A 0 A 0 0 0O 0

0 01/16665 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A A

(10) International Publication Number

8 March 2001 (08.03.2001) PCT WO 01/16665 A2
(51) International Patent Classification”: GO6F (74) Agent: G. E. EHRLICH (1995) LTD.; Gibor-Sport
Building, 17th Floor, 28 Bezalel Street, 52521 Ramat Gan
(21) International Application Number: PCT/IL00/00516 L)
(22) International Filing Date: 29 August 2000 (29.08.2000) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH,CN, CR, CU, CZ,
(25) Filing Language: English DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
L . LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ
26 P bl t L : E 1 h £ ’ £ bl el £ ’]] 9] 'y
(26) Publication Language nets NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
o TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(30) Priority Data:
60/151,795 31 August 1999 (31.08.1999) US
09/504.,853 16 February 2000 (16.02.2000) US (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(71) Applicant (for all designated States except US): TECH- patent (IZ,I;/I’B';Z’C?_IY’(I:(YG éz,&DﬁiUﬁ?JéMéhEg;p%n
NION RESEARCH AND DEVELOPMENT FOUN- patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
DATION LTD. [IL/IL]; Gutwirth Science Park, Technion IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
City, 32000 Haifa (IL) CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
Published:

(72) Inventors; and

(75) Inventors/Applicants (for US only): KONOPNICKI,
David [IL/IL]; 2/23 Dubnov Street, 32205 Haifa (IL).
LEIBA, Liora [IL/IL]; 26/7 Naamat Street, 34670 Haifa
(IL). SHMUELI, Oded [IL/IL]; 178 Hapisga Street,
36001 Nofit (IL). SAGIV, Yehoshua [IL/IL]; 36/2 Elgahi
Street, East Talpyot, 93807 Jerusalem (IL).

Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR AUTOMATED CONTRACT FORMATION

(
T

57) Abstract: A system, method and device for (semi-)automated e-commerce on the Internet, the WWW and other networks.
rading parties present intentions, made of more elementary components, which are used to express their willingness to engage in
deals subject to constraints. Parts of intentions may be variable components. Some variable components may be associated with

computational devices that transform them, optionally communicating via messages, into more specified components. This mech-
anism encodes business rules. By fitting intentions, contracts are formed. While fitting intentions, negotiations are carried out via
the exchange of messages. Negotiations are automated by encoding users wishes as mathematical programs. Following the deal
formation an optional deal improvement phase, in one-to-one mode or one-to-many mode, is carried out to improve the deal. The
improvement phase may be based on a trading mechanselected from an available collection of such mechanisms including such

mechanisms as constructed by users of the system.

10

25

30

WO 01/16665 PCT/IL00/00516

1
SYSTEM AND METHOD FOR AUTOMATED CONTRACT FORMATION

FIELD AND BACKGROUND OF THE PRESENT INVENTION

The present invention is of a system and method for automated and
semi-automated contract formation, and in particular, for automated
negotiations which lead to the construction of a contract between two parties.

E-commerce (electronic commerce) is an increasingly popular type of
business activity. The term “e-commerce” refers to business activities
conducted.. through the Internet, and in particular through Web sites on the
World-Wide Web (WWW). The amount of merchandise sold on the World
Wide Web is constantly growing, including products and services which range
from the delivery of flowers to the purchase of books and computer hardware.
The current architecture for e-commerce on the Web mainly relies upon a Web
page-based interface, which is navigated by using the Web browser of the user.
Such an architecture has several disadvantages.

First, each vendor must establish a separate, non-standardized, Web
site. Therefore, each vendor must rely upon its own technology and non-
standardized interface, which is inefficient and time consuming for the vendor.
Second, the requirement to navigate through Web sites with a Web browser is
inefficient for the user, or potential customer, who may wish to consider only
specific products and/or services. Third, there is no standard for conducting
automatic negotiations in either business-to-business (B2B) or business-to-
consumer (B2C) settings (some sites do offer ad-hoc negotiations, for
example “Hagglezone” [http://www.hagglezone.com as of January 2, 2000]
and to a limited extent “Priceline” [http://www.priceline.com as of January 2,
2000]. In addition, there are also auctions which offer a form of negotiation as
in “eBay” [http://www.ebay.com as of January 2, 2000]). Fourth, there are no
facilities and standards for conducting negotiations on package deals, such that
most commerce is on single items or a collection of items (also called a basket
or a shopping cart) in which each item is considered in isolation (for example
http://www.buywiz.com).

One attempted solution to these problems is the provision of automated
agents, known as “shopbots”, which navigate through a plurality of Web sites
in an attempt to locate products and/or services which fit certain parameters
specified by the user. For example, such an automated agent may optionally
be used to locate a product within a certain price range. Although the

10

20

25

30

WO 01/16665 PCT/IL00/00516

2

automated agent enables the user to consider products from a plurality of Web
sites according to one or more specific criteria, the user is still required to
navigate through the Web site of the vendor in order to actually purchase the
product. Examples of such automated agents include “R U Sure”
[http://www.rusure.com as of January 2 2000], and “BuyWiz”
[http://www.buywiz.com as of January 2 2000] which are agents for buying
goods, as well as various types of information brokers, which retrieve
information about products and services through the Internet [1]. Such
systems are generally task-oriented and do not define a general framework for
negotiation. Thus, this attempted solution does not address the previously
described disadvantages.

Other examples of attempted solutions for the specific problems of
negotiation are described in “Agents as Mediators in Electronic Commerce”
[2]. For example “AuctionBot” describes an automated auction server, which
permits the seller to select from various predetermined protocols for
conducting an auction. However, the protocols cannot be flexibly determined
during the auction itself. Similarly, “Kasbah™ is a Web-based multiagent
classified ad system which offers very limited negotiation features, related to
the rate with which a buyer increases a bid to a seller over time. “Tete-a-Tete”
is a system which provides more flexibility, in that terms other than price can
be negotiated, but the negotiation features which are provided are still very
limited.

A more preferred solution would provide automated or semi-automated
processes for e-commerce, which are still sufficiently flexible to meet the
needs of users. These processes would require that the Web sites of vendors
become machine-interactable, or capable of interaction with automated tools
(software programs). In addition, these Web sites should become machine-
analyzable, or capable of being analyzed by these automated tools. The
machine-interactability and analyzability properties of these Web sites would
enable the process of e-commerce to become automated or at least semi-
automated, thereby becoming more efficient and simpler for the user to
operate. Furthermore, the automation or semi-automation of these processes
would enable the user to locate vendors of interest more quickly, and with a
greater likelihood of successful matching between the needs of the user and
the characteristics of the vendor.

10

20

25

30

WO 01/16665 PCT/IL00/00516

3

One attempt to provide such a solution is described in an article by S.
Bottcher [3], which addresses the need for searching for a business partner in a
distributed electronic market. This article discloses the use of a static tree in
order to match potential customers to vendors of interest. The advantage of
the static tree is that it provides greater flexibility than simple string-based
matching, such as that performed by many Internet search engines. The
disadvantage of the static tree is that it cannot be used for negotiations or for
dynamic matching, since the tree itself cannot be adjusted. Since interactions
between a potential customer and a vendor are typically a dynamic process, in
which the vendor provides a description of available goods and/or services,
and the potential customer then considers whether to make a purchase from the
vendor, the use of a static tree is ultimately limiting.

A more useful approach would involve the use of dynamic trees which
can be adjusted, or even created, “on the fly” during the course of the
negotiations. The trees are only partially defined for initiating the process of
negotiation. As the process continues, the trees are constructed, thereby
enabling the process of negotiations to be conducted flexibly and dynamically.
Furthermore, these data structures enable the ultimate resolution of the process
of negotiation to be expressed as a contract, since the dynamically constructed
trees are then converted into a language-based description. Unfortunately,
such a solution is not available.

There is thus a need for, and it would be useful to have, a system and a
method for automated or at least semi-automated, dynamic negotiation
between a potential customer and a vendor, in which the Web site of the
vendor is capable of interacting with software-based automated tools, and in
which the process of negotiation involves the construction of a tree “on the
fly”, which can then be expressed as a natural language-based description for
the determination of a contract between the parties.

SUMMARY OF THE INVENTION

The present invention is of a system and method for the automated, or
at least semi-automated, process of negotiation between a potential customer
and a vendor through software tools, for example at a Web site, although
optionally through computational devices connected by any network. The
process of negotiation, if successful, results in the construction of a contract
between the parties.

10

20

25

30

WO 01/16665 PCT/IL00/00516

4
According to the present invention, there is provided a method for at least
semi-automatically negotiating a relationship between at least a first party and
a second party, the steps of the method being performed by a data processor,
the method comprising the steps of: (a) providing a first intention for the first
party and a second intention for the second party, each of the first intention and
the second intention featuring a plurality of components; (b) exchanging at
least one dispatch between the first party and the second party, the at least one
dispatch including a value for at least one of the plurality of components; (c)
altering at. least one of the first intention for the first party and the second
intention for the second party according to the value in the at least one
dispatch; (d) comparing the first intention to the second intention; and (e) if the
first intention matches the second intention, determining the relationship
according to the first intention and the second intention.

According to another embodiment of the present invention, there is
provided a system for at least semi-automatically negotiating a relationship, the
system comprising: (a) a plurality of party modules, including at least a first
party module and a second party module, each party module featuring an
intention for determining the relationship, the intention featuring a plurality of
components to be determined for the relationship, such that a process of
negotiation matches the intention of the first party module to the intention of
the second party module; and (b) a central server for initially connecting the
first party module to the second party module for performing negotiations.
Hereinafter, the term "network" refers to a connection between any two or
more computational devices which permits the transmission of data.

Hereinafter, the term “computer” includes, but is not limited to,
personal computers (PC) having an operating system such as DOS,
Windows™, OS/2™ or Linux; Macintosh™ computers; computers having
JAVA™.OS as the operating system; graphical workstations such as the
computers of Sun Microsystems™ and Silicon Graphics™, and other
computers having some version of the UNIX operating system such as AIX™
or SOLARIS™ of Sun Microsystems™; or any other known and available
operating system, or any device, including but not limited to: laptops, hand-
held computers, enhanced cellular telephones, wearable computers of any sort,
which can be connected to a network as previously defined and which has an
operating system, as well as electronic or biological hardware, systems, servers
and the like. Hereinafter, the term “Windows™ includes but is not limited to

10

20

25

30

WO 01/16665 PCT/IL00/00516

5
Windows95™, Windows 3.x™ in which “x” is an integer such as “17,
Windows NT™, Windows98™, Windows CE™, Windows2000™, and any
upgraded versions of these operating systems by Microsoft Corp. (USA).

Examples of a “computational device” include, but are not limited to, a
computer as defined above, or an independently operated software module or
agent in any suitable programming language.

Hereinafter, the term “semi-automatic™ refers to a process in which a
human decision maker participates in the negotiation/decision phases of a
commercial activity.

The method of the present invention could be described as a series of
steps performed by a data processor, and as such could optionally be
implemented as software, hardware or firmware, or a combination thereof. For
the present invention, a software application could be written in substantially
any suitable programming language, which could easily be selected by one of
ordinary skill in the art. The programming language chosen should be
compatible with the computer according to which the software application is
executed. Examples of suitable programming languages include, but are not
limited to, C, C++, Visual Basic, Prolog, Lisp, ML and Java.

GLOSSARY

EC Party: A legal entity that may be involved in a deal. In particular, it
can designate individuals, corporations, countries, state and local authorities,
organizations and associations.

Intention: A specification of a deal. In particular, it can designate the
objectives of the deal (e.g., buy, rent), parties and objects involved in the deal,
and constraints and preferences involving these entities.

Component: A component is an entity that is a building block for
intentions.

Atomic component: A component describing a simple entity such as a
bit, a number or a string.

Compound component: A component that is built of other
components.

Constraint component: A component describing constraints on other
components, e.g., that one atomic component is larger than another.

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

6

Basic component: A component whose structure is known to a user
community and is agreed upon as representing a real life concept. Basic
components are named.

Variable component: A component that is represented by a variable.

Computable variable component: A variable component that is
associated with one or more computational devices. Such a device transforms
that variable into a component. This component usually includes further
elaboration on the deal.

Dispatch: Any information communicated from one party to another
party, including, but not limited to, an intention, a component or a portion
thereof, or questions about intentions or components.

Fitting: A process of taking one or more intentions and reconciling
them into intentions that together satisfy as much as possible the constraints
prescribed by the original set of intentions.

Contract: A set of intentions that are agreed upon by the issuing
parties. In particular, if that set consisting of one intention it’s called a simple
contract. If it includes no variable components it is called a ground contract.

Atomic value: a concrete representation of an atomic component.

Atomic type: A set of atomic values.

Class: a prototype of a compound component, for example a class in
Java or C-++, a compound term in logic programming (Prolog), a list structure
in LISP, etc. The specification of a class can involve atomic types, values and
classes. A class usually has a name.

Class value: a particular instance of a class prototype.

Basic class: A class that constitutes a basic component.

Variable: An entity with a name, a type (atomic, class, atomic
collection, class collection where a collection is, e.g., list, set, subset, superset,
one-of, array) and value (either atomic value, class value, undefined (called
null), or a collection of values.)

Computable variable: A variable that is specified to be a computable
component.

Reference to a value: This term refers to one of the following items -
the value itself, a request for the value, or a set of values from which one value
is to be selected.

Abstract class: A class that has a name but no class instances. It is used
to abstract classes that appear in a class hierarchy (see below).

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

7

Sub-class relationship: A statement that a class, say A, is more general
than a class, say B. Classes A and B need not have similar prototypes. Classes
may be abstract.

Class hierarchy: A collection of sub-class relationships. It is
sometimes required that this relationship be transitively non-cyclic, i.e., that a
class is not its own subclass.

Ontology: A collection of class hierarchies. It is sometimes required
that no class name appears in more than one hierarchy of the ontology.

Item ontology: A particular ontology that usually contains names of
basic classes that correspond to objects or concepts, for example car, bank
account, John, Pepsi Co..

General ontology: A particular ontology that usually contains names of
basic classes that correspond to transactions, for example buy, rent, lease,
transport, invest, destroy, build.

Party information: A set of information items an EC party maintains.
This set usually contains its identity, a collection of intentions, and other data
relevant to its operation. The party information may change dynamically over
time. Parts of it may be published for outsiders to access/view and parts of it
may be restricted in terms of who and when can access/view them.

Operator class: A class that indicates constraints on values. Examples
are OR, AND, NOT and ONE-OF.

Intention trees: An intention built by the following process. One starts
with an instance of a general class, i.e., one belonging to the general ontology,
and then may extend it via zero or more extension steps.

Extension step: An extension step is performed by: replacing a null
atomic variable by an atomic value, or by replacing a null class variable with a
new fresh copy of a class prototype, or by replacing a null collection variable
by a collection of values, or by introducing an operator class instance and
modifying the intention in accordance to rules of introduction of operator
classes.

Constraint: A constraint component specifying limitations on value
variables may be associated with, on relationships concerning variables and
values, and on aggregates of values.

Message: Communication of information between one or more
computational devices.

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

8

Reply: A message that is sent as a response to another message or
messages.

Relation: A form of representing a collection of information items,
each item is composed of fields and values for these fields.

Commerce automaton: A computational device that is specified using
states, transitions among states, predicates (i.e., conditions) on transitions,
actions to be performed in a state, the forms of input, the forms of output. In
particular, actions may be the sending or receiving of messages and
creation/destruction/access/modification of values of variables including
variables associated with relations and other relations (e.g., those associated
with party information). A computable variable component is associated with
one or more commerce automata, although preferably the variable component
is associated with a single commerce automaton.

Negotiation automaton: A computational device used to answer
messages that are generated by commerce automata. The exact internal
structure of the NA may optionally be unspecified. Optionally the NA may
resemble a CA, and alternatively it may be a program implemented via any
language on any computer. The implementation may also optionally include
manual answers. As explained below, a negotiation automaton is conceptually
associated with every atomic component, basic component, and compound
component, as well as every vertex in an intention tree.

Unification of intention trees: The fitting of intention trees. The
process optionally involves matching of similar components, the assignment of
values to variables, the execution and/or analysis of commerce automata,
exchange of messages. The result is one or more intention trees that satisfy as
much as possible the constraints expressed by the original intention trees. If the

electronic contract (EContract) is said to result. The EContract is
ground if all variables are assigned non-null values. The EContract variables
may be associated with party or parties that are to determine their actual values
at the point of execution of deal(s). The EContract is single if it consists of a
single intention.

GUI level: A system layer where users specify constraints, preferences
and tradeoffs either by using a graphical user interface, or via a textual or other
interface.

10

20

25

30

WO 01/16665 PCT/IL00/00516

9

Mathematical program: Formalism for encoding the user’s GUI level
specification. In particular, these could be linear programs, non-linear
programs, and such programs involving integral constraints, goal programs or
multiplexes.

Negotiation procedures: A set of computational devices, derived from
the mathematical programs encoding a user’s specification, which are used
during negotiations to choose, rank, suggest and improve deals.

Deal improvement phase: An optional phase in which a deal is
improved via the interaction of parties.

Trading Mechanism: A method for conducting the deal improvement
phase. It may be a one-to-one, one-to-many or many-many.

