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(57) Abstract: Computer method and system performs root-cause analysis on an industrial process. The method and system builds
and executes a hybrid first principles and inferential model to generate KPIs for the industrial process using process variables. The
method and system selects KPIs to represent an event in the industrial process, and divides the KPIs into subsets of time series. The
method and system select time intervals from the time series based on the variability in the selected time intervals and perform a
cross-correlation resulting in a score for each process variable. The method and system select precursor candidates from the process
variables based on the scores and execute a parametric model for quantitative analysis of the candidates, resulting in strength of cor -
relation score for each precursor candidate. The method and system select root-cause variables from the candidates based on the
strength of correlation scores for analyzing the root-cause of the event.
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COMPUTER SYSTEM AND METHOD FOR CAUSALITY ANALYSIS USING HYBRID
FIRST-PRINCIPLES AND INFERENTIAL MODEL

RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/156,024, filed on

May 1, 2015, which is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0001] Although normal chemical or petro-chemical plant operations are controlled using
Advanced Process Control (APC) and are optimized with Real-Time Optimization (RTO), a
large number of undesirable plant events still occur in processes at chemical or petro-
chemical plants, which cost the process industry billions of dollars per year. These
undesirable plant events include unexpected unit operation breakdown or plant shutdown due
to equipment problems, feed materials quality change, faulty sensors/actuators, and human
operation errors. Because of the large number of undesirable plant events, the development
of root-cause-analysis technology that leads to quick and efficient identification of the root
causes of these events would be of extreme benefit to the process industry. However,
chemical and petro-chemical plants measure a formidable number of process variables in
relation to plant events. As such, performing root-cause-analysis on a particular plant event
using the historian dataset for these measured process variables presents a challenge for
process engineers and operators. Prior art systems lack tools for quickly and efficiently
performing root-cause-analysis on such a formidable number of measured process variables.
[0002] Further, prior art systems lack effective online models, such as first principles
models, to calculate event indicators for identifying particular process variables to use in
root-cause-analysis of a plant event. First principles models have been widely used offline in
petroleum, chemical, and process industries for process design, simulation, and optimization
over the last 30 years because of their accuracy and transparency in fundamental physical and
chemical principles. Commercial engineering software for offline applications using first
principles models have advanced tremendously over the last 30 years, and during this time,
efforts have been made to also use first principles models online for real-time applications,
such as online process optimization and control. First principles models have many well-
known advantages over black-box models that are typically used online. These advantages
include being more rigorous and reliable for simulating and predicting process behavior,
providing broader coverage of complex nonlinearities, and providing better extrapolations.

Using first principles models online to calculate or predict key performance indicators (KPIs)
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has been a long time goal for many process engineers and operators. However, efforts to use
a first principles model online for real-time event prediction, prevention and root-cause-
analysis applications have been a challenging task, and for prior art systems there still exists a

gap between theory and practice.

SUMMARY OF THE INVENTION

[0003] The present invention addresses the difficulties in performing root-cause-analysis
for a typical plant process involving a formidable number of process variables. The
difficulties for prior art systems to perform root-cause-analysis come from several factors.
First, undesirable plant events in a process at a chemical or petro-chemical plant are
challenging for prior art systems to analyze because the events may not occur consistently, or
even be repeatable, in the process history, and are often discrete in time. As such, prior art
systems are not able to determine direct correlations between the events and the continuous
plant operational historian data from the process. Second, a typical process unit consists of
thousands of measurable variables, and determining specific key root-cause variables from
such a large number of process data is a daunting task for process engineers and operators.
Third, even though only a small number of process variables may be root-cause variables for
the event, prior art systems lack efficient tools for performing the task of calculating the
causal correlation strength of each process variable to the event based on relative sensitivities,
contributions, and event lead-time, as required to identify the process variables as potential
root-cause variables.

[0004] Embodiments of the present invention first address several difficulties in using
first principles models online for root-cause-analysis. First, a full scale of a first-principles
dynamic model for plant off-line simulation was usually constructed with very high
complexity, typically consisting of a formidable number of variables and model parameters
(e.g., 12,000 variables plus 12,300 parameters for a single C2 splitter distillation column).
Applying such a full scale first-principle dynamic model to online applications will be
difficult and costly in term of time and efforts needed. Second, the model needs to be
calibrated with plant operational data, but sufficient raw plant operational data needed to
calibrate such a complex dynamic model may not be available, as usually only limited
historical process data can be used for model calibration. To reduce the complexity of using a
full-scale dynamic model and lower the requirements on plant data availability, a steady-state

first-principles model is instead used in embodiments of the present invention.
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[0005] Further, once the steady-state first-principles model was calibrated, the online
prediction may only be generated at a steady-state. That is, the first-principles model only
provides discrete-time (non-continuous) calculations when the process detects reaching a
steady-state. As such, the calculation or estimation/prediction of KPIs from the first-
principles models are valid only when the process/model reaches a steady-state, but steady-
states can be found only at certain periods over the plant historical operation data. Therefore,
usually only scattered data points over the time series of multivariate process variables are
qualified and used to calculate model/predict steady-state KPIs. In practice, the continuous
calculation or estimation of various process KPIs are more desirable, for example, a
distillation column’s flooding risk factor will be extremely important for an operator to watch
and monitor continuously, such that once the risk factor gets close to a critical threshold, an
early warning may be triggered, and corresponding actions may be taken so that the
unwanted plant shutdown due to column flooding can be prevented timely.

[0006] The present invention is directed to a computer system and methods for
performing root-cause-analysis of undesirable plant events. As the first step, embodiments of
the present invention are directed to the use of a hybrid online first principle model combined
with in empirical inferential model to generate continuous KPIs for representing the
undesirable plant events. For example, the undesirable event of a distillation column
flooding may be represented by flooding risk factors KPIs generated online by a hybrid first
principles model. In some embodiments, other measurements may be used together with
KPIs, or instead of KPIs, to represent undesirable process events.

[0007] The computer system and methods may build, calibrate, and deploy a hybrid first
principles and inferential model online to generate continuous KPIs for representing plant
events. The present invention provides an approach that allows preserving the advantages of
first principles models for real-time applications. Unlike prior approaches, the system and
methods of the present invention combine the traditional first principles model for reliable
and accurate KPI calculation at steady-state, with an empirical inferential model for
continuous estimation or prediction of the KPIs between the steady-state operation points. In
this way, a hybrid model may provide reliable, accurate and continuous KPI value
estimations in an online application. The invention allows process engineers and operators to
deploy numerous well-developed first principles models online for KPI calculation and real-

time prediction estimation, providing a powerful solution to many issues faced at the plant.
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[0008] In this approach, the first-principles model and the inferential model are first
constructed in an offline mode for model calibration and inferential building. Specifically, a
scalable first principles model for a single process unit (e. g., distillation column, reactor,
furnace, and the like) is built and calibrated with plant historical operation data and initiated
from a plant database (i.e., historian database or historian). A dataset consisting of model
required measurements from a plant operation historian is retrieved and auto-data-slicing is
applied to the dataset for data preprocessing and data selection (see U.S. Patent No. US
9,141,911 B2, which is incorporated herein by reference in its entirety). Further, a model
calibration procedure is implemented to calibrate the first-principles process model based on
the dataset, and a steady-state detection module is used to find out where the unit (process)
reached a steady-state among the dataset. Once a first-principles model is calibrated, the
model is used to generate steady-state KPI values, which are usually unmeasured or difficult
to measure, but very important for the process engineer/operator to keep the process
operation safe or at an optimal operation condition, such as distillation columns’ flooding risk
factor, column efficiency, output product quality, reactors’ conversion efficiency or a furnace
energy consumption rate, etc. In order to overcome the limitations of a single first-principles
model between steady-state periods, a complementary inferential model acts as a bridge to
generate estimations of KPIs between any two steady-state periods. This resolves the
continuous KPI estimation problem and works with the first-principles model in a synergistic
way. The inferential model is built with a partial least squares (PLS) linear or neural network
(NN) nonlinear model by using the steady-state KPI data as model output and selected
measurable process variables data as model inputs from a historical operation dataset.

[0009] Then, the models are used together online as a hybrid model or analyzer to
generate continuous KPIs as output. The hybrid model or analyzer may generate continuous
KPIs to represent the closeness measure to plant events, including undesirable plant events,
as part of a root-cause analysis system. The system and methods further provide for periodic
online model calibrations and automatic inferential model adaptations for maintaining the
model when the process operation scheme changes. In this manner the present invention may
provide up-to-date process KPIs to reflect the changes in process equipment and/or operation
conditions. As a result, the unit (process) operation becomes more transparent to process
engineers and/or operators than before and enable them to address many practical operational
performance issues of today, such as preventing column flooding and avoiding unwanted

plant shutdown.
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[0010] The computer system and methods may then use the continuous KPI values
relevant to a particular undesirable plant event (i.e., event-relevant KPIs) to search for
precursor candidates for the undesirable plant event from the thousands of process variables
measurements. The search may be performed by a search engine configured as part of a root-
cause analyzer, which is communicatively coupled to the hybrid model. A KPI may be
determined as an event-relevant KPI because it highly correlates to the particular undesirable
plant event, such as selecting the estimated flooding factor of a distillation column KPI for
column flooding events or selecting the column separation efficiency KPI for column fouling
events. The event-relevant KPIs may be used to indicate the risk level of the undesirable
plant events, and further to facilitate the search (e.g., a target signal precursor search (TSPS))
to identify precursor variable candidates among the thousands of process variable
measurements potentially related to the undesirable events in the plant historian. To perform
a search, the system and methods may first divide values of the event-relevant KPIs into
multiple sets of time series, and time intervals of each subset of time series may be selected
for searching for precursor candidates for the event (i.e., precursor candidates) based on data
variability in the time interval. The time intervals may be defined based on large value
variations in the data over time or different operating levels for the subset of KPIs. Note, the
system and methods may load the process variables measurements from the historian
database (i.e., the historical operation dataset) as the precursor candidates for a specific
undesirable plant event. A special data screening and pre-processing method (see e.g., U.S.
Patent No. US 9,141,911 B2, which is incorporated herein by reference in its entirety) may be
applied to the historical operation dataset to obtain auto-preprocessed clean data for the
precursor search.

[0011] The system and methods may then perform a cross-correlation analysis between
the loaded process variables and the event-relevant KPIs of the selected time intervals, and
thereby calculate a correlation score for each loaded process variable. The system and
methods may perform the cross-correlation analysis by first performing an elimination of one
or more loaded process variables based on a global correlation threshold. The system and
methods may then calculate correlation scores for the process variables remaining after the
first elimination, wherein the initial cross-correlation scores are calculated by evaluating the
positive and negative intervals for each respective time interval. The system and methods
may then accumulate the cross-correlation scores for each remaining process variable such

that the accumulated cross-correlation score for each remaining process variable is calculated
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over all the selected time intervals, wherein performing a second elimination of one or more
of the remaining process variables based on the accumulated cross-correlation scores. The
system and methods may select precursor candidates from the process variables remaining
after the second elimination. The selection of the precursor candidates may be based on
calculating rolling lag times over the entire time series for each of the remaining process
variables using multi-window correlations, which allows quick eliminations of many
precursor candidates from the thousands of loaded process variables.

