(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A0 0 OO

(43) International Publication Date (10) International Publication Number
3 October 2002 (03.10.2002) PCT WO 02/077753 A2
(51) International Patent Classification’: GO6F (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/04849 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: 19 February 2002 (19.02.2002) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

(25) Filing Language: English YU, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

(BE, B, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
(71) Applicant: CLEAR TECHONOLOGY, INC. [US/US]; NE, SN, TD, TG).

207 Canyon Boulevard, Boulder, CO 80302 (US).

(30) Priority Data:
09/815,143 22 March 2001 (22.03.2001) US

Published:
(72) Inventors: KENDALL, John; 1145 Timber Lane, Boul- — without international search report and to be republished
der, CO 80304 (US) PHILLIPS, Chris; 1363 Cedarwood upon receipt Of[ha[report

Drive, Longmont, CO 80501 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: JACOBS, James, D. et al.; Baker & McKenzie, ance Notes on Codes and Abbreviations" appearing at the begin-
805 Third Avenue, New York, NY 10022 (US). ning of each regular issue of the PCT Gazette.

(54) Title: AUTOMATED TRANSACTION MANAGEMENT SYSTEM AND METHOD

/oi
\ 156

)

s{— !

farmm Lt
\L,;ﬁ v/_/i ' !

ng
D
opevaber \ L

Uy S

(57) Abstract: An automated knowledge dependant transaction management system for processing both the front-end and back-end
of a transaction is provided. The system contains hars-coded transaction management module to support the processing of setermin-
istic manual work independant of the specific transactions. According to the invention, the hard-coded module is separated from
~~ the business logic that comprise the definition and configuration of the transaction specific data models, business rules and process
steps which drive the manual work of human operators. Such separation of code and business logic allows any ordinary business
administrator without any computer programming experience to quickly develop the business administrator without any computer
programming experience to quickly develop the business logic through a simple GUI. Further, any change in the business logic can
be implemented quickly using the GUI by the ordinary administrator to accomodate changes in the business environment without
relying on computer programmers.

077753 A2

10

15

20

25

WO 02/077753 PCT/US02/04849

AUTOMATED TRANSACTION MANAGEMENT SYSTEM AND METHOD

Field of the Invention

The present invention relates to data processing systems, and in particular to
automated transaction management systems.

Backeround Information

Over the years, huge resources were committed to developing rule-based
technologies, ranging from stand alone infefence engines and expert systems to
development tools that allowed programmers to program business rules and
processes into the existing system environments. These efforts included
development of sophisticated workflow and routing applications, customer
relationship management (CRM) and enterprise resource planning (ERP) systems
for automating portions of business transactions. Moreover, many companies have
developed proprietary applications based on hard-coded rules and process
configurations.

Despite these automation efforts, many front and back office operations to
process complex transactions in the services industry still rely greatly on human
operators working with legacy systems. Manual work processes that have these
same generic characteristics exist in the insurance industry (including policy
underwriting and issuance and customer service), the telecommunications industry
(service provisioning, contract and billing administration), the government (Social
Security Benefits administration, Medicare and Médicaid eligibility and
compliance), the utilities industries (service provisioning and product bundling) or
the like. Even the new economy Internet companies such as amazon.com,
yahoo.com, and priceline.com are building people-intensive service infrastructures

to manually handle complex service transactions.
1

10

15

20

25

WO 02/077753 PCT/US02/04849

For example, to process automobile accident claims, an auto insurer relies on
a large number of both the call center agents in the front office and claims
management staff in the back office to take initial notice of loss details, establish a
claims case file, generate data requests from various third parties, notify repairers
and assessors, communicate with policyholders, wait for data inputs and outputs in
both paper and electronic format and eventually hand the case over to experienced
claims adjusters for resolution.

These agents must become skilled at navigating multiple, divergent legacy
claims and policy administration systems. They must learn and apply complex
business rules and processes outside of these systems which are frequently changing,
handle infinite combinations and permutations of incident types and know their
employer’s many product and benefit entitlements intimately. And while managing
these complex knowledge matrices, they must also remain tuned in to the needs of
the policyholder who is usually distressed and 'wants clear affirmation and
confidence in the resolution of their claim. At each step in the manual processing of
these claims there is an opportunity for human error. Each error exposes the insurer
to substantial losses, and the unnecessary additional administration costs that result
from the rework required to resolve the error, not to mention the frustration of the
policy holder.

Therefore, it can be appreciated that there is a significant need for an
improved system and method for automating such manual processes in processing
business transactions.

Summary of the Invention

According to the principles of the present invention, there is provided an

automated knowledge dependent transaction management system for processing

2

10

15

20

25

WO 02/077753 PCT/US02/04849

both the front-end and back-end of a transaction to reduce human error, reduce labor
costs and allow web-enablement of business transactions. An exemplary system
includes a storage device that stores data of a customer transaction, business rules
and business process steps. Each business rule has one or more deterministic
outcomes based on evaluation of the stored data. The system also includes a
transaction management module that collects as part of the front-end transaction the
next data of the customer transaction that depends on the deterministic outcomes of
the business rules associated with the data already collected. The transaction
module further processes the back-end of the customer transaction by executing the
tasks of the business process steps. The next business process step to be executed
depends on the execution result of a current business process step.

As can be appreciatéd, because the transaction management system
automates and integrates both the front-end and the back-end processing, and the
business rules have non-inferential deterministic outcomes, the present invention
processes transactions efficiently and substantially decreases the number of potential
errors, resulting in substantial savings for the businesses.

Brief Description of the Drawings

FIG. 1 is a functional block diagram of an automated transaction
management system according to an exemplary embodiment of ;che present
invention.

FIG. 2 illustrates a conceptual framework of the present invention.

FIG. 3 illustrates a detailed diagram of various functional components of an
exemplary software architecture of the present invention.

FIG. 4 is a table showing the components of FIG. 3 that are included in each

module of F1G. 2.

10

15

20

25

WO 02/077753 PCT/US02/04849

FIG. 5 illustrates an example of a graphical display of data collection rule
packages of the present invention.

FIG. 6 illustrates an example of an element rule package of the present
invention.

FIG. 7 is an example flow diagram of a process according to the present
invention.

FIG. 8 is another example flow diagram of a process according to the present
vention.

FIG. 9 is an exemplary screen shot of a scenario builder according to the
present invention.

FIG. 10 is an exemplary screen shot of a rule builder according to the present

invention.

‘Detailed Description of the Invention

The manual work performed by human operators in conjunction with legacy
administration systems can be delineated into deterministic knowledge work where
there are clear consistent conclusions, and inferential knowledge work where the
conclusions may differ depending on the judgments made by the operators. The
present invention focuses on the rapid automation of manual work that is based
predominantly on deterministic knowledge.

Deterministic knowledge dependent transactions (KDTSs’) are transactions
that form the basis of the majority of manual work in industries, and in particular,
service industries. These KDTs’ rely on appropriate application of various business
rules, case specific collection of pre-defined data sets and execution of predefined
processes for accurate resolution. Typically, the business rules, data and processes

in KDTs’ change constantly from time to time. Examples of KDTSs’ include
' 4

10

15

20

25

WO 02/077753 PCT/US02/04849

insurance claims, customer service, insurance policy underwriting,
telecommunications provisioning, e-tailing customer service and problem resolution,
Social Security benefit administration and eligibility, or the like.