Deal Splitting: A process of forming a deal in which one intention is
matched with a number of intentions, thereby “splitting the deal”.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages will be better
understood from the following detailed description of a preferred embodiment
of the invention with reference to the drawings, wherein:

FIGS. 1A-1D are examples of classes, presented as trees, according to
the present invention;
FIGS. 2A-2D are variable instantiations according to the present
invention; ‘

FIGS. 3A and 3B describes adding operator vertices according to the
present invention;

FIG. 4 describes a process of using operator vertices according to the
present invention;

FIGS. 5A-5C describe exemplary commerce automata according to the
present invention;

FIG. 6 describes an exemplary commercial automaton according to the
present invention;

FIG. 7 is an exemplary intention tree of a customer;

FIG. 8 is an exemplary intention tree of a vendor;

FIG. 9 is an exemplary unified intention tree as an EContract;

FIG. 10 is a schematic block diagram of an implementation of the
present invention;

10

20

25

30

WO 01/16665 PCT/IL00/00516

10
FIG. 11 is a schematic block diagram of an exemplary party architecture
according to the present invention; and
FIG. 12 is a flowchart of a method according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is of a system and method for the automated, or
at least semi-automated, process of negotiation between a potential customer
and a vendor through software tools, for example at a Web site, although
optionally.;through computational devices connected by any network. The
process of negotiation, if successful, results in the construction of a contract
between the parties.

The EContracts framework is a preferred implementation of the present
invention, which enables e-commerce WWW sites and e-commerce automated
tools to present standardized information. This information (1) allows each
party to decide whether it wishes to engage in an e-commerce activity with the
other party, (2) enables automated negotiation between the parties, and (3)
enables the establishment of an electronic contract, i.e., a formal description of
an agreed upon e-commerce transaction. The EContracts framework defines
the basic software components of an e-commerce party and their
interconnections. Based on the EContracts framework, various applications
can be built. Examples are deal making applications, deal feasibility checkers,
brokers and so forth.

The system and method of the present invention have a number of
advantages over the background art. First, entire negotiated agreements,
which could be termed a package deal, or contracts can be specified, rather
than a single product or “shopping baskets”, which are simply collections of
products. This advantage is significant, as it enables complex relationships
between parties to be negotiated and specified.

Second, this formalism is particularly suited for automatic or semi-
automatic negotiations which seek to match, at least partially, the preferences
and requirements of each party.

Third, the negotiated agreement or contract can optionally specify a
symmetric relationship, rather than simply determining the exchange of money
for a product. For example, the relationship could involve the exchange of
items. Such a symmetric relationship cannot be determined with the

10

20

25

30

(O8]
wn

WO 01/16665 PCT/IL00/00516

11
automated agents or other automated tools of the background art, which are
designed primarily for the exchange of money for products.

Fourth, the products themselves can be complex, for example involving
multiple parameters and options. The products may be particularly complex for
business-to-business relationships, in which the products may be a
combination of goods and services, for example. As another example of
complex products, the product may optionally be an option on two airline
tickets in January to a particular city.

Fifth, the present invention enables business rules and data to optionally
be exposed only to a desired level. For example, a bank could optionally show
interest rates for deposits of up to one million dollars, but not for higher
amounts. Also, the level of exposure can be adjusted for negotiation with each
party, such that different levels of exposure may optionally be adopted for
business-to-business negotiations, as opposed to negotiations with consumers,
for example.

Sixth, contracts and/or agreements are specified formally, and hence are
more difficult to dispute. The building blocks of contracts can be analyzed in
advance by legal authors and experts to verify their compliance with various
laws.

Seventh, the formalism presented below is optionally extendible to new
market segments, new products and new types of agreements or business
relationships.

Eighth, the agreement can easily be expressed in natural language.
Certain of these concepts were briefly explored in two papers: D. Konopnicki,
L. Leiba, O. Shmueli, and Y. Sagiv; “Toward automated electronic
commerce”; In First IAC Workshop on Internet-Based Negotiation
Technologies; IBM TJ Watson Research Center, Yorktown Heights, NY;
March 1999; and D. Konopnicki, L. Leiba, O. Shmueli, and Y. Sagiv; “A
Formal Yet Practical Approach To Electronic Commerce”; In Proc. COOPIS
'99, Edinburgh, Scotland, September 1999. However, the former paper in
particular did not include the detailed, complete realization of the present
invention as described herein.

The subsequent description is organized as follows. Section 1 is an
introduction to the basic concepts of the present invention, to the goals of
operating the present invention, and to the basic architecture of an automatic
negotiating tool. Section 2 presents the basic terminology of EContracts.

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

12
Section 3 defines intentions. In particular, it presents the commerce automata
formalism and the way parties exchange messages during negotiations. Section
4 discusses unification, as well as upgraded unification that allows performing
unification by relaxing certain constraints. Section 5 presents examples of
specific embodiments of the present invention. Section 6 presents a technique
for obtaining a user’s constraints and preferences and translating them into
mathematical programs which can then be used to present results to the user as
well as negotiate the user’s intentions. In section 7 we describe several basic
negotiation mechanisms that are provided for the system’s users. Section 8
presents dynamically specified negotiations.
Section 1: Introduction

Structuring Electronic Commerce (EC) is expected to be the main
activity on the Internet, private networks and the WWW. A universal
formalism (“the HTML of EC”) is required, which supports business
relationships and negotiations on a global scale, as well as protocols which
support automatic tools (agents). The present invention provides such a
formalism by enabling parties to specify intentions, a formal outline of deals in
which such parties are ready to engage. Intentions are made of components.

Components may be atomic or compound (to any required depth).
Furthermore, a component may be a variable component, that is unspecified,
or alternatively is specified only according to its type (see below for an
explanation of types of components). Components may also be inter-related
(e.g., by containment, by edge or labeled-edge connection, or by arbitrary
predicates). An important facet of a variable component is its possible
association with one or more computational devices, although one-to-one
association of a variable component with a computational device is particularly
preferred, and is described herein. Such a computational device, based on its
perceived state and messages, transforms a variable component into a
component. The term “perceived state” is intended to include inputs, values
of various components, values of certain other entities such as files, databases
and the like. The “new” component is usually “more specific” than the variable
component it replaces. According to the present invention, such variable
components and their associated computational devices embody transient or
policy dependent aspects of the willingness to engage in a deal. It is desirable,
although not mandatory, that the functionality of the computational device be
readily understood by inspection, a property termed herein analyzability.

10

20

25

30

WO 01/16665 PCT/IL00/00516

13

Forming an agreement, or negotiating a contract, requires the
reconciliation of the constraints placed on deals by the (two or more) parties
involved. For simplicity, the present invention is described with regard to two
parties, it being understood that the concepts presented herein are easily
generalized to multi-party scenarios. Reconciliation involves forming an
agreement or contract which, as much as possible, is subject to the directives
of the parties, as well as to any general laws which may apply. When
examining two intentions, the process of reconciling the constraints may be
considered to be a form of “fitting” to these constraints. Abstractly, this
process fits the component structure of one party with the corresponding
components of the other party.

Each party is assumed to employ a computational entity, or “party
machine” (PM), which controls the fitting of intentions. The PM may
communicate with other computational devices, and in particular other PMs, in
attaining its mission. For example, it may be responsible for activating the
“fitting process” or activating the computational device associated with a
variable component.

There are some very basic requirements for automated or, at least semi-
automated electronic commerce. First, a common terminology for intentions is
needed. The analogy here is the natural language used by humans, suitably
formalized, for commercial activities, such that the intentions of a party can be
readily understood by other parties. Second, a mutually agreeable architecture
is needed so that a PM of a party can assume certain abilities of a PM of
another party. An analogy here is the client-server architecture of the WWW.
Third, as stated, computational devices may issue messages and require
responses, which would form a foundation for automated, or semi-automated,
negotiations. So, a protocol for negotiations needs to be established for
operation with the automated tools, similar to those protocols exercised as part
of human behavior in commercial negotiations.

In designing solutions for the above mentioned three requirements, a
number of properties are desirable. The common terminology should be
simple, yet expressive and powerful. The architecture should be modular and
orthogonal, i.e., different modules should address different concerns. To
enable a rich set of commerce modes, the structure and content of e-commerce
parties should be machine-analyzable. Machine analyzability gives rise to
greater efficiency as well (see below). Of course, an e-commerce party should

10

20

25

30

WO 01/16665 PCT/IL00/00516

14
be able to have opaque portions that are not viewable by other parties, and/or
with a level of visibility to other parties or classes of parties which is
controllable by the owner of the party.

Using these concepts, various applications can be built, as described in
greater detail below. Although a particular implementation of these concepts is
described herein, it should be noted that other realizations of these concepts
are possible. In particular, as described below the present invention is
implemented with a programming logic which is similar to that of the Prolog
programming language and logic programming. Other implementations may
rely on LISP and functional programming, on more natural language oriented
formalisms, on Java, C++ and Object Oriented formalisms and many more,
such that the description of the preferred embodiments below is not intended to
be limiting in any way.

According to the present invention, a number of mechanisms must be
implemented for the process of negotiations to be conducted with automated or
semi-automated tools. The first step is to ensure that intentions are universally
understood. In EContracts, a component is represented as a rooted labeled
tree. In fact, an intention is also a rooted labeled tree which is composed of
components, together with various constraints and computational devices. The
most basic components are simple atomic entities, e.g., of type integer, float,
string. Next are basic components that are essentially (usually small) trees
whose structure is agreed upon to represent a concept (e.g. car, sale, address).
These basic components are called classes and they form the “words” of the
common language. The word “class” hints at the fact that in an object oriented
realization, these components are likely to be represented as object oriented
classes, although the present invention is not limited to such a representation.
A component may be a variable component. In this case it appears as a single
node labeled with a typed variable. Such a type may be atomic, atomic list,
class or list of classes. Such a variable component cannot exist in isolation but
must be a leaf of a class.

Using classes, the parties compose their intentions, essentially forming
“sentences” which in turn define possible deals. As noted, the purpose of an
intention is to describe a deal that a party is willing to engage in. For example,
an intention can express that the BooksOnline Corp. is selling books and that if
you buy more than five books, you receive a 10% discount. In EContracts, the
mechanism that composes words into sentences, or classes into intentions,

10

20

25

30

WO 01/16665 PCT/IL00/00516

15

relies on “variable instantiation” and the introduction of “operator nodes”. A
(leaf) variable component of an intention is optionally and preferably
associated with a computation device, called a “commerce automaton” (CA) in
this realization, which prescribes how the variable may be instantiated further
during a later phase. A commerce automaton may outline a message exchange
sequence between the parties. However, it should be noted that a commerce
automaton, and the related entity, the “negotiation automaton” (NA, described
in greater detail below), are only one realization of a device or entity for
exchanging messages between the parties according to the present invention,
and is in no way limiting. In addition to intentions, an e-commerce party also
maintains party information, a database or file containing information relevant
to the party's activities. This is part of the “system state”.

A deal is manifested by creating a mutually agreed upon electronic
contract (EContract). The process of obtaining an EContract begins with two
initial intentions, presented by the parties. A formal process, called unification,
a part of the realization of “fitting”, is used to construct an agreed upon
EContract, provided such a contract is feasible. Unification may also be used
by an e-commerce party to determine whether an EContract is at all possible,
prior to entering actual negotiations with the other party, hence the importance
and desirability of machine analyzability.

The EContract framework defines the basic software components of an
e-commerce party and their interconnections. Each party features a party
machine, described in greater detail below with regard to Section 5. The party
machine in turn has a number of associated data structures, including a party
information data structure and an intentions data structure.

The party information data structure is preferably constructed as a
standard relational database which contains the global data of the party
machine, such as item lists, pricing information and so forth. This global data
is described in greater detail below with regard to Sections 2 and 5.
Optionally, at least a portion of the party information data structure may be
queried by other party machines, although preferably, a least a portion of party
information data structure is opaque, or not accessible, to other party
machines. More preferably, the party information data structure-includes data
which defines the legal status of the party which operates party machine, such
as the name, address and telephone number, for example, of the party which
operates the party machine.

10

20

25

30

WO 01/16665 PCT/IL00/00516

16

The intentions data structure preferably defines business goals,

expressed as a plurality of intentions. These intentions are described in greater
detail below with regard to Sections 3 and 5. Intentions are composed of
intention trees (which are derived, by a process of expansion, from classes),
commercial automata (which encode business rules), and global constraints.
Basically, an intention is a formal description of an e-commerce activity, such
as a sale, in which a party operating party machine is willing to engage.
The plurality of components of the party machine include a Negotiation
Control Program (NCP), which is an overall coordinator of the activities of
party machine. A Constraints Solver is controlled by NCP, but may optionally
be queried by other parts of the party machine, and is used to check sets of
constraints which are initially specified and/or generated during the
unification process, as described in greater detail in Sections 4 and 5 below.
Constraint solving is a process which is well known in the art (see for example
[4, 5] for a description of constraint-solving techniques).

Briefly, the Constraints Solver returns an answer to the NCP, which

may be either Unsatisfiable, such that it is impossible to find an assignment to
the variables which appear in the constraints such that the constraints are
satisfied, or Satisfiable, such that there exists a satisfying assignment. If the
Constraints Solver returns Satisfiable, the Constraints Solver may optionally
return a modified, and preferably simplified, constraints set. It may also return
a set of answers to constraints equations as well as other indications
concerning the provided set (for example, that there are multiple solutions or
infinite ones).
An Automata Execution Engine (AEE), controlled by the NCP, is responsible
for conducting negotiations and the business rules enforcement. This is done
by executing commerce automata (CA), as described in greater detail in
Section 3 below. When the execution ends, the AEE controlling the CA returns
either SUCCESS, i.e., the CA reached a final state, or FAILURE, i.e., the CA
did not reach a final state. If the AEE returns SUCCESS, the NCP in control of
the overall process (say NCP1) may optionally modify the EContract with the
output of the CA. In this description, the AEE is optionally run by NCP1,
preferably in case the CA is associated with a variable in the intention of
NCP1’s party, or optionally it is run by NCP2 (the NCP of the ‘other’ party),
preferably in case the CA is associated with a variable in the intention of
NCP2’s party.

15

20

25

30

WO 01/16665 PCT/IL00/00516

17

A Unifier is again controlled by the NCP and supervises the unification
process, as described in greater detail below with regard to Section 4. Briefly,
the unification process involves the unification of at least two, but optionally
more, intentions submitted by the NCP of a party A and the corresponding
NCP of a party B. If it succeeds, the Unifier returns the EContracts. The
Unifier may optionally occasionally request the NCP to pass a set of
constraints to the constraint solver or to pass a CA to an AEE (again,
belonging to either party) for execution.

The principles and operation of a system and method according to the
present invention may be better understood with reference to the drawings and
the accompanying description, as well as to the examples below, it being
understood that these drawings and examples are given for illustrative
purposes only and are not meant to be limiting.

Section 2: Basics of the EContracts framework

The parties involved in an e-commerce activity must agree on a
common vocabulary. The “words” of this vocabulary are called classes and,
formally, they are rooted labeled ordered trees. The root of a class is labeled
with the class name; the edges of the class are labeled with strings which hint
at the function of the vertices; the leaves of the classes are labeled with typed
variables.

Examples of classes are presented in Figures 1A-1D as trees, in which
each leaf vertex contains a variable of a particular type (see below for an
explanation of the different preferred types of variables). The type in italic
script precedes the label for the name of the variable. For example, the
Purchase contract class (Figure 1A) describes a commercial purchase
transaction involving a buyer, a seller, a list of purchased vehicles and a
payment. The Payment class (Figure 1B) describes a payment as being
composed of an amount of payment and a method for performing the payment.
The EC Authority class (Figure 1C) describes an authority, including
identification information, address and name. The Car class (Figure 1D)
describes a vehicle, including model, identification information, class
information, and price. Each of these constituents of the classes is described
with a typed variable.

The presence of variables in a class enables the class to be customized.
There are preferably four types of variables. A first type of variable is an

10

20

25

30

W)
wn

WO 01/16665 PCT/IL00/00516

18
atomic varia. The names of atomic variables begin with a “$” and the values
that can be assigned to these variables are values such as string, real and
integer. Examples of atomic variables in Figures 1A-1D include the
identification string $id in Figure 1C, and the string $amount in Figure 1B,
and so forth.

A second type of variable is a class variable. The names of class
variables begin with an ampersand “&” and the values that can be assigned to
these variables are class instances. Examples of variables in Figures 1A-1D
include the payment variable &payment and the EC authority variables
&customer and &company in Figure 1A.

A third type of variable is an atomic list variable. The names of atomic
list variables begin with a percentage symbol, “%”, and the values that can be
assigned to these variables are lists of atomic values.

The fourth type of variable is a class list variable. The names of class
list variables are enclosed between parentheses and the values that can be
assigned to these variables are lists of class instances. Examples of class list
variables in Figures 1A-1D include the variable (vehicles) in Figure 1A.

These notions are captured in the following definitions. The atomic
types are defined to be string, integer and real. Other types like date, boolean
or enumerated types are possible, but the present description is limited to
string, integer and real only for the sake of simplicity and without any intention
of being limiting. There is also a set of class names which is a set of strings.

The following definitions are given solely for the purposes of
explanation and without any intention of being limiting.

Definition 2.1 A value is either a string, an integer, a real, a class
name or one of the special symbols N (for null), L (for lists) or CO for list
containment constraints (L and CO are relationship designators, such that the
corresponding list elements appear as children).

