PCT # WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau # INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: C12N 15/16, C07K 14/575, A61K 38/22, C12N 15/70, 1/21 // (C12N 1/21, C12R 1:19) (11) International Publication Number: WO 97/24440 (43) International Publication Date: 10 July 1997 (10.07.97) (21) International Application Number: PCT/US96/20718 **A1** (22) International Filing Date: 19 December 1996 (19.12.96) (30) Priority Data: 08/579,494 08/667,184 27 December 1995 (27.12.95) US 20 June 1996 (20.06.96) US (60) Parent Application or Grant (63) Related by Continuation US 08/667,184 (CIP) Filed on 20 June 1996 (20.06.96) (71) Applicant (for all designated States except US): GENENTECH, INC. [US/US]; 460 Point San Bruno Boulevard, South San Francisco, CA 94080 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): DE SAUVAGE, Frederic, J. [BE/US]; 166 Beach Park Boulevard, Foster City, CA 94404 (US). LEVIN, Nancy [US/US]; 900 Ashbury Street #D, San Francisco, CA 94117 (US). VANDLEN, Richard, L. [US/US]; 1015 Haynes Road, Hillsborough, CA 94010 (US). (74) Agents: DREGER, Ginger, R. et al.; Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, CA 94080-4990 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). #### **Published** With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (54) Title: OB PROTEIN DERIVATIVES HAVING PROLONGED HALF-LIFE (57) Abstract The present invention concerns long half-life derivative of the obesity protein OB. The invention specifically concerns OB protein-immunoglobulin chimeras and polyethylene glycol (PEG)-OB derivatives, which have extended half-life as compared to the corresponding native OB proteins. The invention further relates to methods for appetite and/or weight reduction and for treating other physiological conditions by using the long half-life derivatives of OB. # FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT. | AM | Armenia | GB | United Kingdom | MW | Malawi | |----|--------------------------|----|------------------------------|----|--------------------------| | AT | Austria | GE | Georgia | MX | Mexico | | ΑÜ | Australia | GN | Guinea | NE | Niger | | BB | Barbados | GR | Greece | NL | Netherlands | | BE | Belgium | HU | Hungary | NO | Norway | | BF | Burkina Faso | IE | Ireland | NZ | New Zealand | | BG | Bulgaria | IT | Italy | PL | Poland | | BJ | Benin | JP | Japan | PT | Portugal | | BR | Brazil | KE | Kenya | RO | Romania | | BY | Belarus | KG | Kyrgystan | RU | Russian Federation | | CA | Canada | KP | Democratic People's Republic | SD | Sudan | | CF | Central African Republic | | of Korea | SE | Sweden | | CG | Congo | KR | Republic of Korea | SG | Singapore | | СН | Switzerland | KZ | Kazakhstan | SI | Slovenia | | CI | Côte d'Ivoire | LI | Liechtenstein | SK | Slovakia | | CM | Cameroon | LK | Sri Lanka | SN | Senegal | | CN | China | LR | Liberia | SZ | Swaziland | | CS | Czechoslovakia | LT | Lithuania | TD | Chad | | CZ | Czech Republic | LU | Luxembourg | TG | Togo | | DE | Germany | LV | Latvia | TJ | Tajikistan | | DK | Denmark | MC | Monaco | TT | Trinidad and Tobago | | EE | Estonia | MD | Republic of Moldova | UA | Ukraine | | ES | Spain | MG | Madagascar | UG | Uganda | | FI | Finland | ML | Mali | US | United States of America | | FR | France | MN | Mongolia | UZ | Uzbekistan | | GA | Gabon | MR | Mauritania | VN | Viet Nam | # OB PROTEIN DERIVATIVES HAVING PROLONGED HALF-LIFE #### Field of the Invention The invention concerns long half-life derivatives of the OB protein. In particular, the invention concerns OB protein-immunoglobulin chimeras, and other long half-life derivatives of the OB protein, and compositions comprising and methods for administering them. The invention further relates to a method for treating obesity by administering a long half-life variant of the OB protein, such as, an OB protein-immunoglobulin chimera. #### Background of the Invention 10 15 20 25 30 Obesity is the most common nutritional disorder which, according to recent epidemiologic studies, affects about one third of all Americans 20 years of age or older. Kuczmarski et al., J. Am. Med. Assoc. 272, 205-11 (1994). Obesity is responsible for a variety of serious health problems, including cardiovascular disorders, type II diabetes, insulin-resistance, hypertension, hypertriglyceridemia, dyslipoproteinemia, and some forms of cancer. Pi-Sunyer, F.X., Anns. Int. Med. 119, 655-60 (1993); Colfitz, G.A., Am. J. Clin. Nutr. 55, 503S-507S (1992). A single-gene mutation (the obesity or "ob" mutation) has been shown to result in obesity and type II diabetes in mice. Friedman, Genomics 11, 1054-1062 (1991). Zhang et al., Nature 372, 425-431 (1994) have recently reported the cloning and sequencing of the mouse ob gene and its human homologue, and suggested that the ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot. Parabiosis experiments performed more than 20 years ago predicted that the genetically obese mouse containing two mutant copies of the ob gene (ob/ob mouse) does not produce a satiety factor which regulates its food intake, while the diabetic (db/db) mouse produces but does not respond to a satiety factor. Coleman and Hummal, Am. J. Physiol. 217, 1298-1304 (1969); Coleman, Diabetol 9, 294-98 (1973). Recent reports by three independent research teams have demonstrated that daily injections of recombinant OB protein inhibit food intake and reduce body weight and fat in grossly obese ob/ob mice but not in db/db mice (Pelleymounter et al., Science 269, 540-43 [1995]; Halaas et al., Science 269, 543-46 [1995]; Campfield et al., Science 269, 546-49 [1995]), suggesting that the ob protein is such a satiety factor as proposed in early cross-circulationstudies. The results of these first studies leave many questions unanswered, and show a number of as yet unresolved discrepancies. For example, while modest effects of daily injections of the ob protein on food intake and body weight were reported in lean mice, there was a significant reduction in body fat as assessed by carcass composition in one (Halaas et al., supra) but not in another (Pelleymounter et al., supra) of these reports, despite equivalent decreases in body weight. Furthermore, Pelleymounter et al., supra observed that, for reasons unknown, ob/ob mice treated with a 0.1 mg/kg/day dose of the OB protein actually increased their body weight by 17.13 %, while the weight reduction in the obese mice that received a 1 mg/kg/day dose of ob was rather moderate. The receptor or receptors of the ob protein are as of yet unidentified. While the existence of peripheral receptors cannot be ruled out at this time, the recent report that an increased expression of the *ob* gene in adipose tissue of mice with hypothalamic lesions does not result in a lean phenotype suggests that the OB protein does not act directly on fat cells. Maffei *et al.*, Proc. Natl. Acad. Sci. 92, 6957-60 (1995). Researchers suggest that at least one OB receptor is localized in the brain. The identification and expression cloning of a leptin receptor (OB-R) was reported by Tartaglia *et al.*, Cell 83, 1263-71 (1995). Various isoforms of a leptin receptor are described by Cioffi *et al.*, Nature 2, 585-89 (1996). A human hematopoetin receptor, which might be a receptor of the OB protein, is described in PCT application Publication No. WO 96/08510, published 21 March 1996. A receptor of the OB protein is disclosed in Tartaglia *et al.*, Cell 83, 1263-71 (1995). #### Summary of the Invention 10 20 25 30 35 The present invention is based on the observation that the OB protein is significantly more effective at reducing body weight and adipose tissue weight when delivered as a continuous subcutaneous infusion than when the same dose is delivered as a daily subcutaneous injection. The invention is further based on the unexpected finding that a chimeric protein, in which the OB polypeptide is fused to an immunoglobulin constant domain, is strikingly more potent in reducing the body weight and adipose depots than native human OB, when both proteins are administered by subcutaneous injection once a day. The latter observation is particularly surprising since the OB protein-immunoglobulin chimera due to its large molecular weight, is not expected to be able to cross the blood-brain barrier, and reach the OB receptor which has been believed to be located in the brain. In one aspect, the invention concerns long half-life derivatives of an OB protein capable of reducing body weight and/or food intake in an individual treated. The invention further concerns compositions containing such derivatives, and their administration for reducing body weight and/or food intake. In another aspect, the invention concerns chimeric polypeptides comprising an OB protein amino acid sequence capable of binding to a native OB receptor linked to an immunoglobulin sequence (briefly referred to as OB-immunoglobulinchimeras or immunoadhesins). In a specific embodiment, the chimeric polypeptides comprise a fusion of an OB amino acid sequence capable of binding a native OB receptor, to an
immunoglobulin constant domain sequence. The OB portion of the chimeras of the present invention preferably has sufficient amino acid sequences from a native OB protein to retain the ability to bind to and signal through a native OB receptor. Most preferably, the OB protein retains the ability to reduce body weight when administered to obese human or non-human subjects. The OB polypeptide is preferably human, and the fusion is preferably with an immunoglobulin heavy chain constant domain sequence. In a particular embodiment, the association of two OB polypeptide-immunoglobulin heavy chain fusions (e.g., via covalent linkage by disulfide bond(s)) results in a homodimeric immunoglobulin-like structure. An immunoglobulin light chain may further be associated with one or both of the OB-immunoglobulin chimeras in the disulfide-bonded dimer to yield a homotrimeric or homotetrameric structure. The invention further concerns nucleic acid encoding chimeric polypeptide chains of the present invention, expression vectors containing DNA encoding such molecules, transformed host cells, and methods for the production of the molecules by cultivating transformant host cells. Although the long half-life derivatives of the present invention are particularly useful for reducing body weight and/or food intake, they can generally be used for the treatment of conditions associated with the abnormal expression or function of the OB gene and/or to elicit biological responses mediated by an OB receptor. Thus, the OB derivatives of the present invention may be used to treat bulemia, to reduce insulin levels, e.g. in Type I or II diabetic patients, and as mitogens of various cell types expressing an OB receptor. All these and related uses are within the scope of the present invention. In another embodiment, the invention concerns the purification of an OB receptor by using an OB protein-immunoglobulin chimera. ## **Brief Description of the Figures** Figure 1 top -- Lean female mice were treated with murine OB protein either as a continuous subcutaneous infusion or daily subcutaneous injections. The data shown are the mean body weight of each group, in grams, n = 4 mice/point. 10 20 25 30 35 Figure 1 bottom -- The mean weight of the retroperitoneal fat pads are shown. Continuous subcutaneous infusions of the OB protein were also more effective than daily subcutaneous injections at reducing adipose tissue weight. Figure 2 top -- Obese female ob/ob mice were treated with human OB protein (hOB) or with a human OB-IgG-1 fusion protein (hOB-IgG-1). The data shown are the mean change in body weight for each treatment group from the first to the last day of experiment, in grams, n = 3 mice/bar except for the hOB 0.19 mg/kg/day by injection group, where n = 4, and PBS injection group, where n = 1. Figure 2 bottom -- The data shown were the mean food intake for each treatment group for the six 24 hour periods of the experiment, in grams/mouse/day, n = 1/bar. Figure 3 top and bottom -- Obese (ob/ob) female mice were treated with either hOB or the hOB-IgG-1 fusion protein by daily subcutaneous injections for 7 days. The data are depicted as in Figure 2, with n = 4 for all treatment groups. Figure 4 top - - Obese female ob/ob mice were treated with human protein (hOB) or with PEG-hOB. The data shown are the mean change in body weight for each treatment group from the first to the last day of experiment, in grams, n = 3-4 mice/bar except for the PBS injection group, where n = 1. The materials were injected daily subcutaneously. The "PEG 1X" and "PEG 2X" refer to the ratio of the PEG reagent to protein in the preparation of the molecule. Figure 4 bottom - - The data shown were the mean food intake for each treatment group for the six 24 hour periods of the experiment, in grams/mouse/day, n = 3-4/bar. Figure 5 - Obese (ob/ob) female mice were treated with either the hOB-IgG fusion protein, native hOB, or hCD4-IgG by daily subcutaneous injections for 7 days. n = 6 for all treatment groups, except hOB at 3.8 mg/kg/d, where n = 2. Again it was observed that the fusion protein was more effective than the native hOB protein at reducing body weight (top and middle panels) and food intake (bottom panel). Figure 6 - - The nucleotide sequence (SEQ. ID. NO:1) and the amino acid sequence (SEQ. ID. NO: 2) of the human OB-IgG-1 chimera of Example 1. #### **Detailed Description of the Invention** #### A. Definitions 10 15 20 25 30 35 The term "obesity" is used to designate a condition of being overweight associated with excessive bodily fat. The desirable weight for a certain individual depends on a number of factors including sex, height, age, overall built, etc. The same factors will determine when an individual is considered obese. The determination of an optimum body weight for a given individual is well within the skill of an ordinary physician. The phrase "long half-life" and grammatical variants thereof, as used in connection with OB derivatives, concerns OB derivatives having a longer plasma half-life and/or slower clearance than a corresponding native OB protein. The long half-life derivatives preferably will have a half-life at least about 1.5-times longer than a native OB protein; more preferably at least about 2-times longer than a native OB protein, more preferably at least about 3-time longer than a native OB protein. The native OB protein preferably is that of the individual to be treated. The terms "OB", "OB polypeptide" , "OB protein" and their grammatical variants are used interchangeably and refer to "native" or "native sequence" OB proteins (also known as "leptins") and their functional derivatives. The OB polypeptides have the typical structural features of cytokines, i.e. polypeptides released by one cell population which act on another cell as intercellularmediators, such as, for example, growth hormones, insulin-like growth factors, interleukins, insulin, glycoprotein hormones such as, follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), tumor necrosis factor- α and - β (TNF- α and - β), nerve growth factors, such as NGF- β , PDGF, transforming growth factors (TGFs) such as, TGF- α and TGF- β , insulin-like growth factor-1 and -2 (IGF-1 and IGF-2), erythropoietin, osteoinductive factors, interferons (IFNs) such as, IFN- α , IFN- β and IFN- γ , colony stimulating factors (CSFs) such as, M-CSF, GM-CSF, and G-CSF, interleukins (ILs) such as, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 and other polypeptide factors. The terms "native" and "native sequence" OB polypeptide are used to refer to an OB polypeptide from any animal species (e.g. human, murine, rabbit, cat, cow, sheep, chicken, porcine, equine, etc.), as occurring in nature. including naturally-occurringalleles, deletion, substitution and/or insertion variants, as currently known or as might be identified in the future, provided that they retain the ability to bind to and, preferably, signal through the OB receptor. Thus, a native human OB polypeptide includes the amino acid sequence between the N-terminus and the cysteine (Cys) at position 167 of the amino acid sequence shown in Figure 6 (see also SEQ. ID. NO: 2 and Figure 6 of Zhang et al., supra), and naturally occurring variants of this protein, as currently known or might be identified in the future. Similarly, a "native" or "native sequence" murine OB polypeptide has the amino acid sequence shown in Figure 6 of Zhang et al., supra, and naturally occurring variants of that polypeptide, as currently known or might be identified in the future. The definition specifically includes variants with or without a glutamine at amino acid position 49, using the amino acid numbering of Zhang et al. supra. The terms "native" and "native sequence" OB polypeptide include the native proteins with or without the initiating N-terminal methionine (Met), and with or without the native signal sequence. either in monomeric or in dimeric form. The native human and murine OB polypeptides known in the art are 167 amino acids long, contain two conserved cysteines, and have the features of a secreted protein. The polypeptide is largely hydrophilic, and the predicted signal sequence cleavage site is at position 21, using the amino acid numbering of Zhang et al., <u>supra</u>. The overall sequence homology of the human and murine sequences is about 84%. The two proteins show a more extensive identity in the N-terminal region of the mature protein, with only four conservative and three non-conservative substitutions among the residues between the signal sequence cleavage site and the conserved Cys at position 117. The molecular weight of OB proteins is about 16 kD in a monomeric form. A "functional derivative" of a native polypeptide is a compound having a qualitative biological property in common with the native polypeptide. A functional derivative of an OB polypeptide is a compound that has a qualitative biological property in common with a native (human or non-human) OB polypeptide. "Functional derivatives" include, but are not limited to, fragments of native polypeptides from any animal species (including humans), and derivatives of native (human and non-human) polypeptides and their fragments, provided that they have a biological activity in common with a corresponding native polypeptide. 10 15 20 25 30 "Fragments" comprise regions within the sequence of a mature native OB polypeptide. Preferred fragments of OB polypeptides include the C-terminus of the mature protein, and may contain relatively short deletion(s) at the N-terminus and in other parts of the molecule not required for receptor binding and/or for structural integrity. The term "derivative" is used to define amino acid sequence variants, and covalent modifications of a native polypeptide, whereas the term "variant" refers to amino acid sequence variants within this definition. "Biological property" in the