[0012] As a result of the precursor search, only a small set of the loaded process variables
are found highly-correlated to the KPIs, which are then identified as precursor candidates for
continued analysis. The system and methods may then apply qualitative and quantitative
analysis to more granularly investigate the identified precursor candidates to determine the
impacts of each candidate. The analysis includes building a quantitative parametric dynamic
model, such as a multiple-input single output (MISO) dynamic parametric model, between
the candidate precursors and event-relevant KPIs to identify root-cause variables from the
precursor candidates. The analysis may be performed by a final parametric dynamic analyzer
configured as part of a root-cause analyzer, which may be communicatively coupled to the
search engine and hybrid analyzer also configured as part of the root-cause analyzer. Prior to
building the model, the system and methods may analyze x-y linear relationships between the
selected precursor candidates and the subset of KPIs, wherein a transform may be applied to
any of the selected precursor candidates determined as having high nonlinearity to the KPIs
based on the analysis. The system and methods may then build the quantitative parametric
dynamic model with the selected precursor candidates as input and the subset of KPIs as
output. The parametric model may be structured as a linear state space model, partial least
squares (PLS) linear model, or piecewise linear model. Using the parametric model, the
system and methods estimate dead-times and dynamic linear filters for each input channel of
the parametric model. The dead-time may be estimated using an optimization search based
on input to the subset of KPIs. Further, the dynamic linear filters may be estimated using a
linear reduction technique to determine optimal low-order model fittings.

[0013] Then using the estimated dead-times and filters, the system and methods may
rebuild the final parametric model as a partial least squares (PLS) model to perform
quantitative analysis of the selected precursor candidates. More specifically, using the PLS
model, the system and methods may calculate a score for each selected precursor candidate

based on strength of correlation to the subset of the KPIs, including relative sensitivities,
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contributions, and event lead-time for the selected precursor variable candidates. The
strength of correlation score may be calculated using PLS regression and sensitivity analysis
techniques. The system and methods may select root-cause variables from the selected
precursor candidates based on the respective calculated strength of correlation score. In
addition, the selected precursor candidates may be sorted and ranked according their strength
of correlation score, and may be presented, along with their relative sensitivities,
contributions, and lead-times to process engineers and operators for confirmation and
rejection as root-cause variables.

[0014] Using the ranked list as a signature in diagnosing plant operation defects, the
process engineers and operators may quickly further narrow the results of the root-cause
search and determine whether each system presented root-cause variable is the actual cause
of an operation problem based on their knowledge of the process. Further, the process
engineers and operators may also use this information to better understand unexpected
events, focus the investigation of an undesirable plant event on the system presented root-
cause variables, and take early actions, if necessary, based on the KPI-related monitoring and
alarming. As a result, the information may lower the risks of reoccurrence of the events, and
ultimately prevent the undesirable events from future operations and reduce the economic
loss in manufactory plants. As such, the system and methods provide process engineers and
operators with a highly efficient tool for event causality analysis in various process industry
applications, including but not limited to, undesirable events root-cause analysis, operational
trouble-shooting, and process faults detection and identification, as well as plant risk

management.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing will be apparent from the following more particular description of
example embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of
the present invention.

[0016] FIG. 1 illustrates a block diagram depicting an example network environment for

data collection and monitoring of a plant process in embodiments of the present invention.
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[0017] FIG. 2A illustrates a flowchart of an example method for a hybrid analyzer to
generate KPIs in embodiments of the present invention.

[0018] FIG. 2B illustrates a block diagram depicting an example configuration of the
hybrid analyzer in FIG. 2A.

[0019] FIG. 3A illustrates a block diagram of another example configuration of a hybrid
analyzer calculating KPIs in embodiments of the present invention.

[0020] FIG. 3B illustrates a block diagram depicting example concept and functions of
the hybrid approach of a first principles model and an inferential model in an example
embodiment of the hybrid analyzer in FIG. 3A.

[0021] FIG. 3C illustrates a data chart of plots from a first principles model and an
inferential model together calculating KPIs according to the present invention.

[0022] FIG. 4 illustrates a flowchart of an example method for performing a target signal
precursor search (TSPS) in embodiments of the present invention.

[0023] FIG. 5A illustrates a flowchart of an example method for performing a causality
analysis (CA) in embodiments of the present invention.

[0024] FIG. 5B illustrates a block diagram depicting an example multiple input single
output (MISO) model used in some embodiments of FIG. S5A.

[0025] FIGs. 6A-6l illustrate an application example of a C2 splitter depicting the
performance of root cause analysis using the example methods in FIGs. 2A, 4, and 5A-5B.
[0026] FIG. 7 is a block diagram of a computer (or digital processing) system for
performing root-cause-analysis according to at least one embodiment of the present
invention.

[0027] FIG. 8 is a schematic diagram of an example computer network environment in

which embodiments of the invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

[0028] A description of example embodiments of the invention follows. As used herein
“Partial Least Squares” and “Projection Latent Structure” are used interchangeably and are
both referenced by the abbreviation “PLS”.

[0029] In example embodiments, the present invention may use continuous KPIs as
indicators in performing root-cause-analysis of undesirable plant events. In some of these

example embodiments, the present invention may use a hybrid analyzer including a primary
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first principles model or analyzer (i.e., first principles model) and a secondary dynamic
inferential model or analyzer (i.e., inferential model) connected in parallel to calculate the
continuous KPIs. In other example embodiments, (1) the hybrid analyzer may include a first
principles model coupled with a different secondary model, (2) the hybrid analyzer may be
configured with the models connected in other non-parallel configurations, and (3) the
models may calculate other measures than KPIs. In yet other embodiments, the present
invention may use other analyzers, which includes other models besides first principles
models, to calculate the KPIs or other estimations of certain properties of an industrial

process as indicators.

Example Network Environment for Plant Processes

[0030] FIG. 1 illustrates a block diagram depicting an example network environment 100
for monitoring plant processes in embodiments of the present invention. System computers
101, 102 may operate as a root-cause analyzer. In some embodiments, each one of the
system computers 101, 102 may operate in real-time as the root-cause analyzer of the present
invention alone, or the computers 101, 102 may operate together as distributed processors
contributing to real-time operations as a single root-cause analyzer. In other embodiments,
additional system computers 112 may also operate as distributed processors contributing to
the real-time operation as a root-cause analyzer. In some embodiments, system computers
101, 102, 112 operating as the root-cause analyzer may be configured with a hybrid model,
search engine, and a parametric analyzer. The hybrid model may be configured with a first
principles model and an inferential model. The parametric analyzer may be configured with
a multiple-input single output (MISO) dynamic parametric model.

[0031] The system computers 101 and 102 may communicate with the data server 103 to
access collected data for measurable process variables from a historian database 111. The
data server 103 may be further communicatively coupled to a distributed control system
(DCS) 104, or any other plant control system, which may be configured with instruments
109A-1091, 106, 107 that collect data at a regular sampling period (e.g., one sample per
minute) for the measurable process variables, 106,107 are online analyzers (e.g., Gas
Chromatographs or GC) that collect data at a longer sampling period. The instruments may
communicate the collected data to an instrumentation computer 105, also configured in the
DCS 104, and the instrumentation computer 105 may in turn communicate the collected data

to the data server 103 over communications network 108. The data server 103 may then
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archive the collected data in the historian database 111 for model calibration and inferential
model training purposes. The data collected varies according to the type of target process.
[0032] The collected data may include measurements for various measureable process
variables. These measurements may include a feed stream flow rate as measured by a flow
meter 109B, a feed stream temperature as measured by a temperature sensor 109C,
component feed concentrations as determined by an analyzer 109A, and reflux stream
temperature in a pipe as measured by a temperature sensor 109D. The collected data may
also include measurements for process output stream variables, such as the concentration of
produced materials, as measured by analyzers 106 and 107. The collected data may further
include measurements for manipulated input variables, such as reflux flow rate as set by
valve 109F and determined by flow meter 109H, a re-boiler steam flow rate as set by valve
109E and measured by flow meter 1091, and pressure in a column as controlled by a valve
109G. The collected data reflect the operation conditions of the representative plant during a
particular sampling period. The collected data is archived in the historian database 111 for
model calibration and inferential model training purposes. The data collected varies
according to the type of target process.

[0033] In FIG. 1, the system computer 101 and 102 may execute a first principles model
and inferential model for online deployment purposes. The output values generated by the
hybrid model on the system computer 101 may provide to the instrumentation computer 105
over the network 108 for operator to view, or may be provided to automatically program any
other component of the DCS 104, or any other plant control system or processing system
coupled to the DCS system 104. Alternatively, the instrumentation computer 105 can store
the historical data 111 through the data server 103 in the historian database 111 and execute
the hybrid model in a stand-alone mode. Collectively, the instrumentation computer 105, the
data server 103, and various sensors and output drivers (e.g., 109A-1091, 106, 107) form the
DCS 104 and work together to implement and run the presented application.

[0034] The example architecture 100 of the computer system supports the process
operation of the present invention in a representative plant. In this embodiment, the
representative plant may be a refinery or a chemical processing plant having a number of
measurable process variables such as temperature, pressure and flow rate variables. It should
be understood that in other embodiments the present invention may be used in a wide variety

of other types of technological processes or equipment in the useful arts.
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Hybrid Analyzer Process

[0035] FIG. 2A illustrates a flowchart of an example method 200 for a hybrid analyzer
260 to calculate KPIs. In some embodiments, the hybrid analyzer 260 may be configured as
part of a root-cause analyzer, such as on system computers 101, 102 of FIG. 1. The
calculated KPIs may be relevant to particular plant events, such as undesirable plant events.
The method 200 begins by the hybrid analyzer 260 calibrating a first principles model at step
210 of FIG. 2A. In some embodiments, the hybrid analyzer 260 may select the first
principles model from multiple available models for calculating KPIs, and in other
embodiments the hybrid analyzer 260 may be provided with a single first principles model
for calculating KPIs. In the embodiment of FIG. 2A, the first principles model is a steady-
state process/unit simulation model, but in other embodiments, the first principles model may
be another simulation model. The first principles model is calibrated using historical plant
operation data as training data to calculate process operation KPI values at a steady-state. In
other embodiments, other plant operation data may be used as training data. The training
data for the model calibration are generated by various components of a manufacturing plant
and are sampled using a plurality of sensors (e.g., 109A-1091, 106, 107) strategically placed
in the plant and are stored in a historian database 111 as plant operation historian data, as
shown in FIG. 1. In some embodiments, the training data may be stored in other locations in
memory. The hybrid analyzer 260 may include a variable selection component for selecting
one or more measurable process variables from the training data as input data for performing
the model calibration.