Definition 2.2 A variable is a triple (¢,n,v) where ¢ is an atomic type or
a class name, » is a string and v is a value, such that » is the name of the
variable. A triple (¢,n,v) must satisfy the naming constraints defined above
(e.g., atomic variable names must begin with a § character), together with the
obvious type-correctness constraint between ¢, n and v (i.e., a value must
correspond to the type of the variable). A variable (¢,n,v) is unbound if v=N.
A set of variables V is proper if every variable name in a triple of ¥ is unique,
i.e., appears in no other triple as the name entry.

10

20

25

30

WO 01/16665 PCT/IL00/00516

19
The following definitions concern the words of the common vocabulary,
namely the classes.

Definition 2.3 A class, over a proper set of unbound variables VAR, is
a rooted labeled ordered (RLO) tree, denoted (V,Er,t,<,, elf, vIf), where V is a
set of vertices; £ is a set of edges, E < V' x V; r € Vis the root of the tree; ¢, the
label of the root, is a class name; <, is a partial order relation over E that
defines the relative order of the edges that emanate from the same vertex; elf :
E — STRINGS is the edge labeling function (defined so that the labels of the
edges that emanate from the same vertex are all distinct); and let ¥’ <V be the
leaves of T. vif: V' — VAR is the (total and onto) leaf labeling function.

In Figure 1, each variable (%, n, N) was represented by ¢: n.

Definition 2.4 Let L be a finite set of class names. A class hierarchy H
over L is a directed labeled rooted tree in which every vertex is labeled with a
class name in L. No class name may appear twice in the tree.

Classes are organized in class hierarchies, each defining a specialization
hierarchy. For example, the Car class of Figure 1D is a specialization of the
Vehicle class. As a consequence, Car class instances can appear in the list of
vehicles of a Purchase contract class instance, although such a relationship
between classes does not presuppose any structural similarity between them.
An ontology is a set of hierarchies containing classes that are semantically
related.

Definition 2.5 Let L, .., L, be pairwise disjoint sets of class names.
An ontology over L,, ..., L, is a set of class hierarchies H,, ..., H, over L, ...,
L, , respectively. An ontology groups classes which are semantically related,
and thereby contains the class hierarchy specification for its classes.

A class named a is contained in an ontology O if a is a vertex label in a
class hierarchy in O. A class named b is a child of a class named a in O if (1)
there exists a class hierarchy T in O such that T contains two vertices u and v
which are labeled with a and b, respectively, and (2) there is an edge from u to
v. Let the descendant relation be the reflexive and transitive closure of the
child relation.

Without being limiting, the existence of three basic ontologies is
assumed. The contracts ontology contains the possible e-commerce contracts,
such as Purchase, Rent for example. The ifems ontology contains goods and
services such as car, hair-cut for example, which can be the subject of an e-

10

20

25

30

WO 01/16665 PCT/IL00/00516

20
commerce activity. The general ontology contains e-commerce general
concepts such as e-commerce authority, payment, interest rate, for example.

For each class name ¢ defined in the basic ontologies, a canonical class
representation for t, denoted C,, is assumed to exist, which is a class whose
root is labeled with ¢. An instance of type t is a class that is isomorphic to C,,
i.e., identical up to a consistent renaming of variables.

A party is an active component that may be involved in e-commerce
activities, for example at an e-commerce WWW site, through commerce
activities.on the Internet or as a customer buying agent. The EContracts
framework assumes a preferably symmetric model, such that the structure of
all parties involved in an e-commerce activity is preferably identical, although
alternatively differently structured parties may be accommodated in a
negotiation. A party manages the party information, i.e., a standard relational
database, or optionally a collection of files, that contains the party's global
data, e.g., the party's identity, item lists, pricing information and so forth.

Section 3: Intentions

In addition to the party information, in order to advertise its business
intentions as well to be machine analyzable, a party should include a formal
specification of the way it operates, i.e., the skeleton of contracts it may enter
as well as the business rules and the constraints it enforces. The EContracts
framework represents this information in intentions. Whereas classes are the
words of the common language, intentions are the sentences of this language.
Sentences are built by connecting words, such that an intention is composed of
an intention tree which is derived from classes, commerce automata which
encode business rules, and constraints.

Intention trees describe the structure of EContracts a party is willing to
establish. Intention trees are derived from e-commerce contract classes and are
transformed into actual contracts by instantiating variables, in order to define
the party's requirements, and by adding operator vertices that enable the
specification of powerful logical constraints.

For example, in Figure 7, the customer, J. Smith, wishes to purchase
two motorcycles or, alternatively, an Economy class car. He is ready to pay by
either cash or check. In Figure 8, the PurchaseOnline Corp. is selling cars (one
at a time) and is only accepting cash.

10

20

25

30

WO 01/16665 PCT/IL00/00516

21

Note that the two intention trees in Figures 7 and 8 are complementary.
The purpose of unification is to detect this fact and to build a unified tree from
the intentions, namely the EContract, which is shown in its final form in Figure
9. These Figures are explained in greater detail below.

Variable instantiation. Formally, variables are instantiated by using
the a operator. The a operator takes a tree and a variable-instantiation
operation, and produces a tree as follows. Let T be an intention tree and let x =
(t, n, N) be an unbound variable appearing in T.

If x is an atomic variable, and v is a value of type ¢, o (7, x = v) is
defined to be T” where T is presented in Figure 2A. In the figure, “boxed T”
symbols represent (sub-)trees and “boxed x” symbols represent vertices.

If x is a class variable, let ¢ be a class name which is a descendant of ¢ in an
ontology and let O', be an instance of type 7. o (T, x = O") is defined to be T’
where T is presented in Figure 2B.

If x is a class list variable, let (¢°), ..., t’,) be a sequence of class names
which are descendants of ¢ in an ontology and let (O’), ..., O’,) be instances of
types (¢'), ..., t’y), respectively. a (T, x= (0’}, ..., 0’,)) is defined to be T’,
where T is presented in Figure 2C. Instantiation of atomic list variables is
defined similarly.

Similarly, if x is a class list variable, let (¢’),, t’) be a sequence of
class names which are descendants of 7 in an ontology and let (O}, ..., 0’,) be
instances of types (’),, t’,), respectively. Now o (T, x o O’y ..., O°)) is
defined to be T’, where T’ is presented in Figure 2D. The meaning is that the
list that can be assigned to x must contain at least (O, ..., O’,), that is x must
satisfy a list containment constraint. This operation is a partial assignment, as
it constrains the possible values of x. List containment constraints on atomic
list variables are defined similarly. A list containment constraint of the form x
<(0’),, 0’,) can be specified using OR vertices which are defined below.

Operator vertices. Operator vertices are vertices labeled with the
strings AND, OR and NOT. Operator vertices are added to an intention tree by
using the A operator. Let T be an intention tree, T is derived by adding to T an
operator vertex o as follows.

If 0 is an OR vertex or an AND vertex, then let « be a vertex in T, let
(u,v) be an edge labeled with lab, and let V be the subtree rooted in v. Let ¥}, V,
be trees isomorphic to ¥ up to renaming of variables. A (T, u, o, V,V,)) is
defined to be 7", where T is obtained from O by (1) removing ¥ from O, (2)

10

20

25

30

W
wh

WO 01/16665 PCT/IL00/00516

22
adding an edge (,0) labeled /ab, and (3) adding edges from o.to the roots of ¥,
and V, (see Figure 3A).

If 0 i1s a NOT vertex, then let 7, and ¥, be the two subtrees rooted at an
AND vertex, such that their roots are not already NOT vertices. o can be added
to the intention tree as the root of one of ¥}, ¥,, as described in Figure 3B (for
V).

Figure 4 presents an example of the use of operator vertices. Recall that
CO is a list containment constraint, e.g., variable (x), when instantiated,
should contain at least O, and O,. The meaning is that the list of items (of type
t) must contain at least O, and O,, or O, and Os, but must not contain O;.

In an intention, the (sub-)trees rooted at vertices that are labeled with the same
variable name are required to be identical.

The a and ? operators may be applied to any class instance leading to
the construction of a derived instance. For example, the subtree rooted at the
Customer edge in Figure 7 is a derived instance of class EC Authority.

Constraints. An intention contains a set of constraints. A constraint is
a function from a value assignment (to a set of variables) to the boolean values
TRUE and FALSE. The sub-language used for the expression of constraints is
not part of the EContracts framework specification. For the sake of simplicity,
in examples, a simple constraints sub-language is used, which is called
SIMPLE-C and which is presented through examples. For example,
not(Ground($title)) AND ($price > 100) AND ($name = “John”) AND
(($name, $price) € R) is a constraint. Note that Ground means “is not null”
and R denotes a set (relation) of tuples. The assignment C={S$title — null,
$price — 150, $name — “John”, R — {(“John”,150), (“Steve”,170)}} satisfies
the constraint.

Commerce automata (CA). Negotiations upon variable values (e.g.,
$price) and business rules enforcement can be expressed by assigning
commerce automata to atomic variables, class variables and list variables that
appear in intention trees. For the sake of simplicity only and without any
intention of being limiting, this description does not consider automata for list
variables. They are an extension of the automata for class variables.

Furthermore, only business rules and negotiations involving two parties are
considered, again for the sake of simplicity only and without any intention of
being limiting. However, it is possible to define negotiation protocols
involving more than two parties.

10

20

25

30

WO 01/16665 PCT/IL00/00516

23

Variables. Consider a CA 4 which is assigned to a variable x of type ¢
in an intention tree. If x is an atomic variable, executing A leads to the
assignment of an atomic value of type ¢ to x. In this case, the set of A's output
variables is {x}. If x is a class variable, 4 specifies at least an output instance
O which is a derived instance of type ¢ where ¢ is a descendant of ¢ in an
ontology. Let x, ..., x,, be the atomic variables that appear in O. Executing 4
assigns atomic values to some of the variables among x,, ..., x, and assigns the
resulting instance to x. In this case, the set of A's output variables is {x,, ..., x,}.

To build the assignment to the output variables, 4 uses a set of internal
variables which can be atomic variables or relation variables, i.e., variables
that can be assigned entire relations.

An automaton is provided with an initial assignment to its variables
(determined by unification, as shown by the example in Section 4) and the
assignment may be modified during its execution. The atomic variables are
typed and the relation variables have an associated arity (i.e., the number of
columns in the corresponding table). Column names may correspond to
variables in the output instance of A.

Parties and messages. The execution of a CA is defined relative to two
parties that exchange messages. The roles of the parties during the execution
are asymmetric. The active party of this interaction, the one whose automaton
initiated the message exchange, sends inquiry messages to the passive party,
and the latter replies with answer messages. It is understood that the parties
may alternate roles through different interactions, such that a passive.party for
this interaction may become the active party for the next interaction, and so
forth.

The possible inquiry messages and the corresponding answer messages
are as follows.

Send t. The active party requests an assignment for the variable t, where
t is a variable of any type. The passive party must reply with t = v, in which v
is a value of the same as the variable t; or with a choose message which is
defined below.

Confirm t=v. The active party requests a confirmation regarding the
assignment of value v to t from the passive party. The passive party must reply
with Yes to confirm; No, to disallow; confirm t = v’, in which v’ is a counter
offer for the value to be assigned to t; or a choose message, as defined below.

10

20

25

30

WO 01/16665 PCT/IL00/00516

24

t = Choose C from R format F. The active party proposes to the passive
party a set of alternatives from which a choice for the value to be assigned to
the variable t should be made. The number of alternatives to be selected
depends upon the value of the constraint C. In this message, t is the variable,
and the constraint C combines terms of the form m=n, m>n, m<n, m<n or m>
n, in which m is a natural number, for example /<n<3. F is an array
describing the names and types of the columns of R. The format of this array
is Col[i].Name = Name of column i in R and Col[i]. Type = Type of the value
in column.i in R. The passive party must reply with an agreement to one or
more alternative choices which are selected from R conforming with C; or ¢ =
Choose C’ from R’ format F’, which constitutes a counter offer.

The names of variables and of columns of relations in messages
constitute a vocabulary which must be mutually understood by the parties.
These names are understood in the context of the initial unification between
the output instance of the activated automaton, say associated with party A,
and either (i) a subtree of party B’s intention, or (ii) the output instance of a
party B automaton. Whichever the case may be, this initial unification
establishes an initial vocabulary of variable names and edge labels which may
be used in messages to clarify the meaning of later variable and column names.

Similarly, the values which are transmitted in messages, including
values which appear inside tables or lists, may optionally be specified to be
either hard values which are not negotiable, or soft values, which are
negotiable. Soft values may be so indicated by a marker such as a question
mark, for example. For example, if the active party sends the message
“confirm price=57", the other party may answer with a counter offer, since
“57” is a soft value. On the other hand, if the message is “confirm price=5",
the price is not negotiable and there is no point in sending a counter offer. A
similar mechanism may apply when sending values in a table or list from
which a selection should be made.

The replies to these messages are optionally determined by the passive
party according to a plurality of preferences. These preferences may
optionally and preferably include default options, relative preferences,
negotiation strategies for particular items, mechanisms for performing parallel
negotiations, and software modules for conducting negotiations according to
specific principles.

10

20

25

30

(O8]
wh

WO 01/16665 PCT/IL00/00516

25

For example, with regard to default options, when asked to make a
choice, the passive party could respond by always choosing the first choice or
the last choice, or a random choice, or may require the human operator to be
queried concerning the choice. Relative preferences can be determined by
ranking constraints, for example. Optionally, intention tree nodes can be
ranked as guidance for best-effort performance of the unification algorithm
(see Section 4 below).

A negotiation strategy for particular items may involve determining
acceptable: prices or delivery dates, for example. The strategy optionally
includes a “bottom line” offer and modes of reacting to counter offers,
preferably including a “rate of convergence” to the bottom line offer. Such
strategies may also optionally include mechanisms for performing parallel
negotiations, for example in order to determine how negotiations with one
party should affect negotiations with other parties.

Optionally, software modules which are dedicated to conducting
negotiations based on set principles may also be included within the party
architecture of Figure 11, as described with regard to Section 5, in order to
determine the answers to the messages of the active party. Examples of such
set principles include, but are not limited to, Al (artificial intelligence), neural
networks, psychological principles, economics or any other set of principles.

Optionally and more preferably, the preferences of each party are
specified textually and/or through a GUI (graphical user interface). Optionally
and also more preferably, these preferences are specified at several levels. For
example, these preferences may concern specific features in a deal. Typical
examples are lowest price or earliest delivery date. As another example, these
preferences may concern a particular set of features in a deal. For example, a
preference may link the price with the quality of the products, as in accept
lower quality in conjunction with a better price. As yet another example,
preferences may be specified for the deal as a whole, such as a preference for
deals with no extra options, or, an insistence for deals in which all the dates
must be fully specified. More specific preferences preferably are emphasized
over less specific, more general preferences.

These user preferences are then preferably compiled, or translated into,
automata, optionally and preferably with other business rules. Such a process
of translation may optionally be automatic or manual. The previously
described GUI may optionally also be used to embed business rules by

10

20

25

30

WO 01/16665 PCT/IL00/00516

26
presenting various options to a user, such as a buyer, seller or participant in a
symmetric negotiation. Based on the selected options, either manually or
alternatively through a compiler, the preferences of the user are translated into
automata which are associated with variables in an intention.

Negotiation Automata (NA). Furthermore, the compiled user
preferences may optionally and preferably be used in a preferred embodiment
of the present invention, which uses negotiation automata (NA). An NA is a
computational device associated with every intention tree node, and not only
leaf nodes-such as in the case for commerce automata (CA). The NA which is
associated with a node v answers messages regarding values and variables
occurring in its sub-tree. Every intention tree node is conceptually associated
with an NA. When such an NA is not able to answer a message, that NA
passes the message to the NA associated with its parent node. The uppermost
NA, associated with the root node, answers with default values if necessary,
which may optionally be those values determined according to compiled user
preferences for example. This case is similar to the one in which the NCP
answers all the messages. The exact internal structure of the NA may
optionally be unspecified. Optionally the NA may resemble a CA, and
alternatively it may be a program implemented via any language on any
computer. The implementation may also optionally include manual answers.

The NA’s are useful for a number of purposes. For example, a buyer
may indicate an interest in products which have delayed expiration dates, and
in addition, for each expiration date interval, specify a maximum acceptable
price. In the intention of the buyer, the list of products to buy is represented by
a variable such as a. The preferences of the buyer are preferably compiled into
an NA associated with a, the purpose of which is to answer propositions and to
negotiate with regard to expiration dates and prices.

Optionally, a party may use one of its own CA’s in order to generate
some part of its intention tree and then, one of its own NA’s in order to check
whether the generated part complies with its preferences.

The relational store. During its execution, a CA can query the relations
in its relational store which contains (1) the relations in the active party's party
information and (2) relations for relation variables. Furthermore, a CA can
access the labels of vertices of intention trees. For example, the value of the
Number leaf in the intention tree in Figure 7 is given by
Purchase.Parties. Customer.Address. Number.

10

15

WO 01/16665 PCT/IL00/00516

27

Also optionally and more preferably, accesses to databases are specified
according to some version of SQL (Structured Query Language), which is a
standard database language.

States. A CA has a set of states S. One state is distinguished as the
starting state and there exists a non-empty subset S; S of final states. Each
state is labeled with an assignment program, i.e., a sequence of assignment
statements. Given an assignment to the automaton variables, say o, the
execution of an assignment program P modifies ¢ by executing the assignment
statements; one after the other. The assignment statements and their semantics
are presented in the example of Table 1.

