4

/e

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/20198
GOGF 17/60 Al . -

. (43) International Publication Date: 27 July 1995 (27.07.95)

(21) International Application Number: PCT/US94/02628 | (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,
CZ, DE, DK, ES, Fl, GB, HU, JP, KP, KR, KZ, LK, LU,

(22) International Filing Date: 11 March 1994 (11.03.94) LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,

DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI

(30) Priority Data: patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,

08/184,127 21 January 1994 (21.01.94) Us SN, TD, TG).

(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. De Anza | Published
Boulevard, Cupertino, CA 95014 (US). With international search report.

(72) Inventors: DAVIS, Mark, E.; 10174 Potters Hatch Common,
Cupertino, CA 95014 (US). JENKINS, John, H.; 1503
Cameo Drive, San Jose, CA 95129 (US). POONEN, Sanjay,
J; 1049 Payette Avenue, Sunnyvale, CA 94087 (US).

(74) Agent: STEPHENS, L., Keith; Taligent, Inc., 10201 N. De
Anza Boulevard, Cupertino, CA 95014 (US).

(54) Title: NUMBER FORMATTING FRAMEWORK

(57) Abstract

A method and system for formatting numerical information. An object-based operating system provides various number formatting
services. Some objects scan text and convert the text to numerical information, and convert non-text numerical information to text, and
convert between different numerical formats and languages. The system provides a common ground from which application programs can
speak a seemingly common numerical language without specifying the details of converting numerical information between systems of
representation. The present system relieves application developers of the burden of handling details of numerical information, and provides
ease of information transfer between monetary systems and cultures having differing languages. The system also provides for conversion
between number formats to allow for easier processing and/or comprehension of the numerical information, and normalization and alignment
of any textual representation of numeric information.

AT
AU
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

N

\Y

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-1-
NUMBER FORMATTING FRAMEWORK

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are subject to
copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Field of the Invention
This invention generally relates to improvements in computer systems,
and more particularly to a system and method for formatting numerical data.

Background of the Invention

Computer systems today provide a wide range of efficiencies previously
unavailable. The use of word processors, spreadsheets, database managers,
finance managers, and other applications is enjoying unprecedented growth.
This growth is global in nature. Presently, applications are typically designed as
stand alone units which handle most, if not all, the processing related to the
particular application. Occasionally the application may call on a disk operating
system to perform basic 1/0, but the bulk of processing is performed by the
application program.

One of the most common types of data in computing is numerical data.
Virtually every application program requires processing and manipulation of
data. Because each application program handles numerical data internally, there
is a wide variation in how numerical data is handled. This often creates
incompatibilities between application programs. Another problem is a result of
the shrinking global culture. There are a wide variety of monetary systems in the
world, which create a correspondingly wide variety of notations and grammars
which are used to convey monetary information. This variety results in
complications in transferring information between parts of the world because the
numerical monetary information must be appropriately reworked to be
understood by the recipient of the information.

Other problems arise from the basic form in which numerical information
is maintained. It is often the case that numbers begin as text, a form which can
not be easily dealt with from a mathematical perspective. The numerical
information has to be converted to a format which is easily handled, a form other

(@}]

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

‘than text. There are a wide variety of other numerical data inconsistencies
bevond those considered above. But there is clearly a recognition that numbers
appearing in one setting are not easily used in another setting. Whether it be
between application programs, between geographical areas, between one storage
format and another, between monetary systems, or between number system
formats, any time there are inconsistencies, inefficiencies are created.

Therefore, there is a need to eliminate, or assist in eliminating, the
inconsistencies of numerical information, or at least try to provide efficient
systems and methods for converting numerical information from one system to
another.

Summary of the Invention

Accordingly, it is a primary object of the present invention to provide a
system and method for providing improved number formatting.

It is another object of the present invention to provide tools for converting
numerical information from one system to another.

It is yet another object of the present invention to provide tools for
converting numerical information and associated information from one system
to another.

It is still another object of the present invention to provide conversion of
numerical information in one language to numerical information in another
language.

The preferred embodiment is a system of objects which provide various
number formatting services. Some objects scan text and convert the text to
numerical information. Other objects convert non-text numerical information
to text. Conversion between numerical formats and languages is also supported.
The system provides a common ground from which application programs can
speak a seemingly common numerical language without concern about the
details of converting numerical information between systems of representation.
The present system relieves application developers of the burden of handling
details of numerical information. The system also provide ease of information
transfer between monetary systems and cultures having differing languages. The
system also provides for conversion between number formats to allow for easier
processing and/or comprehension of the numerical information. These and
other objects and advantages will become apparent from the discussion below.

10

15

20

25

30

WO 95/20198 PCT/US94/02628

-3-

Brief Description Of The Drawings

Figure 1 illustrates a typical hardware configuration of a computer in
accordance with a preferred embodiment;

Figure 2 is a Booch diagram illustrating the relationship between various
classes used in number formatting in accordance with a preferred embodiment;

Figure 3 shows the overall text to number conversion process in
accordance with a preferred embodiment;

Figure 4 shows the conversion of a number to text in accordance with a
preferred embodiment;

Figure 5 shows conversion using two number formatters in accordance
with a preferred embodiment;

Figure 6 illustrates two formatters using a best match algorithm in
accordance with a preferred embodiment;

Figure 7 shows the two step conversion process between binarv and text in
accordance with a preferred embodiment; and

Figure 8 shows the ConversionResult object and the data which the object
maintains in accordance with a preferred embodiment.

Detailed Description Of The Invention

The detailed embodiments of the present invention are disclosed herein. It
should be understood that the disclosed embodiments are merely exemplary of the
invention, which may be embodied in various forms. Therefore, the details disclosed
herein are not to be interpreted as limiting, but merely as the basis for the claims and as
a basis for teaching one skilled in the art how to make and/or use the invention. The
history of object-oriented programming and the developments of frameworks is well-
established in the literature. C++ and Smalltalk have been well-documented and will
not be detailed here. Similarly, characteristics of objects, such as encapsulation,
polymorphism and inheritance have been discussed at length in the literature and
patents. For an excellent survey of object oriented systems, the reader is referred to
"Object Oriented Design With Applications,” by Grady Booch.

While many object oriented systems are designed to operate on top of a basic
operating system performing rudimentary input and output, the present system is used
to provide system level support for particular features. It should be kept in mind,
however, that innovative objects disclosed herein may also appear in layers above the
system level in order to provide object support at different levels of the processing
hierarchy. As used in the specification, claims and drawings, "numerical information”

may include any information related to numbers. This includes text representing

10

15

20

25

30

35

WO 95/20198 7 PCT/US94/02628
-4-

- numbers, symbols representing numbers, various number systems, text associated with
numbers, and symbols associated with numbers. Numerical information could be any-
information which conveys meaning relative to numbers. In general, it is conversion
among this universe of information, as discussed explicitly herein, and known as
conveying information regarding numbers, that the present invention is directed
toward.

