

(19) 日本国特許庁 (JP)

(12) 公 泰 特 許 公 報(A)

(11) 特許出願公表番号

特表2004-508568
(P2004-508568A)

(43) 公表日 平成16年3月18日(2004.3.18)

(51) Int.C1.⁷

E |

テーマコード（参考）

G21D 5/06

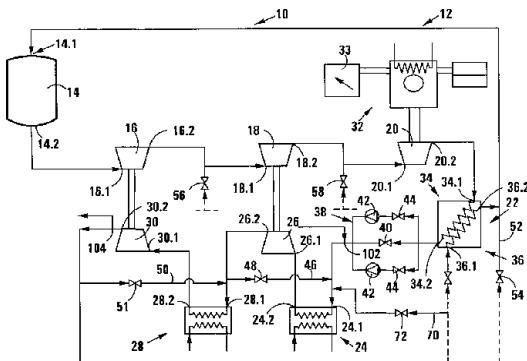
G21D 5/06

GD U

G2 1 C 1/07

G21C 1/07

2


審查請求 未請求 予備審查請求 有 (全 51 頁)

(21) 出願番号	特願2002-525666 (P2002-525666)	(71) 出願人	3030222525 エスコム 南アフリカ共和国, サントン 2157
(86) (22) 出願日	平成13年9月3日 (2001.9.3)		
(85) 翻訳文提出日	平成15年3月3日 (2003.3.3)		
(86) 國際出願番号	PCT/IB2001/001606		
(87) 國際公開番号	W02002/021537		
(87) 國際公開日	平成14年3月14日 (2002.3.14)	(74) 代理人	100067828 弁理士 小谷 悅司
(31) 優先権主張番号	2000/4635	(74) 代理人	100075409 弁理士 植木 久一
(32) 優先日	平成12年9月4日 (2000.9.4)	(74) 代理人	100109058 弁理士 村松 敏郎
(33) 優先権主張国	南アフリカ (ZA)		
(31) 優先権主張番号	2001/6068		
(32) 優先日	平成13年7月24日 (2001.7.24)		
(33) 優先権主張国	南アフリカ (ZA)		

(54) 【発明の名称】原子炉

(57) 【要約】

本発明は、互いに角度的に離れた位置で混合チャンバ内に通じる2つの入口を有する混合チャンバを画定する混合装置を提供する。該装置は混合チャンバから導かれる出口をさらに含む。混合チャンバは一般的に形状が略球形であり、出口は直径方向に入口の1つと対向して配置される。本発明はさらに、1対の熱交換器すなわちレキュペレータおよび水冷式熱交換器を含む炉心コンディショニングシステムを有する原子力プラントを提供する。レキュペレータは高温側および低温側を有し、プラントはレキュペレータの高温側の入口の上流に配置された混合装置を含み、混合物をレキュペレータの高温側に供給する前に混合装置で高温および低温ガスを混合することによって、レキュペレータに供給されるガスの温度を予め定められた最大値に制限することが可能である。

【特許請求の範囲】**【請求項 1】**

流体ストリームを混合する方法であって、互いに角度的に離れた位置から球状混合チャンバ内に前記ストリームを供給することを含む方法。

【請求項 2】

2つの流体ストリームを混合する方法であって、混合すべき前記2つの流体ストリームを、前記ストリームが相互に直角にチャンバに入るように混合チャンバ内に供給することを含む方法。

【請求項 3】

前記混合チャンバの入口ストリームの少なくとも1つから直角に離れた位置から混合物を抜き出すことを含む、請求項1または2に記載の方法。 10

【請求項 4】

前記ストリームが異なる温度のガスであり、高温側ストリームが高温入口を介して前記混合チャンバ内に供給され、低温側ストリームが低温入口を介して前記混合チャンバ内に供給され、混合物が出口を介して前記混合チャンバから排出される、請求項1ないし3のいずれか一項に記載の方法。

【請求項 5】

前記低温側ストリームを前記混合チャンバ内に供給し、かつ、この供給側に対して前記混合物を前記混合チャンバの直径方向に対向する位置から排出することを含む、請求項4に記載の方法。 20

【請求項 6】

混合チャンバと、

互いに角度的に離れた位置で前記混合チャンバ内に通じる少なくとも2つの入口と、前記混合チャンバから導かれる出口と

を含み、

前記混合チャンバが形状的に略球形である

混合装置。

【請求項 7】

混合チャンバと、

互いに角度的に離れた位置で前記混合チャンバ内に通じる少なくとも2つの入口と、前記混合チャンバから導かれる出口と

を含み、

前記入口が前記混合チャンバの中心に向かって方向付けられた
混合装置。

【請求項 8】

相互に直角をなす第1および第2入口を含み、前記出口が前記入口の1つに対向して配置される、請求項6または7に記載の混合装置。 30

【請求項 9】

原子力プラントにおいて、前記原子力プラントの構成要素となる原子炉の炉心で発生する崩壊熱を除去する方法であって、前記原子炉と、炉心コンディショニングシステムとの間で冷却材を循環させるステップを含む方法。ここに、前記炉心コンディショニングシステムは、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、前記高温側入口が前記原子炉の出口と流体連通しており、かつ前記低温側出口が前記原子炉の入口と流体連通している少なくとも1つのレキュペレータ、および、前記高温側出口と前記低温側入口との中間で前記レキュペレータに接続された第2熱交換器を含む。 40

【請求項 10】

前記レキュペレータの前記高温側に供給される冷却材の温度を予め定められた最大温度に制限するステップを含む、請求項9に記載の方法。

【請求項 11】

前記レキュペレータの前記高温側に供給される冷却材の温度を制限する前記ステップが、 50

混合物を前記レキュペレータの前記高温側に供給する前に、前記原子炉からの高温冷却材を低温冷却材と混合するステップを含む、請求項 10 に記載の方法。

【請求項 12】

出口が前記レキュペレータの前記高温側入口に接続されている請求項 6 ないし 8 のいずれか一項に記載の混合装置で、前記高温冷却材と前記低温冷却材を混合するステップを含む、請求項 11 に記載の方法。

【請求項 13】

原子炉と、前記原子炉に直列に接続された炉心コンディショニングシステムとを含む原子力プラントであって、前記炉心コンディショニングシステムが、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、前記高温側入口が前記原子炉の出口と流体連通しており、かつ前記低温側出口が前記原子炉の入口と流体連通している少なくとも 1 つのレキュペレータと、前記高温側出口と前記低温側入口の中間で前記レキュペレータに接続された第 2 熱交換器とを含んで成る原子力プラント。

【請求項 14】

前記レキュペレータの前記高温側の上流に配置された混合装置を含み、その混合装置によって前記原子炉からの高温冷却材を、前記レキュペレータ内に供給する前に、低温冷却材と混合することができる、請求項 13 に記載のプラント。

【請求項 15】

前記混合装置が請求項 6 ないし 8 のいずれか一項に記載の混合装置であり、前記混合装置の第 1 入口が原子炉容器の出口に接続され、前記混合装置の出口が前記レキュペレータの前記高温入口に接続され、前記混合装置の第 2 入口が前記第 2 熱交換器の出口に接続されているかまたは接続可能であり、前記炉心コンディショニングシステムが前記第 2 熱交換器の出口から前記混合装置への冷却材の流量を調整するために弁を含む、請求項 14 に記載のプラント。

【請求項 16】

前記炉心コンディショニングシステムが並列に接続された少なくとも 2 組の熱交換器を含む、請求項 13 ないし 15 のいずれか一項に記載のプラント。

【請求項 17】

本書で実質的に説明しあつ図示した、請求項 1 または 2 に記載の 2 つの流体ストリームを混合する方法。

【請求項 18】

本書で実質的に説明しあつ図示した、請求項 6 または 7 に記載の混合装置。

【請求項 19】

本書で実質的に説明しあつ図示した、請求項 9 に記載の原子炉から熱を除去する方法。

【請求項 20】

本書で実質的に説明しあつ図示した、請求項 13 に記載の原子力プラント。

【請求項 21】

本書で実質的に説明した新しい方法、装置、またはプラント。

【発明の詳細な説明】

【0001】

本発明は、2 つの流体ストリームを混合する方法に関する。それはさらに混合装置に関する。加えて、それは原子力プラント、および原子力プラントの炉心に発生した熱を排除する方法に関する。

【0002】

明細書では、用語「レキュペレータ」は広い意味を与えられ、原子炉容器または類似物から出る高温流体を原子炉容器の流入流体の加熱に利用することを可能にする熱伝達手段を含み、そこでは流出高温流体および流入冷温流体がそれぞれ高温側および低温側を通過し、その高温側および低温側に熱伝達手段における流出および戻り流体流路が画定され、かつ両側間で熱が伝達される。用語レキュペレータ状は対応する意味を与えられる。

【0003】

10

20

30

40

50

本発明の一態様では、互いに角度的に離れた位置から球状混合チャンバ内にストリームを供給することを含む、流体ストリームを混合する方法を提供する。

【0004】

本発明の別の態様では、混合すべき2つの流体ストリームを、ストリームが相互に直角にチャンバに入るように混合チャンバ内に供給することを含む、2つの流体ストリームを混合する方法を提供する。

【0005】

該方法は、混合チャンバの入口ストリームの少なくとも1つと角度的に離れた位置から混合物を抜き出すことを含むことができる。

【0006】

ストリームは異なる温度のガス、一般的にヘリウムとすることができます、高温側ストリームは高温入口を介して混合チャンバ内に供給され、低温側ストリームは低温入口を介して混合チャンバ内に供給され、混合物は出口を介して混合チャンバから排出される。

【0007】

本発明の好適な実施形態では、該方法は、低温側ストリームを混合チャンバ内に供給し、かつ、この供給側に対して混合物を混合チャンバの直径方向に対向する位置から排出することを含むことができる。

【0008】

本発明のさらに別の態様では、

混合チャンバと、

互いに角度的に離れた位置で混合チャンバ内に通じる少なくとも2つの入口と、

混合チャンバから導かれる出口と

を含み、

混合チャンバが形状的に略球形である

混合装置を提供する。

【0009】

本発明のさらに別の態様では、

混合チャンバと、

互いに角度的に離れた位置で混合チャンバ内に通じる少なくとも2つの入口と、

混合チャンバから導かれる出口と

を含み、

入口が混合チャンバの中心に向かって方向付けられている

混合装置を提供する。

【0010】

本発明の一実施形態では、混合チャンバは相互に直角をなす第1および第2入口を含み、出口が入口の1つに対向して配置される。

【0011】

本発明のさらに別の態様では、原子力プラントにおいて、原子力プラントの構成要素となる原子炉の炉心で発生する崩壊熱を除去する方法であって、原子炉と、炉心コンディショニングシステムとの間で冷却材を循環させるステップを含む方法を提供する。ここに、炉心コンディショニングシステムは、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、高温側入口が原子炉の出口と流体連通しており、かつ低温側出口が原子炉の入口と流体連通している少なくとも1つのレキュペレータ、および、高温側出口と低温側入口の中間でレキュペレータに接続された第2熱交換器を含む。