Table 1: An assignment program

Instruction Current Assignment
Initially $a—>2, $6>3, R(C,D)>{(1,3), (2,4)}
$b=5 $a—>2, $b>5, R(C,D)>{(1,3), (2,4)}
SELECT * AS :$a, :$b FROMR; The values of the columns of the first
tuple returned by the query are
assigned to $a and $b.
$a—>1, $b>3, R(C,D)>{(1,3), (2,4)}
Send $a The active party sends the message

“Send $a”. The value returned by the
passive party, say 8, is assigned to $a.
$a—>8, $b=>3, R(C.D)>{(1,3), (2,4)}

Q = Choose n=1 from R Format The active party sends the message
Col[1}.Name = C, “Choose...”. The one tuple relation
Col[1].Type=Number, returned by the passive party is
Col[2],Name=D, assigned to Q.

Col[2].type=Number $a—>8, $b—=>3, R(C,.D)>{(1,3), (2,4)},

QC.D)2>{(2.4)}

The CA transition function, say 0, is applied to a state and a constraint
and yields a state. For example, 6 (s;, ground($x)) = s,, means that if the CA is
in state s, and the variable $x is ground (in the state of the current assignment)
then the CA should move to state s,.

10

20

25

30

WO 01/16665 PCT/IL00/00516

28

Definition 3.1 (Commerce Automaton) A commerce automaton, say
A,isatuple 4 = (S, b, S; O, V, P, fp, & in which the following definitions
apply. S is a set of states. b € S is the starting state. S; < S is the set of final
states. O is the output specification. V is the set of the automaton variables. P
is a set of assignment programs and f, is a function that maps states in S to
programs in P. & is the (partial) transition function : S X SC — S, where SC
is the set of all SIMPLE-C constraints. O may be an instance of a class ¢ or
optionally obtained from such an instance using a sequence of variable
instantiations.

As part of a CA execution, messages are sent and answers are received.
In this formalization, the sequence of received messages is modeled as a stack
of messages. In reality, answers are generated by the passive party based on its
perceived state and negotiation strategy. Given an initial assignment & and a
stack of answer messages I', the execution of the automaton is defined as
follows. The execution begins at the starting state with the initial assignment.
When the automaton enters a state s, it modifies 0 by executing the program
J5(5). If f,(s) involves message exchanges, the answer to each inquiry message
is popped from I'. If T" is empty or the answer message in I" does not
correspond to the inquiry message, then the execution stops. The constraints on
the transitions from s are checked. If none is TRUE, or more than one is
TRUE, then the execution stops. If exactly one is true, the automaton moves to
the new state. If no transition exits from s, the execution stops in s. If the
execution stops in a final state, then the execution is successful, and otherwise
it fails.

Consider the CA APrice in Figure SA which is assigned to the atomic
variable $price in the used car dealer's intention (Figure §). The company uses
this automaton in order to assign a value to $price. The starting state is 1. First,
the price of the purchased vehicle is assigned to $price (with a discount
applied) and, using the Confirm construct, the company asks the customer for
price confirmation. The customer's answer is assigned to the variable $conf. If
it is Yes, the automaton's execution is successful (state 2), otherwise it fails. It
fails in state 1 (if the answer is neither Yes nor No) or in state 3 (if the answer
is No).

With regard to the CA in Figure 5B, the convention is that an order
condition involving a variable which is not ground evaluates to FALSE. This
automaton is assigned to a class variable, say x, and, therefore, it defines an

10

20

25

30

WO 01/16665 PCT/IL00/00516

29

output instance (shown in Figure 5C) that should be assigned to x, in case the
execution of the automaton succeeds. The automaton is provided with an
initial assignment of its variables. If the initial assignment is {$b — 1}, the
automaton enters state 2 and stops. Since 2 is not a final state, the execution
fails. If the initial assignment is {$§b — 1, $¢ — 1} the two constraints are
satisfied, therefore the automaton cannot move to the next state, and, therefore,
stops (and fails) in state 1. If the initial assignment is {$c¢ — 1} the automaton
enters state 3 and the execution is successful; 2 and 5 are assigned to $a and
$b, respectively, in the output instance.

An intention and a party data structure can now be formally defined as
follows. An intention is a tuple (T,F,S,C) where T is an intention tree, S is a set
of CA’s, F' is a partial function from the atomic variables and the class
variables that appear in T to S, and C is a set of constraints. A party data
structure is a tuple (SI/) where SI is the party information and I is a set of
intentions indicating the EContracts the party is ready to enter.

Less formally, intention trees describe the structure of Econtracts
(electronic commerce contracts) that a party is willing to establish. Therefore,
intention trees are derived from e-commerce contract classes. These contract
classes are transformed into specialized contracts through the use of
instantiating variables and introducing operators as previously described. If
the intention trees of two parties are complementary, then the unification
process detects such complementarity in order to build a unified tree from
these intentions, which forms an EContract. Parts of this construction involve
the instantiation of variables via automata, a process that optionally involves
the exchange of messages between the parties and which therefore optionally
includes a process of negotiating.

Section 4: Unifying two intentions

As previously described, the unification of the intention trees of two
parties leads to the establishment of an EContract. Such unification is
preferably performed through a process which is essentially a process of
negotiation, and which can be either automated or semi-automated, as
previously described. This Section provides a formal description of the process
of unification, along with examples of preferred unification algorithms.

Basic unification. The unification algorithm is an extension of the
unification algorithm for terms in logic and in logic programming. The

10

20

25

30

WO 01/16665 PCT/IL00/00516

30

algorithm is extended to handle operator vertices and CA’s and is presented
through the following example (the algorithm is formally described in the
Appendix). The customer (whose intention tree is shown in Figure 7) has one
constraint, i.e., that the cost is less than $300 ($price < 300). The used car
dealer (whose intention tree is shown in Figure 8) has two CA’s. The Acar CA,
which is associated with the variable &Car in the intention tree, describes how
cars are sold (Figure 6 contains a part of the automaton definition). The second
CA, APrice (shown in Figure 5A), is associated with the variable $price.
PurchaseOnline's site information includes the relation Rcar(Model, ID, Class,
ListPrice).

The unification starts at the roots of the two intention trees. In the
Parties subtree, the Customer and UsedVehicleDealer edges are unified.
Corresponding subtrees are assigned to the variables &customer and
&company, respectively. At the Vehicles subtree, the algorithm reaches an OR
vertex in the customer's intention tree. In turn, each subtree under the OR
vertex is unified with the Vehicle subtree in the company's intention tree. The
unification of the left branch obviously fails, since, it is impossible to unify a
list of two motorcycles with a list that contains one car. At the right branch
under the OR vertex of the customer's intention tree, the vertex labeled Car is
unified with the vertex labeled &Car in the company's intention tree. Since the
varia&Car 1s assigned to the Acar CA (shown in Figure 6B), the customer's
subtree rooted in Car is unified with the output instance of the Acar CA
(shown in Figure 6A). This unification provides the initial assignment for the
CA variables, i.e., Economy is assigned to $class.

The Acar CA is executed as follows. Since the variable S$class is
ground, the automaton moves to state 1. The automaton assigns to the relation
variable 4 all the cars that correspond to the customer's class specification
(Economy). Then, the automaton asks the customer (party) to choose a model.
This choice may be done in several ways; human intervention may be
requested, or an automatic tool, for example, an NA as defined above may be
used. Such an automatic “expert” tool may, simply, choose an arbitrary car or
employ more complex user-defined strategies. It can also try every choice, one
after the other, and use backtracking if some choice leads to the failure of the
automaton (The term “backtracking” indicates repeated trials by returning to
earlier choices and considering alternatives to these previous choices, and is a
technique which is known in the art. For example, this technique is employed

10

20

25

30

WO 01/16665 PCT/IL00/00516

31
in the Prolog language and interpreter as well in certain Al (artificial
intelligence) systems.).

After receiving the model name, say “Cavalier”, the automaton selects
the car, say (Cavalier, 322, Economy, 230), from the database (state 2). When
the automaton reaches its final state (state 2) the assignments are
$model < “Cavalier”, $id€322, Sclass€<Economy, $pric1€230. These
assignments are applied to the output instance of the automaton. The
(modified) output instance replaces the node labeled &Car in the intention tree
of the used car dealer (Figure 8) and the subtree rooted at the “boxed” Car
node in the customer’s intention tree (Figure 7).

Following this assignment, the current constraint set ({$ListPrice = 230,
$price < 300}) is verified as satisfiable and the unification algorithm resumes.
Optionally, the automaton state is kept in order to be able to backtrack to this
state later in the process of negotiations, in case of a failure of a later state, for
example if backtracking is required in order to perform unification by
returning to a previous state.

The unification proceeds to the Amount edge and the APrice CA
(shown in Figure 5A) is executed. After confirmation, the new set of
constraints {$ListPrice = 230, $price = 204.7, $price < 300} is checked by the
constraint solver and the unification proceeds to treat the Payment subtree. The
generated EContract is depicted in Figure 9.

With regard to backtracking, each CA or NA is preferably implemented
as a stand-alone independent process with the following characteristics,
explained with regard to the Prolog language, although it is understood that
such a process could be implemented in other programming languages such as
C++ or Java, for example. First, the three intention trees, from the first and
second parties, and the partially unified tree, are preferably passed between the
parties as the process of unification proceeds. This convention enables
backtracking to be more easily performed, by providing access to the values of
the trees at each stage.

Second, a message is preferably sent by the Send predicate and a
message is preferably received by a Receive predicate, which are implemented
as Prolog commands.

Third, the Prolog language provides for automatic backtracking for a
Send or Receive command, without any side effects, to the predicate or rule
immediately proceeding the execution of the command. An automaton

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

32
statement which sends a message and assigns the result to a variable is
implemented through a Send predicate followed by a Receive predicate.

Fourth, a message can be sent from a CA to the appropriate NA. The
appropriate NA can be determined from the original unification performed
when the automaton execution was requested. Observe also that a CA can
optionally invoke the services of an NA of its very own party, say for
consultations.

Fifth, when an NA cannot answer a message, it passes the control to the
closest ancestor automaton in the intention tree, by calling the Prolog program
implementing the automaton. A CA or an NA can optionally navigate through
the intention trees and refer to each node according to the fixed or relative path
from the current position. This enables the CA or the NA to refer to values of
various variables within its code.

For an implementation with SQL as the access language to the data in
relations, the backtracking of SQL commands within a CA or an NA is
preferably performed as follows. An assignment out of a “select” command
simply moves to the next tuple, which is similar to the traditional SQL cursor
mechanism. When no further tuples are available, the “next” tuple is assigned
a null value, such that retrieving this tuple results in a failure. An insert or
delete statement is backtracked by moving to a savepoint immediately prior to
the insertion or deletion, respectively.

A Best Effort Unification Algorithm. This algorithm is an illustrative
example of a preferred algorithm for use in situations where the unification
algorithm fails. This preferred algorithm is an approximate unification
algorithm. The basic underlying idea is that of upgrading parts of intention
trees. As an example, suppose that an intention tree specifies the constant red
in a node. Suppose further that this is in fact a preference rather than an
ultimate requirement. One option is to use OR nodes and give additional color
options (observe, that by the way the Prolog interpreter operates, priorities of
colors are naturally assigned in left to right order). But, the specification of
many colors is tedious, such that in addition, preferably the party may even
allow any color as a last resort. The proposed solution is to prioritize at least
some of the nodes and edges of the intention tree. A priority is a natural
number, such that the higher the number, the more important is the constraint
represented by the node. Similarly, constraints in the set of constraints
associated with the intention may also optionally be prioritized.

10

20

25

30

WO 01/16665 PCT/IL00/00516

33

If priorities are assigned to edges connected to the alternatives of an OR
node, AND node, or to list elements, then the highest priority alternatives
within such OR, AND or list node are tried first. The others may be
considered to be temporarily eliminated. So, these priorities indicate an order
for the unification algorithm. (This is not coded in the algorithm presented in
the Appendix.)

Priorities in nodes and edges can be used as follows. Suppose
unification fails, then a low priority node can be replaced with a less
constraining node. This replacement is optionally performed by “upgrading”
the node. A node upgrade can be any sequence of actions (as defined below)
applied to nodes in the intention which result in an acceptable tree. Some
actions apply to edges and make them less constraining. An action is defined
as one of the following.

First, consider a node labeled with a variable of class ¢, the variable is
modified to be of class ¢’ which is a superclass of class ¢. The modification
applies to all occurrences of the variable.

Second, consider a node labeled with a variable X. The node is
relabeled with a variable Y. If variable Y appears elsewhere in the intention, the
node must be labeled with the same class as in other occurrences. Variable ¥
may also chosen as a completely new variable.

Third, consider a node which is the root of a subtree and labeled by a
(bound) variable. Make the variable unbound by erasing the subtree, except for
the node that is now labeled with the unbound variable. The modification
applies to all occurrences of the variable.

Fourth, consider a list node connected via edges to the list elements.
Eliminate a list element.

Fifth, consider a node labeled with a variable X which is associated with
an automaton. Disassociate the variable from the automaton.

Sixth, consider an edge e with label /ab. Change lab to another label that
appears in one of the intentions or eliminate the label altogether.

Seventh, consider a node in the tree, connected via an edge e to its
parent, which is the root of a subtree 7. Eliminate edge e and the subtree T’
altogether. This is a drastic measure that may be needed if, for example,
multiple versions of classes exist due to outdated or erroneous software. It is
also possible that portions of trees are stored in various media or locations that
may be inaccessible, temporarily or permanently.

10

20

25

30

WO 01/16665 PCT/IL00/00516

34

So, upgrading provides further options to the unification algorithm to
explore. It may result in solutions that only approximate true unification of the
pre-upgraded intentions, thereby “unifying as much as possible™.

There are some technical issues to consider. One such issue is that the
upgrading of the least important node may not suffice to produce a unified
intention. Further upgrades may be required, but then the question arises of the
order in which to perform them. Suppose that 4 nodes A,B,C and D are labeled
with decreasing priorities, say 4,3,2 and 1, respectively. An order that seems
most reasonable is as follows (other orders are also possible): first, upgrade D;
if the above action fails upgrade C; if the above action fails, upgrade C and D;
if the above action fails, upgrade B; if the above action fails, upgrade B and D;
if the above action fails, upgrade B and D and C; if the above action fails,
upgrade A; if the above action fails, upgrade A and D; if the above action fails,
upgrade A and D and C; and if the above action fails, upgrade A and D and C
and B.

It should be noted that an aggregate condition may optionally be
demanded in defining the best approximation, e.g., as a function of priorities as
well as the number of upgrades. Also observe that if a prioritized node u is the
parent of another node v, once u is labeled with an unbound variable there is
no need to try upgrades to node v, the node is no longer in the tree.

Another issue is determining the order for applying upgrades if two
intentions are given. A reasonable but optional mechanism is to alternate
between the two intentions, for example by mapping the priorities of the first
intention to odd numbers and those of the second intention to even numbers,
and then applying the upgrades to the intentions in priority order as described
above. Other prioritizing schemes are also possible and are considered to fall
within the scope of the present invention.

Constraints may optionally and preferably be relaxed in a similar way,
optionally with more degrees of relaxation. For example, a < b may be relaxed
to a < b. Relaxation may also optionally eliminate a constraint altogether. Here
again, the priority of the constraint indicates its importance and order of
relaxation or elimination.

Section 5: Examples of Preferred Implementations
The previous Sections considered a formal description of one
implementation of the system and method of the present invention. This

10

20

25

30

WO 01/16665 PCT/IL00/00516

35
Section describes preferred embodiments of the present invention, which are
specific examples of different applications of the present invention. These
examples are intended only to illustrate the present invention, and should not
be construed as being limiting in any way.

As shown in Figure 10, a system 100 has a central server 102, a first
party 104 and a second party 106. Each of first party 104 and second party 106
operates a party software module 108, which is optionally the software of
Figure 12, as described in greater detail below. Central server 102 is used to
locate relevant parties for intentions, for example through registration,
searching, or a combination thereof. Once first party 104 and second party 106
have been located, the respective party software modules 108 conduct the
negotiations.

For example, suppose first party 104 is a buyer who wishes to purchase
4 of product A and 4 of product B. Central server 102 identifies second party
106 who supplies product A, third party 110 who supplies product B and
fourth party 112 who supplies both product A and product B. Negotiation is
preferably performed in parallel between first party 104 and each of second
party 106, third party 110 and fourth party 112. First party 104 may therefore
optionally be required to present portions of its intention as separate intentions
to each of second party 106, third party 110 and fourth party 112. The optional
separation of intentions is performed by party software module 108. First party
104 may then optionally choose to purchase one of product A from second
party 106, one of product B from third party 110 and three each of products A
and B from fourth party 112. For this embodiment, central server 102 is
optionally replaced by any Internet search engine, such as “Google” for
example [http://www.google.com as of January 2, 2000].

In a second illustrative embodiment, each buyer is equipped with basic
software for determining intentions, automata and preferences for negotiation.
Each seller is equipped with similar software, as well as with connections to
corporate data. Buyers and sellers, who may be one of the parties 104, 106,
110 or 112 of Figure 11 for example, register with central server 102.
However, now party software modules 108 of each party are preferably
restricted in function, such that central server 102 performs the process of
negotiation, as a trustee of the parties. Therefore, party software modules 108
could even optionally be implemented through a Web browser, for example,

10

20

25

30

WO 01/16665 PCT/IL00/00516

36
optionally with applets or Java scripts, or other scripts, or even with a specially
built “thin” Web browser which is dedicated for this purpose.

