Title: USE OF ACYLSULFONAMIDES FOR IMPROVING PLANT YIELD

Abstract: Compounds (A) can be used for increasing the yield of useful plants or crop plants with respect to their harvested plant organs, wherein the Compound (A) is selected from compounds of the formula (I) or salts thereof, wherein the symbols are defined as in claim 1, preferably cyprosulfamide [Compound (Al)].
Use of acylsulfonamides for improving plant yield

Description

The present invention relates to the use of certain compounds [Compounds (A)] for the treatment of crop plants for inducing specific growth regulating responses on the plants, on seeds from which they grow or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions.

The term "method for plant growth regulation" or the term "growth regulation process" or the use of the words "plant growth regulation" or other terms using the word "regulate" as used in instant specification relate to a variety of plant responses that improve some characteristic of the plant. "Plant growth regulators" are compounds which possess activity in one or more growth regulation process(es) of a plant. Plant growth regulation is distinguished here from pesticidal action or growth reduction, sometimes also defined as a plant growth regulation, the intention of which, however, is to destroy or stunt the growth of a plant. For this reason, the compounds used in the practice of this invention are used in amounts which are non-phytotoxic with respect to the plant being treated but which stimulate the growth of the plant or certain parts thereof. Therefore, such compounds may also be called "plant stimulants", their action may be named "plant growth stimulation".

Plant growth regulation is a desirable way to improve plants and their cropping so as to obtain improved plant growth and better conditions in agriculture practice compared to non-treated plants. These kinds of molecules can either inhibit or promote cellular activities. This means that plant growth regulators identified in plants most often regulate division, elongation and differentiation of plant cells in a way that, most often, they have multiple effects in plants. The trigger event can be seen to be different in plants in comparison to the one known from animals.
On the molecular level, plant growth regulators may work by affecting membrane properties, controlling gene expression or affecting enzyme activity or being active in a combination of at least two of the before mentioned types of interaction.

Plant growth regulators are chemicals either of natural origin, also called plant hormones (like non-peptide hormones e.g. auxins, gibberellins, cytokinins, ethylene, brassinosteroids or abscisic acid, and salicilic acid), lipooligosaccharides (e.g. Nod factors), peptides (e.g. systemin), fatty acid derivatives (e.g. jasmonates), and oligosaccharins (for review see: Biochemistry & Molecular Biology of the Plant (2000); eds. Buchanan, Gruissem, Jones, pp. 558-562; and 850-929), or they can be synthetically produced compounds (like derivatives of naturally occurring plant growth hormones, ethephon). Plant growth regulators which work at very small concentrations can be found in many cells and tissues, but they seem to be concentrated in meristems and buds.

The mode of action of existing plant growth regulators is often not known. Various targets are discussed and among those, most of the affected molecules are involved in cell division regulation, like arresting the cell cycle in stage G1 or G2, respectively, others for signaling drought stress responses (Biochemistry & Molecular Biology of the Plant (2000); eds. Buchanan, Gruissem, Jones, pp. 558-560). In any case, the hormone control can be identified as an extremely complex cascade of up and down regulations which, for example, can lead to a growth stimulation of one organ or cell typus of a plant but also can lead to a repression in other organs or cell types of the same plant.

In many cases, kinases are involved either directly or indirectly in plant hormone control and among the kinases, protein kinases are central and highly specific control molecules in respect to cell cycle control. Such kinases are discussed as targets for several plant hormones, as it is the case for auxin and abscisic acid (Biochemistry & Molecular Biology of the Plant (2000); eds. Buchanan, Gruissem, Jones, pp. 542-565 and pp. 980-985; Morgan (1997), Annu. Rev. Cell. Dev. Biol., 13, 261-291; Amon et al. (1993), Cell, 74, pp. 993-1 007; Dynlacht et al. (1997), Nature, 389, pp. 149-1 52; Hunt and Nasmyth (1997), Curr. Opin. Cell. Biol., 9, pp. 765-767; Thomas and Hall

Since, however, the ecologic and economic demands on modern crop treatment compositions are increasing constantly, for example with respect to toxicity, selectivity, application rate, formation of residues and favourable manufacture, there is a constant need to develop novel crop treatment compositions which have advantages over those known, at least in some areas. It was therefore an object of the present invention to provide further compounds to be applied on plants, on seeds from which they grow or on the locus in which they grow in their normal habitat, for growth regulating responses, preferably in the absence of abiotic stress conditions. In this regard it should be mentioned that the term "absence of abiotic stress conditions" is to be understood in the context of the present invention to mean that plants or seeds are not exposed to extraordinary environmental conditions such as extreme drought, cold and hot conditions, osmotic stress, waterlogging, elevated soil salinity, elevated exposure to minerals, ozone conditions, strong light conditions, limited availability of nitrogen nutrients or limited availability of phosphorus nutrients, particularly extraordinary environmental conditions beyond normal environmental fluctuations that may occur under normal plant growing conditions. Growing in the absence of abiotic stress conditions thus encompasses growing plants in field conditions whereby the growing conditions, including nutrient supply, temperature, water supply, and other conditions are considered average to optimal for the particular crop species. Growing in the absence of abiotic stress conditions also encompasses growing plants under greenhouse conditions which are considered average to optimal for the crop species.

Generally, a superior growth may result in an improvement of growth, for example, with respect to:
- germination,
- root growth
- shoot development,
- sprouting,
- flower development,
- photosynthesis performance of the plants,
- leaves growth, preferably growth of the area of leaves,
- plants per area (improved plant density).

Alternatively, the superior growth may result in an improvement of crop yield with respect to various parameters such as:
- bio mass,
- quantitative fruit yield,
- size of fruits,
- quantitative grain yield,
- qualitative yield such as increase in content of desired components, e.g. sugar content of sugar beet or protein content in cereal grains, gluten content of grains for the production of glues).

While the improvement in some of the above growth characteristics may be effected together, some may be achieved very specifically with no or even adverse effects on the other parameters.

It is thus desired to provide specific useful plant growth regulation effects on crop plants, that result in superior growth of these treated plants, certain parts of these plants or specific crop yield.

A broader group of compounds selected from the group of acylsulfonamides is described in WO-A-97/4501 6, WO-A-99/1 6744 and EP-A-365484 and references cited therein; the compounds hereinafter called "Compounds (A)". From said publications it is known that the "Compounds (A)" have safener properties. Safeners are used in crops of useful plants together with pesticides, such as herbicides, insecticides or fungicides, preferably herbicides, to reduce phytotoxic effects of the pesticides on the crop plants. A good safener shall not reduce the desired effect of a pesticide on target organisms, for example the effect against weed plants in case of a herbicide as the pesticide. A commercial safener from Compounds (A) is cyprosulfamide (common name), hereafter also called "Compound (A1)".
It is further known from WO 2007/062737 that such acylsulfonamide safeners have also shown effects to reduce plant damage of crop plants, specifically of maize plants, against certain abiotic stress such as extraordinary drought, heat or chillness.

According to WO 2010/003444 such acylsulfonamide safeners have also shown to improve root growth of crop plants, specifically of maize plants. Additionally, effects in regulating shoot growth of crop plants, specifically of maize plants, has been described in the reference too.

Additionally, effects were described for enhancing the action of some pesticides by the addition of acylsulfonamide safeners. So, WO 2008/131854 describes the enhancement of the action of the defoliant thidiazuron on cotton plants by the addition of cyprosulfamide. WO 2008/092615 describes the enhancement of the herbicidal action of the herbicide pinoxaden by the addition of cyprosulfamide.

It has now been found that, surprisingly, a Compound (A), specifically Compound (A1), can be used for increasing the yield of useful plants or crop plants with respect to their harvested plant organs.

Another object of the invention is a method for increasing the yield of useful plants or crop plants with respect to their harvested plant organs wherein a Compound (A), specifically Compound (A1), is applied in an effective, preferably non-phytotoxic amount to the crop plants, the seeds from which they grow, or to the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions.

The term "useful plants" as used here refers to crop plants which are employed as plants for obtaining foods, animal feeds or for industrial purposes as well as horticultural plants.

In the context of the present invention, the term "increasing the yield" preferably means a specific yield enhanced by or more than 2%, more preferably by or more
than 5%, more preferably by or more than 8%, more preferably by or more than 10%, of the harvested plant organs compared to the untreated control plants, it being possible for the effects to manifest themselves individually or else in any combination of effects.

In the context of the present invention, the term "with respect to their harvested plant organs" define the plant organs usually harvested depending on the specific plant to be considered and products derived therefrom under harvesting. This includes the whole biomass of several plant organs if these are harvested together and then may indicate a rather unspecific general effect on plant growth. However, preferably it defines the harvested seed in case of seed producing plants, for example the seed of cereal plants including maize plants, the seed of oil plants such as oilseed rape or canola, the seed organs of legumes, for example beans, lentils, peas and soybeans. Preferably the harvested plant organs encompass also the harvested seed organs of fiber plants such as cotton plants, preferably the lints of cotton plants taken from the seed capsules for fiber production. Preferably the harvested plant organs encompass also the harvested organs of beet plants, such as for example sugar beet and fodder beet.

The term "with respect to their harvested plant organs" also encompasses the improvement as to specific parameters of the harvested plant organs, such as the starch content of seed kernels, the gluten content of seed kernels, the sugar content of sugar beets, the protein content of seed kernels.

Preferably, the plant organs are harvested at a mature stage of their growth or near their stage of maturity, as this is usual for harvesting.

A more preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely (i.e. as the only agrochemical compound) or in combination with one or more selected agrochemical compound(s), for increasing the grain yield of crop plants selected from group consisting of cereals, canola, soybean and cotton crops.
The term "agrochemical compound" is to be understood as meaning any compound selected from the group consisting of herbicides, fungicides, insecticides, bactericides, nematicides, acaricides, plant-growth regulators and safener.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely (i.e. as the only agrochemical compound) or in combination with one or more selected agrochemical compound(s), for increasing the protein content of seed kernels of crop plants selected from group consisting of cereals, canola and soybean crops.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the gluten content of seed kernels of crop plants selected from group consisting of cereals, canola and soybean crops.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the yield of the amount by weight of beets of beet plants.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the biomass yield of maize plants growing in the absence of extraordinary environmental conditions.
Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the sugar content of sugar beets.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the biomass yield of sugar plants.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the biomass yield of sugar beet plants growing in the absence of extraordinary environmental conditions.

A more preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the grain yield of cereal crops, preferably wheat, barley, rye, triticale, rice, sorghum, sugarcane or maize crops.

A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the germination and emergence of rice crops.

A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the grain yield of oil crops such as canola crops.

A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the bean yield of legume crops such as soybean crops.
A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the grain yield of fiber crops such as cotton crops.

A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the lints yield of fiber crops such as cotton crops.

A more preferred object of the invention is also the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the beet yield of beet crops such as sugar beet crops.

Another preferred object of the invention is the use of or method of using Compound (A), specifically Compound (A1), either solely or in combination with one or more selected agrochemical compound(s), for increasing the biomass yield of sugar beet or sugarcane plants.

Compounds (A) according to the present invention are understood as being selected from compounds of the formula (I) or salts thereof,

\[
R^1 \quad (R^2)_n \quad R^3 \quad X \quad (R^4)_m
\]

wherein

- \(X \) is CH or N;
- \(R^1 \) is -CO-NR^5R^6, -NH-CO-R^7 or -NH-CO-NR^8R^9,
- \((R^2)_n \) is a radical \(R^2 \) if \(n \) is 1 or represents \(n \) radicals \(R^2 \) attached to different carbon ring atoms of the basic ring if \(n \) is more than 1, wherein each \(R^2 \) independently
of one another is halogen, (C1-C4)haloalkyl, (C1-C4)haloalkoxy, nitro, (C1-C4)alkyl, (C1-C4)alkoxy, (C1-C4)alkylsulfonyl, [(C1-C4)alkoxy]carbonyl or [(C1-C4)alkyl]carbonyl,

R³ is hydrogen, (C1-C4)alkyl, (C2-C4)alkenyl or (C2-C4)alkynyl,

5 (R⁴)ₘ is a radical R⁴ if m is 1 or represents m radicals R⁴ attached to different carbon ring atoms of the basic ring if m and is more than 1, wherein each R⁴ independently of one another is halogen, nitro, (C1-C4)alkyl, (C1-C4)haloalkyl, (C1-C4)haloalkoxy, (C3-C₆)cycloalkyl, phenyl, (C1-C₄)alkoxy, cyano, (C1-C₄)alkythio, (C1-C₄)alkylsulfinyl, (C1-C₄)alkylsulfonyl,

10 [(C1-C₄)alkoxy]carbonyl or [(C1-C₄)alkyl]carbonyl;

R⁵ is hydrogen, (C1-C₆)alkyl, (C3-C₆)cycloalkyl, (C2-C₆)alkenyl, (C2-C₆)alkynyl, (C₅-C₆)cycloalkenyl, phenyl or a 3- to 6-membered heterocyclic having 1 to 3 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein each of the last-mentioned 7 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (C1-C₆)alkoxy, (C1-C₆)haloalkoxy, (C1-C₂)alkylsulfinyl, (C1-C₂)alkylsulfonyl, (C₃-C₆)cycloalkyl, (C1-C₄)alkoxycarbonyl, [(C1-C₄)alkyl]carbonyl and phenyl and, in case of cyclic basic radicals, also (C1-C₄)alkyl and (C1-C₄)haloalkyl,

R⁶ is hydrogen, (C1-C₇)alkyl, (C₃-C₆)cycloalkyl, (C2-C₇)alkenyl or (C2-C₇)alkynyl, each of the last-mentioned 3 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, hydroxyl, (C1-C₄)alkyl, (C1-C₄)alkoxy and (C1-C₄)alkythio, or

R⁵ and R⁶ together with the nitrogen atom attached to represent pyrrolidin-1-yl- or piperidin-1-yl,

25 R⁷ is hydrogen, (C1-C₇)alkyl, (C3-C₆)cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (C1-C₄)alkoxy, (C1-C₆)haloalkoxy and (C1-C₄)alkythio and, in case of cyclic basic radicals, also (C1-C₄)alkyl and (C1-C₄)haloalkyl,

30 R⁸ is hydrogen, (C1-C₆)alkyl, (C2-C₆)alkenyl, (C₂-C₆)alkynyl or (C₃-C₆)cycloalkyl, wherein each of the last-mentioned 4 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen,
(Ci-C₄)alkoxy, (Ci-C₆)haloalkoxy and (Ci-C₄)alkylthio and, in case of cyclic basic radicals, also (Ci-C₄)alkyl and (Ci-C₄)haloalkyl,

R⁹ is hydrogen, (Ci-C₈)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₃-C₈)cycloalkyl, wherein each of the last-mentioned 4 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (Ci-C₄)alkoxy, (Ci-C₆)haloalkoxy and (Ci-C₄)alkylthio and, in case of cyclic basic radicals, also (Ci-C₄)alkyl and (Ci-C₄)haloalkyl,

n is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, and

m is 0, 1, 2, 3 or 4, preferably 1 or 2.

More preferred Compounds (A) are compounds of the formula (la) or salts thereof,

\[
\begin{align*}
\text{O} & \text{N} \\
\text{R}^5 \text{R}^6 & \text{N} \\
\text{(R}^2)_n & \text{S} \text{N} \text{O} \\
\text{R}^3 & \text{(R}^4)_m \\
\end{align*}
\]

wherein (R²)ₙ, R³, (R⁴)ₘ, R⁵, R⁶ n and m are defined as for formula (I), and preferably wherein

R³ is hydrogen,

(R⁴)ₘ is a radical R⁴ if m is 1 or represents m radicals R⁴ attached to different carbon ring atoms of the basic ring if m and is more than 1, wherein each R⁴ independently of one another is halogen, methyl, ethyl, n-propyl, i-propyl, CF₃, (Ci-C₄)haloalkoxy or (Ci-C₄)alkoxy,

R⁵ is (Ci-C₆)alkyl or (Ci-C₆)cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (Ci-C₄)alkoxy, (Ci-C₄)haloalkoxy,

(Ci-C₂)alkylsulfanyl, (Ci-C₂)alkylsulfonyl, (Ci-C₆)cycloalkyl,

(Ci-C₄)alkoxy carbonyl and [(Ci-C₂)alkyl]carbonyl and, in case of cyclic basic radicals, also (Ci-C₄)alkyl and (Ci-C₄)haloalkyl,

R⁶ is hydrogen or (Ci-C₄)alkyl, preferably hydrogen,

m is 0, 1 or 2, preferably 1 or 2, and
n is zero.

More preferred compounds of the formula (la) or salts thereof are those wherein
R\(^3\) is hydrogen, and
\((R^4)_m\) is 2-methoxy and R\(^5\) is cyclopropyl or
\((R^4)_m\) is 5-chloro-2-methoxy and R\(^5\) is cyclopropyl or
\((R^4)_m\) is 2-methoxy and R\(^5\) is ethyl or
\((R^4)_m\) is 5-chloro-2-methoxy and R\(^5\) is isopropyl or
\((R^4)_m\) is 2-methoxy and R\(^5\) is isopropyl, and
R\(^6\) is hydrogen, and
n is zero.

Such compounds are known from WO 99/16744.

Most preferred compound of the formula (la) or salts thereof is the compound
wherein
R\(^3\) is hydrogen,
\((R^4)_m\) is 2-methoxy,
R\(^5\) is cyclopropyl,
R\(^6\) is hydrogen, and
n is zero
(common name "cyprosulfamide" = Compound (A1)).

Also preferred Compounds (A) are compounds of the formula (lb) or salts thereof,
wherein \((R^2)_n\), R\(^3\), \((R^4)_m\), R\(^7\), n and m are defined as for formula (I), and preferably
wherein...
R^3 is hydrogen,

(R^4)_m is a radical R^4 if m is 1 or represents m radicals R^4 attached to different carbon ring atoms of the basic ring if m is more than 1, wherein each R^4 independently of one another is halogen, (Ci-C_4)alkyl, CF_3, (Ci-C_4)haloalkoxy or (Ci-C_4)alkoxy,

R^7 is (Ci-C_6)alkyl or (C_3-C_6)cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (Ci-C_4)alkoxy, (Ci-C_6)haloalkoxy and (Ci-C_4)alkylthio and and, in case of cyclic basic radicals, also (Ci-C_4)alkyl and

(Ci-C_4)haloalkyl,

m is 0, 1 or 2, preferably 1 or 2, and

n is zero.

Such compounds are known from WO 99/16744.

Also preferred Compounds (A) are compounds of the above formula (Ic) or salts thereof,

![Chemical Structure](image)

wherein (R^2)_n, R^3, (R^4)_m, R^8, R^9, n and m are defined as for formula (I), and preferably wherein

R^3 is hydrogen,

(R^4)_m is a radical R^4 if m is 1 or represents m radicals R^4 attached to different carbon ring atoms of the basic ring if m is more than 1, wherein each R^4 independently of one another is halogen, (Ci-C_4)alkyl, CF_3, (Ci-C_4)haloalkoxy or (Ci-C_4)alkoxy, preferably halogen, (Ci-C_4)alkyl, CF_3 or (Ci-C_4)alkoxy

R^8 is hydrogen, (Ci-Cs alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkinyl or (C_3-C_8)cycloalkyl,

R^9 is hydrogen, (Ci-Cs alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkinyl or (C_3-C_8)cycloalkyl,

m is 0, 1 or 2, preferably 1 or 2, and
such compounds are known from EP-A-365484, for instance specifically
1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methyl-urea,
1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethyl-urea,
1-[4-(N-4,5-dimethylbenzoylsulfamoyl)phenyl]-3-methyl-urea.

by addition of a suitable inorganic or organic acid, such as, for example, HCl, HBr,
H2SO4 or HNO3, but also oxalic acid or sulfonic acids, onto a basic group, such as,
for example, amino or alkylamino, the compounds of the formula (I) may form salts.
Suitable substituents present in deprotonated form, such as, for example, sulfo or
carboxy groups, may form inner salts with groups which for their part can be
protonated, such as amino groups. Salts may also be formed by replacing the
hydrogen of suitable substituents, such as, for example, sulfo or carboxy groups, or
the acidic hydrogen atom of a -SO2NHCO- group by an agriculturally suitable cation.
These salts are, for example, metal salts, in particular alkali metal salts or alkaline
earth metal salts, especially sodium salts and potassium salts, or else ammonium
salts, salts with organic amines or quaternary ammonium salts.

The compounds of the formula (I) and agriculturally acceptable salts thereof used in
accordance with the invention are also referred to hereinafter as "compounds of the
formula (I)" for short", or also Compounds (A).

In the description of the formulae, including the accompanying claims, the
aforementioned substituents have the following meanings:
Halogen means fluorine, chlorine, bromine or iodine.
The term "halo" before the name of a radical means that this radical is partially or
completely halogenated, that is to say substituted by F, Cl, Br or I in any combination.
The expression "(C1-C6)alkyl" means an unbranched or branched non-cyclic
saturated hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms (indicated by a
range of C-atoms in the parenthesis), such as, for example a methyl, ethyl, propyl,
isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl radical. The same applies to
alkyl groups in composite radicals such as "alkoxyalkyl".
Alkyl radicals and also in composite groups, unless otherwise defined, preferably have 1 to 4 carbon atoms.

"(Ci-C6)Haloalkyl" means an alkyl group mentioned under the expression in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, such as monohaloalkyl, perhaloalkyl, CF3, CHF2, CH2F, CHFCH3, CF3CH2, CF3CF2, CHF2CF2, CH2FCHCl, CH2Cl, CCI3, CHCl2 or CH2CH2Cl.

"[(Ci-C6)alkoxy](Ci-C6)alkyl" means (Ci-C6)alkyl which is substituted by one or more (Ci-C6)alkoxy groups, preferably by one (Ci-C6)alkoxy group.

"(Ci-C6)Alkoxy" means an alkoxy group whose carbon chain has the meaning given under the expression "(Ci-C6)alkyl". "Haloalkoxy" is, for example, OCF3, OCHF2, OCH2F, CF3CF2O, OCH2CF3 or OCH2CH2Cl.

"(C2-C6)Alkenyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains at least one double bond which can be located in any position of the respective unsaturated radical. "(C2-C6)alkenyl" accordingly denotes, for example, the vinyl, allyl, 2-methyl-2-propenyl, 2-butenyl, pentenyl, 2-methylpentenyl or the hexenyl group.