context of the definition of "functional derivatives" is defined as either 1) immunological cross-reactivity with at least one epitope of a native polypeptide (e.g. a native OB polypeptide of any species), or 2) the possession of at least one adhesive, regulatory or effector function qualitatively in common with a native polypeptide. Preferably, the functional derivatives are polypeptides which have at least about 65% amino acid sequence identity, more preferably about 75% amino acid sequence identity, even more preferably at least about 85% amino acid sequence identity, most preferably at least about 95% amino acid sequence identity with a native polypeptide. In the context of the present invention, functional derivatives of native sequence human OB polypeptides preferably show at least 95% amino acid sequence identity with the native OB proteins, and are not immunogenic in the human. Amino acid sequence identity or homology is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues of a corresponding native polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. Neither N- or C-terminal extensions nor insertions shall be construed as reducing identity or homology. Immunologically cross-reactive as used herein means that the candidate (poly)peptide is capable of competitively inhibiting the qualitative biological activity of a corresponding native polypeptide having this activity with polyclonal antibodies or antisera raised against the known active molecule. Such antibodies and antisera are prepared in conventional fashion by injecting an animal such as a goat or rabbit, for example, subcutaneously with the known native OB protein in complete Freud's adjuvant, followed by booster intraperitoneal or subcutaneous injection in incomplete Freud's. The term "isolated OB polypeptide" and grammatical variants thereof refer to OB polypeptides (as hereinabove defined) separated from contaminant polypeptides present in the human, other animal species, or in other source from which the polypeptide is isolated. In general, the term "amino acid sequence variant" refers to molecules with some differences in their amino acid sequences as compared to a reference (e.g. native sequence) polypeptide. The amino acid alterations may be substitutions, insertions, deletions or any desired combinations of such changes in a native amino acid sequence. Substitutional variants are those that have at least one amino acid residue in a native sequence removed and a different amino acid inserted in its place at the same position. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule. 10 20 25 30 35 Insertional variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a native amino acid sequence. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid. Deletional variants are those with one or more amino acids in the native amino acid sequence removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the molecule. "Covalent derivatives" include modifications of a native polypeptide or a fragment thereof with an organic proteinaceous or non-proteinaceous derivatizing agent, and post-translational modifications. Covalent modifications are traditionally introduced by reacting targeted amino acid residues with an organic derivatizing agent that is capable of reacting with selected sites or terminal residues, or by harnessing mechanisms of post-translational modifications that function in selected recombinant host cells. Certain post-translational modifications are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues may be present in the OB-immunoglobulin chimeras of the present invention. Other post-translational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, tyrosine or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)]. The terms "DNA sequence encoding", "DNA encoding" and "nucleic acid encoding" refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide chain. The DNA sequence thus codes for the amino acid sequence. The terms "replicable expression vector" and "expression vector" refer to a piece of DNA, usually double-stranded, which may have inserted into it a piece of foreign DNA. Foreign DNA is defined as heterologous DNA, which is DNA not naturally found in the host cell. The vector is used to transport the foreign or heterologous DNA into a suitable host cell. Once in the host cell, the vector can replicate independently of the host chromosomal DNA, and several copies of the vector and its inserted (foreign) DNA may be generated. In addition, the vector contains the necessary elements that permit translating the foreign DNA into a polypeptide. Many molecules of the polypeptide encoded by the foreign DNA can thus be rapidly synthesized. The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancer. 10 15 20 25 30 35 Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or a secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, then synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice. In the context of the present invention the expressions "cell", "cell line", and "cell culture" are used interchangeably, and all such designations include progeny. Thus, the words "transformants" and "transformed (host) cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context. Native immunoglobulins are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one and (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain. and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains (Clothia et al., J. Mol. Biol. 186, 651-663 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. USA 82, 4592-4596 [1985]). Depending on the amino acid sequence of the constant region of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2. The heavy chain constant regions that correspond to the different classes of immunoglobulins are called α , delta, epsilon, γ , and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known. IgA-1 and IgA-2 are monomeric subclasses of IgA, which usually is in the form of dimers or larger polymers. Immunocytes in the gut produce mainly polymeric IgA (also referred to poly-IgA including dimers and higher polymers). Such poly-IgA contains a disulfide-linked polypeptide called the "joining" or "J" chain, and can be transported
through the glandular epithelium together with the J-containing polymeric IgM (poly-IgM), comprising five subunits. Hybridization is preferably performed under "stringent conditions" which means (1) employing low ionic strength and high temperature for washing, for example, 0.015 sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C, or (2) employing during hybridization a denaturing agent, such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50nM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C. Another example is use of 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6/8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC and 0.1% SDS. # B. OB protein-immunoglobulin chimeras (immunoadhesins) 10 20 25 30 35 Immunoadhesins are chimeric antibody-like molecules that combine the functional domain(s) of a binding protein (usually a receptor, a cell-adhesion molecule or a ligand) with the an immunoglobulin sequence. The most common example of this type of fusion protein combines the hinge and Fc regions of an immunoglobulin (Ig) with domains of a cell-surface receptor that recognizes a specific ligand. This type of molecule is called an "immunoadhesin", because it combines "immune" and "adhesion" functions; other frequently used names are "Ig-chimera", "Ig-" or "Fc-fusion protein", or "receptor-globulin." To date, more than fifty immunoadhesins have been reported in the art. Immunoadhesins reported in the literature include, for example, fusions of the T cell receptor (Gascoigne et al., Proc. Natl. Acad. Sci. USA 84, 2936-2940 [1987]); CD4 (Capon et al., Nature 337, 525-531 [1989]; Traunecker et al., Nature 339, 68-70 [1989]; Zettmeisslet al., DNA Cell Biol. USA 9, 347-353 [1990]; Byrn et al., Nature 344, 667-670 [1990]); L-selectin (homing receptor) (Watson et al., J. Cell. Biol., 110, 2221-2229 [1990]; Watson et al., Nature 349, 164-167 [1991]); E-selectin [Mulligan et al., J. Immunol. 151, 6410-17 [1993]; Jacob et al., Biochemistry 34, 1210-1217 [1995]); P-selectin (Mulligan et al., supra; Hollenbaugh et al., Biochemistry 34, 5678-84 [1995]); ICAM-1 (Stauton et al., J. Exp. Med. 176, 1471-1476 [1992]; Martin et al., J. Virol. 67, 3561-68 [1993]; Roep et al., Lancet 343, 1590-93 [1994]); ICAM-2 (Damle et al., J. Immunol. 148, 665-71 [1992]); ICAM-3 (Holness et al., J. Biol. Chem. 270, 877-84 [1995]); LFA-3 (Kanner et al., J. Immunol. 148, 2-23-29 [1992]); L1 glycoprotein (Doherty et al., Neuron 14, 57-66 [1995]); TNF-R1 (Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88, 10535-539 [1991]; Lesslauer et al., Eur. J. Immunol. 21, 2883-86 [1991]; Peppel et al., J. Exp. Med. 174, 1483-1489 [1991]); TNF-R2 (Zack et al., Proc. Natl. Acad. Sci. USA 90, 2335-39 [1993]; Wooley et al., J. Immunol. 151, 6602-07 [1993]); CD44 [Aruffo et al., Cell 61, 1303-1313 (1990)]; CD28 and B7 [Linsley et al., J. Exp. Med. 173, 721-730 (1991)]; CTLA-4 [Lisley et al., J. Exp. Med. 174, 561-569 (1991)]; CD22 [Stamenkovic et al., Cell 66. 1133-1144(1991)]; NP receptors [Bennett et al., J. Biol. Chem. 266, 23060-23067 (1991)]; IgE receptor α [Ridgway and Gorman, J. Cell, Biol. 115, abstr. 1448 (1991)]; HGF receptor [Mark, M.R. et al., 1992, J. Biol. Chem. submitted]; IFN-γR α- and β-chain [Marsters et al., Proc. Natl. Acad. Sci. USA 92, 5401-05 [1995]); trk-A, -B, and -C (Shelton et al., J. Neurosci. 15, 477-91 [1995]); IL-2 (Landolfi, J. Immunol. 146, 915-19 [1991]); IL-10 (Zheng et al., J. Immunol. 154, 5590-5600 [1995]). The simplest and most straightforward immunoadhesin design combines the binding region(s) of the 'adhesin' protein with the hinge and Fc regions of an immunoglobulinheavy chain. Ordinarily, when preparing the OB-immunoglobulinchimeras of the present invention, nucleic acid encoding the desired OB polypeptide will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible. Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulinheavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain. The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion or binding characteristics of the OB-immunoglobulin chimeras. In a preferred embodiment, the sequence of a native, mature OB polypeptide, is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. IgG-1. It is possible to fuse the entire heavy chain constant region to the OB sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114 [Kobet et al., supra], or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the OB polypeptide sequence is fused to the hinge region and CH2 and CH3 or CH1, hinge, CH2 and CH3 domains of an IgG-1, IgG-2, or IgG-3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation. In some embodiments, the OB-immunoglobulinchimeras are assembled as multimers, and particularly as homo-dimers or -tetramers (WO 91/08298). Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in multimeric form in serum. In the case of multimer, each four unit may be the same or different. Various exemplary assembled OB-immunoglobulinchimeras within the scope herein are schematically diagrammed below: (a) $AC_1 - AC_1$; 5 10 15 20 25 30 - (b) AC_H -[AC_H , AC_L - AC_H , AC_L - V_HC_H , or V_LC_L - AC_H]; - (c) AC_L - AC_H - $[AC_L$ - AC_H , AC_L - V_H C $_H$, V_L C $_L$ - AC_H , or V_L C $_L$ - V_H C $_H$]; (d) $AC_L - V_H C_H - [AC_H, or AC_L - V_H C_H, or V_L C_L - AC_H]$; (e) $V_1 C_1 - AC_{H} - [AC_{L} - V_{H}C_{H}]$, or $V_L C_L - AC_{H}$; and (f) $[A-Y]_n-[V_LC_L-V_HC_H]_2$, wherein 15 20 25 30 35 5 each A represents identical or different OB polypeptide amino acid sequences; V_{1.} is an immunoglobulin light chain variable domain; V_H is an immunoglobulin heavy chain variable domain; C_L is an immunoglobulin light chain constant domain; CH is an immunoglobulin heavy chain constant domain; n is an integer greater than 1; Y designates the residue of a covalent cross-linking agent. In the interests of brevity, the foregoing structures only show key features; they do not indicate joining (J) or other domains of the immunoglobulins, nor are disulfide bonds shown. However, where such domains are required for binding activity, they shall be constructed as being present in the ordinary locations which they occupy in the immunoglobulin molecules. Alternatively, the OB amino acid sequences can be inserted between immunoglobulinheavy chain and light chain sequences such that an immunoglobulin comprising a chimeric heavy chain is obtained. In this embodiment, the OB polypeptide sequences are fused to the 3' end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the CH2 domain, or between the CH2 and CH3 domains. Similar constructs have been reported by Hoogenboom, H. R. et al., Mol. Immunol. 28, 1027-1037 (1991). Although the presence of an immunoglobulin light chain is not required in the immunoadhesins of the present invention, an immunoglobulin light chain might be present either covalently associated to an OB protein-immunoglobulin heavy chain fusion polypeptide, or directly fused to the OB polypeptide. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the OB-immunoglobulinheavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulinheavy chain-light chain pairs. Method suitable for the preparation of such structures are, for example, disclosed in U.S. Patent No. 4,816,567 issued 28 March 1989. In a preferred embodiment, the immunoglobulin sequences used in the construction of the immunoadhesins of the present invention are from an IgG immunoglobulin heavy chain constant domain. For human immunoadhesins, the use of human IgG-1 and IgG-3 immunoglobulin sequences is preferred. A major advantage of using IgG-1 is that IgG-1 immunoadhesins can be purified efficiently on immobilized protein A. In contrast, purification of IgG-3 requires protein G, a significantly less versatile medium. However, other structural and functional properties of immunoglobulins should be considered when choosing the Ig fusion partner for a particular immunoadhesin construction. For example, the IgG-3 hinge is longer and more flexible, so it can accommodate larger 'adhesin' domains that may not fold or function properly when fused to IgG-1. Possible IgG-based immunoadhesin structures are shown in Fig. 3a-c. While IgG immunoadhesinsare typically mono- or bivalent,
other Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit. A typical IgM-based multimeric immunoadhesin is illustrated in Figure 3d. Multimeric immunoadhesins are advantageous in that they can bind their respective targets with greater avidity than their IgG-based counterparts. Reported examples of such structures are CD4-IgM (Traunecker et al., supra); ICAM-IgM (Martin et al., J. Virol. 67, 3561-68 [1993]); and CD2-IgM (Arulanandam et al., J. Exp. Med. 177, 1439-50 [1993]). For OB-Ig immunoadhesins, which are designed for *in vivo* application, the pharmacokinetic properties and the effector functions specified by the Fc region are important as well. Although IgG-1, IgG-2 and IgG-4 all have *in vivo* half-lives of 21 days, their relative potencies at activating the complement system are different. IgG-4 does not activate complement, and IgG-2 is significantly weaker at complement activation than IgG-1. Moreover, unlike IgG-1, IgG-2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG-3 is optimal for complement activation, its *in vivo* half-life is approximately one third of the other IgG isotypes. Another important consideration for immunoadhesins designed to be used as human therapeutics is the number of allotypic variants of the particular isotype. In general, IgG isotypes with fewer serologically-defined allotypes are preferred. For example, IgG-1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites G1m1, is non-immunogenic. In contrast, there are 12 serologically-defined allotypes in IgG-3, all of which are in the Fc region; only three of these sites (G3m5, 11 and 21) have one allotype which is nonimmunogenic. Thus, the potential immunogenicity of a γ 3 immunoadhesin is greater than that of a γ 1 immunoadhesin. 10 15 20 25 30 35 In designing the OB-Ig immunoadhesins of the present invention regions that are not required for receptor binding, the structural integrity (e.g. proper folding) and/or biological activity of the molecule, may be deleted. In such structures, it is important to place the fusion junction at residues that are located between domains, to avoid misfolding. With respect to the parental immunoglobulin, a useful joining point is just upstream of the cysteines of the hinge that form the disulfide bonds between the two heavy chains. In a frequently used design, the codon for the C-terminal residue of the "adhesin" (OB) part of the molecule is placed directly upstream of the codons for the sequence DKTHTCPPCP of the IgG1 hinge region. OB-Ig immunoadhesinsare most conveniently constructed by fusing the cDNA sequence encoding the OB portion in-frame to an Ig cDNA sequence. However, fusion to genomic Ig fragments can also be used (see, e.g. Gascoigne et al., Proc. Natl. Acad. Sci. USA 84, 2936-2940 [1987]; Aruffo et al., Cell 61, 1303-1313 [1990]; Stamenkovic et al., Cell 66, 1133-1144 [1991]). The latter type of fusion requires the presence of Ig regulatory sequences for expression. cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequence from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques. Murine OB cDNA can, for example, be obtained by PCR from a mouse adipose tissue cDNA library (Clontech), using primers designed based on the sequence of Zhang et al. Human OB cDNA can be obtained in a similar manner. Alternatively, the mouse OB gene can be used as a probe to isolate human adipose tissue cDNA clones (Clontech), e.g. from a \(\lambda\)gtIl library, as described by Zhang et al. The cDNAs encoding the 'adhesin' and the Ig parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells. For expression in mammalian cells pRK5-based vectors (Schall et al., Cell 61, 361-370 [1990]), pRK7-vectors and CDM8-based vectors (Seed, Nature 329, 840 [1989]) are preferred. (pRK7 is identical to pRK5 except that the order of the endonuclease restriction sites in the polylinker region between ClaI and HindIII is reversed. See U.S. Patent No. 5,108,901 issued 28 April 1992.). The exact junction can be created by removing the extra sequences between the designed junction codons using oligonucleotide-directed deletional mutagenesis (Zoller and Smith, Nucleic Acids Res. 10, 6487 [1982]; Capon et al., Nature 337, 525-531 [1989]). Synthetic oligonucleotidescan be used, in which each half is complementary to the sequence on either side of the desired junction; ideally, these are 36 to 48-mers. Alternatively, PCR technique can be used to join the two parts of the molecule in-frame with an appropriate vector. 