【0012】

出願人は、高温ガス冷却原子炉を有する原子力プラントであって、ブレイトンサイクルに基づく熱力学的変換サイクルを利用するプラントを知っている。出願人は、本発明が特にこの形のプラントでブレイトンサイクルが作動しないときに崩壊熱を除去するのに用途を見出すと信じる。

【0013】

10

20

30

40

50

該方法は、レキュペレータの高温側の冷却材、特にヘリウムの温度を予め定められた最大温度に制限することを含むことができる。

【0014】

レキュペレータの高温側に供給される温度の制限は、混合物をレキュペレータの高温側に供給する前に、原子炉炉心コンディショニングシステムからの高温冷却材を低温冷却材と混合することを含むことができる。

【0015】

該方法は、出口がレキュペレータの高温側入口に接続されている上述した型の混合装置内で高温冷却材と低温冷却材を混合することを含むことができる。

【0016】

本発明のさらに別の態様では、原子炉と、原子炉に直列に接続された炉心コンディショニングシステムとを含む原子力プラントであって、炉心コンディショニングシステムが、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、高温側入口が原子炉の出口と流体連通しており、かつ低温側出口が原子炉の入口と流体連通している少なくとも1つのレキュペレータと、高温側出口と低温側入口の中間でレキュペレータに接続された第2熱交換器とを含んでいる原子力プラントを提供する。

【0017】

プラントは、レキュペレータの高温側の上流に配置された混合装置を含み、その混合装置によって原子炉からの高温冷却材を、レキュペレータ内に供給する前に、一般的に第2熱交換器からの低温冷却材と混合することができる。このやり方で、レキュペレータ内に供給される冷却材の最大温度を調整することができる。

【0018】

混合装置は上述した混合装置とすることができる、混合装置の第1入口は原子炉の出口に接続され、混合装置の出口はレキュペレータの高温入口に接続され、混合装置の第2入口は第2熱交換器の出口に接続されているかまたは接続可能であり、炉心コンディショニングシステムは第2熱交換器の出口から混合装置への冷却材の流量を調整するために弁を含む。これは、高温冷却材と低温冷却材の比率、およびしたがって混合装置から流出しかつレキュペレータの高温側に流入する冷却材の温度を制御することを可能にする。

【0019】

炉心コンディショニングシステムは、並列に接続された少なくとも2組の熱交換器を含むことができる。前記または各組の熱交換器にプロワを関連させることができる。各組の熱交換器は一般的にそれ自体で原子炉から崩壊熱を除去することができ、それによって安全性を向上し、保守を促進する。

【0020】

原子炉は、上述した通り、高温ガス冷却型とすることができます。特に、原子炉は、多数の球状燃料要素を含む燃料が使用される、ペブルベッド炉として知られる炉とすることができます。燃料要素は、核分裂可能物質とセラミックマトリックスの、またはセラミック材に包封された、球体を含むことができる。原子炉はヘリウム冷却式とすることができます。原子炉は、制御された核分裂プロセスによって熱エネルギーを発生し、プレイトン直接ガスサイクルに基づく熱力学的プロセスを利用して熱エネルギーを電気エネルギーに変換することができる。その場合、原子炉は実質的純ヘリウムガスを作動流体として利用することができる。その場合、作動流体は冷却材流体をも含むことは理解されるであろう。

【0021】

本発明の好適な実施形態では、レキュペレータはガス対ガス熱交換器である。レキュペレータは、既知の型のプレートコンパクトフィン熱交換器とすることができます。

【0022】

第2熱交換器は筒形熱交換器とすることができます、水冷式とすることができます。

【0023】

ヘリウムプロワは磁気軸受上に支持することができ、電動機によって駆動することができる。

10

20

30

40

50

【0024】

炉心コンディショニングシステム、およびさらに詳しくはレキュペレータの高温入口は、混合チャンバが取り付けられている出口ガスフローダクトによって、原子炉の出口に接続することができる。レキュペレータの高温出口は、第1中間ガスフローダクトによって第2熱交換器のガス入口に接続することができる。レキュペレータの低温入口は、第2中間ガスフローダクトによって第2熱交換器のガス出口に接続することができる。レキュペレータの低温出口は入口ガスフローダクトによって原子炉に入口に接続することができる。そうすると、出口ガスフローダクトからレキュペレータの高温側を介して第1中間ガスフローダクトへ、第2熱交換器を介して第2中間ガスフローダクトへ、かつレキュペレータの低温側を介して入口ガスフローダクトおよび原子炉の入口へと続くことによって、原子炉の出口から入口への通常のガス流路を画定することができる。 10

【0025】

第2熱交換器とレキュペレータの低温入口との間のガス流量を制御するために、第2中間ガスフローダクトに入口弁を配設することができる。第2中間ガスフローダクトと入口ガスフローダクトの中間に分岐フローダクトを配設することができ、かつそこに第1バイパス弁を配設することができる。プラントが混合装置を含む場合、分岐フローダクトは混合装置の第2入口に接続することができる。そうすると、分岐フローダクトの第1バイパス弁によって、低温側のガスは混合チャンバ内で、混合装置の混合チャンバに流入する原子炉の高温プレナムからの高温ガスと混合して、予め定められた温度のガスをレキュペレータの高温入口に提供することができる。バイパスダクトを分岐フローダクトと入口ガスフローダクトとの中間に配設することができ、そこに配設された第2バイパス弁を持つことができる。入口弁ならびに第1および第2バイパス弁の操作によって、第2水冷式熱交換器の出口からの低温ガスを入口ガスフローダクトに直接分流し、原子炉の低温プレナムに向かわせ、それによりレキュペレータの戻り流路を効果的に迂回することができることは理解されるであろう。 20

【0026】

使用中、原子炉の炉心の高温プレナムから高温炉心ガスが抜き出され、レキュペレータの高温入口に移送される。それがレキュペレータに入る前に、ガスは混合チャンバ内で第2熱交換器を出た低温ガスの一部分と混合される。これは、レキュペレータに入るガスの温度がレキュペレータの最大温度限界、一般的に900を決して超えないことを確実にするために行われる。レキュペレータでヘリウム温度は、それが第2熱交換器に入る前にさらに低下される。第2熱交換器で熱はシステムから除去される。第2熱交換器から出る低温ヘリウムは次いでプロワに入り、レキュペレータの低温入口に続く。希望するならば、低温ガスの一部分は混合装置に分流され、上述の通り混合チャンバに入る高温ガスと混合される。残りのガスストリームは次いでレキュペレータの低温入口に入り、そこでその温度は、レキュペレータの高温側を介して流れる高温入口ガスから熱交換器によって上昇される。その温度が出口を介して原子炉圧力容器から出るガスの温度よりも低いにもかかわらず、加熱されたガスストリームは、原子炉入口を介して原子炉低温プレナムに移送される。 30

【0027】

本発明を今から、例として添付の線図に関連して説明する。 40

【0028】

図面の図1で、参照番号10は一般的に本発明に係る原子力プラントの部分を指す。

【0029】

原子力プラント10は、一般的に参照番号12で示される閉ループ発電回路を含む。発電回路12は原子炉14、高圧タービン16、低圧タービン18、パワータービン20、レキュペレータ22、予冷機24、低圧圧縮機26、中間冷却機28、および高圧圧縮機30を含む。 40

【0030】

原子炉14は、球状燃料要素を利用するペブルベッド炉である。原子炉14は入口14。 50

1および出口14.2を有する。

【0031】

高圧タービン16は高圧圧縮機30にそれを駆動するように接続され、上流側または入口16.1および下流側または出口16.2を有し、入口16.1は原子炉14の出口14.2に接続される。

【0032】

低圧タービン18は低圧圧縮機26にそれを駆動するように接続され、上流側または入口18.1および下流側または出口18.2を有する。入口18.1は高圧タービン16の出口16.2に接続される。

【0033】

原子力プラント10は一般的に参考番号32によって示される発電機を含み、それをパワータービン20が駆動するように接続される。パワータービン20は上流側または入口20.1および下流側または出口20.2を有する。パワータービンの入口20.1は低圧タービン18の出口18.2に接続される。

【0034】

可変抵抗器バンク33が発電機32に着脱自在に接続可能である。

【0035】

レキュペレータ22は高温または低圧側34および低温または高圧側36を有する。レキュペレータの低圧側34は、入口34.1および出口34.2を有する。低圧側の入口34.1は、パワータービン20の出口20.2に接続される。

【0036】

予冷機24は水対ヘリウム熱交換器であり、ヘリウム入口24.1およびヘリウム出口24.2を含む。予冷機24の入口24.1は、レキュペレータ22の低圧側34の出口34.2に接続される。

【0037】

低圧圧縮機26は上流側または入口26.1および下流側または出口26.2を有する。低圧圧縮機26の入口26.1は、予冷機24のヘリウム出口24.2に接続される。

【0038】

中間冷却器28はヘリウム対水熱交換器であり、ヘリウム入口28.1およびヘリウム出口28.2を含む。ヘリウム入口28.1は低圧圧縮機26の出口26.2に接続される。

【0039】

高圧圧縮機30は上流側または入口30.1および下流側または出口30.2を有する。高圧圧縮機30の入口30.1は、中間冷却機28のヘリウム出口28.2に接続される。高圧圧縮機30の出口30.2は、レキュペレータ22の高圧側の入口36.1に接続される。レキュペレータ22の高圧側の出口36.2は原子炉14の入口14.1に接続される。

【0040】

原子力プラント10は、レキュペレータ22の低圧側34の出口34.2と予冷機24の入口24.1との間に接続された、一般的に参考番号38で示される起動プロワシステムを含む。

【0041】

起動プロワシステム38は、レキュペレータの低圧側の出口34.2と予冷機24の入口24.1との間に直列に接続された、常開起動プロワシステム直列弁40を含む。2つのプロワ42が起動プロワシステム直列弁40と並列に接続され、常閉遮断弁44が各プロワ42に関連し、直列に接続される。

【0042】

低圧圧縮機バイパス管路46が、低圧圧縮機26の下流側26.2の出口と中間冷却機28の入口28.1との間の位置から、起動プロワシステム38と予冷機24の入口24.1との間の位置まで伸長する。常閉低圧バイパス弁48が低圧圧縮機バイパス管路46に

10

20

30

40

50

取り付けられる。

【0043】

高圧圧縮機バイパス管路50が、高圧圧縮機の下流側30.2の出口とレキュペレータ2の高圧側36の入口36.1との間の位置から、低圧圧縮機26の出口または下流側26.2と中間冷却機28の入口28.1との間の位置まで伸長する。常閉高圧バイパス弁51が高圧圧縮機バイパス管路50に取り付けられる。

【0044】

レキュペレータバイパス管路52がレキュペレータ22の高圧側36の入口36.1の上流の位置から、レキュペレータ22の高圧側36の出口36.2の下流の位置まで伸長する。常閉レキュペレータバイパス弁54がレキュペレータバイパス管路52に取り付けられる。