"(C2-C6)alkynyl" means an unbranched or branched non-cyclic carbon chain having a number of carbon atoms which corresponds to this stated range and which contains one triple bond which can be located in any position of the respective unsaturated radical. "(C2-C6)alkynyl" accordingly denotes, for example, the propargyl, 1-methyl-2-propynyl, 2-butynyl or 3-butynyl group.

"(C3-C6)cycloalkyl" denotes monocyclic alkyl radicals, such as the cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl radical.

"(C4-C6)cycloalkenyl" denotes a carbocyclic, nonaromatic, partially unsaturated ring having 4 to 6 carbon atoms, for example 1-cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1,3-cyclohexadienyl or 1,4-cyclohexadienyl.

The expression "one or more radicals selected from the group consisting of in the definition is to be understood as meaning in each case one or more identical or
different radicals selected from type of radicals defined, unless specific limitations are
defined expressly.

According to the type and linkage of the substituents, the compounds of the formula (I) may be present as stereoisomers. The possible stereoisomers defined by the specific three-dimensional form thereof, such as enantiomers, diastereomers, Z and E isomers, are all encompassed by the formula (I). When, for example, one or more alkenyl groups are present, diastereomers (Z and E isomers) may occur. When, for example, one or more asymmetric carbon atoms are present, enantiomers and diastereomers may occur. Stereoisomers can be obtained from the mixtures obtained in the preparation by customary separation methods. The chromatographic separation can be effected either on the analytical scale to find the enantiomeric excess or the diastereomer excess, or else on the preparative scale to produce test specimens for biological testing. It is likewise possible to selectively prepare stereoisomers by using stereoselective reactions with use of optically active starting materials and/or assistants. The invention thus also relates to all stereoisomers which are encompassed by the formula (I) but are not shown with their specific stereoisomeric form, and mixtures thereof.

The radical definitions stated above, in general terms or listed within areas of preference, apply both to the end products of the formula (I) and correspondingly to the starting materials and intermediates required for the preparation in each case. These radical definitions can be exchanged with one another, i.e. including combinations between the preferred ranges stated.

The term "useful plants" as used here refers to crop plants which are employed as plants for obtaining foods, animal feeds or for industrial purposes as well as horticultural plants.

The present invention further provides a method for treatment of plants, preferably growing in the absence extraordinary environmental conditions. With "absence of any kind of extraordinary environmental conditions" is to be understood in the context of the present invention to mean that plants or seeds are not exposed to extraordinary
environmental conditions such as extreme drought, cold and hot conditions, osmotic stress, waterlogging, elevated soil salinity, elevated exposure to minerals, ozone conditions, strong light conditions, limited availability of nitrogen nutrients or limited availability of phosphorus nutrients, particularly extraordinary environmental conditions beyond normal environmental fluctuations that may occur under normal plant growing conditions.

A Compound (A), specifically Compound (A1), may be applied by seed treatment or by preemergence or postemergence applications, for example under conditions which are known in the art.

The Compound (A), specifically Compound (A1), may be applied either solely or in combination with one or more agrochemical compound(s) by seed treatment or by preemergence or postemergence applications, for example under conditions which are known in the art.

The pre-emergence or post-emergence applications may use spray techniques applying spray solutions of Compound (A), specifically Compound (A1), either solely or in combination with one or more agrochemical compound(s). Such spray solutions may comprise other customary constituents, such as solvents, formulation aids, especially water. Further constituents may include active agrochemical ingredients described below.

The present invention further provides for the use of corresponding spray solutions for increasing the yield of useful plants or crop plants with respect to their harvested plant organs. The remarks which follow apply both to the inventive use of the compounds of the formula (I) per se and to the corresponding spray solutions.

When using Compound (A), specifically Compound (A1), either solely or in combination with one or more agrochemical compound(s), as a plant growth regulator for increasing the yield of useful plants with respect to their harvested plant organs, for example for increasing the grain yield of crop plants like those mentioned above, preferably cereal plants, such as wheat, barley, rye, triticale, millet, rice or
corn (maize), the application rate is, for example, in the range of from 0.005 (5 mg) to 5000 g active substance per hectare of soil surface, preferably in the range of from 0.01 (10 mg) to 2000 g/ha, in particular in the range of from 0.05 (50 mg) to 1000 g/ha of active substance, very particularly from 10 to 1000 g/ha of active substance, more preferred from 20 to 500 g/ha of active substance, mostly preferred from 25 to 100 g/ha of active substance.

A Compound (A), specifically Compound (A1), either solely or in combination with one or more agrochemical compound(s), can be applied to the plants by spraying spray solutions containing the Compound (A), specifically Compound (A1), by distributing granules containing the Compound (A), specifically Compound (A1), on the soil of the cultivated area, by pouring solutions or dispersions or granules containing Compound (A), specifically Compound (A1), into the field water (e.g. paddy-rice).

A Compound (A), specifically Compound (A1), either solely or in combination with one or more agrochemical compound(s), can be applied the pre-emergence method (pre-sown or simultaneous with sowing, e.g. pre-plant incorporated or in-furrow treatment, or after sowing) or the early post-emergence method or later in the post-emergence period, generally up to full bloom of the useful plants.

As an alternative, application as plant growth regulator is also possible by treating the seed, which includes various techniques for dressing and coating seed. Here, the application rate depends on the particular techniques and can be determined in preliminary tests. Generally, the application rate of Compound (A), specifically Compound (A1), as active substance in case of a seed treatment is from 0.001 (1 mg) to 10 grammes active substance (a.i.) per kilogramme seed, preferably 0.01 (10 mg) to 5 g a.i. per kg seed, in particular 0.1 (100 mg) to 2 g a.i. per kilogramme seed.

If solutions of Compounds (A), preferably Compound (A1), either solely or in combination with one or more agrochemical compound(s), are used in the seed treatment method wherein the seeds are soaked in the active substance's solution, the concentration of the active substance (a.i.) in the solution is for example from 1
to 15000 ppm, preferably 10 to 10000 ppm, more preferably 100 to 5000 ppm based on weight.

The plant growth regulator is generally applied in a plant-growth-regulating non-phytotoxic effective amount. By "non-phytotoxic" is meant an amount of the plant growth regulator which causes at most minor or no injury to the desired crop species as regards yield of harvested product.

When applying the Compound (A), specifically Compound (A1) or (A2), specifically Compound (A1), either solely or in combination with other agrochemical compounds, it can be applied once or by split application in two or more instances while the single application can be by seed treatment, pre- or post-emergence. Therefore, it is possible to have combined applications such as by seed treatment followed by one or more pre- and/or post-emergence treatments.

Preferred application is by seed treatment.
Also preferred is single pre-emergence treatment.
Also preferred is a single post-emergence treatment.
Also preferred is a pre-emergence treatment followed by 1, 2 or 3 post-emergence treatments.

Also preferred is a seed treatment followed by 1, 2 or 3 post-emergence treatments.
Also preferred is a post-emergence treatment in the stage between early earing and 8 leaves stage.
Also preferred is a post-emergence treatment of the plants producing seed in the late vegetation stage up to the generative stage (between end of shooting and early bloom).

The Compounds (A), specifically or (A1), can be used as stand alone product or in combination with one or more other agrochemical compounds, preferably a pesticide or plant-growth regulator more preferably a pesticide for which the plant growth regulator can effectively be used also as a safener. Of particular interest are combinations of Compounds (A), preferably Compound (A1), with herbicides, fungicides, insecticides, or plant-growth regulators especially preferred is the
combination with one or more, preferably one or two agrochemically active
compounds belonging to the class of fungicides.

The application rate of the pesticides, preferably herbicides (B) are in the range used
for the pesticides (preferably herbicides) alone and are thus known per se.

A further preferred object of present invention is the combined use of Compound (A),
specifically Compound (A1), in combination with one or more fungicides, one or more
insecticides, and/or one or more plant growth regulators.

More specifically, the fungicides to be combined with Compound (A) or Compound
(A1), preferably Compound (A1) are selected from the group consisting of:
benalaxyl [F-1], benalaxyl-M [F-2], bupirimate [F-3], chiralaxyl [F-4], clozylacon
[F-5], dimethirimol [F-6], ethirimol [F-7], furalaxyl [F-8], hymexazole [F-9],
metalaxyl [F-10], metalaxyl-M [F-11], ofurace [F-12], oxadixyl [F-13], oxolinic
acid [F-14], benomyl [F-15], carbendazim [F-16], diethofencarb [F-17],
fuberidazole [F-18], fluopicolide [F-19], pencurion [F-20], thiabendazole [F-21],
thiophanate-methyl [F-22], zoxamide [F-23], chloro-7-(4-methylpiperidin-1-yl)-6-
(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine [F-24], diflumetorim [F-25],
bixafen [F-26], boscalid [F-27], carboxin [F-28], diflumethorin [F-29], fenfuram
[F-30], fluopyram [F-31], flutolanil [F-32], furametpyr [F-33], mepronil [F-34],
oxycarboxin [F-35], penflufen [F-36], penthiopyrad [F-37], thifluzamid [F-38], N-[2-
(1,3-dimethylbutyl)phenyl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carboxamide [F-39],
isopyrazam [F-40], sedaxane [F-41], 3-(difluoromethyl)-1-methyl-N-(3',4',5'-
trifluorobiphenyl-2-yl)-1H-pyrazole-4-carboxamide [F-42], 3-(difluoromethyl)-1-
methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-pyrazole-4-carboxamide [F-43],
3-(difluoromethyl)-N-[4-fluoro-2-(1,2,3,3,3-hexafluoropropoxy)phenyl]-1-methyl-1H-
pyrazole-4-carboxamide [F-44], N-[1-(2,4-dichlorophenyl)-1-methoxypropan-2-yl]-3-
(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide [F-45] and corresponding
salts, amisulbrom [F-46], azoxystrobin [F-47], cyazofamid [F-48], dimoxystrobin
[F-49], enestrobin [F-50], famoxadon [F-51], fenamidone [F-52], fluoxastrobin
[F-53], kresoxim-methyl [F-54], metominostrobin [F-55], orysastrobin [F-56],
pyraclostrobin [F-57], pyribencarb [F-58], picoxystrobin [F-59], trifloxystrobin [F-
(2E)-2-((6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl)oxy)phenyl)-2-(methoxyimino)-N-nnethylethanamide \([=F-61]\), (2E)-2-(ethoxyimino)-N-methyl-2-((1 -[3-(trifluoromethyl)\(^{-}\)phenyl]ethyldiene)amino)oxy)methyl)ph enyl)ethanamide \([=F-62]\), and corresponding salts, (2E)-2-(methoxyimino)-N-methyl-2-(2-(([(1E)-1-[(3-ethoxyimino)methyl]phenyl]-2-(methoxyimino)-N-methyl-N-(1.1,3-thmethyl-2,3-dihydro-1 H-inden-4-yl)pyridine-3-carboxamide \([=F-63]\), (2E)-2-(([(1-3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl)oxy]phenyl)ethylidene)amino)oxy)methyl)phenyl)-2-(methoxyimino)-N-methyl-N-(1,1,3-thmethyl-2,3-dihydro-1 H-inden-4-yl)pyridine-3-carboxamide \([=F-65]\), 5-methoxy-2-methyl-4-((1 -{(3-ethoxyimino)methyl}phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one \([=F-66]\), 2-methyl \((2-[(cyclopropyl(4-methoxyphenyl)) imino)methyl]sulfanyl)methyl\)phenyl)-3-methoxyacrylate \([=F-67]\), N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-(formylamino)-2-hydroxybenzamide \([=F-68]\) and corresponding salts, dinocap \([=F-69]\), fluazinann \([=F-70]\), fentin acetate \([=F-71]\), fentin chloride \([=F-72]\), fentin hydroxide \([=F-73]\), silthiofam \([=F-74]\), andoprim \([=F-75]\), blasticidin-S \([=F-76]\), cyprodinil \([=F-77]\), kasugamycin \([=F-78]\), kasugamycin hydrochloride hydrate \([=F-79]\), mepanipyrrin \([=F-80]\), pyrimethanil \([=F-81]\), fenpropiconil \([=F-82]\), fludioxonil \([=F-83]\), quinoxyfen \([=F-84]\), chlozolinate \([=F-85]\), iprodione \([=F-86]\), procymidine \([=F-87]\), vinclozolin \([=F-88]\), ampropylfos \([=F-89]\), potassium-ampropylflos \([=F-90]\), edifenpos \([=F-91]\), iprobenfos (IBP) \([=F-92]\), isoprothiolane \([=F-93]\), pyrazophos \([=F-94]\), tolclofos-methyl \([=F-95]\), biphenyl \([=F-96]\), iodocarb \([=F-97]\), propamocarb \([=F-98]\), propamocarb hydrochloride \([=F-99]\), fenhexamid \([=F-100]\), azaconazole \([=F-101]\), bitertanol \([=F-102]\), bromuconazole \([=F-103]\), diclobutrazole \([=F-104]\), difenoconazole \([=F-105]\), diniconazole \([=F-106]\), diniconazole-M \([=F-107]\), epoxiconazole \([=F-108]\), etaconazole \([=F-109]\), fenbuconazole \([=F-110]\), fluquinconazole \([=F-111]\), flusilazole \([=F-112]\), flutriafol \([=F-113]\), furconazole \([=F-114]\), furconazole-cis \([=F-115]\), hexaconazole \([=F-116]\), imibenconazole \([=F-117]\), ipconazole \([=F-118]\), metconazole \([=F-119]\), myclobutanil \([=F-120]\), paclobutrazole \([=F-121]\), penconazole \([=F-122]\), propiconazole \([=F-123]\), prothioconazole \([=F-124]\), simeconazole \([=F-125]\), spiroxamine \([=F-126]\), tebuconazole \([=F-127]\), thadimefon \([=F-128]\), triadimenol \([=F-129]\), triticonazole \([=F-130]\), uniconazole \([=F-131]\), voriconazole \([=F-132]\), imazalil \([=F-133]\), imazalil sulphate \([=F-134]\), oxpoconazole
sulphate \([=F-236]\), iprodione \([=F-237]\), irumamycin \([=F-238]\), isotianil \([=F-239]\),
metasulfocarb \([=F-240]\), metrafenone \([=F-250]\), methyl isothiocyanate \([=F-251]\),
mildiomyrin \([=F-252]\), natamycin \([=F-253]\), nickel dimethyl dithiocarbamate \([=F-254]\),
nitrothiol-isopropyl \([=F-255]\), oxolinone \([=F-256]\), oxamocarb \([=F-257]\), oxyfenthiin
\([=F-258]\), pentachlorophenol \([=F-259]\) and salts, 2-phenylphenol \([=F-260]\) and salts,
piperalin \([=F-261]\), propanosine-sodium \([=F-262]\), proquinazid \([=F-263]\), pyrrolnitrin
\([=F-264]\), quintozene \([=F-265]\), tecloftalam \([=F-266]\), tecnazene \([=F-267]\), triazoxide
\([=F-268]\), trichlamide \([=F-269]\), zahlamid \([=F-270]\), 2,3,5,6-tetrachloro-4-
(methylsulfonyl)pyridine \([=F-271]\), N-(4-chloro-2-nitrophenyl)-N-ethyl-4-
 methylbenzenesulfonamide \([=F-272]\), 2-amino-4-methyl-N-phenyl-5-
thiazolecarboxamide \([=F-273]\), 2-chloro-N-(2,3-dihydro-1 ,1,3-trimethyl-1 H-inden-4-yl)-
3-pyridine^carboxamide \([=F-274]\), 3-[5-(4-chlorophenyl)-2,3-dimethyloxazolidin-3-
yl]pyridine \([=F-275]\), cis-1 -(4-chloronaphenyl)-2-(1 H-1 ,2,4-thazol-1 -yl)cycloheptanol
\([=F-276]\), 2,4-dihydro-5-methoxy-2-methyl-4-[[[1 -3-
(trifluoromethyl)phenyl]ethylidene]amino[\^oxy]methyl[\^phenyl]-3H-1 ,2,3-thazol-3-one
\((185336-79-2) \([=F-277]\), methyl 1-(2,3-dihydro-2,2-dimethyl-1 H-inden-1 -yl)-1 H-
imidazole-5-carboxylate, 3,4,5-trichloro-2,6-pyhdinedicarbonitrile, methyl 2-
[[(cyclopropyl^methoxyphenyljiminolmethylthialmethyl]-alpha-
(methoxymethylene)benzacetate \([=F-278]\), 4-chloro-alpha-propynloxy-N-[2-[3-
methoxy-4-(2-propynloxy)phenyl]ethyl]benz->acet->amide \([=F-279]\), (2S)-N-[2-[4-[3-
(4-chlorophenyl)-2-propynloyloxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methylsulfon-
yl)amino]butanamide \([=F-280]\), 5-chloro-7-(4-methylpiperidin-1 -yl)-6-(2,4,6-
trifluorophenyl)]\(1 ,2,4\)-"tnazolo[1,5-a]pyrimidine \([=F-281]\), 5-chloro-6-(2,4,6-trifluoro-
phenyl)-N-[1 R]-1 ^^trimethylpropyl]^"!! \(2,4\)-triazolo[1,5-a]pyrididine-7-amine, 5-
chloro-N-[1 R]-1 ,2-dimethyldene]-6-(2,4,6-trifluorophenyl)]\(1 ,2,4\)-thazoloi[1 ,5-
apyrine-dine-7-amine \([=F-282]\), N-[1 -(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-
dichloronicotinamide \([=F-283]\), N-iS-bromo-S-chloro-'pyndin^\^ylJmethyl^\^dichloro-
nicotinamide \([=F-284]\), 2-butoxy-6-iodo-3-propylbenzopyranon-4-one \([=F-285]\), N-(3-
ethyl-3,5,5-thmethylcyclohexyl)-3-formylamino-2-hydroxybenzamide, 2-[[[1 -3(1 -
fluoro^\^phenyethyl]oxyjphenylethylidene]-j'aminoloxyl'-methyllyl-alpha-
(methoximino)-N-methyl-alphaE-benzacetamide \([=F-286]\), N-[2-[3-chloro-5-(tri-
fluoromethyl)pyridin-2-yl]ethyl)-2-(thfluoro ^\^-methyl)benzamide, N-(3',4'-dichloro-5-
fluoro 'biphenyl^\^ylJ-S-idifluoromethyl)^"-! ^\^methyl-1 H-pyrazole-4-carboxamide \([=F-287]\),
2-amino-4-methyl-N-phenyl-5-thiazolecarboxamide \([=F-273]\), 2-chloro-N-(2,3-dihydro-1 ,1,3-trimethyl-1 H-inden-4-yl)-3-pyridine^carboxamide \([=F-274]\), 3-[5-(4-chlorophenyl)-2,3-dimethyloxazolidin-3-yl]pyridine \([=F-275]\), cis-1 -(4-chloronaphenyl)-2-(1 H-1 ,2,4-thazol-1 -yl)cycloheptanol \([=F-276]\), 2,4-dihydro-5-methoxy-2-methyl-4-[[[1 -3-
(trifluoromethyl)phenyl]ethylidene]amino[\^oxy]methyl[\^phenyl]-3H-1 ,2,3-thazol-3-one
\((185336-79-2) \([=F-277]\), methyl 1-(2,3-dihydro-2,2-dimethyl-1 H-inden-1 -yl)-1 H-
imidazole-5-carboxylate, 3,4,5-trichloro-2,6-pyhdinedicarbonitrile, methyl 2-
[[(cyclopropyl^methoxyphenyljiminolmethylthialmethyl]-alpha-
(methoxymethylene)benzacetate \([=F-278]\), 4-chloro-alpha-propynloxy-N-[2-[3-
methoxy-4-(2-propynloxy)phenyl]ethyl]benz->acet->amide \([=F-279]\), (2S)-N-[2-[4-[3-
(4-chlorophenyl)-2-propynloyloxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methylsulfon-
yl)amino]butanamide \([=F-280]\), 5-chloro-7-(4-methylpiperidin-1 -yl)-6-(2,4,6-
trifluorophenyl)]\(1 ,2,4\)-"tnazolo[1,5-a]pyrimidine \([=F-281]\), 5-chloro-6-(2,4,6-trifluoro-
phenyl)-N-[1 R]-1 ^^trimethylpropyl]^"!! \(2,4\)-triazolo[1,5-a]pyrididine-7-amine, 5-
chloro-N-[1 R]-1 ,2-dimethyldene]-6-(2,4,6-trifluorophenyl)]\(1 ,2,4\)-thazoloi[1 ,5-
apyrine-dine-7-amine \([=F-282]\), N-[1 -(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-
dichloronicotinamide \([=F-283]\), N-iS-bromo-S-chloro-'pyndin^\^ylJmethyl^\^dichloro-
nicotinamide \([=F-284]\), 2-butoxy-6-iodo-3-propylbenzopyranon-4-one \([=F-285]\), N-(3-
ethyl-3,5,5-thmethylcyclohexyl)-3-formylamino-2-hydroxybenzamide, 2-[[[1 -3(1 -
fluoro^\^phenyethyl]oxyjphenylethylidene]-j'aminoloxyl'-methyllyl-alpha-
(methoximino)-N-methyl-alphaE-benzacetamide \([=F-286]\), N-[2-[3-chloro-5-(tri-
fluoromethyl)pyridin-2-yl]ethyl)-2-(thfluoro ^\^-methyl)benzamide, N-(3',4'-dichloro-5-
fluoro 'biphenyl^\^ylJ-S-idifluoromethyl)^"-! ^\^methyl-1 H-pyrazole-4-carboxamide \([=F-
An even more preferred object of present invention, is the combined use of

(A1) + (F-1), (A1) + (F-2), (A1) + (F-3), (A1) + (F-4), (A1) + (F-5),
(A1) + (F-6), (A1) + (F-7), (A1) + (F-8), (A1) + (F-9), (A1) + (F-10),
(A1) + (F-11), (A1) + (F-12), (A1') + (F-13), (A1) + (F-14), (A1) + (F-15),
(A1) + (F-16), (A1) + (F-17), (A1') + (F-18), (A1) + (F-19), (A1) + (F-20),
(A1) + (F-21), (A1) + (F-22), (A1') + (F-23), (A1) + (F-24), (A1) + (F-25),
(A1) + (F-26), (A1) + (F-27), (A1') + (F-28), (A1) + (F-29), (A1) + (F-30),
(A1) + (F-31), (A1) + (F-32), (A1') + (F-33), (A1) + (F-34), (A1) + (F-35),
(A1) + (F-36), (A1) + (F-37), (A1') + (F-38), (A1) + (F-39), (A1) + (F-40),
(A1) + (F-41), (A1) + (F-42), (A1') + (F-43), (A1) + (F-44), (A1) + (F-45),
(A1) + (F-46), (A1) + (F-47), (A1') + (F-48), (A1) + (F-49), (A1) + (F-50),
(A1) + (F-51), (A1) + (F-52), (A1') + (F-53), (A1) + (F-54), (A1) + (F-55),
(A1) + (F-56), (A1) + (F-57), (A1') + (F-58), (A1) + (F-59), (A1) + (F-60),
(A1) + (F-61), (A1) + (F-62), (A1') + (F-63), (A1) + (F-64), (A1) + (F-65),
(A1) + (F-66), (A1) + (F-67), (A1') + (F-68), (A1) + (F-69), (A1) + (F-70),
(A1) + (F-71), (A1) + (F-72), (A1') + (F-73), (A1) + (F-74), (A1) + (F-75),
(A1) + (F-76), (A1) + (F-77), (A1') + (F-78), (A1) + (F-79), (A1) + (F-80),
(A1) + (F-81), (A1) + (F-82), (A1') + (F-83), (A1) + (F-84), (A1) + (F-85),
(A1) + (F-86), (A1) + (F-87), (A1') + (F-88), (A1) + (F-89), (A1) + (F-90),
(A1) + (F-91), (A1) + (F-92), (A1') + (F-93), (A1) + (F-94), (A1) + (F-95),
(A1) + (F-96), (A1) + (F-97), (A1') + (F-98), (A1) + (F-99), (A1) + (F-100),
(A1) + (F-101), (A1') + (F-102), (A1) + (F-103), (A1) + (F-104), (A1) + (F-105),
(A1) + (F-106), (A-I) + (F-107), (A1) + (F-108), (A1) + (F-109), (A1) + (F-110),
(A1) + (F-111), (A-I) + (F-112), (A1) + (F-113), (A1) + (F-114), (A1) + (F-115),
(A1) + (F-116), (A1') + (F-117), (A1) + (F-118), (A1) + (F-119), (A1) + (F-120),
(A1) + (F-286), (A1) + (F-287), (A1) + (F-288), (A1) + (F-289), (A1) + (F-290), or (A1) + (F-291), for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants.