[0036] Typically a first principles model may contain tens to thousands of process
variables, such as mass flows, vassal holdups, pressures and temperatures of liquids and
vapors at different locations of a process, and the like, and may contain from a few to
millions of mathematical equations and parameters, depending on the size and complexity of
the underlying process. In a general form, a first-principles steady-state model can be

described in Equations (1) and (2), as follows:
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FU)Y,X,0)=0 Q)
Subject to
GU.,Y,X,0)<0; 2)

where U:[u1 Uy .. u,]T, Y:[y1 Yy .. yp]T, X:[x1 X, .. xn]T, 9:[91 o,

[0037] In Equations (1) and (2), U comprises the first principles model’s input variables,
Y comprises output variables, X comprises state variables, and € comprises model parameters,
respectively. The right side of Equation (1) equals zero (i.e., 0), which means that the first-
principles model of Equation (1) describes the relations, such as mass balances and energy
balances, only at a steady-state ( i.e., when all inputs and outputs reached a steady-state
balance and no time-dependent dynamic transitions were involved).

[0038] Calibration of the first principles model at Equation (1) is performed in the
following sub-steps (by the hybrid analyzer 260 as part of method 200, step 210) represented
by Equations (3)-(6). First, the hybrid analyzer 260 receives a set of process measurements
data of input variables I and output variables ¥ at multiple operation points when the
process has reached respective steady-states. Second, the hybrid analyzer 260 manually, or
using computer routines, tunes model parameters  in order to minimize the model prediction

error as described in reference to Equations (3)-(4) as follows:

gligE(U,?,X, 6)=min YA—7||2 3)
Subject to :
GU,Y,X,0)<0; (4)

[0039] Note, Equation 4 comprises various process constraints, such as the maximum
capacity of an equipment when a flow control valve opened to 100%, high and/or low limits
of a process variables’ operation, and the like.

[0040] After calibration of the first-principles model, all values of model parameters in 0
are determined and fixed in Equation (1). The hybrid analyzer 260, then, calculates the
specified KPIs based on Equations (1) and (2) from process input variables’ values at each

steady-state as follows:
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[0041] Note, Equation (5) is a pre-defined process target KPI function, such as a flooding
risk factor, column separation efficiency, and the like, depending on the subject process and

[

the root-cause-analysis problem, and in Equation (5) the subscript “s” represents process at a
steady-state.

[0042] The method continues by the hybrid analyzer 260 training an inferential model at
step 220 of FIG. 2A. The inferential model may be a linear model, such as a partial least
squares (PLS) model, a piecewise-linear nonlinear PLS model or a preferred nonlinear
neural-network (NN) type model (see U.S. Patent No. 7,330,804 and 7,630,868 by Assignee,
which are incorporated herein by reference in their entirety). In some embodiments, the
hybrid analyzer 260 may select the inferential model from multiple available models for
calculating KPIs, and in other embodiments the hybrid analyzer 260 may be provided with a
single inferential model for calculating KPIs. The inferential model is trained using the
selected measurable process variables as input data, and the KPI’s values calculated by the
calibrated first principles model (of 210) as output data. Then, the hybrid analyzer in step 230
uses the trained inferential model (of 220) to generate continuous estimations of targeted
KPIs by continuously sampling at a consistent sampling rate (e.g., 1 sample per minute) with
process variables as inputs.

[0043] In some embodiments, training the inferential model comprises the following sub-
steps (by the hybrid analyzer 260 as part of method 200, step 220). First, the hybrid analyzer

260 defines a specific input-output inferential model as shown in Equation (7):

y=f(u,u,...,u,0,1) (7)

whereu,,u,,..u, areinput variables, @isa parameter vector,and y is output variable.

[0044] Second, the hybrid analyzer 260 collects input and output variables data from
process measurements and calculated KPIs. The input variables data may be continuously

sampled from process measurements in a format of time-series, while the output variable data
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may be continuous or non-continuous measurements such as online analyzer measurements,
lab samples, or calculated KPIs at different steady-states. Third, the hybrid analyzer 260
selects a model structure, such as a linear PLS, piece-wise-linear model, neural nets (NN)
nonlinear model, or a BDN (bounded-derivative-net) model, and the like, depending on the
underlying defined problem. Fourth, the hybrid analyzer 260 divides the available dataset
into two groups: a training set and a validation set in a percentage (e.g., 70% for training and
30% for validation) in a fixed or random selection. Fifth, the hybrid analyzer 260 fits the
model with training set of input and output data, and, then, use the validation dataset to
validate the model, so as to minimize the model’s prediction error, as shown in Equation 8 as

follows:
min £(,u,...1,,8,1) =min Y |y() = H(0f ®

[0045] As a result, the trained inferential model may be used for KPI output calculation

in the Equations (9) and (10) as follows:

y=f(u,u,...,u.,0,t)+bias(t) ©)
bias(t) = (1 - a)xbias(t =)+ ax(y(t -1) -y -1)))  (10)

[0046] Note Equation (10) is a recursive prediction bias update scheme (described in
details later in reference to FIG. 3A), and the bias(?) is an offset to compensate process shifts.
Using Equations (9) and (10), the hybrid analyzer 260 calculates continuous KPIs as an
output variable of the inferential model offline or online.

[0047] The calibrated and trained hybrid analyzer resulting from 210 and 220 is then
deployed online to provide effective monitoring and fault detection on those targeted KPIs.
Further, in an online running mode, the hybrid analyzer 260 provides a readily self-adaptable
framework to re-calibrate the first principles model and update the inferential model for a
persistent performance.

[0048] Once the hybrid analyzer 260 is running online, in step 240 of FIG. 2A, the first
principles model calculates KPIs when the process reaches a steady state. That is, a steady-
state detection module of the hybrid analyzer 260 monitors all model inputs, and triggers a

calculation of new KPI values whenever the process reaches a new steady-state. The KPI
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calculations over each pre-specified time period continues until the process steady-state
condition is changed and the process is detected to be in a non-steady-state operation phase
again. In parallel, once new values of KPI are calculated at steady-state using Equations (5)
and (6), and made available to the inferential model from Equation (7), the inferential model
dynamically takes those new KPI values as new output measurements. Then, in step 250 of
FIG. 2A, the inferential model performs prediction bias updates using Equations (9) and (10)
to correct the current dynamic KPI predictions by modifying KPI’s offset. This allows the
process engineers and operators to readily monitor usually unmeasurable KPIs and KPI
related events in the plant based on the output of the hybrid analyzer 260. Further, the hybrid
analyzer 260 includes steady-state auto-detection and inferential bias adaptation capabilities,
which allows the hybrid analyzer to address the reliability of the process model output over a
wide operating range. Together, the first principles model and the inferential model mitigate
the disadvantages, and enhance the advantages of each modeling methodology when used

alone.

Hybrid Analyzer Configuration

[0049] FIG. 2B illustrates a block diagram depicting an example configuration of a
hybrid analyzer 260, such as the hybrid analyzer described in FIG. 2A. The system
computers 101, 102 of FIG. 1 may be configured as a root-cause analyzer including the
hybrid analyzer 260. That is, each system computer 101, 102 may be configured according to
this example configuration or the example configuration may be distributed across the system
computers 101, 102, and 112. Note that the example configuration depicted in FIG. 2B may
be implemented as software in some embodiments, as hardware in other embodiments, and as
a combination of software and hardware in yet other embodiments.

[0050] The first principles development model 268 and the inferential development
model 267 may operate in parallel, and may be calibrated and trained using the procedures as
follows. As shown in FIG. 1, data for measureable process variables may be collected from
various sampling points in an operational plant (e.g., plant sensors 109A-1091, 106, 107 of
DCS 104) and stored in the historian database 111. The data server 103 retrieves the
collected data for the measurable process variables from the historian database 111, and
communicate the collected data to system computer 101 configured as the hybrid analyzer
260 of FIG. 2B. The hybrid analyzer 260 receives the process data 261 from the data server

103, and sends the process data 261 to the variable selection and preprocessing module 262.
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The variable selection and preprocessing module 262 performs a variable selection process,
where some or all of the measurable process variables from plant sensors 109A-1091, 106,
107 are selected. The variable selection and preprocessing module 262 may sample the
measurable process variables on a continuous basis, or may sample the measurable process
variables at pre-determined time periods based on matching a timestamp corresponding to a
steady-state. The measurable process variables may also be suitably screened by a data
selection apparatus (see U.S. Patent No. US 9,141,911 B2 (by Assignee), which is hereby
incorporated by reference in its entirety). After performing variable selection, the variable
selection module 262 stores the measurable process variables’ settings in the steady-state
detection module 263.

[0051] The steady-state detection module 263 sends the stored measurable process
variables settings 264, 269 to the first principles development model 268 for calibration.
Note, in the embodiment of FIG. 2B, the first principles model is configured as two separate
modules, the first principles development model 268 for performing offline calibration
functions and the first principles run-time model 271 for performing online functions. In
other embodiments, the first principles model may be configured as one module for
performing all related functions. During the calibration process, the derived data parameters
from the first principles development model 268 are output to the model parameter module
270 for storage. The model parameters module 270 then uses the knowledge gained from the
calibrating process to derive run-time model variables from the stored output. The model
parameters module 270 provides the run-time model variables to the first principles run-time
model 271 for online run-time deployment.

[0052] The output 272 of the first principles run-time model 271, together with the output
265 of the variable selection and preprocessing module 262, is provided as training data to
the inferential development model 267. Note, in the embodiment of FIG. 2B, the inferential
model is configured as two separate modules, the inferential development model 267 for
performing offline model training and the inferential run-time model 273 for performing
online functions. In other embodiments, the inferential model may be configured as one
module for performing all related functions. Also note that the same set of process data 261
is used to calibrate the first principles development model 268 and train the inferential
development model 267. The inferential development model 267 uses the training data to
derive run-time parameters that may be provided to the run-time model 273 for online run-

time deployment.
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[0053] The output of the trained inferential run-time model 273 is provided to other
system computers in the network environment 100 of FIG. 1 as continuous KPIs for
performing process operation KPI monitoring and root-cause analysis in the plant. Typically,
the data server 103 provides distributed processing units, for interacting with the DCS
components 104 and the historian database 111, which provides for data collection and
archival storage of plant historical data. Typical data archived by the data repository includes
information regarding various process variables, including status, values, operators’ event
messages, sequences of event data, laboratory data, pre-event and post-event data. Certain
archived data may be pre-screened by the variable selection and preprocessing module 262
before being presented to the inferential run-time model 273.

