé à partir de cette au moins une vessie postérieure ;
- on prévoit une unique vessie antérieure et une unique vessie postérieure, qui sont propres à former un unique ballonnet durci antérieur et un unique ballonnet durci postérieur ;
- il est prévu une unique vessie antérieure et deux vessies postérieures, propres à former un unique ballonnet durci antérieur et deux ballonnets durcis postérieurs, ces trois ballonnets formant globalement un V vus de dessus ;
- il est prévu deux vessies antérieures associées respectivement à deux vessies postérieures, propres à former d’une part un premier ballonnet durci antérieur et un premier ballonnet durci postérieur.
situés d'un premier côté de l'axe sagittal, ainsi qu'un second ballonnet durci antérieur et un second ballonnet durci postérieur placé du second côté de l'axe sagittal ;

- la vessie antérieure est associée à un premier matériau durcissable, dont la prise est plus rapide que celle d'un second matériau durcissable, associé à la vessie postérieure ;

- la ou chaque vessie antérieure est reliée mécaniquement à au moins une vessie postérieure, alors que leurs volumes intérieurs ne communiquent pas ;

- la ou chaque vessie antérieure est reliée à au moins une vessie postérieure par l'intermédiaire d'au moins un canal de mise en communication de leurs volumes intérieurs ;

- il est prévu un pivot antérieur rapporté, du type écarteur ou cage amovible.

L'invention a également pour objet un ancillaire de pose de l'ensemble de stabilisation ci-dessus, caractérisé en ce qu'il comprend au moins un organe ancillaire, propre à former à la fois un moyen d'écartement de l'espace intervertébral et un moyen de passage pour au moins une vessie gonflable et/ou pour les moyens d'injection de type cathéter.

Selon d'autre caractéristiques de l'invention :

- cet organe ancillaire comprend un tube creux permettant le passage de la ou de chaque vessie et/ou des moyens d'injection, ce tube creux étant terminé par des organes d'écartement de l'espace intervertébral ;

- les organes d'écartement sont formés par deux épaulements s'étendant de part et d'autre de l'extrémité distale du tube creux ;

- les organes d'écartement sont formés par des bras en saillie vers l'avant par rapport à l'extrémité distale du tube creux, cette extrémité et ces bras définissant un espace libre de gonflage d'au moins une vessie ;

- l'ancillaire comprend en outre un organe creux de réception temporaire et de mise en place d'au moins une vessie dans l'espace intervertébral ;
- l'organe creux est prolongé par un manche de préhension, la liaison entre ce manche et cet organe creux étant notamment amovible, par exemple par vissage ;

L'invention a enfin pour objet une méthode de pose de l'ensemble ci-dessus, dans laquelle :

- on place la ou chaque vessie gonflable dans l'espace intervertébral ;

- on introduit le ou chaque matériau durcissable dans une vessie correspondante ; et

- on met en place le ou chaque hauban postérieur durant la prise d'au moins un matériau durcissable, de façon à agir sur la forme définitive d'au moins un ballonnet durci.

Selon d'autres caractéristiques :

- on injecte un premier matériau dans la ou chaque vessie antérieure, on laisse durcir ce matériau de manière à obtenir le ou chaque ballonnet antérieur durci, puis on injecte un second matériau dans la ou chaque vessie postérieure, de manière à obtenir le ou chaque ballonnet postérieur durci, et on met en place le ou chaque hauban pendant la prise de ce second matériau ;

- le second matériau présente une prise plus lente que la prise du premier matériau ;

- on injecte un unique matériau dans l'une des vessies, en particulier dans l'une des vessies postérieures, et on laisse ce matériau se répartir dans l'ensemble des vessies, par l'intermédiaire du ou de chaque canal de mise en communication ;

- on introduit le ou chaque organe ancillaire à plat dans l'espace intervertébral, on fait tourner cet organe ancillaire de sorte qu'il coopère avec les deux vertèbres et écarte l'espace intervertébral, puis on introduit le ou chaque matériau durcissable dans une vessie correspondante ;

- on met en place le ou chaque hauban postérieur juste après avoir retiré l'organe ancillaire de l'espace intervertébral ;
- on place le ou chaque organe ancillaire dans une position avancée dans l'espace intervertébral, de manière à introduire le premier matériau dans la ou chaque vessie antérieure, puis on déplace cet organe ancillaire dans une position reculée, dans laquelle il assure encore sa fonction d'écartement intervertébral, et on introduit le second matériau dans la ou chaque vessie postérieure.

