US009940257B2

a2 United States Patent (10) Patent No.: US 9,940,257 B2
Bakke et al. 45) Date of Patent: *Apr. 10, 2018
(54) IMPLEMENTING HARDWARE (52) US.CL
ACCELERATOR FOR STORAGE WRITE CPC GOG6F 12/0895 (2013.01); GOGF 12/0868
CACHE MANAGEMENT FOR MANAGING (2013.01); GO6F 12/0891 (2013.01);
CACHE LINE UPDATES FOR PURGES Continued
FROM STORAGE WRITE CACHE (Continued)
(58) Field of Classification Search
(71) Applicant: International Business Machines CPC i GO6F 12/0866-12/0873
Corporation, Armonk, NY (US) See application file for complete search history.
(72) Inventors: Brian E. Bakke, Rochester, MN (US); (56) References Cited
Joseph R. Edwards, Rochester, MN
(US); Robert E. Galbraith, Rochester, U.S. PATENT DOCUMENTS
MN (US); Adrian C. Gerhard,
Rochester, MN (US); Daniel F. Moertl, 5,542,066 A 7/1996 Matterson et al.
Rochester, MN (US): Gowrisankar 5,581,737 A * 12/1996 Dahlen GOGF 12/023
Radhakrishnan, Colorado Springs, CO . 707/999.101
(US); Rick A. Weckwerth, Oronoco, (Continued)
MN (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: g‘(f:;’;:;‘g;‘zl B“s'olﬁsl\l}?i?;g)es EP 0258559 A2 * 3/1988 ... GOGF 12/084
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35))
U.S.C. 154(b) by 0 days Intel. “An Overview of Cache.” 2002. http://download.intel.com/
o ' design/intarch/papers/cache6.pdf.*
;1"1121111;1 E?tent is subject to a terminal dis- (Continued)

Primary Examiner — Nathan Sadler

21) Appl. No.: 14/940,021
(1) Appl. No ’ (74) Attorney, Agent, or Firm — Joan Pennington

(22) Filed: Nov. 12, 2015

57 ABSTRACT
(65) Prior Publication Data A method and controller for implementing storage adapter
US 2017/0132138 Al May 11, 2017 enhanced write cache management, and a design structure

on which the subject controller circuit resides are provided.

Related U.S. Application Data The controller includes a hardware write cache engine

(60) Provisional application No. 62/252,749, filed on Nov. implementing hardware acceleration for storage write cache
9, 2015. management. The hardware write cache engine manages
cache line updates for purges from storage write cache with
(51) Int. CL no firmware involvement for greatly enhancing perfor-
GO6F 12/0895 (2016.01) mance.
GO6F 12/122 (2016.01)
(Continued) 15 Claims, 34 Drawing Sheets
T PCIE 8US
10A 102
T
WRITE CACHE 122 (PCIE)
DATA CONTROL
STORE STORE
124 126 PROCESSOR
120

FLASH NVRAM
128 130

WRITE CACHE
ENGINE
132

136 e 138
(SAS CTLR} (SAS CTLR)

l SAS l SAS

US 9,940,257 B2
Page 2

(51) Int. CL
GOGF 12/0868 (2016.01)
GOGF 12/0891 (2016.01)
GOGF 12/0893 (2016.01)
GOGF 13/40 (2006.01)
GOGF 13/42 (2006.01)
GOGF 13/28 (2006.01)
(52) US.CL
CPC ... GOGF 12/0893 (2013.01); GOGF 12/122

(2013.01); GOGF 13/28 (2013.01); GOGF
13/4022 (2013.01); GOGF 13/4282 (2013.01);
GOGF 2212/222 (2013.01); GO6F 2212/604
(2013.01); GOGF 2212/6042 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,119,209 A * 9/2000 Bauman GO6F 12/0895
711/118
6,134,624 A * 10/2000 Burns ... GOG6F 12/084
710/316
6,192,450 B1* 2/2001 Bauman GO6F 12/0804
711/133
6,574,709 B1* 6/2003 Skazinski GO6F 11/2092
711/119

6,728,818 B2 4/2004 Bakke et al.
6,839,827 B1* 1/2005 Beardsley GO6F 3/0605
711/114
6,857,045 B2 2/2005 Galbraith et al.
7,010,645 B2 3/2006 Hetzler et al.
7,275,134 B2 9/2007 Coulson
7,275,135 B2 9/2007 Coulson
7,360,021 B2 4/2008 Arimilli et al.
7,725,661 B2 5/2010 Liu et al.
7,979,655 B2 7/2011 Edwards et al.
8,667,219 B2 3/2014 Eleftheriou et al.
8,856,479 B2 10/2014 Gerhard et al.
8,868,828 B2 10/2014 Bakke et al.
8,886,881 B2 11/2014 Bakke et al.
2005/0144510 Al* 6/2005 Zayas GOG6F 12/0866
714/5.1
2006/0265568 Al* 11/2006 Burton GOG6F 12/0862
711/216
2007/0028136 Al 2/2007 Forhan et al.
2007/0250660 Al* 10/2007 Gill .cccoovevrrrenenn. GOG6F 12/0804
711/103
2007/0266027 Al* 11/2007 Gattegno GO6F 3/0605
2012/0079212 Al* 3/2012 Dantzig GOG6F 12/0842
711/144
2012/0303859 Al* 11/2012 Bakke GO6F 11/1076
711/102
2013/0019063 Al* 1/2013 Astigarraga GO6F 12/126
711/125

2015/0046648 Al
2015/0058576 Al
2016/0188223 Al*

2/2015 Anderson et al.

2/2015 Galbraith et al.

6/2016 Campccccocoenne. GO6F 3/0613
711/103

OTHER PUBLICATIONS

Filipa Duarte. A Cache-Based Hardware Accellerator for Memory
Data Movements. Oct. 2008. Delft University of Technology. The-
sis.*

“Implementing Hardware Accelerator for Storage Write Cache
Management With Cache Line Manipulation”, Bakke et al., U.S.
Appl. No. 14/939,516, filed Nov. 12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Writes to Storage Write Cache”, Bakke et al., U.S.
Appl. No. 14/939,589, filed Nov. 12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Reads From Storage Write Cache”, Bakke et al.,
U.S. Appl. No. 14/939,649, filed Nov. 12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Reads With Partial Read Hits From Storage Write
Cache”, Bakke et al., U.S. Appl. No. 14/939,762, filed Nov. 12,
2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Destage Operations From Storage Write Cache”,
Bakke et al., U.S. Appl. No. 14/939,838, filed Nov. 12, 2015.
“Implementing Hardware Accelerator for Storage Write Cache
Management for Simultaneous Read and Destage Operations From
Storage Write Cache”, Bakke et al., U.S. Appl. No. 14/939,917, filed
Nov. 12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Identification of Data Age in Storage Write
Cache”, Bakke et al., U.S. Appl. No. 14/939,961, filed Nov. 12,
2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Managing Cache Line Updates for Writes, Reads,
and Destages in Storage Write Cache”, Bakke et al., U.S. Appl. No.
14/939,990, filed Nov. 12, 2015.

“limplementing Hardware Accelerator for Storage Write Cache
Management”, Bakke et al., U.S. Appl. No. 14/939,254, filed Nov.
12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Managing Cache Destage Rates and Thresholds
for Storage Write Cache”, Bakke et al., U.S. Appl. No. 14/940,035,
filed Nov. 12, 2015.

“Implementing Hardware Accelerator for Storage Write Cache
Management for Managing Data Merge on Fast Writes to Storage
Write Cache”, Bakke et al., U.S. Appl. No. 14/940,050, filed Nov.
12, 2015.

Appendix P—List of IBM Patents or Patent Applications Treated as
Related—Jan. 13, 2016.

* cited by examiner

U.S. Patent Apr. 10,2018 Sheet 1 of 34 US 9,940,257 B2
100
HOST SYSTEM
104
A
"~ ———— PCIE BUS
Y
PCIE SWITCH 106
(OPTIONAL)
A A
Y \
10 ADAPTER, 1O ADAPTER,
CONTROLLER 102 CONTROLLER 102
(I0A #1) (IOA #2)
A A
SAS SAS
Y Y
EXPANDER 110 _ SAS _ EXPANDER 110
(OPTIONAL) < v (OPTIONAL)
A 4
SAS SAS SAS SAS
| 2 I)
4 L A Y A
DEVICE DEVICE DEVICE DEVICE
108 108 108 108

FIG. 1A

U.S. Patent Apr. 10,2018 Sheet 2 of 34 US 9,940,257 B2

A
PCIE BUS
IOA 102 |
134
WRITE CACHE 122 (PCIE)
DATA CONTROL
STORE STORE
124 126 PROCESSOR
120
FLASH NVRAM
128 130
WRITE CACHE
ENGINE
132
136 136
sAscTLry| Y ¥ ¥ |(sASCTLR)
A
I SAS SAS
\

FIG. 1B

U.S. Patent Apr. 10, 2018

200

HOST LBA AND AFDASD 202

AFDASD TO ARRAY
(REVERSE DATA STRIPING)
204
\

ARRAY LBA AND ARRAY ID
206

WRITE/READ CACHE 208 I

\
ARRAY LBA AND ARRAY ID

210

DATA STRIPING 212 I
v
LOG DEV LBAs AND LDNs
214

PARITY STRIPING (RAID)
216

Y
PHY DEV LBAs AND LDNs

218

FIG. 2A

Sheet 3 of 34

220
HOST LBA AND VSET 222

US 9,940,257 B2

VSET TO ARRAY 224

\
ARRAY LBA AND ARRAY ID

226

| WRITE/READ CACHE 228

\
ARRAY LBA AND ARRAY ID

230

DYNAMIC TIER REMAPPING
232

\
REMAPPED ARRAY LBA(S)

AND ARRAY ID 234

| DATA STRIPING 212

\
LOG DEV LBAs AND LDNs

214

PARITY STRIPING (RAID)
216

Y
PHY DEV LBAs AND LDNs

218

FIG. 2B

U.S. Patent

Apr. 10,2018 Sheet 4 of 34

US 9,940,257 B2

READ 300
5XX LBA/{] 4K LBA/ || SKIP || SKIP 5XX LBA/|| 4K LBA/ || SKIP || SKIP g?f
LENGTH || LENGTH {| 5XX 4K LENGTH || LENGTH |} 5XX 4K LBA
302 304 306 | 308 330 332 334 || 336 || 440
AFDASD TO ARRAY (REVERSE
DATA STRIPING) 310 VSET TO ARRAY 340
RO-T [R | RET | R6-1 NG
STRIPE || STRIPE || STRIPE || STRIPE OFFSET | [PAST END >256K
312 | 314 316 318 342 OF VSET LENGTH
R0O-2 R1-2 R5-2 R6-2 NON-ZERO 346 e 348 e
STRIPE || STRIPE || STRIPE || STRIPE OFFSET
320 322 324 326 344
¥ 1]
——————__| NO CACHE
WRITE/READ CACHE 328 s 387
I 1
FULL HIT-4K NO HIT-4K ALIGNED][PARTIAL HIT-4K
ALIGNED 350 360 ALIGNED 370 RIP/MIP/OIP 380 o
FULL HIT-SKIP 352 || NO HIT-SKIP 362 PARTIAL HIT-SKIP 65 CLs 382
@ ® 372 ®
FULL HIT-NOT 4K NO HIT-NOT 4K PARTIAL HIT-NOT PARTIAL HIT
ALIGNED BEGIN ALIGNED BEGIN {} 4K ALIGNED BEGIN
AND END 354 AND END 364

AND END 374 WITHIN <4K CL 384
FULL HIT-NOT 4K

NO HIT-NOT 4K || PARTIAL HIT-NOT PARTIAL HIT
ALIGNED BEGIN || ALIGNED BEGIN || 4K ALIGNED BEGIN || CHICKEN SWITGH
356 366 376 386 o
FULL HIT-NOT 4K || NO HIT-NOT 4K ZQF}\TL'%LN:'S 'QSDT
ALIGNED END 358 || ALIGNED END 368 78
S NO
y
DYNAMIC
DYNAMIC TIER REMAPPING 390
| AMIC : G330 ~——1 TiER 388
| NOSWAP31 __I—swarm CROSS BANDS
| SWAP-SAMERG392 || PROGRESS 394 395 e
| NO SWAP-DIFFERENT RG 393 | OSSO
| DATA STRIPING 389]<: ARRQTFS-Q@'
RO-1 STRIPE |[R1-1 STRIPE [R5-1 STRIPE | R6-1 STRIPE || R10-1 EXPOSED
312 314 316 318 STRIPE 327 DRIVE 398
RO-2 STRIPE |R1-2 STRIPE [R5-2 STRIPE |[R6-2STRIPE || R10-2 —
320 322 324 326 STRIPE 329