10

【0045】

プラント10は高圧冷却材弁56および低圧冷却材弁58を含む。高圧冷却材弁56は、開のとき、高圧圧縮機30の高圧側または出口30.2から低圧タービン18の低圧側18.1へのヘリウムのバイパスを提供するように構成される。低圧冷却材弁58は、開のとき、高圧圧縮機30の高圧側または出口30.2からパワータービン20の入口20.1へのヘリウムのバイパスを提供するように構成される。

【0046】

ブレイトンサイクルの通常の動作中、原子炉14で発生した熱は発電回路12で消散される。

20

【0047】

プラント10はまた、原子炉14と直列に接続された、一般的に参照番号100(図2)によって示される炉心コンディショニングシステムをも含む。炉心コンディショニングシステムは、高温供給管または出口ガスフローダクト102を介して出口14.2に接続され、低温戻り管104または入口フローダクトを介して原子炉の入口に接続される。高温供給管102はその上流端で炉心出口プレナムに接続され、低温戻り管104はその下流端で炉心入口プレナム(図1には図示せず)に接続される。

【0048】

炉心コンディショニングシステム100は、高温側108および低温側110を有するガス対ガス熱交換器またはレキュペレータ106を含む。高温側は入口108.1および出口108.2を有する。同様に、低温側110は入口110.1および出口110.2を有する。

30

【0049】

炉心コンディショニングシステム100はさらに、ガス入口112.1およびガス出口112.2を有する水対ガス熱交換器112を含む。

【0050】

炉心コンディショニングシステム100は、一般的に参照番号114で示されるプロワ構成を含む。プロワ構成114は、並列に接続された3つのプロワ116と、プロワ116の各々に直列に接続されたプロワ遮断弁118とを含む。炉心コンディショニングシステム100はさらに混合装置120を含む。図面の図3から最もよく分かるように、混合装置120は球形混合チャンバ124を画定する本体122を含む。高温入口126が混合チャンバ124内につながっており、供給管102または出口ガスフローダクトに接続される。低温入口128は、高温入口126に対して90°の位置で混合チャンバ124内につながっている。出口130は混合チャンバ124からつながっており、レキュペレータ106の高温側108の入口108.1に接続される。

40

【0051】

炉心コンディショニングシステム100はさらに、プロワバイパス弁132、フローバルブ134、混合弁136、およびレキュペレータバイパス弁138を含む。

【0052】

炉心コンディショニングシステムの目的は、原子炉が停止し、ブレイトンサイクルが作動

50

しないときに、原子炉から崩壊熱を除去することである。発電回路のトリップが発生した場合、炉心コンディショニングシステムは、再始動が可能になる温度まで原子炉を冷却するのに役立つ。再始動時に、起動プロワシステム 38 は必要な炉心の質量流量を提供して、炉心の核分裂熱を除去する。

【0053】

炉心コンディショニングシステムのレキュベレータ 106 の機能は、原子炉に戻るガスの温度が受入れ可能な範囲より下まで低下しないことを確実にすることである。同時に、それは熱交換器 112 への入口温度を低下する。混合装置 120 は、レキュベレータ 106 の高温側 108 の入口 108.1 に供給されるガスの温度を制限して、それが予め定められた最大温度、一般的に 900¹⁰ を超えないようにするために設けられる。

【0054】

この目的のために、原子炉からの高温ガスは高温入口 126 を通して混合チャンバ 124 内に供給される。高温ガスの温度によっては、すでに冷却されたガスが低温入口 128 を介して混合チャンバ 124 内に供給され、そこでそれは高温ガスと混合して、出口 130 を通して排出され、そこからレキュベレータの高温側に供給される。

【0055】

図面の図 3 から最もよく分かるように、入口 126 および 128 は球形混合チャンバ 124 の中心の方向に向けられ、相互に直角である。出口 130 は、直径方向に低温入口 128 の反対側に配置される。発明者らは、混合チャンバ 124 内に供給される低温ガスのストリームが高温ストリームに浸透すると信じる。結合ストリームが混合チャンバ 124 の反対側の壁に衝突すると渦運動が誘発され、結果的に非常に低い成層レベルで効率的な混合が達成される。当然、入口 128 および出口 130 の直径を変化させ、それによって混合チャンバ内に供給されるガスストリームの速度およびしたがってその運動量を変化させて、低温ガスと高温ガスとの間の浸透のレベルを変化させ、それによって混合プロセスを最適化することができる。²⁰

【0056】

炉心コンディショニングシステム 100 は、圧力容器（図示せず）内に収容することが好みしい。

【0057】

今、図面の図 4 を参照すると、ここでは、特に指摘しない限り、上で使用したのと同じ参考番号を用いて同様の部品を指定している。³⁰

【0058】

図面で、参考番号 200 は一般的に別の炉心冷却システムまたは炉心コンディショニングシステムであって、本発明に係るものと指す。

【0059】

炉心コンディショニングシステム 200 は、高温ガス冷却炉であって、多数の球状燃料要素（図示せず）を含む燃料が使用される、ペブルベッド炉として知られる型の原子炉 202 に接続される。燃料要素は、セラミック材に包封されたセラミックマトリックス内の核分裂可能物質の球体を含む。原子炉はヘリウム冷却式である。原子炉は、制御された核分裂プロセスによって熱出力を発生し、ブレイトン直接ガスサイクルに基づく熱力学的プロセスを利用して熱エネルギーを電気エネルギーに変換する。原子炉は実質的純ヘリウムガスを作動流体として利用し、それは炉心用の冷却材流体（図示せず）をも含む。⁴⁰

【0060】

原子炉 202 は、ヘリウムガスによって冷却される炉心 206 を含む原子炉圧力容器 204 を有する。原子炉容器 204 は入口 208 および出口 210 を有する。原子炉容器 204 の出口 210 は炉心 206 の高温プレナム 212 と流体連通する。原子炉容器 204 の入口 208 は炉心 206 の低温プレナム 214 と流体連通する。

【0061】

保守および安全上の問題に備えるために、一般的に圧力容器（図示せず）に収容される炉心コンディショニングシステム 200 は 2 組 220 の熱交換器を有する。各組 220 はシ⁵⁰

ステム 100 の熱交換器に類似しており、入口 108.1、出口 108.2、入口 110.1 および出口 110.2 を有するレキュペレータ 106 を有している。入口 108.1 は出口フローダクト 102 を介して出口 210 に接続され、出口 110.2 は入口フローダクト 104 を介して入口 208 に接続される。各レキュペレータ 106 は多管ガス熱交換器である。

【 0062 】

さらに、各組 220 は、その入口 110.1 と出口 108.2 の中間でその関連レキュペレータ 106 に接続された第 2 熱交換器 112 を有する。第 2 熱交換器 112 はプリント回路熱交換器であり、水冷式である。

【 0063 】

さらになお、各組 220 は、レキュペレータ 106 の出口 210 と入口 108.1 の中間にガス混合装置 120 を含む。

【 0064 】

各組 220 はまた、熱交換器 106 および 112 内にヘリウムガスを通すためのヘリウムプロワ 116 をも有する。プロワ 116 は磁気軸受（図示せず）に支持され、電動機によって駆動される。

【 0065 】

各組 220 において、レキュペレータ 106 の出口 108.2 は、第 1 中間ガスフローダクト 230 によってその関連第 2 熱交換器 112 のガス入口 112.2 に接続される。レキュペレータ 106 の入口 110.1 は、第 2 中間ガスフローダクト 232 によって第 2 熱交換器 112 のガス出口 112.2 に接続される。したがって、通常の動作では、出口フローダクト 102 からレキュペレータ 106 を介して第 1 中間ガスフローダクト 230 へ、第 2 熱交換器 112 を介して第 2 中間ガスフローダクト 232 へ、かつレキュペレータ 106 を介して入口フローダクト 104 および入口 210 へと続くことによって、出口 210 から入口 208 へのガス流路 234 が画定される。

【 0066 】

第 2 熱交換器 112 とレキュペレータ 106 の入口 110.1 との間のガス流量を制御するため、第 2 中間ガスフローダクト 232 に入口弁 134 が配設される。第 2 中間ガスフローダクト 232 と出口フローダクト 104 の中間に分岐フローダクト 236 が配設され、かつそこに第 1 バイパス弁 136 が配設される。混合装置 120 の入口 128 に分岐フローダクト 236 が接続され、出口フローダクト 102 を介して混合装置 120 の入口 126 に出口 210 が接続される。混合装置 120 の出口 130 はレキュペレータ 106 の入口 108.1 に接続される。次いで、分岐フローダクト 236 の第 1 バイパス弁 136 によって、低温ガスを装置 120 内で、原子炉 206 の高温プレナム 212 から混合装置 120 に入る高温ガスと混合して、予め定められた温度のガスをレキュペレータ 106 の入口 108.1 に提供することができる。バイパスダクト 238 が分岐フローダクト 236 と入口ガスフローダクト 104 との間に配設され、そこに配設された第 2 バイパス弁 240 を持つ。入口弁 134 ならびに第 1 および第 2 バイパス弁 136、240 の操作によって、第 2 水冷式熱交換器 112 の出口 112.2 からの低温ガスは入口フローダクト 104 に直接分流され、原子炉 206 の低温プレナム 214 に向けられ、それによりレキュペレータ 106 の戻り流路を効果的に迂回することができる。

【 0067 】

使用中、原子炉 202 の炉心 206 の高温プレナム 212 から高温炉心ガスが抜き出され、レキュペレータ 106 の入口 108.1 に移送される。それは、レキュペレータ 106 に入る前に、混合装置 120 内で水冷却器 112 を出た低温ガスと混合される。これは、レキュペレータ 106 に入るガスの温度がレキュペレータ 106 の最大温度限界を決して超えないことを確実にするために行われる。レキュペレータ 106 でヘリウム温度は、それが水冷却器 112 に入る前にさらに低下される。水冷却器 112 で熱がシステムから除去される。水冷却器 112 から出る低温ヘリウムは次いでプロワ 116 に入り、レキュペレータ 106 の入口 110.1 に続く。低温ガスの一部分は混合装置 120 に分流され、

10

20

30

40

50

上述の通り混合装置 120 に入る高温ガスと混合される。残りのガスストリームは次いでレキュペレータ 20 の入口 110.1 に入り、そこでその温度は、レキュペレータ 106 の高温側 108 を介して流れる高温ガスから熱交換器によって上昇される。その温度が出口 210 を介して原子炉圧力容器 204 から出るガスのそれより低いにもかかわらず、加熱されたガスストリームは、原子炉容器入口 208 を介して原子炉低温プレナム 214 に移送される。

【0068】

使用中、ガス混合装置 120 はレキュペレータ 106 への流入ガス温度を制限する。レキュペレータ 106 は、炉心 206 前後の温度差を制御し、かつ水冷式熱交換器 112 に入るガス温度も低下させる。こうして、ヘリウムガスの温度は、周知の標準水冷式熱交換器 112 が使用できる温度に低下することができる。プロワ 116 は必要なヘリウム質量流量を提供する。炉心コンディショニングシステム圧力容器（図示せず）は、原子炉圧力容器 204 の一次圧力バウンダリに直接連結することが好ましく、したがってその動作圧力は一次システムのそれに従うように意図される。