[0054] During the ongoing operation of the process, the data stored in the steady-state
detection module 263 may be loaded into the run-time variables module 266, which in turn
may be loaded into the deployed first principles run-time model 271. Similarly, the data from
the model parameters module 270 may be loaded into the deployed first principles run-time
model 271. Once the configuration data and parameters have been loaded into the modules
266, 271, the variable selection and preprocessing module 262 receives additional process
data 261 from data server 103. The variable selection and preprocessing module 262
performs variable selection on the process data 261 and stores the output data in the steady-
state detection module 263. The output data is also loaded as input data variables 265 at the
deployed inferential run-time model 273. Note, the internal settings of the first-principles
run-time model 271 and the inferential run-time model 273 are stored at the model
parameters module 270. The deployed inferential run-time model 273 may also use the
loaded input data variables 265 to generate a continuous estimate of KPIs, which are output
to the network environment 100. Further, the deployed first-principles run-time model 271
performs steady-state calculations using the loaded data, when the process reaches a steady-
state, and provides output of the calculations to the deployed inferential run-time model 273.
The deployed inferential run-time model 273 uses the received output calculations to perform
the prediction bias updates to correct the calculations of the continuous KPI estimations

provided to the network environment 100.

KPI Calculations
[0055] FIG. 3A illustrates a block diagram depicting another configuration 300 of a

hybrid analyzer calculating KPIs. In some embodiments, FIG. 3A may illustrate a simplified
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representation of the hybrid analyzer 260 in FIG. 2B. The hybrid analyzer 300 includes a
first principles (steady-state) model 302 and an inferential model 304 connected in parallel.
Note, the first principles model 302 comprises both the first principles development model
268 and first principles run-time model 271 of FIG. 2B. Further note, the inferential model
304 comprises both the inferential development model 267 and inferential run-time model
273 of FIG. 2B.

[0056] In this example embodiment, the hybrid analyzer 300 is configured to calculate
KPIs relevant to undesirable plant events (e.g., distillation column flooding). The undesirable
plant event may have occurred in the past or are yet to occur in the future, and the calculated
KPIs may be used as indicators of the plant events. In the embodiment of FIG. 3A, the
hybrid analyzer 300 has previously calibrated the first principles model 302 and trained the
inferential model 304, and both models 302, 304 are in run-time mode. The hybrid analyzer
300 receives process data 261 which is provided to the first principles model 302 and the
inferential model 304. In the embodiment of FIG. 3A, the processing of the first principles
model 302 output is controlled by the hybrid analyzer using a mode switch module 308.
When the switch 308 is at position A (as shown in FIG. 3A), the steady-state KPIs (calculated
from Equations (5) and (6)) from the first principles model 302 are provided to the inferential
model 304 for use in training inferential model. When the switch 308 is at position B, the
inferential model is in run-time mode and generates continuous KPC predictions. Note, the
dynamic KPI predictions (calculated by Equations (9) and (10)) are output to a process
monitoring environment, such as the environment 100 in FIG. 1, the dynamic KPI predictions
are provided as input 306 to adder 316 to be adjusted by a bias using adaptive filter 314.
[0057] When the mode switch 308 is in position B, the steady-state KPIs from the first
principles model 302 are instead provided to the adder 310. As the inferential model 304
calculates the dynamic KPI predictions, and the KPI predictions are provided as input 306 to
adder 316 for bias adjustment, the dynamic KPI predictions after adder 316, are further
provided as input 312 to adder 310 as a feedback. At adder 310, the dynamic KPIs biases are
calculated with the steady-state KPIs that were also provided to adder 310 (e.g.,

e, =[Dyn_KPI(t)—-SS KPI(k)]) to generate an updated bias for adjusting dynamic KPI
predictions. The updated bias is then provided to an adaptive filter 314 for adjusting future
KPI predictions to count for measurement offsets. The adaptive filter 314 may be any

conventional adaptive filters used in the process industry. The final system output of hybrid
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analyzer configuration 300 is dynamic KPI predictions that are corrected and filtered to
accurately reflect an estimation of the process dynamic KPIs.

[0058] FIG. 3B illustrates a first principles model 302 in an example embodiment of the
hybrid analyzer 300 of FIG. 3A. In FIG. 3B, historical data for different process variables
(feedstock variability, energy constraints, upstream unit performance, utility variability,
effects of PID, APC, and RTO controls, product requirement variability, and downstream unit
performance) are loaded into the hybrid model 302, 304 from an historian database. These
process variables may be used to calibrate the first principles model 302 shown in FIG. 3B.
Once the first principles model is calibrated, the process variables may then be used by the
first principles model 302 to predict unmeasured KPIs for a particular event, validate all the
measured KPIs for the particular event, and provide physical relationships with the KPIs
during steady-states. For example, as shown, the first principles model 302 may be passed
feed conditions and compositions input from the process variable measurements into the
model, and based on pressures (sensed or detected), temperatures (sensed or detected),
calculated bottom rates, calculated distillate rates, and reflux conditions (sensed or detected)
of the plant, the first principles model 302 may predict unmeasured KPI values for the
particular event during steady-states. FIG. 3B also shows the data analytics (trends, patterns,
and inferential models) 321 used by the hybrid model 300 to provide historical context for
measured and predicted KPIs for the particular event, estimate KPIs between steady-states,
and discover relationships not included in the first principles modeling scope. Together, the
first principles modeling and the data analytics allow for the example hybrid model 300 to
continuously generate KPIs for the particular event.

[0059] FIG. 3C illustrates a data chart of exemplary plots 320 from a first principles
model 302 and an inferential model 304 that together generated KPIs. The calibrated first
principle model 302 (i.e., steady-state model) online calculates steady-state KPI values over
the historical data. Data chart 320 shows small circles to represent the calculated KPIs from
the calibrated first principle model 302. As shown in FIG. 3C, the first principles model 302
only calculates valid KPI values (i.e., small circles), and provides the valid KPIs to the
inferential model 304 for training, when the process is detected to be in a steady-state. In the
steady-state period, the inferential model 304 is trained using the valid KPIs represented by
the small circles and corresponding measured process variable inputs at these periods. Once
the inferential model 304 is trained, the trained inferential model 304, now in run-time mode,

is fed continuous operations data as input, and generates continuous KPI estimations (i.e., the
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continuous curves as shown in FIG. 3C). The calibrated first principle model 302 only
calculates current KPIs (i.e., small circles) during periods that the process is in steady-state.
As the time moves into the future, the trained inferential model 304 continues to
estimate/predict the KPIs, and the calibrated first principle model 302 continues to calculate
current KPIs in steady-state, for as long as operations data is fed as input to the calibrated

first principle model 302.

Target Signal Precursor Search

[0060] FIG. 4 illustrates a flowchart of an example method 400 for performing a
preliminary target signal precursor search (TSPS) to identify precursor variables of an
undesirable plant event. The method 400 may be performed by a search engine that may be
configured on system computer 101, 102, along with a hybrid analyzer 260,300, as part of a
root-cause analyzer. Prior to performing this method, the hybrid analyzer may have
generated the continuous KPIs in relation to one or more plant events. Note, in this
embodiment, the continuous KPIs have been generated using the hybrid analyzer 260, 300 as
described in FIGs. 2A, 2B, and 3A-3C, but in other embodiments the continuous KPIs, or
other such measurements, may be generated using other models or analyzers. The main
challenge in identifying precursors for an undesirable plant event is the thousands of process
variables available (i.e., precursor candidates) in the historian database for the plant process.
In the method of FIG. 4, the search engine of the root-cause analyzer may use the event-
relevant KPIs for facilitating the search of the process variables (by a search engine) to select
precursor candidates for the event.

[0061] The method 400 begins at step 410 by the search engine loading process variables
from a historian database. The search engine loads the process variables as candidate
precursors of a particular undesirable plant event. Note that a special data screening and pre-
processing method (see U.S. Patent No. US 9,141,911 B2 by Applicant, which is
incorporated herein by reference in its entirety) may also be applied to process variable to
obtain auto-preprocessed clean data for the precursor search. At step 410, the search engine
also loads KPIs calculated by the hybrid analyzer to represent plant events. The search
engine may select a subset of the KPIs to indicate the risk level that the particular undesirable
plant event has or will occur in the plant process. A KPI may be selected as part of the subset
(i.e., an event-relevant KPI) because the KPI highly correlates to the particular undesirable

plant event, such as selecting the estimated flooding factor of a distillation column KPI for
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column flooding events or selecting the column separation efficiency KPI for column fouling
events. The search engine may load data for the process variables and KPIs into various
formats for analysis. In the embodiment of FIG. 4, the data is plotted in a data chart as time
series curves, but in other embodiments, the data may be analyzed in any other graphical or
non-graphical formats known in the art.

[0062] At step 420, the search engine splits each respective KPI into a time series based
on analyzing the behavior of the KPI. That is, the search engine divides the data collected for
the KPI over a time period into multiple time intervals or segments (i.e., multiple subsets of
time series). The time intervals may be defined by the search engine based on analyzing the
collected data to identify large value variations over the time period. Several formulas may
be applied for identification of large value variations. First, based on the multiple a of

standard deviation o, of the difference between max and min values over M consecutive

data points, Equation (11) may be applied as follows:

Ax, >ao0,,;
Ax; = max(¥, ,,) —min(X, ,,);

_ (1)
Xim =X, X X igaoos X ]

i+l>

[0063] Further, based on the multiple a of standard deviation o, of the absolute slope

value over M consecutive data points and K points for averaging, Equation (12) may be

applied as follows:

&, >aog,
&, = mean(X, ;) —mean(X,,,, . )
X=X, X X ] (12)

=

MK, K — [Xi+M—K > Xi+M—K+1 ERREH Xi+M ]

[0064] The time intervals may also be defined by the search engine based on analyzing

the collected data to identify KPI values at different operating levels of the process. In some
embodiments, such as the embodiment in FIG. 4, the search engine may select time intervals
having the highest variability from the time series for identifying candidate precursors for the

undesirable plant event. In other embodiments, the search engine may select time intervals
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based on additional or different criteria. During step 420, intervals in the time series with
oscillations around steady-state are ignored, but the search engine may use these intervals for
the calculation of cumulative scores for positive and negative lags later in the method 400.
[0065] Using the selected time intervals, at step 430, the search engine performs an initial
elimination of process variables as part of the search process of potential precursors of the
undesirable process behavior. The initial elimination removes process variables with poor
overall correlations to the KPI, by the search engine only selecting process variable with
global correlation above a specific threshold at the selected time intervals. For example, the
initial elimination can be performed with a coarse requirement for global correlation to be
larger than 0.7. This elimination may involve the search engine analyzing the subset time
series to estimate the cross-correlations between the process variables and the KPI for the
selected time intervals, and discarding variables with almost no correlations to the KPI.

Cross-correlation is defined in a standard way as:

P e = EI(X,  —mean(X, , WX, ,, —mean(X,,.,,))]/ 0z o , where expression for
X, x 1s defined in reference to Equations (11) and (12). The selected process variables (i.e.,

variables remaining after the elimination) are candidate precursors for the undesirable plant
events represented by the event-relevant KPI.