FIG. 3

U.S. Patent Apr. 10,2018 Sheet 5 of 34 US 9,940,257 B2

WRITE 400
5XX LBA/{| 4K LBA/ || SKIP || SKIP 5XX LBA/|| 4K LBA/ |} SKIP || SKIP >B?‘T°'
LENGTH || LENGTH || 8XX 4K LENGTH || LENGTH || 5XX 4K LBA
402 404 406 408 416 418 420 422 424
AFDASD TO ARRAY (REVERSE
DATA STRIPING) 410 VSET TO ARRAY 426
RO NO
STRIPE OFFSET PAST END >O56K
412 428 OF VSET LENGTH
RO-2 NON-ZERO 432 o 434 e
STRIPE OFFSET
414 430
v ¥
\
WRITE/READ CACHE 415 NO EQOCHE
FAST WRT-4K FWwOV-4K \ NIO
ALIGNED 438 ALIGNED 448 RIP/MIP/OIP 458 DYNAMIC
FAST WRT-SKIP 440|| FWwOv-SKIP 450 ® TIER 462
FAST WRT-NOT 4K || FWwOV-NOT 4K
ALIGNED BEGIN ALIGNED BEGIN DRT\?S-R?AHI\IES(I)-EB 4
AND END 442 AND END 452 @

FAST WRT-NOT 4K FWwQOv-NOT 4K
ALIGNED BEGIN ALIGNED BEGIN
444 454

FAST WRT-NOT 4K FWwOV-NOT 4K
ALIGNED END 446 || ALIGNED END 456

I DATA STRIPING 466

RO-1 STRIPE
468

FIG. 4

U.S. Patent Apr. 10,2018 Sheet 6 of 34 US 9,940,257 B2

DESTAGE 500

DESTAGE SEARCH STARTS AT EITHER LRU OR ARRAY OFFSET.
DESTAGE SEARCH STOPS AT EITHER END AT MAX REQUESTED SIZE/SPAN OR END
OF 256K (64CLs)

CLs WITH DIP/MIP/OIP ARE NOTED BUT OTHERWISE IGNORED 502

W/WO DUAL

CONTROLLER 504 WRITE/READ CACHE 505

4K LBA/LENGTH 506(| DESTAGE-4K ALIGNED 510

DESTAGE-SKIP 512

>32 BIT LBA 508

DESTAGE-NOT 4K ALIGNED
BEGIN AND END 514

DESTAGE-NOT 4K ALIGNED
BEGIN 516

DESTAGE-NOT 4K ALIGNED

END 518
NO
| DYNAMIC TIER REMAPPING 520 e — 2\|(EN£ 2@'5
I v ——
| NOSWAP522 |——erlero CROSS BANDS
[SWAPSAMERG524 || PROGRESS 20 @
{NO SWAP-DIFFERENT RG 526 | e

L]

lCROSS
| DATA STRIPING 534 STRIDE 200

R0-1 STRIPE |[R1-1 STRIPE ||[R5-1 STRIPE [R6-1 STRIPE R10-1 HIT EXPOSED
536 540 544 548 STRIPE 552 || DRIVE 558 o

R0-2 STRIPE [[R1-2 STRIPE || R5-2 STRIPE || R6-2 STRIPE R10-2
538 542 546 550 STRIPE 554

FIG. 5

U.S. Patent

Apr. 10,2018 Sheet 7 of 34 US 9,940,257 B2

CACHE LINE (CL) IN CONTROL STORE (CS)

600

[BYTEO | BYTE1 | BYIE2 | BYIE3 | BYIE4 | BYTES | BYTE6 | BYTE7 |

(40:0=1PB, 44:0=16PB) 6B ARRAYOFFSET, ALWAYS 8XX UNITS
ARRAY ID| MASK {(LOWER 3BITS-0)
STATE OP BUILD NUMBER
CS ADDRESS UP (PREV) POINTER FOR CS ADDRESS DOWN (NEXT) POINTER
LRU (LOWER 6 BITS=0) FOR LRU (LOWER 6 BITS=0)
CS ADDRESS PREVIOUS POINT FOR CS ADDRESS NEXT POINTER FOR HASH
HASH (LOWER 6 BITS=0) {(LOWER BITS=0)
COMPRESSION INDEXO OR ZERO COMPRESSION INDEX1 OR ZERO
COMPRESSION INDEX2 OR ZERO COMPRESSION INDEX3 OR ZERO
COMPRESSION INDEX4 OR ZERO COMPRESSION INDEX5 OR ZERO
COMPRESSION INDEX6 OR ZERO COMPRESSION INDEX7 OR ZERO

FIG. 6

U.S. Patent

Apr. 10,2018 Sheet 8 of 34 US 9,940,257 B2

CACHE LINE (CL) IN CONTROL STORE (CS)

BUILT FOR AUTO MIRROR

700
ARRAY {D | MASK 6B ARRAYCFFSET, ALWAYS 5XX UNITS (LOWER 3BITS-0)
OXSéJOOR OP BUILD NUMBER
ZERO ZERO
ZEROQO ZERO
COMPRESSION INDEX0 OR ZERO COMPRESSION INDEX1 OR ZERO
COMPRESSION INDEX2 OR ZERO COMPRESSION INDEX3 OR ZERO
COMPRESSION INDEX4 OR ZERO COMPRESSION INDEX5 OR ZEROC
COMPRESSION INDEX6 OR ZERO COMPRESSION INDEX7 OR ZERO

FIG. 7

U.S. Patent Apr. 10,2018 Sheet 9 of 34 US 9,940,257 B2

CACHE LINE (CL) IN DATA STORE (DS)
800

(THE CL IN DS 800 HAS THE MINIMAL INFORMATION NEEDED TO IDENTIFY THAT
THE CL IS VALID (i.e. ALLOCATED), WHAT ARRAY |ID AND LBA THE DATA IS FOR,
THE OP BUILD NUMBER, AND THE COMPRESSION RELATED INFORMAT!ON)

ARRAY ID| MASK 6B ARRAYOFFSET, ALWAYS 5XX UNITS (LOWER 3BITS-0)
0X80 OP BUILD NUMBER

ZERQ ZERO

ZERO ZERO
COMPRESSION INDEXO0 OR ZERO COMPRESSION INDEX1 OR ZERO
COMPRESSION INDEX2 OR ZERO COMPRESSION INDEX3 OR ZERO
COMPRESSION INDEX4 OR ZERO COMPRESSION INDEX5 OR ZERO
COMPRESSION INDEX6 OR ZERC COMPRESSION INDEX7 OR ZERO

FIG. 8

U.S. Patent Apr. 10, 2018 Sheet 10 of 34 US 9,940,257 B2

LOCAL SAS 900 REMOTE SAS
MIRROR OR SAS - MIRROR OR SAS
MIRROR DELETE MIRROR DELETE

Q_Q‘l\ 214
CS (VOLATILE) DS (NON- CS (VOLATILE) DS (NON-
902 VOLATILE) 906 910 VOLATILE) 912

Q\ éL é

h

&)
[]

o W
SN

FIG. 9

U.S. Patent Apr. 10, 2018 Sheet 11 of 34 US 9,940,257 B2

1000

FREE POOL 1002 | ATToeATE “MALLOCATED 1004 & MIRROR 1006
7=0 ALLOCATE [————1"|7=1 ALLOCATE 7=1 ALLOCATE
6=0 LOCALITY 6=X LOCALITY 6=X LOCALITY
5=0 PURGE 5=X PURGE Q@s =X PURGE
STATUS STATUS STATUS
4=0 MIP 4=0 MIP 4=1 MIP
3=0 HASH VALID 3=0 HASH VALID 3=1HASH VALID
2=0 RIP @2=0 RIP 2=0 RIP
1=0 DIP 1=0 DIP 1=0 DIP
0=0 OIP 0=0 OIP 0=0 OIP

1o, TE[J2AL
IDLE 1008
7=1 ALLOCATE
6=X LOCALITY
5=0 PURGE

STATUS (WHEN PURGE STATUS TURNS ON, INC P COUNT. WHEN TRUNS OFF
PURGE STATUS, DECP COUNT & INCUN COUNT)

4=0 MIP
3=1 HASH VALID
2=0 RIP
1=0 DIP
1020]0-9 ojp
\ HASH LIST VALID &LRU LIST VALID
UNDO OIP UNDO DIP
TURN OFF OIP, TURN OFF DIP,
TURNON | o ool ADD TO LRU, IF TURNON 16| 1.1 ADDTOLRU, IF |41 5
PURGE ON TURN OFF PURGE 9 ON TURN OFF
STATUS THE PURGE STATUS THE PURGE
I STATUS STATUS
HASHV & OIP & _ HASHV &RIP &
LRU=NULL 1010 HASHV & DIP & LRUNULL 1012 1| piy=yaLID 1014

9 T . TURN ON
PURGE
18,4 STATUS 18,4 9

! HASHYV & RIP & DIP & LRU=NULL 1016

78
FIG . 1 OA | RP 8?RU/HASH=NULLM |

@

U.S. Patent Apr. 10, 2018 Sheet 12 of 34 US 9,940,257 B2

FIG. 10B 1000

INSTALL: LOOP THIS CB TO WQ IF 1B FINDS MIP/RIP/DIP/OIP SET 1022

1A READ PAGE LIST, EACH CL TURN ON MIP & HASHV ADD TO LRU & HASH

1B SEARCH NEXT CL IN HASH FOR SAME ARRAYID & ARRAYOFFSET, EACH CL FOUND
TURN ON OIP REMOVE FROM LRU, PUT SAS DELETE CL MIRROR PAGE LIST

TURN OFF MIP & OIP 1024

2A READ PAGE LIST, EACH CL TURN OFF MIP 2A

2B READ NEXT CL {F OIP SET AND SAME ARRAYID & ARRAYOFFSET, EACH CL FOUND
TURN OFF OIP, TURN OFF HASHV, REMOVE FROM HASH PUT ON DEALLOCATE PAGE
LIST

UNDO INSTALL 1026

3A READ PAGE LIST, EACH CL TURN OFF MIP, TURN OFF HASHV, REMOVE FROM HASH
AND LRU

3B READ NEXT CL iF OIP SET AND SAME ARRAY iD & ARRAY OFFSET, EACH CL FOUND
TURN OFF OIP, TURN OFF PURGE, ADD BACK INTO LRU

READ SEARCH LOOP THIS CB TO WQ IF “4” FINDS MIP/RIP/QIP 1028
4 SEARCH HASH FOR MATCHING ARRAYID & ARRAYOFFSET, EACH CL FOUND TURN

ON RIP, PUT ON COMBO HDMAZh PAGE LIST, OTHERWISE WRITE VOL INDEX TO COMBO
PAGE LIST

TURN OFF RIP READ COMBO PAGE LIST, USE SKIP MASK 1030

5A EACH CL FOUND WITH HASHY ON, TURN OFF RIP

58 EACH CL FOUND WITH HASHV OFF, TURN OFF RIP, PUT ON DEALLOCATE PAGE
LIST

DESTAGE. IGNORE DIP/MIP/OIP 1032

6 SEARCH HASH FOR A 256KB RANGE OF ARRAY OFFSET, EACH CL FOUND TURN ON
DIP, REMOVE FROM LRU, PUT ON PAGE LIST

TURN OFF DIP, READ PAGE LIST 1034

7A EACH CL FOUND WITH RIP OFF, TURN OFF DIP, TURN OFF HASHV, REMOVE FROM
HASH. PUT ON DEALLOCATE PAGE LIST

7B EACH CL FOUND WITH RIP ON, TURN OFF DIP, TURN OFF HASHV, REMOVE FROM

HASH

UNDO DESTAGE 1036
8 READ PAGE LIST, TURN OFF DIP, TURN OFF PURGE STATUS, ADD BACK TO LRU

PURGE, IGNORE MIP OR ALLOCATE=0 OR 4:0=0 OR IF PURGE STATUS=1 1038

9A EACH CL FOUND WITH OIP/DIP OFF AND HASHYV ON, TURN ON PURGE STATUS,
TURN ON DIP, REMOVE FROM LRU, PUT ON DEALLOCATE PAGE LIST

9B EACH CL FOUND WITH OIP/DIP ON OR HASHV OFF, TURN ON PURGE STATUS

U.S. Patent Apr. 10, 2018

EXAMPLE CL CHAINS IN CS 110
(SAME ARRAY |ID/LBA)

Sheet 13 of 34

US 9,940,257 B2

IDLE: RIP: DIP: RIP/DIP:
ALLOCATE=1| |ALLOCATE=1| |ALLOCATE=1]| |ALLOCATE=1
LOC=0/1 LOC=0/1 LOC=0/1 LOC=0/1
HASHV=1 HASHV=1 HASHV=1 HASHV=1
(LRU=VALID) | |(LRU=VALID) | |DIP=1 RIP=1
RIP=1 DIP=1
1102 1104 1106 1108

ALLOCATED:
ALLOCATE=1

111

MIP:
ALLOCATE=1
LOC=0/1
MIP=1
HASHV=1
(LRU=VALID)
1114

FIG. 11A

EXAMPLE CL CHAIN IN DS 112

(SAME_ARRAY ID/L BA)

ALLOCATED:

ALLOCATE=1

OP BUILD # = N+X+Y
1122

ALLOCATED:

ALLOCATE=1

OP BUILD # = N+X
1124

ALLOCATED:

ALLOCATE=1

OPBUILD #=N
1126

FIG. 11B

'

IDLE:
ALLOCATE=1
LOC=0/1
HASHV=1
(LRU=VALID)