Central server 102 may optionally store intentions, or alternatively may
use intentions stored at each party. Central server 102 may also optionally offer
additional services such as financial services, advertisements, supplier ratings,
customer ratings, and product and service reviews.

In an optional variation of this embodiment, central server 102 executes
negotiations on behalf of at least one but not all parties, while at least one party
executes its own software at its own site. In this variation, also optionally, a
client or party may participate without a computer and software, by submitting
intentions manually to central server 102, for example.

In a third illustrative embodiment, central server 102 itself may be a
party to commercial arrangements. For example, central server 102 may
optionally purchase three of product A from second party 106, one of product
B from third party 110 and three each of products A and B from fourth party
112. At end of the negotiating process, central server 102 remains holding
two units of product A, which central server 102 can then sell to another party.
This provides the possibility of brokering a plurality of commercial
arrangements in “back to back” deals, packaging by combining the intentions
of various buyers to obtain a larger volume, and so forth. Thus, in this
embodiment, central server 102 is a broker.

Any of these embodiments may optionally be operated by vendors who
are oriented to a particular market segment, such as travel or consumer
electronics for example, by a company and its suppliers and/or customers, by a
group of companies or organizations, within a particular company, or by
individuals wishing to construct a marketplace.

Referring now to the drawings, Figure 10 is a schematic block diagram
of an e-commerce party according to the present invention. The EContract
framework defines the basic software components of an e-commerce party and
their interconnections. As shown, a party machine 10 features a plurality of
parts, with associated data structures 12, including a party information data
structure 14 and an intentions data structure 16. This complete embodiment
of party machine 10 should be installed at each party of Figure 11 for the first
embodiment, in which the parties negotiate between themselves, such that
party machine 10 acts as a device for negotiations within the context of the
system of Figure 10. Alternatively, for the second embodiment, in which the

10

20

25

30

WO 01/16665 PCT/IL00/00516

37
server acts as a trustee for the negotiations, each party need only have
intentions data structures 12.

Party information data structure 14 is preferably constructed as a
standard relational database, or optionally as a collection of files, containing
the global data of party machine 10, such as item lists, pricing information and
so forth. This global data is described in greater detail above with regard to
Section 2. Optionally, at least a portion of party information data structure 14
may be queried by other party machines 10, although preferably, a least a
portion of party information data structure 14 is opaque, or not accessible, to
other party machines 10. More preferably, party information data structure 14
includes data which defines the legal status of the party which operates party
machine 10, such as the name, address and telephone number, for example, of
the party which operates party machine 10.

Intentions data structure 16 preferably defines the formal structure of
the commerce intentions of party machine 10, expressed as a plurality of
intentions. These intentions are described in greater detail above with regard
to Section 3. Intentions are composed of intention trees (which are derived, by
a process of expansion, from classes), commercial automata (which encode
business rules and global constraints). Basically, an intention is a formal
description of an e-commerce activity, such as a sale, in which a party
operating party machine 10 is willing to engage. Intentions data structure 16 is
optionally and preferably implemented with XML (Extensible Markup
Language).

Preferably, intentions data structure 16 is in the form of a tree, with a
plurality of components. Optionally, intentions data structure 16 is also stored
at the server of Figure 11, more preferably storing a separate intentions data
structure 16 for each party, or client, of Figure 10.

The plurality of parts of party machine 10 include a Negotiation Control
Program (NCP) 18, which is an overall coordinator of the activities of party
machine 10. NCP 18 is preferably operated by the server for the second
embodiment of Figure 10, in which the server acts as a trustee. More
preferably, the server also operates all of the parts of party machine 10 which
are controlled by NCP 18 for this embodiment. Also in this embodiment, NCP
18 is implemented as an instance (i.e., a “copy”) of an NCP for the particular
process of negotiations being handled by the server. The NCP also

10

20

25

30

(V8]
W

WO 01/16665 PCT/IL00/00516

38
encompasses and controls the negotiation automata (NA’s) which are
associated with intention trees nodes.

A Constraints Solver 20 is used by NCP 18, or alternatively may be
used by an AEE 22, or even preferably by any automaton. Constraints Solver
20 is used to check sets of constraints which are initially specified and/or
generated during the unification process, as described in greater detail in
Section 4 above. Briefly, Constraints Solver 20 returns an answer to NCP 18,
which may be either Unsatisfiable, such that it is impossible to find an
assignment to the variables which appear in the constraints such that the
constraints are satisfied, or Satisfiable, such that there exists a satisfying
assignment. If Constraints Solver 20 returns Satisfiable, Constraints Solver 20
may optionally return a modified, and preferably simplified, constraints set.

An Automata Execution Engine (AEE) 22, controlled by NCP 18, is
responsible for the negotiations and the business rules enforcement. This is
done by executing commerce automata (CA), as described in greater detail in
Section 3 above. However, it should be noted that NCP 18 and AEE 22 may
optionally not belong to the same party. For example, when unifying the
intentions of Party A and Party B, NCP 18 of Party A may request from NCP
18 of Party B to forward a request of an automaton execution to AEE 22 of
Party B. When the execution ends, AEE 22 of Party B returns either
SUCCESS, i.e., the CA reached a final state, or FAILURE, i.e., the CA did not
reach a final state. If AEE 22 returns SUCCESS, NCP 18 may optionally
modify the EContract with the output of the executed CA.

Furthermore, AEE 22 may optionally continue to maintain a particular
execution state, in case this execution state is requested later on, for example,
for performing backtracking. Optionally and preferably, Constraints Solver 20
and AEE 22 are operated by each party, or client, for the second embodiment,
and provide data to NCP 18 at the server which is acting as the trustee for the
negotiations, in order to block access to certain information of the party, such
as the constraints for example.

A Unifier 24 is again controlled by NCP 18 and supervises the
unification process, as described in greater detail above with regard to Section
4. Unifier 24 is preferably operated by the server for the second embodiment
of Figure 10, in which the server is the trustee for the negotiations. Briefly, the
unification process involves the unification of at least two, but optionally
more, intentions submitted by NCP 18 of a party A and the corresponding NCP

10

20

25

30

WO 01/16665 PCT/IL00/00516

39
of a party B . If it succeeds, Unifier 24 returns the EContracts. Unifier 24 may
optionally occasionally request NCP 18 to pass a set of constraints to the
constraint solver or to pass a CA to AEE 22 for execution. AEE 22 may
optionally be AEE 22 of either Party A or Party B.

One example of a method for operating the system of Figure 11 is
explained in greater detail below, with regard to the flowchart of Figure 12.
The description of this method refers to “two parties”, it being understood that
these are two separate party machines 12, which could optionally be located at
two separate clients, at a client and at the server, or alternatively both could be
located at the server. In step 1, preferably the first party receives a copy of the
intentions data structure 16 of the second party. In step 2, NCP 18 of the first
party compares at least a portion of intentions data structure 16 for the first
party to intentions data structure 16 for the second party.

In step 3a, if a suitable match is found between the two portions,
preferably they are merged to form a third merged intention data structure 16.
Steps 2 and 3a are performed again at least once, and optionally and preferably
are performed until the third intentions data structure 16 is complete, such that
both the first and the second intentions data structures 16 have been merged.

Alternatively, in step 3b, if a suitable match is not found, but at least
one portion is associated with an automaton, then AEE 22 controlling that
automaton is executed. In step 4, optionally and preferably, the automaton
sends a message to a corresponding negotiation automaton of the other party.
If there is no corresponding negotiation automaton, then the is sent to NCP 18
of the other party. The message may optionally include a suggested change in
a value for one or more variables, and selecting from among a list of possible
values for one or more variables.

In step 5, NCP 18 and/or corresponding negotiation automaton of the
other party sends a reply, which may optionally confirm the suggestion, make a
choice, or make a counter-offer, for example. Steps 4 and 5 are optionally
repeated at least once. After this exchange of messages, the automaton ends
execution either successfully or with failure, in step 6 (1). If execution ends
with failure, preferably step 3¢ is now performed. If execution ends
successfully, the generated output instance replaces the variable that was
previously associated with the automaton in step 6 (2). The method then
optionally and preferably returns to step 2.

10

15

20

25

30

(%]
W

WO 01/16665 PCT/IL00/00516

40

Also alternatively, in step 3c, if a suitable match is not found and there
is no associated automaton, then preferably backtracking is requested by NCP
18, to return the third intentions data structure 16 to a previous state. If such a
previous state is found, then the process continues from step 2. Otherwise, the
process ends.

If all, or at least an acceptable fraction, of the portions of the first and
the second intentions data structures 16 can be merged, then the negotiation
process concludes as a success. Otherwise, it fails.

If unification fails, backtracking is optionally performed. Unifier 24
then preferably reviews previous actions and attempts to achieve unification by
finding an alternative path to match the intentions of both parties, as described
below in greater detail.

According to an alternative embodiment of the present invention, as
described in the third example of Figure 10 above, both the server and each
party may hold party machine 10 for conducting negotiations. Alternatively,
the server may hold all components of party machine 10, with the optional
exception of those parts described above, and may conduct negotiations with
itself, both on behalf of another party and as a client.

According to a preferred embodiment of the present invention, an
intention can be translated from a data structure such as a tree into natural
human language of one or more parties. This is done by associating each class
with a descriptive human language sentence with place-holders for the values
of variables. These place-holders are then completed once the values for the
variables have been determined during the process of negotiation. At the end
of the process, the negotiated agreement can be so constructed in a natural
human language, by reading out each sentence and filling in the determined
values for the variables. The structure may optionally be nested, such that a
place-holder may itself be filled with a class, which in turn has its own
description and place-holders, and so forth.

Section 6: Translating Users’ Constraints and Preferences into
Mathematical Programs
This Section describes preferred embodiments of the present invention,
which relates to a specific method of translating (or compiling) users’
specifications into mathematical programs. The specific forms of
mathematical programs we consider are the well-known Goal Programs [6, 7,

10

20

25

30

WO 01/16665 PCT/IL00/00516

41
8, 10, 11] as well as their multiplex generalization [10]. The constraint solver
can handle a wide variety of goal programs including linear, non-linear, integer
goal programs.

A basic underlying idea of Goal Programming is that often constraints
are not stringent and many times users have achievement of specific less
restrictive goals. Goal programming is an especially useful technique when
users have multiple, and sometimes conflicting, objectives. Goal programming
provides two basic techniques for goal specification: prioritization and
weighting (per priority level). Using these tools a user can indicate the relative
importance of constraints, preferences and goals.

We now outline the technique for compilation of intentions. The
starting point is user specification of a deal and elicitation of constraints and
preferences. This is usually done using a graphical user interface, GUI; it can
also be done textually (whether GUI is used or some other form of input, we
will talk about the GUI level as the level at which preferences are specified).
In what follows we concentrate on what is specified and only touch upon some
aspects of how the specification is done when it has direct bearing on the
material presented.

GUI Level. There are a number of ways for obtaining the relative
importance of constraints and preferences:

1. Direct specification at the GUI level.

2. Questions & Answers at the GUI level. This may be

accompanied by a structured technique such as the Analytic
Hierarchy Process (AHP) [9].

3. Presentation of examples and discerning the user’s goals based

on which ones are preferred.

4, Observed user behavior over time. Based on past deals the user’s

preferences are determined.

5. Market “wisdom” as obtained through general surveys, which

may be processed using traditional Conjoint Analysis or via
methods such as the Analytic Hierarchy Process (AHP) [9].

In general, a deal specification may result in a number of contexts. Each
new specification can be global within the current context or create a new
context. Consider the following example. If one specifies the condition
(X<15) OR (X>20), then one can state that these alternatives will apply to all
derived contexts. Alternatively, one can state that this specification should split

10

20

25

30

WO 01/16665 PCT/IL00/00516

42
the current context into two separate contexts, one with (X</5) and one with
(X>20). In the latter case, the current context is duplicated and the
continuation of specification will be done separately in each context at the GUI
level. The end result is that we may have a number of contexts. Each such
context may give rise to one or more intentions. Each of these intentions is
preferably handled separately.

When duplicating an intention at the GUI level, an importance priority
is assigned to each by-product. Importance priority indicates that each deal
resulting from a higher priority intention is more important than each deal
resulting from a lower priority intention. If such priorities cannot be assigned
to resulting deals, a presentation priority is assigned to each by-product.
Presentation priority is used in presenting resulting deals from these intentions
to the submitter.

In what follows we discuss a single intention and how a deal is
negotiated for it. We start by assuming that the intention contains no
disjunction, that is the use of OR (alternatives). Then, we shall consider
handling disjunction.

Top level specification. The result of processing at the GUI level is a
series of specifications. These are then translated into run-time code that
implements the user’s wishes as expressed at the GUI level. We shall list the
constructs available at the top level and the way each is translated. We will
then explain how the translation can be used as a foundation for carrying
automated negotiations. Finally, we outline the complete compilation
procedure. Specific mechanisms for employing this foundation are described
in Section 7. Section §, in turn, discusses dynamic changes in negotiation
parameters.

Specification at the top level uses the following building blocks:

1 Variables, e.g. integer X, float Y.

2 Hard constraints, of the form expression € value, where

expression is a function involving variables, & is a comparison
(<5, =, >, >), and value is a real number; e.g. X+3Y</7. The
function @ may be linera or non-linear.

3 Soft constraints take the form soft (expression O value).

Intuitively, these constraints are less stringent than hard
constraints. When € is = we call the soft constraint a rarget

constraint. The relative importance of deviations from target

10

20

25

30

WO 01/16665

PCT/IL00/00516

43
may be indicated, e.g., exceeding a target is three times as
important as under-achieving the target.
Preferences are of the form maximize expression or minimize
expression. For example, minimize (2X-3y+2).
Alternatives take the form (expression 6value) OR (expression 6
value). For example, (X > 17) OR (Y < 92).
Rules are of the form IF expression 6 value THEN expression 0
value. For example, IFF X>17 THEN PRICE<1200. We can view
such a rule as a form of an alternative (disjunction). They are
mentioned here mainly for completeness.

Priorities indicate that one entity (which may be a hard
constraint, soft constraint, target, alternative or preference) is
more important than another entity. This is an ordinal
specification. Usually priorities are numbered 1, 2, 3, etc., with
the understanding that 1 is the highest priority, then 2, etc.
Observe that priority 1 entities are considered absolutely more
important then priority 2 entities, which in turn, are considered
absolutely more important than priority 3 entities, etc.

Weights: indicate, within a priority level, the relative

importance of an entity relative to others. This is a cardinal
specification. In case of target constraints, an option is to provide
two weights, one for deviation below and one for deviation
above; if not specified these deviations are considered equally
unwanted.
Integral constraints, e.g., integer (X1), indicate that an expression
needs to be evaluated to an integer. Generally, such constraints
imply the usage of techniques for handling integers, such as the
well-known branch and bound (see Chapter 11 in [10]).

Building blocks. The general idea is to use the technique of goal
programming (G), suitably adjusted, to represent the constraints and
preferences of a deal. We shall first discuss how constituent elements are

handled, and then proceed to a simple intention, then to intentions containing

usage of disjunction(s). The general form of a GP program is as follows:

lexicographically minimize {Expression 1,...,Expression m} such that for

i=1,...,k we have goal constraints, gi, of the form:
ci X +(Di-) > ti, or

10

20

25

30

WO 01/16665 PCT/IL00/00516

44
ci X - (Dit+) <ti,or
ci X + (Di-) - (Di+) =ti, and, in addition we have the constraint that
all Di’s > 0, and, optionally,
some Di’s=o (indicating hard constraints)

The D1 variables are called deviation variables; those of the form (Dj+)
indicate an amount by which a goal is exceeded (“overshooting”), whereas
those of the form (Di-) indicate under-achievement of goals. The Expression
j’s are called minimization expressions. The term lexicographicaily minimize
(lex_min for short) implies an order on minimization, where the results of the
Di’s, of minimizing up to Expression i are used as values in Expression i+
1,..., Expression m. So, the lower index expressions have a higher priority.
Each Expression may refer to decision variables (X’s), to deviation and other
variables and to weights. Note that one may enforce hard constraints by setting
some deviation variables to zero. For example, to enforce a > type constraint
one may set (Di-) = 0.

Here is an example of a simple goal program, taken from reference [6].
Minimize: Priority 1((D1-) + (D2-) + (D3+)) Priority 2(D4+) Priority 3(D5-).
X1 +X2 + (DI-) —-(D1+) = 30
X3 +X4 + (D2-)-(D2+) = 30
3X1 +2X3 + (D3-) -(D3+) = 120
3X2 +2X4 + (D4-) — (D4+) = 20
10X1 +9X2 +8X3 +7X4 + (D5-) —(D5+) = 800
X1, X2, X3, X4, (DI-), (DI1+), (D2-), (D2+), (D3-), (D3+), (D4-), (D4+) > 0

We now explain how to transform the user’s specifications into a GP
program. Then, we shall explain how to use such programs during
negotiations.

1. Variables:

Variables are associated with atomic valued intention nodes. Variables
are typed. The type may be integer or float. Variables may also be associated
with discrete values as follows. Consider a variable that is associated with a
color, which may be red, green, blue or yellow. Each color is associated with a
value, e.g., red=1, green=2, blue=3 and yellow=4.