[0066] At step 440, the search engine then computes cross-correlation curves for the
selected process variables over the selected time intervals. Specifically, consider a set of

selected indices i =[/;,1,,,...] that define areas of large value variations. A standard cross-

correlation function versus time lag 7, may be calculated for the correlation analysis of each
selected variable and KPI at each selected time interval defined by starting index /.and

length M. The calculation may include a constant time shift which is scaled based on the
temporal resolution of the time series. Then, the search engine calculates a cross-correlation
score for each cross correlation curve by evaluating the positive and negative integral of the

respective cross correlation curve. At step 450, the search engine computes the accumulated

cross-correlation scores s = for each selected variable over the selected time
X,[,’; Mo
Er

intervals. The search engine computes the accumulated scores for a selected variable by
determining the positive lag time 7 > 0 and negative lag time 7 <0 intervals from each
cross-correlation curve for the respective selected process variable X over all selected time

intervals 7 =[/ g1 z,.-]. Note, the shape of a cross-correlation curve may be highly
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irregular for realistic KPI time series, thus, the search engine may use an integral measure to
adjust the positive and negative time lags. Two integrals are computed: over positive lags
and negative lags. For each semi-infinite domains and approximation is made to limit the

range of integration to the largest value of time lag. Then the integral is

Tmax

S= ;TPX,]g,M,T = ng: J‘pX,]g,M,rdT'
: 0

[0067] At step 460, the search engine selects curves for all process variables with an
accumulated score above a configured threshold, thereby eliminating all process variables as
candidate precursors with scores below the configured threshold. This selection results in a
dramatic reduction of the number of available candidates for precursors.

[0068] For each remaining process variable, at step 470, the search engine computes

rolling lag time over the entire historical span of the time intervals for the respective process

variable. The search engine applies the rolling lag time computation S(¢; L) = ZT/)XJM to

each selected process variable curve, which includes applying a series of cross-correlation

curve constructions using a constant window width L , starting from the past # =/, and

moving toward the future. The search engine performs the computations using the entire
range of historical data for a KPI, and for each cross-correlation curve, the search engine
extracts the lag time based on the maximum time indicated by the curve. The search engine
sorts the process variables according to minimal cumulative lag time (i.e., highest negative
lags to the event-relevant KPI) as computed across the entire historical span. The search
engine selects the curves for the top sorted process variables to continue as precursor variable
candidates, and the curves for the other remaining precursor variable candidates are
eliminated. In some embodiments, a user may configure a subrange of the historical span,
instead of the entire historical span, to be used for computing cumulative lag time. Further, if
a first precursor variable candidate shows strong correlation to a second precursor variable
candidate, and the second precursor variable candidate has a higher cross-correlation score,
then the search engine may eliminate the first precursor variable candidate to prevent multi-
collinearity effects. Method 400 of FIG. 4 may be completed with the one or more precursor
variable candidates selected from the process variables initially loaded from the historian
database.

[0069] Note that FIG. 4 shows a sequence of steps with the increasing cost of

calculations. For example, step 430 requires less computational efforts per variable than step
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450, and step 450, in turn, requires less computational efforts per variable than step 470.
Thus, an essential part of method 400 is early and consistent elimination of variables from the
list of potential precursors. This reduces a large of amount of computation costs, makes the

target signal precursor search analysis practical for industrial applications.

Causality Analysis

[0070] FIG. 5A illustrates a flowchart of an example method 500 for performing a
causality analysis. The method 500 may be performed by a parametric analyzer that may be
configured on system computer 101, 102, along with a search engine and hybrid analyzer
260, 300, as part of a root-cause analyzer. The method 500 begins at step 510 by the
parametric analyzer loading process variables data from a historian database as measurements
of potential precursor variable candidates of a particular undesirable plant event. At step 510,
the parametric analyzer 500 also loads KPIs that highly correlate to the particular undesirable
plant event and calculated by the hybrid analyzer 260 (hybrid model) using Equations (5),
(6), (9), and (10). The parametric analyzer 500 may perform similar steps for method 500
(step 510) as described for the target signal precursor search method 400 of FIG. 4 for
initially identifying precursor candidates for the undesirable plant event based on the loaded
KPIs. In some embodiments, the parametric analyzer 500 may perform additional or
different steps to identify precursor candidates from the loaded process variables, including
allowing the user to select specific process variables as precursor candidates.

[0071] At step 520 of FIG. 5A, the parametric analyzer 500 then builds a multiple-input
single-output (MISO) dynamic parametric model between the precursor variable candidates
and the event-relevant KPIs for performing quantitative analysis of the precursor variable
candidates. The MISO model allows for a more granular investigation of the impact of the
precursor variable candidates on the undesirable plant event. The precursor variable
candidates may be used as model input and the event-relevant KPIs may be used as model
output for the MISO model. In the embodiment of FIG. 5A, the parametric analyzer 500 first
builds a MISO model with subspace identification. Subspace identification is an algorithm to
identify dynamic process models from input and output measurements and the algorithm used
in this invention is performed as the following two sub-steps (by the parametric analyzer 500
as part of step 520). First, the parametric analyzer 500 defines (assumes) a causal

relationship between the precursor variable candidates and the target KPI as a linear multi-
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input single-output (MISO) dynamic state space model as shown in Equations (13) and (14)

as follows:

X (t+1)=AX, () + B u(t) (13)

YO =CX,(O)+Du) (14)

[0072] Next, the parametric analyzer 500 assembles the input and output data into a
special subspace projection format and applies a closed-loop subspace identification
algorithm (see, e.g., Zhao, H., et al., “Improved Closed Loop Subspace Identification
Technology For Adapftive Modeling and APC Sustained Value”, AIChE Spring Meeting,
2012; and Qin, S. Joe, “An overview of subspace identification”, Computers and Chemical
Engineering, vol. 30, pages 1502-1513 (2006), which are both incorporated herein by

reference in their entirety) to solve the problem by Equation (15) as follows:

minJ ({u(t), y(t), X, (1)}, 6) = min|y(1) - (1), (15)

subject to
X, t+1)=AX, (1)+ Bu()
y(®) =CX, () +Du(t)

[0073] Note, the parametric analyzer may analyze the basic x-y linear relationship
between the precursor variable candidates as input and the event-relevant KPIs as output
prior to building the MISO model, for example, as a simple x-y scatter plot between an input
and KPI output will be able to show the linearity and deviation. If the parametric analyzer
500 detects a significant high-nonlinearity between individual precursor variable candidates
based on this analysis, then the parametric analyzer may apply a non-linear transform or
piecewise linear transform to individual precursor variable candidates prior to using the
variables as input to the MISO model, for example, a logarithm transform or piecewise linear
transform on the input can correct many nonlinearities.

[0074] Next, the parametric analyzer 500 may factor each sub-model of the MISO model
into accurate dead-times and dynamic linear filters. The model is factored into accurate

dead-times and dynamic filters to describe the causal relationship between each precursor
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candidate and event-relevant KPI. At step 530, the parametric analyzer calculates estimates
of the dead-times between the precursor candidates and event-relevant KPIs. At step 530, the
parametric analyzer may calculate the estimates of the dead-times for each input channel of a
precursor candidate as input to a respective sub-model of the MISO model. Further, in some
embodiments, the parametric analyzer may estimate dead-time for each input channel of a
precursor variable candidate using an optimization search based on the sub-model of the i-th
input to the corresponding event-relevant KPI. For example, the dead-time search can be

resolve in the problem defined in Equations (16) and (17) as follows, where D7’ is the ith

input channel dead-time, y(¢)and y(¢) is the step response of the single-input single output

(SISO) sub-model of (17) and an approximation of the response.

min.J (1), ¥(1},0) = minfy(1) = S0, (19
subject to
X, (t+1)= AX,(t)+ Bu,(t - DT}) 17)

y(0)=CX, (1)

[0075] At step 540, the parametric analyzer calculates the estimates of optimal linear
dynamic filters for each input channel of a precursor variable candidate as model input to the
MISO model. Further, in some embodiments, at step 540, the parametric analyzer further
estimates the optimal linear dynamic filters of each input channel for a precursor variable
candidate using a linear model reduction technique to determine the optimal low-order model
fitting. For example, after dead-time is identified in Equations (16) and (17), Equation (17) is
then further reduced into a lower order model, such as first-order or second-order filter by
using standard model reduction algorithm (Benner, Peter; Fassbender, Heike (2014), "Model
Order Reduction: Techniques and Tools", Encyclopedia of Systems and Control, Springer,
doi:10.1007/978-1-4471-5102-9 142-1, ISBN 978-1-4471-5102-9, which is incorporated
herein by reference in its entirety). The parametric analyzer 500 further factors each MISO
sub-model into a series of connected dead-time units, and in turn a single-input single-output
(SISO) state space dynamic sub-model, in which the parametric analyzer 500 approximates
the model dynamics by a low-order dynamic filter defined and calculated for each SISO sub-

model, the model structure is shown in FIG. 5B.
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[0076] At step 550 of method 500, the parametric analyzer rebuilds a new parametric
linear MISO as a PLS model by applying the estimated dead-times and dynamic linear filters
at each individual input channel of each precursor variable candidate. The parametric
analyzer may apply a non-linear transform or piecewise linear transform to individual
precursor variable candidates prior to using the variables as input to the rebuilt MISO PLS
model. At step 560, the parametric analyzer 500 uses the MISO PLS model to perform PLS
regression and sensitivity techniques (see, e.g., Garthwaite, Paul H., "An Interpretation of
Partial Least Squares,” Journal of the American Statistical Association vol. 89 (425), pages
122-127 (1994), which is incorporated herein by reference in its entirety ) for calculating a
score for the strength of correlation with the event-relevant KPIs, including a relative
sensitivity, contribution, and lead-time for each precursor variable candidate. Then, the
parametric analyzer 500 selects root-cause variables from the precursor candidates with the
highest strength of sensitivity score. The parametric analyzer 500 may select the root-cause
variable using fuzzy logic rules which combine the scores for top ranked precursor variable
candidates to determine the most appropriate of the variables for early risk indication and
event prevention action advising. At step 570, the parametric analyzer presents (outputs) the
selected root-cause variables to process engineers and operators who may confirm or reject
the variables as the root-cause of the respective undesirable plant event based on their process
knowledge and experience.