10 15 20 25 30 35 Immunoadhesins can be expressed efficiently in a variety of host cells, including myeloma cell lines, Chinese Hamster ovary (CHO) cells, monkey COS cells, human embryonic kidney 293 cells, and baculovirus infected insect cells. In these systems, the immunoadhesin polypeptides are assembled and secreted into the cell culture medium. Yeasts, e.g. Saccharomyces cerevisiae, Pichia pastoris, etc., and bacterial cells, preferably E. coli, can also be used as hosts. The OB-immunoglobulin chimeras can be expressed in yeast, for example, similarly to the process described for the expression of the OB proteins by Leiber et al., Crit. Res. Food Sci. Nutr. 33, 351 (1993); Friedman and Leibel, Cell 69, 217 (1992); and Beavis and Chait, Proc. Natl. Acad. Sci. USA 87, 6873 (1990). Thus, the coding sequences can be subcloned into a yeast plasmid, such as the yeast expression plasmid pPIC.9 (Invitrogen). This vector directs secretion of heterologous proteins from the yeast into the culture media. According to Halaas et al., supra, expression of mouse and human OB genes in Saccharomyces cerevisiae transformed with this vector yields a secreted 16-kD protein, which is an unprocessed OB protein lacking the signal sequence. Expression of the mouse or human OB-immunoglobulin chimeras in E. coli can, for example, be performed on the analogy of the procedure described by Halaas et al., supra. The coding sequences of mouse and human OB-immunoglobulin chimeras can be subcloned into the PET15b expression vector (Novagen) and expressed in E. coli (BL21 (DE3)pIYsS) through use of the T7 E. coli RNA polymerase system. Alternatively, the fusion protein can be expressed in E. coli by inserting the coding sequence in frame with the secretion sequence of the E. coli heat stable enterotoxin II, downstream of the E. coli alkaline phosphatase promoter (Chang et al., Gene 55, 189-96 [1987]). The choice of host cell line for the expression of OB-Ig immunoadhesins depends mainly on the expression vector. Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections. For example, the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5- and pRK7-based vectors by a modification of the calcium phosphate method to allow efficient immunoadhesin expression. This method is illustrated in the examples. CDM8-based vectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al., Cell 61, 1303-1313 (1990); Zettmeissl et al., DNA Cell Biol. (US) 2, 347-353 (1990)]. If larger amounts of protein are desired, the immunoadhesin can be expressed after stable transfection of a host cell line. For example, a pRK5- or pRK7-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418. Clones resistant to G418 can be selected in culture; these clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate; clones are selected, in which the number of gene copies encoding the DHFR and immunoadhesin sequences is co-amplified. If the immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells. The expression of immunoadhesins with more complex structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts [Gascoigne et al., 1987, supra; Martin et al., J. Virol. 67, 3561-3568 (1993)]. The expression of immunoadhesins with more complex oligomeric structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts (Gascoigne et al., supra; Martin et al., J. Immunol. 67, 3561-68 [1993]). 10 15 20 25 30 35 Immunoadhesins can be conveniently purified by affinity chromatography. The suitability of protein A as an affinity ligand depends on the species and isotype of the immunoglobulin Fc domain that is used in the chimera. Protein A can be used to purify immunoadhesins that are based on human $\gamma 1$, $\gamma 2$, or $\gamma 4$ heavy chains [Lindmark et al., J. Immunol. Meth. 62, 1-13 (1983)]. Protein G is recommended for all mouse isotypes and for human $\gamma 3$ [Guss et al., EMBO J. 5, 15671575 (1986)]. The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. The conditions for binding an immunoadhesinto the protein A or G affinity column are dictated entirely by the characteristics of the Fc domain; that is, its species and isotype. Generally, when the proper ligand is chosen, efficient binding occurs directly from unconditioned culture fluid. One distinguishing feature of immunoadhesins is that,
for human $\gamma 1$ molecules, the binding capacity for protein A is somewhat diminished relative to an antibody of the same Fc type. Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in an immunoadhesin preparation that is >95% pure. Other methods known in the art can be used in place of, or in addition to, affinity chromatography on protein A or G to purify immunoadhesins. Immunoadhesins behave similarly to antibodies in thiophilic gel chromatography [Hutchens and Porath, Anal. Biochem. 159, 217-226 (1986)] and immobilized metal chelate chromatography [Al-Mashikhi and Makai, J. Dairy Sci. 71, 1756-1763 (1988)]. In contrast to antibodies, however, their behavior on ion exchange columns is dictated not only by their isoelectric points, but also by a charge dipole that may exist in the molecules due to their chimeric nature. Microheterogeneity of charge can also be a factor for immunoadhesins in which the adhesin portion of the molecule is glycosylated and contains sialic acid. A specific purification protocol is described in the examples. Results with the numerous immunoadhesins produced so far show that the fusion of the adhesin portion to an Fc region usually does not perturb the folding of the individual domains. Both the adhesin and the immunoglobulin regions appear to fold correctly, and the Fc portion retins many of the effector functions that are characteristic of antibodies, such as binding to Fc receptors. Methods generally applicable for the construction, expression and purification of immunoadhesins are described, for example, in U.S. Patent Nos. 5,225,538 (issued 6 July 1993) and 5,455,165 (issued 30 October 1995), the disclosures of which are hereby expressly incorporated by reference. Immunoadhesin construction, expression, purification and various immunoadhesins designs are also described in the review articles by Ashkenazi and Chamow, Methods in Enzymology 8, 104-115 (1995), and Peach and Linsley, Methods in Enzymology 8, 116-123 (1995), the disclosures of which, along with the references cited therein, is hereby expressly incorporated by reference. ## 5 C. Other long half-life OB derivatives 10 15 20 25 30 35 Other derivatives of the OB proteins, which possess a longer half-life than the native molecules comprise the OB protein or an OB-immunoglobulinchimera, covalently bonded to a nonproteinaceouspolymer. The nonproteinaceouspolymer ordinarily is a hydrophilic synthetic polymer, i.e., a polymer not otherwise found in nature. However, polymers which exist in nature and are produced by recombinant or in vitro methods are useful, as are polymers which are isolated from native sources. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g. polyvinylalcohol and polyvinylpyrrolidone. Particularly useful are polyalkylene ethers such as polyethylene glycol (PEG); polyelkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene (Pluronics); polymethacrylates; carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers D-mannose, D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid, sialic acid, D-galacturonicacid, D-mannuronic acid (e.g. polymannuronicacid, or alginic acid), D-glucosamine, D-galactosamine, D-glucose and neuraminic acid including homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch, hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as polysorbitol and polymannitol; heparin or heparon. The polymer prior to cross-linking need not be, but preferably is, water soluble, but the final conjugate must be water soluble. In addition, the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if it is intended to be administered by such routes. Preferably the polymer contains only a single group which is reactive. This helps to avoid cross-linking of protein molecules. However, it is within the scope herein to optimize reaction conditions to reduce cross-linking, or to purify the reaction products through gel filtration or chromatographic sieves to recover substantially homogenous derivatives. The molecular weight of the polymer may desirably range from about 100 to 500,000, and preferably is from about 1,000 to 20,000. The molecular weight chosen will depend upon the nature of the polymer and the degree of substitution. In general, the greater the hydrophilicity of the polymer and the greater the degree of substitution, the lower the molecular weight that can be employed. Optimal molecular weights will be determined by routine experimentation. The polymer generally is covalently linked to the OB protein or to the OB-immunoglobulin chimeras though a multifunctional crosslinking agent which reacts with the polymer and one or more amino acid or sugar residues of the OB protein or OB-immunoglobulinchimera to be linked. However, it is within the scope of the invention to directly crosslink the polymer by reacting a derivatized polymer with the hybrid, or via versa. The covalent crosslinking site on the OB protein or OB-Ig includes the N-terminal amino group and epsilon amino groups found on lysine residues, as well as other amino, imino, carboxyl, sulfhydryl, hydroxyl or other hydrophilic groups. The polymer may be covalently bonded directly to the hybrid without the use of a multifunctional (ordinarily bifunctional) crosslinking agent. Covalent binding to amino groups is accomplished by known chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, succinimidyl active esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylcloroformate or P-nitrophenylcloroformate activated PEG.) Carboxyl groups are derivatized by coupling PEG-amine using carbodiimide. 5 10 15 20 25 30 35 Polymers are conjugated to oligosaccharide groups by oxidation using chemicals, e.g. metaperiodate, or enzymes, e.g. glucose or galactose oxidase, (either of which produces the aldehyde derivative of the carbohydrate), followed by reaction with hydrazide or amino derivatized polymers, in the same fashion as is described by Heitzmann et al., P.N.A.S., 71, 3537-41 (1974) or Bayer et al., Methods in Enzymology 62, 310 (1979), for the labeling of oligosaccharides with biotin or avidin. Further, other chemical or enzymatic methods which have been used heretofore to link oligosaccharides are particularly advantageous because, in general, there are fewer substitutions than amino acid sites for derivatization, and the oligosaccharide products thus will be more homogenous. The oligosaccharide substituents also are optionally modified by enzyme digestion to remove sugars, e.g. by neuraminidase digestion, prior to polymer derivatization. The polymer will bear a group which is directly reactive with an amino acid side chain, or the N- or C-terminus of the polypeptide linked, or which is reactive with the multifunctional cross-linking agent. In general, polymers bearing such reactive groups are known for the preparation of immobilized proteins. In order to use such chemistries here, one should employ a water soluble polymer otherwise derivatized in the same fashion as insoluble polymers heretofore employed for protein immobilization. Cyanogen bromide activation is a particularly useful procedure to employ in crosslinking polysaccharides. "Water soluble" in reference to the starting polymer means that the polymer or its reactive intermediate used for conjugation is sufficiently water soluble to participate in a derivatization reaction. "Water soluble" in reference to the polymer conjugate means that the conjugate is soluble in physiological fluids such as blood. The degree of substitution with such a polymer will vary depending upon the number of reactive sites on the protein, whether all or a fragment of the protein is used, whether the protein is a fusion with a heterologous protein (e.g. an OB-immunoglobulin chimera), the molecular weight, hydrophilicity and other characteristics of the polymer, and the particular protein derivatization sites chosen. In general, the conjugate contains about from 1 to 10 polymer molecules, while any heterologous sequence may be substituted with an essentially unlimited number of polymer molecules so long as the desired activity is not significantly adversely affected. The optimal degree of cross-linking is easily determined by an experimental matrix in which the time, temperature and other reaction conditions are varied to change the degree of substitution, after which the ability of the conjugates to function in the desired fashion is determined. The polymer, e.g. PEG, is cross-linked by a wide variety of methods known per se for the covalent modification of proteins with nonproteinaceouspolymers such as PEG. Certain of these methods, however, are not preferred for the purposes herein. Cyanuronic chloride chemistry leads to many side reactions, including protein cross-linking. In addition, it may be particularly likely to lead to inactivation of proteins containing sulfhydryl groups. Carbonyl diimidazole chemistry (Beauchamp et al., Anal Biochem. 131, 25-33 [1983]) requires high pH (>8.5), which can inactivate proteins. Moreover, since the "activated PEG" intermediate can react with water, a very large molar excess of "activated PEG" over protein is required. The high concentrations of PEG required for the carbonyl diimidazole chemistry also led to problems in purification, as both gel
filtration chromatography and hydrophilic interaction chromatography are adversely affected. In addition, the high concentrations of "activated PEG" may precipitate protein, a problem that per se has been noted previously (Davis, U.S. Patent No. 4,179,337). On the other hand, aldehyde chemistry (Royer, U.S. Patent No. 4,002,531) is more efficient since it requires only a 40-fold molar excess of PEG and a 1-2 hr incubation. However, the manganese dioxide suggested by Royer for preparation of the PEG aldehyde is problematic "because of the pronounced tendency of PEG to form complexes with metal-based oxidizing agents" (Harris et al., J. Polym. Sci. Polym. Chem. Ed. 22, 341-52 [1984]). The use of a Moffatt oxidation, utilizing DMSO and acetic anhydride, obviates this problem. In addition, the sodium borohydride suggested by Royer must be used at high pH and has a significant tendency to reduce disulfide bonds. In contrast, sodium cyanoborohydride, which is effective at neutral pH and has very little tendency to reduce disulfide bonds is preferred. 10 15 20 25 30 35 Functionalized PEG polymers to modify the OB protein or OB-Ig chimeras of the present invention are available from Shearwater Polymers, Inc. (Huntsville, AL). Such commercially available PEG derivatives include, but are not limited to, amino-PEG, PEG amino acid esters, PEG-hydrazide, PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionicacid, PEG amino acids, PEG succinimidylsuccinate, PEG succinimidyl propionate, succinimidylester of carboxymethylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulfide, heterofunctional PEGs, PEG vinyl derivatives, PEG silanes, and PEG phospholides. The reaction conditions for coupling these PEG derivatives will vary depending on the protein, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (lysine or cysteine), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkeage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer. The long half-life conjugates of this invention are separated from the unreacted starting materials by gel filtration. Heterologous species of the conjugates are purified from one another in the same fashion. The polymer also may be water-insoluble, as a hydrophilic gel. The conjugates may also be purified by ion-exchange chromatography. The chemistry of many of the electrophilically activated PEG's results in a reduction of amino group charge of the PEGylated product. Thus, high resolution ion exchange chromatography can be used to separate the free and conjugated proteins, and to resolve species with different levels of PEGylation. In fact, the resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids. # D. The use of the OB-immunoglobulin chimeras and other long half-life derivatives 5 10 15 20 25 30 35 The OB-immunoglobulinchimeras and other long half-life OB derivatives of the present invention are useful for weight reduction, and specifically, in the treatment of obesity and other disorders associated with the abnormal expression or function of the OB gene. Our studies indicate that the OB-immunoglobulin chimeras and other long half-life OB derivatives, e.g. PEGylated OB, reduce the food intake and increase the energy use of animals treated, and are therefore very effective in reducing the weight of both obese and normal subjects. For testing purposes, the molecules of the present invention may be dissolved in phosphate-buffered saline (PBS) (pH 7.4), and administered by intravenous or subcutaneous injection, or infusion. The long acting OB-derivatives of the present invention may further be used to treat other metabolic disorders such as diabetes and bulimia. The OB protein has been shown to reduce insulin levels in animals, and could be useful to reduce excessive levels of insulin in human patients. The reduction of insulin levels in obese or non-obese patients (e.g. Type I or II diabetics) could restore or improve the insulin-sensitivity of such patients. In addition, the long half-life OB-derivatives can be used for the treatment of kidney ailments, hypertension, and lung disfunctions, such as emphysema. The OB protein might also cause a mitogenic response in receptor-bearing tissues, acting as a growth factor for these cells. Therapeutic formulations of the present invention are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrationsemployed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or PEG. The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in <u>Remington's Pharmaceutical Sciences</u>, *supra*. The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. Therapeutic compositions herein generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. The route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, etc. routes. Sustained released formulations are also foreseen. Suitable examples of sustained release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices include polyesters, hydrogels, polylactides (U.S. Patent 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (U. Sidman et al., 1983, "Biopolymers" 22 (1): 547-556), poly (2-hydroxyethyl-methacrylate) (R. Langer, et al., 1981, "J. Biomed. Mater. Res." 15: 167-277 and R. Langer, 1982, Chem. Tech." 12: 98-105), ethylene vinyl acetate (R. Langer et al., Id.) or poly-D-(-)-3-hydroxybutyric acid (EP 133,988A). Sustained release compositions also include liposomes. Liposomes containing a molecule within the scope of the present invention are prepared by methods known per se: DE 3,218,121A; Epstein et al., 1985, "Proc. Natl. Acad. Sci. USA" 82: 3688-3692; Hwang et al., 1980, "Proc. Natl. Acad. Sci. USA" 77: 4030-4034; EP 52322A; EP 36676A; EP 88046A; EP 143949A; EP 142641A; Japanese patent application 83-118008; U.S. patents 4,485,045 and 4,544,545; and EP 102,324A. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal therapy. An effective amount of a molecule of the present invention to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. A typical daily dosage might range from about 1 μ g/kg to up to 100 mg/kg or more, depending on the factors mentioned above. Typically, the clinician will administer a molecule of the present invention until a dosage is reached that provides the required biological effect. The progress of this therapy is easily monitored by conventional assay techniques. If the purpose of the treatment is weight reduction, the therapy is normally continued until a desired body weight is reached. Non-therapeuticuses of the OB protein-immunoglobulinfusions of the present invention include their use to identify and purify OB receptors. The identification and expression cloning of an OB receptor, using an OB protein-immunoadhesin is described in a Reference Example hereinbelow. The invention will be further illustrated by the following non-limiting examples. ## Example 1 ## Expression of OB- immunoadhesins 10 15 20 25 30 35 Using protein engineering techniques, the human OB protein was expressed as a fusion with the hinge, CH2 and CH3 domains of IgG-1. DNA constructs encoding the chimera of the human OB protein and IgG-1 Fc domains were made with the Fc region clones of human IgG-1. Human OB cDNA was obtained by PCR from human fat cell dscDNA (Clontech Buick-ClonecDNA product). The source of the IgG-1 cDNA was the plasmid