An even more preferred object of present invention is the combined use of Compound (A), specifically compound (A1), and one or more, preferably one or two fungicides selected from the group consisting of: bixafen [=F-26], fluopyram [=F-31], penflufen [F-36], isopyrazam [F-40], sedaxane [=F41], 3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)-1 H-pyrazole-4-carboxamide [=F-42], azoxystrobin [F-47], fluoxastrobin [=F-53], pyraclostrobin [F-57], trifloxystrobin [=F-60], epoxiconazole [=F-1 08], metconazole [=F-1 19], propiconazole [=F-1 23], prothioconazole [=F-1 24], tebuconazole [=F-1 27], for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants.

An even more preferred object of present invention is the combined use of (A1) + (F-26), (A1) + (F31), (A1) + (F-36), (A1) + (F-40), (A1) + (F-41), (A1) + (F-42), (A1) + (F-47), (A1) + (F-53), (A1) + (F-57), (A1) + (F-60), (A1) + (F-1 08), (A1) + (F-1 19), (A1) + (F-1 23), (A1) + (F-1 24), (A1) + (F-1 27), (A1) + (F-26) + (F31), (A1) + (F-26) + (F-36), (A1) + (F-26) + (F-40), (A1) + (F-26) + (F-41), (A1) + (F-26) + (F-42), (A1) + (F-26) + (F-47), (A1) + (F-26) + (F-53), (A1) + (F-26) + (F-57), (A1) + (F-26) + (F-60), (A1) + (F-26) + (F-1 08), (A1) + (F-26) + (F-1 19), (A1) + (F-26) + (F-1 23), (A1) + (F-26) + (F-1 24), (A1) + (F-26) + (F-1 27), (A1) + (F-36) + (F-41), (A1) + (F-36) + (F-42), (A1) + (F-36) + (F-47), (A1) + (F-36) + (F-41), (A1) + (F-36) + (F-42), (A1) + (F-36) + (F-47),
(A1) + (F-36) + (F-53), (A1) + (F-36) + (F-57), (A1) + (F-36) + (F-60),
(A1) + (F-36) + (F-1 08), (A1) + (F-36) + (F-1 19), (A1) + (F-36) + (F-1 23),
(A1) + (F-36) + (F-1 24), (A1) + (F-36) + (F-1 27),

5 (A1) + (F-40) + (F-41), (A1) + (F-40) + (F-42), (A1) + (F-40) + (F-47),
(A1) + (F-40) + (F-53), (A1) + (F-40) + (F-57), (A1) + (F-40) + (F-60),
(A1) + (F-40) + (F-1 08), (A1) + (F-40) + (F-1 19), (A1) + (F-40) + (F-1 23),
(A1) + (F-40) + (F-1 24), (A1) + (F-40) + (F-1 27),

10 (A1) + (F-41) + (F-42), (A1) + (F-41) + (F-47), (A1) + (F-41) + (F-53),
(A1) + (F-41) + (F-57), (A1) + (F-41) + (F-60), (A1) + (F-41) + (F-1 08),
(A1) + (F-41) + (F-1 19), (A1) + (F-41) + (F-1 23), (A1) + (F-41) + (F-1 24),
(A1) + (F-41) + (F-1 27),

15 (A1) + (F-42) + (F-53), (A1) + (F-42) + (F-57), (A1) + (F-42) + (F-60),
(A1) + (F-42) + (F-1 08), (A1) + (F-42) + (F-1 19), (A1) + (F-42) + (F-1 23),
(A1) + (F-42) + (F-1 24), (A1) + (F-42) + (F-1 27),

20 (A1) + (F-47) + (F-53), (A1) + (F-47) + (F-57), (A1) + (F-47) + (F-60),
(A1) + (F-47) + (F-1 08), (A1) + (F-47) + (F-1 19), (A1) + (F-47) + (F-1 23),
(A1) + (F-47) + (F-1 24), or (A1) + (F-47) + (F-1 27), (A1) + (F-53) + (F-57),

25 (A1) + (F-53) + (F-60), (A1) + (F-53) + (F-1 08), (A1) + (F-53) + (F-1 19),
(A1) + (F-53) + (F-1 23), (A1) + (F-53) + (F-1 24), (A1) + (F-53) + (F-1 27),

30 (A1) + (F-57) + (F-60), (A1) + (F-57) + (F-1 08), (A1) + (F-57) + (F-1 19),
(A1) + (F-57) + (F-1 23), (A1) + (F-57) + (F-1 24), (A1) + (F-57) + (F-1 27),

(A1) + (F-60) + (F-1 08), (A1) + (F-60) + (F-1 19), (A1) + (F-60) + (F-1 23),
(A1) + (F-60) + (F-1 24), or (A1) + (F-60) + (F-1 27),

(A1) + (F-1 08) + (F-1 19), (A1) + (F-1 08) + (F-1 23), (A1) + (F-1 08) + (F-1 24),
(A1) + (F-1 08) + (F-1 27),
(A1) + (F-1 19) + (F-1 23), (A1) + (F-1 19) + (F-1 24), (A1) + (F-1 19) + (F-1 27),

(A1) + (F-1 23) + (F-1 24), (A1) + (F-1 23) + (F-1 27), or

(A1) + (F-1 24) + (F-1 27),

for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants..

An even more preferred object of present invention is the combined use of

(A1) + (F-1 08), (A1) + (F-26) + (F-1 24), (A1) + (F-26) + (F-1 27), (A1) + (F-42) + (F-1 24),

(A1) + (F-53) + (F-1 24), (A1) + (F-57) + (F-1 19), (A1) + (F-57) + (F-1 24),

(A1) + (F-60) + (F-1 23), (A1) + (F-60) + (F-1 24), or (A1) + (F-1 24) + (F-1 27),

for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants.

An even more preferred object of present invention is the combined use of

(A1) + (F-1 08), (A1) + (F-60) + (F-1 24), or (A1) + (F-1 24) + (F-1 27),

for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants.

Plant yield increasing compositions comprising

(A1) + (F-3), (A1) + (F-4), (A1) + (F-5), (A1) + (F-6), (A1) + (F-7),

(A1) + (F-9), (A1) + (F-1 2), (A1) + (F-1 4), (A1) + (F-1 5), (A1) + (F-1 8),

(A1) + (F-1 9), (A1) + (F-21), (A1) + (F-24), (A1) + (F-25),

(A1) + (F-28), (A1) + (F-29), (A1) + (F-30), (A1) + (F-31), (A1) + (F-32),

(A1) + (F-33), (A1) + (F-34), (A1) + (F-35), (A1) + (F-36), (A1) + (F-38),
(A1) + (F-39), (A1) + (F-40), (A1) + (F-41), (A1) + (F-42), (A1) + (F-43),
(A1) + (F-44), (A1) + (F-45), (A1) + (F-46), (A1) + (F-50), (A1) + (F-56),
(A1) + (F-58), (A1) + (F-62), (A1) + (F-65), (A1) + (F-67), (A1) + (F-68),
(A1) + (F-69), (A1) + (F-71), (A1) + (F-72), (A1) + (F-73), (A1) + (F-74),
(A1) + (F-75), (A1) + (F-76), (A1) + (F-78), (A1) + (F-79), (A1) + (F-82),
(A1) + (F-84), (A1) + (F-85), (A1) + (F-86), (A1) + (F-88), (A1) + (F-89),
(A1) + (F-90), (A1) + (F-91), (A1) + (F-92), (A1) + (F-93), (A1) + (F-94),
(A1) + (F-95), (A1) + (F-96), (A1) + (F-97), (A1) + (F-1 01), (A1) + (F-1 03),
(A1) + (F-1 04), (A1) + (F-1 06), (A1) + (F-1 07), (A1) + (F-1 08),
(A1) + (F-1 09), (A1) + (F-1 10), (A1) + (F-1 13), (A1) + (F-1 14),
(A1) + (F-1 15), (A1) + (F-1 17), (A1) + (F-1 18), (A1) + (F-1 21),
(A1) + (F-1 25), (A1) + (F-1 30), (A1) + (F-1 31), (A1) + (F-1 32),
(A1) + (F-1 33), (A1) + (F-1 34), (A1) + (F-1 35), (A1) + (F-1 36),
(A1) + (F-1 37), (A1) + (F-1 38), (A1) + (F-1 39), (A1) + (F-1 40),
(A1) + (F-1 41), (A1) + (F-1 43), (A1) + (F-1 44), (A1) + (F-1 45),
(A1) + (F-1 46), (A1) + (F-1 47), (A1) + (F-1 49), (A1) + (F-1 50),
(A1) + (F-1 51), (A1) + (F-1 52), (A1) + (F-1 53), (A1) + (F-1 54),
(A1) + (F-1 55), (A1) + (F-1 56), (A1) + (F-1 57), (A1) + (F-1 58),
(A1) + (F-1 60), (A1) + (F-1 61), (A1) + (F-1 62), (A1) + (F-1 64),
(A1) + (F-1 65), (A1) + (F-1 66), (A1) + (F-1 68), (A1) + (F-1 69),
(A1) + (F-1 70), (A1) + (F-1 71), (A1) + (F-1 72), (A1) + (F-1 73),
(A1) + (F-1 74), (A1) + (F-1 75), (A1) + (F-1 76), (A1) + (F-1 77),
(A1) + (F-1 80), (A1) + (F-1 81), (A1) + (F-1 83), (A1) + (F-1 84),
(A1) + (F-1 85), (A1) + (F-1 86), (A1) + (F-1 88), (A1) + (F-1 90),
(A1) + (F-1 91), (A1) + (F-1 93), (A1) + (F-1 95), (A1) + (F-1 96),
(A1) + (F-1 97), (A1) + (F-1 99), (A1) + (F-202), (A1) + (F-203),
(A1) + (F-205), (A1) + (F-209), (A1) + (F-210), (A1) + (F-21 1),
(A1) + (F-21 2), (A1) + (F-21 3), (A1) + (F-21 4), (A1) + (F-21 5),
(A1) + (F-21 6), (A1) + (F-21 7), (A1) + (F-21 8), (A1) + (F-22 0),
(A1) + (F-22 1), (A1) + (F-22 2), (A1) + (F-22 3), (A1) + (F-22 4),
(A1) + (F-22 5), (A1) + (F-22 6), (A1) + (F-22 7), (A1) + (F-22 9),
(A1) + (F-23 0), (A1) + (F-23 1), (A1) + (F-23 2), (A1) + (F-23 3),
(A1) + (F-23 4), (A1) + (F-23 5), (A1) + (F-23 6), (A1) + (F-23 8),
(A1) + (F-239), (A1) + (F-240), (A1) + (F-241), (A1) + (F-242),
(A1) + (F-243), (A1) + (F-244), (A1) + (F-245), (A1) + (F-246),
(A1) + (F-247), (A1) + (F-248), (A1) + (F-249), (A1) + (F-250),
(A1) + (F-251), (A1) + (F-252), (A1) + (F-253), (A1) + (F-254),
(A1) + (F-255), (A1) + (F-256), (A1) + (F-257), (A1) + (F-258),
(A1) + (F-259), (A1) + (F-260), (A1) + (F-261), (A1) + (F-262),
(A1) + (F-263), (A1) + (F-264), (A1) + (F-265), (A1) + (F-266),
(A1) + (F-267), (A1) + (F-269), (A1) + (F-270), (A1) + (F-271),
(A1) + (F-272), (A1) + (F-273), (A1) + (F-274), (A1) + (F-275),
(A1) + (F-276), (A1) + (F-277), (A1) + (F-278), (A1) + (F-279),
(A1) + (F-280), (A1) + (F-281), (A1) + (F-282), (A1) + (F-283),
(A1) + (F-284), (A1) + (F-286), (A1) + (F-288), (A1) + (F-289),
(A1) + (F-290), (A1) + (F-291),

(A1) + (F-26) + (F-31), (A1) + (F-26) + (F-36), (A1) + (F-26) + (F-40),
(A1) + (F-26) + (F-41), (A1) + (F-26) + (F-42), (A1) + (F-26) + (F-47),
(A1) + (F-26) + (F-53), (A1) + (F-26) + (F-57), (A1) + (F-26) + (F-60),
(A1) + (F-26) + (F-108), (A1) + (F-26) + (F-119), (A1) + (F-26) + (F-123),
(A1) + (F-26) + (F-124), (A1) + (F-26) + (F-127);

(A1) + (F-36) + (F-40), (A1) + (F-36) + (F-41), (A1) + (F-36) + (F-42),
(A1) + (F-36) + (F-47), (A1) + (F-36) + (F-53), (A1) + (F-36) + (F-57),
(A1) + (F-36) + (F-60), (A1) + (F-36) + (F-108), (A1) + (F-36) + (F-119),
(A1) + (F-36) + (F-123), (A1) + (F-36) + (F-124), (A1) + (F-36) + (F-127),

(A1) + (F-40) + (F-41), (A1) + (F-40) + (F-42), (A1) + (F-40) + (F-47),
(A1) + (F-40) + (F-53), (A1) + (F-40) + (F-57), (A1) + (F-40) + (F-60),
(A1) + (F-40) + (F-108), (A1) + (F-40) + (F-119), (A1) + (F-40) + (F-123),
(A1) + (F-40) + (F-124), or (A1) + (F-40) + (F-127);

(A1) + (F-41) + (F-42), (A1) + (F-41) + (F-47), (A1) + (F-41) + (F-53),
(A1) + (F-41) + (F-57), (A1) + (F-41) + (F-60), (A1) + (F-41) + (F-108),
(A1) + (F-41) + (F-119), (A1) + (F-41) + (F-123), (A1) + (F-41) + (F-124),
(A1) + (F-41) + (F-1 27),

(A1) + (F-42) + (F-53), (A1) + (F-42) + (F-57), (A1) + (F-42) + (F-60),
(A1) + (F-42) + (F-1 08), (A1) + (F-42) + (F-1 19), (A1) + (F-42) + (F-1 23),
5 (A1) + (F-42) + (F-1 24), (A1) + (F-42) + (F-1 27),

(A1) + (F-47) + (F-53), (A1) + (F-47) + (F-57), (A1) + (F-47) + (F-60),
(A1) + (F-47) + (F-1 08), (A1) + (F-47) + (F-1 19), (A1) + (F-47) + (F-1 23),
(A1) + (F-47) + (F-1 24), (A1) + (F-47) + (F-1 27),
10 (A1) + (F-53) + (F-57), (A1) + (F-53) + (F-60), (A1) + (F-53) + (F-1 08),
(A1) + (F-53) + (F-1 19), (A1) + (F-53) + (F-1 23), (A1) + (F-53) + (F-1 24),
(A1) + (F-53) + (F-1 27),
15 (A1) + (F-57) + (F-60), (A1) + (F-57) + (F-1 08), (A1) + (F-57) + (F-1 19),
(A1) + (F-57) + (F-1 23), (A1) + (F-57) + (F-1 24), (A1) + (F-57) + (F-1 27);

(A1) + (F-60) + (F-1 08), (A1) + (F-60) + (F-1 19), (A1) + (F-60) + (F-1 23),
(A1) + (F-60) + (F-1 24), (A1) + (F-60) + (F-1 27),
20 (A1) + (F-1 08) + (F-1 19), (A1) + (F-1 08) + (F-1 23), (A1) + (F-1 08) + (F-1 24),
(A1) + (F-1 08) + (F-1 27),

(A1) + (F-1 19) + (F-1 23), (A1) + (F-1 19) + (F-1 24), (A1) + (F-1 19) + (F-1 27);
25 (A1) + (F-1 23) + (F-1 24), (A1) + (F-1 23) + (F-1 27), or

(A1) + (F-1 24) + (F-1 27)

are not yet known in the art.

Therefore, above defined plant yield increasing compositions, preferably those
comprising as mixture partners to Compound (A1) a combination selected from the
group consisting of (i) pyraclostrobin (F-57) and metconazole (F-1 19), (ii)
trifloxystrobin (F-60) and propiconazole (F-123), (iii) prothioconazole (F-124) and tebuconazole (F-127), (iv) fluoxastrob in (F-53) and prothioconazole (F-124), and (v) trifloxystrobin (F-60) and prothioconazole (F-124), (vi) bixafen (F-26) and prothioconazole (F-124), (vii) bixafen (F-26) and tebuconazole (F1 27), (viii) bixafen (F-26) and trifloxystrobin (F-60), more preferably those comprising as mixture partners to Compound (A1) a combination selected from the group consisting of, (i) pyraclostrobin (F-57) and metconazole (F-119), (ii) trifloxystrobin (F-60) and propiconazole (F-123), (iii) bixafen (F-26) and prothioconazole (F-124), are also a further object of the present invention.

Also more specifically, the insecticides to be combined with Compound (A), specifically Compound (A1), are selected from the group consisting of: abamectin [= 111], chlorpyrifos [= 1-2], clothianidin [= I-3], cyazypyr [= I-4], deltamethrin [= I-5], emamectin-benzoate [= I-6], ethiprole [= I-7], fipronil [= I-8], flubendiamide [= I-9], flupyradifurone [= 110], imidacloprid [= 111], lambda-cyhalothrin [= 112], lufenuron [= 113], rynaxypyr [= 114], spinosad [= 115], spinoteram [= 116], spirotetramate [= 117], sulfoxaflor [= 118], thiamethoxam [= I-19], thiodicarb [= I-20], triflumuron [= 121], votivo [= I-22].

Even more specifically, the combination partners concerning the class of insecticides are selected from the group consisting of: abamectin [= 111], chlorpyrifos [= I-2], clothianidin [= I-3], fipronil [= I-8], flupyradifurone [= 110], imidacloprid [= 111], lambda-cyhalothrin [= 112], lufenuron
for inducing specific growth regulating responses on plants, on seeds from which they grow and/or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants...

An even more preferred object of present invention is the combined use of

\[(A1) + (I-3) + (I-8), (A1) + (I-3) + (1-0), (A1) + (I-3) + (1-1), \]

\[(A1) + (I-8) + (1-22), \]

\[(A1) + (1-0) + (1-1) + (I-0) + (1-1) + (1-2), (A1) + (1-0) + (1-1) + (1-3), \]

\[(A1) + (I-14), (A1) + (1-1) + (1-1) + (I-16), (A1) + (1-1) + (1-1) + (1-17), \]

\[(A1) + (1-1) + (I-22), \]
(A1) + (+13) + (I-22),
(A1) + (+17) + (I-22),
(A1) + (+19) + (I-20), (A1) + (+19) + (I-22), or
(A1) + (I-20) + (I-22),

for inducing specific growth regulating responses on plants, on seeds from which
they grow and/or on the locus in which they grow in their normal habitat, preferably in
the absence of extraordinary environmental conditions and, thereby, increasing the
yield in such treated plants.

Plant yield increasing compositons comprising
(A1) + (I-1) + (I-0), (A1) + (I-1) + (I-1 0), (A1) + (I-1) + (I-1 2),
(A1) + (I-1) + (I-22),

5

(A1) + (I-2) + (I-22),

10

(A1) + (I-3) + (I-8), (A1) + (I-3) + (I-1 0), (A1) + (I-3) + (I-1 1),
(A1) + (I-3) + (I-1 6), (A1) + (I-3) + (I-1 7), (A1) + (I-3) + (I-1 8),

15

20

(A1) + (I-8) + (I-20),
(A1) + (I-8) + (I-22),

(A1) + (I-1 0) + (I-1 1), (A1) + (I-1 0) + (I-1 2), (A1) + (I-1 0) + (I-1 3),
(A1) + (I-1 0) + (I-1 4), (A1) + (I-1 0) + (I-1 6), (A1) + (I-1 0) + (1 7),

25

(A1) + (I-1 0) + (I-1 8), (A1) + (I-1 0) + (I-1 9), (A1) + (I-1 0) + (I-20),
(A1) + (I-1 0) + (I-22),

(A1) + (I-1 1) + (I-1 6), (A1) + (I-1 1) + (I-1 7), (A1) + (I-1 1) + (I-1 8),

30

(A1) + (I-1 1) + (I-1 9), (A1) + (I-1 1) + (I-20), (A1) + (I-1 1) + (I-22),

(A1) + (I-1 2) + (I-1 7), (A1) + (I-1 2) + (I-1 8), (A1) + (I-1 2) + (I-1 9),
(A1) + (I12) + (I-20),
(A1) + (I12) + (I-22),

(A1) + (I17) + (I-22),

(A1) + (I19) + (I-20), (A1) + (I-19) + (I-22), or

(A1) + (I-20) + (I-22),

are not yet known in the art.
Therefore, above defined compositions are also a further object of the present invention.