【0069】

使用中、炉心コンディショニングシステム 100、200 は、ブレイトンサイクルが使用されないときに炉心の崩壊熱除去し、起動動作中に炉心核分裂熱を除去する。したがって、発電回路（図 1 に示す）がトリップした場合、原子炉出口の平均ヘリウム温度は、ブレイトンサイクルの再始動が可能になるレベルまで低下させることができる。さらに、保守による運転停止中、原子炉出口の平均ヘリウム温度は、保守作業を行うことができるレベルまで低下させることができる。さらになお、炉心コンディショニングシステム 100、200 は、炉心核分裂熱が原子炉の炉心 14、206 から除去される率を制御し、炉心の制御された加熱を可能にする。コンディショニングシステム 100、200 はまた、出口ヘリウム温度をブレイトンサイクルが開始できるレベルまで上昇させるために使用することもできる。

【0070】

ペブルベッド原子炉の提案実施形態では、炉心および原子炉の出口のヘリウムガスは約 900 の温度とすることができます。ガスはレキュペレータ 106 に入る前に、必要ならば、低温ガスストリームと混合することによって約 900 に冷却される。レキュペレータ 106 で、ガスは 550 未満に冷却される。これは、入手可能な工業用プロワ 116 および水冷式熱交換器 112 の使用を可能にする。次いでガスは水冷却器 112 に入り、そこでガスから熱が取り出され、それは約 350 の最大温度にまで冷却される。レキュペレータ 106 に再流入した後、ガスは原子炉の入口に入る前に、炉心が徐々に冷却される一方で炉心の所望の入口対出口温度比を維持することができるように加熱される。レキュペレータ 106 が効果的でなくなるところまで炉心温度が降下すると、レキュペレータ 106 は上述の通りガス流路から除去することができ、炉心を完全に冷却する必要がある場合、水冷式熱交換器 112 によってさらなる冷却をもたらすことができる。

【0071】

本発明によって、保守のために炉心の制御された冷却を可能にする、原子炉および原子炉冷却または炉心コンディショニングシステム 100、200 を提供する。さらに、ブレイトン直接ガス熱力学サイクルが使用される場合、コンディショニングシステム 100、200 はブレイトンサイクルを開始するためにヘリウム作動流体の温度の制御をもたらす。

【図面の簡単な説明】

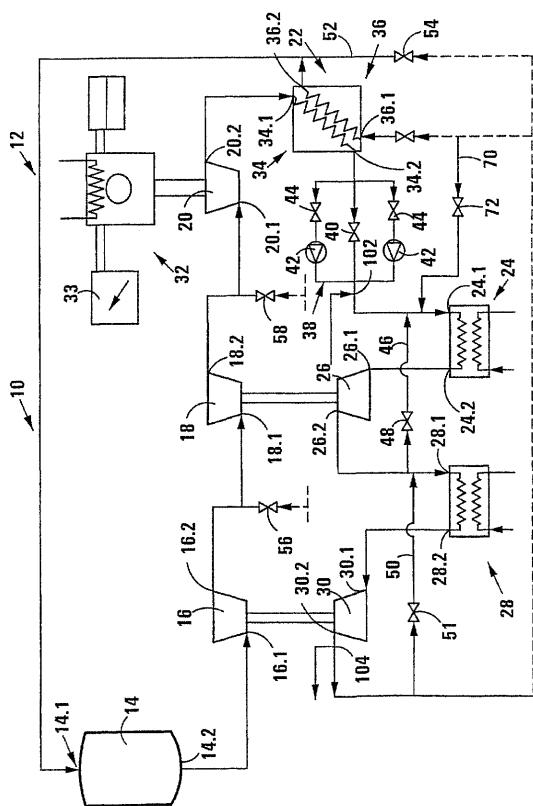
【図 1】本発明に係る原子力プラントの発電回路の略図である。

【図 2】原子力プラントの構成要素となる炉心コンディショニングシステムの略図である。

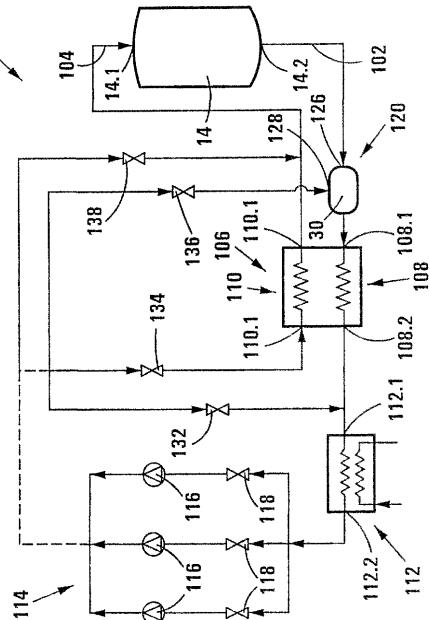
【図 3】図 2 の炉心コンディショニングシステムの構成要素となる、本発明に係る混合装置の略図である。

【図 4】本発明に係る別の炉心コンディショニングシステムを示す、図 2 と同様の略図である。

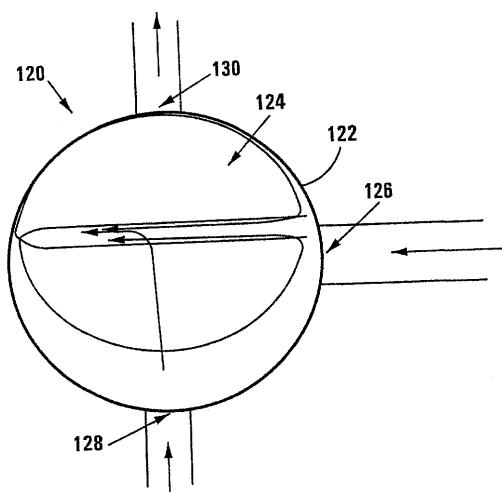
10

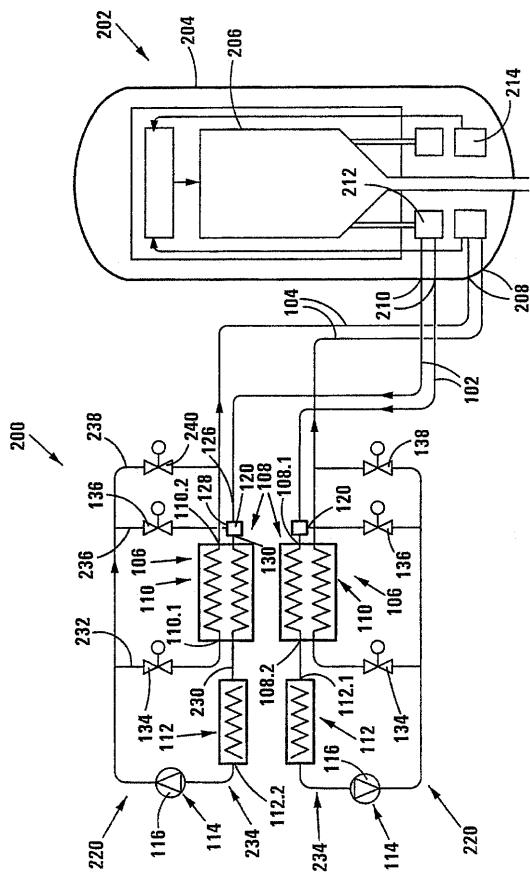

20

30


40

50


【 図 1 】


【 図 2 】

【図3】

【 図 4 】

WO 02/21537 A2**Published:**

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/21537

PCT/IB01/01606

NUCLEAR REACTOR

THIS INVENTION relates to a method of mixing two fluid streams. It further relates to a mixing device. In addition, it relates to a nuclear power plant and to a method of removing heat generated in the 5 core of the nuclear power plant.

In the specification, the word "recuperator" is to be given a wide meaning and includes a heat transfer means which enables a hot fluid leaving a reactor vessel, or the like, to be utilised in heating incoming fluid for the reactor vessel, the outgoing hot fluid and incoming 10 colder fluid passing through respective hot and cold sides in which outgoing and return fluid flow paths are defined in the heat transfer means and heat being transferred therebetween. The word recuperator-like is to be given a corresponding meaning.

According to one aspect of the invention there is provided 15 a method of mixing fluid streams which includes feeding the streams into a spherical mixing chamber from angularly spaced positions.

According to another aspect of the invention there is provided a method of mixing two fluid streams which includes feeding the two fluid streams to be mixed into a mixing chamber so that the 20 streams enter the chamber at right angles to one another.

CONFIRMATION COPY

2

The method may include extracting the mixture from the mixing chamber from a position which is angularly spaced from at least one of the inlet streams.

5 The streams may be of gas, typically helium, at different temperatures, the hotter stream being fed into the mixing chamber through a hot inlet, the cooler stream being fed into the mixing chamber through a cold inlet and the mixture being exhausted from the mixing chamber through an outlet.

10 In a preferred embodiment of the invention, the method may include feeding the cooler stream into the mixing chamber and exhausting the mixture from the mixing chamber at diametrically opposed positions.

According to yet another aspect of the invention there is provided a mixing device which includes

15 a mixing chamber;
at least two inlets leading into the mixing chamber at angularly spaced positions; and
an outlet leading from the mixing chamber, the mixing chamber being generally spherical in shape.

20 According to yet another aspect of the invention there is provided a mixing device which includes
a mixing chamber;
at least two inlets leading into the mixing chamber at angularly spaced positions; and

an outlet leading from the mixing chamber, the inlets being directed towards the centre of the mixing chamber.

In one embodiment of the invention, the mixing device includes a first inlet and a second inlet which are perpendicular to one 5 another, the outlet being positioned opposite one of the inlets.

According to yet another aspect of the invention, in a nuclear power plant there is provided a method of removing decay heat generated in the core of a nuclear reactor forming part of the nuclear power plant, which method includes the steps of circulating coolant 10 between the reactor and a core conditioning system which includes at least one recuperator having a hot side which has an inlet and an outlet, and a cold side which has an inlet and an outlet, the hot side inlet being in fluid communication with an outlet of the reactor and the cold side outlet being in fluid communication with an inlet of the reactor, and a 15 second heat exchanger operatively connected to the recuperator intermediate the hot side outlet and the cold side inlet.

The Applicant is aware of a nuclear power plant having a high temperature gas cooled reactor which plant makes use of a thermodynamic conversion cycle based on the Brayton cycle. The 20 Applicant believes that the invention will find application particularly in a plant of this type to remove decay heat when the Brayton cycle is not operational.

The method may include limiting the temperature of the coolant, typically helium, to the hot side of the recuperator to a predetermined 25 maximum temperature.

Limiting the temperature of coolant being fed to the hot side of the recuperator may include mixing hot coolant from the reactor with cold coolant prior to feeding the mixture into the hot side of the recuperator.

5 The method may include mixing the hot coolant and the cold coolant in a mixing device of the type described above, the outlet of which is connected to the hot side inlet of the recuperator.