The invention is preferably practiced in the context of an operating system
resident on a personal computer such as the IBM ® PS/2 ® or Apple ® Macintosh ®
computer. A representative hardware environment is depicted in Figure 1, which
illustrates a typical hardware configuration of a computer in accordance with the subject
invention having a central processing unit 10, such as a conventional microprocessor,
and a number of other units interconnected via a system bus 12. The computer shown
in Figure 1 includes a Read Only Memory (ROM) 16, a Random Access Memory (RAM)
14, an I/O adapter 18 for connecting peripheral devices such as disk units 20 and other
1/0 peripherals represented by 21 to the system bus 12, a user interface adapter 22 for
connecting a keyboard 24, a mouse 32, a speaker 28, a microphone 26, and/or other user
interface devices such as a touch screen device (not shown) to the bus 12, a
communication adapter 34 for connecting the workstation to a data processing network
represented by 23. A display adapter 36 for connecting the bus to a display device 38.
The workstation has resident thereon an operating system such as the Apple System/7
® operating system.

The present invention describes a set of classes that provide conversion
services for numbers. Both text scanning to extract a number, and number
formatting to convert a number to text, are handled by the same class. Number
formats are provided for most numerical formats, and for different languages. It
is also possible to use number formatting classes to format such numbers as
2.99792458 x 108 and (1,234.56) correctly, where parenthesis are used to indicate
negative numbers. Figure 2 provides an overview of the class relationships in
the number formatting system. The number formatting classes use the
TCanonicalNumberFormatter 202 and TCanonicalNumber 204 classes internally.
The number formatting classes convert text to a TCanonicalNumber 204 and
then, using a TCanonicalNumberFormatter 202, perform the further conversion
to the binary level. Only people who create new number formatting classes will
need to access the TCanonicalNumberFormatter 202, TCanonicalNumber 204,
and their methods. Certain of the number formats are intended for specialized
use, such as using Roman numerals in outlines or for numbering pages in
prefaces. The base number format class is TNumberFormat 218, which is an

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-0

abstract base class. The following are the most important methods defining the
protocol in this base class:

void TextToNumber (const TText& theText, TConversionResult& theAccuracy,
long double& theNumber, TRange& theTextRangeToUse).

Figure 3 shows the overall text to number conversion process. This is the
most common scanning method for converting a TText object into a number. It
takes a TText as its input at 300, converts the text at 302, and returns the scanned
number. Information on how well the text was parsed is returned in the
TConversionResult 200, at step 304. The TRange object is used to determine
which portion of the text to convert; it defaults to the entire text.

There is also a family of methods such as:

long double TextToLongDouble (const TText& theText, TConversionResult&
theAccuracy, TRange& theTextRangeToUse);

double TextToDouble (const TText& theText, TConversionResult& theAccuracy,
TRangeé& theTextRangeToUse); and

These methods provide a convenient means for using converted numbers
in function calls and similar situations where the exact type of number is known.

void NumberToText (const long double, TText&, TConversionResult&).

Figure 4 shows the conversion of a number to text. This method handles
the conversion from an input number at 400, and converts the number to its
textual representation at 402. A TConversionResult 200 is returned at 404 to
indicate the success of the conversion; problems might arise, for example, from
trying to write a number such as 1.618 in Roman numerals. (There are two
reasons why an exception is not thrown by NumberToText() to indicate an
incomplete conversion. One is that some number formats simply do not support
all kinds of numbers. Since it is possible to do at least part of the conversion—in
this case, turning 1.618 into “1”—this is not an error and an exception is not
thrown.) Again, overloaded forms exist for different number types.

virtual GCoordinate MaxWidth (long double minNum, long double maxNum,
const TStyleSet& styleSet) = 0;

The method set forth directly above, takes as input a range of numbers, and
returns the maximum width a number in the range can take up when displayved
using the stvleSet. This is a pure virtual method that must be overridden in any
derived classes.

10

15

20

25

30

WO 95/20198 PCT/US94/02628

-6-

. virtual long MaxCharCount (long double minNum, long double maxNum) = 0;

This method, given a range of numbers, returns the maximum number of
UniChar characters a number in the range can take up when converted to a
TText. This is a pure virtual method that must be overridden in any derived
classes.

Plus and minus signs

Distinct formatting for positive and negative numerals is provided by
appending text at the beginning or end of a formatted numeral. Certain methods
are used to specify the text used on either side of a positive or negative numeral
and related properties. The default behavior that these methods assume is that
some text is appended before and after every numeral to indicate its sign. This
text may or may not be empty. Negative numerals always have the specified text
appended; positive numerals may or may not—this is controlled by the
SetShowPlusSign(). Thus, the familiar behavior would be to append a minus
sign at the beginning of negative numerals and nothing at the end. Positive
numerals can be set apart by inserting a “+” at the beginning.

Not all number formatting classes need use this default behavior. Some,
such as the TRomanFormat 230, ignore it by specifying empty strings for the
prefix and suffix text. Others can override the methods in TNumberFormat 218
that set up the default behavior, as set forth below.

Boolean UsesStandardNegation()
// defaults to always return TRUE

NormalizeSign(TStandardText& text, TConversionResult& result,
Boolean& isNegative)
// appends the negative prefix and suffix text to
// text, updating result, if isNegative is TRUE
// appends the positive prefix and suffix text to
// text, updating result, if isNegative is FALSE
// and ::GetShowPlusSign() is TRUE

ConfirmSignPrefix (const TStandardText& text, TRange& range,
TConversionResult& result, Boolean& negFlag)

ConfirmSignSuffix (const TStandardTexté& text, TRange& range,
TConversionResult& result, Boolean& negFlag)

The default affixes for positive numbers are empty strings, as is the default
suffix for negative numbers. The default prefix for negative numbers, however,

10

15

20

25

30

WO 95/20198 PCT/US94/02628

-7-

_is "-", which, despite appearances is not the minus sign/hyphen we all know and

love from ASCII, but the visually identical version of the minus sign.

Out of Bounds

Every number format has a numerical range associated with it over which
it can produce valid results. For example, Roman numerals are generally not
used to represent numbers below 1 and are only rarely used to represent numbers
above 5000. There are five methods used in connection with the range for a

number formatter: methods:

virtual Boolean IsValidNumber (long double) const;
// is the number between the minimum and maximum?

virtual long double GetMinNumber () const;
virtual long double GetMaxNumber () const;
virtual void SetMinNumber (long double);
virtual void SetMaxNumber (long double);

Figure 5 shows the number to text process using the number formatter. At
step 500, if an unsuccessful attempt to turn an out of range number into text is
detected at 502, then an universal number formatter is used at 504. Each number
formatter contains another number formatter to use in just such a situation. By
default, this out of bounds number formatter is a TUniversalNumberFormatter,
which is guaranteed to be able to handle any number.

A similar situation exists for turning text into numbers, illustrated at
Figure 6. Each number formatter attempts to turn text to a number by itself, at
600. If it was unable to turn the entire text into a number, it will see what the out
of bounds number format can do, at 602, 604, and returns the better match of the
two (i.e., the one that used more of the original text), at 606. The process is
reversed if converting in the other direction.