Also more specifically, the plant growth regulators to be combined with Compound (A) or Compound (A1) according to present invention, preferably to be combined with Compound (A1), are selected from the group consisting of:

Chlormequat-chloride (CCC) [= PGR-1], ethephon [= PGR-2], mepiquat [= PGR-3],
trinexapac-ethyl [= PGR-4], 2,4-D [= PGR-5], MCPA (= PGR-6) and 2,4-D Choline (=PGR-7)

A further preferred object of present invention, is the combined use of

(A1) + (PGR-3) + (PGR-7),

10 (A1) + (PGR-4) + (PGR-5), (A1) + (PGR-4) + (PGR-6), (A1) + (PGR-4) + (PGR-7),

(A1) + (PGR-5) + (PGR-6), (A1) + (PGR-5) + (PGR-7), or

15 (A1) + (PGR-6) + (PGR-7),
for inducing specific growth regulating responses on plants, on seeds from which they grow or on the locus in which they grow in their normal habitat, preferably in the absence of extraordinary environmental conditions and, thereby, increasing the yield in such treated plants.

An even more preferred object of present invention is the combined use of
(A1) + (PGR-5) + (PGR6).

Plant yield increasing compositions comprising

(A1) + (PGR-3) + (PGR-7).

(A1) + (PGR-5) + (PGR-6), (A1) + (PGR-5) + (PGR-7), or

(A1) + (PGR-6) + (PGR-7)

are not yet known in the art.

Therefore, such above defined combinations are also a further object of the present invention.

It is to be said that, even by claiming the preferred use of the above defined combinations of Compounds (A), preferably Compound (A1), with one or more compound(s) selected from the agrochemical compounds in the absence of extraordinary environmental stress conditions, the combined application might also be useful in cases where such extraordinary environmental stress conditions do exist for a certain time period, or, preferably, in an interim phase, i.e. phases in which no extraordinary environmental stress conditions do exist are interrupted by one or more phases in which extraordinary environmental conditions of identical or different kind do occur.

More specifically, the use of Compound (A), preferably Compound (A1), in combination with one or more agrochemical compound(s), preferably with agrochemical compounds selected from the group of fungicides, insecticides, and plant-growth regulators, doesn't show non-expected effects on plants concerning yield increase only in the absence of extraordinary environmental stress, but also on plants that are exposed to longer periods, preferably weeks, more preferably days of extraordinary environmental stress conditions, preferably heat and/or drought stress.

In accordance with the invention, it has additionally been found that the application, to plants or in their environment, of, of Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with
those that are above defined as the preferred ones from the group consisting of funigicides, insecticides, and plant growth regulators in combination with at least one fertilizer as defined below is/are possible.

5 Fertilizers which can be used in accordance with the invention together with the Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of funigicides, insecticides, and plant growth regulators elucidated in detail above are generally organic and inorganic nitrogen-containing compounds, for example ureas, urea/formaldehyde condensation products, amino acids, ammonium salts and ammonium nitrates, potassium salts (preferably chlorides, sulfates, nitrates), salts of phosphoric acid and/or salts of phosphorous acid (preferably potassium salts and ammonium salts). In this context, particular mention should be made of the NPK fertilizers, i.e. fertilizers which contain nitrogen, phosphorus and potassium, calcium ammonium nitrate, i.e. fertilizers which additionally contain calcium, or ammonium nitrate sulfate (formula (NH4)2SO4 NH4NO3), ammonium phosphate and ammonium sulfate. These fertilizers are generally known to the person skilled in the art; see also, for example, Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, vol. A 10, pages 323 to 431.

The fertilizers may also contain salts of micronutrients (preferably calcium, sulfur, boron, manganese, magnesium, iron, boron, copper, zinc, molybdenum and cobalt) and phytohormones (for example vitamin B1 and indole-3-acetic acid) or mixtures thereof. Fertilizers used in accordance with the invention may also contain further salts, such as monoammonium phosphate (MAP), diammonium phosphate (DAP), potassium sulfate, potassium chloride, magnesium sulfate. Suitable amounts of the secondary nutrients, or trace elements, are amounts of 0.5 to 5% by weight, based on the overall fertilizer. Further possible ingredients are crop protection compositions, insecticides or fungicides, growth regulators or mixtures thereof. This will be explained in more detail below.
The fertilizers can be used, for example, in the form of powders, granules, prills or compactates. However, the fertilizers can also be used in liquid form, dissolved in an aqueous medium. In this case, it is also possible to use dilute aqueous ammonia as the nitrogen fertilizer. Further possible constituents of fertilizers are described, for example, in Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, 1987, Vol. A 10, pages 363 to 401, DE-A 41 28 828, DE-A 19 05 834 and DE-A 196 31 764. The general composition of the fertilizers which, in the context of the present invention, may take the form of straight and/or compound fertilizers, for example composed of nitrogen, potassium or phosphorus, may vary within a wide range. In general, a content of 1 to 30% by weight of nitrogen (preferably 5 to 20% by weight), 1 to 20% by weight of potassium (preferably 3 to 15% by weight) and a content of 1 to 20% by weight of phosphorus (preferably 3 to 10% by weight) is advantageous. The microelement content is typically in the ppm range, preferably in the range from 1 to 1000 ppm.

In the context of the present invention, the fertilizer and Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators may be administered simultaneously, i.e. synchronously. However, it is also possible first to apply the fertilizer and then Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators, or first to apply Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators, and then the fertilizer. In the case of nonsynchronous application of Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators, and the fertilizer, the application in the context of the present invention is, however, effected in a functional relationship, especially within a period of generally 24 hours, preferably 18
hours, more preferably 12 hours, specifically 6 hours, more specifically 4 hours, even more specifically within 2 hours. In very particular embodiments of the present invention, Compounds (A), preferably Compound (A1), either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of funigicides, insecticides, and plant growth regulators and the fertilizer are applied within a time frame of less than 1 hour, preferably less than 30 minutes, more preferably less than 15 minutes.

The active ingredients for use in accordance with the invention can be employed in the following plants, for example, the enumeration which follows being nonlimiting.

The term "useful plants" as used here refers to crop plants which are employed as plants for obtaining foods, animal feeds, fuels or for industrial purposes, also including ornamentals, turfs, commonly used trees employed as ornamentals in the public and domestic sectors, and forestry trees. Forestry trees include trees for the production of timber, cellulose, paper and products made from parts of the trees.

The useful plants include, for example, the following types of plants: cereals, for example wheat, barley, rye, triticale, durum (hard wheat), oats, hops, rice, corn, millet/sorghum and maize; beet, for example sugar beet and fodder beet; fruits, for example pome fruit, stone fruit and soft fruit, for example apples, pears, plums, peaches, almonds, cherries and berries, for example strawberries, raspberries, blackberries; legumes, for example beans, lentils, peas and soybeans; oil crops, for example oilseed rape, mustard, poppies, olives, sunflowers, coconuts, castor oil plants, cacao beans and peanuts; cucurbits, for example pumpkin/squash, cucumbers and melons; fiber plants, for example cotton, flax, hemp and jute; citrus fruit, for example oranges, lemons, grapefruit and tangerines; vegetables, for example spinach, lettuce, asparagus, cabbage species, carrots, onions, tomatoes, potatoes and bell peppers; Lauraceae, for example avocado, Cinnamomum, camphor, or also plants such as tobacco, nuts, coffee, eggplant, sugarcane, tea, pepper, vine, grapevines, hops, bananas, latex plants, ornamentals, for example flowers, shrubs, deciduous trees and coniferous trees, and plants for turf and lawn. This enumeration does not constitute a limitation.
The following plants are considered to be particularly suitable target crops for the inventive use or method: oats, rye, triticale, durum, cotton, eggplant, turf, pome fruit, stone fruit, soft fruit, corn, wheat, barley, cucumber, tobacco, vines, rice, cereals, pear, pepper, beans, soybeans, oilseed rape, tomato, bell pepper, melons, cabbage, potatoes and apples.

Examples of trees which can be improved in accordance with the inventive method include: Abies sp., Eucalyptus sp., Picea sp., Pinus sp., Aesculus sp., Platanus sp., Tilia sp., Acer sp., Tsuga sp., Fraxinus sp., Sorbus sp., Betula sp., Crataegus sp., Ulmus sp., Quercus sp., Fagus sp., Salix sp., Populus sp.,

Preferred trees which can be improved in accordance with the inventive method include: from the tree species Aesculus: A. hippocastanum, A. pariflora, A. carnea; from the tree species Platanus: P. aceriflora, P. occidentalis, P. racemosa; from the tree species Picea: P. abies; from the tree species Pinus: P. radiate, P. ponderosa, P. contorta, P. sylvestre, P. elliottii, P. montecola, P. albicaulis, P. resinosa, P. palustris, P. taeda, P. flexilis, P. jeffregi, P. baksiana, P. strobes; from the tree species Eucalyptus: E. grandis, E. globulus, E. camadentis, E. nitens, E. obliqua, E. regnans, E. pilularus.

Particularly preferred trees which can be improved in accordance with the inventive method include: from the tree species Pinus: P. radiate, P. ponderosa, P. contorta, P. sylvestre, P. strobes; from the tree species Eucalyptus: E. grandis, E. globulus and E. camadentis.

Particularly preferred trees which can be improved in accordance with the inventive method include: horse chestnut, Platanaceae, linden tree, maple tree.

The present invention can also be applied to any turf grasses, including cool-season turf grasses and warm-season turf grasses. Examples of cool-season turf grasses are bluegrasses (Poa spp.), such as Kentucky bluegrass (Poa pratensis L), rough bluegrass (Poa trivialis L), Canada bluegrass (Poa compressa L), annual bluegrass
(Poa annua L), upland bluegrass (Poa glauca Gaudin), wood bluegrass (Poa nemoralis L.) and bulbous bluegrass (Poa bulbosa L); bentgrasses (Agrostis spp.) such as creeping bentgrass (Agrostis palustris Huds.), colonial bentgrass (Agrostis tenuis Sibth.), velvet bentgrass (Agrostis canina L), South German Mixed Bentgrass (Agrostis spp. including Agrostis tenius Sibth., Agrostis canina L, and Agrostis palustris Huds.), and redtop (Agrostis alba L);

fescues (Festuca spp.), such as red fescue (Festuca rubra L. spp. rubra), creeping fescue (Festuca rubra L), chewings fescue (Festuca rubra commutata Gaud.), sheep fescue (Festuca ovina L), hard fescue (Festuca longifolia Thuill.), hair fescue (Festuca capillata Lam.), tall fescue (Festuca arundinacea Schreb.) and meadow fescue (Festuca elanor L);

ryegrasses (Lolium spp.), such as annual ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.) and Italian ryegrass (Lolium multiflorum Lam.);

and wheatgrasses (Agropyron spp.), such as fairway wheatgrass (Agropyron cristatum (L.) Gaertn.), crested wheatgrass (Agropyron desertorum (Fisch.) Schult.) and western wheatgrass (Agropyron smithii Rydb.).

Examples of further cool-season turfgrasses are beachgrass (Ammophila breviligulata Fern.), smooth bromegrass (Bromus inermis Leyss.), cattails such as Timothy (Phleum pratense L.), sand cattail (Phleum subulatum L.), orchardgrass (Dactylis glomerata L.), weeping alkali-grass (Puccinellia distans (L.) Pari.) and crested dog's-tail (Cynosurus cristatus L.).

Examples of warm-season turfgrasses are Bermudagrass (Cynodon spp. L. C. Rich), zoysiagrass (Zoysia spp. Willd.), St. Augustine grass (Stenotaphrum secundatum Walt Kuntze), centipedegrass (Eremochloa ophiuroides Munro Hack.), carpetgrass (Axonopus affinis Chase), Bahia grass (Paspalum notatum Flugge), Kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.), buffalo grass (Buchloee dactyloids (Nutt.) Engelm.), Blue gramma (Bouteloua gracilis (H.B.K.) Lag. ex Griffiths),
seashore paspalum (Paspalum vaginatum Swartz) and sideoats grama (Bouteloua curtipendula (Michx. Torr.). Cool-season turfgrasses are generally preferred for the use in accordance with the invention. Especially preferred are bluegrass, bentgrass and redtop, fescues and ryegrasses. Bentgrass is especially preferred.

Particular preference is given in accordance with the invention to treating plants of the plant cultivars which are in each case commercially available or in use. Plant cultivars are understood to mean plants which have new properties ("traits") and which have been obtained by conventional breeding, by mutagenesis or with the aid of recombinant DNA techniques. Crop plants may accordingly be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can and cannot be protected by plant breeders' rights.

The inventive treatment method can thus also be used for the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants in which a heterologous gene has been stably integrated into the genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example antisense technology, cosuppression technology or RNAi technology [RNA interference]). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

The inventive treatment method can further be used for the treatment of genetically modified organisms (GMOs), e.g. plants or seeds in which a heterologous gene has been transiently introduced e.g. using viral vectors.
Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material which imparts particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant varieties which may also be treated according to the invention are those plants characterized by enhanced yield characteristics. Enhanced yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can also be affected by improved plant architecture (under stress and non-stress conditions), including early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

Plants that may likewise be treated according to the invention are hybrid plants that already express the characteristics of heterosis, or hybrid vigor, which results in generally higher yield, vigor, health and resistance toward biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent).

Hybrid seed is typically harvested from the male-sterile plants and sold to growers. Male-sterile plants can sometimes (e.g. in corn) be produced by detasseling (i.e. the mechanical removal of the male reproductive organs or male flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants, it is typically useful to ensure that male fertility in hybrid plants, which contain the genetic determinants responsible for male sterility, is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility
restorer genes which are capable of restoring the male fertility in hybrid plants that
contain the genetic determinants responsible for male sterility. Genetic determinants
for male sterility may be located in the cytoplasm. Examples of cytoplasmic male
sterility (CMS) were for instance described for Brassica species (WO 1992/005251 ,
6,229,072). However, genetic determinants for male sterility can also be located in
the nuclear genome. Male-sterile plants can also be obtained by plant biotechnology
methods such as genetic engineering. A particularly useful means of obtaining male-
sterile plants is described in WO 89/10396 in which, for example, a ribonuclease
such as a barnase is selectively expressed in the tapetum cells in the stamens.
Fertility can then be restored by expression in the tapetum cells of a ribonuclease
inhibitor such as barstar (e.g. WO 1991/002069).

Plants or plant varieties (obtained by plant biotechnology methods such as genetic
engineering) which may also be treated according to the invention are herbicide-
tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants
can be obtained either by genetic transformation, or by selection of plants containing
a mutation imparting such herbicide tolerance.

Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made
tolerant to the herbicide glyphosate or salts thereof. For example, glyphosate-tolerant
plants can be obtained by transforming the plant with a gene encoding the enzyme 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS
genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium
(Comai et al., Science (1983), 221, 370-371), the CP4 gene of the bacterium
Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), the
genes encoding a petunia EPSPS (Shah et al., Science (1986), 233, 478-481), a
tomato EPSPS (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) or an Eleusine
EPSPS (WO 2001/66704). It can also be a mutated EPSPS, as described, for
2002/026995. Glyphosate-tolerant plants can also be obtained by expressing a gene
that encodes a glyphosate oxidoreductase enzyme as described in US 5,776,760
and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a
gene that encodes a glyphosate acetyltransferase enzyme as described, for example, in WO 2002/036782, WO 2003/092360, WO 2005/01 2515 and WO 2007/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the above-mentioned genes as described, for example, in WO 2001/024615 or WO 2003/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. US Patent Application Nos 11/51 7,991, 10/739,610, 12/1 39,408, 12/352,532, 11/31 2,866, 11/31 5,678, 12/421, 292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. US patent applications 11/588,811, 11/1 85,342, 12/364,724, 11/185,560 or 12/423,926.

Other herbicide-resistant plants are for example plants which have been made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition e.g. described in US Patent Application No 11/760,602. One such efficient detoxifying enzyme is, for example, an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species for example). Plants expressing an exogenous phosphinothricin acetyltransferase have been described, for example, in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,1 12,665.

Further herbicide-tolerant plants are also plants that have been made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme such as an HPPD enzyme from non-plant organisms, such as described in WO 2011/076877, WO 2011/076882, WO2011/076892, WO 2011/076885, WO2011/076889, or HPPD enzyme from a
monocot plant, such as Avena sativa or Zea mays, or having at least 98% sequence identity to an enzyme of Avena sativa or Zea mays, or an HPPD enzyme as described in WO/201/076885, WO201/076892, WO/201/076877, WO/201/076882, WO/201/076889, or a gene encoding a mutated or chimeric HPPD enzyme according to WO 1996/038567, WO 1999/024585 and WO 1999/024586 WO 2009/144079, WO 2002/046387, WO/201/068567, WO/201/085705, or US 6,768,044. Tolerance to HPPD inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding a prephenate dehydrogenase enzyme in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.

Further herbicide-resistant plants are plants that have been made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyl oxy(thio)benzoates, and/or sulfonylamino carbonyl triazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxy acid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described, for example, in Tranel and Wright, Weed Science (2002), 50, 700-712, and also in US 5,605,011, US 5,378,824, US 5,141,870 and US 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants has been described in US 5,605,011; US 5,013,659; US 5,141,870; US 5,767,361; US 5,731,180; US 5,304,732; US 4,761,373; US 5,331,107; US 5,928,937; and US 5,378,824; and also in the international publication WO 1996/033270. Further imidazolinone-tolerant plants have also been described, for example in WO 2004/040012, WO 2004/06529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants have also been described, for example in WO 2007/024782, and US Patent Application No 61/288958.
Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, by selection in cell cultures in the presence of the herbicide or by mutation breeding, as described, for example, for soybeans in US 5,084,082, for rice in WO 1997/41218, for sugar beet in US 5,773,702 and WO 1999/057965, for lettuce in US 5,198,599 or for sunflower in WO 2001/065922.

Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

In the present context, the term "insect-resistant transgenic plant" includes any plant containing at least one transgene comprising a coding sequence encoding:

1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins compiled by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, updated by Crickmore et al. (2005) in the Bacillus thuringiensis toxin nomenclature (online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, for example proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1F, Cry2Ab, Cry3Ae or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141 and WO2007/107302) or such proteins encoded by synthetic genes as described e.g.; in US Patent Application No 12/249,016 or

2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second crystal protein other than Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cy34 and Cy35 crystal proteins (Moellenbeck et al., Nat. Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environm. Microb. (2006), 71, 1765-774); or

3) a hybrid insecticidal protein comprising parts of two different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1)
above or a hybrid of the proteins of 2) above, for example the Cry1 A.1 05 protein produced by corn event MON98034 (WO 2007/027777); or

4) a protein of any one of points 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes induced in the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or

5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal proteins (VIPs) listed under the following link, for example proteins from the VIP3Aa protein class: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/vip.html or

6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 1994/21795); or

7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or

8) a protein of any one of points 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes induced in the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT 102.

Of course, insect-resistant transgenic plants, as used herein, also include any plant comprising a combination of genes encoding the proteins of any one of the above
In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 8, to expand the range of target insect species affected or to delay insect resistance development to the plants, by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.

Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stress factors. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress-tolerant plants include the following:

a. plants which contain a transgene capable of reducing the expression and/or the activity of the poly(ADP-ribose)polymerase (PARP) gene in the plant cells or plants, as described in WO 2000/004173 or EP 04077984.5 or EP 06009836.5;

b. plants which contain a stress tolerance-enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plant cells, as described, for example, in WO 2004/090140;
c. plants which contain a stress tolerance-enhancing transgene coding for a plant-functional enzyme of the nicotinamide adenine dinucleotide salvage biosynthesis pathway, including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase, as described, for example, in EP 04077624.7 or WO 2006/1 33827 or PCT/EP07/002433.

Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as, for example:

4) Transgenic plants or hybrid plants, such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in US Patent Appl. No. 12/020,360 and 61/054,026.

Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such altered fiber characteristics and include:

a) plants, such as cotton plants, which contain an altered form of cellulose synthase genes, as described in WO 1998/000549;
b) plants, such as cotton plants, which contain an altered form of rsw2 or rsw3 homologous nucleic acids, as described in WO 2004/05321 9;

c) plants, such as cotton plants, with an increased expression of sucrose phosphate synthase, as described in WO 2001/017333;

d) plants, such as cotton plants, with an increased expression of sucrose synthase, as described in WO 02/45485;

e) plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, for example through downregulation of fiber-selective β-1,3-glucanase, as described in WO 2005/0171 57;

f) plants, such as cotton plants, which have fibers with altered reactivity, for example through the expression of the N-acetylglucosaminetransferase gene including nodC and chitin synthase genes, as described in WO 2006/1 36351.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation imparting such altered oil characteristics and include:

a) plants, such as oilseed rape plants, which produce oil having a high oleic acid content, as described, for example, in US 5,969,1 69, US 5,840,946 or US 6,323,392 or US 6,063,947;

b) plants, such as oilseed rape plants, which produce oil having a low linolenic acid content, as described in US 6,270,828, US 6,1 69,1 90 or US 5,965,755;

c) plants, such as oilseed rape plants, which produce oil having a low level of saturated fatty acids, as described, for example, in US 5,434,283 or US Patent Application No 12/668303
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in US Patent Appl. No. 61/135,230, WO09/068313 and WO 0/006732.

Particularly useful transgenic plants which may be treated according to the invention are plants which comprise one or more genes which encode one or more toxins and are the transgenic plants available under the following trade names: YIELD GARD® (for example corn, cotton, soybeans), KnockOut® (for example corn), BiteGard® (for example corn), BT-Xtra® (for example corn), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (for example corn), Protecta®, Agrisure® (corn), Herculex® (corn), MaizeGard® (corn), MaxGard™ (corn), TwinLink® (cotton), VIPCot® (cotton), Widestrike™ (cotton) and NewLeaf® (potato). Examples of herbicide-tolerant plants which may be mentioned are corn varieties, cotton varieties and soybean varieties which are available under the following trade names: Roundup Ready® (tolerance to glyphosate, for example corn, cotton, soybeans), Glytol® (tolerance to glyphosate, cotton) Liberty Link® (tolerance to phosphinothricin, for example oilseed rape, cotton, soybean), IMI® (tolerance to imidazolinone), Optimum™ Gat™ (tolerance to sulfonylurea and glyphosate) and SCS® (tolerance to sulfonyleurea, for example corn) and Enlist™ (tolerance to 2,4-D and glyphosate).