L'invention va être décrite ci-après, en référence aux dessins annexés, donnés uniquement à titre d'exemples non limitatifs, dans lesquels :

- les figures 1A à 1C sont des vues de côté, illustrant la mise en place d'un ensemble de stabilisation intervertébrale conforme à un premier mode de réalisation de l'invention ;

- la figure 2A est une vue en perspective illustrant une première phase de mise en place d'un ensemble de stabilisation intervertébrale conforme à un second mode de réalisation de l'invention ;

- les figures 2B à 2D sont des vues de dessus, illustrant des phases intermédiaires de la mise en place de l'ensemble de stabilisation conforme à ce second mode ;

- la figure 2E est une vue de côté, illustrant la phase finale de la mise en place de cet ensemble de stabilisation conforme à ce second mode ;

- la figure 3 est une vue de dessus, illustrant un ensemble de stabilisation intervertébrale conforme à un troisième mode de l'invention ; et

- la figure 4A est une vue en perspective, illustrant la première phase de mise en place d'un ensemble de stabilisation conforme à un quatrième mode de réalisation de l'invention ;

- la figure 4B est une vue de côté, illustrant la phase finale de mise en place de cet ensemble conforme à ce quatrième mode ;

- les figures 5A et 5B sont des vues de dessus, illustrant deux étapes de la mise en place d'un ensemble de stabilisation intervertébrale conforme à un cinquième mode de réalisation de l'invention.

Les figures 1A à 1C illustrent une première variante de réalisation d'un ensemble de stabilisation intervertébrale conforme à l'invention. Sur
ces figures, on retrouve tout d’abord deux vertèbres adjacentes V₁ et V₂, dont chacune comprend un corps vertébral respectif 12 et 22. Ces deux vertèbres définissent un espace intervertébral 10, ainsi qu’une charnière antérieure 11.

On notera que, en fonction des besoins de l’opération, le disque a été éventuellement évidé de manière chirurgicale. Cette étape nécessite alors des moyens peropératoires de type vidéoscopie in vivo et radioscopie depuis l’extérieur, de type classique, qui ne sont pas représentés.

Deux vis pédiculaires 14 et 24, dont la fonction apparaîtra plus clairement dans ce qui suit, sont rapportées dans les corps vertébraux respectifs 12 et 22, de manière connue en soi.

On utilise par ailleurs une vessie gonflable 30, susceptible d’être remplie d’un matériau durcissable par l’intermédiaire d’un cathéter 32. Ces différents éléments sont de type connu en soi. La vessie 30, une fois comblée, est propre à présenter une forme globalement ovale comme on le verra dans ce qui suit. Le matériau durcissable utilisé est de tout type approprié, en particulier un produit fluide ou pâteux susceptible de polymériser in situ en quelques minutes.

La phase initiale de la mise en place consiste à utiliser un organe ancillaire 34, qui assure à la fois les fonctions d’écartement et de passage du cathéter 32. De façon plus précise, cet organe ancillaire 34 comprend un tube creux 34₁ de passage de ce cathéter et de la vessie 30, qui est terminé par deux épaulements 34₂. Ainsi, lorsqu’on le tourne d’un quart de tour, il est susceptible de présenter une hauteur sensiblement variable.

On place, dans le tube creux 34₁, la vessie 30 et le cathéter 32. Puis, on introduit l’ancillaire 34 à plat dans l’espace intervertébral, et on le tourne de 90°, à savoir que ses épaulements 34₂ prennent appui contre les parois des corps vertébraux en regard (figure 1A). Dans ces conditions, cette action d’un quart de tour a tendance à écarter sensiblement ces deux vertèbres en regard.

Dans cet exemple de réalisation, l’introduction de l’ancillaire est réalisée en traversant le canal vertébral. Cependant, comme on le verra
dans le mode de réalisation suivant, cette mise en place de l’ancillaire 34 peut être mise en œuvre par voie foraminale, c’est-à-dire extra canalaire.

Puis, on fait ressortir la vessie 30 hors du tube 34, et on injecte le matériau durcissable, à l’état fluide, à l’intérieur de cette vessie. Ainsi, dans la phase intermédiaire du montage (figure 1B), la vessie 30 est comblée au moyen du matériau non encore durci, à savoir à l’état malléable. Un tel matériau malléable se trouve affecté de la référence 100.

On relie alors les vis pédiculaires 14 et 24 au moyen d’un hauban 40, représenté sur les figures 1B et 1C. De façon avantageuse, il est possible de faire appel à deux paires de vis pédiculaires, situées de part et d’autre de l’axe sagittal du patient, qui sont alors reliées par deux haubans. On notera que l’ancillaire 34 assure sa fonction d’écarteur intervertébral jusqu’à la mise en place du hauban 40, en étant placé contre la partie postérieure des corps vertébraux. Puis, on retire cet ancillaire 34 immédiatement avant l’implantation de ce hauban.

Dans l’exemple illustré, le hauban 40 est réalisé sous forme d’une plaque, qui est par exemple conforme à l’enseignement de US-A-4 743 260. Cependant, à titre de variante non représentée, on peut utiliser tout type d’élément qui assure une fonction de hauban, de manière à empêcher tout déplacement entre les deux vertèbres V₁ et V₂, au moins dans le sens de la flexion intervertébrale. Ainsi, on peut utiliser, en tant qu’élément extra-discal, une tige ou encore une barrette.

De manière avantageuse, chaque élément extra-discal de type hauban présente une forme propre. Ceci signifie qu’il est de nature à garder une même géométrie en l’absence de contrainte extérieure, en particulier sous l’effet de la seule gravité. De plus, dans ce cas, sa géométrie ne varie sensiblement pas lors des contraintes habituelles auxquelles il est soumis, une fois implanté sur le patient.