10 According to yet another aspect of the invention there is provided a nuclear power plant which includes a reactor and a core conditioning system connected in series with the reactor, the core conditioning system including at least one recuperator having a hot side which has an inlet and an outlet and a cold side which has an inlet and an outlet, the hot side inlet being in fluid communication with an outlet of the reactor and the cold side outlet being in fluid communication with an inlet of the reactor, and a second heat exchanger operatively connected to the recuperator intermediate the hot side outlet and the cold side inlet.

15 The plant may include a mixing device positioned upstream of the hot side of the recuperator whereby hot coolant from the reactor can be mixed with cold coolant, typically from the second heat exchanger, before being fed into the recuperator. In this way, the maximum temperature of the coolant being fed into the recuperator can be regulated.

20 The mixing device may be a mixing device as described above, a first inlet of the mixing device being connected to the outlet of the reactor, the outlet of the mixing device being connected to the hot

inlet of the recuperator and a second inlet of the mixing device being connected or connectable to the outlet of the second heat exchanger, the core conditioning system including valving to regulate the flow of coolant from the outlet of the second heat exchanger to the mixing device. This 5 permits the ratio of hot and cold coolant and hence the temperature of the coolant exiting the mixing device and entering the hot side of the recuperator to be controlled.

The core conditioning system may include at least two sets 10 of heat exchangers connected in parallel. A blower may be associated with the or each set of heat exchangers. Each set of heat exchangers will typically be capable of removing the decay heat from the reactor on its own thereby improving safety and facilitating maintenance.

The nuclear reactor may, as mentioned above, be of a high 15 temperature gas cooled type. In particular, the nuclear reactor may be a reactor known as a Pebble Bed Reactor in which a fuel, comprising a plurality of spherical fuel elements, is used. The fuel elements may comprise spheres of fissionable material and a ceramic matrix, or encapsulated in the ceramic material. The reactor may be helium cooled. The reactor may generate heat energy by means of a controlled nuclear 20 fission process and convert heat energy into electrical energy utilising a thermodynamic process based on a Brayton direct gas cycle. Then, the reactor may utilise substantially pure helium gas as a working fluid. It will be appreciated that the working fluid will then also comprise the coolant fluid.

6

In a preferred embodiment of the invention the recuperator is a gas-to- gas heat exchanger. The recuperator may be a plate compact fin heat exchanger, of a known type.

The second heat exchanger may be a tube heat exchanger
5 and may be water cooled.

The helium blower may be supported on magnetic bearings and may be driven by an electric motor.

The, core conditioning system, and more particularly the hot inlet of the recuperator, may be connected to the outlet of the reactor by
10 means of an outlet gas flow duct in which the mixing chamber is mounted. The hot outlet of the recuperator may be connected to a gas inlet of the second heat exchanger by means of a first intermediate gas flow duct. The cold inlet of the recuperator may be connected to a gas outlet of the second heat exchanger by means of a second intermediate
15 gas flow duct. The cold outlet of the recuperator may be connected to an inlet of the reactor by means of an inlet gas flow duct. Then a normal gas flow path may be defined from the outlet to the inlet of the reactor by means of the outlet gas flow duct via the hot side of the recuperator to the first intermediate gas flow duct via the second heat
20 exchanger to the second intermediate gas flow duct and via the cold side of the recuperator to the inlet gas flow duct and inlet of the reactor.

An inlet valve may be arranged on the second intermediate gas flow duct for controlling gas flow between the second heat exchanger and the cold inlet of the recuperator. A branch flow duct may
25 be arranged intermediate the second intermediate gas flow duct and the

inlet gas flow duct and a first by-pass valve may be arranged thereon. Where the plant includes a mixing device, the branch flow duct may be connected to a second inlet of the mixing device. Then, by means of the first by-pass valve of the branch flow duct, cooler gas may be mixed in 5 the mixing chamber with hot gas from the hot plenum of the reactor entering the mixing chamber of the mixing device to provide gas of a predetermined temperature to the hot inlet of the recuperator. A by-pass duct may be arranged intermediate the branch flow duct and the inlet gas flow duct and may have a second by-pass valve arranged thereon. It will 10 be appreciated that by manipulation of the inlet valve and the first and second by-pass valves, cool gas from the outlet of the second water cooled heat exchanger may be diverted directly to the inlet gas flow duct and directed to the cold plenum of the reactor, thereby effectively bypassing the return flow path of the recuperator.

15 In use, hot core gas is extracted from the hot plenum in the core of the nuclear reactor and transported to the hot inlet of the recuperator. Before it enters the recuperator, the gas is mixed in the mixing chamber with a portion of cold gas leaving the second heat exchanger. This is done to ensure that the gas temperature entering the 20 recuperator never exceeds the maximum temperature limits of the recuperator, typically 900°C. In the recuperator, the helium temperature is reduced further before it enters the second heat exchanger. Heat is removed from the system in the second heat exchanger. Cold helium leaving the second heat exchanger then enters the blower and continues 25 to the cold inlet of the recuperator. If desired, a portion of the cool gas is diverted to the mixing device and mixed with hot gas entering the mixing chamber, as described above. The remaining gas stream then enters the cold inlet of the recuperator where its temperature is increased

by heat transfer from the hot inlet gas flowing through the hot side of the recuperator. The heated gas stream, the temperature of which is nevertheless lower than that of the gas exiting the reactor pressure vessel via the outlet, is transported to the reactor cold plenum via the 5 reactor inlet.

The invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings.

In the drawings,

10 Figure 1 shows a schematic representation of a power generating circuit of a nuclear power plant in accordance with the invention;

Figure 2 shows a schematic representation of a core conditioning system forming part of the nuclear power plant;

15 Figure 3 shows schematically a mixing device in accordance with the invention which forms part of the core conditioning system of Figure 2; and

Figure 4 shows a representation, similar to Figure 2 of another core conditioning system in accordance with the invention.

20 In Figure 1 of the drawings, reference numeral 10 refers generally to part of a nuclear power plant in accordance with the invention.

The nuclear power plant 10 includes a closed loop power generation circuit, generally indicated by reference numeral 12. The power generation circuit 12 includes a nuclear reactor 14, a high pressure turbine 16, a low pressure turbine 18, a power turbine 20, a

recuperator 22, a pre-cooler 24, a low pressure compressor 26, an inter-cooler 28 and a high pressure compressor 30.

The reactor 14 is a pebble bed reactor making use of spherical fuel elements. The reactor 14 has an inlet 14.1 and an outlet 5 14.2.

The high pressure turbine 16 is drivingly connected to the high pressure compressor 30 and has an upstream side or inlet 16.1 and a downstream side or outlet 16.2, the inlet 16.1 being connected to the outlet 14.2 of the reactor 14.

10 The low pressure turbine 18 is drivingly connected to the low pressure compressor 26 and has an upstream side or inlet 18.1 and a downstream side or outlet 18.2. The inlet 18.1 is connected to the outlet 16.2 of the high pressure turbine 16.

15 The nuclear power plant 10 includes a generator, generally indicated by reference numeral 32 to which the power turbine 20 is drivingly connected. The power turbine 20 includes an upstream side or inlet 20.1 and a downstream side or outlet 20.2. The inlet 20.1 of the power turbine 20 is connected to the outlet 18.2 of the low pressure turbine 18.

20 A variable resistor bank 33 is disconnectably connectable to the generator 32.

The recuperator 22 has a hot or low pressure side 34 and a cold or high pressure side 36. The low pressure side of the recuperator

10

34 has an inlet 34.1 and an outlet 34.2. The inlet 34.1 of the low pressure side is connected to the outlet 20.2 of the power turbine 20.

The pre-cooler 24 is a water to helium heat exchanger and includes a helium inlet 24.1 and a helium outlet 24.2. The inlet 24.1 of 5 the pre-cooler 24 is connected to the outlet 34.2 of the low pressure side 34 of the recuperator 22.

The low pressure compressor 26 has an upstream side or inlet 26.1 and a downstream side or outlet 26.2. The inlet 26.1 of the low pressure compressor 26 is connected to the helium outlet 24.2 of 10 the pre-cooler 24.

The inter-cooler 28 is a helium to water heat exchanger and includes a helium inlet 28.1 and a helium outlet 28.2. The helium inlet 28.1 is connected to the outlet 26.2 of the low pressure compressor 26.

The high pressure compressor 30 includes an upstream side 15 or inlet 30.1 and a downstream side or outlet 30.2. The inlet 30.1 of the high pressure compressor 30 is connected to the helium outlet 28.2 of the inter-cooler 28. The outlet 30.2 of the high pressure compressor 30 is connected to an inlet 36.1 of the high pressure side of the recuperator 22. An outlet 36.2 of the high pressure side of the recuperator 22 is 20 connected to the inlet 14.1 of the reactor 14.

The nuclear power plant 10 includes a start-up blower system generally indicated by reference numeral 38 connected between the outlet 34.2 of the low pressure side 34 of the recuperator 22 and the inlet 24.1 of the pre-cooler 24.

The start-up blower system 38 includes a normally open start-up blower system in-line valve 40 which is connected in-line between the outlet 34.2 of the low pressure side of the recuperator and the inlet 24.1 of the pre-cooler 24. Two blowers 42 are connected in parallel with the start-up blower system in-line valve 40 and a normally closed isolation valve 44 is associated with and connected in series with each blower 42.

A low pressure compressor bypass line 46 extends from a position between the outlet or downstream side 26.2 of the low pressure compressor 26 and the inlet 28.1 of the inter-cooler 28 to a position between the start-up blower system 38 and the inlet 24.1 of the pre-cooler 24. A normally closed low pressure bypass valve 48 is mounted in the low pressure compressor bypass line 46.

A high pressure compressor bypass line 50 extends from a position between the outlet or downstream side 30.2 of the high pressure compressor and the inlet 36.1 of the high pressure side 36 of the recuperator 22 to a position between the outlet or downstream side 26.2 of the low pressure compressor 26 and the inlet 28.1 of the inter-cooler 28. A normally closed high pressure bypass valve 51 is mounted in the high pressure compressor bypass line 50.

A recuperator bypass line 52 extends from a position upstream of the inlet 36.1 of the high pressure side 36 of the recuperator 22 to a position downstream of the outlet 36.2 of the high pressure side 36 of the recuperator 22. A normally closed recuperator bypass valve 54 is mounted in the recuperator bypass line 52.

The plant 10 includes a high pressure coolant valve 56 and a low pressure coolant valve 58. The high pressure coolant valve 56 is configured, when open, to provide a bypass of helium from the high pressure side or outlet 30.2 of the high pressure compressor 30 to the 5 inlet or low pressure side 18.1 of the low pressure turbine 18. The low pressure coolant valve 58 is configured, when open, to provide a bypass of helium from the high pressure side or outlet 30.2 of the high pressure compressor 30 to the inlet 20.1 of the power turbine 20.

In normal operation of the Bryanton cycle, heat generated in 10 the reactor 14 is dissipated in the power generation circuit 12.