At the front end, the present transaétion management system uses tightly
integrated rule processing and process control to deliver the transaction specific data
set needed to process a KDT. This replicates the work that a human operator
undertakes in the data collection phase of manual service work. The transaction
management system then triggers the back end processing by executing process
steps containing decision rule packages, task rule packages, and process rule
packages to deliver the business outcome that will enable complete resolution and
closure of the transaction. The present transaction management system also enables
the back and front end processing to be electronically integrated into emerging web-
based supply chains and business exchanges.

Specifically, the system contains the inbuilt, hard-coded, programmed
functionality (“universal transaction automation framework”) needed to support the
common and complex requirements of processing deterministic manual work
independent of the specific transaction. The universal transaction automation
framework (containing programming codes) is separated from the business logic
(comprising the definition and configuration of the transaction specific data models,
business rules and process steps) that drives the manual work of human operators.
One advantage of this separation of code and business logic is that the business logic
can now be developed through a simple GUI (graphical user interface) outside of the
programming code by any ordinary business administrator without any computer
programming experience. A further advantage is that any change in the business

logic can be implemented quickly using the GUI by the ordinary administrator to
5

10

15

20

25

WO 02/077753 PCT/US02/04849

accommodate changes in the business environment without relying on computer
programmers.

Referring now to FIG. 1, a transaction management system 100 of the
present invention is an Internet-enabled application solution framework that
automates KDTs’. The system 100 is a multitasking, real-time software technology
that can simultaneously set up a transaction query, gather resolution data from
internal and external sources, apply even the most complex client-specific business
rules to the data, and put on hold or complete the transaction while simultaneously
providing the user with continued and uninterrupted visibility of the ongoing
automated processing of KDTs.

Different from existing sequentially driven automation technologies, the
transaction management system 100 significantly reduces the time required to
process business transactions by eliminating as much manual involvement as
possible by using deterministic non-inferential rules which can be changed very
easily according to changes in the business environment. At the same time, the
system 100 navigates through numerous transaction gateways error-free with
minimal, but controlled human intervention only when appropriate during the
transaction.

As illustrated in FIG. 1, the transaction management system 100 is
connected to the Internet through, for example, an I/O interface 102, such as for a
LAN, WAN, fiber optic or cable link, which receives information from and sends
information to Internet users and to one or more operators using a work station 118.
The system is also connected to existing legacy systems 116.

The system 100 includes, for example, memory storage 104, processor

(CPU) 106, program storage 108, and data storage 110, all commonly connected to
6

10

15

20

25

WO 02/077753 PCT/US02/04849

each other through a bus 112. The program storage 108 stores, among others, a
transaction management program or module 114. Any of the software program
modules in the program storage 108 and data from the data storage 110 are
transferred to the memory 104 as needed and is executed by the processor 106. The
system 100 can be any computer such as a WINDOWS-based or UNIX-based
personal computer, server, workstation or a mainframe, or a combination thereof.
While the system 100 is illustrated as a single computer unit for purposes of clarity,
persons of ordinary skill in the art will appreciate that the system may comprise a
group of computers which can be scaled depending on the processing load and
database size.

FIG. 2 illustrates a conceptual framework of the present invention. An
Industry Domain Knowledge (“Knowledge”) 22 comprises business processes, data
and rules that are used for executing an automated KDT.

The business process includes an automation process which is a sequence of
automation steps to perform KDT automation. The different types of automation
steps are organized into a logical sequence in which information is collected,
managed, decided upon and acted upon. A process can be configured, enabling the
business to update the automated KDT processing as quickly as changes in the
business necessitate.

Data is the second type of Knowledge 22. The data for a KDT is divided
into three basic types: case data, direct business data, and extended business data.
The case data is the information that is collected and transacted against during KDT
automation. Case data is defined by a case data profile, or smart case, which is the
structure of the case data, created by logically grouping the data into virtual

electronic “documents”. Case data profiles also contain meta-data that provides

7

10

15

20

WO 02/077753 PCT/US02/04849

attributes about the data elements beyond simple structural information. Each type
of automation uses this meta data to perform various functions on the case. A data
collection scenario collects data for multiple documents from a single source over a
single medium. During a data collection interaction, users may be provided a script,
which is defined in the data collection scenario and assists users through data
collection. The invention uses the transaction resolution logic defined during a
configuration and testing phase to dynamically create end-user GUI scripts for
streamlined data collection and customized interaction based on the source of the
data being collected and the type of data being collected.

The direct business data is information that is resident on external business
systems and integrated into a case data profile as a document. Through a data map,
data elements in the document are mapped to fields on the external business system.

The extended business data is information that is required to support KDT
automation, but is not directly available and should be supplied and managed as part
of the solution. This data is defined through an extended business data profile as
will be discussed in detail later herein.

Rules, the third type of Knowledge 22, are constructed and applied in a
number of different ways throughout the processing of KDTs’. The rules are made
up of conditional “if-then-else” statements organized into logical packages and are
executed together to provide a distinct business benefit. The rules used in KDT
automation provide a deterministic package structure whereby each package is
capable of decision making, action automation or scoring. One example of a rule
that results in a decision is “if Estimated Damage > 500 and Liable Party is Insured,

Then Set Document Required: Repair Estimate”.

10

15

20

25

WO 02/077753 PCT/US02/04849

The Knowledge 22 comprising data, rules and processes as well as the case
data for individual transactions including external data are stored in the data storage
110 in a relational database format. Alternatively, the Knowledge can be stored in
Extensible Markup Language (XML). The advantage of storing the data in XML is
that such data can be shared across branch offices of a company regardless of what
legacy system each branch may employ. For example, rules and processes defined
in one branch office can be shared with another branch that might have a different
legacy system such that modeling a slightly different type of transaction can be done
very rapidly since most modeling was done at another branch.

The Knowledge 22 comprising the above data, rules and processes is used by
a transaction management module 20 of the system to automate the KDT. The
transaction management module 20 comprises data collection automation 24, case
management 26, decision 28, and task automation 30 modules.

The data collection automation module 24 collects the correct information
during a given interaction with a data source. Business rules determine what data is
required for a given circumstance and how the information is collected. The
primary goal for the module 24 is to gather and validate the proper information as
efficiently as possible based on the specific circumstances of the case.

The case management automation module 26 tracks and manages the state of
the case — what information is collected and what information is still required.
Business rules use the currently available data to decide what, if any, additional
information is required to act on the KDT. If more information is required, the
“smart case” profiling indicates how to request the information and how long to wait
for the data to arrive. A defined automation process controls the order of case-state

evaluation and request processing.

10

15

20

25

WO 02/077753 PCT/US02/04849

The case management automation module 26 performs automation in four
stages: evaluating the data elements collected, setting up the case for remaining
required information, issuing requests for missing data elements, and waiting for
information to arrive. As new data elements arrive via data collection, the case is re-
evaluated and the cycle begins again. Once all of the data elements are collected for

a specific decision and action process, a message is sent for final decision and action

. execution. If these data elements are not received within a certain time frame as

determined by the smart case profile, additional automated requests are made or the
case is routed for manual intervention. Once it is determined during case
management automation that a case is complete and all required data elements have
been captured for a specific process, a message is received to make a decision. Each
KDT may have several defined processes that together provide the automation of the
necessary business decisions.

The decision automation module 28 uses business rules to make business
decisions while using a process to control the order in which decisions are made.
Decisions automated during decision automation may provide input information to
the case for which the case management automation module is waiting,.

The task automation module 30 performs automated processes that replace
tasks normally performed manually. For instance, a task automation step may
consist of a set of complex mainframe interactions normally performed by a case
worker. A task automation step may provide information for a case that is waiting at
the case management automation step to be completed.