Comme on l’a vu ci-dessus, le hauban 40 est mis en place alors que le matériau 100 se trouve encore à l’état malléable. Dans ces conditions, l’implantation de ce hauban induit le pivotement des vertèbres, selon les flèches f (figure 1B), ce qui permet de déformer le matériau malléable en cours de prise. Ainsi, la vessie 30 remplace au moyen du matériau malléable
100 se trouve d'une certaine manière moulée par l'intermédiaire du hauban 40.

La figure 1C illustre l'ensemble de stabilisation de l'invention, après la prise totale du matériau initialement malléable. On retrouve ainsi un ballonnet durci, désigné dans son ensemble par la référence 50, qui comprend la vessie 30 à l'état dilaté, ainsi que le matériau durci qui est désormais affecté de la référence 200. Le cathéter 32 a été rompu de manière classique, selon une étape non illustrée. La greffe osseuse peut être disposée autour de la vessie, dans l'espace intradiscal, mais également en position extradiscal le long de la gouttière postérolatérale.

Une variante de réalisation est illustrée aux figures 2A à 2E. Le début de la mise en place est analogue à celui décrit ci-dessus, en référence à la figure 1A. En revanche, on introduit l'ancillaire 134, analogue à celui 34, de façon latérale (figure 2A), à savoir en laissant intact le canal vertébral 11. On notera cependant que la mise en place de l'ancillaire 134 peut être transcanalaire, comme dans le cas du premier mode de réalisation des figures 1A à 1C.

De plus, on utilise deux vessies, respectivement 1301 et 1302 (figure 2B), qui sont associées à deux cathéters 1321 et 1322. Ces deux vessies et ces deux cathéters sont logés dans le tube creux 1341, alors que les deux vessies sont reliées l'une à l'autre au moyen d'un cordon 131, sans qu'il y ait cependant communication entre les volumes intérieurs de ces vessies.

De façon plus précise, on retrouve une vessie antérieure 1301, qui est susceptible de se dilater de manière à affecter globalement une forme de sphère. La deuxième vessie 1302 est analogue à celle 30 des figures 1A à 1C, en ce sens qu'elle est susceptible de présenter une forme globalement ovale, une fois comblée.

La vessie postérieure 1302 du second mode présente une longueur légèrement inférieure à celle de la vessie unique 30 du premier mode, du fait de la présence de la vessie antérieure 1301. On notera en outre que la vessie antérieure est plus courte que la vessie postérieure, puisqu'elle est de forme à peu près sphérique, alors que la vessie postérieure est
oblongue. Les dimensions des différentes vessies seront étroitement liées
au patient et à la pathologie qu'il convient de traiter.

Lorsque l'ancillaire 134 est placé dans sa position d'écartement
(figures 2A et 2B), on fait ensuite ressortir la vessie antérieure 130₁, que l'on
gonfle au moyen du cathéter 132₁. Cette vessie reçoit un premier matériau,
dont la prise est par exemple relativement rapide. Au terme de cette
opération, on obtient un ballonnet durci antérieur 150₁, de forme sphérique
(figure 2C).

Puis, on recule l'ancillaire 134 (figure 2D), tout en maintenant les
épaulements 134₂ au contact des corps vertébraux, de manière à conserver
la hauteur de l'espace intervertébral. On fait alors ressortir la vessie
postérieure 130₂ du tube creux 134₁, et on gonfle cette vessie postérieure au
moyen du cathéter 132₂. Cette vessie postérieure reçoit un second matériau,
qui peut être identique au premier matériau, ou encore présenter une prise
plus lente que ce premier matériau.

Enfin, on place le hauban 40 alors que ce second matériau 100 est
encore malléable, de manière analogue à ce qui a été décrit à la figure 1B
en référence au premier mode de réalisation. Dans ces conditions, il se
produit comme dans le premier mode de réalisation un pivotement des
vertèbres f. On notera que la présence du ballonnet antérieur 150₁, qui
forme un pivot mécanique, permet d'assister ce mouvement de rotation.
Après la prise du second matériau (figure 2E), on obtient un ballonnet
postérieur durci 150₂, qui a été moulé sous l'action du hauban postérieur 40.
On notera que la présence de ce dernier permet en outre de stabiliser de
façon ferme l'ensemble du montage.

À titre de variante non représentée, il est possible de remplir les
vessies respectivement antérieure et postérieure sensiblement en même
temps. Etant donné que les matériaux utilisés ont des temps de prise
nettement différents, le matériau antérieur durcit beaucoup plus vite que
celui présent à l'arrière. Dans ces conditions, on met en place le hauban
postérieur juste après le durcissement de la vessie antérieure, c'est-à-dire
alors que le matériau de la vessie postérieure se trouve encore malléable.
A titre de variante supplémentaire, également non représentée, le ballonnet antérieur durci 150₁ peut être remplacé par un pivot mis en place au préalable, qui n'est pas formé par un matériau moulé. Ce pivot assure alors une fonction d'espacement intervertébral tout en formant un point de rotation pour les vertèbres. Après la mise en place de ce pivot, on introduit et on gonfle une ou plusieurs vessie(s) postérieure(s), de manière analogue à ce qui a été décrit ci-dessus.