The plant 10 also includes a core conditioning system, generally indicated by reference numeral 100 (Figure 2) connected in series with the reactor 14. The core conditioning system is connected to an outlet 14.2 via a hot feed pipe or outlet gas flow duct 102 and to 15 an inlet of the reactor via a cold return pipe 104 or inlet flow duct. The hot feed pipe 102 is connected at an upstream end thereof, to a core outlet plenum and the cold return pipe 104 is connected, at a downstream end thereof, to a core inlet plenum (not shown in Figure 1).

The core conditioning system 100 includes a gas-to-gas heat 20 exchanger or recuperator 106 which has a hot side 108 and a cold side 110. The hot side has an inlet 108.1 and an outlet 108.2. Similarly, the cold side 110 has an inlet 110.1 and an outlet 110.2.

The core conditioning system 100 further includes a water- 25 to-gas heat exchanger 112 having a gas inlet 112.1 and a gas outlet 112.2.

The core conditioning system 100 includes a blower arrangement, generally indicated by reference numeral 114. The blower arrangement 114 includes three blowers 116 which are connected in parallel and a blower isolation valve 118 connected in series with each 5 of the blowers 116. The core conditioning system 100 further includes a mixing device 120. As can best be seen in Figure 3 of the drawings, the mixing device 120 includes a body 122 which defines a spherical mixing chamber 124. A hot inlet 126 leads into the mixing chamber 124 and is connected to a feed pipe 102 or outlet gas flow duct. A cold inlet 10 128 leads into the mixing chamber 124 at a position which is at 90° to the hot inlet 126. An outlet 130 leads from the mixing chamber 124 and is connected to the inlet 108.1 of the hot side 108 of the recuperator 106.

15 The core conditioning system 100 further includes a blower bypass valve 132, a flow valve 134, a mixing valve 136 and a recuperator bypass valve 138.

20 The purpose of the core conditioning system is to remove decay heat from the reactor when the reactor is shut down and the Brayton cycle is not operational. In the event of a trip of the power generation circuit, the core conditioning system serves to cool the reactor down to a temperature that will allow a restart. In a restart the start-up blower system 38 provides the required core mass flow to remove the core fission heat.

25 The function of the core conditioning system recuperator 106 is to ensure that the temperature of the returning gas to the reactor

does not decrease below acceptable limits. At the same time, it reduces the inlet temperature to the heat exchanger 112. The mixing device 120 is provided to limit the temperature of gas being fed to the inlet 108.1 of the hot side 108 of the recuperator 106 so that it does not exceed a 5 predetermined maximum temperature, typically 900°C.

To this end, the hot gas from the reactor is fed into the mixing chamber 124 through the hot inlet 126. Depending upon the temperature of the hot gas, already cooled gas is fed through the cold inlet 128 into the mixing chamber 124 where it mixes with the hot gas 10 and is exhausted through the outlet 130 from where it is fed to the hot side of the recuperator.

As can best be seen in Figure 3 of the drawings, the inlets 126 and 128 are directed towards the centre of the spherical mixing chamber 124 and are mutually perpendicular. The outlet 130 is 15 positioned diametrically opposite to the cold inlet 128. The Inventors believe that the stream of cold gas which is fed into the mixing chamber 124 will penetrate the hot stream. When the combined stream hits the opposite wall of the mixing chamber 124 a swirling motion is induced which results in efficient mixing with very low stratification levels. 20 Naturally, the diameters of the inlet 128 and the outlet 130 can be altered, thereby to alter the velocity of the gas streams being fed into the mixing chamber and hence the momentum thereof to change the level of penetration between the cold gas and hot gas and thereby optimise the mixing process.

25 The core conditioning system 100 is preferably housed in a pressure vessel (not shown).

Reference is now made to Figure 4 of the drawings in which, unless otherwise indicated, the same reference numerals used above are used to designate similar parts.

In the drawing, reference numeral 200 generally refers to 5 another core cooling system or core conditioning system in accordance with the invention.

The core conditioning system 200 is connected to a nuclear reactor 202 which is a high temperature gas cooled reactor and is of a type known as a Pebble Bed Reactor in which a fuel comprising a 10 plurality of spherical fuel elements (not shown) is used. The fuel elements comprise spheres of a fissionable material in a ceramic matrix, encapsulated in the ceramic material. The reactor is helium cooled. The reactor generates thermal power by means of a controlled nuclear fission process and converts heat energy into electrical energy utilising a 15 thermodynamic process based on a Brayton direct gas cycle. The reactor utilises substantially pure helium gas as a working fluid, which also comprises the coolant fluid (not shown) for the reactor core.

The reactor 202 has a reactor pressure vessel 204 containing a reactor core 206 cooled by helium gas. The reactor vessel 204 has inlets 208 and outlets 210. The outlets 210 of the reactor vessel 204 are in fluid communication with a hot plenum 212 of the reactor core 206. The inlets 208 of the reactor vessel 204 are in fluid communication with a cold plenum 214 of the reactor core 206.

In order to provide for maintenance and for safety 25 considerations, the core conditioning system 200, which is typically

housed in a pressure vessel (not shown), has two sets 220 of heat exchangers. Each set 220 is similar to the heat exchangers of the system 100 and has a recuperator 106 having an inlet 108.1, an outlet 108.2, an inlet 110.1 and an outlet 110.2. The inlet 108.1 is connected 5 to the outlet 210 via an outlet flow duct 102 and the outlet 110.2 is connected to the inlet 208 via an inlet flow duct 104. Each recuperator 106 is a multi-tube gas heat exchanger.

Further, each set 220 has a second heat exchanger 112 operatively connected to its associated recuperator 106 intermediate the 10 inlet 110.1 and outlet 108.2 thereof. The second heat exchanger 112 is a printed circuit heat exchanger and is water cooled.

Still further, each set 220 includes a gas mixing device 120 intermediate the outlet 210 and the inlet 108.1 of the recuperator 106.

15 Each set 220 also has a helium blower 116 for driving helium gas through the heat exchangers 106 and 112. The blower 116 is supported on magnetic bearings (not shown) and is driven by an electric motor.

In each set 220 the outlet 108.2 of the recuperator 106 is 20 connected to a gas inlet 112.2 of its associated second heat exchanger 112 by means of a first intermediate gas flow duct 230. The inlet 110.1 of the recuperator 106 is connected to a gas outlet 112.2 of the second heat exchanger 112 by means of a second intermediate gas flow duct 232. Thus, under normal operation, a gas flow path 234 is defined from 25 the outlet 210 to the inlet 208 by means of the outlet flow duct 102 via the recuperator 106 to the first intermediate gas flow duct 230 via the

second heat exchanger 112 to the second intermediate gas flow duct 232 and again via the recuperator 106 to the inlet flow duct 104 and inlet 210.

An inlet valve 134 is arranged on the second intermediate gas flow duct 232 for controlling gas flow between the second heat exchanger 112 and the inlet 110.1 of the recuperator 106. A branch flow duct 236 is arranged intermediate the second intermediate gas flow duct 232 and the outlet flow duct 104 and a first by-pass valve 136 is arranged thereon. The branch flow duct 236 is connected to the inlet 128 of the mixing device 120 and the outlet 210 is connected to the inlet 126 of the mixing device 120 via the outlet flow duct 102. An outlet 130 of the mixing device 120 is connected to the inlet 108.1 of the recuperator 106. Then, by means of the first by-pass valve 136 of the branch flow duct 236, cooler gas may be mixed in the device 120 with hot gas from the hot plenum 212 of the reactor 206 entering the mixing device 120 to provide gas of a predetermined temperature to the inlet 108.1 of the recuperator 106. A by-pass duct 238 is arranged intermediate the branch flow duct 236 and the inlet gas flow duct 104 and has a second by-pass valve 240 arranged thereon. By manipulation of the inlet valve 134 and the first and second by-pass valves 136, 240 cool gas from the outlet 112.2 of the second water cooled heat exchanger 112 may be diverted directly to the inlet flow duct 104 and directed to the cold plenum 214 of the reactor 206, thereby effectively bypassing the return flow path of the recuperator 106.

In use, hot core gas is extracted from the hot plenum 212 in the core 206 of the nuclear reactor 202 and transported to the inlet 108.1 of the recuperator 106. Before it enters the recuperator 106 it is

mixed in the mixing device 120 with cold gas leaving the water cooler 112. This is done to ensure that the gas temperature entering the recuperator 106 never exceeds the maximum temperature limits of the recuperator 106. In the recuperator 106 the helium temperature is
5 reduced further before it enters the water cooler 112. Heat is removed from the system in the water cooler 112. Cold helium leaving the water cooler 112 then enters the blower 116 and continues to the inlet 110.1 of the recuperator 106. A portion of the cool gas is diverted to the mixing device 120 and mixed with hot gas entering the mixing device
10 120, as described above. The remaining gas stream then enters the inlet 110.1 of the recuperator 20 where its temperature is increased by heat transfer from the hot gas flowing through the hot side 108 of the recuperator 106. The heated gas stream, the temperature of which is nevertheless lower than that of the gas exiting the reactor pressure
15 vessel 204 via the outlet 210, is transported to the reactor cold plenum 214 via the reactor vessel inlet 208.

In use, the gas mixing device 120 limits the incoming gas temperature to the recuperator 106. The recuperator 106 controls the temperature differential across the reactor core 206 and also reduces the
20 gas temperature entering the water cooled heat exchangers 112. Thus, the temperature of the helium gas may be reduced to a temperature at which known standard water cooled heat exchangers 112 may be used. The blower 116 provides the necessary helium mass flow. The core conditioning system pressure vessel (not shown) is preferably coupled directly to the primary pressure boundary of the reactor pressure vessel
25 204 and its operating pressure is therefore intended to follow that of the primary system.

In use, the core conditioning system 100, 200 removes core decay heat when the Brayton cycle is not in use and removes core fission heat during start-up operations. Thus, should the power generation circuit (shown in Figure 1) trip, the average helium temperature at the 5 reactor outlet may be reduced to a level that will allow the restart of the Brayton cycle. Further, during maintenance shutdown, the average helium temperature at the reactor outlet may be reduced to a level that will allow maintenance operations to take place. Still further, the core conditioning systems 100, 200 will control the rate at which core fission 10 heat is removed from the core 14, 206 of the reactor and allow controlled heat-up of the reactor core. The conditioning system 100, 200 may also be used to permit the increase of the outlet helium temperature to a level at which the Brayton cycle can be initiated.

In a proposed embodiment of a Pebble Bed nuclear reactor, 15 helium gas in the core and at the outlet of the reactor may be at a temperature of about 900°C. Before the gas enters the recuperator 106 if necessary it is cooled to about 900°C by mixing with the cool gas stream. In the recuperator 106, the gas is cooled to less than 550°C. This enables the use of available industrial blowers 116 and water cooled 20 heat exchangers 112. The gas then enters the water cooler 112 where heat is extracted from the gas and it is cooled to a maximum temperature of about 350°C. On re-entering the recuperator 106, the gas is heated before entering the inlet of the reactor so that a desired ratio of inlet to outlet temperatures in the reactor core may be maintained while the core 25 is gradually cooled. Once the core temperature has dropped to a point where the recuperator 106 is not effective, the recuperator 106 may be removed from the gas flow path, as described above, and further cooling

above, and further cooling may be provided by the water cooled heat exchanger 112, if it is required to cool the core completely.