1

—

12

|

Y
OlP:
ALLOCATE=1
LOC=0/1
HASHV=1

1116

U.S. Patent Apr. 10, 2018 Sheet 14 of 34 US 9,940,257 B2

WRITES 1200

ALLOCATE NV PAGES 1202

HDMA TO DS WITH COMPRESSION 1204

WC OVERLAY SEARCH AND INSTALL 1206

XOR SECTOR IO MERGE 1208

SAS MIRROR 1210

SAS MIRROR DELETE 1212

TURN OFF MIP & OIP 1214
(TURN OFF MIP & OIP UNDQ, E.G,, IF SAS
MIRROR OR SAS MIRROR DELETE FAILS)

NV DEALLOCATE 1216

SIS SEND 1218

FIG. 12A

NON-OPTIMIZED/PROVISIONAL WRITES 122

XOR VOL TO NV COPY W/O COMPRESS 1222

FIG. 12B

U.S. Patent

Apr. 10,2018 Sheet 15 of 34

READS 1224

VOL ALLOCATE 1226

WC READ SEARCH 122

SAS READ (OR PARTIAL READ HIT) 1230

HDMA FROM DS WITH DECOMPRESSION
1232

VOL DEALLOCATE 1234

TURN OFF RIP 123

NV DEALLOCATE 1238 (E.G. FOR
ALREADY DESTAGED DATA)

SIS SEND 124

FIG. 12C

US 9,940,257 B2

U.S. Patent Apr. 10, 2018 Sheet 16 of 34 US 9,940,257 B2

DESTAGE 1242

DESTAGE SEARCH 1244

XOR DECOMPRESS 1246

PERFORM VARIOUS ASSISTS INVOLVED
WITH RAID DESTAGE 1248
(VOL ALLOCATE/DEALLOCATE, PSL
LOCK/UNLOCK, SET/UPDATE/CLEAR
PUFP, SAS OPS)

SAS MIRROR DELETE 125

TURN OFF DIP 1252

(TURN OFF DIP UNDO, E.G. IF DESTAGE
FAILS)

NV DEALLOCATE 1254

FIG. 12D

U.S. Patent Apr. 10,2018 Sheet 17 of 34 US 9,940,257 B2

WRITE PROCESS 1300

BYPASS
WRITE 1302 1314

BYPASS
1306
e {CHN
508 oL WRITE VOL ALLOCATE
DEALLOCATE|«| , /A | JHDMAL L~ (X2) (OR
prots AMGR [*] 1318 [*|PREALLOCATED)
1922 1320 1316
l

I s T s T I

| v AMIP | | AMIP |
|

Y HDMA TO DS WITH| |WC OVERTAY

| |ALLOCATE |—»| COMPRESSION |—#{SEARCH AND|—»{ *ORMERGE

i | 1324 1326 INSTALL 1328 1980

x

; oy | Doy B-OIP 1 B-OIP |

' |

| ! |
|

|| sasmirror | | SASTIRROR |\ queN oFF NV |

| |(LocAL ANDIOR t PELETE COCALL ot mip g 0P |—»f DEALLOCATE |i
|

| | REMOTE) 1332 | | peradiTe) 134 1336 1338 |

{ X

(| A-MIP B-OIP AMIP || c-oP | | c-oP |

‘ |

’ |

; SISSEND |_ B !

, 1323 | < |

’ !

U.S. Patent

BUFFER A (M{P, NEW
DATA) 1402

Apr. 10,2018

1400

BUFFER B OiP, OLD
DATA) 1404

Sheet 18 of 34

US 9,940,257 B2

BUFFER A (MIP, MERGED
DATA) 1406

OLD DATA, LBA=0X1000

OLD DATA, LBA=0X1000

OLD DATA, LBA=0X1001

OLD DATA, LBA=0X1001

OLD DATA, LBA=0X1002

OLD DATA, LBA=0X1002

OLD DATA, LBA=0X1003

OLD DATA, LBA=0X1003

NEW DATA, LBA=0X1004

OLD DATA, LBA=0X1004

NEW DATA, LBA=0X1004

NEW DATA, LBA=0X1005

OLD DATA, LBA=0X1005

NEW DATA, LBA=0X1005

NEW DATA, LBA=0X1006

OLD DATA, LBA=0X1006

NEW DATA, LBA=0X1006

NEW DATA, LBA=0X1007

OLD DATA, LBA=0X1007

NEW DATA, LBA=0X1007

NEW DATA, LBA=0X1008

OLD DATA, LBA=0X1008

NEW DATA, LBA=0X1008

NEW DATA, LBA=0X1009

OLD DATA, LBA=0X1009

NEW DATA, LBA=0X1009

NEW DATA, LBA=0X100A

OLD DATA, LBA=0X100A

NEW DATA, LBA=0X100A

NEW DATA, LBA=0X100B

OLD DATA, LBA=0X100B

NEW DATA, LBA=0X100B

NEW DATA, LBA=0X100C

OLD DATA, LBA=0X100C

NEW DATA, LBA=0X100C

NEW DATA, LBA=0X100D

OLD DATA, LBA=0X100D

NEW DATA, LBA=0X100D

NEW DATA, LBA=0X100E

OLD DATA, LBA=0X100E

NEW DATA, LBA=0X100E

NEW DATA, LBA=0X100F

OLD DATA, LBA=0X100F

NEW DATA, LBA=0X100F

NEW DATA, LBA=0X1010

OLD DATA, LBA=0X1010

NEW DATA, LBA=0X1010

NEW DATA, LBA=0X1011

OLD DATA, LBA=0X1011

NEW DATA, LBA=0X1011

OLD DATA, LBA=0X1012

OLD DATA, LBA=0X1012

FIG. 14

U.S. Patent Apr. 10, 2018 Sheet 19 of 34 US 9,940,257 B2

READ PROCESS 1500

READ 1502

BYPASS
1514

BYPASS
1506
NaeR N v
1508 VoL READ | [VOL ALLOCATE
— DEALLOCATE || 1IOMAL L VIA 14 (X2) (OR
1593 1520 [AMGR | YPREALLOCATED)
1022 1518 1516
{
P —Y |
1 | VOL ALLOCATE READ VIA AMGR| | HDMA FROM DS ||
| OR | | WCREAD | | (20PSOF | WITH I
{ |PREALLOCATED [™|SEARCH 1526 CROSS 256 KB | " |DECOMPRESSION||
| 1524 BOUNDARY 1528 1530 :
i A-VOL B-VNV | | A-voL B-VNV |
| |
} ¥ I
| I
; VoL NV |
| | DEALLOCATE |+ TURN1 ?ST RIP1 ol DEALLOCATE|—»| SIS SEND 1523 |4
: (OR NOOP) 1532 1222 1536 |
: A-VOL B-VNV C-CLR C-CLR :
i |

U.S. Patent Apr. 10, 2018 Sheet 20 of 34 US 9,940,257 B2

DESTAGE BUILD PROCESS 1600
1602

INVOKE DESTAGE SEARCH PERFORM
N
STARTING AT LRU (WITH B('JEFG;\/';’ANJ'SS O " siNGLE
GAPS FOR HDD, WITHOUT DESTAGE
GAPS FOR SDD) 1604 1616
INVOKE DESTAGE
256K FOUND ANDNYES | |SEARCHES STARTING
FSW ALLOWED AT ARRAY OFFSETS
1618
PERFORM AS
OVERLAPPED PEREGEN
OR SEARCHES ALL MULTIPLE
SERIALIZED FULL 256K OR DESTAGE
DESTAGES 1622
1610 ===
PERFORM
CINGLE UNDO ADDITIONAL

DESTAGES OR
QUEUE FOR LATER
WORK 1624

DESTAGE 1612

PERFORM
SINGLE
DESTAGE
1626

FIG. 16

U.S. Patent Apr. 10, 2018 Sheet 21 of 34 US 9,940,257 B2

SINGLE DESTAGE PROCESS 1700

SINGLE
DESTAGE 1702

VOL
READ NO DEST YES| ALLOCATE XOR
(XOR RAID-5/6
DECOMPRESS) 1704 (2X_ [™|DECOMPRESS
720 LD BUFFERS) 1708
Hes 1706
VOL
WRITE VIA WRITE VIA
AMGR 1724 ™ AMGR 1710 [T PEALLOCATE
ALet 1712
" T
| |
! SAS MIRROR [
: | | DELETE (LOCAL | _| TURNOFFDIP | | NV DEALLOCATE :
| |AND/OR REMOTE)[" 1716 > 1718 |
| 1714 |
| B-DIP B-DIP — C-CLR | | C-CLR |
) S U A R UM) S— |

A
{ DONE 1720)

FIG. 17

U.S. Patent Apr. 10, 2018 Sheet 22 of 34 US 9,940,257 B2

MULTIPLE DESTAGE PROCESS 1800

MULTIPLE
DESTAGE 1802

VOL
ALLOCATE STRIE WRITE VOL
(2X ™\/IA AMGR 1806 » DEALLOCATE
BUFFERS) == 1808
1804
- - - - - """"-"""""""”""”""”"/”/”"7"7""7"~ !
| i
I SAS MIRROR !
: | DELETE (LOCAL | _|TURNOFFDIP*N| _ NV DEA*L&OCATE :
AND/OR REMOTE){ 1812 w ,
[1 - 1814
| 810 |
|| B-DIP B-DIP — C-CLR C-CLR i
[S UV S SNSRI [SO i
\
DONE 1816

U.S. Patent Apr. 10,2018 Sheet 23 of 34

BYPASS PROCESS 1900

BYPASS 1902

INVOKE DESTAGE
SEARCH STARTING AT

US 9,940,257 B2

ARRAY OFFSET FOR |
SIZE/SPAN OF OP 1904

OR OF
STATE BITS=0
AND # OF INDEXES
WRITTEN=0
1906

YES
DONE 1908

OP CANNOT BE \YES
DONE AS SINGLE OP

TO DRIVE 1914

PERFORM

A

DELAY
1912

PERFCRM AS
OVERLAPPED

OR SERIALIZED { 4

DESTAGES 1916

SINGLE
DESTAGE 1918

FIG. 19

U.S. Patent

Apr. 10,2018

Sheet 24 of 34

REGISTER BASED PURGE HW ASSIST TOOL KIT 2000

WC HARDWARE READS ALL THE CLS, ANY THAT MATCH THIS RANGE WILL
HAVE THE FOLLOWING OCCUR:
IF ALLOCATE=1, PiP=0, MIP=0 AND HASHV=1 THEN TURN ON PIP AND
INCREMENT COUNTER.
IF INCREMENTED COUNTER, DIP=0 AND OIP=0 THEN TURN ON DIP, REMOVE
FROM LRU AND PUT CL ON THE PAGE TABLE LIST.
WC ENGINE CAN PROCESS CB DURING THIS TIME, THIS FUNCTION WILL
INTERLEAVE WITH CB PROCESSING 2002

FW LOADED REGISTERS 2004

CL 2026

ARRAY ID(7:0) 2006

STARTING ARRAY OFFSET(44:0),
BITS(2:0)=0 SINCE MUST BE 4KB
ALIGNED 2008

ENDING ARRAY OFFSET SIZE(44:0),
BITS(2:0)=0 SINCE MUST BE 4KB
MULTIPLE 2010

PAGE TABLE LIST POINTER(31:0)
2012

PAGE TABLE SIZE(11:0), UP TO 4K-1
ENTRIES 2014

PAGE TABLE CURRENT SIZE(11:0)
2016

CURRENT CL INDEX(24:0) 2018 (MAY
BE SET TO ZERO AT START, HELD
AFTER A PAUSE)

MAX CL INDEX(24:0) 2020

ACTIVE BIT, PAGE TABLE INTERRUPT
BIT 2022

CURRENT PURGE COUNTER(24:0),
DEALLOCATE WIiLL DECREMENT FOR
ANY CL WITH PIP BIT SET 2024

PIP(PURGE IN PROGRESS) BIT 2028
(INCREMENT PURGE PENDING
COUNT WHEN SET, DECREMENT
PURGE PENDING COUNT ON
DEALLOCATE)

US 9,940,257 B2

EVENT Q ENTRIES 2030

THE ABOVE PAUSES WHEN THE
PAGE TABLE LIST IS FULL AND SEND
A PURGE PAGE LIST EVENTQ ENTRY

2032

WHEN PURGE FINISHES A SWEEP
AND THE PAGE LIST IS NOT EMPTY
THEN SEND A PURGE PAGE LIST
EVENTQ ENTRY 2034

AFTER BOTH THE PURGE FINISHES
AND THE COUNTER i8S ZERO THEN
SEND A PURGE DONE EVENTQ
ENTRY 2036

FIG. 20

U.S. Patent Apr. 10,

2018 Sheet 25 of 34

PURGE ENGINE PROCESS 210

PURGE ENGINE
START/RESTART
2102

US 9,940,257 B2

WC ENGINE
IDLE 2104

NO

ALL CLS
PROCESSED
2106

PROCESS
CL 2108

PAGE LIST
FULL 2110

PAGE LIST NO

INDICATE PARTIAL
PURGE STATUS WITH

EMPTY 2116

OF INDEXES VALID
2114

PURGE
COUNTER
ZERO 2118

YES

INDICATE

DONE 212

PURGE

Y

(DONE 2122 |}

FIG. 21

BOUNDARY

AT 256K NYES

2112

U.S. Patent Apr. 10, 2018 Sheet 26 of 34 US 9,940,257 B2

PURGE ENGINE PROCESS 2200

PURGE 2202

IS
THERE
CURRENTLY A
PURGE IN

YES

QUEUE PURGE
REQUEST 2205

INVOKE PURGE ENGINE
FOR ARRAY ID AND LBA

Y

RANGE 2206 RESTART (UN-
Y PAUSE) |«
ENGINE 2216
SAS MIRROR
INDEX(S) _YES DELETE TURN OFF NV
FOUND, PURGE (LOCAL AND/ = DIP = DEALLOCATE
ENGINE PAUSED OR *EEI:AC?TE) 2212 2214