Dans l'exemple de réalisation des figures 2A à 2E, les deux ballonnets sont mis en place latéralement, à savoir d'un côté de l'axe sagittal du patient. Cependant, à titre de variante non représentée, on peut placer ces deux ballonnets, ainsi que le hauban correspondant, de façon médiane, à savoir selon ce même axe en traversant le canal vertébral.

On notera que la mise en place habituelle, dans le cadre de l'invention consiste à traverser le canal vertébral, comme dans le cas de l'implantation des cages classiques. Cependant, l'intérêt fondamental de l'invention réside dans le fait que la place nécessaire pour l'introduction des vessies et des cathéters est minime par rapport à la place nécessaire à l'implantation d'une cage rigide. Dans ces conditions, les risques d'Étirement ou de traumatisme des racines nerveuses sont très sensiblement réduits.

Un autre avantage de l'invention est de pouvoir traiter des étages vertébraux relativement élevés dans la chaîne vertébrale, qui sont inaccessibles au traitement transcanalaire habituel sans prendre de grands risques neurologiques. Ainsi, dans le cas des cages rigides, on peut considérer qu'à partir de l'étage L3/L4, les risques deviennent trop importants, ou bien qu'il faut détruire au moins une articulaire postérieure ce qui déstabilise l'ensemble de l'articulation.

A titre de variante supplémentaire, représentée à la figure 3, on peut prévoir d'utiliser, outre les ballonnets 150₁ et 150₂ décrits ci-dessus, deux ballonnets supplémentaires 150₁ et 150₂, placés de l'autre côté de l'axe sagittal A. Ces deux ballonnets supplémentaires sont associés à un second hauban postérieur, non représenté. Dans ce mode de réalisation de la figure 3, on peut réguler les caractéristiques des ballons et des haubans, de manière à pallier une éventuelle dissymétrie latérale du patient.
Les figures 4A et 4B illustrent une variante supplémentaire de l'invention. Sur ces figures, les éléments mécaniques analogues à ceux des figures 2A à 2E y sont affectés des mêmes numéros de référence, augmentés de 100.

On retrouve ainsi deux vessies respectivement antérieure 230_1 et postérieure 230_2, qui sont reliées par un canal 231 (figure 4B). Ce dernier est indéformable, tout en permettant la communication entre les volumes intérieurs de ces deux vessies.

De plus, l’ancillaire 234 diffère de celui 134, en ce qu’il comprend un tube creux 234_1 plus court, ainsi que deux bras 234_2 formant un U, en saillie vers l’avant par rapport à ce tube (figure 4A). En d’autres termes, l’ancillaire 134 présente une forme de palette, alors que celui 234 est en forme de fourche.

Comme l’illustre la figure 4A, on introduit l’ancillaire 234 dans l’espace intervertébral, tout d’abord à plat, puis on le fait pivoter d’un quart de tour, de sorte que les bras repoussent les corps vertébraux. On place alors dans le tube creux les deux vessies, qui nécessitent uniquement l’utilisation d’un seul cathéter 232. En vue de la pose, il s’agit de faire ressortir les deux vessies de ce tube creux, de manière qu’elles se placent dans l’espace libre défini par les deux bras 234_2 et le débouché du tube 234_1. On gonfle ensuite ces deux vessies, par le cathéter unique, au moyen d’un matériau qui transite par le canal médian 231.

Pendant que ce matériau est encore malléable, on place le hauban postérieur tout en retirant l’ancillaire 234. On notera que cette contrainte postérieure provoque un écrasement de la vessie postérieure 230_2, qui induit un remplissage correspondant de la vessie antérieure 230_1. Lors de ce haubanage, cette vessie antérieure forme ainsi un pivot hydraulique. Enfin, après la prise de ce matériau, on obtient la formation de deux ballonnets respectivement antérieur 250_1 et postérieur 250_2, qui sont sensiblement analogues à ceux du mode de réalisation des figures 2A à 2E.

Comme le montre la figure 4A, la mise en place de l’ancillaire 234 et des vessies 230_1 et 230_2 est réalisée par voie extracanalaire, dans ce quatrième mode de réalisation. Cependant, comme on l’a notamment fait
remarquer pour le deuxième mode de réalisation, la voie d’approche peut également être transcanalaire.

Les figures 5A et 5B illustrent un cinquième mode de réalisation de l’invention. Dans ce dernier, le matériel ancillaire comprend en outre un tube creux 338, en forme d’arc, qui est ouvert à ses deux extrémités. Une 338, de ses extrémités est associée à un manche de préhension 339, alors qu’on note 3382 son extrémité libre. De façon avantageuse, la liaison entre le tube 338 et le manche 339 est amovible, en étant notamment formée par vissage.