Herbicide-resistant plants (plants bred in a conventional manner for herbicide tolerance) which may be mentioned include the varieties sold under the name Clearfield® (for example corn). Further transgenic plant varieties having improved characteristics are sold under trade names including InVigor® (canola), Amflora® (potatoes) Mavera® (corn). Varieties combining different events may be sold under tradenames including SmartStax®.
Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event 1143-14A (cotton, insect control, not deposited, described in WO2006/1 28569); Event 1143-51B (cotton, insect control, not deposited, described in WO2006/1 28570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US20021 20964 or WO2002/034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO201 0/1 17737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO201 0/1 17735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in WO2005/1 03266 or US2005216969); Event 3006-21 0-23 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in US20071 43876 or WO2005/1 03266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in WO2006098952 or US2006230473); Event 4041 6 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-1 1508, described in WO201 1/075593); Event 43A47 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-1 1509, described in WO201 1/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in WO201 0/07781 6); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US20061 62007 or WO2004053062); Event B16 (corn, herbicide tolerance, not deposited, described in US20031 26634); Event BPS-CV1 27-9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO201 0/080829); Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US200921 7423 or WO2006/1 28573); Event CE44-69D (cotton, insect control, not deposited, described in US201 00024077); Event CE44-69D (cotton, insect control, not deposited, described in WO2006/1 28571); Event CE46-02A (cotton, insect control, not deposited, described in WO2006/1 28572); Event COT1 02 (cotton, insect control, not deposited, described in US20061 301 75 or WO2004039986); Event COT202 (cotton, insect control, not deposited, described in US2007067868 or WO2005054479); Event COT203 (cotton, insect control, not deposited, described in WO2005/054480); Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-1 0244, described in WO201 1/022469); Event DAS-59122-7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA
11384, described in US2006070139; Event DAS-59132 (corn, insect control - herbicide tolerance, not deposited, described in WO2009/1001 88); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, described in WO2011/066384 or WO2011/066384); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US2009137395 or WO2008/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US2008312082 or WO2008/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US2009210970 or WO2009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as ATCC PTA-8287, described in US200100184079 or WO2008/002872); Event EE-1 (brinjal, insect control, not deposited, described in WO2007/091277); Event F11 17 (corn, herbicide tolerance, deposited as ATCC 209031, described in US2006059581 or WO1998/044140); Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US2005086791 or WO1998/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US2005188434 or WO1998/044140); Event GHB1 19 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in WO2008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US20010050282 or WO2007/017186); Event GJ1 1 (corn, herbicide tolerance, deposited as ATCC 209030, described in US2005188434 or WO1998/044140); Event GM RZ1 3 (sugar beet, virus resistance, deposited as NCIMB-41601, described in WO2010/076212); Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described in US2004172669 or WO2004/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US2008064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in WO2006/108674 or US200832061); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO2006/108675 or US2008196127); Event LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in WO2003013224 or US2003097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC-23352, described in US6468747 or WO2000/026345); Event LLRICE01 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US20082289060 or WO2000/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in
US2007028322 or WO2005061720; Event MIR1 62 (corn, insect control, deposited as PTA-8166, described in US2009300784 or WO2007/142840); Event MIR604 (corn, insect control, not deposited, described in US2008167456 or WO2005103301); Event MON1 5985 (cotton, insect control, deposited as ATCC PTA-2516, described in US2004-25031 7 or WO2002/100163); Event MON81 0 (corn, insect control, not deposited, described in US2002102582); Event MON863 (corn, insect control, deposited as ATCC PTA-2605, described in WO2004/011601 or US2006095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO2011/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in WO2009/111263 or US2011/0138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA-8194, described in US2009130071 or WO2009/064652); Event MON87705 (soybean, quality trait - herbicide tolerance, deposited as ATCC PTA-9241, described in US2011/0080887 or WO2011/0037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA9670, described in WO2011/034704); Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO2011/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA-8911, described in US2011/0067141 or WO2009/102873); Event MON8801 7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-5582, described in US2008028482 or WO2005/059103); Event MON8891 3 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in WO2004/072235 or US2006059590); Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO2007/140256 or US2008260932); Event MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US2006282915 or WO2006/130436); Event MS1 1 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO2001/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041558 or US2003188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US2007/292854); Event PE-7 (rice, insect control, not deposited, described in WO2008/114282); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO2001/041558 or US2003188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in
WO2002/036831 or US2008070260); Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in WO2002/44407 or US2009265817); Event T25 (corn, herbicide tolerance, not deposited, described in US2001029014 or WO2001/051654); Event T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171, described in US2001 0077501 or WO2008/122406); Event T342-142 (cotton, insect control, not deposited, described in WO2006/128568); Event TC1507 (corn, insect control - herbicide tolerance, not deposited, described in US2005039226 or WO2004/099447); Event VIP1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925., described in WO2003/052073), Event 32316 (corn, insect control-herbicide tolerance, deposited as PTA-11507, described in WO201 1/084632), Event 4114 (corn, insect control-herbicide tolerance, deposited as PTA-11506, described in WO201 1/084621).

The Compounds (A), preferably Compound (A1) to be used in accordance with the invention, either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators, can be converted to customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, granules for broadcasting, suspoemulsion concentrates, natural compounds impregnated with active ingredient, synthetic substances impregnated with active ingredient, fertilizers, and also microencapsulations in polymeric substances. In the context of the present invention, it is especially preferred when Compounds (A), preferably Compound (A1) are/is used in accordance with the invention, either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators are used in the form of a spray formulation.

The present invention therefore also relates to a spray formulation for increasing the yield of useful plants or crop plants with respect to their harvested plant organs. A spray formulation is described in detail hereinafter:
The formulations for spray application are produced in a known manner, for example by mixing Compounds (A), preferably Compound (A1) to be used in accordance with the invention, either alone or in combination with other agrochemical compounds, especially with those that are above defined as the preferred ones from the group consisting of fungicides, insecticides, and plant growth regulators invention with extenders, i.e. liquid solvents and/or solid carriers, optionally with use of surfactants, i.e. emulsifiers and/or dispersants and/or foam formers. Further customary additives, for example customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, stickers, gibberellins and also water, can optionally also be used. The formulations are prepared either in suitable equipment or else before or during application.

The auxiliaries used may be those substances which are suitable for imparting, to the composition itself and/or to preparations derived therefrom (for example spray liquors), particular properties such as particular technical properties and/or else special biological properties. Useful typical auxiliaries include: extenders, solvents and carriers.

Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and nonaromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which may optionally also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulfones and sulfoxides (such as dimethyl sulfoxide).

If the extender used is water, it is also possible to use, for example, organic solvents as auxiliary solvents. Useful liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and also their
ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl sulfoxide, and also water.

It is possible to use dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

Useful wetting agents which may be present in the formulations usable in accordance with the invention are all substances which promote wetting and which are conventionally used for the formulation of active agrochemical ingredients. Preference is given to using alkyl naphthalenesulfonates, such as diisopropyl or diisobutyl naphthalenesulfonates.

Useful dispersants and/or emulsifiers which may be present in the formulations usable in accordance with the invention are all nonionic, anionic and cationic dispersants conventionally used for the formulation of active agrochemical ingredients. Usable with preference are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants are especially ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers and tristryryl phenol polyglycol ether, and the phosphated or sulfated derivatives thereof. Suitable anionic dispersants are especially lignosulfonates, salts of polyacrylic acid and arylsulfonate/formaldehyde condensates.

Antifoams which may be present in the formulations usable in accordance with the invention are all foam-inhibiting substances conventionally used for the formulation of active agrochemical ingredients. Usable with preference are silicone antifoams and magnesium stearate.

Preservatives which may be present in the formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Examples include dichlorophene and benzyl alcohol hemiformal.
Secondary thickeners which may be present in the formulations usable in accordance with the invention are all substances usable for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.

Stickers which may be present in the formulations usable in accordance with the invention include all customary binders usable in seed-dressing products. Preferred examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.

Gibberellins which may be present in the formulations usable in accordance with the invention may preferably be gibberellins A1, A3 (= gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- und Schadlingsbekämpfungsmittel" [Chemistry of Crop Protection Compositions and Pesticides], vol. 2, Springer Verlag, 1970, p. 401 -412).

Further additives may be fragrances, mineral or vegetable, optionally modified oils, waxes and nutrients (including trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc. Additionally present may be stabilizers, such as cold stabilizers, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability.

The formulations contain generally between 0.01 and 98% by weight, preferably between 0.5 and 90%, of the compound of the formula (I).

In wettable powders, the active ingredient concentration is, for example, from about 10 to 90% by weight; the remainder to 100% by weight consists of customary formulation constituents. In the case of emulsifiable concentrates, the active ingredient concentration may be from about 1 to 90% by weight, preferably from 5 to 80% by weight. Dust-type formulations contain from 1 to 30% by weight of active ingredient, preferably usually from 5 to 20% by weight of active ingredient; sprayable solutions contain from about 0.05 to 80% by weight, preferably from 2 to 50% by weight of active ingredient. In water-dispersible granules, the active ingredient
content depends partly on whether the active compound is present in solid or liquid form and which granulation assistants, fillers, etc. are used. In the granules dispersible in water, the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.

The active ingredient when used according to present invention may be present in its commercially available formulations and in the use forms, prepared from these formulations, in a mixture with other active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals.

Preferred times for the application of compounds of the formula (I) for regulating plant growth are treatments of the soil, stems and/or leaves with the approved application rates.

Compounds(A), preferably Compound (A1), when used according to present invention, either solely or in combination with one or more above mentioned preferred agrochemical compounds, may generally additionally be present in their commercial formulations and in the use forms prepared from these formulations in mixtures with other active ingredients, such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulators, substances which influence plant maturity, safeners or herbicides. Particularly further suitable mixing partners are, for example, the active ingredients of the different classes, specified below in groups, without any preference resulting from the sequence thereof:

Bactericides:

bronopol, dichlorophen, nitrpyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulfate and other copper preparations.

Insecticides/acaricides/nematicides:
acetylcholine esterase (AChE) inhibitors, a) from the substance group of the carbamates, for example alanycarb, aldicarb, aldoxycarb, allyxycarb, aminocarb, bendiocarb, benfuracarb, bufencarb, butacarb, butocarboxim, boxyloxycarbamidom, carbaryl, carbofuran, carbosulfan, cloethocarb, dimetilan, ethiofencarb, fenobucarb, fenothiocarb, fenoxyvinphos, formetanate, furathiacarb, isoprocarb, metam-sodium, methkncarb, metrKnmyl, metolcarb, oxamyl, pirimicarb, prcnmecarb, propoxur, thiofanox, trimethacarb, XMC, xylcarb, triazamate, b) from the group of the organophosphates, for example acephate, azamethiphos, azinphos (-methyl, ethyl), bromoephos-ethyl, bromfenvinfos (-methyl), butathiofos, cadusafos, carbofuran, chlorfenvinphos, cyanophos, isazofos, isofenphos, isopropyl O-salicylate, isoxathion, malathion, mecarbam, methacrifos, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion (-methyl/-ethyl), phenthoate, phorate, phosalone, phosmet, phosphamidon, phosphocarb, phoxim, pirimiphos (-methyl/-ethyl), profenofos, propaphos, propetamphos, prothiofos, pyractofos, pyridaphenthion, pyridathion, quinalphos, sebufos, sulfotep, sulprofos, tebupirimfos, temephas, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon, vanidothion

sodium channel modulators / voltage-dependent sodium channel blockers, a) from the group of the pyrethroids, for example acrinathrin, allethrin (d-cis-trans, d-trans), beta-cyfluthrin, bifenthrin, bioallethrin, bioallethrin-S-cyclohexyl isomer, bioethanomethrin, bipermethrin, bioresmethrin, chlovaporthrin, cis-cypermethrin, cis-resmethrin, cis-permethrin, clocythrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin (alpha-, beta-, theta-, zeta-), cyphenothin, efusilanate, empenthin (1R isomer), esfenvalerate, etofenprox, fenfluthrin, fenpropathrin, fenpyrithrin, fenvalerate, flubrocychrinate, flucythrinate, flufenprox, flumethrin, fluvalinate, fubfenprox, gamma-cyhalothrin, imiprothrin, kadethrin, lambda-cyhalothrin, metofluthrin, permethrin (cis-, trans-), phenothrin (1R-trans isomer), prallethrin,
profluthrin, protifenbute, pyresmethrin, pyrethrin, resmethrin, RU 15525, silafluofen, tau-fluvalinate, tefluthrin, terallethrin, tetramethrin (1R isomer), tralomethrin, transfluthrin, ZXI 8901, pyrethrins (pyrethrum), b) DDT, c) oxadiazines, for example indoxacarb, d) semicarbazones, for example metaflumizone (BAS3201)

13) acetylcholine receptor agonists/antagonists, a) from the group of the chloronicotinyls, for example acetamiprid, AKD 1022, dinofuran, imidathion, nitramprop, nithiazine, thiacloprid, b) nicotine, bensultap, cartap;

14) acetylcholine receptor modulators from the group of the spinosyns,

15) GABA-controlled chloride channel antagonists, a) from the group of the organochlorines, for example camphechlor, chlorodane, endosulfan, gamma-HCH, HCH, heptachlor, lindane, methoxychlor, b) fiproles, for example acetoprole, pyrafluprole, pyriprole, vaniliprole;

16) chloride channel activators, for example emamectin, ivermectin, lepimectin, milbemycin;

17) juvenile hormone mimetics, for example diofenolan, epifenone, fenoxycarb, hydrophene, kinoprene, methoprene, pyriproxifen, triprene;

18) ecdysone agonists/disruptors, for example chromafenozide, halofenozide, methoxyfenozide, tebufenozide;

19) chitin biosynthesis inhibitors, for example bistrifluron, chlofluanuron, diflubenzuron, fluauran, flucyloxuron, flufenoxuron, hexaflumuron, novaluron, noviflumuron, penfluron, teflubenzuron, buprofezin, cyromazine;

20) inhibitors of oxidative phosphorylation, a) ATP disruptors, for example diafenthiuron, b) organotin compounds, for example azocyclotin, cyhexatin, fenbutatin oxide;
1) decouplers of oxidative phosphorylation by interruption of the H-proton gradient, a) from the group of the pyrroles, for example chlorofenapyr, b) from the class of the dinitrophenols, for example binapacyrl, dinobuton, dinocap, DNOC, meptyldinocap;

2) site I electron transport inhibitors, for example METIs, especially, as examples, fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolenpyrad or else hydramethylnon, dicofol

3) site II electron transport inhibitors, for example rotenone

4) site III electron transport inhibitors, for example acequinocyl, fluacrypyrim

5) microbial disruptors of the insect gut membrane, for example Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT plant proteins, for example Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1

6) lipid synthesis inhibitors, a) from the group of the tetronic acids, for example spirodiclofen, spiromesifen, b) from the class of the tetramic acids, for example spirotetramat, cis-3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1-azaspiro[4.5]dec-3-en-2-one

7) octopaminergic agonists, for example amitraz

8) inhibitors of magnesium-stimulated ATPase, for example propargite

9) nereistoxin analogs, for example thiocyclam hydrogen oxalate, thiosultap-sodium

10) ryanodine receptor agonists, a) from the group of the benzenedicarboxamides, b) from the group of the anthranilamides, 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-
carboxamide (known from WO2005/077934) or methyl 2-[3,5-dibromo-2-([3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl)amino]benzoyl]-1,2-dimethylhydrazinecarboxylate (known from WO2007/043677)

for example azadirachtin, Bacillus spec, Beauveria spec, codlemone, Metarrhizium spec, Paecilomyces spec, thuringiensin, Verticillium spec.

I22) active ingredients with unknown or nonspecific mechanisms of action, a)

fumigants, for example aluminum phosphide, methyl bromide, sulfuryl fluoride, b)

antifeedants, for example cryolite, flonicamide, pymetrozine, c) mite growth inhibitors, for example clofentezine, etoxazole, hexythiazox, d) amidoflumet, benclothiaz, benzoaximate, bifenazate, bromopropylate, buprofezin, chinomethionat, chlorodimeform, chlorobenzilate, chloropicrin, clothiazoben, cycloprene, cyflumetofen, dicyclanil, fenoxacrim, fentrifanil, flubenizimine, flufenerim, flutenzin, gossypure, hydramethylnone, japonilure, metoxadiazone, petroleum, piperonyl butoxide, potassium oleate, pyridalyl, sulfluramid, tetradifon, tetrasul, triarathene, verbutin and the following known active compounds: 4-{{[6-bromopyrid-3-yl]methyl}[2-fluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15644), 4-{{[6-fluoropyrid-3-yl]methyl}[2,2-difluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15644), 4-{{[2-chloro-1,3-thiazol-5-yl]methyl}[2-fluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15644), 4-{{[6-chloropyrid-3-yl]methyl}[2-fluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15644), 4-{{[6-chloropyrid-3-yl]methyl}[2,2-difluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15644), 4-{{[5,6-dichloropyrid-3-yl]methyl}[2-fluoroethyl]amino}furan-2(5H)-one (known from WO 2007/1 15643), 4-{{[6-chloropyrid-3-yl]methyl}[cyclopropyl]amino}furan-2(5H)-one (known from WO 2007/1 15643), 4-{{[6-chloropyrid-3-yl]methyl}[cyclopropyl]amino}furan-2(5H)-one (known from EP0539588), 4-{{[6-chloropyrid-3-yl]methyl}[methyl]amino}furan-2(5H)-one (known from EP0539588), [1-(6-chloropyridin-3-yl)ethyl][methyl]oxido-A4-sulfanylidene-cyanamide (known from WO 2007/1491 34) and the diastereomers thereof: \[((1\, R)-1-(6-chloropyridin-3-yl)eth)-1(6-chloropyridin-3-yl)eth]-methyl]}methyl]oxido-lambda6-
sulfanylidene)cyanamide and [(1 S)-1 -(6-chloropyridin-3-yl)ethyl](methyl)oxido-
lambda6-sulfanylidene)cyanannide (likewise known from WO 2007/1491 34) and 1-[2-
fluoro-4-methyl-5-[(2,2,2-trifluoroeto yl)sulfanyl][phenyl]-3-(trifluoromethyl)-1H-1,2,4-
triazol-5-amine (known from WO 2006/043635), [(3S,4aR,12R,1 2aS,1 2bS)-3-
[(cyclopropylcarbonyloxy)-6,1 2-dihydroxy-4,1 2b-dimethyl-1 1-oxo-9-(pyridin-3-yl)-
1,3,4,4a,5,6,6a,1 2,1 2a,12b-decahydro-2H,1 1H-benzo[f]pyrano[4,3-b]chromen-4-
yl]methyl cyclopropane-carboxylate (known from WO 2006/1 29714), 2-cyano-3-
(difluoromethoxy)-N,N-dimethylbenzenesulfonamide (known from WO2006/056433),
2-cyano-3-(difluoromethoxy)-N-methylbenzenesulfonamide (known from
WO2006/1 00288), 2-cyano-3-(difluoromethoxy)-N-ethylbenzenesulfonamide (known from
WO2005/035486), 4-(difluoromethoxy)-N-ethyl-N-methyl-1 ,2-benzothiazole-3-
amine 1,1-dioxide (known from WO2007/057407), N-[1 -(2,3-dimethylphenyl)-2-(3,5-
dimethylphenyl)ethyl]-4,5-dihydro-1 ,3-thiazole-2-amine (known from
WO2008/1 04503), (1`-[2E]-3-(4-chlorophenyl)prop-2-en-1 -yl]-5-fluorospiro[indole-
3,4`-piperidin]-1 (2H)-yl](2-chloropyridin-4-yl)methanone (known from
WO20031 06457), 3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1 ,8-
diazaspiro[4.5]dec-3-en-2-one (known from WO2009049851), 3-(2,5-
dimethylphenyl)-8-methoxy-2-oxo-1 ,8-diazaspiro[4.5]dec-3-en-4-y1 ethyl carbonate
(known from WO2009049851), 4-(but-2-yn-1 -yloxy)-6-(3,5-dimethylpiperidin-1 -yl)-5-
fluoropyrimidine (known from WO200409991 60), (2,2,3,3,4,4,5,5-
octafluoropentyl)(3,3,3-trifluoropropyl)malononitrile (known from WO2005063094),
(2,2,3,3,4,4,5,5-octafluoropentyl)(3,3,4,4,4-pentafluorobutyl)malononitrile (known
from WO2005063094), 8-[2-(cyclopropylmethoxy)-4-(trifluoromethyl)phenoxy]-3-[6-
(trifluoromethyl)pyridazin-3-yl]-3-azabicyclo[3.2.1]octane (known from
WO2007040280 / 282), 2-ethyl-7-methoxy-3-methyl-6-[(2,2,3,3-tetrafluoro-2,3-
dihydro-1 ,4-benzodioxin-6-yl)oxy]quinolin-4-yl methyl carbonate (known from
JP20081 10953), 2-ethyl-7-methoxy-3-methyl-6-[(2,2,3,3-tetrafluoro-2,3-dihydro-1 ,4-
benzodioxin-6-yl)oxy]quinolin-4-yl acetate (known from JP20081 10953), PF1 364
(Chemical Abstracts No. 1204776-60-2, known from JP201 001 8586), 5-[5-(3,5-
dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-2-(1 H-1 ,2,4-triazol-1-
yl)benzonitrile (known from WO2007075459), 5-[5-(2-chloropyridin-4-yl)-5-(trifluoromethyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-2-(1 H-1 ,2,4-triazol-1 -yl)benzonitrile (known from WO2007075459), 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-
dihydro-1,2-oxazol-3-yl]-2-methyl-N-{2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl}benzamide (known from WO20050852 16).