You can set the out of bounds number format used bv a number formatter

with the method:
void AdoptOutOfBoundsNumberFormat (TNumberFormat *);

Note that we're using adopt semantics here; the number format will
assume responsibility for the storage of the adopted out of bounds format. It
would be pretty meaningless to have an out of bounds number format with a
smaller range than the number format initially employed, so

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-8-

AdoptOutOfBoundsNumberFormat() determines that the out of bounds number
format has the larger range before adopting it.

TConversionResult 200, TNumeral 206, and TCanonicalNumber 204
TCanonicalNumber 204

The process of conversion between text and binary numerals falls
algorithmically into two distinct parts: one part is primarily concerned with
numerical formatting such as rounding, while the other handles the mechanics
of writing systems. The TNumberFormatter class 218 formats numbers , as
shown in Figure 7, by dividing the process into two steps: conversion between a
binary number and a standard intermediate form (a TCanonicalNumber 204) at
700; and conversion between the standard intermediate form and text at 702.

TConversionResult 200

TConversionResult could be implemented by two classes, TScanResult and
TFormattingResult to provide more directed classes of conversion results.

The number formatting classes do not make heavy use of exceptions.
There are two reasons for this. One reason is that mistakes are not really
exceptional. A user sometimes types an ill-formed numeral and expects it to be
converted to a binary number. It will also be common for a user to expect a
binary number to be converted to text using an inappropriate format (e.g., writing
T using Roman numerals).

The other reason exceptions are not heavily relied upon is that even if a
full conversion is impossible, a partial conversion may be possible, which is
better than nothing. It may not be possible to write 7 in Roman numerals, but a
close approximation can be achieved by writing “IIL” Depending on the
rounding options, thus notation may correspond with the desired resuit.

The TConversionResult 200 class, as shown in Figure 8, exists to provide
extensive information to a programmer regarding how successful a conversion
was. It also conveys other information about a conversion which a programmer
may find helpful.

The information which can be obtained from a TConversionResult 200 is
presented below.

virtual ParseConfidence GetConfidence() const;
A ParseConfidence 800 is a floating-point number between 0.0 and 1.0 that

10

15

20

25

30

35

WO 95/20198 ’ PCT/US94/02628

9-

indicates an overall rating of the conversion. It could typically be used to indicate
which number format might be a better one for a particular conversion:

// Given long double aNum, and number formats formatl, format2
TConversionResult resultl, result2;
TText textl, text2, theText;
formatl.NumberToText (aNum, textl, resultl);
format2.NumberToText(aNum, text2, result2);
// use the result of whichever conversion did the better job
if (resultl.GetConfidence() > result2.GetConfidence())

theText = textl;
else theText = text2;
virtual unsigned long GetLengthUsed() const;

GetLengthUsed 802 indicates how many characters in a given text string
were used in a conversion from text to a number. It can be used by text parsers to
indicate where the next stage of the parsing should take place.

virtual Boolean GetSeparatorError() const;

GetSeparatorError 804 is used to indicate an error involving a digit
separator in a conversion from text to a binary number. For example, the
numeral “1,23.45” is.clearly intended to mean “123.45”. In this instance, the
conversion will take place, and GetSeparatorError() will return TRUE.

virtual Boolean GetIncompleteSign() const;

GetIncompleteSign 806 is used to indicate an error involving a plus or
minus sign in a conversion from text to a binary number. For example, if we
have set negative numerals to be bracketed with parentheses, then “(123.45”
would seem to be a mistake for (123.45)”. In this instance, the conversion will
take place, and GetIncompleteSign() will return TRUE.

virtual Boolean GetValueOrderError() const;

GetValueOrderError 808 is used to indicate an error involving the order of
digits in number formats which are sensitive to digit order—specifically, Roman
numerals. The string “IILCMM” would appear to be an attempt at writing a
Roman numeral, but the order of the digits is incorrect. A Roman number
formatter would do its best to turn this string into a binarv number and
GetValueOrderError() would return TRUE.

virtual Boolean GetCanNormalize() const;
GetCanNormalize 810 returns TRUE if a text string can be turned into a
binary number and back into a text string in such a fashion that:

U

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-10-

(a) no rounding would take place; and

(b) appending a character at the end of the normalized string would leave

us with a valid number.

For example, suppose a standard, American number formatter is employed
which uses commas for digit separators and periods for decimal separators, with
parentheses for the minus sign and at most four decimal places specified.

“123.45” could be normalized—it would become “123.45".
“1,23.45” could be normalized—it would become ”123.45".
“12345.67” could be normalized—it would become “12,345.67".

“123.456789" could not be normalized—it would become “123.4567” and
the “89” would be lost.

“(123.45” could not normalized—it would become “(123.45)"; appending a
“6"” would turn this into the invalid string “(123.45)6".

A proper, rational number formatter, would present the following results.
“3” could be normalized—it would become “3”.

“3 1” could not be normalized—the rational number formatter would
assume the denominator meant was “1” and turn the whole thing into “4”. This
counts as rounding.

“3 1/7” could be normalized—the rational number formatter would
normalize it to “31/7”.

virtual unsigned long GetIntegerBoundary() const;

Many number formatters are used to format non-integral values. Decimal
tabbing requires information on where the separation between integer and
fractional portions of a numeral takes place. GetIntegerBoundary() 712 returns an
index into the text string generated by a number to text conversion giving
precisely this information.

virtual unsigned long GetDigitSequenceEnd() const;

Many number formats involve a numeral and some surrounding text. For
example, it is not uncommon to see negative numbers indicated by using
parenthesis, as in "($1,000)." It is therefore important to know where the
numerical portion of a formatted numeral ends (particularly if it has been
normalized), so that editing of the text can take place starting at the proper point.
This information is returned by GetDigitSequenceRange(TTextRange&) 714.

virtual Boolean GetOutOfBoundsError() const;
Every number formatter has a range of values it can represent associated

10

15

20

25

30

WO 95/20198 PCT/US94/02628

-11-

with it. It also has an associated number formatter to use in case a number given
it to convert is out of bounds. If a number formatter has to use its out-of-bounds
formatter to convert a number to text, then GetOutOfBoundsError() 716 returns
TRUE. In the following code fragment, for example, a different color is used to
indicate an out-of-bounds number conversion.

TRGBColor theInBoundsColor(0.2,0,0);
TRGBColor theOutOfBoundsColor (0.25, 0.25, 0.25);
TConversionResult theResult;

theFormat->NumberToText (aNum, numText, theResult);
if (theResult.GetOutOfBoundsError())

DrawNumber (numText, theOutOfBoundsColor);
else DrawNumber (numText, theInBoundsColor);

TNumerals 206

TNumerals 206 is a class that is used by the number format for the
individual numeral char-value mapping, i.e. that the value of kDigitSeven is 7 in
a U.S. decimal format and that kRomanNumeralTen has the value 10 using
Roman numerals.