An important idea is that of a default interval, according to which each
variable is associated with a default interval. This interval is used for choosing
default values. It also makes all variables range-bounded. The default interval
may be a single point or a collection of ranges of values. Default values are

10

20

25

30

WO 01/16665 PCT/IL00/00516

45

also used when the constraints are not satisfied with the current set of variable
assignments (this is an alternative to backtracking). Default intervals may be
user specified or be derived from a database. A default interval is considered a
hard constraint and is added to the other constraints. Choosing a value from a
default interval may be done in a number of ways: minimize, maximize,
percentage off maximum, average, random, etc.

2. Hard Constraints:

A hard constraint involving ‘<’ or >’ is transformed into a hard

b

constraint-involving ‘<’ or ‘>’ respectively, by subtracting (respectively,
adding) a small quantity. A hard constraint, of the form expression @ value, is
compiled into expression +(D-) — (D+) = valueDepending on hardness, we
may add constraints (D+)=0 for 6="_<’ or (D-)=0 for 6=’ >’ and (D-
)=(D+)=0 for 6="=". If hardness is more “limited” we may add a goal to
minimize, of the highest priority, whose content is (D-)+(D+). The
understanding is that at the highest priority minimization expression should
evaluate to zero. Alternatively, we may simply derive a goal of the form
LARGE*(D-), or LARGE*(D+) or LARGE*(D-) + LARGE*(D+) and treat it
according to its weight. This latter form increases feasibility of a solution.
Here LARGE is a sufficiently large value in the domain considered.

3. Soft constraints:

A soft constraint of the form expression 6 value is compiled into
expression +(D-) — (D+) = value.

For example, consider the constraint soft (Qty=20). It is compiled into
Ot + (DI1-) - (D1+) =20,

Here, again, we use deviation variables. In fact, such constraints
express preferences, namely being close to the target. In case a deviation in the
direction (D1-) is, say, four times as undesirable as a deviation in the direction
(D1+), then:

Case 1: The soft constraint is assigned a priority and it is the only one
at its priority level. This means we should minimize 4(D1-) + (D1+).

Case 2: Otherwise, we need to normalize this constraint so that we can
compare it to other constraints. We use the idea of percentage deviation.

1. Define (Dpl+) = (D1+)/target and (Dpl-)= (D1-)/target.

2. What we minimize is the expression minimize (A*(Dpl-) + (1-

A)¥(Dpl+), [0<A<I]] eg, minimize (0.80*%Dpl-) +
0.20*(Dpl+)).

10

20

25

30

(O8]
wn

WO 01/16665 PCT/IL00/00516

46
3. If, in addition, the overall weight of this soft constraint is W, then
we will minimize the minimization expression minimize
(W*2)[0.80 * (Dpl-) +0.20 *(Dpl+)]. W*2 is an estimate, as
only one (Dpi) variable will contribute to the result, evidently the
other will be set to zero in solving the goal program.

Now consider a constraint of the form expression < value. It is
compiled as above into:
expression +(D-) — (D+) = value.

Here the goal to minimize is W*(Dpl+), where W and (Dpl+) are as
above. The cases of 6=">’, >’ ‘<’ are handled similarly.

4. Preferences:

We allow minimization (min) or maximization (max) preferences on
functions, e.g., min 2*X+5*Y. We can also give such preference a weight,
indicating its importance. For example (W1 is the weight): W1: minimize:
2*¥X+5*Y.

This preference is compiled as follows. First, an “optimistic” yet
“reasonable” target for the minimization is determined (by using default
intervals, user specification or solving a simplified linear program). For
example, if a reasonably optimistic small value for the above expression is
100, the preference is restated as the soft constraint: W/1: 2*X=+5*Y<100.

From this point on, it is treated as an ordinary soft constraint. As stated,
the value, 700 in the example may be determined by using another linear
program with the minimization objective as the only objective.

Preferences can also be applied to variables corresponding to discrete
values. For example, suppose we prefer red, green, blue and yellow in that
order. Further, suppose we rate our preferences on a scale from 1 to 100. We
can model this using the soft constraints:

100: Color=1

50: Color=2

20. Color=3

20: Color=4

We also add the hard constraints:

Color > 1

Color < 4

integer(Color)

10

20

25

30

WO 01/16665 PCT/IL00/00516

47

This formulation of soft constraints will favor the more preferred
targets.

Recall that in general we have a number of preferences, each translated
into a soft constraint, say Py, ..., Pk. These, and the “original”, soft constraints
are partitioned into a number of priority levels. Priority levels are handled one
by one using lexicographic minimization. Conceptually, the results of
minimization at level i, that is, minimization expressions of higher priority, are
inserted as constraints in the minimization at level i+/. Consider again the
example goal program above. If we solve it using a linear programming
package, we first present the highest-level linear program:

Minimize: (Expression of Priority 1) ((D1-) + (D2-) + (D3+))
X1 +X2 + (D1-) —-(DI+) =30

X3 +X4 + (D2-)-(D2+) = 30

3X1 +2X3 + (D3-) —(D3+) = 120

X1, X2, X3, (DI1-), (D1+), (D2-), (D2+), (D3-), (D3+) >0
(DI-), (DI1+), (D2-), (D2+) < 30

(D3-), (D3+) <120

Solving, we discover that the result is (D1-) + (D2-) + (D3+)) = 0. We

therefore form the next level linear program as:

Minimize: (Expression of Priority 2) 1(D4+)

X1 +X2 + (DI-) —=(DI1+) =30

X3 +X4 + (D2-)-(D2+) = 30

3X1 +2X3 + (D3-) —«(D3+) = 120

((DI-) + (D2-) + (D3+)) = 0 (This is the “newly fed” constraint.)
3X2 +2X4 + (D4-) — (D4+) = 20

X1, X2, X3, X4, (D1-), (D1+), (D2-), (D2+), (D3-), (D3+), (D4-), (D4+) >0
(DI-), (DI+), (D2-), (D2+) < 30

(D3-), (D3+) < 120

(D4-), (D4+) < 20

The solution turns out to be (D4+)=10. This is “fed” into yet one more
(f) linear program that optimizes 10X +9X2+8X3+7X4.

The remaining issue is how to compile a single priority level.
There are two basic methods:

Method 1: All the soft constraints within a priority level are compiled
into a single expression to be minimized, by summing up the individual
minimization expressions compiled for each soft constraint in isolation.

10

15

20

25

30

(V8]
W

WO 01/16665 PCT/IL00/00516

48
Method 2: Use the min-max [8] idea of treating each soft constraint in
isolation and then bounding the maximum deviation on any particular soft
constraint. Assume we have a total of K minimization expressions
corresponding to K soft constraints at priority level j. This is compiled into an
overall minimization objective for level j:

min Q

expression part of minimization expression 1 < Q
expression part of minimization expression K < Q

Observe that the result will tend to minimize more the important soft
constraints, that is, those with larger weights. The advantage in min-max is
more flexibility and minimization of missed goals. Observe that each
minimization expression is already percentage-wise and weight-wise
normalized. There are advantages and disadvantages to each method. We can
preferably run the user’s intention in parallel in two versions, one using
Method 1 and one using Method 2. We can also decide on Method i (i=1 or
i=2) as default and allow the user to change it for a particular run.

5. Alternatives:

If we have (4 OR B) and also (C OR D) then each of the four
combinations is acceptable, that is AC, AD, BC, and BD. With a disjunction
like (A OR B) we can have a different weight for 4 and a different weight for
B. The idea is to consider the resulting entity (intention containing disjunction
instances) as one entity for the purpose of evaluation. Thus, within the
matching algorithm, in backtracking, if at a certain point the combination of
constraints is infeasible, we may backtrack over the set of alternative-type
constraints. Note that this is mainly appropriate for feasibility type constraints.
To realize this possibility we need to introduce constraints into the intention
tree (to make backtracking easy) and also construct the goal program
dynamically within the unification algorithm.

One problem is that if we do satisfy the “current feasibility set” other
sets are not necessarily explored (unless we exhaustively backtrack over all
possibilities). If not all are explored, during negotiations, we may be “locked
in” optimizing within one feasible sub-region. Also, if we do exhaustively
backtrack we are within a “single thread” of control, had we duplicated, we

10

20

25

30

WO 01/16665 PCT/IL00/00516

49
could have worked in parallel on several intentions. Unlike comparing general
contexts, here comparing duplicates makes more sense, as they are all
essentially the “same” optimization problem.

Yet another way to handle disjunction is by employing integer
variables, and using them to “simulate” if-then-else. The disadvantage is that
the constraint solver need employ costly techniques; the advantage is that the
complexities are confined to the constraint solver, and all possibilities for
optimization are explored.

6. Foundations for Negotiations:

Whereas Goal Programming (GP) is a known technique, our use of it is
novel. We use the framework provided by GP to help in carrying out inter-tool
automated negotiations.

We begin by listing the basic problems we need to solve in order to
enable automated negotiations:

1 Suggest a tuple of values when asked to provide one.

2 Choose from a number of alternative tuples of values; we can

choose more than one by repeatedly applying choose.

3 Rank tuples of values according to their desirability. This ability
is needed when evaluating intentions. Rank is implemented via
choose.

4 Suggest an “improvement” to an input tuple of values, which
improvement improves the “score” of the input tuple. This is
needed when improving a suggested deal.

We may also need to handle a situation in which we have an offer, from
the other party, that is not feasible. We need to “convert” such an offer into a
feasible one, such that it retains, as much as possible, its “goodness”. This
situation may also happen in a negotiation setting in which sides tell each other
their overall value function (as represented by their goal program) as well as
constraints they have (or portions thereof), yet some constraints remain untold
and therefore the other party may come up with an infeasible offer.

Next, we explain how to handle the basic problems by using a goal
program representing the user’s wishes (as an optimization problem). The idea
is to modify the entries of a tuple of values (associated with variables), so as to
improve or degrade the tuple. The modification is indicated via its mode.
Modes can be of two kinds, overall or per-level:

10

20

25

30

(OS]
W

WO 01/16665 PCT/IL00/00516

50

Overall (Weighing). A weighting factor for each priority level is
specified. This allows flexibility in specifying trade-offs among the different
levels. It allows us to view the whole goal program as giving rise to a single
value function. In this case, the improvement (or degradation) is specified in
overall-percentage-improvement. To achieve the improvement, the overall
value function must decrease by the indicated percentage (degradation is
handled similarly).

Per Level. For each priority level, a percentage improvement is
specified. To achieve this improvement, the minimization at each priority level
must decrease by the indicated percentage for the level.

A. Suggest a tuple of values:

If the optimization problem is infeasible, offer a default-selected tuple
of values. Otherwise, solve the goal program. Observe that as this procedure
may be called when only a portion of the variables are bound to actual values,
there may be a range of possibilities of values of variables that are feasible.
Get the values for the variables in question from the solution of the goal
program. If nothing else is specified, return an “optimal” tuple, according to
the user’s preferences, as the one to suggest.

Otherwise, form a particular tuple of values based on additional criteria
provided to this operation such as: best, percent-off-best-per-level, overall-
percentage-off-best, worst, average, any. These criteria are part of the user’s
profile for this interaction. In case of a linear goal program, the forming can
be implemented using the following methods (choose methods based on the
user’s profile for this operation):

Percent-off-best-per-level

Method 1. Adding constraints per variable and analyzing dual
variables (dual variables indicate how to improve the objective function by
modifying constraints; see Chapters 8, 10 and 18 in [7]). This is done by
adding to the goal program constraints of the form Xi=ai, where Xi is a
variable associated with the i’th component of the optimal tuple, that is first
computed, and ai is the value for that component. We then solve the resulting
goal program, level by level. We examine the dual variables associated with
the new constraints we introduced. To get a “lesser” tuple we need to modify
the value associated with such a constraint so as to increase the (level’s)
objective function (recall that we minimize at the top). The amount of increase
is according to the specification of percent-off-best-per-level applied

WO 01/16665 PCT/IL00/00516

51

individually per level. We change values of variables one by one, until the

overall change, at the level, is according to the percentage specification.
Method 2: Adding a “level-wise constraint”. Here we consider the
minimized function at the particular level, say f(Di’s). Assume the minimum
5 value is f(Di’s)=a. Based on the percent-off-best-per-level specification for
this level, say p, let a’=a + |a| p, here || indicates absolute value. Add a
constraint of the form f{Di’s) > a’, and solve the goal program at this level
again. Use the results for the next level, where the same technique is applied.
What we achieve is a “less optimal” solution of the original goal program as

10 per the percentage specification per level. If at any point the goal program is
not feasible we “undo” the last change by dropping the constraint introduced at
the previous level.

A variation on Method 2, Method 2, is to add in a single action, for
each level j, the constraints of the form f(Di’s)=aj’, and then solve the

15 resulting level linear program. Again, in case of infeasibility, we drop a subset
of the new constraints, or modify them, so that the result is feasible. The subset
is chosen according to the user’s profile, which indicates the order of
dropping.

Overall-percentage-off-best.

20 Methods 1,2 and 2' with appropriate modifications may be applied for
this criterion as well. The overall goal is used in method 1; a modified overall
constraint is used in methods 2 and 2’.

Worst.
If worst is specified, we simply maximize, at each level, instead of

25 minimize. Due to the default-intervals technique, if the problem is feasible
then there is a bounded solution.

Average.
If average is specified, we calculate best and worst tuples and form the
“average tuple” by setting each tuple position to the average of the values in
30 that position in the best and worst tuples.
Any.
Any is implemented by randomly choosing in the intervals defined by
the best and worst tuples in the respective positions.

In case of a non-linear goal programs we can search in the

(U8}
n

neighborhood of a solution for “less optimal” tuples.
B. Choose from a number of tuples of values:

10

20

25

30

W
wh

WO 01/16665 PCT/IL00/00516

52

If the optimization problem is infeasible, offer a default value per tuple
entry (i.e., variable), in case there are default ranges, choose one, which is
"closest” to an offered alternative. Otherwise, solve the goal program and
return a tuple out of those to choose from, which is "closest" to the goal
program solution implied tuple. If more than one choice is required, get the
next best choice, and so on. As default, the distance is measured as the average
percentage deviation from the tuple, computed over all tuple components.
There are other methods for calculating distance that the user may choose and
thereby override the default, for example Euclidean distance where each
coordinate is normalized to a range, say [1-100].

C. Suggest an improvement to a tuple of values:

Suppose we are provided with no additional information from the GUI
level concerning the order of importance of variables in improving tuples. This
case is very similar to the case of producing “less optimal” tuples, with the
exceptions that (i) the added tuple-generated constraints are based on the
values of the tuple we are improving; and (ii) we are trying to decrease the
level-wise minimization functions or overall value function. Therefore, we
handle this case using the methods for suggesting a tuple that we have
described above (in A). In Method 1, we add the current tuple values as
constraints; as before, we use dual variables, this time to further minimize. In
methods 2 and 2°, we add the tuple values as soft (target) constraints with
relatively low weights; as before, we also add constraints to decrease the
minimization expressions, at each level, as compared to their current value.

Another issue is the possibility that the tuple we are trying to improve
leads to an infeasible solution. In that case, rather than adding the tuple values
as constraints of the form Xi=ai (Method 1), we add them as soft constraints.
Alternatively, we can use default values and improve them, that is, an
“infeasible tuple” is replaced by a “default tuple” and is then improved.

Now, consider the case in which we are provided with additional
information from the GUI level. This information is in the form of a list of
variables, in the order of importance (for improvement purposes). Suppose the
variables in the tuple are XI,...,.Xn. Let al,...,an be the currently associated
values. Assume that the order /..n is also the order of weights that are
associated with these attributes, that is, how important they are. We can apply
the technique above, of adding constraints (Method 1), but do improvements
one-by-one, starting with the most important variable and progressing to the

10

20

25

30

(O8]
U

WO 01/16665 PCT/IL00/00516

53
least important one. We treat variables in that order until we meet our target
improvement, overall value, or percentage-wise per level.

Alternatively, we can use the idea of relaxation. We relax the value for
a variable, say X/, by adding the constraints, for i=2...n, Xi=ai. Intuitively, we
“bind” all other variables and leave X7 “free”. Now, we solve the resulting
goal program. If the resulting program is feasible then we get a “better” value
for X1. If this new value, say al’, is reasonable (measured in percentage
difference from al) we move on to set X/=al’ and apply relaxation next to
X2. We repeat this process and end up with a new tuple of values to return.
Note that as each variable is treated, the constructed tuple is “improved”.

It is possible that in relaxing X/ we end up with an infeasible program
due to settings of other variables. In that case we move on and apply
relaxation to X2, and so on. If after relaxing all the Xi’s we still have an
infeasible program then we default-select a tuple to return which is close,
distance-wise, to the initial tuple we are trying to improve.

Observe that relaxation attempts a sort of gradient decent in a controlled
way.

Summary: Process of Compilation of a single context

In what follows we consider the steps in compiling a single context that
may involve disjunction.

1. Get the user’s specification of deal from both deal, and item
catalogs.
2. Build an intention - list of items, attributes, quantities,

specifications concerning delivery and deal splitting.
Identify and scale atomic variables of interest.

Add any number of hard constraints.

Add any number of soft constraints.

S

Add choices out of a finite set of alternatives (e.g., color) with

weights.

Add preferences (max, min, and desired values).

Add disjunction constraints and preferences.