Le tube 338 est propre à être introduit dans l’espace intervertébral 10, d’un foramen à l’autre, à savoir en contournant le canal vertébral 11. Ceci est avantageux et peu traumatique pour le patient. Sa mise en place s’effectue après un évidemment discal non représenté, qui peut nécessiter l’utilisation de vidéoscopie locale et d’une assistance radiologique, afin de s’assurer de la bonne position et de la dimension satisfaisante de cet évidemment.

De façon plus précise, en référence à la figure 5A, on dirige le manche 339 de manière à insérer le tube creux 338 dans le disque, depuis la position foraminale droite (en haut sur la figure). Puis, moyennant une rotation selon la flèche X, on glisse le tube de manière à ce qu’il décribe le disque de la droite vers la gauche, puis ressortie du côté opposé en position également foraminale. On retrouve alors à gauche l’extrémité libre 3382 du tube creux 338, à savoir celle qui n’est pas liée au manche 339.

On fait ensuite rentrer, dans le tube 338, un ensemble de trois vessies gonflables, dont l’une 3301 est destinée à être placée à l’avant de l’espace intervertébral, et les deux autres 3302 sont destinés à être placés à l’arrière de celui-ci. La vessie antérieure 3301 est placée au milieu de ce groupe de vessies gonflables. De plus, cette vessie antérieure 3301 communique avec les deux vessies postérieures 3302 au moyen de deux canaux indéformables 331, analogues à celui 231 de la figure 4B, qui autorisent la communication des volumes intérieurs de ces trois vessies gonflables.
Cet ensemble de vessies est prolongé par une queue 335 dont la fonction sera décrite dans ce qui suit. Dans l’exemple, on introduit le groupe de vessies par la droite, en ayant éventuellement ôté au préalable le manche 339. On fait ensuite progresser ces vessies le long du tube, jusqu’à ce que la queue 335 fasse saillie à gauche, au niveau de l’extrémité libre 338₂, à savoir du côté opposé à celui de l’introduction. De cette façon, le chirurgien est à même de placer de manière symétrique les trois vessies au sein du tube 338.

Le chirurgien saisit ensuite la queue 335, dont on a vu qu’elle faisait saillie, puis retire le tube 338 selon un mouvement inverse de celui de l’introduction, en l’occurrence selon la flèche pointillée X’. Les vessies ne sont cependant pas entraînées par ce mouvement du tube et du manche étant donné que, comme vu précédemment, le chirurgien se saisit de la queue 335.

Dans ce qui précède, l’introduction et le retrait du tube se font du côté droit, selon des sens inverses matérialisés par les flèches X et X’. Cependant, à titre de variante, on peut prévoir que, après une introduction par la droite comme ci-dessus, on dévisse le manche 339 par rapport à l’extrémité 338₁ et on le replace au niveau de l’extrémité libre 338₂. Il est alors possible de retirer le tube 338 du côté gauche, à savoir dans le sens anti-horaire.

Après les différentes opérations décrites ci-dessus, les trois vessies sont placées sensiblement dans la position qu’elles doivent adopter de manière définitive après leur gonflement. Il s’agit ensuite d’injecter un matériau durcissable dans chacune de ces vessies. Dans le mode de réalisation illustré, étant donné la présence des canaux 331 de mise en communication, il suffit d’associer un cathéter d’injection à une seule vessie pour obtenir le gonflement de l’ensemble des trois vessies.

Dans ces conditions, on utilise au moins un organe ancillaire, non représenté, qui est analogue à celui 234 de la figure 4. Comme dans le quatrième mode de réalisation, cet ancillaire est introduit à plat, puis tourné d’un quart de tour afin d’écarter l’espace intervertébral. Le matériau gonflable est alors injecté par le cathéter s’étendant au travers du tube creux.
de cet ancillaire. On notera que, du côté opposé à cet ancillaire, on prévoit un écarter supplémentaire, non représenté, permettant de créer la hauteur suffisante sur l'ensemble de l'espace intervertébral.

Puis, de manière analogue à ce qui a été décrit ci-dessus, pendant que le matériau remplissant les trois vessies est encore malléable, on dispense deux haubans 40 à l'arrière de l'espace intervertébral. Ceci a pour effet de repousser le matériau en direction de la vessie antérieure 330₁, qui joue alors le rôle de pivot hydraulique. Comme explicitement ci-dessus, les deux haubans postérieurs 40 assurent un moulage in-situ des deux vessies postérieures, par écrasement de ces dernières.

Au terme de la prise du matériau malléable, on retrouve un ensemble de stabilisation qui comprend, outre les deux haubans, un ballonnet durci antérieur 350₁ et deux ballonnets durcis postérieurs 350₂ (figure 5B). Ces trois ballonnets, qui ont été réalisés à partir des vessies 330₁ et 330₂, forment un V, vus de dessus, ce qui est avantageux d'un point de vue physiologique, en termes de stabilité. On notera à cet égard que cette forme de V correspond à l'anatomie triangulaire du disque.

A titre de variante non représentée, on peut prévoir que les trois vessies gonflables de la figure 5A sont reliées non pas par des canaux de mise en communication, mais par des cordons analogues à celui 31 des figures 2A à 2E. En d'autres termes, les volumes intérieurs de ces trois vessies ne communiquent pas.