Safeners are preferably selected from the group consisting of:

5 S1) compounds of the formula (S1)

\[\text{(S1)} \]

where the symbols and indices are each defined as follows:

10 \(n_A \) is a natural number from 0 to 5, preferably 0 to 3;
\(R_{A1}^{1} \) is halogen, (Cl-C4)-alkyl, (Cl-C4)-alkoxy, nitro or (Cl-C4)-haloalkyl;
\((W_A^1) \), \((W_A^2) \), \((W_A^3) \), \((W_A^4) \)

WA is an unsubstituted or substituted divalent heterocyclic radical from the group consisting of partially unsaturated or aromatic five-membered heterocycles having 1 to 3 hetero ring atoms from the group of N and O, where at least one nitrogen atom and at most one oxygen atom is present in the ring, preferably a radical from the group consisting of \((W_A^1) \) to \((W_A^4) \),

15 \(m_A \) is 0 or 1;
\(R_{A2}^{2} \) is ORA3, SRA3 or NRA3RA4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one nitrogen atom and up to 3 heteroatoms, preferably from the group consisting of O and S, which is attached via the nitrogen atom to the carbonyl group in (S1) and which is unsubstituted or substituted by radicals from the group consisting of (Cl-C4)-alkyl, (Cl-C4)-alkoxy and optionally substituted phenyl, preferably a radical of the formula ORA3, NHRA4 or \(N(CH_3)_2 \), in particular of the formula ORA3;
RA\(^3\) is hydrogen or an unsubstituted or substituted aliphatic hydrocarbyl radical, preferably having a total of 1 to 18 carbon atoms;

RA\(^4\) is hydrogen, (Ci-C\(_6\))-alkyl, (Ci-C\(_6\))-alkoxy or substituted or unsubstituted phenyl;

RA\(^5\) is H, (Ci-C\(_g\))-alkyl, (Ci-C\(_g\))-haloalkyl, (Ci-C\(_4\))-alkoxy-(Ci-C\(_g\))-alkyl, cyano or COORA\(^9\) where RA\(^9\) is hydrogen, (Ci-C\(_g\))-alkyl, (Ci-Cs)-haloalkyl, (Ci-C\(_4\))-alkoxy-(Ci-C\(_4\))-alkyl, (Ci-C\(_6\))-hydroxyalkyl, (C\(_3\)-Ci2)-cycloalkyl or tri-(Ci-C\(_4\))-alkylsilyl;

RA\(^6\), RA\(^7\), RA\(^8\) are the same or different and are each hydrogen, (Ci-Cs)-alkyl, (Ci-C\(_g\))-haloalkyl, (C\(_3\)-Ci2)-cycloalkyl or substituted or unsubstituted phenyl;

preferably:

a) compounds of the type of the dichlorophenylpyrazoline-3-carboxylic acid (S1\(^a\)), preferably compounds such as 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, ethyl 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylate (S1 -1) ("mefenpyr-diethyl"), and related compounds, as described in WO-A-91/07874;

b) derivatives of dichlorophenylpyrazolecarboxylic acid (S1\(^b\)), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (S1 -2), ethyl 1-(2,4-dichlorophenyl)-5-isopropylpyrazole-3-carboxylate (S1 -3), ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethylethyl)pyrazole-3-carboxylate (S1 -4) and related compounds, as described in EP-A-333 131 and EP-A-269 806;

c) derivatives of 1,5-diphenylpyrazole-3-carboxylic acid (S1\(^c\)), preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylate (S1 -5), methyl 1-(2-chlorophenyl)-5-phenylpyrazole-3-carboxylate (S1 -6) and related compounds, as described, for example, in EP-A-268554;

d) compounds of the triazolecarboxylic acid type (S1\(^d\)), preferably compounds such as fenchlorazole(-ethyl), i.e. ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3-carboxylate
(S1-7), and related compounds as described in EP-A-1 74 562 and EP-A-346 620;
e) compounds of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or of the 5,5-diphenyl-2-isoxazoline-3-carboxylic acid type (S1-5), preferably compounds such as ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3-carboxylate (S1-8) or ethyl 5-phenyl-2-isoxazoline-3-carboxylate (S1-9) and related compounds as described in WO-A-91/08202, or 5,5-diphenyl-2-isoxazolinecarboxylic acid (S1-10) or ethyl 5,5-diphenyl-2-isoxazoline-3-carboxylate (S1-11) ("isoxadifen-ethyl") or n-propyl 5,5-diphenyl-2-isoxazoline-3-carboxylate (S1-12) or ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (S1-13), as described in patent application WO-A-95/07897.

S2) Quinoline derivatives of the formula (S2),

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{T}_B \\
\text{R}_B^2
\end{array}
\]

where the symbols and indices are each defined as follows:

- \(R_B^1 \) is halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, nitro or (C1-C4)-haloalkyl;
- \(n_B \) is a natural number from 0 to 5, preferably 0 to 3;
- \(R_B^2 \) is OR3, SR3 or NRB3RB4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one nitrogen atom and up to 3 heteroatoms, preferably from the group consisting of O and S, which is attached via the nitrogen atom to the carbonyl group in (S2) and which is unsubstituted or substituted by radicals from the group consisting of (C1-C4)-alkyl, (C1-C4)-alkoxy and optionally substituted phenyl, preferably a radical of the formula OR3, NH2 or N(CH3)2, in particular of the formula OR3;
- \(R_B^3 \) is hydrogen or an unsubstituted or substituted aliphatic hydrocarbyl radical, preferably having a total of 1 to 18 carbon atoms;
- \(R_B^4 \) is hydrogen, (C1-C6)-alkyl, (C1-Ce)-alkoxy or substituted or unsubstituted phenyl;

T_B is a (Ci- or C2)-alkanediyl chain which is unsubstituted or substituted by one or two (Ci-C4)-alkyl radicals or by [(Ci-C3)-alkoxy]carbonyl;

preferably:

5 a) compounds of the 8-quinolinoxyacetic acid type (S2a), preferably
1-methylhexyl (5-chloro-8-quinolinoxy)acetate ("cloquintocet-mexyl") (S2-1),
1,3-dimethylbut-1-yl (5-chloro-8-quinolinoxy)acetate (S2-2),
4-allyloxybutyl (5-chloro-8-quinolinoxy)acetate (S2-3),
1-allyloxyprop-2-yl (5-chloro-8-quinolinoxy)acetate (S2-4),

10 ethyl (5-chloro-8-quinolinoxy)acetate (S2-5),
methyl (5-chloro-8-quinolinoxy)acetate (S2-6),
allyl (5-chloro-8-quinolinoxy)acetate (S2-7),
2-(2-propylideneiminoxy)-1-ethyl (5-chloro-8-quinolinoxy)acetate (S2-8),
2-oxoprop-1-yl (5-chloro-8-quinolinoxy)acetate (S2-9) and related compounds,

15 b) compounds of the (5-chloro-8-quinolinoxy)malonic acid type (S2b), preferably compounds such as diethyl (5-chloro-8-quinolinoxy)malonate, diallyl (5-chloro-8-quinolinoxy)malonate, methyl ethyl (5-chloro-8-quinolinoxy)malonate and related compounds as described in EP-A-0 582 198.

20 Compounds of the formula (S3)

\[
\begin{align*}
\text{S3)} & \quad \text{Compounds of the formula (S3)} \\
\text{where the symbols and indices are each defined as follows:}
\end{align*}
\]
Rc1 is (C\textsubscript{i}-C\textsubscript{4})-alkyl, (C\textsubscript{i}-C\textsubscript{4})-haloalkyl, (C\textsubscript{2}-C\textsubscript{4})-alkenyl, (C\textsubscript{2}-C\textsubscript{4})-haloalkenyl, (C\textsubscript{3}-C\textsubscript{7})-cycloalkyl, preferably dichloromethyl;

Rc2, Rc3 are the same or different and are each hydrogen, (C\textsubscript{i}-C\textsubscript{4})-alkyl, (C\textsubscript{2}-C\textsubscript{4})-alkenyl, (C\textsubscript{i}-C\textsubscript{4})-haloalkyl, (C\textsubscript{2}-C\textsubscript{4})-haloalkenyl, (C\textsubscript{i}-C\textsubscript{4})-alkylcarbamoyl-(C\textsubscript{i}-C\textsubscript{4})-alkyl, (C\textsubscript{2}-C\textsubscript{4})-alkenylcarbamoyl-(C\textsubscript{i}-C\textsubscript{4})-alkyl, (C\textsubscript{i}-C\textsubscript{4})-alkoxy-(C\textsubscript{i}-C\textsubscript{4})-alkyl, dioxolanyl-(C\textsubscript{i}-C\textsubscript{4})-alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or Rc2 and Rc3 together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benoxazine ring; preferably: active ingredients of the dichloroacetamide type, which are frequently used as pre-emergence safeners (soil-acting safeners), for example: "dichlormid" (N,N-diallyl-2,2-dichloroacetamide) (S3-1), "R-29148" (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2-dimethyl-1,3-oxazolidine) from Stauffer (S3-3), "benoxacor" (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1 ,4-benzoazaine) (S3-4), "PPG-1 292" (N-allyl-N-[(1,3-dioxolan-2-yl)methyl]dichloroacetamide) from PPG Industries (S3-5), "DKA-24" (N-allyl-N-[(allylaminocarbonyl)methyl]dichloroacetamide) from Sagro-Chem (S3-6), "AD-67" or "MON 4660" (3-dichloroacetyl-1-oxa-3-azaspiro[4,5]decane) from Nitrokemia or Monsanto (S3-7), "TI-35" (1-dichloroacetyllazepane) from TRI-Chemical RT (S3-8), "diclonon" (dicyclonone) or "BAS1451 38" or "LAB1451 38" (S3-9) ((RS)-1-dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-one) from BASF, "furilazole" or "MON 13900" ((RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine) (S3-10); and the (R) isomer thereof (S3-11).

S4) N-Acylsulfonamides of the formula (S4) and salts thereof, provided that they are different from the Compound (A) applied according to the invention use or method of using,
where the symbols and indices are each defined as follows:

\[X_D \text{ is } \text{C} \text{ or } \text{N}; \]
\[R_D^1 \text{ is CO-N } R_D^5 \text{ or N HCO-RD } 7; \]
\[R_D^2 \text{ is halogen, } (\text{C}_4-\text{C}_4)-\text{haloalkyl, } (\text{C}_4-\text{C}_4)-\text{haloalkoxy, } \text{nitro, } (\text{C}_4-\text{C}_4)-\text{alkyl, } (\text{C}_4-\text{C}_4)-\text{alkoxy, } (\text{C}_4-\text{C}_4)-\text{alkylsulfonyl, } (\text{C}_4-\text{C}_4)-\text{alkoxycarbonyl or } (\text{C}_4-\text{C}_4)-\text{alkylcarbonyl; } \]
\[R_D^3 \text{ is hydrogen, } (\text{C}_4-\text{C}_4)-\text{alkyl, } (\text{C}_2-\text{C}_4)-\text{alkenyl or } (\text{C}_2-\text{C}_4)-\text{alkynyl; } \]
\[R_D^4 \text{ is halogen, nitro, } (\text{C}_4-\text{C}_4)-\text{alkyl, } (\text{C}_4-\text{C}_4)-\text{haloalkyl, } (\text{C}_4-\text{C}_4)-\text{haloalkoxy, } (\text{C}_3-\text{C}_6)-\text{cycloalkyl, phenyl, } (\text{C}_4-\text{C}_4)-\text{alkoxy, } \text{cyano, } (\text{C}_4-\text{C}_4)-\text{alkylthio, } (\text{C}_4-\text{C}_4)-\text{alkylsulfanyl, } (\text{C}_4-\text{C}_4)-\text{alkoxycarbonyl or } (\text{C}_4-\text{C}_4)-\text{alkylcarbonyl; } \]
\[R_D^5 \text{ is hydrogen, } (\text{C}_6-\text{C}_6)-\text{alkyl, } (\text{C}_3-\text{C}_6)-\text{cycloalkyl, } (\text{C}_2-\text{C}_6)-\text{alkenyl, } (\text{C}_2-\text{C}_6)-\text{alkynyl, } (\text{C}_5-\text{C}_6)-\text{cycloalkenyl, phenyl or } 3\text{-to } 6\text{-membered heterocycl containing } V_D \text{ heteroatoms from the group of nitrogen, oxygen and sulfur, where the seven latter radicals are substituted by } V_D \text{ substituents from the group of halogen, } (\text{C}_6-\text{C}_6)-\text{alkoxy, } (\text{C}_6-\text{C}_6)-\text{haloalkoxy, } (\text{C}_2-\text{C}_2)-\text{alkylsulfanyl, } (\text{C}_2-\text{C}_2)-\text{alkylsulfonyl, } (\text{C}_3-\text{C}_6)-\text{cycloalkyl, } (\text{C}_4-\text{C}_4)-\text{alkoxycarbonyl, } (\text{C}_4-\text{C}_4)-\text{alkylcarbonyl and phenyl, and in the case of cyclic radicals also } (\text{C}_4-\text{C}_4)-\text{alkyl and } (\text{C}_4-\text{C}_4)-\text{haloalkyl; } \]
\[R_D^6 \text{ is hydrogen, } (\text{C}_6-\text{C}_6)-\text{alkyl, } (\text{C}_2-\text{C}_6)-\text{alkenyl or } (\text{C}_2-\text{C}_6)-\text{alkynyl, where the three latter radicals are substituted by } V_D \text{ radicals from the group consisting of halogen, hydroxy, } (\text{C}_4-\text{C}_4)-\text{alkyl, } (\text{C}_4-\text{C}_4)-\text{alkoxy and } (\text{C}_4-\text{C}_4)-\text{alkylthio, or } R_D^5 \text{ and } R_D^6 \text{ together with the nitrogen atom bearing them form a pyrrolidinyl or piperidinyl radical; } \]
\[R_D^7 \text{ is hydrogen, } (\text{C}_4-\text{C}_4)-\text{alkylamino, } \text{di-(C}_4-\text{C}_4)-\text{alkylamino, } (\text{C}_6-\text{C}_6)-\text{alkyl, } (\text{C}_3-\text{C}_6)-\text{cycloalkyl, where the 2 latter radicals are substituted by } V_D \text{ substituents from the group of halogen, } (\text{C}_4-\text{C}_4)-\text{alkoxy, } (\text{C}_6-\text{C}_6)-\text{haloalkoxy and } (\text{C}_4-\text{C}_4)-\text{alkylthio, and in the case of cyclic radicals also } (\text{C}_4-\text{C}_4)-\text{alkyl and } (\text{C}_4-\text{C}_4)-\text{haloalkyl; } \]
\[n_D \text{ is } 0, 1 \text{ or } 2; \]
\[nri_D \text{ is } 1 \text{ or } 2; \]
νD is 0, 1, 2 or 3;

among these, preference is given to compounds of the N-acylsulfonamide type, for example of the formula (S4a) below, which are known, for example, from WO-A-97/4501 6

![Chemical Structure](S4a)

in which

RD⁷ is (Ci-C₆)-alkyl, (Ci-C₆)-cycloalkyl, where the 2 latter radicals are substituted by νD substituents from the group consisting of halogen, (Ci-C₄)-alkoxy, (Ci-C₆)-haloalkoxy and (Ci-C₄)-alkylthio and, in the case of cyclic radicals, also (Ci-C₄)-alkyl and (Ci-C₄)-haloalkyl;

RD⁴ is halogen, (Ci-C₄)-alkyl, (Ci-C₄)-alkoxy, CF₃;

mD is 1 or 2;

νD is 0, 1, 2 or 3;

and also to acylsulfamoylbenzannides, for example of the formula (S4b) below, which are known, for example, from WO-A-99/1 6744,

![Chemical Structure](S4b)

for example those in which

RD⁵ = cyclopropyl and (RD⁴) = 5-Cl-2-OMe (S4-2),

RD⁵ = ethyl and (RD⁴) = 2-OMe (S4-3),

RD⁵ = isopropyl and (RD⁴) = 5-Cl-2-OMe (S4-4) and

RD⁵ = isopropyl and (RD⁴) = 2-OMe (S4-5);
and to compounds of the N-acylsulfamoylphenylurea type, of the formula (S4), which are known, for example, from EP-A-365484,

\[\text{(S4)} \]

\[\begin{align*} \text{R}_D^8 & \quad\text{R}_D^9 \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{S} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{(R}_D^4 \text{)}_{mD} \\
\end{align*} \]

in which:
\(\text{R}_D^8 \) and \(\text{R}_D^9 \) are each independently hydrogen, (C1-C8)-alkyl, (C3-C8)-cycloalkyl, (C3-C6)-alkenyl, (C3-C6)-alkynyl,
\(\text{R}_D^4 \) is halogen, (C1-C4)-alkyl, (C1-C4)-alkoxy, CF₃,
\(m_D \) is 1 or 2;

for example
1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methylurea,
1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylurea,
1-[4-(N-4,5-dimethylbenzoylsulfamoyl)phenyl]-3-methylurea.

S5) Active ingredients from the class of the hydroxyaromatics and the aromatic-aliphatic carboxylic acid derivatives (S5), for example ethyl 3,4,5-triacetoxybenzoate, 3,5-dimethoxy-4-hydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 4-hydroxysalicylic acid, 4-fluorosalicylic acid, 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.

S6) Active ingredients from the class of the 1,2-dihydroquinoxalin-2-ones (S6), for example 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, 1-methyl-3-(2-thienyl)-1,2-dihydroquinoxaline-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one hydrochloride, 1-(2-methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydroquinoxalin-2-one, as described in WO-A-2005/12630.

S7) Compounds of the formula (S7), as described in WO-A-1998/38856,
where the symbols and indices are each defined as follows:

\(\text{RE}_1, \text{RE}_2 \) are each independently halogen, \((\text{C}_i-\text{C}_4)\text{alkyl}, (\text{C}_i-\text{C}_4)\text{alkoxy}, (\text{C}_i-\text{C}_4)\text{haloalkyl}, (\text{C}_i-\text{C}_4)\text{alkylamino}, \text{di-}(\text{C}_i-\text{C}_4)\text{alkylamino}, \text{nitro}; \)

\(\text{AE} \) is \(\text{COORE}_3 \) or \(\text{COSRE}_4 \)

\(\text{RE}_3, \text{RE}_4 \) are each independently hydrogen, \((\text{C}_i-\text{C}_4)\text{alkyl}, (\text{C}_2-\text{C}_6)\text{alkenyl}, (\text{C}_2-\text{C}_4)\text{alkynyl}, \text{cyanoalkyl}, (\text{C}_i-\text{C}_4)\text{haloalkyl}, \text{phenyl}, \text{nitrophenyl}, \text{benzyl}, \text{halobenzyl}, \text{pyridinylalkyl} \) and \(\text{alkylammonium} \),

\(n_{\text{E}1} \) is \(0 \) or \(1 \);

\(n_{\text{E}2}, n_{\text{E}3} \) are each independently \(0, 1 \) or \(2 \),

preferably \(\text{diphenylmethoxyacetic acid}, \text{ethyl diphenylmethoxyacetate}, \text{methyl diphenylmethoxyacetate} \) (CAS reg. no. 41858-1 9-9) (S7-1).

\(\text{S8) Compounds of the formula (S8), as described in WO-A-98/27049,} \)

\(\text{X}_F \) is \(\text{CH} \) or \(\text{N} \),

\(n_F \) if \(\text{XF}=\text{N} \) is an integer from 0 to 4 and
if \(\text{XF}=\text{CH} \) is an integer from 0 to 5,

\(\text{RF}_1 \) is halogen, \((\text{C}_i-\text{C}_4)\text{-alkyl}, (\text{C}_i-\text{C}_4)\text{-haloalkyl}, (\text{C}_i-\text{C}_4)\text{-alkoxy}, (\text{C}_i-\text{C}_4)\text{-haloalkoxy}, \text{nitro}, (\text{C}_i-\text{C}_4)\text{-alkylthio}, (\text{C}_i-\text{C}_4)\text{-alkylsulfonyl}, (\text{C}_i-\text{C}_4)\text{-alkoxycarbonyl}, \text{optionally substituted phenyl}, \text{optionally substituted phenoxy}, (\text{C}_i-\text{C}_4)\text{-alkyl} \),

\(\text{RF}_2 \) is hydrogen or \((\text{C}_i-\text{C}_4)\text{-alkyl}, \)
R_F^3 is hydrogen, (Ci-C8)-alkyl, (C2-C_4)-alkenyl, (C2-C_4)-alkynyl or aryl, where each of the carbon-containing radicals mentioned above is unsubstituted or substituted by one or more, preferably by up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof, preferably compounds in which

XF is CH,
riF is an integer from 0 to 2,
RF^1 is halogen, (Ci-C_4)-alkyl, (Ci-C_4)-haloalkyl, (Ci-C_4)-alkoxy, (Ci-C_4)-haloalkoxy,
RF^2 is hydrogen or (Ci-C_4)-alkyl,
RF^3 is hydrogen, (Ci-C8)-alkyl, (C2-C_4)-alkenyl, (C2-C_4)-alkynyl or aryl, where each of the aforementioned carbon-containing radicals is unsubstituted or substituted by one or more, preferably by up to three, identical or different radicals from the group consisting of halogen and alkoxy; or salts thereof.

S9) Active ingredients from the class of the 3-(5-tetrazolylcarbonyl)-2-quinolones (S9), for example 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS reg. no.: 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolylcarbonyl)-2-quinolone (CAS reg. no.: 95855-00-8), as described in WO-A-1999/00020.

S10) Compounds of the formula (S1 0^a) or (S1 0^b) as described in WO-A-2007/023719 and WO-A-2007/023764

\[
\begin{align*}
&S1\text{ 0}^a) \\
&\begin{array}{c}
\text{(R_G)}_n \quad \text{N} \quad \text{S} \\
&\text{Y}_G \quad \text{R}_G^2
\end{array}
\end{align*}
\]

in which

RG^1 is halogen, (Ci-C_4)-alkyl, methoxy, nitro, cyano, CF3, OCF3
Yₜ, Zcare each independently 0 or S,

\(n_G \) is an integer from 0 to 4,

\(R_G \) is (Ci-Ci₆)-alkyl, (C2-C6)-alkenyl, (C3-C6)-cycloalkyl, aryl; benzyl, halobenzyl,

\(R_G \) is hydrogen or (Ci-Ce)-alkyl.