9. Indicate priorities on preferences and soft constraints (ordinal).
All hard constraints are at level 1 (highest).

10. Add weights (cardinal) relating preferences and constraints
within each priority level.

11. Add integral constraints.

10

20

25

30

WO 01/16665

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

PCT/IL00/00516

54

Obtain the method of combining objectives per priority level: for
example, summation or min-max (which is the default).
Combine objectives into a lexical minimization problem where at
each level the chosen method of combination is used.
Obtain the negotiation strategy to be employed and its
parameters.
Partition the above into independent components (ICs). Each IC
contains its own set of variables, preferences, constraints and
objectives. That is, each IC can be handled independently of
other ICs. For example, suppose we have WI1: X +Y < 20, W2:
2X-Y<7, minimize 3X+4Y, W3: Z-W<8 and W2: Z + W < 30,
maximize 2X+4Y. We can construct two ICs for these constraint
set, one made of the first three terms mentioning X and Y and the
other of the rest. In forming ICs, a disjunction is considered as
“connecting” all variables appearing within it, that is, they will
appear in the same IC.
For each IC form the following functions:
Boolean isFeasible (current values of variables, set of
constraints — hard and sof?)
TupleofValues suggest Tuple (list of variable names, current
values of variables, set of constraints — hard and soft, suggestion
mode)
Set of TupleofValues choose Tuple (list of variable names,
current values of variables, set of constraints — hard and soft, set
of alternative tuples for variables, choice mode)
Ordered Set of TupleofValues rank_Tuples(list of variable
names, current values of variables, set of constraints — hard and
soft, set of alternative tuples for variables, choice mode)
TupleofValues improve_Tuple (list of variable names, current
values of variables, set of constraints — hard and soft,
improvement mode)
With each intention tree leaf variable, associate a commerce
automaton (CA). In the automaton one can perform:

Access to intention variables

Simple arithmetic operations

Database access using SQL

5

10

20

25

30

WO 01/16665

PCT/IL00/00516

5
Calls to IC functions as defined above
Messages to the “other party”
Add calls to user-defined functions (optional capability)

e

Automata have an associated input tree, an associated output tree, states
and transitions.

1.

With each IC, associate a negotiation automaton (NA) and
construct it so that it can confirm, choose, suggest or improve
tuples by using the IC functions. Attach the NA to the lowest
node that is a parent of all the IC’s variables. Attach a trivial NA
to other nodes that simply transfers the message up the tree.
Based on the negotiation strategy, construct a negotiation control
program (NCP). The NCP uses the procedure matchintentions.
This procedure performs unification on two intentions. During
unification the above-mentioned functions are utilized.
Backtracking is used to explore the space of possibilities. The
unification is not necessarily in left-to-right order. A heuristic is
to explore first highly “grounded” portions of the intention tree.
Based on the negotiation mechanism, the NCP utilizes the
negotiation API. The negotiation mechanism accesses the
negotiation-oriented functions constructed during compilation
(namely, to confirm, suggest, choose or improve tuples of
values).

If necessary, customize backtracking to handle disjunction. This
means, in particular, that one needs to construct the equation sets
in real-time, the particular set depends on the alternatives used.
This also means that some compilation activity needs to be done
at run-time in combining the preferences associated with various
alternatives.

Deal Splitting
In the GUI interaction, the user may indicate that deal splitting is

acceptable. Deal splitting is the assignment of deal portions to various
suppliers. Below we list some ways of splitting a deal.

Residual algorithm. Here the initial deal is submitted to the system. The
system satisfies it as much as possible using best effort unification. What is left
is considered as a “new” residual deal. The residual deal is submitted to the

system and it is satisfied independently. Of course it may give rise,

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

56
recursively, to more residual deals. The group of deals resulting from the
original request needs to satisfy the initial deal constraints.

Published prices. Sometimes we have access to approximate or even
exact pricing and availability tables. We may use these to form package deals.
Such a deal simply indicates a sequence of (item, quantity, supplier, and
price). One way to accomplish this is to form a (potentially large) set of linear
constraints and solve them optimally using a standard solver.

Fishing. Here we submit a number of sub-deals to the system. Each
such sub-deal represents a package. There are enough packages so that when
we see the outcome, we can contemplate combining various packages to form
the initial deal. Usually the initial deal itself will be one of the packages.

History. This is a variation on fishing. We examine historical deal data
and specify possible sub-deal packages based on past deals.

Section 7: Negotiations

In this section we consider the post-matching phase. A user’s desired
deal is potentially translated into a set of intentions. Each intention is
separately matched (unified) with relevant intentions. The matching may
involve exchange of messages as well as database and external data accesses.
At this point a deal may be finalized (either automatically or by human
decision). Alternatively, the deal may be further negotiated upon. Intentions
may be modified while negotiating with one or more parties. Finally,
automated or human decision is reached. As presented in Section 6, NAs and
the NCP can form responses to CAs’ inquiries based on the procedures, which
are constructed as negotiation infrastructure (Section 6). Let us summarize the
negotiations scenario.

Once intentions are matched, a deal can be formed. However, in many
cases the user would prefer to further improve the deal and, if there are
multiple sellers, be able to use this fact in improving the deal. The manner in
which post matching negotiations are carried out is called a trading
mechanism, or simply a mechanism. The process is as follows:

The parties choose trading mechanisms; this is done at the GUI level.

During compilation, constraints and preferences are translated into goal
programs (Section 6).

Procedures for choosing, ranking, improving and suggesting offers are
produced (Section 6).

10

20

30

WO 01/16665 PCT/IL00/00516

57

At run-time, an actual trading mechanism is selected. It uses the
produced procedures. The mechanism is employed once an initial intention is
formed, with each of the potential sellers (actually, the situation is symmetric if
we consider a single seller and a number of potential buyers).

There are many possibilities for forming trading mechanisms. We
concentrate on two basic types of mechanisms. The first is one-to-one (also
called 1-1, or bilateral). The second is one-to-many (1-N). Another
differentiation between mechanisms has to do with revealing information. We
differentiate between mechanisms in which a party reveals all, or some, of its
value function (goal program and how to weigh the priority levels, in our case)
and mechanisms in which the party does not reveal information. We now
present three basic mechanisms.

1-1 Without Revealing

This mechanism is designed for exactly two parties. In it, parties do not
reveal their goal programs. Parties use negotiation parameters such as: risk
taking, greediness, time allotted to direct their activities.

Once a basic deal is reached the parties move on to the deal
improvement phase.

During this phase the parties may use backtracking to explore further
deals. This may even lead to re-forming the basic deal they reached at the end
of the intention-matching phase. Deal improvement is done as follows:

The parties use (GUI level specified) parameters to choose
improvement amounts. These parameters include risk taking, greediness, time
allotted.

1. A party generates a “better intention” wusing the deal

improvement procedure (as per Section 6).

2. The party presents it to the other party.

3. The other party either agrees to continue improving, or presents a
counter-offer.

4. The parties repeat improving the outstanding deal, based on the
parameters.

5. Eventually, a decision is reached. The decision is reached when

one of the parties declares that this is the /ast offer and asks the
other party to either confirm or stop negotiating.

10

15

20

25

30

WO 01/16665 PCT/1L00/00516

58

Observe that the above mechanism is symmetric in the sense that
negotiations can be brought to conclusion by either party. We also foresee a
variation in which only one of the parties has this ability.

1-1 With Revealing

In this mechanism the parties reveal either all, or parts, of their goal
programs to the other party. Each party then constructs a combined goal
program, which includes both goal programs. The idea is that each be aware of
the needs of the other party. There are a number of ways in constructing the
priority structure of the combined program:

1. Alternating levels - 1,17, 2, 2°... This gives high priority to the

other party’s important interests.

2. Layered - 1,2,3...1°, 2, 3°... This takes one party’s interests first

into account and only then the other party’s interests.

3. Layering & alternation. A more flexible combination, e.g., 1,1,

2,3,2°3’,

Consider a party that is about to improve an outstanding deal.
Improvement is done in two steps. The combined program is used in a first
step of deal improvement. Then, in a second optional step, the party modifies
(that is, improves) the deal according to its own goal program. The latter
program is optionally augmented with some of the constraints of the other
party. This “double improvement” is designed to take into account the other
party’s interests as much as possible.

1-N Without Revealing

We note that the 1-1 mechanisms we have just discussed may be used in
unstructured negotiations of a party with many parties. In this situation, one
party (the “1”) negotiates is a structured way with many parties (the “N”).
This mechanism uses the 1-1 mechanism without revealing as a sub-program.
It operates as follows. Following the basic deal formation via matching, the
“1” has outstanding deals with each of the “N” parties. The mechanism is on
rounds (late arrivals may be excluded from a particular round). The “1” ranks
intentions at the beginning of each round. It sets improvement targets for each
participant so that each participant must beat the previous round best deal.
With high probability (a parameter) the “1” drops non-improving participants
except for the best performer of the previous round. The “1” continues based
on perceived improvements and time limits. Target setting is a function of

10

15

20

25

30

WO 01/16665 PCT/IL00/00516

59
time. Deal improvement with each party is done as in the non-revealing 1-1
mechanism.
At some point (see below) the “1” decides on an end-game phase. This
phase is performed as follows:
1. The “1” ranks the outstanding intentions.
2. The “1” sets improvement targets for each participant so that
each beats the best deal of the previous round.
3. The “1” makes offers, one by one, to each of the “N” so that if a
deal offer is accepted, a deal is sealed and negotiations are over.
4. Out of the “N”, the one that proposed the best deal in the
previous phase is asked first, then the second best, and so on.
This creates extra motivation for the “N” parties.
5. If the “N” parties accepted no deal offer, the best deal from the
previous phase is selected and sealed.

Section 8 Dynamic Negotiations

As presented thus far, a user U specifies his/her business intention(s).
These are submitted to the system, which matches them with outstanding
intentions (these may arrive at any point after submitting U’s intentions).
Intentions are associated with various parameters, which, as discussed in
Section 6, are compiled (translated) into mathematical programs. These
programs are used during the matching process and in the optional 1-1 or 1-N
negotiation phase, as described in Section 7. In this section we allow running
the above scenario while dynamically changing parameters. Parameter
changing can be done through a GUI. In this case, while observing the state of
negotiations, a party may decide to change the values of some parameters.
Parameters can be associated with the deal itself, for example, the maximum
price a party is ready to pay. Parameters may also be associated with the
negotiation process, for example, the overall time allotted.

Changing some parameters at run-time can be implemented by
replacing associated values in the intentions and the compiled goal programs.
It may necessitate goal program re-compilation. If active negotiation sessions
have already used the ‘old’ parameters during matching, they may have to be
backtracked. In some cases, changes may necessitate re-forming of goal
programs. In this case, a currently active negotiation session using such a goal

10

WO 01/16665 PCT/IL00/00516

60
program may have to be backtracked to a previous phase. For example, in 1-N
negotiation, the session may be brought from the 1-N rounds to the 1-1 phase.

Although the invention has been described in conjunction with specific
embodiments thereof, it is evident that many alternatives, modifications and
variations will be apparent to those skilled in the art. Accordingly, it is
intended to embrace all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims. All publications,
patents and patent applications mentioned in this specification are herein
incorporated in their entirety by reference into the specification, to the same
extent as if each individual publication, patent or patent application was
specifically and individually indicated to be incorporated herein by reference.
In addition, citation or identification of any reference in this application shall
not be construed as an admission that such reference is available as prior art to
the present invention.

WO 01/16665

61

Bibliography:

1.

10.

11.

R. Fikes, R. Engelmore, A. Farquhar, and W. Pratt. Network-based
information brokers, 1995.
See http://www.ksl.stanford.edu/KSL Abstracts/KSL-96-18.html as of
January 2, 2000.
M. Klusch, ed., Intelligent Information Agents., Springer-Verlag, 1999.
S. Bottcher. Open nested type structures and partial unification for
searching in distributed electronic market. In Proc. TrEC'98, 1998.
D. Kapur. Principles and Practice of Constraint Programming, chapter
An Approach for Solving Systems of Parametric Polynomial Equation,
pages 217-243.
The MIT Press, 1995.
Kim Marriott, Peter J. Stuckey. Programming With Constraints : An
Introduction, The MIT Press, 1999.
James P. Ignizio Goal Programming and Extensions. Lexington Books,
1976.
James P. Ignizio. Linear Programming in Single & Multiple Objective
Systems. Prentice-Hall, 1982.
Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computation
and Application. John Wiley & Sons, 1986.
Thomas L. Saaty. The Analytic Hierarchy Process: Planning Setting
Priorities, Resource Allocation. Pittsburgh, Pa: RWS Publications, 1990.
James P. Ignizio, Tom M. Cavalier. Linear Programming. Prentice-Hall,
1994.

Marc J. Schniederjans. Goal Programming Methodology and
Applications. Kluwer Academic Publishers, 1995.

PCT/IL00/00516

WO 01/16665 PCT/IL00/00516

62
Appendix: Unification Algorithm

The input of the unification algorithm is two intention trees I1 and 12. C is the
set of local constraints defined on I1 and 12. We assume that I1 and 12 do not contain
OR vertices.

The algorithm is described in a Prolog-like language. We assume the
existence of the following predicates:

- instance(T,S) Generates an isomorphic copy S of T with a disjoint set of variables
including association to automata).
- var(V) Satisfied if V is an unbound variable.
- nonvar(V) Satisfied if V is not an unbound variable.
- atomic(V) Satisfied if V is an atomic variable.
- class(V) Satisfied if V is a class variable.
- int(V),float(V),string(V) Satisfied if V is ground and is an integer (float, string,
resp.).
- mode(V,Structure, Type) Satisfied if variable V has the structure Structure
(Structure can be: atomic, class or list) and type Type (Type can be: int, float, string
or a class name).
- bassert(Edb) Backtractable assertion of the fact Edb.
- bretract(Edb) Backtractable retract of the fact Edb.
- classDesc(C1, C2) Class C1 is a descendant of class
C2 in a class hierarchy of an ontology.
- automaton(V,A,0,ModeStmts) Satisfied if automaton A is assigned to V, its output
instance is O and O's mode statements are ModeStmits.
- run(A,O) Execute automaton A on instance O.
- checkConstraints(T,C) Satisfied if the variables
in T satisfy the constraints set C.
- permute([X1, ... Xn], [Y1, ... Yn]) Satisfied if
(Y1, ... Yn) is a permutation of (X1, ... Xn).
Backtracking generates the *'next" permutation.

- ground(V) Satisfied if variable V has a non-null value.
The Unification Algorithm follows:

/* Main */

/* We assume that a fact (clause) is asserted prior to running the

WO 01/16665 PCT/IL00/00516

63
unification, for each of the variables in the input intentions I1
and 12, in the following way:

assert(mode(variable name, structure, type)).*/

/* Run Unification; the result is I1. */
main_unification(I1,12) <-- unify(I1,12),
checkConstraints(I1,C),write(11).

/* Use symmetry. */
unify(I1,12) <-- unify1(I1,12).
unify(11,12) <-- unify1(12,11).

/* Unifying 2 Classes. */

unify1(T1,T2) <-- nonvar(T1), nonvar(T2),
T1=CNI1(E1-Cl, ..., Ek-Ck),
/* CNi is class name, Ei is edge label to subtree Ci. */
T2 = CN2(F1-D1, ..., Fk-Dk),
class(CN1), class(CN2),
CN1=CN2, E1=F1, ..., Ek=Fk,
unify(C1,D1), ..., unify(Ck, Dk).

/* Unifying 2 Lists. */

unifyl(T1,T2) <-- nonvar(T1), nonvar(T2),
T1 = List(C1, ..., Ck), T2 = List(D1, ..., Dk),
permute([C1, ..., Ck], [X1, ..., Xk]),
unify(X1,D1), ..., unify(Xk, Dk).

/* Unifying a List and a superset constraint.*/
unify1(T1,T2) <-- nonvar(T1), nonvar(T2),
T1 = List(Cl, ..., Ck), T2 = CO(D1, ..., Dm),
m<k, /* T1's elements must include T2's. */
permute([C1, ..., Ck], [X1, ..., Xk]),
unify(D1,X1), ..., unify(Dm, Xm).

/* Both T1 and T2 are rooted at a NOT vertex. */
/* There is no need to unify T1 and T2.*/

WO 01/16665

unify1(,T2) <-- nonvar(T1), nonvar(T2),
T1=NOT(ST1),
T2 =NOT(ST2),
I

/* T1 is rooted at a NOT vertex. */
unify1(T1,T2) <-- nonvar(T1),
T1 =NOT(ST1),
not(unify(ST1,T2)).

/* T1 is rooted at an AND vertex */

unify1(T1,T2) <-- nonvar(T1),
T1=AND(ST1,ST2),
unify(ST1,T2), unify(ST2,T2).

64

/* only list rules for integer constants and variables. Similar

rules apply for the float and string atomic data types. */

/* 2 constants */
unify1(T1,T2) <--
int(T1), int(T2), T1=T2.

/* Assigning a constant to a variable. */

unify1(T1,T2) <-- var(T1),
mode(T1,atomic,int), int(12),
bretract(mode(T1,atomic,int)),
T1=T2.

/* 2 atomic variables. */

unify1(T1,T2) <-- var(T1), var(T2),
mode(T1,atomic,int),
mode(T2,atomic,int),
bretract(mode(T2,atomic,int)),
T1=T2.

/* Assigning a class instance to a class variable. */

PCT/IL00/00516

WO 01/16665 PCT/IL00/00516

unify1(T1,T2) <-- var(T1), nonvar(T2),
mode(T1,class,X),
T2 = CN(E1-C1, ..., Ek-Ck), class(CN),
classDesc(CN, X), /* CN is subclass of X. */
bretract(mode(T1,class, X)),
T1=T2.