The main methods within TNumerals 206 for use in number formatting
are:

virtual Boolean NumeralToValue (UniChar ch, long& value) = 0;
virtual Boolean ValueToNumeral (long value, UniChar& ch) = 0;

The TNumerals 206 object used by a particular TNumberFormat 218
defines what the numerals are for that instance of the object only. It would be
perfectly possible to have an instance of a TNumberFormat 218 object that uses
the letter “q” for 1 and “z” for 7. Developers writing their own number format
objects should use the information derived from the object’s TNumerals 206. An
exceptional case would be a number formatter such as the
TUniversalNumberFormat class, which is specifically designed to handle any
valid numerical digit.

There are currently four TNumerals 206 subclasses—TUnicodeNumerals
216 which uses the default numerical characteristics defined by Unicode;
TSequentialNumerals 208 for a numeral set where the values are sequential;

10

15

20

25

30

WO 95/20198 PCT/US94/02628

-12-

TContiguousNumerals 210 where, in addition to the values being sequential, the
characters representing them are also contiguous; and THybridNumerals 214 for
arbitrary sets of numeral-value pairs. A numeral-value pair is an association of a
UniChar and its numerical value (e.g., "L" = 50 in Roman numerals, "B" = 2 in
Greek) and is represented by a TNumeralPair object.

TUnicodeNumerals 216

The TUnicodeNumerals 216 class will accept any of the digit values
defined for text-to-binary conversions. Thus, the Latin-Arabic digit one, the
Arabic-Indic digit 1, the Devanagari digit 1, and so on, will all have the value 1.

To handle binary-to-text conversions, the TUnicodeNumerals 216 object
needs to know which set of digits to use. This is done with the methods

void SetScript (TUnicode::ScriptName);
TUnicode::ScriptName GetScript (void);

The script can also be specified when a TUnicodeNumerals 216 object is
constructed. (The default is TUnicode:kRoman.) When providing the UniChar
that a certain value maps to, the TUnicodeNumerals 216 class uses the script
information to determine which possible UniChar would be appropriate. Thus,
with the script equal to TUnicode::kRoman, TUnicode::kGreek, or
TUnicode::kCyrillic, it would return TUnicode::kDigitOne for 1. If the script were
TUnicode::kArabic, it would return TUnicode::kArabic_indicDigitOne, and so on.

THybridNumerals 214

A THybridNumerals 214 object contains two sets of numeral pairs. One set |
of pairs is used for converting text to numbers only; this is the set of scanning
pairs. Two different UniChar’s can be associated with the same numerical value
in this list (e.g., for Roman numbers, either “i” or “I” would be converted to 1).
Number pairs are added to the set of scanning pairs using the method
AddScanningPair(). There is also a set of formatting pairs in which each
numerical value can be associated with at most one UniChar. Evervthing in the
collection of formatting pairs is considered automatically to be in the set of
scanning pairs. A number pair is added to the set of formatting pairs by using the

method AddFormattingPair().

17834

Thus Roman numerals can be defined to use either “i” or “I” as being

equal to 1 in turning text to numbers but insist on using only “I” in turning

631

10

15

20

30

35

40

WO 95/20198 PCT/US94/02628

-13-
numbers to text.

TNumberFormat 218 subclasses
TPositionalNumberFormat 220

A TPositionalNumberFormat 220 is used for integers written with a value-
based system where the value of a digit depends partly on the digit itself and on
where it is found in the numeral. The TPositionalNumber format defines a
number of additional setter and getter methods to determine, for example, the
rounding method to use (the rounding methods available are defined in
CanonicalNumber.h), the number of digits to display, and so on. The most
important of these include:

// The digit group separator is the text to use between
// groups of digits in a numeral

// Americans usually use "," as a digit group separator,
// Europeans usually use "." A space is also popular.

virtual void GetDigitGroupSeparator (TText&) const;
virtual void SetDigitGroupSeparator (const TTexté&);

// how many digits are in a group: in the West, 3 is
// common (1,000,000), whereas in the Orient, 4 is often
// used (1,0000,0000)

virtual int GetSeparatorSpacing () const;
virtual void SetSeparatorSpacing (int);

// should we show integer separation?
/ / 1000000 (false) vs. 1,000,000 (true)

virtual Boolean GetIntegerSeparatorOn () const;
virtual void SetIntegerSeparatorOn (Boolean);

// precision specifies how the formatted number (NumberToText)
// should be rounded.

// multiple is the increment value and rounding specifies

// how to round in conversions.

virtual void GetPrecision (long double& multiple,
ERoundRule& rounding) const;

virtual void SetPrecision (long double multiple,
ERoundRule rounding);

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-14-

// minlnt is the minimum number of digits to display
// when formatting a number as text. Also known as
// zero-padding.

virtual int GetMinIntegerDigits () const;
virtual void SetMinlntegerDigits (int);

TFloatingPointFormat 222

TFloatingPointFormats 222 are used for position-based numeral systems
which extend the algorithm to include non-integers. A TFloatingPointFormat
222 could represent T, for example, as 3.14159265358979323846264338327950. The
TFloatingPointFormat 222 includes special methods to specify such parameters as
the number of decimal points to display; these include:

// The decimal character is the character to put between
// the "left" and "right" hand sides of the decimal
// representation—Americans use "." and Europeans ",
virtual void GetDecimalSeparator (TTexté&) const;
virtual void SetDecimalSeparator (const TText&);

// Do we display a decimal point even for integers?
virtual Boolean GetDecimalWithInteger () const;
virtual void SetDecimalWithInteger (Boolean);

// Use the separator character in the fractional part?
virtual Boolean GetUseSeparatorForFraction () const;
virtual void SetUseSeparatorForFraction (Boolean);
// Use the separator character in the exponent?
virtual Boolean GetUseSeparatorForExponent () const;
virtual void SetUseSeparatorForExponent (Boolean);

virtual int GetMinFractionDigits () const;
virtual void SetMinFractionDigits (int);
virtual int GetMaxFractionDigits () const;
virtual void SetMaxFractionDigits (int);

TUniversalNumberFormat

This is a special subclass of TFloatingPointFormat 222, which has

10

15

20

25

30

WO 95/20198 v PCT/US94/02628

-15-

auniversal range (and the class used as the default out-of-bounds number format
for all other number formats). TUniversalNumberFormat can handle infinity,
NaN’s of various types (such as the results of division by zero). Its main purpose
is to provide a default out-of-bounds format and guarantee that any format will
return something when asked to turn any binary number into a numeral.

TRationalNumberFormat

This is derived from TPositionalNumberFormat 220 and adds the
capability of writing non-integral values as the ratio between two integers. There
are two special enum’s within this class, one to specify a fraction’s “propriety” and
one to determine if a fraction is written numerator first (as is usuallv done in the
West) or denominator first (as is traditionally done in China).

enum EFractionPropriety { kProperFraction, kimproperFraction };

enum EFractionDirection { kNumeratorFirst, kDenominatorFirst };

Proper fractions are those whose numerator is less than their denominator (e.g.,

1 . .
“37) and improper or vulgar fractions are those whose numerator may or may

22
not be less than their denominator (e.g., 7). A character is also specified (usually

TUnicode::kSpace) to use between the integral and fractional portion of a rational
number, and whether or not to make the numeral a superscript and the
denominator a subscript. This character facilitates switching between “355/113”
and “355/ 113", for-example.