[0077] FIG. 5B illustrates a block diagram depicting an example (MISO) model 580 used
in some embodiments of FIG. SA (e.g., at step 520 and 550 of parametric analyzer 500). The
MISO model 580 is shown as a summation of multiple single-input single-output (SISO)
dynamic sub-models, but in other embodiments the MISO model may be organized in various
other sub-model configurations. The precursor variable candidates are provided as input 521,
522, 523 to the input channel for each respective sub-model of the MISO model and the
event-relevant KPIs is provided as output 577 of the MISO model. The input 521, 522, 523
are provided to dead-time units 541, 542, 543 of the respective sub-model for calculating
dead-time estimates for the precursor variable candidates based on the corresponding event-
relevant KPIs. The dead-time estimates are then part of the model parameters from the dead-
time units 541, 542, 543. The input 521, 522, 523 go through the dead-time units 541, 542,
543 with corresponding time delays, then input to low-order dynamic filters 551, 552, 553 to
estimate the optimal linear filter for the precursor variable candidates. The optimal linear

filter estimates are then part of the model parameters from low-order dynamic filters 551,
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552, 553. The outputs from optimal linear filters are then summed 561 with a weighting
vector that is a partial-least squares (PLS) model fitted with the inputs and output KPI data
for the precursor variable candidates, which provides a relative sensitivity and contribution
ranking score for each precursor variable candidate. Then fuzzy logic rules are applied to
combine the scores for top ranked precursor variable candidates to select root-cause
variables. The selected root cause variables provided to process engineers and operators to
confirm or reject the variables as the root-cause of the respective undesirable plant event. In
some embodiments, the control system, such as the DCS or other plant or refinery control
system, may automatically confirm or reject the variables as the root cause and programs the
control system to take actions (e.g., monitor, alarm, update plant variables, and such) based
on the confirmed root cause variables. For example, output representing implications of the
root-cause precursor variables may be transmitted to a plant control system for diagnosing a
root-cause of the event

[0078] Using this output information 577 as a signature, plant operations may be
diagnosed and root causes detected. In turn, the process engineers and operators (or plant
control systems) may quickly narrow the results of the root-cause search of the undesirable
plant event, and determine whether each root-cause variable candidates is the cause of an
operation problem based on their knowledge of the process. Further, the process engineers
and operators, or the control system (e.g., DCS), may also use this information to better
understand unexpected events, to be more focused on particular process variables as
precursors, and to take early actions if necessary based on KPIs” monitoring and alarming. As
a result, the root-cause-analysis lowers the risks of reoccurrence of the events, and as such,
prevents the undesirable events from future operations. In this way, embodiments of the
present invention provide process engineers and operators (along with programmed plant
control and processing systems) with a new and highly efficient tool for event causality
analysis in various applications of process industry, including but not limited to undesirable
events root-cause analysis, operational trouble-shooting, process faults detection and

identification, as well as plant risk management.

Example Root Cause Analysis
[0079] FIGs. 6A-6l illustrate performing root cause analysis of flooding in a C2 splitter, a
distillation column of the ethylene manufacturing process, using the methods 200, 400, 500,

580 of FIGs. 2A, 4, and SA-5B. As shown in FIG. 6A, there are more than forty thousand C2
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splitter distillation columns in the U.S. alone, and a significant number of these distillation
columns experience flooding. The flooding of a distillation column limits the capacity of the
column, and may result in an unwanted plant shutdown. However, performing root-cause-
analysis on C2 splitter flooding using the numerous process variable measurements across the
plant, such as the 2,000 process variable measurements potentially related to the C2 splitter
flooding in FIG. 6A, presents a challenge for process engineers and operators. To address
this issue, the present invention determines one or more previously unmeasured indicators for
identifying particular process variables for root cause analysis of the C2 splitter flooding. In
this way, embodiments of the present invention provide an analyzer for C2 splitter distillation
columns and the like.

[0080] FIGs. 6B-6D illustrate the generation of continuous KPIs for use as the indicators
of C2 splitter flooding for performing root-cause-analysis. FIGs. 6B-6D may generate the
continuous KPIs in accordance with example method 200 of FIG. 2A. FIG. 6B illustrates the
first step in generating the continuous KPIs using a first principles model. The step of FIG.
6B collects historical process variable measurements relevant to C2 splitter flooding for
developing a calibrated process model (i.e., a first principles model). The first principles
model then estimates C2 splitter flooding relevant KPI values periodically when the plant is
at a steady-state. FIG. 6C illustrates the second step in generating the continuous KPIs using
an inferential model. The step of FIG. 6C uses raw and derived process variable
measurements for building a trained inferential model. The trained inferential model then
estimates C2 splitter flooding relevant KPI values continuously between steady-state regimes.
As shown in FIG. 6D, the first principles model and inferential model are used together over
a time series as a hybrid model to generate continuous KPIs for predicting C2 splitter
flooding behavior. The calibrated first principles model is used by the hybrid analyzer 260,
300 to calculate the KPI values at steady-state over the time period, and the hybrid analyzer
260, 300 uses the inferential model to interpolate the KPI values between the steady-state
calculated values. The hybrid model is adaptive to subsequent steady-state updates and
extrapolates until the next steady state KPI values occur. The hybrid model predicts future
C2 splitter behavior by predicting future KPI values using the combined first principles
model calculated KPI values at steady state and the inferential model interpolated KPI values.
[0081] FIGs. 6E-6G illustrate the use of the continuously generated KPIs relevant to C2
splitter flooding to select precursors from the 2,000 process variable measurements that may

serve as early alerts to C2 splitter flooding events. The analysis of the C2 splitter flooding
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using the continuously generated KPIs as shown in FIGs. 6E-6G is performed in accordance
with example method 400 of FIG. 4. As shown in FIG. 6E, a sample case study using this
analysis reduced the scope of the 2,000 process variables potentially relevant to a C2 splitter
flooding event to 20 process variables to be considered as precursor candidates for the event.
Specifically, FIG. 6F illustrates the precursor discovery component that performs a target
signal precursor search to reduce the scope of the process variables to 20 precursor
candidates. In FIG. 6F, the C2 splitter flooding relevant KPIs are split as a time series by
dividing the process variable measurements collected for the KPI over a two week time
period (sampled at 1 minute intervals). The time series are then used to perform cross-
correlation analysis of the process variable measurements in accordance with the steps of the
example method 400 of FIG. 4. The cross-correlation analysis in FIG. 6F identifies
measurement time series with negative dead times from a target KPI to indicate the precursor
candidates (flood variables) based on calculated cross-correlation scores for the process
variables. Note, as shown, different precursor candidate sets may be discovered for different
operating regimes.

[0082] FIG. 6G illustrates the operating regime discovery process for identifying
precursor sets for different operating regimes. In FIG. 6G, time series sliding windows, along
with an unsupervised learning algorithm, are used to identify clusters of precursor sets for
sample operating regimes 1, 4, and 6 as shown. Only process variables determined as having
high correlation scores for predicting flood variables in the cross-correlation analysis shown
in FIG. 6F are used identify the clusters of precursor sets in FIG. 6G. The precursor
discovery processes then further reduce the number of process variables from the precursor
sets shown to 20 remaining precursor candidates that highly correlate to C2 splitter flooding.
[0083] FIGs. 6H-6I illustrate processing of the 20 precursor candidates remaining after
the above discovery processes to further reduce the process variables to an even smaller set of
precursor candidates based on causality analysis. The processing includes building a
parametric model that calculates a score for each remaining process variable (identified as a
precursor candidate) based on its strength of correlation to the C2 splitter flooding relevant
KPIs. As shown in FIG. 6H, the strength of correlation is determined based on relative
sensitivity (i.e., relevant effect of the measurement on each respective KPI), which in the
sample field study reduces the number of process variables to 4 remaining candidates. The
strength of correlation is further determined based on event lead-time (e.g., response time

delay between the measurement and the respective KPI response), which reduces the number
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of process variables to 1 dominating candidate (FU3006PV — flow rate of the upstream feed
to Deethanizer). As shown in FIG. 6H, the resulting model predictions for the C2 splitter
flooding relevant KPI matches the KPI data well. FIG. 61 illustrates that from this analysis
(of FIGs. 6A-6H) that the FU3006PV upstream flow rate of feed to Deethanizer should be
used as the precursor for predicting C2 splitter flooding in the plant.

Digital Processing Environment

[0084] FIG. 7 is a simplified block diagram of a computer-based system 720 for
performing root-cause-analysis according to some embodiments of the present invention
detailed above. The system 720 comprises a bus 725. The bus 725 serves as an
interconnector between the various components of the system 720. Connected to the bus 725
is an input/output device interface 728 for connecting various input and output devices such
as a keyboard, mouse, display, speakers, controller, etc. to the system 720. A central
processing unit (CPU) 722 is connected to the bus 725 and provides for the execution of
computer instructions. Memory 727 provides volatile storage for data used for carrying out
computer instructions. Storage 726 provides non-volatile storage for software instructions,
such as an operating system (not shown). In particular, memory 727 and/or storage 726 are
configured with program instructions implementing methods 200, 400, and 500 for
calibrating the first principle model and training the inferential model in FIG. 2A, searching
for precursor candidates in FIG. 4, and determining root-cause variables in FIGs. SA-5B.
The system 720 also comprises a network interface 721 for connecting to any variety of
networks known in the art, including cloud, wide area networks (WANSs) and local area
networks (LANS).

[0085] Further connected to the bus 725 is a first principles primary analyzer module 723.
The first principles primary analyzer module 723 calculates KPIs using the first principles
model 268, 302 when in steady-state as detailed above in FIGs. 2B and 3A-3B. The first
principles primary analyzer module 723 may calibrate the first principles model 268, 302 to
calculate KPIs by any means known in the art. For example, the first principles primary
analyzer module 723 may reference training data that is stored on the storage device 726 or
memory 727, such as a historian database, for calibrating the model 268, 302. For further
example, the first principles primary analyzer module 723 may receive input data from any
point communicatively coupled to the system 720 via the network interface 721 and/or

input/output device interface 728.
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[0086] The system 720 further comprises a secondary inferential analyzer module 724
that is communicatively/operatively coupled to the first principles primary analyzer module
723. The secondary inferential analyzer module 724 is configured to generate continuous
estimates of KPIs as described above in FIGs. 2A-3B. The secondary inferential analyzer
module 724 may estimate KPIs through any means known in the art. For example, the
secondary inferential analyzer module 724 may access historical data, such as in an array, on
the storage device 726 or memory 727. For another example, the secondary inferential
analyzer module 724 may process input data using the CPU 722 via the bus 725. For further
example, the target optimizer module 724 may retrieve the input data from any point of the
plant communicatively coupled to the system 720 via the network interface 721 and/or
input/output device interface 728.

[0087] The system 720 further comprises a search engine 733and parametric analyzer
735 as part of a root-cause analysis module 736 that is communicatively/operatively coupled
to the first principles primary analyzer module 723 and secondary inferential analyzer module
724. The first principles primary analyzer module 723 and secondary inferential analyzer
module 724 from hybrid analyzer 731, such as at 260, 300 detailed above in FIGs. 2A-3A, of
the root cause analyzer 736. Root cause analyzer (analyzer module) 736 performs and
operates as described for computers 101, 102 in FIG. 1. The search engine 733 performs the
method 400 of FIG. 4, but may determine precursor candidates from process variables
through any means known in the art. Further, the parametric analyzer 735 filters the
precursor candidates to determine root-cause values as detailed in method 500 of FIG. 5 or
through any means know in the art. For example, the search engine 733 and parametric
analyzer 735 may access historical data, such as in an array, on the storage device 726 or
memory 727. For another example, the search engine 733 and parametric analyzer 735 may
process KPI data from the inferential analyzer module 724 using the CPU 722 via the bus
725. For further example, the search engine 733 and parametric analyzer 735 may retrieve
the input data from any point of the plant communicatively coupled to the system 720 via the
network interface 721 and/or input/output device interface 728.