pBSSK-CH₂CH₃. The chimera contained the coding sequence of the full length OB protein (amino acids 1-167 in Figure 5) and human IgG-1 sequences beginning at aspartic acid 216 (taking amino acid 114 as the first residue of the heavy chain constant region (Kabat *et al.*, Sequences of Proteins of Immunological Interest 4th ed. [1987]), which is the first residue of the IgG-1 hinge after the cysteine residue involved in heavy-light chain bonding, and ending with residues 441 to include the CH2 and CH3 Fc domains of IgG-1. There was an insert of codons for three amino acids (GlyValThr) between the OB and IgG-1 coding sequences. If necessary, this short linker sequence can easily be deleted, for example by site directed deletion mutagenesis, to create an exact junction between the coding sequences of the OB protein and the IgG-1 hinge region. The coding sequence of the OB-IgG-1 immunoadhesin was subcloned into the pRK5-based vector pRK5tk-neo which contains a neomycine selectable marker, for transient expression in 293 cells using the calcium phosphate technique (Suva et al., Science 237, 893-896 [1987]). 293 cells were cultured in HAM's: Low Glucose DMEM medium (50:50), containing 10% FBS and 2 mM L-Gln. For purification of OB-IgG-1 chimeras, cells were changed to serum free production medium PS24 the day after transfection and media collected after three days. The culture media was filtered. The filtered 293 cell supernatant (400 ml) containing recombinant human OB-IgG-1 was made 1 mM in phenylmethylsulfonylfluoride and 2 μ g/ml in aprotinin. This material was loaded at 4 °C onto a 1 x 4.5 cm Protein A agarose column (Pierce catalog # 20365) equilibrated in 100 mM HEPES pH 8. The flow rate was 75 ml/h. Once the sample was loaded, the column was washed with equilibration buffer until the A₂₈₀ reached baseline. The OB-IgG-1 protein was eluted with 3.5 M MgCl₂ + 2% glycerol (unbuffered) at a flow rate of 15 ml/h. The eluate was collected with occasional mixing into 10 ml of 100 mM HEPES pH 8 to reduce the MgCl₂ concentration by approximately one-half and to raise the pH. The eluted protein was then dialyzed into phosphate buffered saline, concentrated, sterile filtered and stored either at 4°C or frozen at -70 °C. The OB-IgG-1 immunoadhesin prepared by this method is estimated by SDS-PAGE to be greater than 90% pure. # Example 2 #### **Animal studies** ## A. Materials and Methods 10 15 20 25 35 OB protein Production -- Murine OB cDNA was obtained by PCR from an adipocyte cDNA library using primers based on the sequence of Zhang et al., <u>supra</u>. Mature OB protein (amino acids 22-167) was expressed in <u>E. coli</u> by inserting the OB coding sequence in frame with the secretion sequence of the <u>E. coli</u> heat-stable enterotoxin II, downstream of the <u>E. coli</u> alkaline phosphatase promoter. Chang et al., <u>Gene 55</u>, 189-96 (1987). After cell lysis, the insoluble fraction was solubilized in 8 M urea buffer pH 8.35 in the presence of 25 mM DTT. Reduced OB protein was purified by size exclusion and reverse phase HPLC, then refolded in the presence of glutathione. Refolded OB protein was purified by reverse phase HPLC and analyzed by SDS-PAGE and amino acid and mass spectrometry analyses. Preparation of PEG-hOB -- The PEG derivatives of the human PB protein were prepared by reaction of hOB purified by reverse phase chromatography with a succinimidyl derivative of PEG propionic acid (SPA-PEG) having a nominal molecular weight of 10 kD, which had been obtained from Shearwater Polymers, Inc. (Huntsville, AL). After purification of the hOB protein by reverse phase chromatography, an approximately 1-2 mg/ml solution of the protein in 0.1% trifluoroacetic acid and approximately 40% acetonitrile. was diluted with 1/3 to 1/2 volume of 0.2 M borate buffer and the pH adjusted to 8.5 with NaOH. SPA-PEG was added to the reaction mixture to make 1:1 and 1:2 molar ratios of protein to SPA-PEG and the mixture was allowed to incubate at room temperature for one hour. After reaction and purification by gel electrophoresis or ion exchange chromatography, the samples were extensively dialyzed against phosphate-buffered saline and sterilized by filtration through a 0.22 micron filter. Samples were stored at 4°C. Under these conditions, the PEG-hOB resulting from the 1:1 molar ratio protein to SPA-PEG reaction consisted primarily of molecules with one 10 kD PEG attached with minor amounts of the 2 PEG-containing species. The PEG-hOB from the 1:2 molar reaction consisted of approximately equal amounts of 2 and 3 PEGs attached to hOB, as determined by SDS gel electrophoresis. In both reactions, small amounts of unreacted protein was also detected. This unreacted protein can be efficiently removed by the gel filtration or ion exchange steps as needed. The PEG derivatives of the human OB protein can also be prepared essentially following the aldehyde chemistry described in EP 372,752 published June 13, 1990. Animal Studies -- All manipulations involving animals were reviewed and approved by Genentech's Institutional Animal Care and Use Committee. Seven to eight week-old genetically obese C57BI/6J-ob/ob (ob/ob) female mice were purchase from Jackson Labs (Bar Harbor, ME). Lean female mice of the same genetic background (C57BI/6) were purchased from Harlan Sprague Dawley (Hollister, CA). Mice were housed in groups 3 - 6 with ad libitum access to water and standard mouse chow (Purina 5010; Purina Mills, Richmond, IN) in a temperature-, humidity- and light-controlled (lights on at 06:00h, of at 18:00h) colony room. Miniosmotic pumps (Alzet model 2002; Alza Corp., Palo Alto, CA) were filled with purified recombinant OB protein (100 μg/kg/day) in sterile phosphate-buffered saline (PBS) or PBS alone under sterile conditions following manufacturer's instructions and incubated overnight in sterile saline at room temperature prior to implantation into mice. Mice were anesthetized with ketamine/xylazine, and miniosmotic pumps were implanted subcutaneously in the midscapular region. Daily subcutaneous injections of purified recombinant OB protein, hOB-IgG-1 fusion protein or PBS were made into the midscapular region of conscious mice. Injections were performed within one hour of lights out. The body weight of each mouse (to the nearest 0.1 gram) and the weight of the food contained in the food bin in each cage (to the nearest 0.1 gram) were recorded within one hour of lights out every one to two days. The data are depicted as the mean ± SEM. The number of animals is as described below and in the Figure legends. # B. Results with continuous subcutaneous infusion of OB protein Lean female mice were treated with murine OB protein either as a continuous subcutaneous infusion or daily subcutaneous injections. The results are shown in Figure 1. The upper chart shows that the OB protein is significantly more effective in reducing body weight when delivered as a continuous infusion than when the same dose is delivered in the form of daily subcutaneous injections. The bottom chart shows the same difference in the ability of the OB protein to reduce adipose tissue weight. ## C. Results with the OB-IgG-1 chimera 10 15 20 25 30 35 Obese female ob/ob mice were treated with human OB protein or with the human OB-IgG-1 chimera. The data are shown in Figure 2. The data presented in the top chart demonstrate that the hOB-IgG-1 fusion protein is more potent than the native hOB protein at reducing body weight, when both proteins are administered similarly by daily subcutaneous infusion. It is noted that the increase in potency would be even more expressed, if the data were converted to molar amounts, as only about one third of the OB-IgG-1 chimera comes from the OB protein. The data further confirm the previous observation that continuous subcutaneous infusion (pump) or the hOB protein is more effective than daily subcutaneous injections (inj) at reducing body weight. The data shown at the bottom chart of Figure 2 show that the hOB-IgG-1 fusion protein substantially reduced food intake. This result was unexpected as it was assumed that the fusion protein would be too large to cross the blood-brain barrier and exert its effect. Obese (ob/ob) female mice were treated with either hOB or the hOB-IgG-1 chimera by daily subcutaneous injections for 7 days. The data shown in Figure 3 again demonstrate that the chimera is more effective than the native hOB protein at reducing body weight (top) and food intake (bottom). In a further experiment, obese (ob/ob) female mice were treated with either the hOB-IgG-1 fusion protein, native hOB or hCD4-IgG-1 (control) by daily subcutaneous injections for seven days. The results shown in Figure 5 affirm that the hOB-IgG-1 fusion protein is more effective than the native hOB protein at reducing body weight (top and middle panels) and food intake (bottom panel). ## D. Results with PEG-hOB 5 10 15 20 25 35 Obese female ob/ob mice were treated with human OB protein or with PEG derivatives of human OB. The data are shown in Figure 4. The data presented in the top chart demonstrate that PEG-hOB is more potent than the native hOB protein at reducing body weight, when both proteins are administered similarly by daily subcutaneous infusion. The data shown at the bottom chart of Figure 4 show that the PEG-hOB proteins were substantially more effective in reducing food intake than unmodified native hOB. # Reference Example # Identification and cloning of an OB receptor The OB protein-immunoadhesinof Example 1 was used to detect and expression clone an OB receptor. First, to identify a receptor source, several cell lines were screened with l μ g/ml OB-IgG-1 fusion by flow cytometry. The detection system which consists of a biotin conjugated secondary antibody followed by streptavidin-phycoerythrinprovides a dramatic amplification of the signal and allows the detection of cells expressing low numbers of receptors. Two cell lines,
human embryonic kidney 293 and human lung A549 cells were found to bind OB-IgG-1 but not an Flt-4 control immunoadhesin. Specific binding of OB-IgG-1 to the cells was also demonstrated by the addition of excess of bacterially expressed human OB protein. Addition of 10 μ g/ml of human OB completely blocks the binding of OB-IgG-1 to 293 cells. To isolate a cDNA encoding the OB receptor, COSN cells were transiently transfected with pools of approximately 10⁵ clones of an oligo dT primed 293 cell cDNA library in pRK5B. Transfected cells were enriched by panning on plates coated with an anti-human Fc antibody after incubation with OB-IgG-1. After three rounds of enrichment, 1 of 30 pools gave rise to OB-IgG-1 mediated adherence of COSN cells to the binding plates which could be competed by human leptin. cDNA clones picked randomly from this third round were transfected in pools of 10-20. Individual clones were finally identified after breaking down one pool of 10 that was scoring positive by panning. 5 10 15 Sequence analysis revealed a clone of approximately 5300 bp with an open reading frame encoding a protein of 896 amino acids. The sequence corresponded to a type 1 transmembrane protein with a 22 amino acid long signal peptide, 819 amino acid extracellulardomain, 21 amino acid transmembrane domain and a short 34 amino acid intracellular domain. The sequence was found to essentially correspond to the human OB receptor identified and isolated by Tartaglia *et al.*, *supra*, and is identical with a human receptor sequence disclosed in copending application Serial No. 08/585,005 filed January 11, 1996. While the invention has been illustrated by way of examples, the scope of the invention is not so limited. It will be understood that further modifications and variations are possible without diverting from the overall concept of the invention. All such modifications are intended to be within the scope of the present invention. All references cited throughout the specification, including the examples, and the references cited therein are hereby expressly incorporated by reference. #### SEQUENCE LISTING #### (1) GENERAL INFORMATION: (i) APPLICANT: Genentech, Inc. De Sauvage, Frederic J. 5 Levin, Nancy Vandlen, Richard L. - (ii) TITLE OF INVENTION: OB Protein Derivatives - (iii) NUMBER OF SEQUENCES: 2 - (iv) CORRESPONDENCE ADDRESS: - (A) ADDRESSEE: Genentech, Inc. - (B) STREET: 460 Point San Bruno Blvd - (C) CITY: South San Francisco - (D) STATE: California - (E) COUNTRY: USA - 15 (F) ZIP: 94080 10 - (v) COMPUTER READABLE FORM: - (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk - (B) COMPUTER: IBM PC compatible - (C) OPERATING SYSTEM: PC-DOS/MS-DOS - 20 (D) SOFTWARE: WinPatin (Genentech) - (vi) CURRENT APPLICATION DATA: - (A) APPLICATION NUMBER: - (B) FILING DATE: 19-Dec-1996 - (C) CLASSIFICATION: - 25 (vii) PRIOR APPLICATION DATA: - (A) APPLICATION NUMBER: 08/667184 - (B) FILING DATE: 20-JUN-1996 - (vii) PRIOR APPLICATION DATA: - (A) APPLICATION NUMBER: 08/579494 - 30 (B) FILING DATE: 27-DEC-1995 - (viii) ATTORNEY/AGENT INFORMATION: - (A) NAME: Dreger, Ginger R. - (B) REGISTRATION NUMBER: 33,055 - (C) REFERENCE/DOCKET NUMBER: 985P2PCT - 35 (ix) TELECOMMUNICATION INFORMATION: - (A) TELEPHONE: 415/225-3216 - (B) TELEFAX: 415/952-9881 - (C) TELEX: 910/371-7168 - (2) INFORMATION FOR SEQ ID NO:1: - 40 (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 7127 base pairs - (B) TYPE: Nucleic Acid - (C) STRANDEDNESS: Double #### (D) TOPOLOGY: Linear #### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC 100 TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150 5 ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200 TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250 ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300 AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400 10 GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA 500 AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 15 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACCCCTT GGCTTCGTTA GAACGCGGCT ACAATTAATA 800 CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAA 850 CATCCACTTT GCCTTTCTCT CCACAGGTGT CCACTCCCAG GTCCAACTGC 900 20 ACCTCGGTTC TATCGATATG CATTGGGGAA CCCTGTGCGG ATTCTTGTGG 950 CTTTGGCCCT ATCTTTCTA TGTCCAAGCT GTGCCCATCC AAAAAGTCCA 1000 AGATGACACC AAAACCCTCA TCAAGACAAT TGTCACCAGG ATCAATGACA 1050 TTTCACACAC GCAGTCAGTC TCCTCCAAAC AGAAAGTCAC CGGTTTGGAC 1100 TTCATTCCTG GGCTCCACCC CATCCTGACC TTATCCAAGA TGGACCAGAC 1150 25 ACTGGCAGTC TACCAACAGA TCCTCACCAG TATGCCTTCC AGAAACGTGA 1200 TCCAAATATC CAACGACCTG GAGAACCTCC GGGATCTTCT TCACGTGCTG 1250 GCCTTCTCTA AGAGCTGCCA CTTGCCCTGG GCCAGTGGCC TGGAGACCTT 1300 GGACAGCCTG GGGGGTGTCC TGGAAGCTTC AGGCTACTCC ACAGAGGTGG 1350 TGGCCCTGAG CAGGCTGCAG GGGTCTCTGC AGGACATGCT GTGGCAGCTG 1400 GACCTCAGCC CTGGGTGCGG GGTCACCGAC AAAACTCACA CATGCCCACC 1450 GTGCCCAGCA CCTGAACTCC TGGGGGGACC GTCAGTCTTC CTCTTCCCCC 1500 CAAAACCCAA GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACATGC 1550 GTGGTGGTGG ACGTGAGCCA CGAAGACCCT GAGGTCAAGT TCAACTGGTA 1600 CGTGGACGGC GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGGAGGAGC 1650 AGTACAACAG CACGTACCGT GTGGTCAGCG TCCTCACCGT CCTGCACCAG 1700 GACTGGCTGA ATGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGCCCT 1750 CCCAGCCCCC ATCGAGAAAA CCATCTCCAA AGCCAAAGGG CAGCCCCGAG 1800 AACCACAGGT GTACACCCTG CCCCCATCCC GGGAAGAGAT GACCAAGAAC 1850 CAGGTCAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GCGACATCGC 1900 CGTGGAGTGG GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACGC 1950 CTCCCGTGCT GGACTCCGAC GGCTCCTTCT TCCTCTACAG CAAGCTCACC 2000 GTGGACAAGA GCAGGTGGCA GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT 2050 GCATGAGGCT CTGCACAACC ACTACACGCA GAAGAGCCTC TCCCTGTCTC 2100 CGGGTAAATG AGTGCGACGG CCCTAGAGTC GACCTGCAGA AGCTTCTAGA 2150 GTCGACCTGC AGAAGCTTGG CCGCCATGGC CCAACTTGTT TATTGCAGCT 2200 TATAATGGTT ACAAATAAAG CAATAGCATC ACAAATTTCA CAAATAAAGC 2250 ATTTTTTCA CTGCATTCTA