By means of the invention, there is provided a nuclear reactor and a nuclear reactor cooling or core conditioning system 100, 200 that allows for the controlled cooling of the reactor core for maintenance. Further, where a Brayton direct gas thermodynamic cycle is used, the conditioning system 100, 200 provides for control of the temperature of the helium working fluid in order to initiate the Brayton cycle.

CLAIMS

1. A method of mixing fluid streams which includes feeding the streams into a spherical mixing chamber from angularly spaced positions.
2. A method of mixing two fluid streams which includes feeding the two fluid streams to be mixed into a mixing chamber so that the streams enter the chamber at right angles to one another.
3. A method as claimed in claim 1 or claim 2, which includes extracting the mixture from the mixing chamber from a position which is spaced at a right angle from at least one of the inlet streams.
4. A method as claimed in any one of the preceding claims, in which the streams are of gas, at different temperatures, the hotter stream being fed into the mixing chamber through a hot inlet, the cooler stream being fed into the mixing chamber through a cold inlet and the mixture being exhausted from the mixing chamber through an outlet.
5. A method as claimed in claim 4, which includes feeding the cooler stream into the mixing chamber and exhausting the mixture from the mixing chamber at diametrically opposed positions.
6. A mixing device which includes a mixing chamber;

22

at least two inlets leading into the mixing chamber at angularly spaced positions; and

an outlet leading from the mixing chamber, the mixing chamber being generally spherical in shape.

5 7. A mixing device which includes
a mixing chamber;
at least two inlets leading into the mixing chamber at angularly spaced positions; and
an outlet leading from the mixing chamber, the inlets being
10 directed towards the centre of the mixing chamber.

8. A mixing device as claimed in claim 6 or claim 7, which includes a first inlet and a second inlet which are perpendicular to one another, and the outlet being positioned opposite one of the inlets.

9. In a nuclear power plant, there is provided a method of removing
15 decay heat generated in the core of a nuclear reactor forming part of the nuclear power plant, which method includes the steps of circulating coolant between the reactor and a core conditioning system which includes at least one recuperator having a hot side which has an inlet and an outlet and a cold side which has an inlet and an outlet, the hot side
20 inlet being in fluid communication with an outlet of the reactor and the cold side outlet being in fluid communication with an inlet of the reactor, and a second heat exchanger operatively connected to the recuperator intermediate the hot side outlet and the cold side inlet.

23

10. A method as claimed in claim 9, which includes limiting the temperature of the coolant fed to the hot side of the recuperator to a predetermined maximum temperature.

11. A method as claimed in claim 10, in which limiting the temperature of coolant being fed to the hot side of the recuperator includes mixing hot coolant from the reactor with cold coolant prior to feeding the mixture into the hot side of the recuperator.

12. A method as claimed in claim 11, which includes mixing the hot coolant and the cold coolant in a mixing device as claimed in any one of claims 6 to 8, inclusive, the outlet of which is connected to the hot side inlet of the recuperator.

13. A nuclear power plant which includes a reactor and a core conditioning system connected in series with the reactor, the core conditioning system including at least one recuperator having a hot side which has an inlet and an outlet and a cold side which has an inlet and an outlet, the hot side inlet being in fluid communication with an outlet of the reactor and the cold side outlet being in fluid communication with an inlet of the reactor, and a second heat exchanger operatively connected to the recuperator intermediate the hot side outlet and the cold side inlet.

14. A plant as claimed in claim 13, which includes a mixing device positioned upstream of the hot side of the recuperator whereby hot coolant from the reactor can be mixed with cold coolant, before being fed into the recuperator.

15. A plant as claimed in claim 14, in which the mixing device is a mixing device as claimed in any one of claims 6 to 8, inclusive, a first inlet of the mixing device being connected to the outlet of the reactor vessel, the outlet of the mixing device being connected to the hot inlet 5 of the recuperator and a second inlet of the mixing device being connected or connectable to the outlet of the second heat exchanger, the core conditioning system including valving to regulate the flow of coolant from the outlet of the second heat exchanger to the mixing device.
16. A plant as claimed in any one of claims 13 to 15, inclusive, in 10 which the core conditioning system includes at least two sets of heat exchangers connected in parallel.
17. A method of mixing two fluid streams as claimed in claim 1 or claim 2 substantially as described and illustrated herein.
18. A mixing device as claimed in claim 6 or claim 7, substantially as 15 described and illustrated herein.
19. A method of removing heat from a nuclear reactor as claimed in claim 9, substantially as described and illustrated herein.
20. A nuclear power plant as claimed in claim 13, substantially as described and illustrated herein.
- 20 21. A new method, device or plant substantially as described herein.

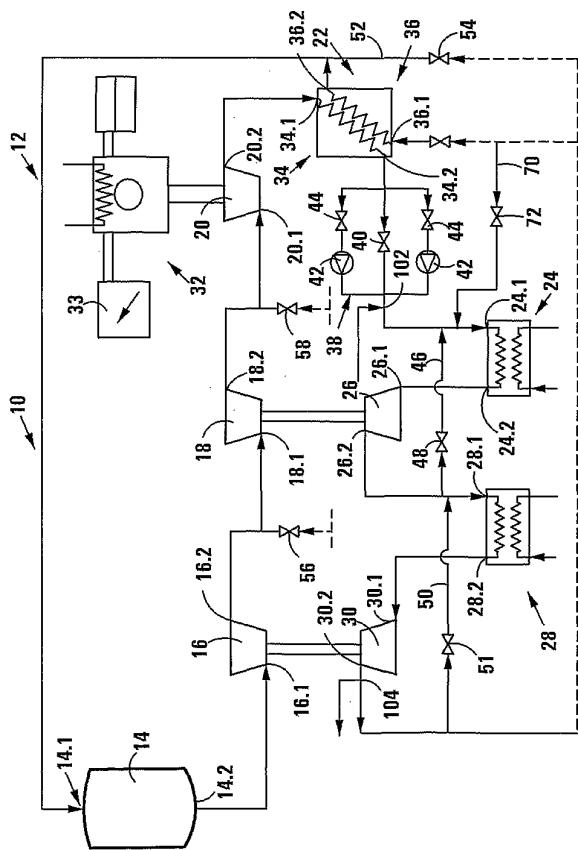
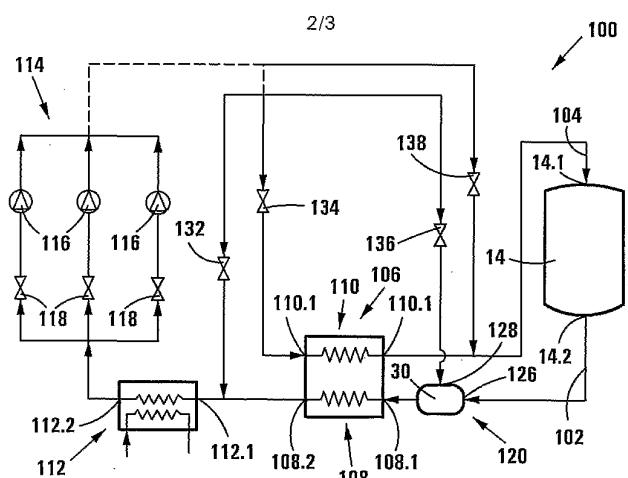
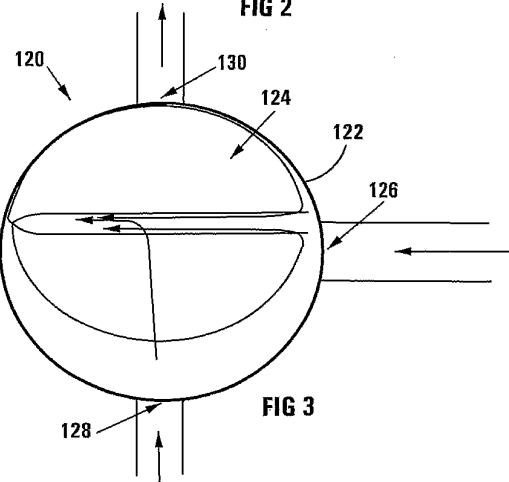



FIG 1


WO 02/21537

PCT/IB01/01606

108

FIG 2

FIG 3

WO 02/21537

PCT/IB01/01606

3/3

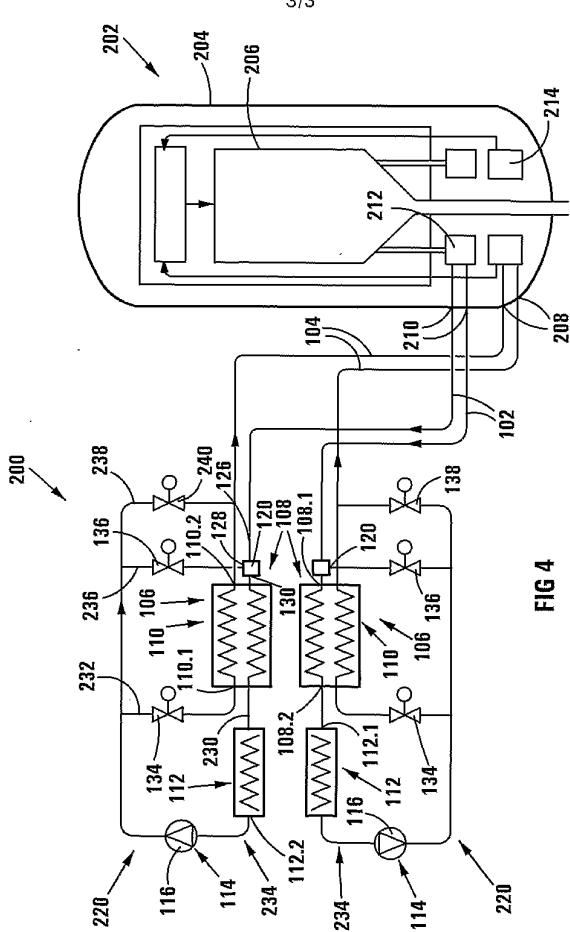


FIG 4

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
14 March 2002 (14.03.2002)

PCT

(10) International Publication Number
WO 02/021537 A3(51) International Patent Classification*: B01F 5/00,
G21C 15/18Andries, Cornelius [ZA/ZA]; 235 Soutpansberg Road,
Rietondale, 0084 Pretoria (ZA). FOX, Marius [ZA/ZA];
24 Rieusang Avenue, Routhuiskraal, 0154 Centurion
(ZA). VENTER, Pieter, Jacobus [ZA/ZA]; 32B Soutdorp
Draai, Elderton Ext. 3, 0157 Centurion (ZA).