The Management Information module in FIG. 2 aggregates and analyzes
case data, transaction history and rule results to provide detailed and summary

information to management, enabling visibility of the end-to-end KDT automation

10

10

15

20

WO 02/077753 PCT/US02/04849

process. Importantly, it provides the key analysis data that can be used to drive and
constantly improve the management of data, rules and processes.

FIG. 3 illustrates a component based interconnected system that represents
an exemplary software architecture of the present invention. The transaction
automation program 114 is divided into several separate functional modules or
systems where each module may be developed independently as a separate system.

A Data Control System (DCS) supplies services to define smart case
profiling and control data retrieval and storage for KDT automation, and provides
services to define and maintain extended business data as well as map the direct
business data to external system requests. Within the Data Control System, a DCS
builder is a graphical interface that allows an analyst to enter document profiles,
sections and elements that comprise a case profile. A DCS Business Services
subsystem provides other systems with the ability to access DCS data without
having to know the underlying database structure. A DCS Engine controls storage,
retrieval and modifications to the case data.

A Rule Processing System (RPS) performs rule processing for the
automation modules and provides services to define and maintain rules, analyze rule
results and test new rules. Furthermore, it provides visibility of individual rule
execution paths, enabling full graphical viewing of a given decision. Within the
RPS, a Rule Builder is a primary graphical interface to create and maintain rules.
Rules are presented in a tree structure with True/False results that are easy to follow
as will be discussed in detail later herein with reference to FIG. 5. Rule packages
and result sets, which are also discussed in detail later herein with reference to FIG.

6, are managed graphically as well. A Rule Analyzer is a graphical analysis tool that

11

10

15

20

WO 02/077753 PCT/US02/04849

measures previous rule results, and provides cross sectional analysis of rule results
and package results.

A Rule Engine executes rules for a given activity while a Rule Business
Services interface provides a series of classes that wrap up multiple database
interactions and data manipulations into single transactions for use by the Rule
Builder and RPS Engine. A Custom Function plug-in interface allows user-defined
functions that can be used in rule conditional expressions.

A Process Control System (PCS) furnishes services that control process
activity across the automation process including the ability to execute offline, real-
time operations in a controlled sequence. Within the PCS, a Process Builder is a
graphical interface that is used to define and maintain processes, process steps and
step transitions. In one embodiment, it includes a graphical front-end application to
allow an analyst to crate processes using a flowcharting tool such as Visio. Each
process step and transition can be created or edited using simple mouse clicks. For

example, a transition between two process steps can be created by pointing to a

“source process step and dragging a mouse to a destination process step. At that

point, the process builder brings up a transition properties screen for defining that
transition by the user.

A PCS Manager is a graphical interface that allows a system administrator to
view, configure and control the system run-time environment. In addition, it allows
servers to be defined, process steps to be assigned to servers, threads to be defined
for a process step/server configuration, and display of number of queued items,
active threads and process rate and errors. A PCS Business Services interface

provides for transactional updates during process definition.

12

10

15

20

25

WO 02/077753 PCT/US02/04849

A PCS Engine controls the flow of documents through a process and
executes process step logic and puts a document in the next step’s queue. A PCS
Daemon monitors process step queues and starts process step executions when an
eligible document is selected. A Custom Operation plug-in provides the ability to
create business specific behavior that is not offered directly by the system 100. An
example could be an operation that provides pre-processing of information before
rules are executed.

Still referring to FIG. 3, a Dynamic Interface System (DIS) provides services
for scripted, dynamic end-user interactions that are the primary interface for the data
collection automation module 24, and supplies services to define and maintain
scripts that guide the data collection activity. Within the DIS, a Scenario Builder
allows a business administrator who may have no programming knowledge to
graphically define case data collection scenarios which are used to provide direct
phone call scripting or data entry guidance. A scenario can be used, for example, by
a call center and typically defines a data collection session for a customer transaction
such as what documents or information should be collected, in what order, how
should the customer be guided through data collection and what access to the data
the customer should have.

Scenarios can be linked to perform a seamless transition from one scenario to
another. The target scenario is selected according to the data collected so far.
Linking is performed by using a decision rule package (rule packages are described
in detail later herein). A decision rule package is associated with the scenario that is
being linked from and each decision from the rule package is associated with a
scenario to be transitioned to. This way, a single scenario can transition to any

number of other scenarios depending on a set of rules defined in the rule packages.

13

10

15

20

WO 02/077753 PCT/US02/04849

FIG. 9 is an exemplary screen shot of a scenario builder that illustrates how
any business administrator with no programming knowledge can build scenarios. A
scenario may comprise chapters, pages, sections and elements. A chapteris a
logical grouping of data in a scenario. Each chapter includes one or more pages of
data. Each page includes one or more sections and each section includes one or
more data elements. In FIG. 9, “T1Accident Report” is a chapter, “Page 2” is a
page, “Approved Repairer” is a section, and “Approved Repairer Name” and
“Specialty” are elements.

As shown, the element “Approved Repairer Name” is highli ghted. The
business administrator creating the scenario has set up the scenario such that when
an agent is about to collect that information, a prompt script of “Do you have the
name of the repairer you have chosen?” is displayed on the agent’s screen.

Tabs in FIG. 9 such as “Search Page” “Transition” and “Info Elements”
allow the business administrator to navigate through various parts of the scenario to
be built. Briefly, the Search Page tab allows the user to set up an initial search page

for locating an existing case. The Transition tab is where transitions to other

scenarios using decision rule packages are defined. The Info Elements tab allows a

set of information elements to be displayed in a portion of the case agent’s display
during data collection.

A Dynamic Windows is a primary interface for the data collection module 24
in a Windows environment. Windows are dynamically generated based on a case
profile and collection scenario. Similarly, a Dynamic Web Pages is a primary
interface for the data collection engine in a Web environment. Web pages are

dynamically generated based on a case profile and collection scenario. Both

14

10

15

20

25

WO 02/077753 PCT/US02/04849

interfaces use an Interface Engine to determine the next page or window during data
collection either through a live operator or the Internet.

A DIS Business Services subsystem provides for transactional logic and an
interface to DIS data for other systems as needed. A DIS Interface Engine interacts
with Rule Processing and Data Control Systems to determine what information
should be collected. This determines the “next” window or page during data
collection. A Custom Window/Page plug-ins’ enables customization for a specific
look and feel in both the Windows and Web environments, and overrides generation
of dynamic window or page. They facilitates additional functionalities that are not
directly provided by the Dynamic Windows and Dynamic Web pages interfaces.

An External Mapping System (EMS) provides services to define and execute
external system requests, mapping input and output data for each request. In the
EMS, a Service Builder defines available external system services such as “Lookup
Member” or “Pay Claim”. It maps business structures as defined in Data Control to
the external system requests inputs and outputs and maps system requests to
interface plug-in parameters. An EMS Business Services interface provides for
transactional updates during service configuration. An EMS Engine executes
requests to external systems by any of the Systems in FIG. 3 and interacts with an
external system by calling the plug-in defined by an EMS service. A Custom
Interface plug-in provides the ability to create a custom interface to communicate
with an external system. Examples may be a terminal emulator plug-in that
performs table driven screen scraping or a simulation plug-in that simulates any
external system request by simply mapping given inputs to known outputs.