Dans ce cas, la phase initiale de la mise en place reste inchangée, à savoir qu'on dispose les trois vessies dans l'espace intervertébral, de manière analogue à ce qui est décrit en référence à la figure 5A. Puis, on introduit deux ancillaires, tels que celui 134 de la figure 2A, au voisinage des vessies postérieures. Ceci permet dans un premier temps d'assurer l'écartement intervertébral.

On gonfle ensuite la vessie antérieure au moyen d'un cathéter annexe, en tirant parti de la hauteur ainsi créée de l'espace intervertébral. Lorsque le matériau de la vessie antérieure a durci, ce qui a conduit à l'obtention d'un ballonnet antérieur durci, on gonfle alors les deux vessies postérieures, au moyen de cathétères s'étendant dans les deux ancillaires.
134 de type palette. Enfin, pendant la prise du matériau malléable de ces deux vessies postérieures, on moule ces dernières au moyen des deux haubans postérieurs, comme décrit en référence à la figure 2D.

Le fait d’utiliser trois vessies qui ne communiquent pas est avantageux. En effet, la vessie antérieure, une fois durcie, forme un pivot mécanique ferme. De plus, étant donné que chaque opération de remplissage ne concerne qu’une vessie, ce remplissage s’opère de manière satisfaisante.

L’invention permet d’atteindre les objectifs précédemment mentionnés.

A cet égard, on notera qu’il est du mérite du Demandeur d’avoir identifié les inconvénients liés à l’enseignement de WO-A-2007/056 724 et, de manière plus générale, aux solutions classiques faisant appel à une prothèse de nucléus.

En effet, l’état de la technique ci-dessus a uniquement pour objectif de traiter l’espace intervertébral, en créant un écartement intervertébral suffisant, par injection d’un matériau durcissable. Cependant, cette solution est insuffisante dans la mesure où elle ne se préoccupe pas de replacer le patient en position physiologique naturelle, à savoir en lordose.

Or, conformément à l’invention, la ou chaque vessie gonflable, associée à son matériau durcissable, est combinée avec un hauban postérieur susceptible de conférer une forme définitive satisfaisante au ballonnet durci. En particulier, l’invention permet de recréer un degré de lordose suffisant et susceptible d’être adapté pour chaque étage vertébral.

En effet, la valeur de la lordose est variable d’une articulation à l’autre et, grâce à l’invention, on peut restaurer les caractéristiques anatomoques étage par étage selon l’angle souhaité.

De façon avantageuse, on peut utiliser un matériau durcissable qui reste légèrement souple même après sa prise. Ceci permet l’obtention d’un jeu fonctionnel pendant le temps de la fusion osseuse, afin d’obtenir une arthrodèse satisfaisante qui s’accompagne d’une position érigée physiologique optimale.
On notera que, conformément à l’invention, on obtient, après mise en place du hauban et prise du matériau durcissable, une position d’équilibre qui ne s’accompagne sensiblement pas de degré de liberté. Ceci est par conséquent favorable à une bonne arthrodèse. En revanche, l’emplacement de cette position d’équilibre peut être modifié en fonction de paramètres extérieurs, tels que la position du sujet ou l’action des muscles. On voit donc clairement la différence existant entre l’objet de l’invention et une prothèse, qui intègre par définition l’existence d’au moins un degré de liberté permanent.

A titre de variante, en cas de nécessité telle qu’une absence d’articulaire, ou pour obtenir un effet mécanique avantageux du type bras de levier, on peut prévoir d’utiliser un étai extradiscal, placé par exemple en avant du hauban 40. Cet étai, qui intègre ou pas une fonction d’amortissement, sert de butée à l’égard de la possibilité de compression et de rapprochement assurée par le hauban, notamment dans le cas où il n’existe pas assez de contrepartie à celui-ci par manque d’anatomie ou du fait d’une trop grande laxité des tissus de la charnière.

De plus, l’ensemble de stabilisation conforme à l’invention est peu invasif. En effet, il peut avantageusement être implanté de manière latérale en contournant le canal vertébral. Or, bon nombre de solutions de l’art antérieur font appel à des dispositifs qui doivent être introduits au travers de ce canal vertébral, ce qui nécessite un écartement parfois sévère des racines nerveuses, à l’origine de séquelles neurologiques post-opératoires. On notera que les méthodes extracanalaires, telles que prévues dans l’invention, bénéficient de techniques de mise en place percutanées très avantageuses pour le patient, grâce à l’assistance de la radioscopie et de la vidéoscopie intradiscal.