Each rational number format requires information associated with
formatting integers, however. This is specified by using the methods

virtual TNumberFormat* GetIntegerFormat() const;
virtual void AdoptIntegerFormat (TNumberFormat *);

The integer format defaults to a standard TPositionalNumberFormat 220, but can
be overridden. This allows full control over the representation of the numerator

and denominator of a rational number and makes “III I/ VII” as easy to write as
1122/7/I.
For the sake of compatibility with older character set standards, a set of

. 1 .
fractional numeral characters such as > and "g are also defined. There are also

different characters that can be used to separate the numerator and denominator

WO 95/20198 ’ PCT/US94/02628

10

15

25

30

-16-

of a fraction, such as kSlash (i.e., “/”) and kFractionSlash ("/).

The TRationalNumberFormat 224 object supports the use of these

characters only in conversion from text to numbers. Because few fonts contain
glyphs for the fraction characters, conversion from numbers to text will use the

standard Arabic numeral characters and stvled text to represent fractions.

// construct TRationalNumberFormat
TRationalNumberFormat* rationalFormat;
// default base 10, kDigitZero..kDigitNine, so don't pass in numerals object

// conversion example

TConversionResult parseResult;

TText testText("42 2/16");

long double num = rationalFormat->TextToLongDouble(testText,

parseResult);
// num is now 42.125
rationalFormat->NumberToText(num, testText, parseResult);

. 1
// testText is now "42 g"

TOutlineNumberFormat

This method is derived from TNumberFormat 218 and implements an

outline-style numbering scheme of the sequence a, b, ¢, ..., z, aa, bb, cc, ..., 2z, aaa, ...

// construct TOutlineNumberFormat

TContiguousNumerals outlineNumerals(TUnicode::kLatinSmallLetterA,
1, 26);

// numerals are 'a’.."z" with values starting at 1

TOutlineNumberFormat* outlineFormat;

outlineFormat = new TOutlineNumberFormat(outlineNumerals, 26); //

numerals, base

// convert using TOutlineNumberFormat

TConversionResult parseResult;

TText testText("cc");

long num = outlineFormat->TextToLong(testText, parseResult);

// num is now 29

outlineFormat->NumberToText(num, testText, parseResult); - //back

again

(@]

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

-17-

Note: TOutlineNumberFormat is shown as element 228 in Figure 2.

TAdditiveNumberFormat

We are most familiar with a number svstem which is positional in
number, where the value of each symbol depends on its position. Other
common number systems are additive in nature, where each symbol has an
inherent value and the total value of a number is obtained by adding the value of
each symbol, usually without regard for the order in which the symbols occur.
The most common instance used in America are the Roman numerals.

TAddiditiveNumberFormat 236 is derived from TNumberFormat 218 and
handles simple additive numerical representations, where the values of different
numerals are just added together to form the number; i.e. the number 47 is
represented as “uL” in classical Greek, where “i1” is used to represent 40 and “Z”
represents 7. This class by itself is not very intelligent; it would accept “wwug,”
“uxf,” or “x{Kx" as 47 as readily as the correct “n{.” It is not much more
sophisticated in turning numbers to text. Number systems with more
sophisticated conversion algorithms or more sophisticated error checking would
need to be represented by subclasses, as is done with Roman and Hebrew
numerals.

TRomanNumberFormat 230
This method is derived from TAddiditiveNumberFormat 236 and handles
Roman numerals. The support for Roman numerals is largely intended for
limited situations such as page numbers or numbers in an outline. The control

of the case of Roman numerals is facilitated by using the following:

enum ERomanNumeralCase { kUpperCase, kLowerCase };
ERomanNumeralCase GetRomanNumeralCase() const;
void _ SetRomanNumeralCase (const ERomanNumeralCase);

Note that any Roman number format will freely accept either upper or
lower case in scanning: “MCMXCII”, “mcmxcii” and “mCmXcli” will all become
1992. You do, however, explicitly control whether upper or lower case letters are
used when turning binary numbers into numerals. There are a number of
different systems for Roman numerals that differ among themselves in their use
of the “subtractive principle,” whereby 4 is represented as “IV” (5 - 1) rather than
“II” (1+1+1+1).

TRomanFormat 230 has a special enum defined to control this behavior:

WO 95/20198 | PCT/US94/02628

(6]]

10

15

20

25

-18-

enum ERomanNumeralType { kShort,
kNormalLong4Long8,
kNormalLong4Short8,
kNormalShort4Long8,
kNormalShort4Short8,
kLong };

The short system uses the subtractive principle as much as possible to
make the Roman numeral as short as can be. The long system never uses the
subtractive principle at all (and was the original system, favored by purists). The
others vary in whether they use subtraction to represent 4’s and 8's.

Number 4 6 8 9 | 1999
kShort Iv VI X IX M
kNormalLong4Long8 | IHI VI VIII IX MCMXCIX
kNormalLong4Short8 | IIII VI IIX IX MCMXCIX
kNormalShort4Long8 IV VI VIII IX MCMXCIX
kNormalShort4Short8 |[IV \'21 10,4 IX MCMXCIX
kLong m VI VIII VIII MDCCCCLXXXX
VIIII

There are also variations in the treatment of numbers greater than 5,000.
There is little consistency among ancient writers (because they had trouble
counting so high) and little need today (because better number systems exist).

For the sake of compatibility with older character set standards, an embodiment
defines a set of Roman numeral characters in addition to their Latin letter
counterparts. There is a Roman numeral “I” distinct from the letter “I”, a Roman
numeral “ii,” and so forth in both upper- and lower-case forms.

The TRomanFormat 230 object supports the use of these characters only in
conversion from ‘text to numbers. Because few fonts will have glvphs for the
Roman numeral characters, conversion from numbers to text will not use the
Roman numeral characters in Unicode, including the rare Roman numerals
such as 5,000 (D) and 10,000 (®), and the alternate form of 1,000 (D) which have
no analogs in the alphabet. These characters can, however, be used in text-to-

number conversions.

There is one final variation to consider: in some contexts, it is usual to use
the letter “J” instead of the letter “I” as the last letter in a Roman numeral, thus
writing 6 as “V]” or “vj” rather than “VI” or “vi.” This behavior can also be

10

15

20

25

30

35

WO 95/20198 ‘ PCT/US94/02628

-19-

controlled (the default is not to terminate with “J”).

Boolean GetTerminatesWithJ() const;
void SetTerminatesWith](const Boolean);

The use of an arbitrary THybridNumerals 214 object is not supported with
TRomanFormat 230. There is no need to specify a THybridNumerals 214 object
or base in the constructor for TRomanFormat 230. This behavior is overridden
by subclassing TRomanFormat 230.