2208

IS THERE A
QUEUED PURGE
REQUEST 2220

YES

NO
DONE 2222

FIG. 22

U.S. Patent Apr. 10,2018 Sheet 27 of 34 US 9,940,257 B2

HW COUNTER AND STATISTICS 230

CURRENT COUNTER VALUE CL 2302

CURRENT COUNTER VALUE LOCALITY BIT 2304

HWM CL 2406

HWM LOCALITY BIT 2308

LWM CL 2310

LWM LOCALITY BIT 2312

LRU UP, OLDEST CL ENTRY ON THE LRU, ZERO=NULL 2314

LRU DOWN, NEXT LOCATION A NEW CL WILL BE PLACED,
ZERO=NULL 2316

CURRENT COUNTER VALUE WC INSTALLS TOTAL 2318

CURRENT COUNTER VALUE WC INSTALLS WITH OVERLAY 2320

CURRENT COUNTER VALUE WC READS TOTAL 2322

CURRENT COUNTER VALUE WC READS WITH FULL CACHE READ
HITS 2324

FIG. 23

U.S. Patent Apr. 10, 2018 Sheet 28 of 34 US 9,940,257 B2

LIMIT AND THRESHOLD EXAMPLE (COMPRESSED CACHE)

2400
OVERALL LIMIT
OVERALL LIMIT FOR 2402 2404 FOR NV 528
NV 4K INDEXES (SIZE__ = . INDEXES (SIZE
OF CACHE f OF REAL
DIRECTORY) CACHE
MEMORY)
OVERALL OVER ALL

THRESHOLD FOR NV HWM Hwm THRESHOLD FOR

4K INDEXES (NN% § \ “§ NV 528 INDEXES
OF THE LIMIT) LWM LWM (NN% OF THE

LIMIT)

ARRAY 2 ARRAY 3 ARRAY 4
2410 2412

THRESHOLD Per Array Limit == e cww o oo o
Per Array Threshold =====s=sscsccamcncacen.

FIG. 24

U.S. Patent

INPUTS FROM HW
2502

REGISTERS 2504

CL COUNT (PER ARRAY ID)

CL LOCALITY COUNT (PER
ARRAY D)

NV 4K FREE INDEXES (VIA HEAD/
TAIL POINTERS)

NV 528 FREE INDEXES (VIA
HEAD/TAIL POINTERS)

A

EVENTS 2506 A

NV 4K ABOVE HWM

NV 4K BELOW HWM

NV 5628 ABOVE HWM

NV 528 BELOW HWM

AN ARRAY CL COUNT ABOVE
HWM

AN ARRAY CL COUNT BELOW
HWM

AN ARRAY CL LOCALITY COUNT
ABOVE HWM

AN ARRAY CL LOCALITY BELOW
HWM

Apr. 10,2018 Sheet 29 of 34 US 9,940,257 B2

OUTPUTS TO HW
2510

UPDATE OF CL LIMIT (PER ARRAY) 2512

NOTE: THIS IS DONE BY DOING
AN ADD OR SUBTRACT USING
THE FW ARRAY WAIT Q UPDATE
PORT.

UPDATE OF HWM(S)/
LWM(S) FOR ARRAY BASED
CL COUNTS AND CL
LOCALITY COUNTS 2514

FW
2508

LIMIT AND
THRESHOLD
CALCULATION

NOTE: THE HWM(S)/
Ry [LWMIS) FOR THE NV 4K
AND NV 528 FREE
INDEXES ARE NOT
ROUTINELY CHANGED

OTHER OUTPUTS 2516

DESTAGE RATE 2518

DESTAGES ARE SCHEDULED TO
GET UNDER THRESHOLD FOR EACH
ARRAY

FIG. 25

U.S. Patent

Apr. 10,2018

Sheet 30 of 34

GLOBAL EVENT PROCESSING 2600

W
HWM OR LWM LWM

2602

US 9,940,257 B2

Y

DONE 2626

INCREASE INCREASE DECREASE
PAGE AND CL| | PAGE AND CL & PAGE
HWM 2606 CL HWM HWM 2620
2610
¢ * DECR*EASE ZERQ CL
INCREASE | | |\ ocror szsl\RAOSF;E/'\rGCEL TOP LWM, SET
PAGE LWM CL LWM 2612 LW;\A 5692 RESOURCE PAGE LWM
2608 === LWM 2628 2634
¥ \i
INCREASE DESTAGE
RATE 2614 YES
DESTAGE
Y ATE 2636

DECREASE
DESTAGE
RATE 2630

NO

A

FIG. 26

U.S. Patent Apr. 10, 2018 Sheet 31 of 34 US 9,940,257 B2

PER ARRAY PROCESSING 2700

w LWM
HWM OR LWM

2702

CLOR
LOCALITY
2720

LOCALITY

LOCALITY
2704

\ L4

DECREASE
INCREASE CL| | |ncREASE || DECREASE LOCALITY
HWM & LWM | | ocaLITY Hw || S0 B 5 HWM & LWM
2706 & LWM 2710 alec 2726
v ¥ ¥ ¥
DECREASE | | INCREASE INCREASE DECREASE
ARRAY CL | | ARRAY GL ARRAY CL ARRAY CL
LIMIT 2708 | | LIMIT 2712 LIMIT 2724 LIMIT 2728
y » DONE 2718
y
INCREASE
NEEDS HIGHER™_YES | ARRAY
DESTAGE RATE ™| DESTAGE
RATE 2716

FIG. 27

U.S. Patent Apr. 10, 2018 Sheet 32 of 34 US 9,940,257 B2

EXAMPLE, GLOBAL TRIGGERS 2800

CL COUNT
PAGE COUNT
CLLIMIT

DESTAGE
RATE

RELATIVE
PERCENT FULL

U.S. Patent

Apr. 10, 2018 Sheet 33 of 34 US 9,940,257 B2

EXAMPLE, PER ARRAY TRIGGERS 2900

DESTAGE
RATE

””””””””” CL COUNT
"""""" LOCALITY COUNT
“““““ CL LIMIT

‘-- 4
= I
@5
o>

~
%] 2 s
23| S

g @ - + 5

TIME LARGE/SEQUENTIAL OPS RANDOM OPS

FIG. 29

U.S. Patent Apr. 10, 2018 Sheet 34 of 34 US 9,940,257 B2

DESIGN
STRUCTURE
3002

LIBRARY
ELEMENTS

3008

DESIGN
RULES
3016

DESIGN
SPECIFICATIONS
3010

DESIGN
PROCESS
3004

VERIFICATION
DATA
3014

|

CHARACTERIZATION
DATA

3012

TEST DATA
FILES
3018

SECOND
DESIGN
STRUCTURE
3020

STAGE
3022

FIG. 30

US 9,940,257 B2

1
IMPLEMENTING HARDWARE
ACCELERATOR FOR STORAGE WRITE
CACHE MANAGEMENT FOR MANAGING
CACHE LINE UPDATES FOR PURGES
FROM STORAGE WRITE CACHE

FIELD OF THE INVENTION

The present invention relates generally to the data pro-
cessing field, and more particularly, relates to a method and
controller for implementing enhanced storage write cache
management, and a design structure on which the subject
controller circuit resides.

DESCRIPTION OF THE RELATED ART

Storage adapters are used to connect a host computer
system to peripheral storage I/O devices such as hard disk
drives, solid state drives, tape drives, compact disk drives,
and the like. Currently various high speed system intercon-
nects are to connect the host computer system to the storage
adapter and to connect the storage adapter to the storage [/O
devices, such as, Peripheral Component Interconnect
Express (PCle), Serial Attach SCSI (SAS), Fibre Channel,
and InfiniBand.

Storage adapters and storage subsystems often contain a
write cache to enhance performance. The write cache is
typically non-volatile, for example, using Flash backed
DRAM and is used to mask the write penalty introduced by
redundant arrays of independent disks (RAID), such as
RAID-5 and RAID-6. A write cache can also improve
storage performance by coalescing multiple host operations
placed in the write cache into a single destage operation
which is then processed by the RAID layer and disk devices.
For redundancy, the write cache data and directory or
metadata can be mirrored to a second or dual adapter which
advantageously is utilized in the case of an adapter failure.

In a fully associative or other complex cache used in a
storage subsystem to cache user or host data, many CPU
cycles typically are required to update the needed metadata
to put data into write cache. This metadata includes Cache
Line (CL) structures, a hash table for fast searching, and a
Least Recently Used (LRU) queue for finding the oldest
data. The metadata is used for maintaining coherency, keep-
ing the cache directory non-volatile, and to enable finding
data to remove from cache.

A need exists for an effective method and controller for
implementing enhanced storage write cache management. A
need exists to provide such method and controller that
provides a hardware accelerated design including a hard-
ware write cache engine which manages the write cache data
and metadata with a minimum of, or no, firmware involve-
ment to greatly enhance performance.

As used in the following description and claims, the terms
controller and controller circuit should be broadly under-
stood to include an input/output (TO) adapter (I0A) and
includes an 10 RAID adapter connecting various arrange-
ments of a host computer system and peripheral storage 1/O
devices including hard disk drives, solid state drives, tape
drives, compact disk drives, and the like.

As used in the following description and claims, the
terms: substantially without using firmware, with minimal,
minimum of; or no firmware involvement, should be broadly
understood to include operations and functions performed
by hardware and may include operation or control being
passed from or to firmware.

10

15

20

25

30

35

40

45

50

55

60

2
SUMMARY OF THE INVENTION

Principal aspects of the present invention are to provide a
method and a controller for implementing storage adapter
enhanced write cache management, and a design structure
on which the subject controller circuit resides. Other impor-
tant aspects of the present invention are to provide such
method, controller, and design structure substantially with-
out negative effects and that overcome many of the disad-
vantages of prior art arrangements.

In brief, a method and controller for implementing storage
adapter enhanced write cache management, and a design
structure on which the subject controller circuit resides are
provided. The controller includes a hardware write cache
engine implementing hardware acceleration for storage
write cache management. The hardware write cache engine
manages cache line updates for purges from storage write
cache substantially without using firmware for greatly
enhancing performance.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other
objects and advantages may best be understood from the
following detailed description of the preferred embodiments
of the invention illustrated in the drawings, wherein:

FIGS. 1A and 1B are a schematic and block diagrams
respectively illustrating an example system with dual con-
trollers and an input/output (I0) adapter for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment;

FIGS. 2A and 2B respectively illustrate an example
logical block address (LBA) translation RAID stack
included with the controller for implementing storage
adapter enhanced write cache management of FIGS. 1A and
1B with write cache placed high in the RAID stack in FIG.
2A, above Dynamic Tier (Easy Tier), data striping, and
parity striping (RAID) layers where caching is performed on
an Array ID/Array LBA basis in accordance with the pre-
ferred embodiment;

FIG. 3 illustrates example read operations supported in
hardware including the example logical block address
(LBA) translation of FIGS. 2A and 2B included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;

FIG. 4 illustrates example write operations supported in
hardware including the example logical block address
(LBA) translation of FIGS. 2A and 2B included with the
controller for implementing storage adapter enhanced write
cache management of FIGS. 1A and 1B with write cache
placed high in the RAID stack, above Dynamic Tier (Easy
Tier), data striping, and parity striping (RAID) layers in
accordance with the preferred embodiment;

FIG. 5 illustrates example destage operations supported in
hardware including the example logical block address
(LBA) translation of FIGS. 2A and 2B included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;

FIG. 6 illustrates an example cache line (CL) structure in
control store (CS) included with the controller for imple-
menting storage adapter enhanced write cache management
in accordance with the preferred embodiment;

FIG. 7 illustrates an example cache line (CL) structure in
control store (CS) for auto mirror to data store (DS) included

US 9,940,257 B2

3

with the controller for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment;

FIG. 8 illustrates an example cache line (CL) structure in
data store (DS) included with the controller for implement-
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment;

FIG. 9 illustrates an example local SAS and remote SAS
cache line (CL) control store (CS) mirror or SAS mirror
delete to data store (DS) included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment;

FIGS. 10A and 10B illustrates example transactions in
cache line (CL) states in hardware included with the con-
troller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;

FIGS. 11A and 11B illustrates example cache line (CL)
chains having same array ID/LBA in hardware included with
the controller for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment;

FIGS. 12A, 12B, 12C, and 12D respectively illustrate
example control block (CB) based chain of operations in
hardware engines for writes, non-optimized or provisional
writes, reads and destage operations included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;

FIG. 13 is a flow chart illustrating example operations of
a write process included with the controller for implement-
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment;

FIG. 14 illustrates an example XOR merge on fast write
with overlay included with the controller for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment;

FIG. 15 is a flow chart illustrating example operations of
a read process included with the controller for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment;

FIG. 16 is a flow chart illustrating example operations of
a destage build process included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment;

FIG. 17 is a flow chart illustrating example operations of
a single destage process included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment;

FIG. 18 is a flow chart illustrating example operations of
a multiple destage process included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment;

FIG. 19 is a flow chart illustrating example operations of
a bypass process included with the controller for implement-
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment;

FIG. 20 illustrates example register based purge hardware
assist tool kit included with the controller for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment;

FIGS. 21 and 22 are flow charts illustrating example
operations of a purge engine process included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment;

30

40

45

50

4

FIG. 23 illustrates example hardware counters and statis-
tics included with the controller for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment;

FIGS. 24 and 25 illustrate example CL limits and thresh-
olds included with the controller for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment;

FIG. 26 is a flow chart illustrating example operations of
global event processing included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment;

FIG. 27 is a flow chart illustrating example steps of per
array processing included with the controller for implement-
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment;

FIGS. 28 and 29 respectively illustrate example global
triggers and per array triggers included with the controller
for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment;
and

FIG. 30 is a flow diagram of a design process used in
semiconductor design, manufacturing, and/or test.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following detailed description of embodiments of
the invention, reference is made to the accompanying draw-
ings, which illustrate example embodiments by which the
invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

In accordance with features of the invention, a method
and controller for implementing storage adapter enhanced
write cache management, and a design structure on which
the subject controller circuit resides are provided. The
method and controller of the invention include a write cache
hardware engine managing write cache and providing sub-
stantially atomic update of a cache directory. Both a write
into and a read from write cache is performed using the write
cache hardware engine without using firmware, chaining
together hardware engines.