A Data Extraction System (DES) furnishes services that define and extract

data views across case data, business data, transaction history and rule-processing

15

10

15

20

25

WO 02/077753 PCT/US02/04849

results. In the DES, an Extraction Manager is a graphical interface that allows a user
to define and maintain extract profiles and allows extract profiles to be executed by
auser. A DES Business Services provides for transactional updates during extract
profile definition. A DES Engine is a Middle-tier component that executes extract
profiles, allows extracts to be executed from the Execution Manager and allows
extracts to be executed unattended in a “batch” mode. A Custom Data Domain
plug-in interface allows custom data domains to be defined while a Custom Data
Export plug-in interface allows custom output formats to be defined.

An Enterprise Administration System (EAS) supplies security services for
the automation engines and provides a common audit trail mechanism. It also
provides services to control administrative system concurrency through a logical
access locking mechanism. Within the EAS, a Windows Login interface includes an
ActiveX component that controls the login for each of the program’s user interface
applications. A Security Manager is a front end application that provides a system
administrator with the ability to maintain users, user groups and to assign security
rights to groups. An IDK Manager is a graphical interface that provides a uniform
interface to gain access to “builder” components to maintain industry domain
knowledge 22.

A Security Manager Business Services interface provides for transactional
updates during user definition and security maintenance. A Security Engine
processes all security requests while a Promotion Controller is a Middle-tier
component that controls the verification and sequencing of the promotion of IDK
data and structures from a source to target zone. The Promotion Controller uses
promotion interface plug-ins to execute a promotion. A Security Import plug-in

allows SAS to connect to an external security system and load user security details.

16

10

15

20

25

WO 02/077753 PCT/US02/04849

A Login Interface plug-in provide the ability to validate a user login and provide
login information to the Windows Login component. The Promotion Interface plug-
in is an interface that promoter plug-ins implement to perform the promotion of data
and structure in the promoter’s domain. Each of the systems in FIG. 3 should create
a promoter plug-in that implements this interface to be able to promote its data
across zones.

The various systems in FIG. 3 are shared by the modules of FIG 2 as shown
in FIG. 4. For example, the Rule Processing System is shared among the Data
Collection 24, Case Management Automation 26, Decision Automation 28 and
Management Information modules.

Data

As a step in configuring the system, a business user or administrator uses a
document builder in the Data Control System to build a case profile that defines the
data to be collected during a transaction. There are two types of data: data used in a
rule execution, and data used to complete a transaction.

The case profile defines a set of data containers that hold all of the data
required to process a case. The data containers include documents, sections, and
elements. Documents are the highest-level containers of information. Documents
contain logically independent sets of data for a case. For example, an accident
report from the insured and a third party report would each be documents. Each
document type (called a document profile) can be associated with a process that will
be pérformed on the document after it has been collected.

Sections are smaller logical containers of information. They contain sets of
data that can be logically grouped together, and are generally used to make the data

in a document more coherent. For instance, the insured’s personal information

17

10

15

20

25

30

WO 02/077753 PCT/US02/04849

would be one section of an accident report, while the details of the damage to the car
would be another. Sections are composed of elements.

Elements are the smallest containers of data. They hold individual pieces of
data such as the insured’s name, the date of an accident, or the amount charged by a
repairer for each item in an itemized list. Each of these containers can be marked as
“repetition”. Repetition allows multiple instances of the section to be collected for a
single instance of a document. This feature is used for smaller sets of repeating data,
like the itemized list of charges on an invoice.

For example, the analyst may configure the data with the following
documents, sections, and elements as part of a case profile called Notice of Loss:
Auto.

Document Profile: Policy Details

Section 1: Subscriber Information
Element 1: Subscriber Name
Element 2: Policy Number
Element 3: Address Line 1
Element 4: Address Line 2
Element 5: City
Element 6: State
Element 7: Zip

Section 2: Policy Information
Element 1: Policy Number
Element 2: Policy Name
Element 3: Policy Excess Amount

Sections can also be used to include data in a document that originally came
from an external system. For instance, if it is necessary to run a rule against
information for a customer that is only available on a mainframe, it’s possible to
retrieve that information from the mainframe, and make it a section in the case. This

is accomplished by creating a special kind of section for a document, called an

External Business Section. This type of section uses an EMS Business Services to

18

10

15

20

25

WO 02/077753 PCT/US02/04849

gather its data. Since this type of section is generally used to look data up on an
external system, these sections are designed so that they can provide information to
be used to look up the data. This happens by defining a number of input parameters
to the EMS Business Services to be run from other parts of the case. For instance, if
an insured’s details on a mainframe need to be looked up, the EMS Business
Services would be provided with the insured’s name, address, gender, or what ever
information is needed to uniquely identify that person on the mainframe. The data
that is returned from the fnainframe is then mapped into the elements that have been
defined for that section.

In one embodiment, the data returned is in a flat file format. In another
embodiment, the data is in an XML format for easier manipulation by the system
100 and easier sharing of data across disparate branch offices running different
legacy systems.

Rules

A rule package is a set of business rules organized into logical groupings that
will be used for data collection by the Data Collection System and processing by the
Process Control System for a particular KDT.

A rule package includes a scope, one or more rules and corresponding
results, and an outcome. The scope defines the data available for rules to be defined
and evaluated against. Rules have the following basic structure: If (condition) Then
(child rules Or valid result) [Else (child rules Or valid result)]. Thus, each rule can
have child rules and each rule package can have dependent rule packages to
accommodate complex business scenarios.

There are two different types of rules: standard and inclusion rules. Each

standard rule in the rule set is in the form of if-then-else format. The standard rules

19

10

15

20

25

WO 02/077753 PCT/US02/04849

are defined as a condition or set of conditions that evaluate to a true or false value
based on the specific information provided. Baséd on the value determined by the
condition(s), the rule definition should indicate either to evaluate a set of child rules,
or provide a result within the allowed values of the result set associated with the rule
package in which the rule is being defined. The inclusion rules allow one rule
package to simply include the results of another package. An inclusion rule does not
have any conditions, but may be conditionally included in the results of the rule
package if it is a child rule.

Result sets are used to define the possible outcomes of rules and how rule
packages use those results in reaching an outcome or conclusion for the package.
Result sets are separate from rule packages to separate the definition of possible
results from the logic (rules) that determine the results. This provides the ability to
control results for specific types of rule packages effectively, as well as have result
sets shared across rule packages.

In the exemplary embodiment, there are five different types of result sets: 1.
single conclusion, 2. compound conclusion, 3. binary, 4. score, and 5. action.
During the result set definition, a set of allowed values for the result set are defined.
For example, allowed values for a result set may include: “set document as

22 4

required”, “set document as optional”, “set document as unavailable”, “set element
as required”, “set element as optional”, “set element unavailable”, and “show
prompt”.

The outcome section receives the result set and by using a result set logic,
produces one or more conclusions. The outcome section may further process the

result set through one or more mathematical algorithms or simply pass the result set

as its conclusion. In the exemplary embodiment, there are eight different algorithms

20

10

15

20

25

WO 02/077753 PCT/US02/04849

or logics: priority, frequency, weighted, normal list, sum, average, minimum, and
maximum.

The priority algorithm means the outcome of the rule package will be set to
the conclusion of the highest ranked value that was the result of any rule. This
algorithm enables logic to be created so that each single rule may affect the outcome
of the entire rule package.

The frequency algorithm produces the conclusion that was the most frequent
result of the collective set of rules.

The weighted algorithm produces a conclusion that is a function of both rank
and frequency. The conclusions are counted as the rules are evaluated and are
multiplied by their ranked value to determine a weight. The conclusion with the
highest weight is the outcome of the package. If two conclusions have the same
weight, the one with the highest rank will be the outcome of the package.