5

S11) Active ingredients of the oxyimino compound type (S1 1), which are known as seed-dressing compositions, for example "oxabetrinil" ((Z)-1,3-dioxolan-2-yl-methoxyimino(phenyl)acetonitrile) (S1 1-1), which is known as a seed-dressing safener for millet against damage by metolachlor, "fluxofenim" (1-(4-chlorophenyl)-2,2,2-trifluoro-1-ethanone O-(1,3-dioxolan-2-ylmethyl) oxime) (S1 1-2), which is known as a seed-dressing safener for millet against damage by metolachlor, and "cyometrinil" or "CGA-43089" ((Z)-cyanomethoxyimino(phenyl)acetonitrile) (S1 1-3), which is known as a seed-dressing safener for millet against damage by metolachlor.

10

S12) Active ingredients from the class of the isothiochromanones (S1 2), for example methyl [(3-oxo-1 H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS reg. no.: 205121-04-6) (S1 2-1) and related compounds from WO-A-1998/1 3361.

20

S13) One or more compounds from group (S1 3): "naphthalic anhydride" (1,8-naphthalenedicarboxylic anhydride) (S1 3-1), which is known as a seed-dressing safener for corn against damage by thiocarbamate herbicides, "fenclorim" (4,6-dichloro-2-phenylpyrimidine) (S1 3-2), which is known as a safener for pretilachlor in sown rice, "flurazole" (benzyl 2-chloro-4-trifluoromethyl-1,3-thiazole-5-carboxylate) (S1 3-3), which is known as a seed-dressing safener for millet against damage by alachlor and metolachlor, "CL 30441 5" (CAS reg. no. 31541-57-8) (4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) (S1 3-4) from American Cyanamid, which is known as a safener for corn against damage by imidazolinones, "MG 191" (CAS reg. no. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S1 3-5) from Nitrokemia, which is known as a safener for corn, "MG-838" (CAS reg. no. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioate) (S1 3-6) from
Nitrokemia, "disulfoton" (O,O-diethyl S-2-ethylthioethyl phosphorodithioate) (S1 3-7), "dietholate" (O.O-diethyl O-phenylphosphorothioate) (S1 3-8), "mephenate" (4-chlorophenyl methyl carbamate) (S1 3-9).

Active ingredients which, in addition to herbicidal action against harmful plants, also have safener action on crop plants such as rice, for example "dimepiperate" or "MY-93" (S-1-methyl-1-phenylethylpiperidine-1-carbothioate), which is known as a safener for rice against damage by the herbicide molinate, "daimuron" or "SK 23" (1-(1-methyl-1-phenylethyl)-3-p-tolylurea), which is known as a safener for rice against damage by the herbicide imazosulfuron, "cumyluron" = "JC-940" (3-(2-chlorophenylmethyl)-1-(1-methyl-1-phenylethyl)urea, see JP-A-60087254), which is known as a safener for rice against damage by some herbicides, "methoxyphenon" or "NK 049" (3,3'-dimethyl-4-methoxybenzophenone), which is known as a safener for rice against damage by some herbicides, "CSB" (1-bromo-4-(chloromethylsulfonyl)benzene) from Kumiai, (CAS reg. no. 54091-06-4), which is known as a safener against damage by some herbicides in rice.

Compounds of the formula (S15) or tautomers thereof as described in WO-A-2008/131861 and WO-A-2008/131860

![Chemical Structure](image)

in which

\[\text{R}_\text{H}^1 \] is a (Ci-Ce)haloalkyl radical and
\[\text{R}_\text{H}^2 \] is hydrogen or halogen and
\[\text{R}_\text{H}^3, \text{R}_\text{H}^4 \] are each independently hydrogen, (Ci-Ci6)alkyl, (C2-Ci6)alkenyl or (C2-Ci6)alkynyl, where each of the 3 latter radicals is unsubstituted or substituted by one or more radicals from the group of halogen, hydroxyl, cyano, (Ci-Ci4)alkoxy, (Ci-Ci4)haloalkoxy, (Ci-Ci4)alkylthio, (Ci-Ci4)alkylamino,
di[(Ci-C₄)alkyl]amino, [(Ci-C₄)alkoxy]carbonyl, [(Ci-C₄)haloalkoxy]carbonyl, (C3-C6)cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted, and heterocyclyl which is unsubstituted or substituted, or (C3-C6)cycloalkyl, (C₄-C₆)cycloalkenyl, (C3-C6)cycloalkyl which is fused on one side of the ring to a 4- to 6-membered saturated or unsaturated carbocyclic ring, or (C₄-C₆)cycloalkenyl which is fused on one side of the ring to a 4- to 6-membered saturated or unsaturated carbocyclic ring, where each of the 4 latter radicals is unsubstituted or substituted by one or more radicals from the group of halogen, hydroxyl, cyano, (Ci-C₄)alkyl, (Ci-C₄)haloalkyl, (Ci-C₄)alkoxy, (Ci-C₄)haloalkoxy, (Ci-C₄)alkylthio, (Ci-C₄)alkylamino, di[(Ci-C₄)alkyl]amino, [(Ci-C₄)alkoxy]carbonyl, [(Ci-C₄)haloalkoxy]carbonyl, (C3-C6)cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted, and heterocyclyl which is unsubstituted or substituted,

or

RH³ is (Ci-C₄)-alkoxy, (C₂-C₄)alkenyloxy, (C₂-C₆)alkynloxy or (C₂-C₄)haloalkoxy and

RH⁴ is hydrogen or (Ci-C₄)-alkyl or

RH³ and RH⁴ together with the directly bonded nitrogen atom are a four- to eight-membered heterocyclic ring which, in addition to the nitrogen atom, may also contain further ring heteroatoms, preferably up to two further ring heteroatoms from the group of N, O and S, and which is unsubstituted or substituted by one or more radicals from the group of halogen, cyano, nitro, (Ci-C₄)alkyl, (Ci-C₄)haloalkyl, (Ci-C₄)alkoxy, (Ci-C₄)haloalkoxy and (Ci-C₄)alkylthio.

S 16) Active ingredients which are used primarily as herbicides but also have safener action on crop plants, for example (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4-
chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor-ethyl).

Substances which influence plant maturity:

Usable combination partners for the compounds according to formula (I) when used according to present invention in mixture formulations or in a tankmix are, for example, known active ingredients based on inhibition of, for example, 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase and the ethylene receptors, e.g. ETR1, ETR2, ERS1, ERS2 or EIN4, as described, for example, in Biotechn. Adv. 2006, 24, 357-367; Bot. Bull. Acad. Sin. 199, 40, 1-7 or Plant Growth Reg. 1993, 13, 41-46 and literature cited therein.

Examples of known substances which influence plant maturity and can be combined with the inventive compounds include the active ingredients which follow (the compounds are designated by the "common name" according to the International Organization for Standardization (ISO) or by the chemical name or by the code number) and always encompass all use forms, such as acids, salts, esters and isomers, such as stereoisomers and optical isomers. By way of example, one use form and in some cases a plurality of use forms are mentioned:

rhizobitoxine, 2-aminoethoxyvinylglycine (AVG), methoxyvinylglycine (MVG), vinylglycine, aminoxyacetic acid, sinefungin, S-adenosylhomocysteine, 2-keto-4-methyl thiobutyrate, 2-(methoxy)-2-oxoethyl (isopropylidene)aminoxyacetate, 2-(hexyloxy)-2-oxoethyl (isopropylidene)aminoxyacetate, 2-(isopropyloxy)-2-oxoethyl (cyclohexylidene)aminoxyacetate, putrescine, spermidine, spermine, 1,8-diamino-4-aminoethylloctane, L-canaline, daminozide, methyl 1-aminocyclopropyl-1-carboxylate, N-methyl-1-aminocyclopropyl-1-carboxylic acid, 1-aminocyclopropyl-1-carboxamide, substituted 1-aminocyclopropyl-1-carboxylic acid derivatives as described in DE3335514, EP30287, DE2906507 or US51, 23951, 1-aminocyclopropyl-1-hydroxamic acid, 1-methylcyclopropene, 3-methylcyclopropene, 1-ethylcyclopropene, 1-n-propylcyclopropene, 1-cyclopropenylmethanol, carvone, eugenol, sodium
cycloprop-1-en-1-ylacetate, sodium cycloprop-2-en-1-ylacetate, sodium 3-(cycloprop-2-en-1-yl)propanoate, sodium 3-(cycloprop-1-en-1-yl)propanoate, jasmonic acid, methyl jasmonate, ethyl jasmonate.

Substances which influence plant health and germination:

Usable combination partners for the inventive compounds in mixture formulations or in a tankmix are, for example, known active ingredients that influence plant health or germination. Examples of known substances influencing plant health and germination and can be combined with the inventive compounds include the active ingredients which follow (the compounds are designated by the "common name" according to the International Organization for Standardization (ISO) or by the chemical name or by the code number) and always encompass all use forms, such as acids, salts, esters and isomers, such as stereoisomers and optical isomers. By way of example, one use form and in some cases a plurality of use forms are mentioned): sarcosine, phenyl alanine, tryptophan, N'-methyl-1-phenyl-1-N,N-diethylaminomethanesulfonamide, Apio-galacturonane as described in WO20017956, 4-oxo-4-[(2-phenylethyl)amino]butanoic acid, 4-[(2-{1 H-indole-3-yl}ethyl)amino]-4-oxobutanoic acid, 4-[(3-methylpyridin-2-yl)amino]-4-oxobutanoic acid, allantoin, 5-amino levulinic acid, (2S,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol and structurally related catechines as described in WO20122956, 2-Hydroxy-4-(methylsulfanyl)butanoic acid, (3E,3aR,8pS)-3-((((2R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,4,8p-tetrahydro-2H-indeno[1,2-b]furan-2-one and related lactons as described in EP2248421, abscisic acid, (2Z,4E)-5-[6-Ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid, Methyl-(2Z,4E)-5-[6-ethyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoate

Herbicides or plant growth regulators:

Usable combination partners for the inventive use of compounds of formula (I) in mixture formulations or in a tankmix are, for example, known active ingredients based on inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase,
Examples of known herbicides or plant growth regulators which can be combined with the inventive compounds include the active ingredients which follow (the compounds are designated by the "common name" according to the International Organization for Standardization (ISO) or by the chemical name or by the code number) and always encompass all use forms, such as acids, salts, esters and isomers, such as stereoisomers and optical isomers. By way of example, one use form and in some cases a plurality of use forms are mentioned:

Possible mixing partners from the group of herbicides are:

- acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, alldochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, befubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrine, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-potassium, bromoxynil-heptanoate, bromoxynil-octanoate, bromoxynil-butyrato, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butoxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorosulfuron, cinidin, cinidin-ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D,
2,4-D-butotyl, -butyl, -dimethylammonium, -diolamin, -ethyl, -2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, -potassium, -thisopropanolammonium and -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, -isoctyl, -potassium and -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenopyr, diflufenopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, F-5331, i.e. N-[2-chloro-4-fluoro-5-[4-(3-fluoropropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamide, F-7967, i.e. 3-[7-chloro-5-fluor-2-(trifluoromethyl)-1 H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)pyrimidin-2,4(1H,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet (thiafluamide, thiftiamide), flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, flumeturon, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyr-sulfuron, flupyr-sulfuron-methyl-sodium, flurenol, flurenol-butyl, fluridine, flurochloridone, fluoroxypr, fluoroxypr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fluthiamide, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-isopropylammonium, -ammonium, -diammonium, -dimethylammonium, -potassium, -sodium and -trimesium, H-9201, i.e. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl-isopropylphosphoramidothioat, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. 1-(dimethoxyphosphoryl)-ethyl-(2,4-dichlorophenoxy)acetate, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-
sodium, ioxynil, ioxynil-sodium, ioxynil-potassium, ioxynil-octanoate, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3-([5-(difluoromethyl)-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl][methyl]sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazole, ketospiradox, lactofen, lenacil, linuron, MCPA

(salts and esters), MCPB (salts and esters), MCPB-methyl, -ethyl and -sodium, mecoprop, mecoprop-sodium, and -butotyl, mecoprop-P, mecoprop-P-butoyl, -dimethylammonium, -2-ethylhexyl and -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrilsulfuron, methiozolin, methoxyisothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron-ester, MT-128, i.e. 6-chloro-N-[(2E)-3-chlorprop-2-en-1-yl]-5-methyl-N-phenylpyridazin-3-amine, MT-5950, i.e. N-[3-chloro-4-(1-methylethyl)-phenyl]-2-methylpentanamide, NGGC-01, napropamide, NC-310, i.e. 4-(2,4-Dichlorobenzoyl)-1-methyl-5-benzoxypyrazol, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfannuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxfluorfen, paraquat, paraquat dichloride, pebulate, pelargonic acid (Nonansaure), pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, pipercapone, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, prifluraline, profoxydim, prometon, prometryn, propanil, propazine, propachlor, propazine, propazine, propicochlor, propoxycarbazone, propoxycarbazone-sodium, propyzaihuron, propyzamid, prosulfocarb, prosulfuron, pyracloflamide, pyraflufen-ethyl, pyralufufen, pyralufufen-ethyl, pyrazolylate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyribulicarb, pyridofolate, pyridate, pyrifuflid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quindorac, quinmerac, quinoclamine, quinalofop, quinalofop-ethyl, quinalofop-P, quinalofop-P-ethyl, quinalofop-P-terfuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, SW-065, SYN-523, SYP-249, i.e. 1-ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4-((trifluoromethyl)phenoxy)-2-nitrobenzoate, SYP-300, i.e. 1-[7-fluoro-3-
oxo-4-(prop-2-in-1-y1)-3,4-dihydro-2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dione, TCA (trichloroacetic acid), TCA-sodium, tebuthiuron, tefuryltrione, tembotrine, tepraloxydim, terbacil, terbucarb, terbumeton, terbutylazin, terbutryn, thienylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, topramezone, tralkoxydim, triafamone, triallate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, triflusulfuron-sodium, trifluralin, trisulfuron, tritosulfuron, urea sulfate, vernolate, ZJ-0862, i.e. 3,4-dichloro-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}aniline, as well as the following compounds:

Possible mixing partners from the group of plant-growth regulators are, for example: abscisic acid, acibenzolar, acibenzolar-S-methyl, 5-aminolaevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, cloprop, cyclanilide, 3-(cycloprop-1-enyl)propionic acid, 3-(cycloprop-1-enyl)propionic acid, sodium salt, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, flumetralin, flurenol, flurenol-butyl, fluorprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, jasmonic acid, methyl jasmonate, kinetin, maleic hydrazide, mepiquat chloride, 1-methylcyclopropene, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2-naphthoxyacetic acid, nitrofenolate-mixture, 4-oxo-4[(2-phenylethyl)amino]butanoic acid, paclobutrazol, N-
phenylphthalamic acid, probenazol, prohexadione, prohexadione-calcium, prohydrojasmone, propham, salicylic acid, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, tsitodef, uniconazole, uniconazole-P.

The invention is to be illustrated by the biological examples which follow, but without restricting it thereto.
Biological examples

A) Testing conditions

A1) Testing conditions in glasshouse trials

The trials have been carried out in a glasshouse under normal good growth conditions for the plants using pot trials with 8 cm diameter pots. Each pot contained 6-8 plants. The results are the average of two replicates.

The applications have been done with seed treatment, pre-emergence or post-emergence treatments. The pre- or post-emergence applications were made with spray applications using 100-300 l/water per hectare. The crop plant species and the growth stage of the crop plants at the time of application are reported in the result tables. The dose rates of the herbicidal active ingredients applied alone resp. in combinations are also mentioned in the result tables.

The assessments have been done via visual ratings (0-100 % scale, several days after the application as indicated in the result tables, comparing treated vs. untreated checks pots). The results (as mean over all plants per pot and as mean over 2 replicates) are shown in the result tables below.

A2) Testing conditions in field trials

The trials have been carried out under natural field conditions (plot trials, 10 square meter plots, 2-4 replications).

The applications have been done with seed treatment, pre- or post-emergence treatments straight (alone, 1 application) or sequential treatments e.g. seed treatment followed by pre-emergence and/or post-emergence spray applications. The pre- or post-emergence applications were made with spray applications using 100-300 l/water per hectare. The growth stage of the crops species at the time of application are reported in the result tables. The dose rates of the herbicidal active ingredients applied alone respective in sequential application are also described in the result tables.
The assessments have been done via visual ratings (0-1 00 % scale) or counting. The trials have been harvested after crops reached the full maturity. After the harvest the total weight of kernels/seeds/beets per plot was measured. The results are reported as means over 2-4 replications. The time between applications and assessments or countings/harvest are described in the result tables as well.

A3) Seed treatment conditions

The active ingredients have been applied to the untreated, dry seeds together with a carrier. After a short period of time to let the seeds dry, they were ready to be sown in the pot or field using standard equipments.

B) Abbreviations in the result tables

\[
\begin{align*}
\text{ai} & = \text{active ingredient (based on 100% active ingredient)} \\
\text{CPA} & = \text{cyprsulfamide (Compound (A1) of present invention)} \\
\text{Dose [g /ai]} & = \text{dose rates in gramm active ingredient per hectare} \\
\text{EPC} & = \text{epoxiconazole (F-1 08 of present invention)} \\
\text{fb} & = \text{followed by (sequential applications)} \\
\text{mg ai/seed} & = \text{milligrammes active ingredient per seed (per kernel)} \\
\text{g ai/kg seed} & = \text{grammes active ingredient per kg seed} \\
\text{pre-emergence} & = \text{applied (sprayed) after planting of the seeds (prior to emergence)} \\
\text{post-emergence} & = \text{applied (sprayed) after emergence of the crop plants} \\
\text{PTC} & = \text{prothioconazole (F-1 24 of present invention)} \\
\text{ST} & = \text{applied as seed treatment (prior planting)} \\
\text{TBC} & = \text{tebuconazole (F-1 27 of present invention)} \\
\text{TFS} & = \text{trifloxystrobin (F-60 of present invention)} \\
\text{UTC} & = \text{untreated control} \\
\text{Yield [t/ha]} & = \text{harvested grain yield (mature kernels) in metric tons (1000 kg) per hectare}
\end{align*}
\]
C) Results in field trials

Table 1: Grain yield effects on corn (maize) after seed treatment with Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1) [mg ai/seed]</th>
<th>Yield 2) [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>7.43</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.15</td>
<td>8.32</td>
<td>112 %</td>
<td>+ 12 %</td>
</tr>
<tr>
<td>(C) Cyprosulfamide</td>
<td>0.225</td>
<td>8.39</td>
<td>113 %</td>
<td>+ 13 %</td>
</tr>
</tbody>
</table>

\(^1\) Application: Seed treatment prior planting

\(^2\) Yield: Grain yield at harvest, 110 days after planting (short season variety)

Table 2: Germination and emergence of rice plants after seed treatments with cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1) [g ai/kg seed]</th>
<th>plants/10m(^2) 2)</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>169</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.5</td>
<td>208</td>
<td>123 %</td>
<td>+ 23 %</td>
</tr>
</tbody>
</table>

\(^1\) Application: Seed treatment (prior seeding)

\(^2\) Assessment: 12 days after emergence
Table 3: Grain yield effects on winter wheat - preemergence application with Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose $^{1)}$ [g ai/ha]</th>
<th>Yield $^{2)}$ [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>5.30</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>5.88</td>
<td>111 %</td>
<td>+ 11 %</td>
</tr>
</tbody>
</table>

1) Application: Preemergence autumn

2) Yield: Grain yield at harvest, 247 days after application

Table 4: Grain yield effects on spring wheat - postemergence application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose $^{1)}$ [g ai/ha]</th>
<th>Yield $^{2)}$ [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>3.55</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>3.83</td>
<td>111 %</td>
<td>+ 8 %</td>
</tr>
</tbody>
</table>

1) Application: Beginning of emergence of the ears (GS49)

2) Yield: Grain yield at harvest, 48 days after application

Table 5: Grain yield effects on corn - postemergence application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose $^{1)}$ [g ai/ha]</th>
<th>Yield $^{2)}$ [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>4.38</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>5.60</td>
<td>128 %</td>
<td>+ 28 %</td>
</tr>
</tbody>
</table>

1) Application: 6 - 8 leaves

2) Yield: Grain yield at harvest, 130 days after application
Table 6: Yield effects on cotton - postemergence application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1 [g ai/ha]</th>
<th>Yield t/ha (lint)</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>0.219</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>0.254</td>
<td>116 %</td>
<td>+ 16 %</td>
</tr>
</tbody>
</table>

1Application: Preflowering (GS 55)

Table 7: Yield effects on spring wheat (gluten content) - postemergence application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1 [g ai/ha]</th>
<th>Yield 2</th>
<th>Yield 3 Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>28.4</td>
<td>100 %</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>30.9</td>
<td>109 %</td>
</tr>
</tbody>
</table>

1Application: Ear emergence

2Yield: Gluten content (absolute) in harvested grains, 35 days after application

3Yield: Relative gluten content in harvested grains, 35 days after application

Table 8: Grain yield effects on soybeans - postemergence application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1 [g ai/ha]</th>
<th>Yield 2 [t/ha]</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>2.65</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100</td>
<td>2.78</td>
<td>105 %</td>
<td>+ 5 %</td>
</tr>
</tbody>
</table>

1Application: Preflowering (GS 60)

2Yield: Grain yield at harvest, 45 days after application
Table 9: Grain yield effects on canola - sequential application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose rate 1</th>
<th>Yield 2</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>2.80</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.5 g ai/kg seed fb 3 x 50 g ai/ha post</td>
<td>3.47</td>
<td>124 %</td>
<td>+ 24 %</td>
</tr>
</tbody>
</table>

1 Application: 1. seed treatment prior planting fb 2. postemergence at 4-6 leaves fb 3. postemergence at stem elongation fb 4. postemergence at beginning of flowering

2 Yield: Grain yield at harvest, 63 days after application

Table 10: Grain yield effects on canola - postemergence treatment with Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1</th>
<th>Yield 2</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>2.21</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>100 [g ai/ha]</td>
<td>2.62</td>
<td>119 %</td>
<td>+ 19 %</td>
</tr>
</tbody>
</table>

1 Application: Growth stage (GS 52) – pre flowering

2 Yield: Grain yield at harvest, 63 days after treatment
Table 11: Grain yield effects on corn - sequential application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1</th>
<th>Yield 2</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>10.2</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.15 g ai/kg seed fb 3 x 50 g ai/ha post</td>
<td>14.1</td>
<td>138 %</td>
<td>+ 38 %</td>
</tr>
</tbody>
</table>

