

DOMANDA NUMERO	102000900897265	
Data Deposito	20/12/2000	
Data Pubblicazione	20/06/2002	

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
F	16	С		

Titolo

DISPOSITIVO DI TENUTA PER UN CUSCINETTO A ROTOLAMENTO.

Descrizione a corredo di una domanda di brevetto per invenzione dal titolo: DISPOSITIVO DI TENUTA PER UN CUSCINETTO A ROTOLAMENTO.

A nome: SKF INDUSTRIE S.p.A.

di nazionalità italiana

con sede in: TORINO

10

15

20

25

Inventori designati: VIGNOTTO Angelo, e

MARIVO Massimo.

Depositata il 20 Dicembre 2000 N.

DESCRIZIONE 0 2000A 001187

La presente invenzione è relativa ad un dispositivo di tenuta per un cuscinetto a rotolamento.

invenzione presente particolare, la In relativa ad un dispositivo di tenuta montato tra un anello interno ed un anello esterno di un cuscinetto a rotolamento per prevenire l'ingresso di impurità di lubrificante, nonché la perdita solide comprendente un primo schermo di materiale metallico accoppiato all'anello esterno, un secondo schermo di materiale metallico accoppiato all'anello interno e disposto frontalmente al primo schermo, ed una guarnizione di materiale sintetico solidale al primo di tenuta di labbro provvista un е nello spazio schermi estendentesi tra i due

delimitato dai due schermi stessi.

Nell'industria dei cuscinetti a rotolamento, vi è la tendenza ad integrare i dispositivi di tenuta del tipo sopra descritto con i dispositivi di misurazione della velocità di rotazione relativa tra i due anelli del cuscinetto, ovvero vi è la tendenza a rendere una ruota fonica magnetizzata del dispositivo di misurazione parte integrante del relativo dispositivo di tenuta.

Considerata, però, la fragilità e delicatezza delle ruote foniche, la soluzione più comunemente adottata per la realizzazione di tale integrazione consiste nel disporre la ruota fonica tra i due schermi montandola direttamente a ridosso dello schermo più esterno fra i due schermi.

Tale soluzione, pur permettendo di proteggere la ruota fonica dagli urti e dai danneggiamenti causati dal montaggio, oppure dalla magnetizzazione, dal trasporto, presenta alcuni ancora oppure all'interposizione inconvenienti dovuti dello schermo di materiale metallico tra la ruota fonica e, a seconda dei casi, il magnetizzatore oppure il sensore. Inoltre, tale soluzione riduce anche le possibilità di utilizzo di differenti tipi di ruote foniche, che, per alcune applicazioni, potrebbero

20

essere più economiche di quelle obbligatoriamente utilizzate per far fronte all'indesiderato effetto schermante realizzato dallo schermo.

Scopo della presente invenzione è quello di realizzare un dispositivo di tenuta per cuscinetti a rotolamento, il quale permetta di risolvere in modo semplice ed economico gli inconvenienti sopra descritti.

5

25

Secondo la presente invenzione viene realizzato 10 un dispositivo di tenuta per un cuscinetto rotolamento comprendente due anelli coassiali tra loro; il dispositivo comprendendo due inserti di materiale metallico accoppiati, ciascuno, relativo anello, almeno un labbro di estendentesi tra detti due inserti, ed una ruota 15 fonica supportata dall'inserto più esterno dei detti due inserti; ed essendo caratterizzato dal fatto che l'inserto più esterno comprende una sede anulare di contenimento per la ruota fonica assialmente aperta verso esterno del cuscinetto, e presenta uno schermo 20 realizzato di gomma vulcanizzata disposto a completa chiusura della sede stessa.

L'invenzione verrà ora descritta con riferimento ai disegni annessi, che ne illustrano un esempio di attuazione non limitativo, in cui:

- la figura 1 è una vista in sezione assiale di una prima preferita forma di realizzazione di dispositivo di tenuta per cuscinetti a rotolamento realizzato secondo la presente innovazione; e
- la figura 2 è una vista in sezione assiale di una seconda preferita forma di realizzazione del dispositivo di tenuta per cuscinetti a rotolamento della figura 1.

Con riferimento alla figura 1, con 1 è indicato

nel suo complesso un dispositivo di tenuta per un

cuscinetto 2 a rotolamento comprendente un anello 3

interno ed un anello 4 esterno coassiali tra loro.

Il dispositivo 1 comprende due inserti 5 e 6 di materiale metallico accoppiati, rispettivamente, all'anello 3 ed all'anello 4, ed una guarnizione 7 di materiale sintetico, la quale è solidale all'inserto 6, e presenta due labbri 8a e 8b di tenuta estendentisi in direzioni divergenti l'una dall'altra fino a contatto dell'inserto 5.

15

Il dispositivo 1 comprende, infine, una ruota fonica 9, la quale è supportata dall'inserto 5, che, tra i due inserti 4 e 5, è quello assialmente più esterno.