The normal list algorithm produces a list of conclusions that resulted from all
rules with each conclusion appearing in the list one time at most. The list of all
conclusions from all rules is normalized to remove unnecessary duplicates from the
outcome'of the rule package.

Other algorithms are standard mathematical functions that are self-
explanatory.

In conventional rule processing systems, there are inference engines that
arbitrate contradictory logic or rule collisions. As an example of a rule collision,
assume that rule A is “if DamageCategory < $1000 then RepairType = Immediate”,
rule B is “if RepairType = Immediate then PoliceReport = Optional”, and rule C is
“if AccidentType = Personal Injury then PoliceReport = Mandatory”. If a claim to

be processed as a customer transaction contains an AccidentType = Personal Injury

21

10

15

20

WO 02/077753 PCT/US02/04849

and a DamageCategory = $750; it is unclear whether a PoliceReport is Mandatory or
Optional.

This type of conflict or collision is caused by the result of one rule forming
the condition of another. This chaining of dependencies is complex and hard to test
in a deterministic way. The problem with inference engines is that they allow
introduction of inconsistent logic in a rule base (either on purpose or by accident)
and the outcome is dependent on the inference algorithm.

The present invention, however, has a unique rule engine where no rule
conditions are dependent upon the result of other rules, and no conventional
inference engine is required to arbitrate contradictory logic or rule collisions. In a
preferred embodiment, each rule package performs a single high level business
decision. Within each rule package, all rules are treated equally, all rules are
evaluated (regardless of preceding results), and it is the collective set of results that
are then reviewed by the result set logic to present a deterministic outcome.

While rule chaining is not allowed in the embodiment shown, there are child
rules and dependent rule packages as discussed above. They may appear to be
similar to ru1§ chaining but are not. Child rules are conditionally executed based
upon the parent rule result and are a self-contained units that pass a deterministic
result back up the tree. This is very much a structure for rule organization and
abstraction management. Dependent rule packages assist with the re-use of business
logic and again are self-contained units of business logic that can be nested into the
overall business decision.

This type of modularization provides an important benefit of preventing rule

collision such that a definite deterministic and non-inferential result is guaranteed

22

10

15

20

WO 02/077753 PCT/US02/04849

for any rule package. It has the added benefit that it is easier to understand than a
conventional large rule base and it correlates well with typical business logic.

In the exemplary embodiment, there are nine rule package types: case
management, decision, section, element, document, complex validation, common,
prerequisite and custom.

Three of the nine rule package types deal with data and data collection
controlled by the Data Collection System: complex validation rule packages,
element rule packages, and document rule packages.

Document rule packages are associated with one or more documents in the
case profile. Document rule packages facilitate data collection by allowing data in
some documents to make other documents or elements required, optional, or
unavailable.

Element rule packages are associated with individual elements of data, and
facilitate data collection by allowing one element to change the
required/optional/unavailable status of other elements in the same document.

Complex Validation rules are attached to a document profile, and are used to
verify that the data submitted for that document is valid. The result of these rules is
either a “valid” or “invalid” judgment on the document. When a document is
submitted that has an associated Complex Validation rule package, it is evaluated to
determine if the document is logically valid (as defined by the rules in the package).
One example is a validation rule that checks to see if the policy was in affect on the
date of an incident.

Three of the nine rule packages deal with process step executions controlled

by the Process Control System: case management, decision and section,

23

10

15

20

WO 02/077753 PCT/US02/04849

A case management rule package is used for the purpose of ensuring that all
the information required for the processing of a specific case, as set by the scope of
the rule package, is collected. The case management rule packages are utilized
during the execution of a document requirements process step. The process step
inherits the scope of the rule package to which it is associated. The case
management rule package associated with the process step evaluates and returns an
action result list as the result of the rule package. The actions in the list determine
what actions will be taken on the any documents within the scope of the rule
package.

A decision rule package is used in deciding what the next step in the process
will be during the KDT. Once scope checking is performed during processing, the
decision rule package associated with the process step evaluates and returns a result
that represents a single decision. This outcome is mapped to a step transition that
determines what next process step is executed.

A section rule package is similar to a decision rule packages in that they will
make a decision on what the next step in the process will be during the KDT. The
difference is that Section rule packages will provide a result for each of several
similar “lines” of data (e.g., Invoice line items) within a document of a case. The
results returned for each section will be used to determine the overall decision that is
made.

A common rule package enables the construction of business specific logic
of which the results will be used by a rule package of another type, or another
common rule package. The common rule packages are only utilized as dependent

rule packages when used by another rule package.

24

10

15

20

25

WO 02/077753 PCT/US02/04849

Prerequisite rule packages are used to conditionally evaluate individual rules
in other rulé packages. Prior to evaluating rules in a rule package, it is first
determined which rules and versions of rules apply. This is accomplished by
evaluating applicable prerequisite rule packages to determine which rules in the
package apply. The prerequisite rule packages return a binary result of true or false
to determine if the associated rule or rules should be evaluated.

Custom rule packages are created for a specific business purpose that cannot
be met by any of the other rule package types.

FIG. .5 illustrates an example of a graphical display of data collection rule
packages by the rule builder. Rules are presented in a tree structure with True/False
results that are easy to follow. FIG. 5 shows a data collection rule package called
“Loss Type Is Accident”. Under a True condition, that rule package includes a set
of business rules: “Driver Is Named On Policy”, “Police Have Been Notified”,
“Injuries As A Result of Accident”, “Lights Are Applicable”, “Other Vehicles
Involved”. In the “Driver Is Named On Policy” rule, if it evaluates to a True
condition, then the conclusion is an Action called “Request Object: Named Driver
Validation”. If False (Else condition), then the conclusion is one Action called
“Request Object: Non-Named Driver Capture” and another Action called “Auto
Action: Outbound Call to Non-Named Driver”. As can be appreciated by persons of
ordinary skill in the art, such a graphical display allows an analyst with no
programming experience to modify, add or delete any rule or action.

A detailed example of an element rule package is shown in FIG. 6. The
result type is set to Action and allowed values for this rule package are “Set Element
Unavailable”, “Set Element Optional”, “Set Element Required” and “Show Prompt”.

The scope is limited to Element 1 which means data from that single element is

25

10

15

20

WO 02/077753 PCT/US02/04849

available for rules to evaluate against. Assuming that all the rules evaluate to a true
condition, the results are “Set Required Element 17, “Set Optional Element 47,
“Show Prompt ‘Prompt Text’”, “Set Unavailable Element 187, “Set Unavailable
Element 19” and “Set Unavailable Element 19”. In the outcome section, the result
set logic or algorithm is set to Normal List. Accordingly, the conclusion includes
one occurrence of all results in the result set. Although not shown, the program 114
according to the present invention allows the administrator building the rules to
easily manipulate the rule packages through the use of scrollable windows, pull
down menus, and drag and drop operations.

FIG. 10 is an exemplary screen shot of a rule builder that illustrates how a
user with no computer programming knowledge can build a rule with simple typing,
mouse clicks, and drag and drop operations. The rule calculates a risk of an
insurance policy holder. If the holder had the policy for less than 365 days before
the accident occurred, then the rule assigns a relatively high risk score of 8. To
build the rule, the user would simply click appropriate items and drop them into
appropriate boxes. For example, the user can open the Function folder, click on the
Date Difference Function and drag it into the If portion of the rule. The same can be
done for the loss date and inception date by going to the Scope folder which contains
all the data elements that are used for the rule package.