// construct TRomanNumberFormat
TRomanNumberFormat* romanFormat = new TRomanNumberFormat
(TRomanNumberFormat::kUpperCase);

// conversion example
TConversionResult parseResult;
long num = 1992;
TText testText;
romanFormat->NumberToText(num, testText, parseResult);
// testText is now "MCMXCII"
romanFormat-
>SetRomanNumeralCase(TRomanNumberFormat::kLowerCase);
romanFormat->NumberToText(num, testText, parseResult);
// testText is now “mecmxcii”
num = romanFormat->TextToLong(testText, parseResult); // num is
now 1992

THebrewNumberFormat 232

Hebrew numerals are written using the Hebrew alphabet in a fashion
similar to the ancient Greek numerals, where the first nine letters are assigned
the values 1 through 9, the next nine 10 thrdugh 90, and so on. The value of a
numeral is the total value of the letters making it up. This would ordinarily be
represented by using a TAdditiveNumberFormat 236; but to avoid using portions
of the ineffable Name of God as numerals, 14 must be written as 9+5 (V) not
10+4 ("") and 15 as 9+6 (MV). This necessitates using a special object for Hebrew
numerals. Hebrew does not distinguish between upper- and lower cases, and
there are no alternate characters that might be used in turning numbers to
Hebrew numerals, so there are no complications bevond this one in the
THebrewNumberFormat 232. There is no need to specify a THybridNumerals 214

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628
-20-

object or base in the constructor for THebrewNumberFormat 232.

There is a variation of the Hebrew numeral system used in Jewish,
medieval, mystical documents—the Cabala. THebrewNumberFormat 232
provides an interface for distinguishing cabalistic from standard Hebrew

numerals.

THybridNumberFormat 234

This is derived from TAddiditiveNumberFormat 236 and adds the
capability of having a threshold where numerals are used in a multiplicative
instead of additive way; i.e. in the following example using Chinese numerals,
the number 1729 would be represented as [1][1000][7}[100][2]{10][9]
(—FEEZTT) to signify 1*1000+7*100+2*10+9.

// construct THybridNumberFormat
THybridNumerals chineseNumerals;
chineseNumerals.AddFormattingPair(TUnicode::kHanNumeralOne, 1);
// parameters are UniChar, long
~// repeat for each numeral to add
chineseNumerals.AddFormattingPair(TUnicode::kHanNumeralOne,
1000);
THybridNumberFormat* chineseFormat;
chineseFormat= new THybridNumberFormat(chineseNumerals, 10, 10);
// parameters are numerals,
/ / base, threshold

THanNumberFormat 226

The ancient civilizations of East Asia—such as Japan, Korea, Vietnam, and
particularly China—had a highly developed hybrid number system still in
common use. These are supported by the THanNumberFormat 226 class, where
“Han” is a comon name used in East Asia to refer to their civilizations.

As is the case with Roman numerals, there are a number of varying
systems used to write Han numerals. However, because the ancient Chinese
were, unlike the Romans, skilled mathematicians, and because their empire was
larger, more populous, more stable, and considerably longer lasting, the
variations in Han numerals have very large numbers, on the order of ten
million or higher. There are also variations of Han numerals which are based on

ul

10

15

WO 9520198 PCT/US94/02628

21-

. Western numerals and are fully positional, and where special shortened forms of

numbers 21 through 39 are used (calendar numerals). These are supported by an
enum within the THanNumberFormat 226 class:

enum EHanNumberType { kHanCalendar,
kHanStandard,
kHanXiaDeng,
kHanZhongDeng,
kHanShangDeng,
kHanWestern };

The standard system is the one in most frequent use and provides the
uniform approach for writing numerals up to 99,999. There are three standard
systems for writing larger numbers, the xiadeng (low-level), zhongdeng (mid-
level), and shangdeng (upper level) systems. All three systems use ten additional
characters for representing numerals:

| TUnicode:: Xiadeng value | Zhongdeng Shangdeng
value value

& | kHanNumeralYi 105 108 108
Ik %kHanNumerathao 106 1012 1016
3 | kHanNumeralJing 107 1016 1032
3 | kHanNumeralGai 108 1020 1064+
78 ' kHanNumeralBu 109 1024 10128+

kHanNumeralZi- 109 | 1024 10128+
3Z | kHanNumeralRang 1010 1028 10256+
£ | kHanNumeralGou 1011 | 1032 10512+
¥& ' kHanNumeralJian 1012 | 1036 101024+
F i kHanNumeralZheng [/1013 11040 102048+
B¢ kHanNumeralZai 1014 i1044 104096+

Most people familiar with the Han enumeration system should be able to
work through the differences between the three systems. For details on how
these systems work, please see From one to zero by Georges Ifrah (New York:
Viking Penguin, Inc., © 1985), pp. 365 et seq.

The final wrinkle in the use of Han numerals is the promulgation of
simplified characters in the People’s Republic of China. While these have largely
replaced the traditional forms within mainland China itself, the traditional forms

10

15

20

25

30

35

WO 95/20198 PCT/US94/02628

222-

continue to be more common in Japan, Korea, Hong Kong, and Taiwan and are
the default forms used by the THanNumberFormat 226 class. As usual, however,
either form will be read correctly by the formatter, and an interface is provided for
specifving which to use in formatting numbers as text:

enum EHanSimplification { kHanSimplified, kHanTraditional };
EHanSimplification GetHanSimplification() const;

void SetHanSimplification (const EHanSimplification);

Writing a new TNumberFormat 218

Developers who write their own TNumberFormat 218 objects will need to
write the methods that convert text to and from the
TCanonicalNumberFormatter 202 format. These conversions are done through

two pure virtual methods listed below.

virtual void TextToCanonicalNumber (const TText&, const TRangeé,
TCanonicalNumberé&, TConversionResult&) = 0;

virtual void CanonicalNumberToText (const TCanonicalNumberé&, TTexté&,
TConversionResult&) = 0;

Developers who write their own TNumberFormat 218 objects should not
find it necessary to override the NumberToText and TextToNumber methods, as
these methods merely call CanonicalNumberToText and
TextToCanonicalNumber to create the canonical number format and use the
appropriate TCanonicalNumberFormatter 202 and TCanonicalNumber 204
methods for the most efficient binary-canonical number format conversion.

Note that the TCanonicalNumberFormatter 202 used by a
TNumberFormat 218 is persistent. The number formatting classes defined by the
present invention provide default values for the fields within
TCanonicalNumberFormatter 202 and include setters and getters for these fields
where appropriate. This means that developers writing their own
TNumberFormat 218 objects do not need to worry about many of the details of
setting up a TCanonicalNumberFormatter 202 and TCanonicalNumber 204 but
can concentrate on those details relevant to their needs. In particular, it will not
be necessary to override the methods that set and return the values for
TCanonicalNumberFormatter 202 fields such as precision and rounding. These
are handled by the setters and getters in the TPositionalNumberFormat 220,
TFloatingPointFormat 222, and TRationalNumberFormat 224 objects.

10

15

20

25

30

W0 95/20198 PCT/US94/02628

Using a Number Format

The above interface is what one uses to convert between numbers and text,
in the examples below using a TNumberFormat 218* format.