In una sezione assiale, ovvero in una sezione . 25 ottenuta con un piano contenente l'asse di rotazione non illustrato del cuscinetto 2, l'inserto 6 presenta una forma sostanzialmente ad L, e comprende una parete 10 cilindrica montata a diretto contatto con l'anello 4, ed una parete 11 anulare sagomata, la quale è sostanzialmente trasversale alla parete 10, e definisce un supporto per la guarnizione 7.

5

10

15

20

25

L'inserto 5 comprende due pareti 12 e 13 cilindriche, le quali sono radialmente sovrapposte l'una all'altra, e delle quali la parete 12 è disposta a diretto contatto con l'anello 3, e presenta un tratto 14 di lunghezza sostanzialmente pari ad uno spessore assiale della ruota fonica 9. Il tratto 14 sporge assialmente verso l'esterno del cuscinetto 2 rispetto alla parete 13, e definisce un supporto radiale interno per la ruota fonica 9.

L'inserto 5 comprende, inoltre, una parete 15 anulare, la quale è solidale alla parete 13, e si estende trasversalmente alla parete 13 stessa e radialmente verso la parete 10 dell'inserto 6. La parete 15 e la parete 11 sono assialmente sfalsate e radialmente sovrapposte tra loro: i due labbri 8 sono disposti laddove le due pareti 15 e 11 non sono radialmente sovrapposte. In particolare, il labbro 8a è disposto a ridosso della parete 15, mentre il labbro 8b è disposto a ridosso della parete 13.

L'inserto 5 comprende, infine, una ulteriore parete 16 cilindrica, la quale è solidale alla parete 15, e si estende trasversalmente alla parete 15 stessa verso l'esterno del cuscinetto 2. Inoltre, la parete 16 definisce con la parete 10 un canale 17 anulare per l'espulsione dei materiali contaminanti dall'interno del dispositivo 1, e presenta un bordo 18 cilindrico ripiegato verso la parete 10 stessa.

5

20

Il tratto 14 della parete 10, la parete 15 e la 10 parete 16 definiscono tra loro una sede 19 anulare contenimento per la ruota fonica 9. di Ιn particolare, la sede 19 è assialmente aperta verso esterno del cuscinetto 2, e comprende uno schermo 20 vulcanizzata, il 15 realizzato di qomma quale disposto a completa chiusura della sede 19, e blocca la ruota fonica 9 all'interno della sede 19 stessa.

Lo schermo 20 viene realizzato dopo che la ruota fonica 9 è stata posizionata, con un certo gioco, all'interno della sede 19, e si estende radialmente per tutta la sede 19 stessa a partire dal tratto 14 fino ad un proprio limite radiale esterno definito dal bordo 18.

Lo schermo 20 presenta uno spessore assiale 25 sostanzialmente costante per almeno il tratto disposto a diretto contatto con la ruota fonica 9, e protegge la ruota fonica 9 stessa senza peraltro definire alcuno ostacolo né per il magnetizzatore né per il sensore.

La forma di attuazione illustrata nella figura 5 2 è relativa ad un dispositivo 100 di tenuta per un cuscinetto 2 a rotolamento analogo al dispositivo 1, dal quale il dispositivo 100 differisce per il fatto che il bordo 18 non è rivoltato verso la parete 10, ma è disposto trasversalmente al citato asse di 10 Inoltre, lo schermo 20 rotazione del cuscinetto 2. comprende due estremità 21 e 22 radiali opposte definenti, rispettivamente, tenuta statica una l'anello 3, contro ed una tenuta dinamica 15 sostanziale chiusura del canale 17 anulare.

Da quanto sopra esposto risulta evidente che sia il dispositivo 1 sia il dispositivo 100 non solo permettono l'assemblaggio di una ruota fonica 9 allo schermo 5 più esterno 6, ma consentono di proteggere ruota fonica 9 stessa mediante un semplice schermo 20, il cui ridotto spessore, ed il cui materiale consentono di eliminare qualunque inconveniente riscontrato con i dispositivi descritti nell'introduzione.

20

25 In effetti, lo schermo 20 consente una

magnetizzazione della ruota fonica 9 ottimale, di quanto riduce gli errori di parallelismo perpendicolarità, e consente alla ruota fonica 9 di andare in battuta contro il magnetizzatore senza danni né per la ruota fonica 9 né per il Inoltre. magnetizzatore stessi. 10 schermo 20 consente l'utilizzo di qualsiasi tipo di fonica 9 permettendo di aumentare anche il contenuto dei materiali magnetici nella ruota fonica 9 stessa, doversi senza preoccupare assolutamente dell'eventuale fraqilità presentata dalla fonica 9 stessa.