Processes

Once all data for a document have been collected, a process executed by the
Process Control System takes that document through a series of steps, executing
actions at each step, in order to achieve the final goal for the document (e.g.,

approval of payment on a claim).

26

10

15

20

25

WO 02/077753 PCT/US02/04849

To identify processes that need to be implemented, each document in the
case should be considered for whether rules need to be applied to the document and
whether the document needs to interact with a back end system.

Not all documents in the system will need a process run on them. For
instance, support documents, such as a police report in an auto insurance claim
context, may be involved in the rules and processing for a theft claim, but the theft
claim is the only document that needs to be processed. Once processes are
identified, process steps for each process is defined.

Each step in a process completes a business function and the results of each
function determine the next step that will be executed in the process flow. There are
seven different types of process steps, each of which provides the capability to
perform a specific type of business function.

In the exemplary embodiment, there are seven types of process steps: case
management, request and wait, section decision, business decision, service task,
custom task, and manual resolution.

The case management step uses a rule package to determine additional
documents and elements are needed for the case, based on the information already
collected.

The request and wait step sends requests for document profiles that are
required for the document being processed. Once requests have been issued, the
process step enters a ‘wait’ state until the requested documents are submitted, or a
timeout is reached.

The section decision step evaluates each section in a set of sections for the
document, and stores the results of each evaluation. This is accomplished by

running a section decision rule package.

27

10

15

20

25

WO 02/077753 PCT/US02/04849

The business decision step evaluates a decision rule package to determine the
next transition to execute.

The service task step executes an EMS service to perform a defined task.

The custom task step executes a custom task using a plug-in that implements
a standard interface.

The manual resolution step executes an EMS service to perform in order to
route the document to an external workflow system. Once the service has been
executed, the item waits until the document is resubmitted with a manual decision,
or a timeout occurs.

Similar to the scope of the business rule package, every process step type
except the request and wait step has a document scope. This scope is a list of
documents that should be in a specified state for the step to be executed. The states
that can be specified are: optional, complete and valid, complete only, and exists
only.

For instance, if the step performs a business decision, the documents that are
in the decision rule package scope should also appear in the process step’s scope.
There are automated means of guaranteeing that the minimum required scope for a
step is set when the step is created. “Requested and Wait” steps do not have a
document scope, since they are intended to request documents that will be needed to
meet the scope of later steps. ;

Each process step has one or more transitions. A transition defines what
happens to a document when it is finished with a process step. Transitions move a
document from one process step to another, or handle error conditions. Any
transition can be configured to delay the processing of a document for a period of

time. This delay can be setup to occur from the current time or the document’s

28

10

15

20

25

WO 02/077753 PCT/US02/04849

creation time. The possible transitions from one process step to another depend
upon the type of process step. There are standard transitions that should be defined
for each type of process step.

A sample process is shown in FIG. 7. Step 1 is a ‘Request and Wait' step
that looks at documents that are in the scope's step and determines if they are
complete, incomplete, requested or not requested. Step 1 has one transition A. The
result of the scope check is S1 (meaning scope complete), which is mapped to
transition A. If the result of the scope check is S1, transition A will be triggered,
which will send the document to Step 2.

Step 2 is a ‘Rule Run’ step. Case management, section decision and
document decision step types are 'Rule Run' type steps where the associated Rule
Processing System rule packages are executed. When the step is defined, the
selected rule package's rule outcomes are mapped to the step's transitions. Step 2
has two transitions, B and C. The associated rule package has three rule outcomes,
R1,R2, and R3. R1 and R2 are mapped to transition B and R3 is mapped to
transition C. After the rule package runs, if the rule result is R1 or R2, transition B
will be triggered which will send the document to Step 3. If rule result R3 is
returned from the rule run, transition C will be triggered which will send the
document to Step 4.

Step 3 1s a “Custom Task’ step that executes a custom action plug-in
component. When the step is defined, each of the values in a list that are associated
with the component is mapped to the step's transitions. Step 3 has two transitions, D
and E. The associated action has three outcomes, A1, A2, and A3. Al and A2 are
mapped to transition D and A3 is mapped to transition E. After the custom action

runs, if the outcome is A1 or A2, transition D will be triggered which will send the
29

10

15

20

25

WO 02/077753 PCT/US02/04849

document to Step 4. If outcome A3 is returned, transition E is triggered, which
sends the document to Step 5.

Step 4 is a ‘Service Task’ step that executes an EMS Service to send data to
an external system. When the step is defined, transitions are mapped to standard
return codes from the execution of an EMS service. Step 4 has two transitions, H
and I. The EMS service return codes are E1 and E2. After the EMS service call is
made, if the return code is E1, transition H is triggered which will send the
document back through the same step (for example, if the external system was
unavailable, the step can be rerun). If the return code is E2, transition I will be
triggered which will complete the process.

Step 5 is a ‘Manual Resolution’ step that sends the document to an external
workflow system for review. When the step is defined, manual transitions are
created which give the workflow user the choices of making a manual decision.
When the user has corrected or completed the document, they return the document
back to the Process Control System and send the document to a manual transition.
Step 5 has two transitions, F and G. A reviewer chooses either F or G'aﬂer the
document has been reviewed or updated. If the reviewer chooses F, transition F will
be triggered which will send the document to Step 4. If the reviewer chooses G,
transition G will be triggered which will send the document to Step 3.

If an unexpected system error occurs in any step, a system administrator
intervenes. Once the error is corrected, the administrator sends the case back to the
process step where the error occurred.

Another flow diagram of a sample process that processes an auto accident
claim will now be described with reference to FIG. 8 to further illustrate the benefits

and novel features of the present invention.

30

10

15

20

25

WO 02/077753 PCT/US02/04849

Initially, a subscriber calls a call center to report an accident. Under the
control of the DCS, an appropriate data collection scenario is selected and the
dynamic Windows interface of the DIS displays prompts and instructions to assist a
call center operator to collect the subscriber’s identification and policy number.
Alternatively, the present invention can use the DIS Dynamic Web Pages interface
to collect information through the Internet without the assistance of a live operator.
When the corresponding fields on the screen are populated, they are used to perform
a search on an external system (e.g., an external database or mainframe) for the
policy details through the EMS.

Still under the control of the DCS, the EMS returns the appropriate policy
details from the external system and the details are displayed to the operator as the
next page in the data collection scenario. In addition to the policy details being
displayed, the operator is prompted to enter additional data such as description of the
accident, time of day, cars involved, injuries, and witnesses.

Based on the data collected, rules associated with them are executed under
the control of the Rules Processing System. Rule execution as part of the front-end
drives the call to completion. As previously discussed, the rules are used to
determine additional data required, the manner in which it is collected and how it is
presented to the operator. For example if the operator indicates that injuries are
involved in the accident being reported, then the transaction management program
114 through the RPS displays specific fields and prompts the operator to coliect
information about the injuries.

At times, rules will determine that a request be sent outside of the system to
ask for the data from a third party. An example of this is a police report. The

subscriber may indicate that police are involved. A rule executed not only presents

31

10

15

20

WO 02/077753 PCT/US02/04849

to the operator some basic fields for collection of police information, but it may also
send an automated action to the Process Control System to request the accident
report from police headquarters. In the past, this would be an activity that the
operator would manually perform. With the present invention, however, this
activity is automated.

The data collection process continues until the operator has completed the
collection scenario. Upon completion of collecting the data, the operator submits
the claim.