Enfin, on soulignera que les vessies et les matériaux durcissables employés par l’invention peuvent être utilisés, de manière avantageuse, en tant qu’élément mécanique stabilisateur temporaire d’une réduction intervertébrale, avant la fixation définitive. A titre d’exemple, un glissement entre deux vertèbres peut être réduit par des moyens mécaniques extemporanés pendant l’opération. Puis, on met en place les vessies qui,
après durcissement de leur matériau, maintiennent la réduction pendant le temps nécessaire pour finaliser la stabilisation, par ablation des moyens de réduction extemporanés et mise en place des moyens définitifs de fixation.
REVENDICATIONS

1. Ensemble de stabilisation intervertébrale comprenant :
 - au moins une vessie gonflable (30 ; 130_1, 130_2 ; 230_1, 230_2 ; 330_1, 330_2) propre à être introduite dans l'espace intervertébral (10) situé entre deux vertèbres adjacentes (V_1, V_2) ;
 - des moyens d'injection, de type cathéter (32 ; 132_1, 132_2 ; 232), d'au moins un matériau durcissable dans la ou chaque vessie gonflable, de manière à former au moins un ballonnet durci (50 ; 150_1, 150_2, 150_1', 150_2'; 250_1, 250_2 ; 350_1, 350_2) dont chacun est formé de la vessie dilatée et du matériau à l'état durci ; et
 - au moins un hauban postérieur (40), destiné à relier lesdites deux vertèbres adjacentes, le ou chaque hauban étant propre à agir sur la forme définitive d'au moins un ballonnet durci, durant la prise d'un matériau durcissable correspondant.

2. Ensemble selon la revendication 1, caractérisé en ce qu'il est en outre prévu un pivot antérieur (150_1, 150_1' ; 250_1 ; 350_1), placé à l'avant de l'espace intervertébral (10).

3. Ensemble selon la revendication 2, caractérisé en ce qu'on prévoit au moins une vessie antérieure (130_1 ; 230_1 : 330_1), destinée à former au moins un ballonnet antérieur durci (150_1, 150_1' ; 250_1 ; 350_1) constituant ledit pivot, ainsi qu'au moins une vessie postérieure (130_2 ; 230_2 ; 330_2), le ou chaque hauban postérieur (40) étant propre à agir sur la forme définitive d'au moins un ballonnet durci postérieur (150_1, 150_1' ; 250_1, 350_1), formé à partir de cette au moins une vessie postérieure.

4. Ensemble selon la revendication 3, caractérisé en ce qu'on prévoit une unique vessie antérieure (130_1 ; 230_1) et une unique vessie postérieure (130_2 ; 230_2), qui sont propres à former un unique ballonnet durci antérieur (150_1 ; 250_1) et un unique ballonnet durci postérieur (150_2 ; 250_2).

5. Ensemble selon la revendication 3, caractérisé en ce qu'il est prévu une unique vessie antérieure (330_1) et deux vessies postérieures (330_2), propres à former un unique ballonnet durci antérieur (350_1) et deux
ballonnets durcis postérieurs (350₁), ces trois ballonnets formant globalement un V vus de dessus.

6. Ensemble selon la revendication 3, caractérisé en ce qu’il est prévu deux vessies antérieures associées respectivement à deux vessies postérieures, propres à former d’une part un premier ballonnet durci antérieur (150₁) et un premier ballonnet durci postérieur (150₂) situés d’un premier côté de l’axe sagittal (A), ainsi qu’un second ballonnet durci antérieur (150’₁) et un second ballonnet durci postérieur (150’₂) placé du second côté de l’axe sagittal.

7. Ensemble selon l’une des revendications 3 à 6, caractérisé en ce que la vessie antérieure est associée à un premier matériau durcissable, dont la prise est plus rapide que celle d’un second matériau durcissable, associé à la vessie postérieure.

8. Ensemble des revendications 3 à 7, caractérisé en ce que la ou chaque vessie antérieure (130₁) est reliée mécaniquement à au moins une vessie postérieure (130₂), alors que leurs volumes intérieurs ne communiquent pas.

9. Ensemble des revendications 3 à 6, caractérisé en ce que la ou chaque vessie antérieure (230₁ ; 330₁) est reliée à au moins une vessie postérieure (230₂ ; 330₂) par l’intermédiaire d’au moins un canal (231 ; 331) de mise en communication de leurs volumes intérieurs.

10. Ensemble selon la revendication 2, caractérisé en ce qu’il est prévu un pivot antérieur rapporté, du type écarteur ou cage amovible.

11. Ancillaire de pose de l’ensemble de stabilisation conforme à l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend au moins un organe ancillaire (134 ; 234), propre à former à la fois un moyen d’écartement de l’espace intervertébral (10) et un moyen de passage pour au moins une vessie gonflable et/ou pour les moyens d’injection de type cathéter.

12. Ancillaire selon la revendication 11, caractérisé en ce que cet organe ancillaire (134 ; 234) comprend un tube creux (134₁ ; 234₁) permettant le passage de la ou de chaque vessie et/ou des moyens
d'injection, ce tube creux étant terminé par des organes d'écartement (1342 ; 2342) de l'espace intervertébral.

13. Ancillaire selon la revendication 12, caractérisé en ce que les organes d'écartement sont formés par deux épaulements (1342) s'étendant de part et d'autre de l'extrémité distale du tube creux.

14. Ancillaire selon la revendication 12, caractérisé en ce que les organes d'écartement sont formés par des bras (2342) en saillie vers l'avant par rapport à l'extrémité distale du tube creux, cette extrémité et ces bras définissant un espace libre (E) de gonflage d'au moins une vessie.