GTTGTGGTTT GTCCAAACTC ATCAATGTAT 2300 CTTATCATGT CTGGATCGAT CGGGAATTAA TTCGGCGCAG CACCATGGCC 2350 TGAAATAACC TCTGAAAGAG GAACTTGGTT AGGTACCTTC TGAGGCGGAA 2400 AGAACCAGCT GTGGAATGTG TGTCAGTTAG GGTGTGGAAA GTCCCCAGGC 2450 TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC 2500 CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA 2550 TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCTAAC TCCGCCCATC 2600 CCGCCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC ATGGCTGACT 2650 AATTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT 2700 5 10 15 20 25 PCT/US96/20718 WO 97/24440 TCCAGAAGTA GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG 2750 CTGTTAATTC GAACACGCAG ATGCAGTCGG GGCGGCGCGG TCCCAGGTCC 2800 ACTTCGCATA TTAAGGTGAC GCGTGTGGCC TCGAACACCG AGCGACCCTG 2850 CAGCGACCCG CTTAACAGCG TCAACAGCGT GCCGCAGATC TGATCAAGAG 2900 ACAGGATGAG GATCGTTTCG CATGATTGAA CAAGATGGAT TGCACGCAGG 2950 TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCACAAC 3000 AGACAATCGG CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC AGCGCAGGGG 3050 CGCCCGGTTC TTTTTGTCAA GACCGACCTG TCCGGTGCCC TGAATGAACT 3100 GCAGGACGAG GCAGCGCGC TATCGTGGCT GGCCACGACG GGCGTTCCTT 3150 GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAGGGA CTGGCTGCTA 3200 TTGGGCGAAG TGCCGGGGCA GGATCTCCTG TCATCTCACC TTGCTCCTGC 3250 CGAGAAAGTA TCCATCATGG CTGATGCAAT GCGGCGGCTG CATACGCTTG 3300 ATCCGGCTAC CTGCCCATTC GACCACCAAG CGAAACATCG CATCGAGCGA 3350 GCACGTACTC GGATGGAAGC CGGTCTTGTC GATCAGGATG ATCTGGACGA 3400 AGAGCATCAG GGGCTCGCGC CAGCCGAACT GTTCGCCAGG CTCAAGGCGC 3450 15 GCATGCCCGA CGGCGAGGAT CTCGTCGTGA CCCATGGCGA TGCCTGCTTG 3500 CCGAATATCA TGGTGGAAAA TGGCCGCTTT TCTGGATTCA TCGACTGTGG 3550 CCGGCTGGGT GTGGCGGACC GCTATCAGGA CATAGCGTTG GCTACCCGTG 3600 ATATTGCTGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT CCTCGTGCTT 3650 TACGGTATCG CCGCTCCCGA TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT 3700 20 TGACGAGTTC TTCTGAGCGG GACTCTGGGG TTCGAAATGA CCGACCAAGC 3750 GACGCCCAAC CTGCCATCAC GAGATTTCGA TTCCACCGCC GCCTTCTATG 3800 AAAGGTTGGG CTTCGGAATC GTTTTCCGGG ACGCCGGCTG GATGATCCTC 3850 CAGCGCGGGG ATCTCATGCT GGAGTTCTTC GCCCACCCCG GGAGATGGGG 3900 GAGGCTAACT GAAACACGGA AGGAGACAAT ACCGGAAGGA ACCCGCGCTA 3950 25 TGACGGCAAT AAAAAGACAG AATAAAACGC ACGGGTGTTG GGTCGTTTGT 4000 TCATAAACGC GGGGTTCGGT CCCAGGGCTG GCACTCTGTC GATACCCCAC 4050 CGAGACCCCA TTGGGGCCAA TACGCCCGCG TTTCTTCCTT TTCCCCACCC 4100 10 | | | | | | - camaaaaaa | 4150 | |----|------------|--------------|--------------|--------------|--------------|--------| | | CAACCCCCAA | GTTCGGGTGA | AGGCCCAGGG | CTCGCAGCCA | ACGTCGGGGC | 4150 | | | GGCAAGCCCG | CCATAGCCAC | GGGCCCCGTG | GGTTAGGGAC | GGGGTCCCCC | 4200 | | | ATGGGGAATG | GTTTATGGTT | CGTGGGGGTT | ATTCTTTTGG | GCGTTGCGTG | 4250 | | | GGGTCAGGTC | CACGACTGGA | CTGAGCAGAC | AGACCCATGG | TTTTTGGATG | 4300 | | 5 | GCCTGGGCAT | GGACCGCATG | TACTGGCGCG | ACACGAACAC | CGGGCGTCTG | 4350 | | | TGGCTGCCAA | ACACCCCCGA | CCCCCAAAAA | CCACCGCGCG | GATTTCTGGC | 4400 | | | GCCGCCGGAC | GAACTAAACC | TGACTACGGC | ATCTCTGCCC | CTTCTTCGCT | 4450 | | | GGTACGAGGA | GCGCTTTTGT | TTTGTATTGG | TCACCACGGC | CGAGTTTCCG | 4500 | | | CGGGACCCCG | GCCAGGGCAC | CTGTCCTACG | AGTTGCATGA | TAAAGAAGAC | 4550 | | 10 | AGTCATAAGT | GCGGCGACGA | TAGTCATGCC | CCGCGCCCAC | CGGAAGGAGC | 4600 | | | TGACTGGGTT | GAAGGCTCTC | AAGGGCATCG | GTCGAGCGGC | CGCATCAAAG | 4650 | | | CAACCATAGT | ACGCGCCCTG | TAGCGGCGCA | TTAAGCGCGG | CGGGTGTGGT | 4700 | | | GGTTACGCGC | AGCGTGACCG | CTACACTTGC | CAGCGCCCTA | GCGCCCGCTC | 4750 | | | CTTTCGCTTT | CTTCCCTTCC | TTTCTCGCCA | CGTTCGCCGG | CTTTCCCCGT | 4800 | | 15 | CAAGCTCTAA | ATCGGGGGCT | CCCTTTAGGG | TTCCGATTTA | GTGCTTTACG | 4850 | | | GCACCTCGAC | CCCAAAAAAC | TTGATTTGGG | TGATGGTTCA | CGTAGTGGGC | 4900 | | | CATCGCCCTG | ATAGACGGTT | TTTCGCCCTT | TGACGTTGGA | GTCCACGTTC | 4950 | | | TTTAATAGTG | GACTCTTGTT | CCAAACTGGA | ACAACACTCA | ACCCTATCTC | 5000 | | |
GGGCTATTCT | TTTGATTTAT | AAGGGATTTT | GCCGATTTCG | GCCTATTGGT | 5050 | | 20 | TAAAAAATGA | GCTGATTTAA | CAAAAATTTA | ACGCGAATTT | TAACAAAATA | 5100 | | | TTAACGTTTA | CAATTTTATG | GTGCAGGCCT | CGTGATACGC | CTATTTTAT | 5150 | | | AGGTTAATGT | CATGATAATA | ATGGTTTCTT | ' AGACGTCAGG | TGGCACTTTT | 5200 | | | CGGGGAAATG | : TGCGCGGAAC | CCCTATTTGT | TTATTTTCT | ' AAATACATTC | 5250 | | | AAATATGTAT | CCGCTCATGA | GACAATAACO | : CTGATAAATG | CTTCAATAAT | 5300 | | 25 | ATTGAAAAAG | GAAGAGTATG | GAGTATTCAAC | : ATTTCCGTGT | CGCCCTTATT | 5350 | | | | | | | : CAGAAACGCT | | | | | | | | GTGGGTTACA | | | | | | | | | | | | TCGAACTGGA | A TCTCAACAGO | : GGTAAGATCO | TIGAGAGTTI | TCGCCCCGAA | . 5500 | | | GAACGTTTTC | CAATGATGAG | CACTTTTAAA | GTTCTGCTAT | GTGGCGCGGT | 5550 | |----|------------|--------------|-------------|------------|------------|------| | | ATTATCCCGT | GATGACGCCG | GGCAAGAGCA | ACTCGGTCGC | CGCATACACT | 5600 | | | ATTCTCAGAA | TGACTTGGTT | GAGTACTCAC | CAGTCACAGA | AAAGCATCTT | 5650 | | | ACGGATGGCA | TGACAGTAAG | AGAATTATGC | AGTGCTGCCA | TAACCATGAG | 5700 | | 5 | TGATAACACT | GCGGCCAACT | TACTTCTGAC | AACGATCGGA | GGACCGAAGG | 5750 | | | AGCTAACCGC | TTTTTTGCAC | AACATGGGGG | ATCATGTAAC | TCGCCTTGAT | 5800 | | | CGTTGGGAAC | CGGAGCTGAA | TGAAGCCATA | CCAAACGACG | AGCGTGACAC | 5850 | | | CACGATGCCA | GCAGCAATGG | CAACAACGTT | GCGCAAACTA | TTAACTGGCG | 5900 | | | AACTACTTAC | TCTAGCTTCC | CGGCAACAAT | TAATAGACTG | GATGGAGGCG | 5950 | | 10 | GATAAAGTTG | CAGGACCACT | TCTGCGCTCG | GCCCTTCCGG | CTGGCTGGTT | 6000 | | | TATTGCTGAT | AAATCTGGAG | CCGGTGAGCG | TGGGTCTCGC | GGTATCATTG | 6050 | | | CAGCACTGGG | GCCAGATGGT | AAGCCCTCCC | GTATCGTAGT | TATCTACACG | 6100 | | | ACGGGGAGTC | AGGCAACTAT | GGATGAACGA | AATAGACAGA | TCGCTGAGAT | 6150 | | | AGGTGCCTCA | CTGATTAAGC | ATTGGTAACT | GTCAGACCAA | GTTTACTCAT | 6200 | | 15 | ATATACTTTA | GATTGATTTA | AAACTTCATT | TTTAATTTAA | AAGGATCTAG | 6250 | | | GTGAAGATCC | TTTTTGATAA | TCTCATGACC | AAAATCCCTT | AACGTGAGTT | 6300 | | | TTCGTTCCAC | TGAGCGTCAG | ACCCCGTAGA | AAAGATCAAA | GGATCTTCTT | 6350 | | | GAGATCCTTT | TTTTCTGCGC | GTAATCTGCT | GCTTGCAAAC | AAAAAAACCA | 6400 | | | CCGCTACCAG | CGGTGGTTTG | TTTGCCGGAT | CAAGAGCTAC | CAACTCTTTT | 6450 | | 20 | TCCGAAGGTA | ACTGGCTTCA | GCAGAGCGCA | GATACCAAAT | ACTGTCCTTC | 6500 | | | TAGTGTAGCC | GTAGTTAGGC | CACCACTTCA | AGAACTCTGT | AGCACCGCCT | 6550 | | | ACATACCTCG | CTCTGCTAAT | CCTGTTACCA | GTGGCTGCTG | CCAGTGGCGA | 6600 | | | TAAGTCGTGI | CTTACCGGGT | TGGACTCAAG | ACGATAGTTA | CCGGATAAGG | 6650 | | | CGCAGCGGTC | : GGGCTGAACG | GGGGGTTCGT | GCACACAGCC | CAGCTTGGAG | 6700 | | 25 | CGAACGACCT | ACACCGAACT | GAGATACCTA | CAGCGTGAGC | ATTGAGAAAG | 6750 | | | CGCCACGCTT | CCCGAAGGGA | GAAAGGCGGA | CAGGTATCCG | GTAAGCGGCA | 6800 | | | GGGTCGGAAC | AGGAGAGCGC | CACGAGGGAGC | TTCCAGGGGG | AAACGCCTGG | 6850 | | | TATCTTTATA | A GTCCTGTCGG | GTTTCGCCA | CTCTGACTTG | AGCGTCGATT | 6900 | TTTGTGATGC TCGTCAGGGG GGCGGAGCCT ATGGAAAAAC GCCAGCTGGC 6950 ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT 7000 GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC 7050 GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA 7100 ACAGCTATGA CCATGATTAC GAATTAA 7127 - ACHOCIMION COMIONITHE GAMITAM /12 - (2) INFORMATION FOR SEQ ID NO:2: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 397 amino acids - (B) TYPE: Amino Acid - 10 (D) TOPOLOGY: Linear - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: - Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr 1 5 10 15 - Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp 20 25 30 - Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile 35 40 45 - Ser His Thr Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu 50 55 60 - 20 Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met - Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro - Ser Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg 25 95 100 · 105 - Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro 110 115 120 - Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val Leu 125 130 135 - 30 Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu 140 145 150 - Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro 155 160 165 - Gly Cys Gly Val Thr Asp Lys Thr His Thr Cys Pro Pro Cys Pro 35 170 175 180 - Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro | | | | | | 185 | | | | | 190 | | | | | 195 | |----|-----|-----|-----|-----|------------|-----|------------|-----|-----|------------|-----|-----|-----|-----|------------| | | Lys | Pro | Lys | Asp | Thr
200 | Leu | Met | Ile | Ser | Arg
205 | Thr | Pro | Glu | Val | Thr
210 | | 5 | Cys | Val | Val | Val | Asp
215 | Val | Ser | His | Glu | Asp
220 | Pro | Glu | Val | Lys | Phe
225 | | | Asn | Trp | Tyr | Val | Asp
230 | Gly | Val | Glu | Val | His
235 | Asn | Ala | Lys | Thr | Lys
240 | | | Pro | Arg | Glu | Glu | Gln
245 | Tyr | Asn | Ser | Thr | Tyr
250 | Arg | Val | Val | Ser | Val
255 | | 10 | Leu | Thr | Val | Leu | His
260 | Gln | Asp | Trp | Leu | Asn
265 | Gly | Lys | Glu | Tyr | Lys
270 | | | Сув | Lys | Val | Ser | Asn
275 | Lys | Ala | Leu | Pro | Ala
280 | Pro | Ile | Glu | Lys | Thr
285 | | 15 | Ile | Ser | Lys | Ala | Lys
290 | Gly | Gln | Pro | Arg | Glu
295 | Pro | Gln | Val | Tyr | Thr
300 | | | Leu | Pro | Pro | Ser | Arg
305 | Glu | Glu | Met | Thr | Lys
310 | Asn | Gln | Val | Ser | Leu
315 | | | Thr | Cys | Leu | Val | Lys
320 | Gly | Phe | Tyr | Pro | Ser
325 | Asp | Ile | Ala | Val | Glu
330 | | 20 | Trp | Glu | Ser | Asn | Gly
335 | Gln | Pro | Glu | Asn | Asn
340 | Tyr | Lys | Thr | Thr | Pro
345 | | | Pro | Val | Leu | Asp | Ser
350 | Asp | Gly | Ser | Phe | Phe
355 | Leu | Tyr | Ser | Lys | Leu
360 | | 25 | Thr | Val | Asp | Lys | Ser
365 | Arg | Trp | Gln | Gln | Gly
370 | | Val | Phe | Ser | Cys
375 | | | Ser | Val | Met | His | Glu
380 | | Leu | His | Asn | His
385 | | Thr | Gln | Lys | Ser
390 | | | Leu | Ser | Leu | Ser | Pro
395 | | Lys
397 | | | | | | | | | ## **CLAIMS:** 15 35 1. A long half-life derivative of an OB protein retaining a biological property of a native OB protein. - 2. The long half-life derivative of claim 1 capable of reducing body weight and/or food intake in an individual treated. - 3. The derivative of claim 1 which is a derivative of a native human OB protein. - The derivative of claim 1 which is an OB-immunoglobulin chimera. - 5. The derivative of claim 1 which is a native OB protein or an OB-immunoglobulin chimera modified with a nonproteinaceous polymer. - The derivative of claim 4 wherein the nonproteinaceous polymer is polyethylene glycol (PEG). - 7. A composition for the treatment of a condition associated with the abnormal expression or function of the OB gene, or for eliciting a biological response mediated by an OB receptor, comprising an effective amount of an OB derivative of claim 1. - 8. The composition of claim 7 effective for weight and/or appetite reduction. - 9. The composition of claim 7 effective in the reduction of elevated insulin levels. - 10. A method for the treatment of a condition associated with the abnormal expression or function of the OB gene, or for eliciting a biological response mediated by an OB receptor, comprising administering to an individual to be treated a derivative of claim 1. - 20 11. The method of claim 10 wherein the condition to be treated is selected from the group consisting of obesity, bulemia, and Type I or II diabetes. - 12. A method for inducing weight loss or appetite loss is a subject, comprising administering to said subject an effective amount of a derivative of claim 1. - 13. A chimeric polypeptide comprising an OB protein amino acid sequence capable of binding to a native OB receptor, linked to an immunoglobulin sequence. - 14. The chimeric polypeptide of claim 13 wherein said immunoglobulin sequence is a constant domain sequence. - 15. The chimeric polypeptide of claim 14 wherein said OB protein is human. - 16. The chimeric polypeptide of claim 15 wherein two OB polypeptide-IgG heavy chain fusions are linked to each other by at least one disulfide bond to yield a homodimeric immunoglobulin-like structure. - 17. The chimeric polypeptide of claim 16 wherein at least one of said OB polypeptide-IgG heavy chain fusions is associated with an immunoglobulin light chain. - 18. An isolated nucleic acid sequence encoding an OB protein-immunoglobulin fusion. - 19. A replicable expression vector comprising the nucleic acid of claim 18. - A host cell transformed with the replicable expression vector of claim 19. - 21. A process comprising culturing the host cells of claim 16 so as to express the nucleic acid encoding an OB protein-immunoglobulin fusion. 22. The process of claim 21 wherein said host cells are cotransformed with nucleic acid encoding at least two OB protein-immunoglobulin fusions. 23. The process of claim 22 wherein said cells are further transformed with nucleic acid encoding at least one immunoglobulin light chain. 5 10 - 24. A method of treating a condition associated with the abnormal expression or function of the OB gene or for eliciting a biological response mediated by an OB receptor comprising administering to a patient a therapeutically effective amount of the chimeric polypeptide of claim 13. - 25. The method of claim 20 wherein said condition is selected from the group consisting of obesity, bulemia and type I or II diabetes. - 26. A composition for the treatment of obesity comprising an effective amount of a chimeric polypeptide of claim 13 in association with a pharmaceutically acceptable carrier. - 27. A method for inducing the growth of cells expressing an OB receptor comprising contacting said cells with the OB derivative of claim 1. FIG. 4A **SUBSTITUTE SHEET (RULE 26)** BA 9 ``` CCCGACATTG ATTATTGACT AGTATTAAT AGTAATCAAT TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC AAGCTCGAGC
GGGCTGTAAC TAATAACTCA TCAATAATTA TCATTAGTTA ATGCCCCAGT AATCAAGTAT CGGGTATATA CCTCAAGGCG CAATGTATTG 101 TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA AATGCCATIT ACCGGGGGG CCGACTGGCG GGTIGCTGGG GGCGGGTAAC TGCAGTTATT ACTGCATACA AGGGTATCAT TGCGGTTATC CCTGAAAGGT TIGACGICAA IGGGIGGAGI AITIACGGIA AACIGCCCAC IIGGCAGIAC AICAAGIGIA ICAIAIGCCA AGIACGCCCC CIAIIGACGI CAAIGACGGI AACTGCAGTI ACCCACCICA TAAAIGCCAI IIGACGGGIG AACCGICAIG IAGIICAAAI AGIAIACGGI ICAIGCGGGG GAIAACIGCA GIIACIGCA fnuDII/mvnI acil maelli ahall/bsaHI bsh1236I hinll/acyl bstul maeII aatii maeIII csp6I rsal bslI maeII ndeI ahalI/bsaHI hin11/acyI maeII aatll csp6I rsal asel/asnl/vspl acii ss.pRK5tkneo.hOB1qG tru91 msel ball rmal mael spel acil asul apyl[dcm+] ecoRII haeIII/palI BCLFI bglI bstNI MVaI dsav >human OB Claf/BstEII cloning acil Bau96I > length: 7127 (circular) >CMV enhancer/promoter hgiA1/aspHI aha II/bsaHI hinlI/acyI ec11361I 1 TICGAGCICG bsp1286 bsiHKAI hgiJII aluī banII maeII bmyI sstl saci aatII tagI > sites: std 201 ``` SCIFI **6B** ``` hgiAI/aspHI dsal hph1 acil asul apyl(dcm+) bsrl nlaili baali csp6i bsali baali sfaNi aAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC TTTACCGGGC GGACCGTAAT ACGGGTCATG TACTGGAATA CCCTGAAAGG ATGAACCGTC ATGTAGATGC ATAATCAGTA GCGATAATGG TACCACTACG GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA ec1136II 501 AAATCAACGG GACTITCCAA AAIGICGIAA CAACICCGCC CCATIGAGGC AAAIGGGCGG TAGGCGTGTA CGGIGGGAGG ICIATAIAAG CAGAGCICGI TITAGIIGCC CIGAAAGGII TIACAGCAII GIIGAGGGGG GGIAACIGGG ITTACCCGCC AICCGCACAI GCCACCCICC AGAIAIAIIC GICICGAAGCA CATGIAGTIA CCCGCACCTA TCCCCAAACT GAGTGCCCCT AAAGGTTCAG AGGTGGGGTA ACTGCAGTTA CCCTCAAACA AAACCGTGGT bsp1286 bsIHKAI hgici hgiJII nlaly aluI banI banlI sstī Bacl nlaIII ncol styl aha II/bsaHI hinll/acyl mnlI maell aatII csp6I maell snaBI rsal rsal DSMAI aciı hgal hinfl aciı acil maelll csp6I rsal ecoRII sau96I bstNI csp61 RVAI bglI dsav haellI/pall rsal acil CCAAAACCGT CGTTTTGGCA 301 401 ``` SUBSTITUTE SHEET (RULE 26) ``` asel/asnl/vspl 701 TIGGAACGCG GAITCCCCGI GCCAAGAGIG ACGIAAGIAC CGCCIAIAGA GICTAIAGGC CCACCCCCII GGCIICGIIA GAACGCGGGI ACAAIIAAIA CCCCCCCCC CAACGCTCCA AATCACTIGG CAGICIAGCG GACCICIGCG GIAGGIGCGA CAAAACIGGA GGIAICIICT GIGGCCCIGG CIAGGICGGA GGCGCCGGCC CIIGCCACGI AACCTIGCGC CTAAGGGGCA CGGTICTCAC IGCATICAIG GCGGATAICI CAGATAICCG GGIGGGGGAA CCGAAGCAAI CTIGCGGCGA IGTIAATIAI eagl/xmaIII/eclXI fnuDII/mvnI tru9I haeIII/palI fnuDII/mvnI bsh1236I mbol/ndell[dam-] hpall alwI[dam-] acil caull dpn1[dam+] bsaJI dsaV Idsm Ilsd Ilpd fnu4HI dpnII[dam-] bsh1236I aciı bstuI fnu4HI thaI cfrI eael "sp6 promoter acii nspBII saulAI mnlI bstUI thaI sacII/sstII BCLFI ncil GATCCAGCCT kspI dsaI bsall CACCGGGACC AVAII styl hpall pleI scfI haeIII/palI SCLFI dsav Caull ncil Idsm sau96I bstXI nlalv ASUI 196nes Inse mbol I 601 TIAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA bpuAI bbsI scf1 hinf1 mnll acil csp6I maell rsal dpn1(dam+) hgaI fokI dpnII(dam-) ahaII/bsaHI bstNI hinlI/acyI maelii sau3AI gsuI/bpmI mbol/ndell[dam-] esp3I mval bsmAI apy1[dcm+] ecoRII BCFF dsav Begin RNA [nuD] I/mvn] thal hinfl tfir bsh1236I acil bstuI ``` ``` Met KistipGlyf hrieuCysGl yPheleuTip LeuTipPiof yrleuPheTy rValGlnAla ValProlleg InLysValGln TCTACTGTGG TITTGGGAGT AGTICTGTTA ACAGTGGTCC TAGTTACTGT AAAGTGTGG CGTCAGTCAG AGGAGGTTTG TCTTTCAGTG GCCAAACCTG 1001 AGATGACACC AAAACCCTCA TCAAGACAAT 1GTCACCAGG ATCAATGACA TTTCACACAC GCAGTCAGTC TCCTCCAAAC AGAAAGTCAC CGGTTTGGAC TITITCAGGT CCACTCCCAG GTCCAACTGC gtattggaat acatagtatg tgtatgctaa atccactgtg atatcttatt gtaggtgaaa cggaaagaga ggtgtccaca ggtgagggtg caggttgacg GTGCCCATCC ANAMGTCCA apyI[dcm+] Bau96I avall Idsm asul DsaWI agel ecoR11 SCFFI RACIII bstNI CACGGGTAGG dsav bell beall hphī MVa I alul bmyl foki hpall cfrl0I bsp1286 801 CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAA CATCCACTTT GCCTTTCTCT CCACAGGTGT ACCICGOTIC TAICGAIAIG CATIGGGGAA CCCIGIGGG ATICTIGIGG CTTIGGCCCT ATCTITICIA IGICCAAGCT TGGAGCCAAG ATAGCTATAC GTAACCCCTT GGGACACGCC TAAGAACACC GAAACCGGGA TAGAAAAGAT ACAGGTTCGA mn 1 I DsmAI hae[]]/pall 196nes asul *sp6 RNA start fokI mbol/ndell[dam-] dpn1I[dam-] dpn1[dam+] maeIII alvi[dam-] sau3AI apy1[dcm+] hinfI scfl ecoR11 acil bstnI dsav Eva! mae]][hphI hph 1 nlaIV Thuman OB start mun I taqI nsiI/avaIII clal/bsp106 ppu10I moli "cloning linker bsaJI mnll 901 ``` FIG. 61 AspAspThr LysThrLeul leLysThrIl evalThrArg IleAsnAspI leSerHisTh rGlnSerVal SerSerLysG lnLysValTh rGlyLeuAsp | sau3AI mbol/ndel1[dam-] dpn1[dam+] dpn11[dam-] alw1[dam-] AG TCTTTGCACT Ser ArgAsnValile | eIII/pali styl gsul/bpmi scrFi mval bsmAi dsav bstNi bsaJi apyl(dcm+) cm+) hael bsal bsrI haelli/pali GCCACTGGCC TGGAGACCTT CGGTCACCGG ACCTCTGGAA | sau96I avaII aluI II nspBII II bbvI asuI rccr GrGcrGcrG | |--|---|---| | hphl saulAl bsrl mbol/ndell[dam-] dpnl[dam+] dpnl[dam+] dpnl[dam-] alw1[dam-] bsrl accl bstyl/xholl ACTGGCAGTC TACCAACAGA TCCTCACCAG TATGCCTTCC AGAAACGTGATCLEUAlaval TyrGlnGln[leLeuthrSe rHetproSer ArgAsnVall | ha
sau
scrf!