Next, the claim is processed through a series of complex validation rule
packages to determine whether the data collected is valid. If the rules detect a
validation error, the operator is presented with the errors that were encountered and
is prompted via prompt messages the actions to take in order to correct the errors
presented, for example, to verify the incorrect information with the subscriber.
Upon correction, the operator submits the claim again and the claim is sent to the
Process Control System to process the back-end part of the transaction.

Under the control of the PCS, the claim is executed through a series of
process steps as part of a claim process 300 shown in FIG. 8. In process step 302, a
customer specific set of actions are executed to preprocess the claim. Typically, this
would involve validating and manipulating the case data to ensure that further
process steps will have data available in expected format. However, such a step
could perform any task by creating a custom component. If unsuccessful, process
step 306 is executed where unexpected errors are handled. This can be a manual
resolution step requiring manual intervention by an operator or an automated step.

Typically it is a manual resolution step that handles all transitions that are

32

10

15

20

25

WO 02/077753 PCT/US02/04849

unexpected. Under certain circumstances, the claim can be sent back to step 302 to
restart preprocessing.

If the result from step 302 is successful, on the other hand, process step 304
is executed. Step 304 is of a business decision type and therefore executes a
decision rule package to check whether the claim is a duplicate. If the result is yes,
then process step 308 is executed. Step 308 is typically a manual step where an
operator manually determines whether the claim is in fact a duplicate. Ifit is, the
process 300 is terminated. Otherwise, the operator sends the claim back into process
flow (process step 310) for further processing.

Step 310 is also executed when the decision rule package in step 304
determines that the claim is not a duplicate. Step 310 is of a case management type
and therefore executes a case management rule package to determine the additional
information required to continue processing. For example, based on the data that
have been processed thus far the rule package may determine that additional items or
documents are required. This process step executes an associated rule package that
determines the additional items or documents required and marks them as such in
the case profile for further processing. An unexpected result from step 310 is
handled by step 306. If, however, all required additional items are successfully
identified and marked, process step 312 is executed.

Step 312 requests the additional items that have been marked by step 312 and
enter into a wait state. If step 312 times out, process step 314 is executed. Similar
to step 308, step 314 is typically a manual step where an operator manually
determines whether the claim in fact does have all required items. Ifit does, the
process 300 is terminated. Otherwise, the operator sends the claim back into process

flow (process step 316) for further processing.
33

10

15

WO 02/077753 PCT/US02/04849

Step 316 is of a business decision type and therefore executes a decision rule
package to check whether any automated or manual action is required. If no, claim
processing is completed and the process 300 terminates normally. If yes, however,
the routine 300 has determined that some type of additional action is required before
the claim processing can be completed. If the required action is handled
successfully, processing completes normally and the routine 300 terminates.
Otherwise, step 306 is executed where unexpected errors are handled.

From the foregoing, it will be appreciated that, although specific
embodiments of the invention have been described herein for purposes of
illustration, various modifications may be made without deviating from the spirit
and scope of the invention. For example, while the embodiment disclosed illustrates
the present invention in an Internet environment, persons of ordinary skill in the art
Will appreciate that the system can be implemented in any computer network
environment including the Intranet, LAN, WAN or the like. Accordingly, the

present invention is not limited except as by the appended claims.

34

10

15

20

25

WO 02/077753 PCT/US02/04849

What is claimed is:

1. An automated knowledge dependent transaction management system for
processing customer transactions, the system comprising:
a storage device operable to store:

data of a customer transaction,

user-configurable business rule packages with each rule package
having one or more business rules, each rule package having a deterministic
outcome, at least some of the rule packages being associated with the data of the
customer transaction, and

user-configurable business process steps with at least one process
step being associated with a rule package and operable to execute a task based on the
deterministic outcome of the associated rule package; and

a transaction management module operable to:

collect a next data element of the customer transaction that depends
on the deterministic outcome of the rule package associated with the data already
collected, and

process the customer transaction by executing the tasks of the process
steps, a next process step to be executed being dependent on the execution result of a
current business process step.
2. The system according to claim 1, further comprising a rule builder that
displays a graphical representation of a business rule and allows a business
administrator to graphically change the business rule without using any computer
programming code.
3. The system according to claim 2 wherein the rule builder displays the

plurality of rule packages in a tree structure.

35

10

15

20

WO 02/077753 PCT/US02/04849

4. The system according to claim 1, further comprising a process builder that
displays a graphical representation of the process steps and allows a business
administrator to graphically change the process steps without using any computer
programming code.

5. The system according to claim 4 wherein the process builder displays the
process steps in a flow chart format.

6. The system according to claim 1, further comprising:

an external mapping module operable to retrieve data resident on an external
system which are requested by the transaction management module according to the
outcomes of the rule packages or process steps.

7. The system according to claim 6 wherein the data stored in the storage
device contains an external business portion that stores information regarding what
data is .to be passed to the external mapping module to retrieve the requested data
resident on the external system.

8. The system according to claim 6 wherein the external mapping module
receives the requested data resident on the external system in an XML format.

9. The system according to claim 1, further comprising:

a dynamic user interface module operable to dynamically change the display
to guide either a data collector or the customer as to how to provide the data being
collected, the dynamic change of the display being dependent on the outcomes of the
rule packages or process steps.

10. The system according to claim 1 wherein the data of the customer transaction
includes a case profile that defines the data to be collected to process the customer

transaction.

36

10

15

20

WO 02/077753 PCT/US02/04849

11. The system according to claim 1 wherein each rule in the rule package is in
the form of if-then logic.
12. The system according to claim 11 wherein the rule package is associated
with a first data item and evaluation of the associated rule package determines
whether another data item is required or optional.
13. The system according to claim 11 wherein the if portion of the rule in the
rule package is capabie of incorporating the outcome of another rule package.
14. The system according to claim 1 wherein each rule package includes a result
set and a result set logic, and wherein the deterministic outcome is based on
evaluation of the result set logic.
15. The system according to claim 14, wherein the rules are nested such that one
rule includes a child business rule package to be evaluated.
16. The system according to claim 1 wherein the at least one process step
includes one or more transitions to other process steps according to the evaluation of
the rule package associated with the at least one process step.
17. The system according to claim 1 wherein the data, rule packages and process
steps are stored in the storage device in an XML format. |
18. An automated knowledge dependent transaction management system for
processing customer transactions, the system comprising:
a storage device operable to store:

data of a customer transaction,

business rule packages with each rule package having one or more
business rules, wherein at least some of the rule packages are associated with the

customer transaction data, and

37

10

15

20

WO 02/077753 PCT/US02/04849

business process steps with at least some process steps being

associated with the rule packages,
a builder module that allows a business administrator to graphically change
the rule packages and process steps; and
a transaction management module operable to:

collect the customer transaction data according to the evaluation of
the associated rule packages, and

execute the process steps, a next process step to be executed being
dependent on evaluation of a current process step.
19. The system according to claim 18 wherein the transaction management
module collects a next data element of the customer transaction that depends on a
deterministic outcome of the rule package associated with the data already collected.
20. The system according to claim 18 wherein the builder module displays a
graphical representation of the rule packages and process steps for manipulation by
the business administrator without using any computer programming code.
21. The system according to claim 18 wherein each rule package includes a
result set and a result set logic, and wherein a deterministic outcome of the rule
package is based on evaluation of the result set logic.
22. The system according to claim 18 wherein each of the some process steps
includes one or more transitions to other process steps according to the evaluation of
the rule package associated with the each process step.
23. A method of processing a knowledge dependent customer transaction,
comprising:

collecting an item of a customer transaction data;

38

10

WO 02/077753 PCT/US02/04849

evaluating a rule package associated with the collected data item, the rule
package being graphically configurable by a business administrator, an outcome of
the rule package specifying whether another item of data is required;

collecting the another item of the customer transaction data if the outcome of
the evaluation specifies that the another item of data is required; and

executing process steps associated with the customer transaction, the
execution result of a current business process step determining the next process step
to be executed, the process steps being graphically configurable by the business
administrator.
24. The method according to claim 23 wherein the steps of collecting an item,
evaluating a rule package and collecting the another item are repeated until all

required items of data are collected.