Having reference now to the drawings, FIGS. 1A and 1B
respectively illustrate an example system generally desig-
nated by the reference character 100 with dual controllers
and an input/output (10) adapter generally designated by the
reference character 102 for implementing storage adapter
enhanced write cache management in accordance with pre-
ferred embodiments. System 100 includes a first input/
output adapter (IOA) or controller 102, IOA #1 and a second
input/output adapter (IOA) or controller 102, IOA #2 with
write cache data and directory or metadata mirrored to the
dual IOA, which can be utilized in the case of adapter
failure. System 100 includes a host system 104, with the
IOAs #1 and #2, controllers 102 directly coupled to the host

US 9,940,257 B2

5

system 104 via a Peripheral Component Interconnect
Express (PCIE) bus or optionally coupled to the host system
104 via a PCIE switch 106. System 100 includes a plurality
of storage devices 108, such as hard disk drives (HDDs) or
spinning drives 108, and solid state drives (SSDs) 108
including for example, redundant array of independent
drives (RAID) optionally coupled by a respective expander
110 to the IOAs #1 and #2, controllers 102 via one or more
serial attached SCSI (SAS) connections with SAS connec-
tions between the IOAs #1 and #2, controllers 102.

In FIG. 1B, there are shown further example components
of each of the I0As #1 and #2, controllers 102 in the data
storage system 100 in accordance with the preferred
embodiments. Controller 102 includes one or more proces-
sors or central processor units (CPUs) 120, a write cache 122
including at least a data store (DS) 124, and a control store
(CS) 126, such as a dynamic random access memory
(DRAM). Controller 102 includes a flash memory 128, and
a non-volatile random access memory (NVRAM) 130.

Controller 102 includes a write cache engine 132 in
accordance with the preferred embodiments. Controller 102
includes a Peripheral Component Interconnect Express
(PCIE) interface 134 connected via the PCIE bus to the host
system and a Serial Attach SCSI control (SAS CTLR) 136
connected to each of a plurality of storage devices 108.

IOAs #1 and #2, controllers 102 and write cache engine
132, which includes a plurality of hardware engines, for
example, for implementing a method of chaining together
hardware engines, using no firmware, to perform a write or
write-with-overlay into write cache; and for implementing a
method of chaining together hardware engines, using no
firmware, to perform a read from write cache.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generate a chain of operations, using different
hardware engines, to perform a write or write-with-overlay
into the write cache using no firmware. Controller 102 and
write cache engine 132 implement the method by perform-
ing the steps of: allocating nonvolatile (NV) buffers, direct
memory access (DMA) for DMAing data from host, deter-
mining if existing data in cache may have been overlaid
while updating cache line (CL) states, merging non-4K data
at the beginning and end of the write operation, DMAing
data to a remote adapter while also updating CLs in local and
remote NV memory, clearing CLs for overlaid data in the
local and remote NV memory, final updates to the CL states,
deallocating NV buffers for any overlaid data, and sending
a response to the host command.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a read from the write cache
using no firmware. Controller 102 and write cache engine
132 implement the method by performing the steps of:
allocating Vol buffers, searching the write cache for a read
hit, DMAing data to host, deallocating Vol buffers, final
updates to the CL states, deallocating NV buffers for any
data being read which was concurrently destaged from
cache, and sending a response to the host command.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a partial read hit from the
write cache using no firmware. Controller 102 and write

5

10

15

20

25

30

35

40

45

55

60

65

6

cache engine 132 implement the method by performing the
steps of: Allocating Vol buffers, searching the write cache for
a read hit, reading/merging data from HDDs/SSDs for the
partial read hits, DMAing data to host, deallocating Vol
buffers, final updates to the CL states, deallocating NV
buffers for any data being read which was concurrently
destaged from cache, and sending a response to the host
command.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 generating a chain of operations, using different
hardware engines, to perform a destage operation from the
write cache using minimal firmware. Controller 102 and
write cache engine 132 assist in generating the destage
operation with options to start at either the LRU or a
specified array LBA, and to stop at either a max requested
size/span or the end of a 256K stripe boundary.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing a set of policies which allow for
a host read and a cache destage to occur simultaneously for
the same CLs. Collisions which do occur are queued and
dispatched by the hardware.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that uses an Op Build Number or sequence
number within a (CL) to enable guaranteed correct identi-
fication of older vs. newer data in cache for the same array
logical block address (LBA).

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing hardware Turn Offs for use in
completing or undoing CLs updates for writes, reads, and
destage operations.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that implements a unique hardware engine used
to identify and update CLs for an array L BA range which are
to be purged from the cache.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing an XOR (exclusive OR) merge
function, for example, on fast write with overlay.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing a trigger based method to dynami-
cally optimize cache destage rate and adjust the thresholding
and limiting of data in cache for each array, using hardware
provided inputs (registers) and outputs (registers and events)
to assist firmware.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing a high level framework of the
hardware accelerated design which manages the write cache
data and metadata (directory) with a minimum of, or no,
firmware involvement greatly enhancing performance.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache

US 9,940,257 B2

7

engine 132 provides hardware manipulation of CLs (Cache
Lines), the hash table, and per array LRU queues. This is
done in a pseudo atomic fashion such that updates to these
structures are either left unmodified or are completely
updated each time the hardware engine executes. All entries
being modified, for example, are Checked-Out into a cache,
changed one or more times, and then burst Checked-In if
successful. Only the CLs are kept non-volatile and it is
possible for a subset of the CLs to be modified when an
adapter failure occurs.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 that includes a CL definition which allows the
following states to be tracked: Overlay In Progress (OIP),
during a write with overlay operation; Read In Progress
(RIP), during a read operation; and Destage In Progress
(DIP), during a destage operation. RIP and DIP are allowed
concurrently to minimize collisions, which is not possible in
conventional designs.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implementing writes, non-optimized or provi-
sional writes, reads and destage operations providing
enhanced performance.

Referring now to FIGS. 2A and 2B, controller 102 imple-
ments an example logical block address (LBA) translation
RAID stack generally designated by the reference character
200 as shown in FIG. 2A for implementing storage adapter
enhanced write cache management. FIG. 2B illustrates host
LBA translation with (VSet) Volume set (i.e. a logical device
which can be read and written by the host) generally
designated by the reference character 220.

In FIG. 2A, controller 102 implements host LBA and
AFDASD (Advanced Function DASD) translation 202 that
is used with the IBM® i operating system. AFDASD rep-
resents a RAID capable physical device which may be read
and written by the IBM® 1 operating system. Host LBA and
AFDASD translation 202 starts with AFDASD to array or
reverse data striping at block 204 providing array LBA and
array 1D at 206 with read/write cache 208 providing array
LBA and array ID at 210. Read/write cache 208 is placed
high in the RAID stack 200, and above (RAID) layers data
striping 212 providing logical device LBAs and LDNs
(logical device numbers) 214, and parity striping 216, which
provides physical device LBAs and L.DNs 218 where cach-
ing is performed on an Array ID/Array LBA basis in
accordance with the preferred embodiment. The logical
block address (LBA) translation RAID stack 200 reduces
complexity and reduces delay than prior designs which
placed write cache below Dynamic Tier and data striping,
where caching was done on a device LBA basis.

FIG. 2B illustrates RAID stack 220 of host LBA transla-
tion with VSet 222 that is used with Advanced Interactive
eXecutive (AIX), UNIX®, Linux, and other common oper-
ating systems, starting with VSet to Array 224 providing
array LBA and array ID at 226 with read/write cache 228
providing array LBA and array ID at 230. RAID stack 220
includes Dynamic Tier or Easy Tier® Remapping 232
providing remapped array LBA(s)/ID at 234, followed by
common code (RAID) layers of data striping 212 providing
logical device LBAs and LDNs (logical device numbers)
214, and parity striping 216, which provides physical device
LBAs and LDNs 218.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter

10

15

20

25

30

35

40

45

50

55

60

65

8

enhanced write cache management including the write cache
engine 132 implementing auto reads to write cache, per-
forming a full or partial read hit from write cache typically
with no firmware involvement, or all the way through to
storage devices 108.

Referring to FIGS. 3, 4, and 5, there are shown example
read, write and destage operations with blocks having a dot
in the block corner indicating where hardware HW will pass
control to firmware FW to handle an operation.

Referring now to FIG. 3, there are shown example read
operations generally designated by the reference character
300 supported in hardware including the respective example
logical block address (LBA) translation RAID stack of
FIGS. 2A and 2B included with the controller 102 for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment. For
a host LBA and AFDASD RAID stack, read LBA length are
shown at blocks 302, 304, and skip mask are shown at
blocks 306, 308. An AFDASD to array or reverse data
striping block 310 provides data stripe blocks 312, 314, 316,
318, 320, 322, 324, 326, as shown, applied to the write/read
cache 328. For host LBA and Vset RAID stack, read LBA
length are shown at blocks 330, 332, skip mask are shown
at blocks 334, 336, and a greater than 32 bit at LBA 338. A
VSet to Array block 340 provides a no offset block 342, a
non-zero offset block 344, a past end of Vset block 346, and
a less than 256K length block 348 applied to the write/read
cache 328. As shown, write read cache 328 provides full hit,
4K aligned 350, full hit, skip 352, full hit, not 4K aligned
begin and end 354, full hit, not 4K aligned begin 356, and
full hit, not 4K aligned end 358. As shown, write read cache
328 provides no hit, 4K aligned 360, no hit, skip 362, no hit,
not 4K aligned begin and end 364, no hit, not 4K aligned
begin 366, and no hit, not 4K aligned end 368. As shown,
write read cache 328 provides partial hit, 4K aligned 370,
partial hit, skip 372, partial hit, not 4K aligned begin and end
374, partial hit, not 4K aligned begin 376, and partial hit, not
4K aligned end 378.

As shown, write read cache 328 provides read in progress
(RIP), mirror in progress (MIP) and overlay in progress
(OIP) at block 380, 65 cache lines (CLs) at block 382, partial
hit within less that 4K CL at block 384, and partial hit
chicken switch at block 386, to accommodate an exception
situation. As indicated at block 387 with no cache and no
dynamic tier at block 388, the read goes to data striping
block 389, which provides data stripe blocks 312, 314, 316,
318, 320, 322, 324, 326, 327, and 329 as shown. Otherwise,
a dynamic tier block 390 provides no swap at block 391,
swap-same Redundancy Group (RG) at block 392, no swap-
different RG at block 393, swap in progress at block 394,
and/or cross bands at block 395. Data striping block 389
provides cross sub-array at block 396, and/or hit exposed
drive at block 398.

In accordance with features of the invention, a method
and controller 102 for implementing storage adapter
enhanced write cache management including the write cache
engine 132 implement Auto Write operations supported in
HW where the hardware generates a chain of operations,
using different control blocks or hardware engines, to per-
form a write or write-with-overlay into the write cache
typically with no firmware involvement.