mvai
mvai
mvai
dsav
dsav
stNI
saJI bstXI
bsaJI
CTTGCCTGG
GAACGGACC | scfi scfi scfi bsgi psti nlaili nspBii bali fnutHi bsmAi nspli fnutHi tG CAGGCTGCAG GGGTCTCTGC AGGACATGCT GTGGCAGCGTCTCAGACG TCCTGTACGA CACGGTCGACGTCGACGTCGACGTCGACGTCGACGTCGACGTCGACGTCGACGACGACGACGACGTCGACGACGACGACGACGACGACGACGACGACGACGACGAC | | alwni pfimi bsii sau96i avaii asui TTATCCAAGA TGCACCAGAC AATAGGTTCT ACCTGGTCTG | pmll sau3Al eco72I bstYl/xhoII I/ndell[dam-] pl dpnl[dam+] mboll mae!I I[[dam-] alw1[dam-] bbrPl hae!II/pal ull mbolI[dam-] hae GGGATCTTCT TCACGTGCTG CCCTTCTC CCCTAGAAGA AGTGCACGAC rgAspLeuLe uHisValLeu AlaPheSe | scrFI eco57I mval scrFI dsav ddel scfI dsav ecoRII dsav dsav ecoRII bsli pstI aluI dsav ecoRII bsli pstI pvuII bstNI dsav cm1 bsgI pstI nlaIII nspBII bsajI bstXI mill asuI bsmAI nspI fnu4HI apyI(dcm+) apyI(dcm+) bstXI mill asuI bbvI asuI apyI(dcm+) apyI(dcm+) bstXI mspHI bbvI asuI cccccacccc cccccacccc ccccacccccc ccccacccccc acccacccccccccccccccccccccccccccccccc | | hgiJII bsp1286 bmyI bmyI banII scrFI mval nlaIV ecoRII dsaV bstNI bsaJI apyI[dcm+] apyI[dcm+] AGTAAGGAC CCGAGGTGG AAGTAAGGAC CCAAGGTCGG 62 PheileProG lyLeuHisPr oileLeuthr | gsul/bpml sc
scrfl ncil mbo
mval ms
ecoRII hpall
dsav dpu
bstxl apyl[dcm+] ca
1201 TCCAATATC CAACGACCTG
AGGTTTATAG GTTGCTGAC
96 GlnlleSe rAsnAspLeu GluAsnLeua | scrfi eco571 mval scrfi eco571 dsav ecoRII mval aluI ddel scfl scfl scori bstn dsav ecoRII xcml haelII/pall fnu4HI bsaJI bstNI hindIII xcml haelII/pall fnu4HI apyl[dcm+] apyl[dcm+] bstXI mnlI asul bbvI bstXI cccccccccccccccccccccccccccccccccccc | 11/27 ``` maell bsu361/mstII/sauI bsrI bsaAI AspleuSerP roGlyCysGl yValThrAsp LysThrHisT hrCysProPr oCysProAla ProGluLeuL euGlyGlyPr oSerValPhe LeuPheProPro csp61 bpuAI ear1/ksp632I rsal sGluAspPro GluValLysP heAsnTrpTyr ACGTGAGCCA CGAAGACCCT GAGGTCAAGT TCAACTGGTA GCTTCTGGGA CTCCAGTTCA AGTTGACCAT 1101 GACCICAGCC CIGGGIGGG GGICACCGAC AAAACICACA CAIGCCCACC GIGCCCAGCA CCIGAACICC IGGGGGACC GICAGICIIC CIGTICCCCC CACGGGTCGT GGACTTGAGG ACCCCCTGG CAGTCAGAAG GAGAAGGGGG Hooli mboll PbsI mnlI mnll bpuAl eco811 mboll ddel sau96I nlaIV drdI eam11051 apyI[dcm+] bbsI avall bsaJI ecoR11 bstnI dsav LysProLy saspThrLeu MetlleSerA rgThrProGl uValThrCys ValValValA spValSerHi TCCACTCGGT SCIFT I EVE maell 1501 CAAAACCCAA GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACATGC GTGGTGGTG GITITGGGIT CCIGIGGGAG TACTAGAGGG CCIGGGGACT CCAGIGIACG CACCACCACC bmyI alwNI bsp1286 *START OF HUMAN 19G1 CH2CH3 bsu36I/mstII/sauI nlallI CTGGAGTCGG GACCCACGCC CCAGTGCTG TTTTGAGTGT GTACGGGTGG IHdsu nspl bspHI[dam-] asul eco811 maeIII nlalII IHdsu mnlI mbol/ndeII[dam-] *insertion of a gly sau961 nlalV sau3AI avaII hpall dpnII[dam-] scrFl Idsm rcal dpnI[dam+] dsav Caull ncil maelll acil bstEII nlallI mnlI apyI [dcm+] ecoRII bstni mnll bsaJI BCLFI bsaJI dsav bslI BVAI bsaJI ddeI 162 ``` | scrFI mvaI mvaI ecoRII dsaV hphI ecoNI bstNI TCCTCACCGT CCTGCACCAG AGGAGTGGCA GGACGTGGTC alLeuThrVa lLeuHisGIn | fnu4HI
bbvI avaI
AGCCAAAGGG CAGCCCCGAG
TCGCTTCCC GTCGGGGCTC
SAlaLysGly GlnProArgGlu | dsal
bsli
bsali
TTCTATCCCA GCGACATCGC
AAGATAGGGT GCTGTAGCG | | |---|---
---|---------| | al
p61
I hgal
ACCGT GTGGTCAGCG
TGGCA CACCAGTGGC | GAAAA CCATCTCCAA
CTTTT GGTAGAGGTT
ULysT hrileSerLy | mval
mval
ii
bstni
apyl[dcm+]
4I
rGCT GGTCAAAGGC
ACGA CCAGTITCCG | | | rsal
csp61
AGTACAACAG
TCATGTTGTC | CCCAGCCCC
GGGTCGGGG
uProAlaPro | +) NGCC | FIG. 6G | | acil thai thai fhubli/mvni bstui bstui bshl2361 sacil/sstii nspBii kspi dsai dsai bsaJi acii fnu441 mnli GACAAAGCCG GGGACGAGC CTGTTTCGC GCGCACGCC | bsmal
bsal
AAGGTCTCCA ACAAAGCCCT
TTCCAGAGGT TGTTTCGGGA
LysValSerA snLysAlaLe | PAI
boli
ari/ksp6
AAGAGAT
TTCTCTA | FIG | | ATAATGCCAA
TATTACGGTT
18A8BA1aLy | rsal
csp61
GTACAAGTGC
CATGTTCACG
ufyrLysCys | BCTFI BCTFI BCTFI BCAUII SMAI/P SMAI/P SMAI/P SMAI/P BCTFI BCTFI BCTFI BCTFI BCTFI BCTFI BCTFI BCTFI BCTFI BCTCC BCCCCATCCC BCCCCCATCCC BCCCCCCATCCC BCCCCCATCCC BCCCCCATCCC BCCCCCATCCC BCCCCCCATCCC BCCCCCATCCC BCCCCCCATCCC BCCCCCATCCC BCCCCCATCCC BCCCCCATCCC BCCCCCATCCC BCCCCCCCCCC | | | mnli
cerccacce creaserce
ceaccrecce caccreace | bsri
Gactgetga Atggeaagga
Ctgacegact tacesttect
Asptrpleua snglylysgi | rsal
csp61
bsp14071
hACCACAGG GTACACCCTG
TTGGTGCCA CATGTGGGAC
ProGlnVa 1TyrThrLeu | | | 1601 CG7
229 V2 | bs
1701 GAC
CTC
262 Asp | 1801 AAC
TT | | SUBSTITUTE SHEET (RULE 26) | dsal
11
bsaJI
NCC
FGG | scrFI
ncii
mspi
hpaii
dsav
bsmAi
I cauli
GTCTC | alui
fnudhi
bbvi
GCAGCT
CGTCGA | rat
Ata | |--|--|---|--| | dsal ple! hph! hph! hinf! nlaIV mbo!! scf! alu! bsaJ! GGACTCCGAC GGCTCCTTCT TCCTCTACAG CAAGCTCACC CCTGAGGCTG CCGAGGAGA AGGAGATGTC GTTCGAGTGG uAspSerAsp GlySerPheP heLeuTyrSe rLysteuThr | sapi
mboli mnli bsmAi
earl/ksp6321 bsli cau
GAAGACCTC TCCCTGTCTC
CTTCTCGGAG AGGACAGAG | Apali alui fuudhi bbvi bbvi ttgaacaa ataacgeccacacaaaaaaaaaaaaaaaaaaaaaaaaaaa | GTCCAAACTC ATCAATGTAT
CAGGTTTGAG TAGTTACATA | | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11
6321
70 70
AG AG A | | AC A | | 11
scf1
rctac
agatgi | sapi
mboli mnli
eari/ksp63
GAAGAGCCTC
CTTCTCGGAG | ACTTC
IGAAC | SAAAC | | mnlI
II s
TCCTC
AGGAG | | sau961 haellI/pall haellI/pall l asul cGC CCAACTI AcCG GGTTGAA | 25.0 | | mbo)
TTCT
AAGA | CGCA
GCGT
hrG1 | sauge
nlaili
haell
tyl
col
isal
saji
pali
carde | GTTT | | mnli
nlaIV mboli scfi
GCCTCCTTCT TCCTCTACAG
CCGAGGAAGA AGGAGATGTC
GlySerPheP heLeuTyrSe | ACTACACGCA
TGATGTGCGT
18TYTTHEG1 | sau961 nlaili fnutHI haeili/pali bgli styl fil ncol el dsal rl bsaJ! aeili/pali acil asul G CCGCCATGGC CCACTTGTT C GCCCTACCG GGTTGACAA | FTCTC | | 5 5 5 5
5 5 5 5
5 5 5 5 | CC AC TO AC | fnu4H bglI sfil eael cfrI haelli iTG CCC | rma I
mae i
icta g | | pleI
hinfI
GGACTCCGAC
CCTGAGGCTG
uAspSerAsp | CTGCACAACC ACTACACGCA
GACGTGTTGG TGATGTGCGT
LeukisasnH istyrthrGl | nlai
fnutHI h
bgli styl
sfil ncol
eael dsal
II cfri bsaJI
alui haelli/pali
hindili acil a
AGAGCTIGG CGGCCATG | rmal
bsml mae!
CTGCATTCTA GTTGTGGTTT
GACGTAAGAT CACACCAAA | | | | HII
AGA
TCT | 74 P | | mnll
AAGACCAGG CTCCGTGCT
TTCTGGTGCG GAGGGCAGA
LysthrthrP roProValLe | mboli bpuAi maell maell maell sell spul0i spul0i spul0i spul0i nsit/avalli scaccoccaccaccaccaccaccaccaccaccaccaccacc | tagi
sali
plei scfi plei scfi
rmal hincil/hindil rmal sali psti
sau961 hinfi psti xbal hincil/hindil
haelil/pali bsgi alui maei acci bsgi
asul mael acci bspMi hindili hinfi bspMi
AGTGCGACGG CCCTAGAGTC GACCTGCAGA
TCACGCTGCC GGGATCTCAG CTGGACGT TCGAGGTCG TG | CAAATAAAGC ATTTTTTCA
GTTTATTTCG TAAAAAAGT | | mnll
AAGACCACGC CTCCCGTGCT
TTCTGGTGCG GAGGGCACGA
LysthrthrP roProValLe | nlallI
ppul01
nsil/avallI
fanl mnll
ta gcatgcg
ta cgtactcg | tagi
plei scf
rmal sali pst
xbal hincil/hi
alul mael acci bsg
hindili hinfi bspHi
A AGCTTCTAGA GTCGACCTG | TTTT
AAAA | | mall
GC CTC
CG GAC | nl
ppul01
nsil/a
sfaNI
GAT GGA
CTA CGT | plei
il Ba
bi ac
KGA GG | 9
0
0
1
1
1 | | CCAC
CGTG | S
CCGTG
GCCAC | pl
rmal
xbal
alul mael
ndili hi
AGCTTCTAG | VTAAA
Patti | | | III
GCTC
CGAC | alu
Indi
AGC
TCG | | | mspl
hpall
fnu4HI
bbvl
GGCAGCGGA GAACAACTAC
CCGTCGGCCT CTTGTTGATG
lyGlnProGl uAsnAsnTyr | nlaIII
TCAT GC
AGTA CG | ii
dii
ii
b
caca | apol
AAATTTCA
ITTAAAGT | | ACAA
TTGTT
NSDAS | mboli
bpuAl
ili
bbsi
ogcette
CAGAAG | scfi
 /hindii
 pstl
 bsgi
 bspMi
 ACCTGCAG | apol
CAAAT | | €36
646 11 | maell
bp
maell
maell
bb
mael
canc cancer
canc cancer
cancer cancer | tagi
eali
ei
hinci
nin
i
acci l
GTC G | ¥ F | | mspl
hpall
fnu4Hl
bbvl
GGCAGCGGA
CCGTCGGCCT
lyGlnProGl | maeil
maeil
maeil
HI xmn bb
asp700
GCAGGGAAC GT
CGTCCCTTG CA | tagi
sali
plei
rmal hincii
sau961 hinfi
haeIII/pali
asul mael acci b
GG CCCTAGAGTC GA | sfanl
CAATAGCATC
GTTATCGTAG | | fnu41
bbv1
GGCAGC
CCGTCC | HI
I
GCAC
CGTC
CGTC | rn
sau961
haelli/
asul ma
asul ma
cc ccci | CAAT | | AATG
TTAC
'Asng | fnu4HI
bbvI
GGGA GC
GCGT GG | s s hacec | AAAG | | GAGAGCAATG
CTCTCGTTAC
Gluseraeng | fnu4
bspHI bbv1
GCAGGTGGCA
GGTCCACGT | 9 76 00 | CAAAT
STTTA | | mspl
hpall
fnu4H1
bbvl
cGTGGAGTGG GAGACAACTAC
GCACCTCACC CTCTGGTTAC CCGTCGGCCT CTTGTTGATG
ValGluTrp GluSerAsnG lyGlnProGl uAsnAsnTyr | | tagi sali plei rmal hincil sau961 hinfi haelii/pali asul mael acci k GCCCATTAC TCACGCTGCC GGGATCTCAG CI G1yLys | MAGIII SFANI
TATAATGGTT ACAAATAAAG CAATAGCATC
ATATTACCAA TGTTTATTTC GTTATCGTAG | | CTGGAGTGG
CACCTCACC
Valglutrp | GTGGACAAGA
CACCTGTTCT
Valasplyss | CGGGTAAATG
GCCCATTTAC
Glylys | MATGG | | | | 990
900
10 | TATI | | 1901 | 2001 | 2101 | 2201 | | | | | | H2. 6H | rsal csp61 nla1V kpn1 hgiCI ban1 asp718 mn11 acc651 ddel acil AGGTACCTTC TGAGGCGGAA | SCIFI OI ECORII dsav bstNI apyi{dcm+} sexAI CATCTCAATT AGTCAGCAAC GTAGAGTTAA TCAGTCGTTG | acil foki
NAC TCCGCCCATC
ITG AGCCGGTAG | |---|--|---| | | sfaNI PpulOI nsil/avaIII nlaIII sphI nspI nspI CCAAAGCATG CATCTCAATT | acii
ACCATAGICC CGCCCCTAAC | | <pre>sau3AI mbol/ndeII[dam-] dpnI[dam+] dpnI[dam+] dpnI[dam-] pvul/bspCI mcrI taqI[dam-] tru9I hae! clai/bspl06[dam-] hae! sau3AI hae! hae! dpnI[dam+] xmnI hinPI dsaI dpnI[dam+] asel/asnI/vspI bsaJI t alvi[dam-] asp700 hhal/cfoI nlaIII mnlI mnlI crGGATCGAT CGGGAATTAA TTCGCGCAG CACCATGGCC TGAAATAACC TCTGAAAGAG GAACTTGTT GACCTAGCTA GCCCTTAATT AAGCCGCTC GTGGTACCGA ACTTTATTGG AGACTTTCTC CTTGAACCAA. can sau3Al contgin</pre> | nlaIV scrFI mval mval ecoRII nsil/avaII dsaV bstNI apyI(dcm+) bsaJI GTCCCCAGCAG GCAGAAGTAT GCAAAGCATG CAGGGTCGTC CGTCTTCATA GGTTTCGTAC | nlaly scrf! mval ecoRII ecoRII dsay bstNI apy1[dcm+] bsaJI AAGTCCCCAGC GCTCCCCAGC TCCTTTCA TAGTCAGCA ACCATAGTC CGCCCCTAAC TTCAGGGGTC CGAGGGGTTCA TACGTTTCAT AATCAGTCT TGCTATCAGG GCGGGGATTG AGCCGCTAG | | eII[dam-] am-) | | nail/
nlaili
s
n
n
n
n
n
n
ccage
aggeagaagt atgeaaag | | nlaii
GAATAGATGT | alul
pvuli
nspbli
AGAACCAGCT GFGGAATGT
TCTTGGTCGA CACCTTACA | nlaIV scrFI mvaI mvaI ecoRII dsaV bstNI apyI[dcm+] bsaJI cAGGTGTGGA AAGTCCCCAG GCTCCCAGC GTCCACACCT TTCAGGGGTC CGAGGGGTCG | | SUB: | STITUTE SHEET (RULE | 26) | bclI[dam-] fnu4HI ``` mbol/ndeII[dam-] fnu4HI asuI apyI [dcm+] hincil/hindi acil dpnii[dam-] bsmA dpnII (dam- mbol/ndeII[dam-] dpnI[dam+] sau961 GCCGCCCCG TCCCAGGTCC CCGCCCCTAA CTCCGCCCAG TTCCGCCCCAT TCTCCGCCCC ATGCTGACT AATTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT AGGICTICAT CACTOCTOOG AAAAAACTO CGGATCOGAA AACGITITIO GACAATIAAG CIIGIGOGIO IACGICAGOO OGGOGGGO AGGGIOCAGG GGCGGGGATT GAGGCGGGTC AAGGCGGGGTA AGAGGCGGGG TACCGACTGA TTAAAAAAA TAAATACGTC TCCGGCTCCG GCGGAGCCGG AGACTCGATA bsh1236I avaII asul haelll/pall bsaJI mnll aluI ecoR11 bstnI gau 3AI SCIFI acil acil bsaJI mnil bsaJI acil haelII/palI dsav MV8 [fnuDII/mvn1 bstYI/xhoII dpnI[dam+] hha I/cfoI Eau96I nlaIV avall Bau3AI bqlii bstuI hinpi thaI haeIII/palI mn 1 I fnu4HI bqll sfil 2701 TCCAGAAGTA GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTGTTAATTC GAACACGCAG ATGCAGTCGG mnll Sfani acil msel hgal tru91 TK promoter bstBI msel taql asull bsici *start pucl18 tru91 fnu4HI bbvI alul scfl psti 1 bsq nlaIII acil bsall styl ncol bslI dsal haellI/pall haeIII/pall hael mael bsall stul rmal mnll avril blai hael taql hphI bshl236I mnlI fnuDII/mvnI acii afllll batul thaI In [m hgal msel maelil bari mnlI acti tru9I mn l I 2601 ``` tn5 neomycin phosphotransferase gene. 2801 ACTICGCATA TIANGGIGAC GCGIGIGGCC ICGAACACCG AGGGACCCTG CAGGGACCCG CITAACAGCG ICAACAGCGI GCCGCAGAIC IGAICAAGAG TGAAGCGTAT AATTCCACTG CGCACACCG AGCTTGTGGC TCGCTGGGAC GTCGCTGGGC GAATTGTCGC AGTTGTCGCA CGGCGTCTAG ACTAGTTCTC る E. ``` bagI pstI scfl 3101 GCAGGACGAG GCAGCGCGG TATCGTGGCT GGCCACGACG GGCGTTCCTT GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAGGGA CTGGCTGCTA CGTCCTGCTC GTCGCGCGCG ATAGCACCGA CCGGTGCTGC CGCGTCGACA CGAGCTGCAA CAGTGACTTC GCCCTTCCCT GACCGACGAT 2901 ACAGGATGAG GATCGTTTCG CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCAAAC TGTCCTACTC CTAGGAAAGC GTACTAACTT GTTCTACCTA ACGTGCGTCC AAGAGGCCGG CGAACCCACC TCTCCGATAA GCCGATACTG ACCCGTGTTG TCCGGCTGTC AGGGCAGGGG CGCCCGGTTC TTTTTGTCAA GACCGACCTG TCCGGTGCCC TGAATGAACT TCTGTTAGCC GACGAGACTA CGCCGCCACA AGGCCGACAG TCGCGTCCCC GCGGGCCAAG AAAAACAGTT CTGGCTGGAC AGGCCACGGG ACTTACTTGA bsp1286 bsrI bbvI bmyI berl bsp1286 hgici bmy 1 nlaIV DanI hpalI bsaWI maelii acii eco571 Mnll tth1111/asp1 drdI eagl/xmallI/eclXI maell hgiAI/aspHI tagi haeIII/palI bsp1286 bbvI bsiHKAI fnu4HI DmyI acil hhaI/cfol eael cfrI mstI nspBII BCII hpall aviII/fsp1 Idsm aluI pvull fnu4HI haell hpall ahall/bsaHl Caull hhal/cfol nari scrFl hinll/acyl hgiCI mspI banI dsav hinPI kasI ncil hinPi nlaIV hhal/cfol DSpMI hinPl haelII/palI msc1/ball hpa]I Idsm eael cfrI haeI 3001 AGACAATGG CTGCTCTGAT GCCGCCGTGT balI nlallI fuu4HI mbol/ndeII[dam-] fnuDII/mvnI sfani bsh12361 hha1/cfoI dpnII[dam-] fnu4HI dpn [dam+] bstul bbvI acii thal hinpi foki alwi[dam-] fnu4HI sau3AI bsaB1[dam-] fnu4HI mam [dam-] bbvI Mnll mo 1 1 ``` | | = . | | |--|--|---| | saujai
mboi/ndeli[dam-]
dpni[dam+]
alvi[dam-]
sivi[dam-] | ₩ | | | e I I I | [dam-] sap! mbol! ear!/ksp632! } GA | | | saujai
mboi/ndeli
dpni(dam+)
dpnii(dam-)
alvi(dam-) |]
[/ks] | | | sau
mbo
dpn
dpn
alv | mbol/ndell[dam-] dpn1[dam+] [[dam-] sapl [] mboll h-] earl/h dpn1[dam-] CG ATCTGGACGA | MC | | GGG | dell
am+)
dam-
GGAC | ni
TGCTGCTG
AGGAGGAAC | | TATA | sau3AI mboi/ndeii [dpni[dam+] II[dam-] +] dpnii[dam- IC ATCTGGACTA | INI
11GC | | fnu4HI
4HI
I
bbvI
GCTG C | sau3AI
mbol/nd
fokI
sau3AI dpn1[da
mbol/ndeII[dam-]
dpnI[dam+]
dpnII[dam-]
iI[dam-] dpnII[d
GATCAGGATG ATCTC | sfani
CGA TG | |
fnu4
fnu4HI
acii
fnu4HI
acii bbvI
gcGGGGCTG | foki
foki
mbol/ndeil
dpni[dam+]
dpni[dam+]
il[dam-] c
GATCAGGATC | styl
baaji
nlaii
CCATGG | | fnu4HI si
fnu4HI di
acii di
fnu4HI di
acii bbvi a
gcccccctc catacccttc | sau3AI mbol/ndeII[sau3AI dpnI[dam+] mbol/ndeII[dam-] s dpnI[dam+] s dpnII[dam-] f taqI[dam-] dpnII[dam-] TC GATCAGGATG ATCTGGACC | styl
bsaJ
II nla
CCCAT | | AAT
TTA | sau3AI mbol/ndeII[d4 fokI sau3Ai dpnI[dam+] mbol/ndeII[dam-] sai mspi dpnI[dam+] hpaII dpnI[dam+] ea fokI cfr101 taqI[dam-] ea cGATGGAAGC CGCTTTGTC GATCAGGATG ATCTGGACGACCCCTTCTCTTGTC GATCAGGATG ATCTGGACGA | sau3AI mbol/ndeIl[dam-] dpnI[dam-] | | s fani
Gatge | STCT | ## 1
1
CGTO | | CTC GAC | mspi
hpali
cfrl01
GC CGG | sau3AI mbol/ndeIl{dam-dpnI{dam-dpnI{dam-} stTi/xhoII alvI{dam-} mnlI ccccaccat crccr | | nlaili
CATGG (| e cf | sau3A
mbol/ndell
dpn!