(21) International Application Number: PCT/IB01/01606

(74) Agent: MACKENZIE, Colin; Adams & Adams Pretoria
Office, Adams & Adams Place, 1140 Prospect Street, Hat-
field, P.O. Box 1014, 0001 Pretoria (ZA).(22) International Filing Date:
3 September 2001 (03.09.2001)(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU,
CZ, DL, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PI, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

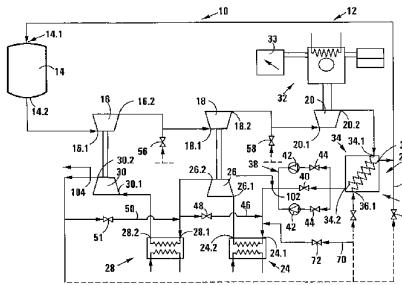
(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BH, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

(26) Publication Language: English

[Continued on next page]

(30) Priority Data:
2000/4635 4 September 2000 (04.09.2000) ZA
2001/6068 24 July 2001 (24.07.2001) ZA(71) Applicant (for all designated States except US): ESKOM
[ZA/ZA]; Megawatt Park, Maxwell Drive, Sunninghill,
2157 Sandton (ZA).


(72) Inventors: and

(75) Inventors/Applicants (for US only): HAASBROEK,

(54) Title: NUCLEAR REACTOR

WO 02/021537 A3

WO 02/021537 A3

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD. (88) Date of publication of the international search report: 10 October 2002
'TG).

Published:

- with international search report
 - before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

【手続補正書】

【提出日】平成14年10月22日(2002.10.22)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】**【特許請求の範囲】****【請求項1】**

流体ストリームを混合する方法であって、

混合すべき2つの流体ストリームを、前記ストリームが相互に直角にチャンバに流入するように、混合チャンバ内に供給するステップと、

前記混合チャンバの入口ストリームの少なくとも1つから直角に離れた位置から混合物を取り出すステップと

を含む方法。

【請求項2】

前記ストリームが異なる温度のガスであり、高温側ストリームが高温入口を介して前記混合チャンバ内に供給され、低温側ストリームが低温入口を介して前記混合チャンバ内に供給され、前記混合物が出口を介して前記混合チャンバから排出される、請求項1に記載の方法。

【請求項3】

前記混合チャンバが形状的に略球形であり、前記低温側ストリームを前記混合チャンバ内に供給し、かつ、前記混合物を前記混合チャンバの直径方向に對向する位置から排出することを含む、請求項2に記載の方法。

【請求項4】

形状的に略球形である混合チャンバと、

前記混合チャンバ内に通じる第1入口および第2入口であって、相互に垂直である前記第1入口および第2入口と、

前記混合チャンバから導かれる出口と

を含み、

前記入口が前記混合チャンバの中心に向かって方向付けられ、前記出口が前記入口の1つに對向して配置される

混合装置。

【請求項5】

原子炉を含む閉ループ発電回路を有する原子力プラントにおいて、発電回路のトリップが発生した場合に、前記原子炉の炉心で発生する崩壊熱を除去する方法であって、

炉心コンディショニングシステムを前記原子炉と流体連通して接続するステップと、

前記原子炉と前記炉心コンディショニングシステムとの間で冷却材を循環させるステップと

を含む方法。

ここに、炉心コンディショニングシステムは、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、前記高温側入口が前記原子炉の出口と流体連通しており、かつ前記低温側出口が前記原子炉の入口と流体連通している少なくとも1つのレキュペレータと、前記高温側出口と前記低温側入口の中間で前記レキュペレータに接続された第2熱交換器とを含む。

【請求項6】

前記レキュペレータの前記高温側に供給される冷却材の温度を予め定められた最大温度に制限するステップを含む、請求項5に記載の方法。

【請求項7】

前記レキュペレータの前記高温側に供給される冷却材の温度を制限する前記ステップが、

混合物を前記レキュベレータの前記高温側に供給する前に、前記原子炉からの高温冷却材を低温冷却材と混合するステップを含む、請求項 6 に記載の方法。

【請求項 8】

出口が前記レキュベレータの前記高温側入口に接続されている請求項 4 に記載の混合装置で、前記高温冷却材と前記低温冷却材を混合するステップを含む、請求項 7 に記載の方法。

【請求項 9】

原子炉を含む閉ループ発電回路を含む原子力プラントであって、前記原子炉と直列に着脱自在に接続可能な炉心コンディショニングシステムをさらに含み、前記炉心コンディショニングシステムが、入口および出口を有する高温側ならびに入口および出口を有する低温側を有し、前記高温側入口が前記原子炉の出口と流体連通しており、かつ前記低温側出口が前記原子炉の入口と流体連通している少なくとも 1 つのレキュベレータと、前記高温側出口と前記低温側入口の中間で前記レキュベレータに接続された第 2 熱交換器とを含んでいるプラント。

【請求項 10】

前記レキュベレータの前記高温側の上流に配置された混合装置を含み、その混合装置によって前記原子炉からの高温冷却材を、前記レキュベレータ内に供給する前に、低温冷却材と混合することができる、請求項 9 に記載のプラント。

【請求項 11】

前記混合装置が請求項 4 に記載の混合装置であり、前記混合装置の第 1 入口が原子炉容器の出口に接続され、前記混合装置の出口が前記レキュベレータの前記高温入口に接続され、前記混合装置の第 2 入口が前記第 2 熱交換器の出口に接続されているかまたは接続可能であり、前記炉心コンディショニングシステムが前記第 2 熱交換器の出口から前記混合装置への冷却材の流量を調整するために弁を含む、請求項 10 に記載のプラント。

【請求項 12】

前記炉心コンディショニングシステムが並列に接続された少なくとも 2 組の熱交換器を含む、請求項 9 ないし 11 のいずれか一項に記載のプラント。

【請求項 12】

本書で実質的に説明しあつ図示した、請求項 1 に記載の 2 つの流体ストリームを混合する方法。

【請求項 14】

本書で実質的に説明しあつ図示した、請求項 4 に記載の混合装置。

【請求項 15】

本書で実質的に説明しあつ図示した、請求項 9 に記載の原子炉から熱を除去する方法。

【請求項 16】

本書で実質的に説明しあつ図示した、請求項 9 に記載の原子力プラント。

【請求項 17】

本書で実質的に説明した新しい方法、装置、またはプラント。

【国際調査報告】

INTERNATIONAL SEARCH REPORT		Inten. Application No. PCT/IB 01/01606
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B01F5/00 G21C15/18		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G21C		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2 989 380 A (LONGWELL JOHN P ET AL) 20 June 1961 (1961-06-20) Y column 8, line 1 -column 9, line 50 A figures 1,4,5 ---	1,2,4,6, 7,17,18 12,15 3,5,8
X	DE 12 72 893 B (COMBUSTION ENG) 18 July 1968 (1968-07-18) Y column 1, line 1 -column 3, line 51 A column 4, line 49-64; figures 1,2 ---	1-3,6-8 12,15 4,5
X	US 3 788 944 A (STRACKE W ET AL) 29 January 1974 (1974-01-29) Y column 3, line 3-27; figure 1 ---	9,10,13, 16,19-21 10-12, 14,15 ---
		-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the International filing date		
L document which may throw doubts on priority, claim(s) or which is relevant to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the International filing date but later than the priority date claimed		
T later document examined after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying that invention		
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
8 document member of the same patent family		
Date of the actual completion of the international search 2 August 2002	Date of mailing of the International search report 20.08.02	
Name and mailing address of the ISA European Patent Office, P. B. 5618 Patentlan 2 NL-2280 MV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax. (+31-70) 340-3016	Authorized officer Jandl, F	

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT		Inten al Application No PCT/IB 01/01606
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 4 504 439 A (ELTER CLAUS ET AL) 12 March 1985 (1985-03-12) column 3, line 7-25 column 1, line 6-46; figures 1,2	10,11,14
A		12,15

Form PCT/ISA210 (continuation of record sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT		International application No. PCT/IB 01/01606
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
<p>This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</p> <ol style="list-style-type: none"> 1. <input type="checkbox"/> Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: 2. <input type="checkbox"/> Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: 3. <input type="checkbox"/> Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). 		
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
<p>This International Searching Authority found multiple inventions in this International application, as follows:</p> <p>see additional sheet</p> <ol style="list-style-type: none"> 1. <input checked="" type="checkbox"/> As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. 2. <input type="checkbox"/> As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. <input type="checkbox"/> As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: 4. <input type="checkbox"/> No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims. It is covered by claims Nos.: 		
Remark on Protest		<input type="checkbox"/> The additional search fees were accompanied by the applicant's protest. <input checked="" type="checkbox"/> No protest accompanied the payment of additional search fees.

Form PCT/ISA210 (continuation of first sheet (1)) (July 1998)

International Application No. PCT/IB 01 01606

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-8,17,18

A method and device of mixing (two) fluid streams in a spherical mixing chamber, specifying the relative positions and number of in and outlets as well as the kind of fluid streams (gas streams of different temperature)

2. Claims: 9-16, 19-21

Method and arrangement in a nuclear power plant of removing decay heat, comprising a core conditioning system, recuperator, heat exchanger, mixing device.

The feature of the first invention not disclosed by the prior art (US2989380) appears to be in claim 3, i.e. the mixture is extracted from the mixing chamber in a position which is at a right angle from one of the inlet streams.

This feature improves the mixing of the fluids and is considered as special technical feature 1 in the sense of Rule 13.2 PCT.

The features of the second invention not disclosed by the prior art is seen in claim 9 and 13 respectively, i.e. a method and arrangement in a nuclear power plant to remove heat with a core conditioning system. This feature is considered as special technical feature 2.

Above two inventions do not solve the same technical problem and their special technical features are neither the same nor corresponding. Consequently the requirement of Rule 13.1 PCT, i.e. unity of invention, is not fulfilled since there is no technical relationship among the two inventions according to Rule 13.2 PCT.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter. Application No.
PCT/IB 01/01606

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 2989380	A	20-06-1961	DE 969635 C FR 1112492 A GB 773151 A	26-06-1958 14-03-1956 24-04-1957
DE 1272893	B	18-07-1968	NONE	
US 3788944	A	29-01-1974	CH 512808 A1 BE 763837 A1 DE 2028736 A1 FR 2081784 A5 GB 1339958 A NL 7103025 A	15-09-1971 02-08-1971 30-09-1971 10-12-1971 05-12-1973 13-09-1971
US 4504439	A	12-03-1985	DE 3030697 A1 JP 57054899 A	18-03-1982 01-04-1982

Form PCT/ISA/210 (patent family entries) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PH,PL,PT,R0,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZW

(72)発明者 アンドリース コーネリアス ハースブローケ
南アフリカ共和国 0084 プレトリア リエントンデール ソントパンツバーグ ロード 23
5

(72)発明者 マリアス フォックス
南アフリカ共和国 0154 センチュリオン ルイフィスクラール リートサンガー アヴェニ
ュー 24

(72)発明者 ピーター ジャコバス ベンター
南アフリカ共和国 0157 センチュリオン エルドレイン イーエックスティー 3 ソエト
ドーリング ドラーイ 32ビー