TText testText;
long double num = 42;
TConversionResult parseResult; // object for returning parse info

format->NumberToText(num, testText, parseResult);
// testText now has the textual representation of the number, defined by
format

// now convert from text back to number
num = format->TextToLongDouble(testText, parseResult); // num is
now 42

// query TConversionResult object how exact the conversion was
ParseConfidence confidence = parseResult.GetConfidence();

// confidence is a floating-point number where 1.0 is a perfect score
unsigned long lengthUsed = parseResult.GetLengthUsed();

// lengthUsed returns how many Unichars were used from the input text

// now convert just a part (the first UniChar) of a TText object

num = format->TextToLongDouble(testText, parseResult, TRange(0,1));
// num is now most probably different, depending on what the textual
representation of

// the number 42 is in the number format “format’.

Manipulating a Number Format

The following example uses a TFloatingPointNumberFormat object to
show some unique parameters that can be changed for that class of number
format.

// first the default behavior

long double num = 42125.67;

TText testText;

TConversionResult parseResult;

floatFormat->NumberToText(num, testText, parseResult);
// testText is now "42,125.67"

10

15

20

30

WO 95/20198 PCT/US94/02628

224-

// change format to include at most one decimal

floatFormat->SetMaxFractionDigits(1);

floatFormat->NumberToText(num, testText, parseResult);
// testText is now "42,125.6"

// change format to always include at least three decimals, even with
trailing zeros
floatFormat->SetMinFractionDigits(3);
floatFormat->SetMaxFractionDigits(6);
floatFormat->NumberToText(num, testText, parseResult);

// testText is now "42,125.670"

// change to not use the thousands separator

floatFormat->SetIntegerSeparatorOn(FALSE);

// inherited from TPositionalNumberFormat

floatFormat->NumberToText(num, testText, parseResult);
// testText is now "42125.670"

Constructing Number Formats

Once there is a user preference mechanism in place, one will be able to get
the user's preferred formats and simply use the interface for TNumberFormat 218
polvmorphically for number conversion. There will also be predefined number
formats for different language regions so you will rarely have to construct a
number format yourself. The following are the concrete number formatting
classes that are currently provided, with code samples of how to create them.
Note that some TNumberFormat 218 objects require a TNumerals 206 and base in
their constructor while others do not. See the section on auxiliary objects, above.

While the invention has been described in terms of a preferred
embodiment in a specific system environment, those skilled in the art recognize
that the invention can be practiced, with modification, in other and different
hardware and software environments within the spirit and scope of the
appended claims.

[N N Ul b W N

U b W N

g > W o

WO 95/20198 PCT/US94/02628

-25-

CLAIMS

Having thus described our invention, what we claim as new, and desire to

secure by Letters Patent is:

(RS

pl

An apparatus for formatting numerical information comprising:

a processor;

a storage attached to the processor for storing information; and

a number formatter framework residing in the storage of the processor for
creating and managing number formatting objects which convert first
numerical information to second numerical information.

The apparatus of claim 1, including at least one object for converting text to

at least one number.

The apparatus of claim 2, including:

at least one object for converting text to an intermediate canonical form;
and

at least one object for converting an intermediate canonical form to at least

one number.

The apparatus of claim 1, including at least one object for converting the
second numerical information into a proper display format.

The apparatus of claim 4, wherein the at least one object for managing
conversion result information includes means for providing a confidence
indication.

The apparatus of claim 1, including at least one object for converting at
least one number to text.

The apparatus of claim 2, including:

at least one object for converting at least one number to an intermediate
canonical form; and

at least one object for converting an intermediate canonical form to a text
form.

U = W D

—

N =

o Ul e W

WO 95/20198 PCT/US94/02628

10.

12.

13.

14.

15.

16.

-26-

The apparatus of claim 1, including at least one object for managing
language-specific numeric information formatting.

The apparatus of claim 1, including at least one object for formatting

positive and negative numbers.

The apparatus of claim 1, including at least one object for managing out of
bounds processing.

The apparatus of claim 1, including:

a first number formatter for attempting a first conversion of numerical
information; and

a second number formatter for performing a second conversion when the
first conversion results in an unsatisfactory confidence value.

The apparatus of claim 1, including at least one object for mapping
character-values.

The apparatus of claim 1, including display means for dynamically aligning
any textual representation of numbers.

The apparatus of claim 1, including at least one object for formatting
numerical information in an additive format.

The apparatus of claim 1, including at least one object for formatting

numerical information in a positional format.

An computer implemented method for formatting numerical
information, comprising the steps of:

receiving numerical information in a number formatting framework as
first machine readable numerical information; and
converting the first machine readable numerical information to second

numerical information in a character format.

= W N

—

WO 95/20198 PCT/US94/02628

VA

18.
(a)
(b)

19.

20.

21.

(a)

(b)

23.

24.

25.

27.

27-

The method of claim 16, including the step of converting text to at least

one character number representation.

The method of claim 17, including the steps of:
converting text to an intermediate canonical form; and
converting the intermediate canonical form to at least one number.

The method of claim 18, including the step of managing conversion result

information.

The method of claim 19, including the step of providing a confidence

indication.

The method of claim 16, including the step of converting at least one
number to text.

The method of claim 21, including the steps of:
converting at least one number to an intermediate canonical form; and
converting an intermediate canonical form to a textual form.

The method of claim 16, including the step of managing language-specific
numeric information formatting.

The method of claim 16, including the step of formatting positive and
negative numbers.

The method of claim 16, including the step of handling out of bounds
processing.

The method of claim 16, including the steps of:

attempting a first conversion of numerical information; and
performing a second conversion in response to the first conversion not
completing with a satisfactory confidence value.

The method of claim 16, including the step of dynamically aligning and
displaving any textual representation of numeric information.

00 3 O Ul v W N

—

N O U e N

WO 95/20198 PCT/US94/02628

- 28.

29.

30.

31.

(a)

(b)
(©)

32.

34.

8-
The method of claim 16, including the step of mapping character values.

The method of claim 16, including the step of formatting numerical
information in an additive format.

The method of claim 16, including the step of formatting numerical
information in an positional format.

An apparatus for formatting numerical information comprising:

a processor;

a storage attached to the processor for storing information; and

a number formatter framework residing in the storage of the processor for
creating and managing number formatting objects which convert first
numerical information to second numerical information; and

modular object processing means for supporting any numerical
information.

The apparatus of claim 31, including a number formatter framework for
creating and managing number formatting objects which convert a textual
representations of numeric information into binary numeric information.

An apparatus for formatting numerical information comprising:

a processor;

a storage attached to the processor for storing information;

a number formatter framework residing in the storage of the processor for
creating and managing number formatting objects which converts first
numerical information to Roman numerical information; and

a display for presenting the Roman numerical information.

The apparatus of claim 31, including language independent normalization
of the first numerical information.