Referring now to FIG. 4, there are shown illustrates
example write operations generally designated by the refer-
ence character 400 supported in hardware including the
respective example logical block address (LBA) translation
RAID stack of FIGS. 2A and 2B included with the controller
102 for implementing storage adapter enhanced write cache

US 9,940,257 B2

9

management in accordance with the preferred embodiment.
For a host LBA and AFDASD RAID stack, write LBA
length are shown at blocks 402, 404, and skip mask are
shown at blocks 406, 408. An AFDASD to array or reverse
data striping block 410 provides data stripe blocks 412, 414,
as shown, applied to the write/read cache 415. For host LBA
and Vset RAID stack, read LBA length are shown at blocks
416, 418, skip mask are shown at blocks 420, 422, and a
greater than 32 bit LBA at block 424. A VSet to Array block
426 provides a no offset block 428, a non-zero offset block
430, a past end of Vset block 432, and a greater than 256K
length block 434 applied to the write/read cache 415. As
shown, write read cache 415 provides fast write, 4K aligned
438, fast write, skip 440, fast write, not 4K aligned begin and
end 442, fast write, not 4K aligned begin 444, fast write, not
4K aligned end 446. As shown, write read cache 415
provides fast write (FW) with overlay (Ov), 4K aligned 448,
fast write (FW) with overlay (Ov), skip 450, fast write (FW)
with overlay (Ov), not 4K aligned begin and end 452, fast
write (FW) with overlay (Ov), not 4K aligned begin 454, fast
write (FW) with overlay (Ov), not 4K aligned end 456. As
shown, write read cache 415 provides read in progress
(RIP), mirror in progress (MIP) and overlay in progress
(OIP) at block 458. As indicated at block 460 with no cache
and no dynamic tier at block 462 and non-single drive
RAID-0 at block 464, the write goes to data striping block
466, which provides a data RO-1 stripe block 468.

Referring now to FIG. 5, there are shown example destage
operations generally designated by the reference character
500 supported in hardware including the example logical
block address (LBA) translation of FIGS. 2A and 2B
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment. As shown at block 502, a
destage search starts at either LRU (linked list used in array),
or an array offset (array LBA); and the destage search ends
at a maximum requested size or span, or the end of a 256K
stripe boundary (64 CLs). CLs with DIP, MIP, or OIP set are
noted but otherwise ignored. As shown at block 504, the
destage operations are provided with or without the dual
controller 102. Unlike read and write operations 300, 400,
firmware is used to produce chains of hardware operations
to perform an overall destage. This is done since the number
of variations for destages, due to support of many different
RAID levels and other complexities, is too much for the
hardware to handle without firmware assistance. A write/
read cache 505 is shown with 4K LBA/length block 506, and
greater than 32 bit LBA block 508. Destage operations
include destage, 4K aligned 510, destage skip 512, destage
not 4K aligned begin and end 514, destage, not 4K aligned
begin 516 and destage, not 4K aligned end 518. A dynamic
tier remapping block 520 provides no swap at block 522,
swap-same RG at block 524, no swap-different RG at block
526, swap in progress at block 528, and/or cross bands at
block 530. As indicated at block 532 with no dynamic tier,
the destage goes to data striping block 534, which provides
data stripe blocks 536, 538, 540, 542, 544, 546, 548, 550,
552, 554, as shown. Data striping block 534 provides cross
sub-array at block 556, and/or hit exposed drive at block
558.

Referring now to FIG. 6 there is shown an example cache
line (CL) structure in control store (CS) generally designated
by the reference character 600 included with the controller
102 for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment.
The cache line (CL) structure 600 includes bytes 0-7 with
CS State definitions as follows:

10

15

20

25

30

35

40

45

50

55

60

65

10

7=Allocated CL, set by allocate engine

6=Locality bit

5=PIP (Purge in progress) turned on and increment counter
when CL is marked for Purge(decrement a counter on
de-allocate)

4=MIP (Mirror in progress), in HASH, in LRU

3=HASH Links Valid (may or may not be in LRU)

2=RIP (Read in progress) May or may not be in LRU
1=DIP (Destage in progress) Not in LRU

0=0IP (Overlay remove after mirror, Combine Mask Merge
in progress) Not in LRU.

The CL state definitions which allows the following states
to be tracked: Mirror In Progress (MIP), during a write
operation while mirroring data/directory to local/remote NV
memory; Overlay In Progress (OIP), during a write with
overlay operation; Read In Progress (RIP), during a read
operation; and Destage In Progress (DIP), during a destage
operation. The operation (OP) build number is incremented
with each cache entry. The CS address Up pointer for LRU,
lower 6 bits=0, and CS address Down or next pointer for
LRU, lower 6 bits=0. The CS address previous pointer for
hash, lower 6 bits=0, and CS address next pointer for hash,
lower 6 bits=0. The cache line (CL) structure 600 includes
compression index values.

The Locality bit is set and a counter is incremented for all
the CLs after the first one on an NV Allocate operation. The
counter is decremented for every CL with the Locality bit set
on an NV Deallocate. This counter is used by FW when it
is determining how full it should allow the Write Cache to
be before starting a Destage operation. A high Locality count
allows a fuller WC.

Referring now to FIG. 7, there is shown an example cache
line (CL) structure in control store (CS) for auto mirror to
data store (DS) generally designated by the reference char-
acter 700 included with the controller for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment. The cache line (CL)
structure in control store (CS) for auto mirror 700 to data
store (DS) includes array 1D, mask, 6B array offset, 0x80 or
CO0, operation (OP) build number, and compression index
values.

Referring now to FIG. 8 illustrates an example cache line
(CL) structure in data store (DS) generally designated by the
reference character 800 included with the controller for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment. As
shown, the CL in DS 800 has the minimal information
needed to identify that the CL is valid (i.e. allocated), what
array 1D and LBA the data is for, the op build number, and
the compression related information.

Referring now to FIG. 9, there is shown an example local
SAS and remote SAS cache line (CL) control store (CS)
mirror or SAS mirror delete to data store (DS) generally
designated by the reference character 900 included with the
controller for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment. A local SAS cache line (CL) control store (CS)
902 includes a local SAS mirror or SAS mirror delete path
904 to a local data store DS 906. A SAS interconnect 908 is
provided to a remote SAS cache line (CL) control store (CS)
910 and a remote data store DS 912. A remote SAS mirror
or SAS mirror delete path 914 is provided from the local CS
902 to the remote data store DS 912.

Referring now to FIGS. 10A and 10B illustrates example
transactions in cache line (CL) states in hardware generally
designated by the reference character 1000 included with the
controller 102 for implementing storage adapter enhanced

US 9,940,257 B2

11

write cache management in accordance with the preferred
embodiment. Cache line CL state transactions 1000 include
a Free Pool 1002, Allocated 1004, Mirror 1006 with HASH
and LRU valid, and Idle 1008 with HASH List valid and
LRU List valid. Each of the Free Pool 1002, Allocated 1004,
Mirror 1006, and Idle 1008 include CL states of 7=Allocated
CL, set by allocate engine, 6=Locality bit, S=Purge status,
4=MIP, 3=HASH Links Valid, 2=RIP, 1=DIP, and 0=OIP, as
shown. Cache line CL state transactions 1000 include
HASHV & OIP & LRU=NULL 1010, HASHV, & DIP &
LRU=NULL 1012, and HASHV & DIP & LRU=VALID
1014, HASHV & RIP & DIP & LRU=NULL 1016, and RIP
& LRU/HASH=NULL 1018. Below a line labeled 1020,
HASHY, RIP, DIP, OIP are listed only if set.

Referring also to FIG. 10B together with respective CL.
state transactions lines 1A-9B in FIG. 10A, cache line CL
state transactions 1000 include an Install at 1022 includes
loop this control block (CB) if 1B finds MIP/RIP/DIP/OIP
set. As shown at line 1A, a page list is read, and for each CL,
MIP & HASHYV are tuned on together with adding to LRU
and HASH. As shown at line 1B, a next CL is searched in
HASH for the same Array 1D & Array Offset, for each CL
found, turn on OIP, remove from LRU, put SAS delete CL.
mirror page list. As shown at 1024 turn off MIP & OIP. As
shown at line 2A, read page list, for each CL turn off MIP.
As shown a line 2B, read next CL if OIP set and same Array
1D and Array Offset, for each CL found turn off OIP, turn off
HASHY, remove form HASH, put on Deallocate Page List.

As shown at 1026, Undo Install. As shown at line 3A, the
page list is read, for each CL, turn off MIP, turn off HASHY,
and remove from HASH. As shown at line 3B, the next CL.
is read, turn off OIP, turn off PURGE, and add back into
LRU. As shown at 1028, read search loop this CB to WQ,
if “4” finds MIP/RIP/OIP. As shown at line 4, search HASH
for matching Array ID and Array Offset, each CL found turn
on RIP, put on combo HDMA2h Page List; and otherwise,
write volume Index to Combo Page List.

As shown at 1030, turn off RIP; read combo Page List, use
skip mask. As shown at line 5A, each CL found with
HASHYV on, turn of RIP. Each CL found with HASHYV off,
turn off RIP, put on Deallocate Page List, as shown at line
5B. As shown at 1032, destage, ignore DIP/MIP/OIP. As
shown at line 6, search HASH for a 256 KB range of Array
Offset, for each CL found turn on DIP, remove from LRU,
put on Page List. As shown at 1034, turn off DIP, read page
list. As shown at line 7A, for each CL found with RIP off,
turn off DIP, turn off HASHYV, remove from HASH, put on
Deallocate Page List. As shown at line 7B, for each CL
found with RIP on, turn off DIP, turn off HASHYV, remove
from HASH.

As shown at 1036, undo destage. As shown at line 8, read
page list, turn off DIP, turn off Purge Status, and add back to
LRU. As shown at 1038, Purge, ignore MIP or Allocate=0 or
4:0=0 or if Purge Status=1. As shown at line 9A, for each CL.
found with OIP/DIP off, and HASHV on, turn on Purge
Status, turn on DIP, and remove from LRU, put on Deallo-
cate Page List. As shown at line 9B, for each CL found with
OIP/DIP on, or HASHYV off, turn on Purge Status.

Referring now to FIGS. 11A and 11B, there are shown
example cache line (CL) chains having same array ID/LBA
respectively generally designated by the reference character
1100, 1120 included with the controller 102 for implement-
ing storage adapter enhanced write cache management in
accordance with the preferred embodiment. In FIG. 11A,
example CL chains 1100 in Control Store (CS) with same
Array ID/LBA include IDLE 1102 including Allocate=1,
LOC=0/1, HASHV=1, (LRU=valid); RIP 1104 including

20

25

30

40

45

50

55

12

Allocate=1, LOC=0/1, HASHV=1, (LRU=valid), RIP=1,
DIP 1106 including Allocate=1, LOC=0/1, HASHV=1,
DIP=1; RIP/DIP 1108 including Allocate=1, LOC=0/1,
HASHV=I, RIP=1, DIP=1; ALLOCATED 1110 including
Allocate=1 and IDLE 1112 including Allocate=1, LOC=0/1,
HASHV=I1, (LRU=valid), and MIP 1114 including Allo-
cate=1, LOC=0/1, MIP=1, HASHV=1, (LRU=valid), and
OIP 1116 including Allocate=1, LOC=0/1, HASHV=1, as
shown.

In FIG. 11B, example CL chains 1100 in Data Store (DS)
with same Array ID/LBA include ALLOCATED 1122
including Allocate=1 and Op build #=N+X+Y; ALLO-
CATED 1124 including Allocate=1 and Op build #=N+X;
and ALLOCATED 1126 including Allocate=1 and Op build
#=N.

Referring now to FIGS. 12A, 12B, 12C, and 12D respec-
tively illustrate example control block (CB) based chain of
operations in hardware engines for writes, non-optimized or
provisional writes, reads and destage operations included
with the controller for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment.

In FIG. 12A, the example write process generally desig-
nated by the reference character 1200 includes an allocate
NV pages 1202 allocating an A Page list in Data Store (DS);
Host DMA to DS with Compression 1204 for DMAing data
from host into the A Page List; a Write Cache (WC) Overlay
Search and Install 1026 determining if existing data in cache
may have been overlaid while updating CL states (turn on
MIP and generate OIP list or B Page List, determine if sector
10 is needed); XOR Sector [/O Merge 1208 merging non-4K
data at the beginning and end of the write operation; SAS
Mirror 1210 mirroring A page list new data to local NV DS
and to remote NV DS; SAS Mirror Delete 1212 mirror
deleting B Page list; turn off MIP & OIP 1214 turning off
MIP for A Page list and generating new list of OIP or C Page
List and turn off MIP & OIP Undo, for example, if SAS
Mirror or SAS Mirror Delete fails; NV Deallocate 1216
deallocating overlaid pages or C Page List; and SIS Send
1218 sending a response to the host.

In FIG. 12B, the example non-optimized or provisional
write process generally designated by the reference charac-
ter 1220 includes XOR Vol to NV copy without compression
1222.

In FIG. 12C, the example read process generally desig-
nated by the reference character 1224 includes Vol Allocate
1126; WC Read Search 1228; SAS Read (or partial read hit)
1230; HDMA from DS with decompression 1232; Vol
Deallocate 1234; Turn Off RIP 1236; NV Deallocate 1238,
for example, for already destaged data; and SIS Send 1240.

In FIG. 12D, the example destage process generally
designated by the reference character 1242 includes Destage
Search 1244; XOR Decompress 1246; Perform Various
assists involved with RAID Destage 1248, such as, Vol
Allocate/Deallocate, PSL. Lock/Unlock, Set/Update/Clear
parity update footprint (PUFP), SAS ops; SAS Mirror
Delete 1250; Turn Off DIP 1252, and Turn Off DIP Undo, for
example, if Destage fails; and NV Deallocate 1254.