5

10

15

20

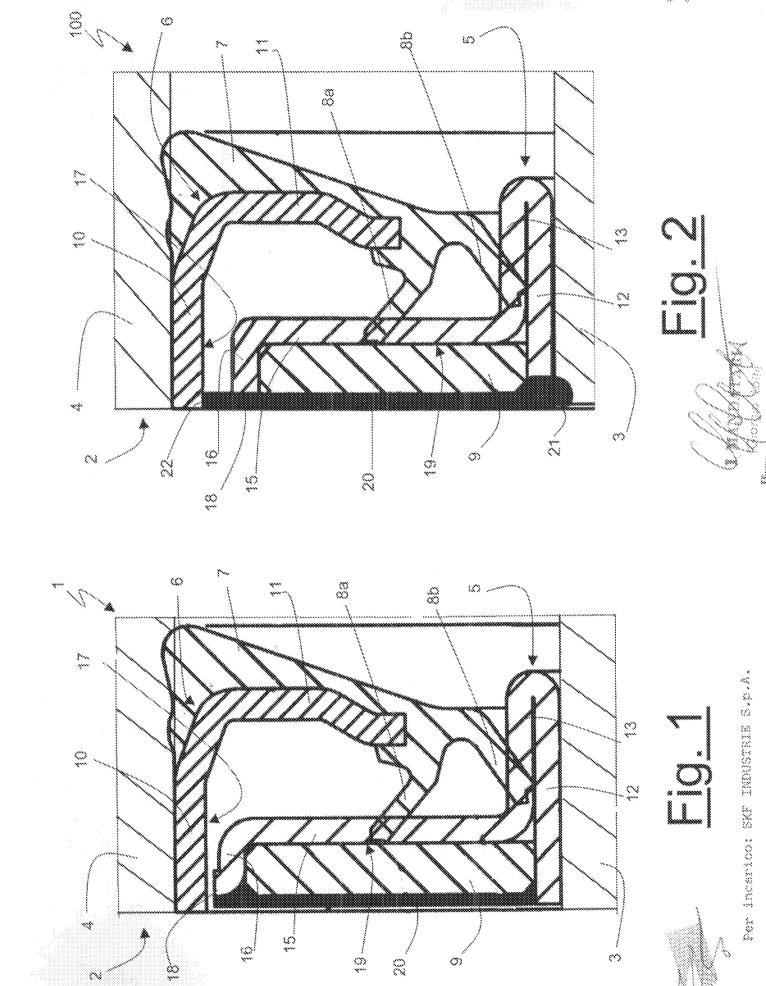
25

Inoltre, poiché come precedentemente detto, lo schermo 20 è realizzato di gomma, che viene vulcanizzata successivamente all'introduzione della ruota fonica nella sede 19, è possibile utilizzare una ruota fonica 9 le cui dimensioni sono inferiori alla dimensione della sede 19: gli eventuali giochi saranno successivamente riempiti dalla gomma dello schermo 20 durante la propria vulcanizzazione.

Infine, l'adozione dello schermo 20 testé descritto permette di rendere la sede 19 a totale chiusura ermetica, e consente anche, come descritto per il dispositivo 100, di provvedere all'isolamento dell'interno del dispositivo 100 stesso.

Si intende che l'invenzione non è limitata alle forme di realizzazione qui descritte ed illustrate, che sono da considerarsi come esempi di attuazione del dispositivo di tenuta per un cuscinetto a rotolamento, che è invece suscettibile di ulteriori modifiche relative a forme e disposizioni di parti, dettagli costruttivi e di montaggio.

RIVENDICAZIONI


- Dispositivo (1)(100) di tenuta 1. per cuscinetto (2) a rotolamento comprendente due anelli loro; coassiali tra il dispositivo (5, 6) di 5 comprendendo due inserti materiale metallico accoppiati, ciascuno, ad un relativo anello (3, 4), almeno un labbro (8) di tenuta estendentesi tra detti due inserti (5, 6), ed una ruota fonica (9) supportata dall'inserto più esterno 10 (5) dei detti due inserti (5, 6); ed essendo caratterizzato dal fatto che l'inserto più esterno (5) comprende una sede (19) anulare di contenimento per la ruota fonica (9) assialmente aperta verso esterno del cuscinetto (2), e presenta uno schermo (20) realizzato di gomma vulcanizzata disposto a 15 completa chiusura della sede (19) stessa.
 - 2. Dispositivo di tenuta secondo la rivendicazione 1, caratterizzato dal fatto che la detta sede (19) è radialmente delimitata da una prima e da una seconda parete (12, 16) cilindrica facenti parti del detto inserto più esterno (5); la prima parete (12) cilindrica definendo un supporto radiale interno per detta ruota fonica (9), e la seconda parete definendo un canale (17) anulare con l'altro inserto (6).

20

- 3. Dispositivo di tenuta secondo la rivendicazione 2, caratterizzato dal fatto che la detta seconda parete (16) presenta un bordo cilindrico (18), il quale è ripiegato verso l'altro inserto (6) e definisce un limite radiale esterno per lo schermo (20) di gomma vulcanizzata.
- 4. Dispositivo di tenuta secondo la rivendicazione 3, caratterizzato dal fatto che il detto schermo (20) comprende due estremità (21, 22) radiali opposte definenti, rispettivamente, una tenuta statica contro un anello (3) del cuscinetto (2), ed una tenuta dinamica a sostanziale chiusura di detto canale (17) anulare.
- Dispositivo di tenuta per un cuscinetto a
 rotolamento, sostanzialmente come descritto con riferimento ad uno qualsiasi dei disegni annessi.

p.i. SKF INDUSTRIE S.p.A.

5