dpn!
bst!/xho!!
alw!{cGCCGAGGAI
GCCGCTCCTA | | n
SATC | k I
ATGG
TACC | bol/
tTI/
tTI/ | | 74 | foki
G CCTA | 80 g a
H≥ | | AGT. | rsal
csp61
Al
ispH1
ispH1 | 5000 | | AGA. | rs.
Csi
bsaAI
L/aspi
286
iKAI
maeI
CCACCT | sphinsplinsplinsplinsplinsplinsplinsplinspl | | 9 9
9 9 | rsal
csp6
bsaAI
bsiAI/aspHI
bsp1286
bsiHKAI
bmyl maeII
GA GCACGTAC | sphinspi
nsplinspi
hinpi
hhai/cfoi
thai
1/mvni
bstui
nlaiii
hhai/cfoi
bsaii
cccc ccatcc | | CCTG | PAGCC | hinp
hinp
hinp
hai
thai
thai
fruDII/mvnl
bstUl
bstUl
inp! nla!!!
hhai/c
m+) bssHI! | | TGCT | taqi
sfani
G CATCGA | fnul
bsh)
cmcAct | | 00 T | ສູ ນ
ບຸນ
ບຸນ | hinphinphinphinphinphinphinphinphinphinp | | -)
hphi
crcAcc | ACAT | scrf1
ecord
dsav
bstNI
apy1[| | [dam-] hphi | CCAA | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | saujāl mbol/ndell[dam-] fnu4HI ml dpn1[dam+] dpn1[dam-] bstYl/xholl alw1[dam-] slw1[dam-] ccatcrccrc recreece ccacaaagra recatcate createcar ccccccc cataccar ccccccc cataccar ccccccc cataccar cccccccc cataccar cccccccc cataccar cccccccc cataccar cccccccc cataccar cccccccc cataccar ccccccccc cataccar ccccccccc cataccar ccccccccc cataccar ccccccccc cataccar ccccccccc cataccar cccccccccc | MG
TTC | hinp! hinp! thal fauDII/mvnf thal fauDII/mvnf thal fauDII/mvnf bstUl bstUl bstUl bstUl ccoRif bsh1236I bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 ccccccccccccccccccccccccccccccccccc | | saulal mbol/ndell dpn1[dam+] dpn1[dam+] bstYl/xholl alw1[dam-] gcarcrccrc | CACC
5766 | 1 1
5000
5000 | | | ្និង
ភូមិ | hinpi
thai
fnuDII/mvnI
bstui
hgiJII
bspl286
bmyi bshl236I
banII hhal/cfoi
ccccaccc cAGC | | 500 to 000 00 | tagi
rang G | hinpi
thai
fnubli
bstul
i
se
bsh123
hhai/cccc | | scrfi
ncii
mspi
hpaii
dsav
cauii
bsaii | 1300
1300
1300
1300
1300
1300
1300
1300 | hinpi
thai
fnuDII/m
bstUI
hgiJII
bsp1286
bmyI bsh1236I
GGGCTGCGC CA | | BCTFI nc1f nc1f nsp1 hpa1i dsav cauli bsaJi TTGGGCGAAG TCCCGGGCA | rsal csp61 csp61 bsaAl bsaAl hgiAl/aspHI bsp1286 taqI bsp1286 taqI bsp186 taqI bsiHKAI hpaII bspMI taqI ATCCGCTAC CTGCCCATC GACACATCG CATCGACCA GCACGTACTC GCATCGATCG CATCACCATC TAGCCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTCTCTC GCACACATCG TAGCCTCTCTCT TAGCCCTAC TAGCCTCTCTCTCT TAGCCCTAC TAGCCTCTCTCTCTAC TAGCCTCTCTCTAC TAGCCTCTCTAC TAGCCTCTTCTAC TAGCCTCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTCTAC TAGCCTCTAC TAGCCTCTCTAC TAGCCTCTAC TAGCCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTCTAC TAGCCTAC TAGCCTAC TAGCCTCTAC TAGCCTAC TAGCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCCTAC TAGCTAC TAGCTAC TAGCCTAC TAGCTAC | | | GAAG | mspi
hpali bspMI
ccgctac ct
gcccatg ca | sfani
Agagcatoag
Totogtagte | |)
9999
9999 | msp1
hpa1]
rcccc | B E G C C T C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C T C C T C C T C C T C T C C T C C T C C T C | | scrFI ncii mspi hpali dsay cauli bsaJI 3201 TIGGGGAAG TGCCGGGCA AACCCGCTTC ACGCCCCCT | | | | 320 | 3301 | 3401 | | | | | -16. 6L ball Idsm TGACGAGTIC TICTGAGGGG GACTCIGGGG TICGAAAIGA CCGACCAAGC GACGCCCAAC CIGCCAICAC GAGATTICGA TICCACCGCC GCCTICTAIG ACTGCICAAG AAGACTCGCC CIGAGACCCC AAGCTITACI GGCIGGIICG CIGCGGGTIG GACGGIAGIG CICTAAAGCI AAGGIGGGGG CGGAAGAIAC 3601 ATATTGCTGA AGAGCTTGGC GGCGAATGGG CTGACGGCTT CCTCGTGCTT TACGGTATCG CCGCTCCCGA TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT TATAACGACT TCTCGAACCG CCGCTTACCC GACTGGCGAA GGACGACGAA ATGCCATAGC GGCGAGGGCT AAGCGTCGCG TAGCGGAAGA TAGCGGAAGA 3501 CCGAATATCA TGGTGGAAAA TGGCCGCTTT TCTGGATTCA TCGACTGTGG CCGGCTGGGT GTGGCGGACC GCTATCAGGA CATAGCGTTG GCTACCCGTG GCCTTATAGT ACCACCTTTT ACCGGCGAAA AGACCTAAGT AGCTGACACC GGCCGACCCA CACCGCCTGG CGATAGTCCT GTATCGCAAC CGATGGGCAC fou4HI acil hhal/cfol hinfi hinfi bbvi sfani hinpi taqI tfir fnu4HI rsrII/cspI acil acil 196nes avalI agul CDOJ bsrBI acil fnu4HI **DSPHI** ahall/bsaHl hinl1/acy1 haeIII/palI hpall hgaI cfrl0I nael cfrI eael taqI mnlI hinfi acri tfil taq1 sfuI bstBI bsici IInse haeIII/palI 3701 TGACGAGTIC TICTGAGGGG GACTCTGGGG fnu4HI acil hinfi cfrI cael pleI fnutHI eco571 aluI aciI acil mboli bsrBI earl/ksp6321 ddeI nlaIII Iloda FIG. 6M ``` 4001 TCATANACCE GGGTTCGGT CCCAGGGTG GCACTCTGTC GATACCCCAC CGAGACCCCA TTGGGGCCAA TACGCCGGG TTTCTTCCTT TTGCCCACCC AGTATTTGCG CCCCAAGCCA GGGTCCCGAC GGTGAGGAG CTATGGGGTG GCTCTGGGGT AACCCCGGTT ATGCGGGGG AAGAAGGAA AAGGGTGGG FIG. 6N 3801 AAAGGTIGGG CTTCGGAATC GTTTTCCGGG ACGCCGGCTG GATGATCCTC CAGCGCGGGG ATCTCATGCT GGAGTTCTTC GCCCACCCCG GGAGATGGGG TTTCCAACCC GAAGCCTTAG CAAAAGGCCC TGCGGCCGAC CTACTAGGAG GTCGCGCCCC TAGAGTACGA CCTCAAGAAG CGGGTGGGGC CCTCTACCCC CTCCGATIGA CITIGIGCCI ICCICIGITA IGGCCTICCI IGGCCGCGAI ACIGCCGITA ITITICIGIC ITAITITIGG IGCCCACAAC CCAGCAAACA GAGGCTAACT GAAACACGGA AGGAGACAAT ACCGGAAGGA ACCCGCGCTA TGACGGCAAT AAAAAGACAG AATAAAACGC ACGGGTGTTG GGTCGTTTGT xma I /pspAI hpall Caull dsav bsll HSV1 tk terminator Smal-Pvull nci 1 mspl SCIFI Caull bsaJI ncil dsay SmaI bsaJI bsll aval Iloqu fnuDII/mvnI bsh1236I Iloqu bstuI thaI acil gsul/bpmI haeIII/palI mbol/ndell[dam-] mbol/ndell[dam-] nlallI Bau96I dpnII[dam-] acil dpnII[dam-] qsul/bpml bstYl/xholI dpnI[dam+] bstUI dpnI[dam+] nlaIV Inse hinPl alwidam- thal sau3AI bslI fnuDII/mvnf hhal/cfol cfr101 fokl alw1[dam-] bsh12361 bs 1 I DSMAI bsal Inum/IIQnuj hha 1/cfoI mn][bsh1236I sau3AI hinPI bstul thal bsawl nlalv acil tagI ahall/bsaill hinll/acyl hpall Idsm hpa 1 I nael hqaI asul apyI[dcm+] hpall BCTFI Caull dsav ncii Idem DSMAI ecoRII SCIFI dsaV bstNI bsaJI BVal bsaJI 196nes nlaIV IIEAR hinfI [unm/IIQnu] bsh12361 bstuI acii mn 1 I 3901 ``` 20/27 | bsli
sau961
nlalV
avali styl
asul | nlalv bsaji
ecoll091/drali
tthll11/aspi nlalii
GTTAGGGAC GGGTCCCCC | nlalli styl ncol haell/pall dsal hael ddel bsaJI fokl CTGAGCAGAC AGACCCATGG TTTTTGGATG GACTCGTCTG TCTGGGTACC AAAAACCTAC | thai
fnuDil/mvni hinpi
bstUI hhai/cfoI
bsh1236I nlaIV
hinpi nari
thai kasi
fnuDil/mvni hinli/acyi
bstUI hinli/acyi
bsh1236I haeii
acii bani
bslI hhai/cfoI ahaii/bsaHi
A CCACCGCGC GATTTCTGC |
--|--|---|---| | sau961 nlaiv haeIII/palI sau961 nlaiv hgiJII ecol091/draII bsp1286 bsp1201 bmyI | sau96I bs11 haelII/pall fnu4HI fnu4HI dsal apal bsaJI ecol1091/ asul banII bbvI maeII acil acil bsaJI asul tth1111/aspI n AGGCCCAGG CTCGCAGCC ACGTCGGGC GGCAAGCCG CCATAGCCAC GGCCCCCGT GGTTAGGGAC GGGTCCCCC TCGGGGCC CCGTCCCCC TGGGGCCCCCGT TGCAGCCCC CCGTTCGGC GGTATCGGT TGCAGCCCC CCGTTCGGC GGTATCGGT TGCAGCCCCC TGGTTCGGC GGTATCGGT TGCAGCCCCC TGGTTCGGC GGTATCGCT TGCAGCCCCC TGGTTCGGC TGGTTCGGC TGCAGCGGG | | | | hgiJll bsp1286 bmyl scrf! mva! ecoRII dsav bstNI bsaJI apyl[dcm+] | sau961 bsll haeIII/pall fnu4HI ssul banII bbvI maeII acil GGCCAGGG CTCGCAGCCA ACGTCGGGGC GGC | ATTCTTTTGG GCGTTGCGTG
TAAGAAAACC GGCAACGCAC | scrfi mval sau961 mval hinli/acyl ecoRII thai scrfi dsav rsal fnuDII/mvnl ncii bstNi avali nlaili bstUl mspl bsaJI nlaili nspHI bsrl bsh12361 dsav hgal fnu4HI apyl[dcm+] acil csp61 hhal/cfoI cauli bbv1 GCCTGGGCAT GGACCCCATG TACTGGCGGG ACACGAACAC CGGCGTTG TGTGGGGGCT GGGGTTTTT | | b screw screws s | sau96I
bsli hphi asul
1101 CARCCCCAA GTTCGGGTGA AGGCCCA
GTTGGGGTT CAGCCCACT TCCGGGT | 4201 AIGGGAAIG GITIAIGGII CGIGGGGGII
TACCCCITAC CAAIACCAA GCACCCCAA | scrfi mval sau961 thal scrf dsaV real fnuDII/mvnI nciI bstNI avalI nlaIII hinpI bsaJI nlaIII nspHI bsrI bsh12161 apy1[dcm+] aciI csp6I hhal/cfoI 4301 GCCTGGGCAT GGACCCCATG TACTGGCGG ACACGAA CGGACCCGTA CCTGGCGTAC ATGACCGCC TGTGCTT | FIG. 60 **SUBSTITUTE SHEET (RULE 26)** fnuDII/mvnI BacII/sstII haeIII/pall bsh12361 acil bstuI nspBII thaI hphI eagl/xmalII/eclXI kspI dsaI bsaJl acil SCCCCCAC CCCAAGGAGC GCCGCCGGAC GAACTAAACC TGACTACGGC ATCTCTGCCC CTTCTTCGCT GGTACCAGGA GCGCTTTTGT TTTGTATTGG TCACCACGGC CGAGTTTCCG CGGCGGCCTG CTTGATTTGG ACTGATGCCG TAGAGGGG GAAGAAGGGA CCATGCTCCT CGCGAAAACA AAACATAACC AGTGGTGCCG GCTCAAAGGC hinpi mspi bstul bsawI fnuDII/mvnI hha I/cfoI acil bslI eael **bsh12361** hpall bsaJI dsal maelil bstEII CCCCACCCCC GCCAGGCCAC CTGTCCTACG AGTTGCATGA TAAAGAAGAC AGTCATAAGT GCCGCGACGA TAGTCATGCC GCCCTGCGGC CGGTCCCGTG GACAGGATGC TCAACGTACT ATTTCTTCTG TCAGTATTCA CGCCCCTGCT ATCAGTACGG thaI nlaIII bcqI hha1/cfoI eco47111 fnu4H1 hinPI aciı haell mn][csp6 [rsal **DPuAI** Iloqu bbsI mbol I nlallI BfaNI bslI cfrI bspl286 ppuMI mspl apyI[dcm+] nlaiv hgici ecc01091/drail bani nlalV haeIII/pall nlalV hpall bmyl ecoR11 dsav scrF1 dsav **bstnI** bsaJl caull mval avall eael BCrF1 bslI bsaJI ncil bslI hpall sau961 Idsm asaI fnu4HI acti 4401 4501 ^pBR322 sequence GCGCGGGTG GCCTTCCTCG SUBSTITUTE SHEET (RULE 26) bslI aval bari pleI tru91 mae!! ple! drdi bal I haeIII/palI Bau96I Inse 4801 CAAGCICTAA AICGGGGGCI CCCITIAGGG IICCGAIITA GIGCITIACG GCACCICGAC CCCAAAAAAC IIGAIIIGGG IGAIGGIICA CGIAGIGGGC 4701 GOTTACGOGO AGCGIGACOG CTACACTIGO CAGOGOCOTA GOGOCOGOTO CITICGOTIT CITOCOTICO IITOTOGOCA CGITOGOCGG CITICOCOGI GTTCGAGATT TAGCCCCCGA GGGAAATCCC AAGGCTAAAT CACGAAATGC CGTGGAGCTG GGGTTTTTTG AACTAAACCC ACTACCAAGT GCATCACCG 4601 TGACTGGGTT GAAGGCTCTC AAGGGCATCG GTCGAGCGGC CGCATCAAAG CAACCATAGT ACGCGCCCTG TAGCGGCGCA TTAAGCGGGG CGGTGTGGT ACTGACCCAA CTTCCGAGAG TTCCCGTAGC CAGCTCGCCG GCGTAGTTTC GTTGGTATCA TGCGCGGGAC ATCGCCGGGT AATTCGCGCC GCCCACACCA fnuDII/mvnI draIII **bsaAI** acil msel bshl236I hhal/cfol hhal/cfol fnu4HI hpall cfr101 Idsu bstul tru91 acil nael thaI hinpi maell hphI hinpi fnu4HI acii fnuD11/mvnI rsal hhal/cfol bstul scfl csp6I bslI **bsh1236I** hinPI I LOQUE tagi ban! mnl! hgici nlaIV All ori eagI/xmaIII/eclXI ^delta 3 hhaI/cfoI bsrBI acil haeIII/palI tadi cfri sfani hinpi hinPI haeII fnutHI bsrBI acil hha I/cfoI haell mael rmaI fuu4HI BCr eael acil not I MCLI nlalv sfani **bsp1286** nlaIV hqijii banII bmy I maelii bbvi maelii fnuDII/mvnI hha I/cfoI fnu4HI bsh12361 hinPI bstul LhaI GACTCTTGTT CCAAACTGGA ACAACACTCA ACCCTATCTC GTAGCGGGAC TATCTGCCAA AAAGCGGGAA ACTGCAACCT CAGGTGCAAG AAATTATCAC CTGAGAACAA GGTTTGACCT TGTTGTGAGT TGGGATAGAG hinfI 4901 CATCGCCCTG ATAGACGGTT TTTCGCCCTT TCACGTTGGA GTCCACGTTC TTTAATAGTG Bsel hinfl maell dpnI[dam+] alwI[dam-] bstYI/xhoII nspBII dpn I [dam-] bstYI/xhoII TGCGCGGAAC CCCTATTTGT TTATTTTTCT AAATACATTC AAATATGTAT CCGCTCATGA GACAATAACC CTGATAAATG CTTCAATAAT TAACTITITC CITCICATAC ICATAAGIIG TAAAGGCACA GCGGGAATAA GGGAAAAAC GCCGTAAAAC GGAAGGACAA AAACGAGIGG GICTIIGCGA 5301 AFTGAAAAAG GAAGAGTATG AGTATTCAAC AFTTCCGTGT CGCCCTTATF CCCTTTTTG CGGCATTTG CCTTCCTGTF TTTGCTCACC CAGAAACGCT 5001 GGCCTATICT ITICATITAT AAGGGAITIT GCCGAITICG GCCTATIGGT TAAAAAATGA GCTGATTAA CAAAATTIA ACGCGAATIT TAACAAATA CCCGATAAGA AAACTAAATA TTCCCTAAAA CGGCTAAAGC CGGATAACCA ATTTTTACT CGACTAAATT GTTTTTAAAT JGCGCTTAAA ATTGTTTAT AATTGCAAAT GTTAAAATAC CACGTCCGGA GCACTATGCG GATAAAAATA TCCAATTACA GTACTATTAT TACCAAAGAA TCTGCAGTCC ACCGTGAAAA GCCCCTITAC ACGCGCCTTG GGGATAAACA AATAAAAAGA TTTATGTAAG TTTATACATA GGCGAGTACT CTGTTATTGG GACTATTAC GAAGTTATTA TTAACGITIA CAAITITAIG GIGCAGGCCT CGIGATACGC CTAITITAI AGGITAATGI CAIGATAATA AIGGITICII AGACGICAGG IGGCACTITI apol tru91 msel fnuDII/mvnI aha II/bsaHI hinl1/acyl mbol/ndeII[dam-] **bsh1236I** maeII ddel aatii msel bstul tru91 sau3AI apol mbol/ndeII[dam-] bsrBI bsmAI acil nlaIII tru91 mseI **DspHI** rcal dpn I [dam+] nlaIII fnu4HI **Bau3AI** DSPHI tru91 rcal acil aluI mseI tru9I msel hae!!!/pal! hgiAI/aspHI **bsp1286 DSIHKAI** mbol/ndeII[dam-] haeIII/palI delta 2a stuI sau3AI haei fnuDII/mvnI earI/ksp632I bsh1236I nlaIV hhal/cfol acil bstuI thaI hinpi mbol I 5201 CGGGGAAATG psp1406I maeII tru91 msel 5101 FIG. 6R GGTGAAAGTA AAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA TCGAACTGGA TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA CCACTITCAT TITCIACGAC TICIAGICAA CCCACGIGCI CACCCAAIGI AGCIIGACCI AGAGIIGICG CCAIICIAGG AACICICAAA AGCGGGGTI alw441/snol maelii taqi alwi[dam-] acii bsrI apaLI/snol dpn1[dam+] bmy1 dpnII[dam-] sfani mboli[dam-] 5401 eco571 | | | saujai