Referring now to FIG. 13, there is shown a flow chart
illustrating example operations generally designated by the
reference character 1300 of a write process included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment starting at a block 1302. Checking for volatile
pages (x2) provided is performed as indicated at a decision
block 1304. When volatile pages are provided, then bypass
as indicated at a block 1306 and write via AMGR as

US 9,940,257 B2

13

indicated at a block 1308. Otherwise when volatile pages are
not provided, then checking for possible data in cache is
performed as indicated at a decision block 1310. When
possible data in cache is identified, then checking for skip or
WC overlay exception is performed as indicated at a deci-
sion block 1312. When skip or WC overlay exception is
identified, then volatile allocate (x2) or preallocated is
provided as indicated at a block 1316, host direct memory
access (HDMA) as indicated at a block 1318, write via
AMGR as indicated at a block 1320, and Vol Deallocate as
indicated at a block 1322. As indicated at a block 1323, then
SIS Send is provided sending a response to the host.

Otherwise when the skip or WC overlay exception is not
identified, then a write into write cache is performed in
accordance with the preferred embodiments by performing
HW chained steps of: allocate NV pages 1324 allocating an
A Page list in Data Store (DS); Host DMA to DS with
Compression 1226 for DMAing data from host into the A
Page List; a Write Cache (WC) Overlay Search and Install
1328 determining if existing data in cache may have been
overlaid while updating CL states (turn on MIP and generate
OIP list or B Page List, determine if sector 10 is needed);
XOR Sector [/0 Merge 1330 merging non-4K data at the
beginning and end of the write operation; SAS Mirror 1332
mirroring A page list new data to local NV DS and/or to
remote NV DS; SAS Mirror Delete 1334 mirror deleting B
Page list; turn off MIP & OIP 1336 turning off MIP for A
Page list and generating new list of OIP or C Page List; NV
Deallocate 1338 deallocating overlaid pages or C Page List;
and SIS Send 1323 sending a response to the host.

Referring now to FIG. 14 illustrates an example XOR
merge on fast write with overlay generally designated by the
reference character 1400 included with the controller 102 for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment.
XOR merge on fast write with overlay 1400 includes a
Buffer A including mirror in process (MIP) and new data
1402 and a Buffer B including overlay in process (OIP) and
old data 1404 that is merged into Buffer A including MIP and
merged data 1406.

Referring now to FIG. 15, there is shown a flow chart
illustrating example operations generally designated by the
reference character 1500 of a read process included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment starting at a block 1502. Checking for volatile
pages (x2) provided is performed as indicated at a decision
block 1504. When volatile pages are provided, then bypass
as indicated at a block 1506 and read via AMGR as indicated
at a block 1508. Otherwise when volatile pages are not
provided, then checking for possible data in cache is per-
formed as indicated at a decision block 1510. When possible
data in cache is identified, then checking for skip or read
search exception is performed as indicated at a decision
block 1512. When skip or read search exception is identified,
then then bypass as indicated at a block 1514 and volatile
allocate (x2) or preallocated is provided as indicated at a
block 1516, read AMGR as indicated at a block 1518, host
direct memory access (HDMA) as indicated at a block 1520,
and Vol Deallocate as indicated at a block 1522. As indicated
at a block 1523, then SIS Send is provided sending a
response to the host.

Otherwise when the skip or read search exception is not
identified, then a read from write cache is performed in
accordance with the preferred embodiments by performing
HW chained steps of: Vol Allocate 1524 providing A-Vol;
WC Read Search 1526 with B containing Vol indexes from

5

10

15

20

25

30

35

40

45

50

55

60

65

14

A and NV indexes for data in cache, skip bits also generated;
Read via AMGR (2 ops of cross 256 KB boundary) 1528;
HDMA from DS with decompression 1530 receiving
B-NVv; Vol Deallocate 1532 (or no op) receiving A-Vol;
Turn Off RIP 1534 receiving B-NVv and providing C-CLr
with RIP turned off for indexes that have skip bits set; NV
Deallocate 1536, providing C-CLr for example, for already
cleared by a destage so only need to deallocate the NV
indexes; and SIS Send 1523.

Referring now to FIG. 16, there is shown a flow chart
illustrating example operations generally designated by the
reference character 1600 of a destage build process included
with the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment starting at a block 1602.

In accordance with features of the invention, a hardware
engine assists in generating a destage operation with options
to start at either the LRU or a specified array LBA, and to
stop at either a max requested size/span or the end of a 256K
stripe boundary. As indicated at a block 1604, a Destage
Search is invoked with hardware assist which will search the
write cache, via the hash table and/or LRU queue, in order
to generate a destage (turn on DIP), with options to start at
either the LRU or a specified array LBA, or starting at LRU
(with gaps for HDD, without gaps for SSD) as shown.
Checking for full 256 K found and Full Stripe Write (FSW)
allowed is performed as indicated at a decision block 1606.
When full 256 K found and FSW allowed is not found,
checking for Op cannot be done as single op to drive is
performed as indicated at a decision block 1608. When Op
cannot be done as single op to drive is found, the overlapped
or serialized destages are performed as indicated at a block
1610, for example because of gaps when drives do not
support skip ops or CL contain sector [/O with possible gaps.
When Op cannot be done as single op to drive is not found,
then a single destage is performed as indicated at a block
1612.

When full 256 K found and FSW allowed is identified,
then as indicated at a decision block 1614 checking begin-
ning of major parity stripe is performed. When beginning of
major parity stripe is not found, then a single destage is
performed as indicated at a block 1616. When beginning of
major parity stripe is found, then destage searches are
invoked starting at array offsets as indicated at a block 1618.
Checking additional searches all full 256 K or none is
performed as indicated at a decision block 1620. If yes, then
multiple destage is performed as indicated at a block 1622.
If not, then undo additional destages or queue for later work
as indicated at a block 1624. Then a single destage is
performed as indicated at a block 1626.

Referring now to FIG. 17 is a flow chart illustrating
example operations generally designated by the reference
character 1700 of a single destage process included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment starting at a block 1702. Checking for RAID 5
or 6 is performed as indicated at a decision block 1704. If
RAID 5/6 is identified, then the following HW operations
steps in accordance with the preferred embodiment are
performed including: Vol Allocate (2x buffers) 1706, XOR
Decompress 1708, write via AMGR 1710, Vol Deallocate
1712, SAS MIRROR Delete (local and/or remote) 1714,
receiving B-DIP (Destage in process), Turn Off DIP 1716
receiving B-DIP, and providing C-CLr (Turn Off DIP Undo
for example, if Destage fails), NV Deallocate 1718 receiving
C-CLr, and operations done as indicated at block 1720.

US 9,940,257 B2

15

If RAID 5/6 is not identified, then the following HW
operations steps in accordance with the preferred embodi-
ment are performed including: Read No Dest (XOR Decom-
press) 1722, write via AMGR 1724, and continue with SAS
MIRROR Delete (local and/or remote) 1714, receiving
B-DIP (Destage in process), Turn Off DIP 1716 receiving
B-DIP, and providing C-CLr (Turn Off DIP Undo for
example, if Destage fails), NV Deallocate 1718 receiving
C-CLr, and operations done at block 1720.

Referring now to FIG. 18, there is shown a flow chart
illustrating example operations generally designated by the
reference character 1800 of a multiple destage process
included with the controller 102 for implementing storage
adapter enhanced write cache management in accordance
with the preferred embodiment starting at a block 1802. The
following HW operations steps in accordance with the
preferred embodiment are performed including: Vol Allocate
(2x buffers) 1804, Strip Write via AMGR 1806, Vol Deal-
locate 1808, SAS MIRROR Delete (local and/or remote)
1810, receiving B-DIP, Turn Off DIP*N 1812 receiving
B-DIP, and providing C-CLr, NV Deallocate*N 1814 receiv-
ing C-CLr, and operations done as indicated at block 1816.

Referring now to FIG. 19, there is shown a flow chart
illustrating example operations generally designated by the
reference character 1900 of a bypass process included with
the controller 102 for implementing storage adapter
enhanced write cache management in accordance with the
preferred embodiment starting at a block 1902. A destage
search is invoked starting at array offset for size/span of op
as indicated at a block 1904. Checking for OR of'state bits=0
AND # of indexes written=0 is performed as indicated at a
decision block 1906. If yes, then operations are done as
indicated at block 1908. Otherwise if not, then checking if
of indexes written=0 is performed as indicated at a
decision block 1910. If the # of indexes written=0, then a
delay is provided as indicated at block 1912, and operations
return to block 1904 invoking a destage search and continue.
If the # of indexes written is not equal to 0, then checking
if op cannot be done as single op to drive is performed as
indicated at a block 1914, for example, because of gaps but
drives do not support skip ops or CL contains sector [/O with
possible gaps. If op cannot be done as single op to drive, then
overlapped or serialized destages are performed as indicated
at a block 1916. If op can be done as single op to drive, then
a single destage is performed as indicated at a 1918. Opera-
tions return to block 1904 invoking a destage search and
continue.

Referring now to FIG. 20 illustrates example register
based purge hardware assist tool kit generally designated by
the reference character 2000 included with the controller
102 for implementing storage adapter enhanced write cache
management in accordance with the preferred embodiment.
As indicated at a block 2002, WC Hardware reads all the
CLs, any that match this range will have the following
occur: If Allocate=1, PIP=0, MIP=0, and HASHV=1 then
turn on PIP and increment counter. If incremented counter,
DIP=0, and OIP=0 then turn on DIP, remove from LRU, and
put CL on the page table list. WC Engine can process CB
during this time, this function will interleave with CB
processing. FW loaded registers 2004 include:

Array 1ID(7:0) 2006

Starting Array Offset(44:0), bits(2:0)=0 since must be 4 KB
aligned 2008

Ending Array Offset Size(44:0), bits(2:0)=0 since must be 4
KB multiple 2010

Page Table List pointer(31:0) 2012

Page Table Size(11:0), up to 4K-1 entries 2014

35

40

45

50

60

65

16
Page Table current Size(11:0) 2016
Current CL Index(24:0), 2018 (may be set to zero at start,
held after a pause)
Max CL Index(24:0) 2020
Active bit, Page Table Interrupt bit 2022; and
Current Purge counter(24:0) 2024, deallocate will decre-
ment for any CL with PIP bit set.

CL 2026 includes PIP (Purge in Progress) bit 2028
(Increments Purge Pending Count when set, decrement
Purge Pending Count on deallocate). Event Q Entries 2030
include the above pauses when the Page Table list is full and
send a Purge Page List EventQ entry 2032; when Purge
finishes a sweep and the Page Table list is not empty then
send a Purge Page List EventQ entry 2034 (11:
10=type=11b), note: Must be restarted; and after both the
Purge finishes and the counter is zero then send a Purge
Done EventQ entry 2036 (11:10=type=10b). It is noted that
FW uses a Destage Search in order to purge cache data for
a small range of LBAs. The Purge engine should be used for
larger ranges of LBAs.

Referring now to FIGS. 21 and 22 are flow charts illus-
trating example operations respectively generally designated
by the reference character 2100, 2200 of a purge engine
process included with the controller 102 for implementing
storage adapter enhanced write cache management in accor-
dance with the preferred embodiment. In FIG. 21, the purge
engine process starting at block 2102, checking for the WC
engine being idle is performed as indicated at a decision
block 2104. When WC engine being idle is identified, the
checking for all CLs processed is performed as indicated at
a decision block 2106. If not, the CL is processed as
indicated at a block 2108 and checking for a page list full is
performed as indicated at a decision block 2110. If the page
list is not full, the checking if at a 256K boundary is
performed as indicated at a decision block 2112. If so then
the operations return to checking at decision block 2104 for
the WC engine being idle and continue. Otherwise if the
page list is full, then a partial purge is indicated with # of
indexes valid is provided as indicated at a block 2114. When
all CLs are processed, then checking for an empty page list
is performed as indicated at a decision block 2116. If the
page list is not empty, then the partial purge is indicated with
of indexes valid provided at block 2114. If the page list is
empty, then checking for a zero purge counter is performed
as indicated at a decision block 2118. If yes, purge done is
indicated as indicated at a block 2120. Otherwise operations
are done as indicated at block 2122.

Referring to FIG. 22, a purge request starts at block 2202
includes checking for a purge in process currently being
performed as indicated at a decision block 2204. If yes, then
the purge request is queued as indicated at a block 2205.
Otherwise a purge engine routine is invoked for Array ID
and LBA range as indicated at a block 2206. Checking for
index(s) found, and purge engine paused is performed as
indicated at a decision block 2208. If yes, then SAS mirror
delete is performed (local and/or remote) as indicated at a
block 2210. DIP is turned off as indicated at a block 2212,
and NV deallocate is provided as indicated at a block 2214.
The purge engine is restarted (unpaused) as indicated at a
block 2216, and checking for index(s) found, and purge
engine paused returns to decision block 2208 and continues.
When index(s) found, and purge engine paused is not
identified, the purge is done as indicated at a block 2218.
Then checking if there is a queued purge request is per-
formed as indicated at a decision block 2220. If yes, then
operations return to invoke the purge engine routine for

US 9,940,257 B2

17
Array ID and LBA range at block 2206 and continue.
Otherwise operations are done as indicated at block 2222.

Referring now to FIG. 23, there are shown example
hardware counters and statistics generally designated by the
reference character 2300 included with the controller 102 for
implementing storage adapter enhanced write cache man-
agement in accordance with the preferred embodiment. The
hardware counters and statistics 2300 are maintained by HW
on a per Array ID bases including:

Current Counter Value CL 2302

Current Counter Value Locality Bit 2304

HWM CL 2306

HWM Locality Bit 2308

LWM CL 2310

LWM Locality Bit 2312

LRU UP, oldest CL entry on the LRU, zero=null 2314
LRU DOWN;, next location a new CL will be placed,
zero=null 2316

Current Counter Value WC installs total 2318

Current Counter Value WC installs with overlay 2320
Current Counter Value WC reads total 2322; and

Current Counter Value WC reads with full cache read hits
2324.