/* 2 class variables. */

unify1(T1,T2) <-- var(T1), var(T2),
mode(T1,class,X),
mode(T2,class,Y),
classDesc(Y, X),
bretract(mode(T1,list,X)),
T1=T2.

/* Assigning a list to a list variable. */
unify1(T1,T2) <-- var(T1), nonvar(T2),
mode(T1,list,X),
T2 =List(Cl, ..., Ck),
/* Need to check whether the list variable and the list's items have compatible
types */
bassert(mode(Al,Z21,X)), ...,
bassert(mode(Ak,Zk, X)),
unify(A1,C1), ..., unify(Ak, Ck),
Z1<list, ..., Zk <list,
bretract(mode(T1,list, X)),
T1=T2.

/* A list variable and a superset constraint. */
unify1(T1,T2) <-- var(T1), nonvar(T2),
mode(T1,list,X),
T2 =CO(Cl, ..., Ck),
/* No unification is done, the constraint is noted */
bassert(constraint(CO,T1,T2)).

/* 2 list variables. */

WO 01/16665 PCT/IL00/00516

66
unify1(T1,T2) <-- var(T1), var(T2),
mode(T1,list,X),
mode(T2,list,Y),
classDesc(Y, X),
bretract(mode(T1,class, X)),
T1=T2.

/* Unifying an automaton variable. */
unify1(T1,T2) <--
automaton(T1,A,0,ModeStmts),
bassert(ModeStmts), unify(O,T2), /* Prepare automaton *‘inputs’’ */
run(A,0),
/* We abstract by running the automaton in the same environment, when run
remotely we’ll export part of the environment and then re-install a version of it,
based on the remote execution */
unify(O, T1).

/* Special case: unification of 2 superset constraints. */
unify1(T1,T2) <-- nonvar(T1), nonvar(T2),
T1=CO(Cl, ..., Ck),
T2 = CO(D1, ..., Dm),
/* No unification is done, constraints are noted. */
bassert(constraint(CO, T1, T2))

Note that if unbound variables appear in a subtree rooted at a NOT
vertex, it is possible for the unification algorithm to fail while
reaching an agreement was in fact possible. This problem arises
because the unification order is fixed by Prolog and does not take

into account that unification with subtrees rooted at NOT vertices may
be done after all the relevant variable bindings are determined. In

such a case, it is possible to modify the intention trees so that the
standard order of unification leads to a correct result.

WO 01/16665 PCT/IL00/00516

67
WHAT IS CLAIMED IS:

1. A method for at least semi-automatically negotiating a
relationship between at least a first party and a second party, the steps of the
method being performed by a data processor, the method comprising the steps
of

(a) providing a first intention for the first party and a second
intention for the second party, each of said first intention and
said second intention featuring a plurality of components;

(b) exchanging at least one dispatch between the first party and the
second party, said at least one dispatch including a reference to a
value for at least one of said plurality of components;

(c) altering at least one of said first intention for the first party and
said second intention for the second party according to said
reference to said value in said at least one dispatch;

(d) comparing said first intention to said second intention; and

(e) if said first intention matches said second intention, determining
the relationship according to said first intention and said second
intention.

2. The method of claim 1, wherein said reference to said value is
selected from the group consisting of a variable component, an actual value, a
request for a value from said second party, and a request to select a value from
a set of values for said second party.

3. The method of claim 1, wherein said reference to said value is
determined by a compiled goal program and negotiation parameters of said
first or said second intentions.

4, The method of claim 3, wherein said compiled goal program is
used to create at least one procedure selected from the group consisting of
(1) suggest a tuple of values;
(ii) choose from a number of alternative tuples of values;
(i) rank tuples of values according to a desirability; and
(iv) suggest an improvement to an input tuple of values;

WO 01/16665 PCT/IL00/00516

68
5. The method of claim 1, wherein said step of negotiating said
relationship between said at least said first party and said second party is
effected by, at least in part, using a structure selected from the group
consisting of one-to-one with or without revealing and one-to-many without
revealing.

6. The method of claim 3, wherein at least two goal programs are
combined to form a combined goal program, which encodes said constraints,
said preferences and said negotiation parameters of at least said first or said
second intentions.

7. The method of claim 2, wherein said variable component is
associated with a predefined default interval.

8. The method of claim 7, wherein said default interval is
associated with at least one value, at least one range of values or a combination
of at least one value and at least one range of values.

9. The method of claim 1, wherein step (c) is performed by merging
at least a portion of said first intention and at least a portion of said second
intention to form a merged intention, such that the relationship is defined
according to said merged intention.

10. The method of claim 9, wherein only a portion of said first
intention and only a portion of said second intention are merged to form the
relationship.

11. The method of claim 9, wherein an entirety of said first intention
and an entirety of said second intention are merged to form the relationship.

12. The method of claim 9, wherein said first intention and said
second intention are incomplete, such that step (b) further comprises the steps
of:

() defining at least one computational device for adding at
least one suggested component to at least one intention;

WO 01/16665 PCT/IL00/00516

69
(i1) executing said at least one computational device to obtain
said suggested component; and
(iii) sending a message from the first party to the second party,
said message including a suggested component according
to said at least one computational device.

13. The method of claim 12, wherein said dispatch of step (b) also
includes said first intention of said first party and is sent from said first party to
said second party, such that said second party adds said suggested component
to said merged intention.

14. The method of claim 13, wherein step (b) further comprises the
step of:
(tv) determining by said second party whether to accept said
suggested component.

15. The method of claim 13, wherein step (b) further comprises the
step of:
(iv) providing a value for said suggested component by said
second party.

16. The method of claim 9, wherein said first intention and said
second intention are incomplete, such that step (b) further comprises the steps
of:

(1) defining at least one computational device at the second
party for adding at least one suggested component to at
least one intention;

(ii) executing said at least one computational device to obtain
said suggested component; and

(iii) sending a message from the second party to the first party,
said message including a suggested component according
to said at leone computational device.

17. The method of claim 9, wherein step (b) further comprises the
step of:

WO 01/16665 PCT/IL00/00516

70
(1) providing a value for at least one component by said
second party.

18. The method of claim 1, wherein said component also includes a
constraint for restricting said value.

19. The method of claim 18, wherein said constraint determines that
said value is not alterable.

20. The method of claim 18, wherein said constraint determines that
said value is alterable, such that step (b) further comprises the step of sending
a return message with a counter offer for altering said value of said at least one
variable by at least one of the first party and the second party.

21. The method of claim 18, wherein step (c) further comprises the
step of removing at least one constraint from at least one component.

22. The method of claim 1, wherein step (c) further comprises the
step of saving a state of each of said first intention and said second intention to
form a previous state, before altering said first intention and said second
intention, the method further comprising the step of:

() if said first intention does not match said second intention,

returning said first intention and said second intention to said
previous state.

23. The method of claim 1, the method further comprising the step
of:
(f) if said first intention matches said second intention, notifying
each party of acceptance of the relationship.

24. The method of claim 1, wherein said first intention and said
second intention are each constructed as a first intention tree and a second
intention tree, respectively, such that step (d) is performed by comparing said
first tree to said second tree.

WO 01/16665 PCT/IL00/00516

71
25. The method of claim 24, wherein step (c) is performed by
merging at least a portion of said first tree and at least a portion of said second
tree to form a merged tree, such that the relationship is defined according to
said merged tree.

26. The method of claim 25, wherein only a portion of said first tree
and only a portion of said second tree are merged to form the relationship.

27+ The method of claim 25, wherein an entirety of said first tree and
an entirety of said second tree are merged to form the relationship.

28. The method of claim 1, wherein each component is constructed
from a set of shared classes for the first party and the second party.

29. The method of claim 1, wherein the relationship is determined
as a contract, said contract featuring a plurality of intentions, such that steps
(a)-(e) are performed for each of said plurality of intentions.

30. A system for at least semi-automatically negotiating a

relationship, the system comprising:

(@ a plurality of party modules, including at least a first party
module and a second party module, each party module featuring
an intention for determining the relationship, said intention
featuring a plurality of components to be determined for the
relationship, such that a process of negotiation matches said
intention of said first party module to said intention of said
second party module; and

(b) a central server for at least initially connecting at least said first
party module to at least said second party module for performing
negotiations.

31. The system of claim 30, wherein at least said first party module
features a plurality of intentions for negotiating with a plurality of parties.

WO 01/16665 PCT/IL00/00516

72
32. The system of claim 31, wherein said central server further
comprises a server party module for performing said negotiations on behalf of
at least one party.

33. The system of claim 32, wherein only said server party module
performs said negotiations on behalf of a plurality of parties.

34. The system of claim 31, wherein said central server further
comprises-a server party module for performing said negotiations on behalf of
said central server as a broker.

35. The system of claim 31, wherein said party modules perform said
negotiations and said central server only initially connects said first party
module to said second party module.

36. The system of claim 31, wherein at least one party module
features at least one computational device for generating a suggested alteration
to said intention according to at least one rule, such that if said first intention
does not match said second intention, said suggested alteration is generated by
said at least one computational device.

37. The system of claim 36, wherein at least one party module
further features at least one computational device for determining if said
suggested alteration is accepted.

38. A method for at least semi-automatically negotiating a
relationship between at least a first party and a second party, the steps of the
method being performed by a data processor, the method comprising the steps
of:

(a) providing a first intention for the first party and a second
intention for the second party, each of said first intention and
said second intention featuring a plurality of components;

(b) providing at least one computational device for defining an
additional component for at least one of the first and second
parties;

(c) comparing said first intention to said second intention;

WO 01/16665

(d)

(e)

®

()

()
(1)

39.
least once.

40.

PCT/IL00/00516

73
if said first intention is different than said second intention,
defining said additional component by said at least one
computational device of the first party;
sending at least one message from the first party to the second
party, said at least one message including said additional
component;
determining if said additional component is accepted by the
second party;
if said additional component is accepted by the second party,
adding said additional component to said first intention for the
first party and to said second intention for the second party;
repeating step (c) at least once; and
if said first intention matches said second intention, determining
the relationship according to said first intention and said second
intention.

The method of claim 38, wherein steps (d) to (i) are repeated at

For use in a system for at least semi-automatically negotiating a

relationship between a first party and a second party, each of the first party and
the second party having a first intention and a second intention, respectively,
such that the relationship is negotiated by matching the first intention and the
second intention, a device operated by at least one of the first party and the
second party, the device comprising:

(a)
(b)

(©)

4].

an intention data structure for holding an intention;

a negotiation control program for controlling a process of
negotiation; and

a unifier for unifying said intention data structure of a party with
said intention data structure of another party to form the
relationship.

The device of claim 40, wherein said intention data structure

includes at least one constraint, the device further comprising:

(d)

a constraint solver for solving said at least one constraint.

WO 01/16665 PCT/IL00/00516

74
42. A method of creating a minimizing goal for a level within a goal
program, the method comprising the steps of:
(a) identifying constraints within said level;
(b) normalizing each of said constraints so as to obtain normalized
constraints; and
(c) combining said normalized constraints.

WO 01/16665 PCT/IL00/00516

1/9
Purchase
Parties Ve?icles Payr'nent
Vehicles: (vehicles)| |Payment:&(payment)
Cus',tomer Used Vehicle Dealer

EC Authority: &customer EC Authority: &company

a) The Purchase Contract Class

Payment

T~

Amount Mett;od

real: &amount| [string: &method

b) The payment class

EC Authority
ID Address Name
¥ ¥ Y
string: $ld | |string: $addr| | string: $name
c) The EC Authority class
Car
Model ID Class Price
' ¥ ¥ ¥
string: $model | |string: $id string: $class | |Real: $price
d) The Car Class

Fig. 1 Examples of classes

SUBSTITUTE SHEET (RULE 26)

WO 01/16665 PCT/IL00/00516

2/9
T3 T3
= |Eoen | T T'= '/Tz\
t: $x=N t: $x=v |

@T 'is tree resulting from the assignment of the atomic value
v to atomic variable Sxin T

Ty T
Y

Y
T= t $X=N / T2 \ T = 0’2 / T2 \
T $x=N] 0,
(b) T'is tree resulting from the assignment of the instance 0'2 of type

f to the class variable Sx in T, In T the root of 0, is labeled with
the variable (t: Sx =t')

T

Y
T= [t x)=N T, T=

t: (x)=

()T : is tree resulting from the assignment of the list of instances
(0,, O'3)to the class list variable(x) in T.

T

(d) T'is tree resulting from the definition of the list containment
constraint (x) (0, 0',) in T.

Fig. 2 Variable instantiations

SUBSTITUTE SHEET (RULE 26)

WO 01/16665 PCT/IL00/00516

3/9
T T
o« ! &~
T= u T= u
|aIb %b
4 OR
Vil |V

(a) T'is the result of adding an OR vertex to T - Note that V, and V,

must be isomorphic to V up to renaming of variables. Adding an
AND vertex is done in a similar way.

T T
)
T=] |AND T=| |AND
v,| [V, v, | [NOT
V2

(b) T'is the result of adding a NOT vertex to T - Note that NOT
vertices can be added only subtrees rooted at an AND vertex

Fig. 3 Adding operator vertices

¥
AND
oR*~ ot
/\ y
tx)=co| [t(y)=co] [tz)=CcO
PN PN Y
o, [o,] [o,] [o, 0,

Fig. 4 Using operator vertices

SUBSTITUTE SHEET (RULE 26)

WO 01/16665

PCT/IL00/00516
4/9
$Price=0.89 Purchase vehicle$(0)
price$conf=Answer("Confirm(Sprice)”)
+Conf="Yes" $Con="No"=
(a) Automation A price T
Ground ($b) /\
- 11 12
$c>0 ‘ ‘
$A $B

(b) Automation B

(c) The output instance
(of class T) to be de-
fined by Automation B

Fig. 5 Commerce automata-The final

states have double frames
Car
e e
Mt%del l? less Pr‘ce

string: $model| |string: $ID String: $class

Real: $price
1 J Ground ($class) (a) The output instance
A=Select model
from R Car
Where $Class=Class TRUE

$model=Answer("choose a=1 from A
Format Col[1] name="Car model”
Col[1].type=string”)

2e T —
. ($ id, $price) = Select id ListPrice
Flg. 6 From Rcar
Where Class=%$class AND
The Acar CA Model=$Model

(b) The CA

SUBSTITUTE SHEET (RULE 26)

PCT/IL00/00516

WO 01/16665

981} uonua)ul s Jawojsno ay| /2 ‘B

aoudisng

I

aold

Awouoo3]

|

sse|D

/\

i)

YSEITe) ysed

5/9

NS

d0

A
poylen

aoudg

}

junowy

~ 7

Juswied

A

uswihed

|

ai$ [dpow$ OAY UIS OAN 517
} } } A)
al [9PON EmZ!:z
ypws SSaIppy ved
]]]
ajoAoiojoNg | | e0Ao10100$ aweN ssalppy al
1 Auedwooy Auoyiny D3
A A

¥o
A

S9[OIYaA

ls|eaq s|oIyaA pesn Jawojsn)

soled

P

.mmmco.:n_

SUBSTITUTE SHEET (RULE 26)

PCT/IL00/00516

WO 01/16665

6/9

9o} uonua)ul s Jsjeap Jed pasn ay] g "bi4

__._mmo aoudg

A '

poUle junowy

~ 7

juswied

|

JuswAied

1e0$

q

._
A

LT RIIVET

|

"OAY “UIG OAN)
) | |
LY umoj JaquinN
aulupaseydind SSalppy GEY
}) }
SWweN SSalIppyY ai
Awoyiny O3 lswojsnd$
))

lajeaq ooIyan pasn lawojsn)

salled

e

aseyoind

SUBSTITUTE SHEET (RULE 26)

PCT/IL00/00516

WO 01/16665

719

0]574

aolid

ysed

}

10esU00] pajessusb ay] 6 b1

Awouod3 FAAN Jaijeane)
) | A
.%ME "
189 |
"OAY "UIG DAN ZlL "BAY “UIG JOAN Gy
)) |) |)
IEETITN UmMo| JaquinN IEETIS umoj JaquinN
auljuQeseyoind ssalppy GEY yuws'r ssalppy veZ
A)) | A)
L ¥02 Auoyiny 03 Auoyiny 03
i) }
poyle junowy 1a|eaq 9|9IysA pesn Jawojsn)

~ 7

juswied

A

JuswiAed

STV

|

e =

aseyoind

7

solued

[

SUBSTITUTE SHEET (RULE 26)

WO 01/16665

8/9

PCT/IL00/00516

Party Machine 10

Data Structures 12
® Party Information 14

® |ntentions 16

Execution

Modules

Negotiation
Control

Programm 18

1

Unifier
24

Constraint

Solver 20

Automata
Execution
Engine
22

Fig. 10 Party Architecture

central server (102)

first party (104)

party software
module 108

N

second party (106)

fourth party (112)

party software
module 108

party software
module 108

third party (110)

party software
module 108

Fig. 11

SUBSTITUTE SHEET (RULE 26)

WO 01/16665

PCT/IL00/00516

9/9

first party receives intentions of second party (step 1)

l

NCP of first party compares at least part of both

'

intentions (step 2) “l
! &

if a suitable match if no suitable match if automation fails,

is found, merge is found, execute backtrack to previous
portions automation state

(step 3a) (step 3b) (step 3c)

if all portions automation sends

merged message to second

negotiation party

is successful (step 4)

|

second party

sends reply
(step 5)
automation ends with automation ends
failure with success - replace
(step 6(1)) variable
(step 6(2))

|

return to step 3(c)

return to step 2

Fig. 12

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