mbol/ndeli[dam-]
dpni[dam+]
dpnii[dam-]
GAT | |
---|---|---|---| | acii
nu4Hi
C CGCATACACT | nlalii
TAACCATGAG
ATTGGTACTC | n-)
TCGCCTT
AGCGGAA | bsrI
tru9I
mseI
TTAACTGGCG
AATTGACCGC | | acil
mcri fnu4HI
ACTCGGTCGC CGC
TGAGCCAGCG GCG | fnu4HI
bbvI
AGTGCTGCCA
TCACGACGGT | nlaIII sau3AI maeIII mbol/ndeII{dam-} dpnI{dam+} alwI{dam-} nlaIII dpnII[dam-] AACATGGGG ATCATGTAAC TCG | hinPI
msti
avill/fspi
maeli hhal/cfoi
psp1406i
CAACAACGT GGGCAAACTA | | I
I
yI
GGCAAGAGA A | AGAATTATGC
TCTTAATACG | 8a
mb
dp
alw
nlaIII dp
AACATGGGG | | | BCTF1 ncil mspl hpali dsav caull hinll/acyl hgal ahall/bsaHI SATGACGCC GCC | III
IGACAGTAAG
ACTGTCAIIC | | fnu4HI
bbvI
GCAGCAATGG
CGTCGTTACC | | nvn]
[

 ATTATCCCGT ATTATCCCCGT ATTATCCCCTCT ATTATCCCCTCT ATTATCC | foulHII blaIII bovi nlaIIII ACGATGGCA TGACATAAG AGAATTATGC AGTGCTGCCA TAACCATGAG TGACATGC AGTGCTGCCA TAACCATGAG | alui acii
AGCTAACCGC TTTTTGCAC
TCGATTGGCG AAAAAACGTG | sfani
Caccatgeca
Gtgctacget | | scrfl ncil ncil mspl thaI thaI fuubli/mvnl dsaV bstUl bstUl bshl236I hinll/acyl hinPI hal/cfol ahall/bsaHI bcgI mcrI fnu4HI hAI/cfol ahall/bsaHI bcgI mcrI fnu4HI A CACCGCGCG TATATCCGT GATGACGC CCGATACACT | | | maelli
AGCGGACAC
TCGCACTGTG | | Jral
STTCTGCTAT C | ri
maelii
CAGTCACAGA
GTCAGTGTCT | sau961 avaII avaII eall palI mbol/ndeII[dam-] cfrI dpn1[dam-] fnu4HI mcrI mnlI acil mcrI mnlI GCGCCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG | maeIII
TGAAGCCATA CCAAACGACG AGCGTGACAC
ACTTCGGTAT GGTTTGCTGC TCGCACTGTG | | hgial/aspHI
bsp1286 tru9f
bsiHKAl msel
bmyl ahalil/draf
GAG CACTTTTAAA GTTC | rsal csp61 bsr1 scal hph1 mae!!! GAGTACTCAC CAGTCACAGA | 11
TACTTCTGAC ATGAAGACTG A | TGAAGCCATA | | hgial/a:
bsp1286
bsiHKAI
bmyI
patgatgag CAC | TGACTTGGTT ACTGAACCAA | haeIII/palI
eael
cfrI
fnu4HI
acil
GCGCCCAACT TA | mspl
hpall
sawli
V alul
C CGGAGCTGAA | | maell hgial/aspHI psp1406I bsp1286 tru9I xmnI bsiHKal msel asp700 bmyI ahalil/draI GAACGITITC CAATGATGAC CACTITIAAA GITCTGCTAT | rsal csp61 bsr1 dde1 scal hph1 maell1 sfaNI 5601 ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCAGAA AAAGCATCTT TAAGAGTCTT ACTGAACCAA CTCATGAGTG GTCAGTGTCT TTTCGTAGAA | 5701 TGATAACACT ACTATTGTGA | mspI
hpalI
bsaWI
nlalV aluI
5801 CGTTGGGAAC CGGAGCTGAA
GCAACCCTTG GCCTCGACTT | | 5501 0 | 5601 | 5701 | 5801 | **SUBSTITUTE SHEET (RULE 26)** **IG.** 6S ``` eam11051 5901 AACTACTTAC TCTAGCTTCC CGCCAACAAT TAATAGACTG GATGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG CTGGCTGGTT TTGATGAATG AGATGGAAGG GCCGTTGTTA ATTATCTGAC CTACCTCCGC CTATTTCAAC GTCCTGGTGA AGACGCGAGC CGGGAAGGCC GACCGACCAA TGGTCTCGC GGTATCATTG CAGCACTGGG GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG TATATGAAAT CTAACTAAAT TITGAAGIAA AAATTAAATI TICCTAGATC CACTICTAGG AAAAACTATT AGAGTACTGG TITTAGGGAA TIGCACICAA TGCCCCTCAG TCCGTTGATA CCTACTTGCT TTATCTGTCT AGGACTCTA TCCAGGGGT GACTAATTCG TAACCATTGA CAGTCTGGTT CAATGAGTA ATAACGACTA TTIAGACCTC GGCCACTCGC ACCCAGAGCG CCATAGTAAC GTCGTGACCC CGGTCTACCA TTCGGGAGGG CATAGCATCA ATAGATGTGC GTCAGACCAA GTTTACTCAT TITAAIITAA AAGGATCIAG GIGAAGAICC ITITIGAIAA ICICAIGACC AAAAICCCII AACGIGAGII tru91 nsel hpaII mspl haeIII/pall bglI 196nes hinpi asul hha I/cfoI ATTGGTAACT mae!] I nlaIII mn 1 I DspHI rcal ACGGGGAGTC AGCCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA CTGATTAAGC mbol/ndeII[dam-] bbvi bsri haerii/pali tru91 msel Bau961 avaII asuI dpn11[dam- alwi[dam-] bstY1/xholl bstY1/xholl dpnI[dam+] 196nes alw1[dam-] mbol1[dam-] Inse nlalV sau3AT mbol/ndell[dam-] mnll mbol/ndell[dam-] hgiCI nlalV banl fnu4HI dpn I I [dam-] hphI dpn1[dam+] acil rma] ahaiii/drai maei Sau 3AI mull dpn!![dam-] ddel Invm/Ilduni dpn1 | dam+ | bsal bshl236I Sau3A[fokI bstul aseI/asnI/vspI thaI tru91 msel msel bsrI DsmAI tru91 tru9I mseI 6001 TATTGCTGAT AAATCTGGAG CCGGTGAGCG 6201 ATATACTITA GAITGAITTA AAACTICAIT nlalV hphI ahalll/dral hpaII Repl cfr10I fokl hpall gsuI/bpmI BCIFI CaulI aluI ncil dsay tru91 msel I BE mael hinfI 6101 ``` FIG. 61 I BELL mael CCGCTACCAG CGGTGGTTTG TTTGCCGGAT CAAGAGCTAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA GCAGAGCGCA GATACCAAAT ACTGTCCTTC GCCGATGGTC GCCACCAAAC AAACGGCCTA GTTCTCGATG GTTGAGAAAA AGGCTTCCAT TGACCGAAGT CGTCTCGCGT CTATGGTTTA TGACAGGAAG 6301 TICGIICCAC IGAGCGICAG ACCCCGIAGA AAAGAICAAA GGAICTICIT GAGAICCIIT IITICIGCGC GIAAICIGCI GCIIGCAAAC AAAAAACCA AAGCAAGGTG ACTCGCAGTC TGGGGCATCT TTTCTAGTTT CCTAGAAGAA CTCTAGGAAA AAAAGACGCG CATTAGACGA CGAACGTTG TTTTTTGGT 6501 TAGTGTAGCC GTAGTTAGGC CACCACTICA AGAACTCIGT AGCACGCCT ACATACCICG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA atcacatege catcaatece etectgaagt tetteagaca tegtgeegga tetatgeage gagaccatta ggacaatget eaccgaegae ggteaeeget bari fnu4HI bbvI fnu4HI DPVI hgiAI/aspHI **bsp1286** hhaI/cfoI ALVIE fnutHI bsrI **PpvI** hinpi maellI fnuDII/mvnf hha I/cfoI **bsh12361** bstuI hinpi eco57I thaI dpnII[dam-] mboI/ndeII[dam-] bari maelii dpnII[dam-] bstY1/xhoII dpnI[dam+] alw1[dam-] I luz mcr1 dpnI[dam+] sau3AI nspBff mbol/ndelI[dam-] dpn1{dam+} mbo11[dam-] bstYI/xhoII alwI[dam-] mbol/ndel[{dam-} acil sau3AI dpnII[dam-] mpoi/udeII[dam-] scfl sau3AI aluI dpn I I [dam -] dpn I [dam+] alwI[dam-] sau3AI hpaII mspI haeIII/palI haeI BCFF1 nci1 ddeI hgaI nspBII acil bsli acii 6401 6601 TAAGTCGTGT CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG ATTCAGCACA GAATGGCCCA ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC CCCCCAAGCA CGTGTGTCGG GTCGAACCTC aluI alw44I/snoI apaLI/snol **DSIHKAI bmyI** hinpl acif fnu4HI hha I/cfof bbvI hpa 11 bsawi maelll hinfI plei caulI hpa I I dsav Idsm FIG. 6U fnutHI hpall ball Idsu acii **DSAWI** acii 6701 CGAACGACCT ACACCGAACT GAGATACCTA CAGCGTGAGC ATTGAGAAAG CGCCACGCTT CCCGAAGGGA GAAAGGCGGA CAGGTATCCG GTAAGCGGCA hha I/cfoI haeII scfl ddel GCTTGCTGGA TGTGGCTTGA CTCTATGGAT GTCGCACTCG TAACTCTTTC GCGGTGCGAA GGGCTTCCCT CTTTCCGCCT GTCCATAGGC CATTCGCCGT tru91 Bael acii bsrI IIBqsu PvuII aluI nlaIV acil Sfani ^deltal.PVU 7001 GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGGGAA TTGTGAGCGG ATACAATTT CACACAGGAA CACTCAATGG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG CCGAGCAIAC AACACACCTT AACACTCGCC TATTGTTAAA GTGTGTCCTT barBI hpaII hgiCI apyI[dcm+] bani bsaJi dsav. nlaIV bstNI **ecorii** BCTFI MVAI hhal/efol alul apyl[dcm+] apyl[dcm+] hgal mull drdl drdl hgal bestegedac Acadeagac TiccAcGGGG AAACGCCIGC TATCTITAIA GICCIGICG GITICGCCAC CICTGACTIG ACGITCGATI CCCAGCCTIG ICCTCGCG TGCTCCCTCG AAGGTCCCCC TITCCGGACC AIAGAAAIAI CAGGACAGCC CAAAGCGGIG GAGACIGAAC ICCCAGACTAA bathI dsav **ecorii** MVaI > bstni bsaJI > > moli dsav **ecorii** BCIFI BVaI tru9I maeIII moli nsel asel/asnl/vspl 7101 ACAGCTATGA CCATGATTAC GAATTAA TGTCGATACT GGTACTAATG CTTAATT **asp700** XMINI nlaIII >length: 7127 aatII(GACCTC): Inter anal Application No PCI/US 96/20718 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/16 C07K14/575 C12N1/21 C12N15/70 A61K38/22 //(C12N1/21,C12R1:19) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7K C12N A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant
passages Category ' 1-4,7-26 WO 97 00319 A (SMITHKLINE BEECHAM PLC Ε ;BROWNE MICHAEL JOSEPH (GB); CHAPMAN CONRAD) 3 January 1997 see page 1, line 31 - line 33; claims; examples 1-3, 6-12,26 EP 0 741 187 A (HOFFMANN LA ROCHE) 6 P,X November 1996 see page 9, line 19 - page 11, line 46; claims; examples 19,20 1-3, P,X WO 96 05309 A (UNIV ROCKEFELLER ; FRIEDMAN 6 - 12,26JEFFREY M (US); ZHANG YIYING (US); PROE) 22 February 1996 see page 43, line 3 - page 46, line 14; claims -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. lx I Special categories of cited documents: "T" later document published after the international fitting date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search <u>1</u> 4, 05, 97 17 April 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Fuhr, C 1 Inter nat Application No PC1/US 96/20718 | | | PC1/03 90 | PC1/US 90/20/10 | | |---------------------------|---|-----------|------------------------------------|--| | | C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT | | | | | Category * | Citation of document, with indication, where appropriate, of the relevant passages | | Relevant to claim No. | | | C.(Continua
Category * | NATURE, vol. 372, no. 6505, 1 December 1994, pages 425-432, XP000602062 YIYING ZHANG ET AL: "POSITIONAL CLONING OF THE MOUSE OBESE GENE AND ITS HUMAN HOMOLOGUE" see the whole document | | Relevant to claim No. 1,10-12, 26 | | | | | | | | ternational application No. PCT/US 96/20718 | Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) | |---| | This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: | | Claims Nos.: 7-10,24-25 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 7-10, and 24-25 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. | | Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: | | 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). | | Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) | | This International Searching Authority found multiple inventions in this international application, as follows: | | | | 1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims. | | 2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. | | 3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: | | No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: | | Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees. | Inter Nal Application No PCT/US 96/20718 | Patent document cited in search report | Publication
date | Patent family member(s) | Publication
date | |--|---------------------|--|--| | WO 9700319 A | 03-01-97 | AU 6011096 A | 15-01-97 | | EP 0741187 A | 06-11-96 | AU 5197896 A
CA 2175298 A
ES 2093593 T
JP 9003098 A
NO 961796 A
PL 314051 A | 14-11-96
06-11-96
01-01-97
07-01-97
06-11-96
12-11-96 | | WO 9605309 A | 22-02-96 | AU 3329895 A
CA 2195955 A
DE 19531931 A
FI 970656 A
GB 2292382 A
JP 9502729 T
ZA 9506868 A | 07-03-96
22-02-96
07-03-96
17-02-97
21-02-96
18-03-97
09-04-96 |