1Application: 1. seed treatment prior planting fb
2. postemergence at 2-4 leaves fb
3. postemergence at 6-8 leaves fb
4. postemergence at preflowering

2Yield: Grain yield at harvest, 98 days after emergence

Table 12: Yield effects on corn - sequential application of Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1</th>
<th>Yield 2</th>
<th>Yield 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>6.0</td>
<td>14</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.15 g ai/kg seed fb 3 x 50 g ai/ha post</td>
<td>7.5</td>
<td>17.3</td>
</tr>
</tbody>
</table>

1Application: 1. seed treatment prior planting fb
2. postemergence at 2-4 leaves fb
3. postemergence at 6-8 leaves fb
4. postemergence at preflowering

2Yield: Biomass yield at harvest, 98 days after emergence
3Yield: Plant density at harvest, 98 days after emergence
Table 13: Yield effects on sugarbeet - sequential application of Cyprosulfanilide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1)</th>
<th>Sugar Yield 2) [kg/ha]</th>
<th>Yield 3) [t/ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>5778</td>
<td>59.3</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.15 mg ai/ seed fb 3 x 50 g ai/ha post</td>
<td>6110</td>
<td>61.3</td>
</tr>
</tbody>
</table>

1) Application:
1. seed treatment prior planting fb
2. postemergence at 2-4 leaves fb
3. postemergence at 6-8 leaves fb
4. postemergence at 10-12 leaves

2) Yield: Sugar yield at harvest, 44 days after last postemergence treatment

3) Yield: yield of beets (storage root/body) by weight at harvest, 44 days after last postemergence treatment

Table 14: Grain yield effects on winter wheat - seed treatment with Cyprosulfamide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1) [g ai/kg seed]</th>
<th>Yield 2) [g/1000 kernel]</th>
<th>Relative</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>36.3</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>1</td>
<td>39.2</td>
<td>108 %</td>
<td>+ 8 %</td>
</tr>
</tbody>
</table>

1) Application: Seed treatment prior planting

2) Yield: Grain yield at harvest, 290 days after planting
Table 15: Grain yield effects on rice - sequential application of Cyprosulfannide

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose rate 1) [g ai/kg seed + post]</th>
<th>Yield 2) [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>5.47</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) Cyprosulfamide</td>
<td>0.5 g ai/kg seed fb 3 x 50 g ai/ha post</td>
<td>5.74</td>
<td>105 %</td>
<td>+ 5 %</td>
</tr>
</tbody>
</table>

1) Application: 1. seed treatment prior planting fb
2. postemergence at 4-6 leaves fb
3. postemergence at stem elongation fb
4. postemergence at beginning of flowering

2) Yield: Grain yield at harvest, 75 days after last application

Table 16: Grain yield effects on spring wheat - postemergence treatment with cyprosulfamid (CPA) + epoxiconazole (EPC)

<table>
<thead>
<tr>
<th>Active ingredient (s)</th>
<th>Dose 1) [g ai/ha]</th>
<th>Yield 2) [t/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>1.84</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) EPC</td>
<td>125</td>
<td>2.02</td>
<td>109.7 %</td>
<td>+ 9.7 %</td>
</tr>
<tr>
<td>(C) CPA+EPC</td>
<td>100 + 125</td>
<td>2.08</td>
<td>113 %</td>
<td>+ 13 %</td>
</tr>
</tbody>
</table>

1) Application: Post-emergence spring - flag leaf sheath opening
2) Yield: Grain yield at harvest, 55 days after application
Table 17: Grain yield effects on spring wheat - postemergence treatment with cyprosulfamide (CPA) + prothioconazole (PTC) + tebuconazole (TBC)

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1) [g ai/ha]</th>
<th>Yield 2) [l/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>3.46</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) PTC + TBC</td>
<td>125 + 125</td>
<td>3.72</td>
<td>107.5 %</td>
<td>+ 7.5 %</td>
</tr>
<tr>
<td>(C) CPA+ (PTC + TBC)</td>
<td>100 + (125 + 125)</td>
<td>3.84</td>
<td>111 %</td>
<td>+ 11 %</td>
</tr>
</tbody>
</table>

1) Application: Post-emergence spring - flag leaf sheath opening
2) Yield: Grain yield at harvest, 55 days after application

Table 18: Grain yield effects on corn - postemergence treatment with cyprosulfamide (CPA) + prothioconazole (PTC) + trifloxystrobin (TFS)

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1) [g ai/ha]</th>
<th>Yield 2) [l/ha]</th>
<th>Relative %</th>
<th>Difference(%) vs. UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>11.01</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) (PTC+TFS)</td>
<td>(125+375)</td>
<td>11.37</td>
<td>103.2 %</td>
<td>+ 3.2 %</td>
</tr>
<tr>
<td>(C) CPA + (PTC+TFS)</td>
<td>100+ (125+375)</td>
<td>11.65</td>
<td>105.8 %</td>
<td>+ 5.8 %</td>
</tr>
</tbody>
</table>

1) Application: Post-emergence - beginning of flowering
2) Yield: Grain yield at harvest, 122 days after application
Table 19: Grain yield effects on spring oilseed rape (canola) - postemergence treatment with cyprosulfamide (CPA) + tebuconazole (TBC)

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1 [g ai/ha]</th>
<th>Yield 2 [t/ha]</th>
<th>Relative % vs. UTC</th>
<th>Difference(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) UTC</td>
<td>-</td>
<td>3.91</td>
<td>100 %</td>
<td>-</td>
</tr>
<tr>
<td>(B) TBC</td>
<td>150</td>
<td>3.91</td>
<td>101.8 %</td>
<td>+ 1.8 %</td>
</tr>
<tr>
<td>(B) CPA + TBC</td>
<td>100+150</td>
<td>4.52</td>
<td>115.6 %</td>
<td>+ 15.6 %</td>
</tr>
</tbody>
</table>

1 Application: Post-emergence spring - beginning of flowering

2 Yield: Grain yield at harvest, 92 days after application

Table 20: Grain yield effects on spring wheat - postemergence treatment with cyprosulfamide (CSA) + (2,4-D + MCPA)

<table>
<thead>
<tr>
<th>Active ingredient(s)</th>
<th>Dose 1 [g ai/ha]</th>
<th>Yield 2 [t/ha]</th>
<th>Relative %</th>
<th>Difference(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (2,4-D+MCPA)</td>
<td>(125+405)</td>
<td>1.84</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>(B) CSA + (2,4-D+MCPA)</td>
<td>100+ (225+405)</td>
<td>2.31</td>
<td>125.5 %</td>
<td>+ 25.5 %</td>
</tr>
</tbody>
</table>

1 Application: Post-emergence spring - beginning of flowering

2 Yield: Grain yield at harvest, 55 days after application
Claims

1. Use of a Compound (A) for increasing the yield of useful plants or crop plants with respect to their harvested plant organs, which plants are growing in their normal habitat, and wherein the Compound (A) is selected from compounds of the formula (I) or salts thereof,

\[
\begin{align*}
\text{R}^1 & \quad \text{is} \quad \text{CO-NR}^5\text{R}^6, \quad \text{NH-CO-R}^7 \quad \text{or} \quad \text{NH-CO-NR}^8\text{R}^9, \\
(R^2)_n & \quad \text{is} \quad \text{a radical} \ R^2 \ \text{if} \ n \ \text{is} \ 1 \ \text{or} \ \text{represents} \ n \ \text{radicals} \ R^2 \ \text{attached to different carbon ring atoms of the basic ring if} \ n \ \text{is} \ \text{more than} \ 1, \ \text{wherein each} \ R^2 \ \text{individually represents} \ \text{one} \ \text{another} \ \text{is halogen}, \ (\text{C}_2-\text{C}_6)\text{haloalkyl}, \ (\text{C}_2-\text{C}_6)\text{haloalkoxy}, \ \text{nitro}, \\
(R^3) & \quad \text{is} \quad \text{hydrogen}, \ (\text{C}_2-\text{C}_6)\text{alkyl}, \ (\text{C}_2-\text{C}_6)\text{alkenyl} \ \text{or} \ (\text{C}_2-\text{C}_6)\text{alkynyl}, \\
(R^4)_m & \quad \text{is} \quad \text{a radical} \ R^4 \ \text{if} \ m \ \text{is} \ 1 \ \text{or} \ \text{represents} \ m \ \text{radicals} \ R^4 \ \text{attached to different carbon ring atoms of the basic ring if} \ m \ \text{is} \ \text{more than} \ 1, \ \text{wherein each} \ R^4 \ \text{independently represents} \ \text{one} \ \text{another} \ \text{is} \ \text{halogen}, \ (\text{C}_2-\text{C}_6)\text{alkyl}, \ (\text{C}_2-\text{C}_6)\text{haloalkyl}, \\
R^5 & \quad \text{is} \quad \text{hydrogen}, \ (\text{C}_2-\text{C}_6)\text{alkyl}, \ (\text{C}_2-\text{C}_6)\text{cycloalkyl}, \ (\text{C}_2-\text{C}_6)\text{alkenyl}, \ (\text{C}_2-\text{C}_6)\text{alkynyl}, \\
& \quad (\text{C}_5-\text{C}_6)\text{cycloalkenyl}, \ \text{phenyl} \ \text{or} \ \text{a} \ 3- \ \text{to} \ 6-\text{membered heterocyclyl} \ \text{having} \ 1 \ \text{to} \ 3 \ \text{heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, wherein each of the last-mentioned 7 radicals is unsubstituted or substituted by} \ 1, \ 2 \ \text{or} \ 3 \ \text{radicals selected from the group consisting of halogen}, \ (\text{C}_2-\text{C}_6)\text{alkoxy}, \ (\text{C}_2-\text{C}_6)\text{haloalkoxy}, \ (\text{C}_2-\text{C}_6)\text{alkysulfinyln}, \ (\text{C}_2-\text{C}_6)\text{alkysulfonyl}, \ (\text{C}_3-)
cycloalkyl, (C\textsubscript{6}C\textsubscript{4})alkoxycarbonyl, [(C\textsubscript{6}C\textsubscript{4})alkyl]carbonyl and phenyl and, in case of cyclic basic radicals, also (C\textsubscript{6}C\textsubscript{4})alkyl and (C\textsubscript{6}C\textsubscript{4})haloalkyl,

\(R^6 \) is hydrogen, (C\textsubscript{6}C\textsubscript{e})alkyl, (C\textsubscript{3}C\textsubscript{6})cycloalkyl, (C\textsubscript{2}C\textsubscript{6})alkenyl or (C\textsubscript{2}C\textsubscript{6})alkynyl, each of the last-mentioned 3 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, hydroxyl, (C\textsubscript{6}C\textsubscript{4})alkyl, (C\textsubscript{6}C\textsubscript{4})alkoxy and (C\textsubscript{6}C\textsubscript{4})alkylthio, or

\(R^5 \) and \(R^6 \) together with the nitrogen atom attached to represent pyrrolidin-1-yl- or piperidin-1-yl,

\(R^7 \) is hydrogen, (C\textsubscript{6}C\textsubscript{e})alkyl, (C\textsubscript{3}C\textsubscript{6})cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (C\textsubscript{6}C\textsubscript{4})alkoxy, (C\textsubscript{6}C\textsubscript{4})haloalkoxy and (C\textsubscript{6}C\textsubscript{4})alkylthio and, in case of cyclic basic radicals, also (C\textsubscript{6}C\textsubscript{4})alkyl and (C\textsubscript{6}C\textsubscript{4})haloalkyl,

\(R^8 \) is hydrogen, (C\textsubscript{6}C\textsubscript{8})alkyl, (C\textsubscript{2}C\textsubscript{6})alkenyl, (C\textsubscript{2}C\textsubscript{6})alkynyl or (C\textsubscript{3}C\textsubscript{8})cycloalkyl, wherein each of the last-mentioned 4 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (C\textsubscript{6}C\textsubscript{4})alkoxy, (C\textsubscript{6}C\textsubscript{e})haloalkoxy and (C\textsubscript{6}C\textsubscript{4})alkylthio and, in case of cyclic basic radicals, also (C\textsubscript{6}C\textsubscript{4})alkyl and (C\textsubscript{6}C\textsubscript{4})haloalkyl,

\(R^9 \) is hydrogen, (C\textsubscript{6}C\textsubscript{8})alkyl, (C\textsubscript{2}C\textsubscript{6})alkenyl, (C\textsubscript{2}C\textsubscript{6})alkynyl or (C\textsubscript{3}C\textsubscript{8})cycloalkyl, wherein each of the last-mentioned 4 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the group consisting of halogen, (C\textsubscript{6}C\textsubscript{4})alkoxy, (C\textsubscript{6}C\textsubscript{e})haloalkoxy and (C\textsubscript{6}C\textsubscript{4})alkylthio and, in case of cyclic basic radicals, also (C\textsubscript{6}C\textsubscript{4})alkyl and (C\textsubscript{6}C\textsubscript{4})haloalkyl,

\(n \) is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, and

\(m \) is 0, 1, 2, 3 or 4, preferably 1 or 2.

2. The use as claimed in claim 1, characterized in that Compound (A) is selected from compounds of the formula (Ia) or salts thereof,
wherein \((R^2)^n\), \(R^3\), \((R^4)^m\), \(R^5\), \(R^6\) \(n\) and \(m\) are defined as for formula (I), and preferably
wherein
\(R^3\) is hydrogen,
\((R^4)^m\) is a radical \(R^4\) if \(m\) is 1 or represents \(m\) radicals \(R^4\) attached to different carbon
ring atoms of the basic ring if \(m\) and is more than 1, wherein each \(R^4\)
independently of one another is halogen, methyl, ethyl, \(n\)-propyl, \(i\)-propyl, \(CF_3\),
\((\text{Ci-C}_4)\)haloalkoxy or \((\text{Ci-C}_4)\)alkoxy,
\(R^5\) is \((\text{Ci-C}_6)\)alkyl or \((\text{C}_3\text{-C}_6)\)cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the
group consisting of halogen, \((\text{Ci-C}_4)\)alkoxy, \((\text{Ci-C}_4)\)haloalkoxy,
\((\text{C}_2\text{-C}_2)\)alkylsulfinyl, \((\text{C}_2\text{-C}_2)\)alkylsulfonyl, \((\text{C}_3\text{-C}_6)\)cycloalkyl,
\((\text{C}_4\text{-C}_4)\)alkoxycarbonyl and \([(\text{C}_2\text{-C}_2)\)alkyl\)]carbonyl and, in case of cyclic basic
radicals, also \((\text{C}_4\text{-C}_4)\)alkyl and \((\text{C}_4\text{-C}_4)\)haloalkyl,
\(R^6\) is hydrogen or \((\text{C}_4\text{-C}_4)\)alkyl, preferably hydrogen,
\(m\) is 0, 1 or 2, preferably 1 or 2, and
\(n\) is zero.

3. The use as claimed in claim 1, characterized in that Compound (A) is selected
from compounds of the formula (lb) or salts thereof,

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{R}^7 & \quad \text{H} \\
\text{R}^3 & \quad \text{O} \\
\text{S} & \quad \text{N} \\
\text{O} & \quad \text{O} \\
\text{R}^4 & \quad \text{m} \\
\text{(R}^2)^n & \\
\end{align*}
\]

(whereb)

wherein \((R^2)^n\), \(R^3\), \((R^4)^m\), \(R^7\), \(n\) and \(m\) are defined as for formula (I), and preferably
wherein
\(R^3\) is hydrogen,
\((R^4)^m\) is a radical \(R^4\) if \(m\) is 1 or represents \(m\) radicals \(R^4\) attached to different carbon
ring atoms of the basic ring if \(m\) and is more than 1, wherein each \(R^4\)
independently of one another is halogen, \((\text{Ci-C}_4)\)alkyl, \(CF_3\), \((\text{Ci-C}_4)\)haloalkoxy
or \((\text{Ci-C}_4)\)alkoxy,
\(R^7\) is \((\text{C}_6\text{-C}_6)\)alkyl or \((\text{C}_3\text{-C}_6)\)cycloalkyl, wherein each of the last-mentioned 2 radicals is unsubstituted or substituted by 1, 2 or 3 radicals selected from the
group consisting of halogen, (Ci-C_4)alkoxy, (Ci-C_6)haloalkoxy and (Ci-C_4)alkylthio and, in case of cyclic basic radicals, also (Ci-C_4)alkyl and (Ci-C_4)haloalkyl,

m is 0, 1 or 2, preferably 1 or 2, and

n is zero.

4. The use as claimed in claim 1, characterized in that Compound (A) is selected from compounds of the formula (Ic) or salts thereof,

\[
\text{(Ic)}
\]

wherein (R^2)_n, R^3, (R^4)_m, R^8, R^9, n and m are defined as for formula (I), and preferably wherein

R^3 is hydrogen,

(R^4)_m is a radical R^4 if m is 1 or represents m radicals R^4 attached to different carbon ring atoms of the basic ring if m and is more than 1, wherein each R^4 independently of one another is halogen, (Ci-C_4)alkyl, CF_3, (Ci-C_4)haloalkoxy or (Ci-C_4)alkoxy, preferably halogen, (Ci-C_4)alkyl, CF_3 or (Ci-C_4)alkoxy

R^8 is hydrogen, (Ci-Cs)alkyl, (C_2-Cs)alkenyl, (C_2-Cs)alkinyl or (C_3-Cs)cycloalkyl,

R^9 is hydrogen, (Ci-Cs)alkyl, (C_2-Cs)alkenyl, (C_2-Cs)alkinyl or (C_3-Cs)cycloalkyl,

m is 0, 1 or 2, preferably 1 or 2, and

n is zero.

5. The use as claimed in claim 1 or 2, characterized in that Compound (A) is cyprosulfamide.

6. The use as claimed in any one of claims 1 to 5, characterized by increasing the grain yield of crop plants selected from group consisting of cereals, canola, soybean and cotton crops.
7. The use as claimed in any one of claims 1 to 5, characterized by increasing the gluten content of seed kernels of crop plants selected from group consisting of cereals, canola and soybean crops.

8. The use as claimed in any one of claims 1 to 5, characterized by increasing the protein content of seed kernels of crop plants selected from group consisting of cereals, canola and soybean crops.

9. The use as claimed in any one of claims 1 to 5, characterized by increasing the yield of the amount by weight of beets of beet plants.

10. The use as claimed in any one of claims 1 to 5, characterized by increasing the sugar content of sugar plants.

11. The use as claimed in any one of claims 1 to 5, characterized by increasing the germination and emergence of cereal crops.

12. The use as claimed in any one of claims 1 to 5, characterized by increasing the biomass yield of maize plants growing in the absence of extraordinary environmental conditions.

13. The use as claimed in any one of claims 1 to 5, characterized by increasing the biomass yield of sugar plants.

14. A method for increasing the yield of useful plants or crop plants with respect to their harvested plant organs which plants are growing in their normal habitat, and wherein a Compound (A) as defined in any one of claims 1 to 5 is applied in an effective, preferably non-phytotoxic amount to the crop plants, the seeds from which they grow, or to the locus in which they grow in their normal habitat.
16. The method according to claim 15, and wherein Compound (A) is applied in combination with one or more compounds selected from the group of fungicides, insecticides and plant growth regulators.

17. The method according to claim 16, and wherein Compound (A) is applied in combination with (i) fluoxastrobin and prothioconazole, (ii) pyraclostrobin and metconazole, (iii) tnflloxystrobin and propiconazole, (iv) tnflloxystrobin and prothioconazole, (v) prothioconazole and tebuconazole, (vi) bixafen and prothioconazole, (vii) bixafen and tebuconazole, or (viii) bixafen and tnflloxystrobin.

18. The method according to any one of claims 16 or 17 and in which Compound (A) is as defined in claim 5.

19. A plant yield increasing composition comprising a Compound (A) and further comprising the combination of two fungicides which combination is selected from the group consisting of (i) pyraclostrobin and metconazole, (ii) tnflloxystrobin and propiconazole, (iii) prothioconazole and tebuconazole, (iv) fluoxastrobin and prothioconazole, (v) trflloxystrobin and prothioconazole, (vi) bixafen and prothioconazole, (vii) bixafen and tebuconazole, and (viii) bixafen and trflloxystrobin.

20. The plant yield increasing composition according to claim 19 and wherein Compound (A) is as defined in claim 5.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A01N25/00 A01N41/06 A01N43/653 A01N37/50

ADD.

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010/267566 AL (SCHULZ ARNO [DE] ET AL) 21 October 2010 (2010-10-21) cited in the application on paragraphs [0060] - [0119], [0267], [0271]; claims 10-14</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>EP 2 145 537 AL (BAYER CR0PSCI ENCE AG [DE]) 20 January 2010 (2010-01-20) cited in the application on paragraphs [0012] - [0017], [0022] - [0024], [0033], [0079]; claims; examples 1,2</td>
<td>1-16, 18</td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2006 037120 AL (BAYER CR0PSCI ENCE AG [DE]) 13 September 2007 (2007-09-13) paragraphs [0037], [0038]; claims; examples</td>
<td>1-20</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

** Special categories of cited documents:

* "A" document defining the general state of the art which is not considered to be of particular relevance

* "E" earlier application or patent but published on or after the international filing date

* "L" documentary which may throw doubts on priority claim(s) on which the claimed invention cannot be considered to be novel or cannot be considered to involve an inventive step when the document is taken alone

* "O" document referring to an oral disclosure, use, exhibition or other means

* "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search

12 October 2012

Date of mailing of the international search report

22/10/2012

Name and mailing address of the ISA:

European Patent Office, P.B. 5018 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Butkowskij -Wal kw T

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2011/006603 A2 (BAYER CROPSCIENCE AG [DE]; ANDERSCH WOLFRAM [DE]; HUNGENBERG HEIKE [DE]) 20 January 2011 (2011-01-20) claims; examples</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2010267566</td>
<td>21-10-2010</td>
<td>AR 057179 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 550930 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2006319516 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0619386 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2631353 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101316505 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102005057250 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200801456 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201100145 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1956885 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2289310 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2383741 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009517415 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080075504 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010267566 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W0 2007062737 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2145537 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2730193 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102088847 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201001899 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2145537 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2303012 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011527293 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010009852 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W0 2010003444 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102006037120 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 059760 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 5712007 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102006037120 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200810691 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W0 2007101547 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3281233 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W0 2011006603 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010272872 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102510721 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6491032 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2453750 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120051015 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011166109 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W0 2011006603 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007045920 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NONE</td>
</tr>
</tbody>
</table>