39

PCT/US02/04849

WO 02/077753

1/10

WO 02/077753

2.2

PCT/US02/04849

Management
Automation

Processes

28 —

30 ™

D

Decision
Automation

&

Data

G2

Task
Automation

Rules

FIG. 2

2/10

Management
Information

PCT/US02/04849

WO 02/077753

hodx3
eleq
wosnyd

sjuauodwo)d

ulewod
ejeq
./ woisny

S30INBS
ssauisng
SW3

- E&m\ﬂm :o.._ummbxm geq

uibo

podw)
Ajunoag

auibug
soepa|

AT TRy
| |

T

ssaujsng

JpING S3a |

,uwaw [oyuon vl

S30IARG
ssauisng
Sia

| . depina opeuscs

Sa0JAIaS
ssauisng

uonegsiuwpy asudiajuy

Neoce s

wayshg ooepoIl] SIUBUAG

AW e A SK s 0k

it ety

d JozAleuy ojny

Jopling e|ny

“Woyshs Buissesoig ony |

3/10

PCT/US02/04849

WO 02/077753

+vT14

WAJSAS UONENSIUIUPY osudis)ug

walsAg uonoelxg eleq

X

waysAg Buiddey jeuseixgl

W8)SAg josuo) eleq

X
X
X
X

walsAg Buissadold ajny

X

XXX P

Wa)SAS [0J]U0D SS800Id

XXX X X P K

X

WSJSAS 8oBUSIU| OjWeUAQ

3|Npop
vonewloju} Juswabeuepy

SINPON
UOIBWIOINY YSe |

aINPON
uonewWOoNY uolsinag

a|nNpoyy uojewoIny
juswabeueyy asen

a|Npo
uono8j|0n Bleq

4/10

WO 02/077753

e s e A,

ARt

R —

B N T LI

PCT/US02/04849

- "’r

s g

E] ~1] Loss Type Is Accident
- @ Sub-Bules
SRR Drivers

'"11

-

)
LU

- Injuries As A Result of Accident

3] Lights Are Applicable

-3 Other Vehicles Involved

El (D) Actions ;
b % Request Object: Named DnvelVahdahon
& @ Actions
frone » Request Object: Non-MNamed Driver Captun
----- % Auto Action: Outbound Call to Non- Named
) Police Have Been Notified
B @ Actions
» Request Object: Police Details
Auto Action: Order Police Repoit
El @ Actions
» Auto Action: Notify Police

2-{D Actions
.. 3 Request Object: Injury Detail
''''' (®) NoAction

& @ Actians
------- @ Enable Field: Lights Used
-{E) No Action

&- @ Actions
i@ Enable Field: Weather
¥ Enable Field: Brakes Applied
ﬂ' Enable Field: Vehicle Speed
;o b ‘7‘?‘ Request Object: Third Party Details
:l @ Sub-Rules
& 1) Policy Has Comprehensive Coverage
E@ Actions B
i -~ Call Action: Stap for lnvial[d Cover 7.

5/10

WO 02/077753 PCT/US02/04849

Rule Package Type: Element Rule - — — - !
Result Set Type: Action s e Then Set Required| " h g Algorithm: Normal List
Allowed Values: Set Element Unavailable
Set Element Optlonal, /—{Rule: if {true condition} Then Set Optional {Blement 4} ﬁ .
Set Element Required, ; Conc(us:ons
Show Prompt f——Fﬂe: W {true condition) Then Show Prompt {"Prompt Text™) E TR :: ge;)qmre:i((é]:'lementt:))
tional (Elemen
’/——Lmle: i ftrue ition) Then Set Unavailable (Bement 16)4};] Show prompt ('Prompt Text")
Sape: - x Set Unavailable (Hement 18)
(Bement 1 J --LRuIe. I (true condition} Then Set Unavailable {Bement 19)}] Set Unavailable (Element 19)
Rule: ¥ {true condition) Then Set Unavaitable {(Bement 20)‘D Set Unavallable (Element 20
R g Sy et LR R e e e,
Y e o ik AT L6 Y B T e T e A .

AO‘A*‘COY‘A@

6/10

WO 02/077753

PCT/US02/04849

Step 1
(Request and Wait)

Transitions

Bl

Scope Check

CProcessStepWorker

Step 2
(Rule Run Step -
Case Management,
Section Decision,
Document Decision)

Transitions

PCS Process

[|

Rule Results

Rule Package
(from RPS)

Step 4
(EMS Service Step)

Transitions

Exinn

Transition

EMS Service Cali Results

EMS Plug-in

Administrator
Intervention

Step 3
(Custom Action Step)

Transitions

[oJlE]

Action Results
Custom Action

Step 5
{Manual Step)

i
Error

Resolution

i
i

Transitions

Manual Decisions

External Workflow
System

7/10

WO 02/077753 PCT/US02/04849

8/10

PCT/US02/04849

WO 02/077753

$USS0YD ALY oA Jaliedal
8yl JO aleu sy} aABY oA 0Q

Wil a91AIaS abeiaAy |4l
SOPUBUIY |4l

30ULISI] _UL
auoud _,‘,
SSUPPY |del--
Ayeroads _#

S 4 e .4.“5:,5«mm£€

Jlgdsy paaddy, _3

Z ebed

U007 deday painsy| m

uojewwio)y) teday 109)10D

B)) Jaliedsy psaciddy m .

¢ abed m =

NES OO

(8

[RE)

<8

Hoday Jug,

, ul] 901A48S abBlaAy _L

BB 4341 TL
35 ST A _.L,
adA) 5507 |4}
uoldiasaq faug _L g
ojeQ 5507 |4}

SN Wiepd

sfielaq Adlod (=

aunyde Aatod [
weld |1

{1818 Wepiaay = [

UOIULIoL] 9010AU) {2

+
s

ssiuawy _L .

lod cmrines ¥ o

YR

-1 Japling

euadq xezuel

9/10

PCT/US02/04849

WO 02/077753

G2

AN LN G R

amy

4

8 JH0D

(=g uondaouy Pl

Agllog uie) ‘ajeq
$SOT |RIAUSEY AloLUING
ssoTIsouslall 8Ba
. e

L e
04

abuey BUI0IS pamo|y @m
sauadold _UH

18S Insay -5

uopoung)@

afiByoed ainy-wapusdaq .
poday wepiody Ty
AlBWWINS SSOT Q .

speieq Aoog [E]-@
spodjsod |ef |
Auna) |4}

-

A0 [l

ssalppY “L
48pIOH Adllod |4e]
Jaguinp Aa1ogd _L
NYA 4]

adA] yoieas I
alep Jajed _L
ainjden Aaiog @

°
e 136

ssa (8

S a e 2

1eQ uofdaoyy sjiela

"AJBUILING £S07)32U3I3J4I3 21eq) J

Adljod wepy 'ajeg SSOTjelSUaD

——

3

R e S T

ajny]|

10/10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