WO 95/20198

1/8

PCT/US94/02628

20
.
21
N
10 16 _ 14 \
cPU ROM RAM o 8
12
coMM |,
- = 23
INTERFACE DISPLAY S
l—— ADAPTER ADAPTER
a;)
AP

Figure1

PCT/US94/02628

WO 95/20198

2/8

-—

|-

o —

~

- £ 78
. Jeunoy
/{ JoquinNmIgaH |

I\ — e

_ .m::o.._ 3 1=

4 \ JaquinnpuaiyL

\

\

—

~
- I

Jewuoq™ ~«

Z 21n31g

v2e
SPEN s,

(A I 4

N 4 EnE:Z:mEom L \ S fewiod ~ jeuniog

vee

| —— - -l
\. jewoH =

1 JaquInNaMIIppY L

~

|I\\\I_
! lled~~
4

{ Joquinng

~

S N
! T Tselswny ™

e

-~

lf\owm ﬁ|

4 m:o:m::oo 1 P

V/\

vic

—

=

1
s

sll\

7

~y|\

D i
‘I

m_m_mcsz -

géE y

RN

J
Il\\

-

~
[}
~
~

/ slewnNyL 3

-~
-_— \\ \
{ -_— -~

_ sfesownN” ~x
_m_Emscmm L.,

B

~—T \rwom

’

'\ J8quinNueH] F 922

~
=~ -
~ o~
-
!

s

/_ JdaquinNjeuoney | A ~od mm:__mo_ 41 A

jewlo4 ™~

\\\
- ———
-~ ,— ~~

;/:_ jewoq” ~
jeutod <~ /7 Jaquinnjeuolysod)

N hmpE__ch__So I S ==~

gzz 0¢¢

[B - _I w PN
' jeuno4~ - _J
m_mhmE:Z " - ._onwczz 1 s
muoo_::_. - O~

=\

_:mmm:o_w_g:oo 1

/ s — \
-~ ~——

-~
-~ I

—_—— - _I — -
/ lequinN ~ /.W& lejjewio4 ~
|[eojuouen] .7 P n_mnssz_moaocmo L .

X

- — A
P —_——

\
J

WO 95/20198 PCT/US94/02628

3/8

(o)

v

TText INPUT

v

CONVERT TEXT 302
TONUMBERBY |~
TextToNumber

v

RETURN 304
TConversionResult

v
()

300

Figure 3

WO 95/20198

PCT/US94/02628

4/8

[START]
NUMBER INPUT |~ 40
v

CONVERT NUMBER 400
TO TEXT BY L~
NumberToText

v

RETURN | - 404
TConversionResult

'
=)

Figure 4

WO 95/20198 PCT/US94/02628

5/8

[START]
v

ATTEMPT TO CONVERT L 500
NUMBER TO TEXT USING
NUMBER FORMATTER

502

NUMBER TO TEXT
UNSUCCESSFUL DUE TO
OUT OF RANGE?

NO

YES
v

CONVERTUSING |/ %
TUniversalNumberFormatter

v
=)

FIGURE 5

WO 95/20198

PCT/US94/02628

6/8
[START j
!

CONVERT TEXT TONUMBER |,/ &°
USING NUMBER FORMATTER

602

ENTIRE NUMBER TO
TEXT SUCCESSFUL?

NO
v

CONVERT USING / 604
TUniversalNumberFormatter

i

CHOOSE BEST MATCH OF THE |/ &%
TWO FORMATTING ATTEMPTS

I

T

Figure 6

WO 95/20198

PCT/US94/02628

7/8

=

v

CONVERT BETWEEN BINARY 700
NUMBER ANIP OIEI/IERMEDIATE «

v

CONVERT FROM INTERMEDIATE |/ 2
TO TEXT

v

=

Figure 7

WO 95/20198

8/8

TConversionResuit

800 |ParseConfidence

PCT/US94/02628

802 |Getl engthUsed

804 |GetSeparatorError

806 |GetincompleteSign

808 |GetValueOrderError

810 |GetCanNormalize

812 |GetintegerBoundary

814 |GetDigitSequenceEnd

816 GetOutOfBoundsError

Figure 8

F Y YT VYOV

INTERNATIONAL SEARCH REPORT

Inter. .nal Application No

PCT/US 94/02628

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F17/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than mimimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

1991
see the whole document

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X W0,A,93 21591 (TCS) 28 October 1993 1-3,6,7,
9,12,
16-18,
21,22,
24,28,
31,32
see page 4, line 19 - page 11, line 15
X DEC PROFESSIONAL, 16,17,
vol.6, no.9, September 1987, US 21,24,
pages 108 - 110 27,30
D. BYNON 'VAX XWAY'
see page 108; table 1
A US,A,5 055 998 (WRIGHT ET AL) 8 October 1-34

/...

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categones of cited documents :

considered W be of particular relevance

filing date

citation or other special reason (as specified)
other means

later than the prionity date claimed

“A” document defining the general state of the art which 1s not
"E" earlier document but published on or after the international

"L" document which may throw doubts on prionty claim(s) or
which 15 cited to establish the publication date of another

‘0" document refernng to an oral disclosure, use, exhibition or

“P" document published prior to the international filing date but

“T" later document published after the international filing date
or prionty date and not 1n conflict with the application but
ated to understand the principle or theory underiying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document 1s combined with one or more other such docu-
m&ts. such combination being obvious to a person skilled
in the art,

“&" document member of the same patent family

Date of the actual compleuon of the internauonal search

7 October 1994

Date of mailing of the internatonal search report

19.10.9%

Name and mailing address of the [SA

NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentiaan 2

Authonized officer

Pottiez, M

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intei onal Application No

PCT/US 94/02628

C.(Continuauon) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
vol.SE-8, no.6, November 1982, NEW YORK US
pages 605 - 611

N.H. GEHANI 'Databases and Units of
measure'

see abstract

A IBM TECHNICAL DISCLOSURE BULLETIN.,
vol.35, no.5, October 1992, ARMONK, US
pages 217 - 218, XP000312939

'Data Conversion Method between IBM
Application system and Lotus 1-2-3'

see the whole document

A BUSINESS SOFTWARE,
vol.5, no.l, January 1987, US
pages 54 - 59

BERRY T 'Has it become practical to
transfer spreadsheets between programs?’
see the whole document

8,23,33,
34

4,15,30

1-34

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte. .onal Application No

PCT/US 94/02628

Patent document Publication Patent family Publication
cited in search report date member(s) date
W0-A-9321591 28-10-93 Au-B- 3975493 18-11-93
US-A-5055998 08-10-91 US-A- 4751740 14-06-88

AU-B- 630360 29-10-92
AU-A- 3768089 12-01-90
CA-A- 1319437 22-06-93
EP-A- 0424407 02-05-91
JP-T- 4501622 19-03-92
WO-A- 8912866 28-12-89
AU-B- 590228 02-11-89
AU-A- 4990885 19-06-86
CA-A- 1246237 06-12-88
DE-A- 3587501 09-09-93
DE-T- 3587501 24-02-94
EP-A,B 0186007 02-07-86
JP-A- 61139829 27-06-86

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