[0088] It should be understood that the example embodiments described herein may be
implemented in many different way. In some instances, the various methods and machines
described herein may each be implemented by a physical, virtual, or hybrid general purpose
computer, such as the computer system 720. The computer system 720 may be transformed

into the machines that execute the methods described herein, for example, by loading
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software instructions into either memory 727 or non-volatile storage 726 for execution by the
CPU 722. Further, while the principles primary analyzer 723, secondary inferential analyzer
module 724, search engine module, and parametric analyzer module are shown as separate
modules, in an example embodiment these modules may be implemented using a variety of
configurations, included implemented together as a root-cause analyzer module.

[0089] The system 720 and its various components may be configured to carry out any
embodiments of the present invention described herein. For example, the system 720 may be
configured to carry out the methods 200, 400, and 500 described hereinabove in relation to
FIG. 2A, 4, and SA. In an example embodiment, the first principle primary analyzer module
723, secondary inferential analyzer module 724, search engine 733, and parametric analyzer
735may be implemented in software that is stored on the memory 727 and/or storage device
726. In such an example embodiment, the CPU 722 and the memory 727 with computer code
instructions stored on the memory 727 and/or storage device 726 implement a first principle
primary analyzer module that calculates KPI values. Further, the components of the system
720 implement a secondary inferential analyzer module that is operatively coupled to
generate continuous estimates of KPIs. In addition, the components of the system 720
implement a search engine that is operatively coupled to search for precursor candidates from
the measured process variables based on the KPIs, and implement a parametric analyzer that
is operatively coupled to filter the precursor candidates to determine root-cause variables for
analysis.

[0090] FIG. 8 illustrates a computer network environment 860 in which an embodiment
of the present invention may be implemented. In the computer network environment 860, the
server 831 is linked through the communications network 832 to the clients 833a-n. The
environment 860 may be used to allow the clients 833a-n, alone or in combination with
server 831, to execute any of the methods described hereinabove. It should be understood
that the example embodiments described above may be implemented in many different ways.
In some instances, the various methods and machines described herein may each be
implemented by a physical, virtual, or hybrid general purpose computer, or a computer
network environment such as the computer environment 860.

[0091] Embodiments or aspects thereof may be implemented in the form of hardware,
firmware, or software. If implemented in software, the software may be stored on any non-

transient computer readable medium that is configured to enable a processor to load the
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software or subsets of instructions thereof. The processor then executes the instructions and is
configured to operate or cause an apparatus to operate in a manner as described herein.
[0092] Further, firmware, software, routines, or instructions may be described herein as
performing certain actions and/or functions of the data processors. However, it should be
appreciated that such descriptions contained herein are merely for convenience and that such
actions in fact result from computing devices, processors, controllers, or other devices
executing the firmware, software, routines, instructions, etc.

[0093] It should be understood that the flow diagrams, block diagrams, and network
diagrams may include more or fewer elements, be arranged differently, or be represented
differently. But it further should be understood that certain implementations may dictate the
block and network diagrams and the number of block and network diagrams illustrating the
execution of the embodiments be implemented in a particular way.

[0094] Accordingly, further embodiments may also be implemented in a variety of
computer architectures, physical, virtual, cloud computers, and/or some combination thereof,
and, thus, the data processors described herein are intended for purposes of illustration only
and not as a limitation of the embodiments.

[0095] The teachings of all patents, published applications and references cited herein are

incorporated by reference in their entirety.

Exemplary
[0096] The following pseudo code may be used for implementing example embodiments

of the present invention.

function find precursors(fld_var 1bl, active variables, time series df, search_setup):
sel active variables = cut low global corr(time series df, active variables,
search setup)
sel cont active variables = cut discrete ts(time series df, sel active variables,
search_setup)
tser =time_series_df[fld var Ibl].iloc[search setup.ts range min :
search_setup.ts range max]
acceptable ranges = select ranges(tser, search_setup, search_setup.ts range min)
(cum_corr_vec, lag_index_dict) = init_lag storage(search setup)

cum_corr_tags =init 3d df( cum_corr vec, len(acceptable ranges), False)
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cum_corr_vals =init 3d df( cum_corr vec, len(acceptable ranges))
range ind =0
for u in acceptable ranges:
update correlated( time series df,
sel cont active variables,
cum_corr_tags, cum_corr_vals,
range ind,
u[1], uf2],
lag_index dict,
search_setup)
range ind +=1
precursor data = select precursor tags(time series df,
cum_corr_tags, cum_corr_vals,
acceptable ranges,
lag_index dict,
search_setup)
return {'refined pred list": precursor data[0], 'pred dict': precursor data[1],

'‘pred_corr':precursor data[2]}

function cut_low global corr(time series df, active variables, analysis_oby):

passed_corr =[]
vec base = time_series_dffactive variables[-1]].values
for uin active variables[:-1]:

vec u=time series df[u].values

cr = corrcoef( vec u, vec base )[0][1]

if abs(cr)>analysis_obj.full ts corr cutoftf:

passed_corr.append(u)

return passed_corr

function cut_discrete ts(time series df, active variables, analysis_obj):
passed =[]
for uin active variables:

if len( set( time_series df[u].values ) ) > analysis_obj.min_discr_levels:
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passed.append(u)

return passed

function select ranges( tser, analysis_obj, start indx=0 ):
ser_len = len(tser)
abs_cutoff large moves = analysis_obj.cutoff large moves * timeseries_range(0,

ser_len, tser)

return list_timeseries_ranges(
abs_cutoff large moves,
range(0, ser_len, analysis_obj.chunk length),
tser,

start_indx )

function list_timeseries ranges( cutoff, Ist, ser, start indx=0 ):
v=[]
for 1 in range(1,len(Ist)):
range 1= timeseries range(lst[i-1], Ist[i], ser)
if range i>cutoft:
v.append( [i, Ist[i-1]+start_indx, Ist[i]+start_indx, range i] )

return v

function init_lag storage( analysis obj ):
cum_corr_vec = []
lag_index dict= {}
ii=0
for u in range(analysis_obj.min_lag, analysis obj.max lag, analysis obj.lag interval):
if ul=0:
cum_corr_vec.append( analysis_obj.select cnt )
lag_index dict[ii] =u
ii+=1

return (cum_corr_vec, lag_index_dict)
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function init 3d_df(rowset lengths, column count, numeric=True):
first idx =[]
second idx =]
ri=0
for rr in rowset_lengths:
first_idx = first_idx + [rr_1 for u in range(rr)]
second idx = second _idx + range(rr)
mri+=1
multi_idx = [first_idx, second_idx]
column_idx = range(column_count)
if numeric:
return DataFrame( \
zeros(( len(first_idx),column_count)), \
index=Multilndex.from_tuples(zip(*multi_idx)), \
columns=column_idx)
else:
vec_of vec=[]
for j in range(len(first_idx)):
vec_of vec.append( [" for u in range(column_count)] )
return DataFrame( \
vec_of vec, \
index=Multilndex.from_tuples(zip(*multi_idx)), \

columns=column_idx)

function update correlated(time series df, active variables, cum corr tags, cum_corr vals,
range ind, ind 0, ind 1, lag_index_dict, analysis_obj):
for uin lag index_dict.items():

lag_ind = u[0]

k=u[l]

corr_summary = get_highest corr(time_series_df, active variables,

analysis_obj.select cnt, k, ind 0, ind 1)
tags k=[]
vals k=[]
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for uin corr_summary:

tags k.append( u[0])

vals k.append( u[l])
cum_corr_tags[range ind][lag ind] =tags k

cum_corr_vals[range ind][lag ind] = vals k

function get_highest corr(time series df, active variables, n, shift k, hist_start, hist end):
high_corr =[]
label list =time_series df.columns.values
vec base = time_series_dfflabel list[-1]].values[hist start:hist end]
for uin active variables[:-1]:
vec_u=time_ series df[u].values[hist start:hist end]
cr = corrcoef( vec_u[:(-shift k)], vec base[shift k:])[0][1]
high corr.append([u, cr])
high _corr.sort(key=lambda x: abs(x[1]), reverse=True)

return high_corr[:n]

function select precursor tags(time series df, cum corr tags, cum_corr vals,
acceptable ranges, lag_index_dict, analysis_obj,
lag_indices post=None, lag_indices pre=None, Ist ranges=None,
cutoff signal=None, post corr_tol=None ):
if Ist_ranges==None:
Ist_ranges = range(0, len(acceptable ranges))
if lag_indices pre==None:
lag_indices pre =[]
for uin lag index_dict.items():
ifu[1]>0:
lag_indices pre.append(u[0])
if lag_indices post==None:
lag_indices post =[]
for uin lag index_dict.items():
if (u[1]<0) and (abs(u[1])>analysis_obj.cross corr post grace):
lag_indices post.append(u[0])
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sorted pair_post = sort_cumul corr(cum_corr tags, cum_corr_vals, lag_indices post,
Ist_ranges, abs, analysis_obj)
post_dict = {}
for u in sorted pair_post:
post_dict[u[0]] =u[1]
sorted pairs pred = sort cumul corr(cum_corr_tags, cum_corr_vals, lag indices pre,
Ist_ranges, analysis obj.pred transform, analysis obj)
predict dict={}
for u in sorted pairs pred:
predict dict[u[0]] =u[1]
if cutoff signal==None:
if len(sorted pair post) ==0:
cutoff signal = 0.00001
else:
cutoff signal = 0.1 * abs( sorted pair_post[0][1])
if post_corr_tol==None:
post_corr_tol = 0.2 * cutoff signal
pred dict={}
pred list =]
for pred in sorted pairs pred:
pred tag = pred[0]
pred val = pred[1]
post_val = safe dict value( post dict, pred tag)
if analysis_obj.pre to post cond !='relative":
if (abs(pred_val)> cutoff signal) and (abs(post_val)<post _corr_tol):
pred list.append(pred_tag)
pred dict[pred tag]=pred val
else:
if abs(post_val)<l .e-14:
pred list.append(pred_tag)
pred dict[pred tag]=pred val
else:

if abs(pred val/post_val) >= (1.0/analysis_obj.pre to post tol):
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pred_list.append(pred tag)
pred dict[pred tag] = pred val
df corr =time series df[pred list].corr()
refined pred list =[]
ii=0
for tag name in pred list:
seq = df corr[tag name]
if (1i==0) or (max(abs( seq[:ii] )) < analysis obj.precursor max_corr):
refined pred list.append(tag name)
i +=1

return (refined pred list, pred dict, df corr)

function sort_cumul corr(cum_corr_tags, cum_corr vals, lag indices, Ist_ranges, transform,
analysis_obj):
lag_corr = {}
fori_range in Ist_ranges:
for lag_index in lag_indices:
for j in range(analysis_obj.select cnt):
tag name = cum_corr_tags[i_range][lag index][j]
tag corr = cum_corr_vals[i_range][lag_index][j]
if not np.isnan(tag_corr):
if tag name in lag_corr.keys():
lag_corr| tag name | += transform(tag_corr)
else:
lag_corr| tag name | = transform(tag_corr)
i range +=1
uvec = [u for uin lag_corr.items()]
uvec.sort(key=lambda x: abs(x[1]), reverse=True)

return uvec

PLS algorithm
function Ple(fi"? Hy g)
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[0097] While this invention has been particularly shown and described with references to
example embodiments thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the scope of the

invention encompassed by the appended claims.
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What is claimed is:

1. A computer-implement method for performing root-cause analysis on an industrial

process, the method comprising:

loading process data for a subject industrial process from a historian database;

building a hybrid first-principles and inferential model for calculating and
predicting the said KPIs;

executing a hybrid model for generating continuous key performance
indicators (KPIs) for the industrial process using the loaded process data, the hybrid
model comprising a first principles model as a primary model and an inferential
model as a secondary model of the industrial process;

selecting a subset of the KPIs values to represent an event occurring in the
industrial process, wherein the subset of the KPIs are selected based on correlation to
the event;

dividing process input data for the selected KPIs into multiple subsets of time
series, wherein dividing includes selecting at least one time interval from the time
series based on variability of the data in the at least one time interval,

performing a cross-correlation between the loaded process variables and the at
least one selected time interval, wherein the performed cross-correlation results in
calculating a score for each loaded process variable;

automatically selecting precursor candidates from the loaded process variables
based on the calculated cross-correlation score for each loaded process variable;

building a parametric model for performing quantitative analysis of the
selected precursor candidates, the parametric model calculating a score for each
selected precursor candidate based on strength of correlation to the subset of the KPIs;
and

automatically selecting root-cause variables from the selected precursor
candidates based on the calculated strength of correlation score for each of the
selected precursor candidate, resulting in output representing implications of the root-
cause precursor variables being automatically programmed at a plant control system

for diagnosing a root-cause of the event.
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The method of Claim 1, wherein building the hybrid model comprises:

initiating the hybrid model for modeling the industrial process;

calibrating the first principles model in an offline configuration, wherein the
calibrating (1) uses historical data respective to at least one measureable variable of
the process and (i1) tunes model parameters to at least satisfy a hydraulic mass balance
and a heat energy balance at a steady-state operating point and (iii) calculates KPIs
based on the historical data, wherein the KPIs predict performance of the process;

training the inferential model in an oftline configuration, wherein the training
(1) uses at least one measurable variable data as input and the calculated steady-state
KPIs values as output data and (i1) selects a model structure, such as linear PLS
model, piece-wise linear model or nonlinear neural network to fit the said input-
output data and (iii) generates continuous KPIs values against all process historical
operation data;

deploying the hybrid model online, wherein using the trained inferential model
to generate continuous estimates of KPIs using the at least one measurable variable as
input;

calculating current KPIs using the first principles model, the current KPIs
calculated in response to the process reaching a steady-state, wherein providing the
current KPIs to the inferential model as output measurements; and

updating prediction bias using the inferential model based on the calculated
current KPIs, the updated prediction bias being applied to correct the KPI predictions
of performance and

generating current, continuous, bias-compensated process KPI prediction

values.

The method of Claim 2, wherein the calibrated first principles model calculates the
current KPIs in steady-state periods, and the trained inferential model generates

continuous estimates of KPIs in non-steady-state periods.

The method of Claim 1, wherein the inferential model is one of a partial least squares,
piecewise linear transformed nonlinear, monotonic neural network, or bounded

derivative network model.
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The method of Claim 1, wherein the data for the subset of KPIs is divided into the
time series based on at least one of: (i) defining large value variations in the data over

time, and (i1) defining different operating levels for the subset of KPIs.

The method of Claim 1, wherein performing a cross-correlation further comprises:

performing a first elimination of one or more loaded process variables based
on a global correlation threshold,

calculating initial cross-correlation scores for the process variables remaining
after the first elimination, wherein the initial cross-correlation scores are calculated by
evaluating the positive and negative intervals for each respective time interval,

automatically accumulating the initial cross-correlation scores for each
remaining process variable such that the accumulated cross-correlation score for each
remaining process variable is calculated over all the selected time intervals, wherein
performing a second elimination of one or more of the remaining process variables
based on the accumulated cross-correlation score; and

automatically selecting precursor candidates from the process variables
remaining after the second elimination, wherein selecting the precursor candidates
based on calculating rolling lag times over the entire time series for each of the

remaining process variables.

The method of Claim 1, wherein executing the parametric model further comprises:

analyzing x-y linear relationships between the selected precursor candidates
and the subset of KPIs, wherein applying a transform to any of the selected precursor
candidates determined as having high nonlinearity based on the analysis;

building the parametric model with the selected precursor candidates as input
and the subset of KPIs as output;

estimating dead-times and dynamic linear filters for each input channel of the
parametric model, wherein an input channels exists in the model for each analyzed
precursor;

rebuilding the parametric model as a PLS model based on the estimated dead-
time and dynamic linear filters applied to each input channel, wherein using the
rebuilt parametric model to perform quantitative analysis of the selected precursor

candidates.



10.

11.

WO 2016/178955 PCT/US2016/029978

- 45 -

The method of Claim 7, wherein the parametric model is built as at least one of: a
multiple-input single-output (MISO) dynamic parametric model, a linear state space

model, a PLS linear model, and a piecewise linear model.

The method of Claim 7, wherein at least one of: (i) the dead-times are estimated using
an optimization search based on input to the subset of KPIs and the dynamic linear
filters are estimated using a linear reduction technique to determine optimal low-order

model fittings.

The method of Claim 1, wherein the strength of correlation score includes relative

sensitivities, contributions, and lead-times for the respective precursor candidate.

A system for modeling a process, the system comprising:

a root-cause analyzer configured to perform root-cause analysis on an
industrial process, the root-cause analyzer loads process data for an industrial process
from a historian database, the root-cause analyzer includes:

a hybrid analyzer configured to execute a hybrid model for generating
continuous key performance indicators (KPIs) for the industrial process using
the loaded process variables, including a first principles primary model for
modeling the industrial process at steady-state and a secondary inferential
model for modeling the industrial process at continuous operation;

a search engine communicatively coupled to the hybrid analyzer, the
search engine configured to:

select a subset of the KPIs to represent an event occurring in
the industrial process, wherein the subset of the KPIs are selected
based on correlation to the event;

divide data for the selected subset into multiple subset of time
series, wherein dividing includes selecting at least one time interval
from the time series based on variability of the data in the at least one
time interval;

perform a cross-correlation analysis between the loaded process
variables and the at least one selected time interval, wherein the
performed cross-correlation results in calculating a score for each

loaded process variable; and
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automatically select precursor candidates from the loaded
process variables based on the calculated cross-correlation score for
each loaded process variable; and
a parametric analyzer communicatively coupled to the hybrid
analyzer and search engine, the parametric analyzer configured to:
execute a parametric model for performing quantitative
analysis of the selected precursor candidates, the parametric
model calculating a score for each selected precursor candidate
based on strength of correlation to the subset of the KPIs; and
automatically select root-cause variables from the
selected precursor candidates based on the calculated strength
of correlation score for each of the selected precursor
candidate, resulting in output representing implications of the
root-cause precursor variables being automatically programmed
at a plant control system for diagnosing a root-cause of the

event.

The system of Claim 11, wherein:

the first principles primary analyzer calibrates the first principles model in an
offline configuration, wherein the calibrating (i) uses historical data respective to at
least one measureable variable of the process and (ii) tunes model parameters to at
least satisfy a hydraulic mass balance and a heat energy balance at a steady-state
operating point and (iii) calculates KPIs based on the historical data, wherein the KPIs
predict performance of the process;

the secondary inferential analyzer trains the inferential model in an offline
configuration, wherein the training uses the at least one measurable variable as input
data and the calculated steady-state KPIs as output data;

the hybrid analyzer deploys the hybrid model online;

the secondary inferential analyzer generates continuous estimates of KPIs
using the at least one measurable variable as input;

the first principles primary analyzer calculates current KPIs using the first

principles model, the current KPIs calculated in response to the process reaching a
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steady-state, wherein providing the current KPIs to the inferential model as output
measurements; and

the secondary inferential analyzer updates prediction bias using the inferential
model based on the calculated current KPIs, the updated prediction bias being applied

to correct the KPI predictions of performance.

The method of Claim 11, wherein the calibrated first principles model calculates the
current KPIs in steady-state periods, and the trained inferential model generates

continuous estimates of KPIs in non-steady-state periods.

The system of Claim 11, wherein the inferential model is one of a partial least
squares, piecewise linear transformed nonlinear, monotonic neural network, or

bounded derivative network model.

The system of Claim 11, wherein the data for the subset of KPIs is divided into the
time series based on at least one of: (i) defining large value variations in the data over

time, or (i1) defining different operating levels for the subset of KPIs.

The system of Claim 11, wherein to perform the cross-correlation, the search engine
is further configured to:

perform a first elimination of one or more loaded process variables based on a
global correlation threshold,

calculate initial cross-correlation scores for the process variables remaining
after the first elimination, wherein the initial cross-correlation scores are calculated by
evaluating the positive and negative intervals for each respective time interval,

automatically accumulate the initial cross-correlation scores for each
remaining process variable such that the accumulated cross-correlation score for each
remaining process variable is calculated over all the selected time intervals, wherein
performing a second elimination of one or more of the remaining process variables
based on the accumulated cross-correlation score; and

automatically select precursor candidates from the process variables remaining
after the second elimination, wherein selecting the precursor candidates based on
calculating rolling lag times over the entire time series for each of the remaining

process variables.
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The system of Claim 11, wherein to execute the parametric model, the parametric
analyzer is further configured to:

analyze x-y linear relationships between the selected precursor candidates and
the subset of KPIs, wherein applying a transform to any of the selected precursor
candidates determined as having high nonlinearity based on the analysis;

build the parametric model with the selected precursor candidates as input and
the subset of KPIs as output;

estimate dead-times and dynamic linear filters for each input channel of the
parametric model, wherein an input channels exists in the model for each analyzed
precursor;

rebuild the parametric model as a PLS model based on the estimated dead-
time and dynamic linear filters for each input channel, wherein using the rebuilt

parameter model to perform quantitative analysis of the selected precursor candidates.

The system of Claim 17, wherein the parametric analyzer is configured to build the
parametric model as at least one of: multiple-input single-output (MISO) dynamic
parametric model, a linear state space model, PLS linear model, and piecewise linear

model.

The system of Claim 18, wherein the parametric analyzer is configured to at least one
of: (1) estimate the dead-times using an optimization search based on input to the
subset of KPIs and (ii) estimate the dynamic linear filters using a linear reduction

technique to determine optimal low-order model fittings.

The method of Claim 12, wherein the strength of correlation score includes relative

sensitivities, contributions, and lead-times for the respective precursor candidate.
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