15. Ancillaire selon l'une des revendications 11 à 14, caractérisé en ce qu'il comprend en outre un organe creux (338) de réception temporaire et de mise en place d'au moins une vessie dans l'espace intervertébral.

16. Ancillaire selon l'une des revendications 15, caractérisé en ce que l'organe creux (338) est prolongé par un manche de préhension (339), la liaison entre ce manche et cet organe creux étant notamment amovible, par exemple par vissage.
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendications concernées</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
</table>
* figures 3-8
* aérobies [0047] - [0049], [0052] - [0056], [0063], [0066], [0072] *
----- | 1-4,8-10 | A61F2/44 A61F2/46 |
* colonne 7, ligne 38 - ligne 40; figures 5,8 *
* colonne 11, ligne 1 - ligne 27 *
----- | 1 | |
| A | DE 20 2004 009786 U1 (AESCLAP AG & CO KG [DE]) 26 août 2004 (2004-08-26)
* revendications 1,4; figures
* aérobies [0031] - aérobies [0038] *
----- | 1,3,4,6 | |
* figures 3-7
* aérobies [0029] - [0032], [0039], [0040] *
----- | 1,3-7 | |
----- | | |

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : divulgation non-écrite
- P : document intercalaire

S : théorie ou principe à la base de l'invention

T : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou qu'à une date postérieure.

D : cité dans la demande

L : cité pour d'autres raisons

& : membre de la même famille, document correspondant
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 26-03-2008.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 202004009786 U1</td>
<td>26-08-2004</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 2003009226 A1</td>
<td>09-01-2003</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82
La division de la recherche estime que la présente demande de brevet ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir :

1. revendications: 1-10

 Ensemble de stabilisation intervertébrale comprenant :
 - au moins une vessie gonflable (30 ; 1301, 1302 ; 2301, 2302 ; 3301, 3302) propre à être introduite dans l'espace intervertébral (10) situé entre deux vertèbres adjacentes (V1, V2) ;
 - des moyens d'injection, de type cathéter (32 ; 1321, 1322 ; 232), d'au moins un matériau durcissable dans la ou chaque vessie gonflable, de manière à former au moins un ballonnet durci (50 ; 1501, 1502, 150'1, 150'2; 2501, 2502 ; 3501, 3502) dont chacun est formé de la vessie dilatée et du matériau à l'état durci ; et
 - au moins un hauban postérieur (40), destiné à relier lesdites deux vertèbres adjacentes, le ou chaque hauban étant propre à agir sur la forme définitive d'au moins un ballonnet durci, durant la prise d'un matériau durcissable correspondant. ---

2. revendications: 11-16

 Ancillaire de pose de l'ensemble de stabilisation conforme à l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend au moins un organe ancillaire (134 ; 234), propre à former à la fois un moyen d'écartement de l'espace intervertébral (10) et un moyen de passage pour au moins une vessie gonflable et/ou pour les moyens d'injection de type cathéter.

La première invention a été recherchée.

La présente demande ne satisfait pas aux dispositions de l'article L.612-4 du CPI car elle concerne une pluralité d'inventions qui ne sont pas liées entre elles en formant un seul concept inventif général.

L'état de la technique est représenté par le document D1, qui décrit (les références entre parenthèses s'appliquent à ce document) (cf. figures 3-12 et alinéas 47-49, 75):

 un ensemble de stabilisation intervertébrale comprenant :
 - au moins une vessie gonflable (104, 152, 154) propre à être introduite dans l'espace intervertébral situé entre deux vertèbres adjacentes (58, 60) ;
 - des moyens d'injection, de type cathéter (102, 108, cf. alinéa 75), d'au moins un matériau durcissable (120) dans la ou chaque vessie gonflable, de manière à former au moins un ballonnet durci (104, 150) dont chacun est formé de la vessie dilatée et du matériau à l'état durci.
La division de la recherche estime que la présente demande de brevet ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir :

Les éléments suivants apparaissent donc comme les éléments techniques particuliers des groupes:

groupe 1 (revendication 1):
au moins un hauban postérieur (40), destiné à relier lesdites deux vertèbres adjacentes.

Le problème résolu par cet élément technique particulier peut donc être considéré comme étant d'agir sur la forme définitive d'au moins un ballonnet durci, durant la prise d'un matériau durcissable correspondant;

groupe 2 (revendication 11):
une ancillaire de pose propre à former à la fois un moyen d'écartement de l'espace intervertébral et un moyen de passage pour au moins une vessie gonflable et/ou pour les moyens d'injection de type cathéter.

Le problème résolu par ces éléments techniques particuliers peut donc être considéré comme étant de faciliter l'introduction d'un implant dans l'espace intervertébral;

L'analyse ci dessus montre que ni les éléments techniques particuliers des groupes d'invention ni les problèmes objectifs à résoudre par ces inventions ne sont identiques ou correspondants, et qu'aucun concept inventif général ne lie entre eux les groupes d'inventions. La présente demande ne remplit donc pas les conditions d'unité d'invention.