In accordance with features of the invention, with much
of the cache management under hardware control, it would
be difficult for firmware to help manage the per array cache
thresholds (i.e. desired level of data in cache per array) and
per array cache limits (i.e. maximum amount of data in
cache per array) without assistance from the hardware.
There are also overall (non-array) thresholds and limits to
manage. The hardware provides inputs (registers) from
firmware and outputs (registers and events) to firmware to
help manage cache thresholds and limits.

In accordance with features of the invention, a new trigger
based method is provided to dynamically optimize destage
rate. The new trigger based method uses a set of registers for
cache pages high and low trigger and cache CLs high and
low trigger. Hardware maintains counters for each of these
counts and when the hardware counters cross any of these
high or low triggers, it generates an event for firmware to
process. As these trigger values are crossed, and these events
are processed, firmware then adjusts the destage queue depth
accordingly. If the cache pages or cache CLs high water
mark is crossed, the destage queue depth can be increased.
At the same time, the values of the registers for the high and
low cache pages and or cache CLs will be increased to detect
the next crossing. If the cache pages or CLs low water mark
is crossed, the destage rate may be lowered along with the
setting of the high and low water marks. The destage rate
will be determined by the higher of the cache pages or cache
CLs. To avoid excess events, when either the cache pages or
cache CLs crosses the high water mark, the high water mark
for both will be moved up. However, it is only important to
move the low water mark of the highest utilized resource.
Essentially, the resource which is causing the higher destage
rate is the only resource for which the low water mark must
be monitored to detect when the destage rate can be lowered.

In accordance with features of the invention, when a
cache pages or CLs low water mark is crossed, if it is the
lower resource, the destage rate will not be changed and only
the low water mark for that resource must be adjusted down.
If it is the higher resource, the lower used resource level
must be checked to determine if it has become the higher
used resource. The destage rate will then be set based on the
higher resource. Also, both of the high water marks are set
based on the higher resource. Next, the low water mark for
the higher resource must be set at the trigger point for the

10

15

20

25

30

35

40

45

50

55

60

65

18

next lower destage rate. Finally, if the low water mark for the
lower resource is at a higher point than the new setting for
the higher resource, it must also be lowered.

In accordance with features of the invention, a per array
trigger based method to dynamically adjust per resource
limits. This uses a set of registers for per resource cache CLs
high and low trigger, and per resource locality count high
and low trigger. Hardware maintains counters for each of
these counts and when the hardware counters cross any of
these high or low triggers, it generates an event for firmware
to process. Basically these triggers are used to monitor the
ratio of CLs to locality count and adjust the per resource
limit. If the CL count crosses the high water mark, then the
limit should be decreased. At the same time, the high and
low water mark for CLs should be increased. If the locality
count crosses the high water mark, then the limit should be
increased and the high and low water mark for the locality
count should be increased. If the CL count crosses the low
water mark, then the limit should be increased and the CLs
high and low water marks should be decreased. If the
locality count crosses the low water mark, then the limit
should be decreased and the locality count high and low
water marks should be decreased.

Referring now to FIGS. 24 and 25 illustrate example CL
limits and thresholds respectively generally designated by
the reference character 2400, 2500 included with the con-
troller 102 for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment.

In FIG. 24, CL limits and thresholds 2400 Overall Limit
for NV 4K indexes (Size of cache directory) and Overall
Threshold for NV 4K indexes (nn % of the limit) illustrated
at 2402 and Overall Limit for NV 528 indexes (Size of real
cache memory) and Overall Threshold for NV 528 indexes
(nn % of the limit) illustrated at 2404 with example High
Water Mark (HWM) and Low Water Mark (LWM). As
shown at Array #1, 2406, Array #2, 2408, Array #3, 2410,
and Array #4, 2412, respective example Per Array Limit is
shown in dashed line and Per Array Threshold is shown in
dotted line relative to HWM and LWM.

In FIG. 25, CL limits and thresholds 2500 include inputs
from HW 2502 from Registers 2504 including
CL count (per array 1D)

CL locality count (per array ID),

NV 4K free indexes (via head/tail pointers), and

NV 528 free indexes (via head/tail pointers). Inputs from
HW 2502 from Events 2506 include:

NV 4K above HWM, NV 4K below LWM, NV 528 above
HWM

NV 528 below LWM

An array CL count above HWM

An array CL count below LWM

An array CL locality count above HWM

An array CL locality count below LWM

A FW Limit and Threshold Calculations function 2508
receives the Inputs from HW 2502 and provides Outputs to
HW 2510 including update of CL limit (per array) 2512.
This is done with an add or subtract using the FW Array Wait
Q Update Port. Outputs to HW 2510 include Update of
HWMs/LWMs for array based CL counts and CL locality
counts 2514. Note that the HWMs/LWMs for the NV 4K and
NV 528 free indexes are not routinely changed. Other
outputs 2516 include Destage rate 2518.

Referring now to FIG. 26 there is shown a flow chart
illustrating example operations generally designated by the
reference character 2600 of global event processing included
with the controller 102 for implementing storage adapter

US 9,940,257 B2

19

enhanced write cache management in accordance with the
preferred embodiment. As indicated at a decision block
2602, the HWM or LWM is identified. For the HWM, as
indicated at a decision block 2604, a page or CL is identified.
As indicated at a block 2606 the page and CLL HWM are
increased for the identified page. As indicated at a block
2608 the page LWM is increased. As indicated at a block
2610 the page and CLL HWM are increased for the identified
CL. As indicated at a block 2612 the CL LWM is increased.
The destage rate is increased as indicated at a block 2614.
For the LWM, as indicated at a decision block 2615, a page
or CL is identified. As indicated at a block 2616, checking
if the pages are greater than CLs is performed for the
identified page. When pages are greater than CLs, the page
and CL HWM are decreased as indicated at a block 2620.
When pages are not greater than CLs, the page LWM is
zeroed, and the CL LWM is set as indicated at a block 2622.
Checking is performed to identify a need to lower the
destage rate as indicated at a decision block 2624. When
need to lower the destage rate is not identified, then the
global event processing is done as indicated at a block 2626.
A top resource LWM is decreased as indicated at a block
2628. The destage rate is decreased as indicated at a block
2630 and then the global event processing is done at block
2626. As indicated at a decision block 2632, checking if the
pages are less than CLs is performed for the identified CL.
When pages are less than CLs, the page and CL HWM are
decreased at block 2620. When pages are not less than CLs,
the CLL LWM is zeroed, and the page LWM is set as
indicated at a block 2634. Checking is performed to identify
a need to lower the destage rate as indicated at a decision
block 2636. When need to lower the destage rate is not
identified, then the global event processing is done at block
2626. Then the destage rate is decreased as indicated at
block 2630 and then the global event processing is done at
block 2626.

Referring now to FIG. 27 is a flow chart illustrating
example steps generally designated by the reference char-
acter 2700 of per array processing included with the con-
troller 102 for implementing storage adapter enhanced write
cache management in accordance with the preferred
embodiment. As indicated at a decision block 2702, the
HWM or LWM is identified. For the HWM, as indicated at
a decision block 2704, a locality or CL is identified. As
indicated at a block 2706 the CL HWM and LWM are
increased for the identified CL. As indicated at a block 2708,
an Array CL Limit is decreased. As indicated at a block 2710
the Locality HWM and LWM are increased for the identified
Locality. As indicated at a block 2712, an Array CL Limit is
increased. Then as indicated at a decision block 2714,
checking is performed to determine if the CL. Count needs
a higher Destage rate. If the CL. Count needs a higher
Destage rate, the array Destage rate is increased as indicated
at a block 2716, and the per array processing ends as
indicated at a block 2718. For the LWM, as indicated at a
decision block 2720, a locality or CL is identified. As
indicated at a block 2722 the CL HWM and LWM are
decreased for the identified CL. As indicated at a block 2724,
an Array CL Limit is increased. As indicated at a block 2726
the Locality HWM and LWM are decreased for the identi-
fied Locality. As indicated at a block 2728, an Array CL
Limit is decreased. Then operation returns to decision block
2714, checking is performed to determine if the CL. Count
needs a higher Destage rate, and continues.

Referring now to FIGS. 28 and 29, there are shown
respective example global triggers generally designated by
the reference character 2800 and per array triggers generally

5

10

15

20

25

30

35

40

45

50

55

60

20

designated by the reference character 2900 included with the
controller 102 for implementing storage adapter enhanced
write cache management in accordance with the preferred
embodiment. In FIG. 28, global triggers 2800 include
destage rate and relative percent full shown relative to the
vertical axis, with time shown relative to the horizontal axis.
In FIG. 29, per array triggers 2900 include destage rate and
number of CLs/Locality/Limit shown relative to the vertical
axis, with time shown relative to the horizontal axis together
with regions for large/sequential Ops, and random Ops. In
FIG. 29, CL Count is illustrated with a solid line, Locality
Count is illustrated with a dotted line, and CL Limit is
illustrated with a dashed line, as shown.

FIG. 30 shows a block diagram of an example design flow
3000. Design flow 3000 may vary depending on the type of
IC being designed. For example, a design flow 3000 for
building an application specific IC (ASIC) may differ from
a design flow 3000 for designing a standard component.
Design structure 3002 is preferably an input to a design
process 3004 and may come from an IP provider, a core
developer, or other design company or may be generated by
the operator of the design flow, or from other sources.
Design structure 3002 comprises IOA or controller 102 in
the form of schematics or HDL, a hardware-description
language, for example, Verilog, VHDL, C, and the like.
Design structure 3002 may be contained on one or more
machine readable medium. For example, design structure
3002 may be a text file or a graphical representation of
controller 102 and performance state machine 200. Design
process 3004 preferably synthesizes, or translates, controller
102 into a netlist 3006, where netlist 3006 is, for example,
a list of wires, transistors, logic gates, control circuits, I/O,
models, etc. that describes the connections to other elements
and circuits in an integrated circuit design and recorded on
at least one of machine readable medium. This may be an
iterative process in which netlist 3006 is resynthesized one
or more times depending on design specifications and
parameters for the circuit.

Design process 3004 may include using a variety of
inputs; for example, inputs from library elements 3008
which may house a set of commonly used elements, circuits,
and devices, including models, layouts, and symbolic rep-
resentations, for a given manufacturing technology, such as
different technology nodes, 32 nm, 45 nm, 90 nm, and the
like, design specifications 3010, characterization data 3012,
verification data 3014, design rules 3016, and test data files
3018, which may include test patterns and other testing
information. Design process 3004 may further include, for
example, standard circuit design processes such as timing
analysis, verification, design rule checking, place and route
operations, and the like. One of ordinary skill in the art of
integrated circuit design can appreciate the extent of pos-
sible electronic design automation tools and applications
used in design process 504 without deviating from the scope
and spirit of the invention. The design structure of the
invention is not limited to any specific design flow.

Design process 3004 preferably translates an embodiment
of the invention as shown in FIGS. 1A, and 1B, along with
any additional integrated circuit design or data (if appli-
cable), into a second design structure 3020. Design structure
3020 resides on a storage medium in a data format used for
the exchange of layout data of integrated circuits, for
example, information stored in a GDSII (GDS2), GL1,
OASIS, or any other suitable format for storing such design
structures. Design structure 3020 may comprise information
such as, for example, test data files, design content files,
manufacturing data, layout parameters, wires, levels of

US 9,940,257 B2

21

metal, vias, shapes, data for routing through the manufac-
turing line, and any other data required by a semiconductor
manufacturer to produce an embodiment of the invention as
shown in FIGS. 1A, and 1B. Design structure 3020 may then
proceed to a stage 3022 where, for example, design structure
3020 proceeds to tape-out, is released to manufacturing, is
released to a mask house, is sent to another design house, is
sent back to the customer, and the like.

While the present invention has been described with
reference to the details of the embodiments of the invention
shown in the drawing, these details are not intended to limit
the scope of the invention as claimed in the appended
claims.

What is claimed is:

1. A data storage system comprising:

a controller comprising a hardware write cache engine
implementing storage adapter write cache management
for a data storage write cache comprising:

said data storage write cache including a plurality of
structures of Cache Lines (CLs), a hash table, and per
array of least recently used (LRU) queues;

said hardware write cache engine implementing storage
write cache hardware acceleration; and

said hardware write cache engine managing cache line
updates for purges from said data storage write cache
includes invoking a hardware purge engine, and per-
forming cache line purge processing, substantially
without using firmware said hardware write cache
engine chaining together hardware engines and per-
forming cache line updates for writes, reads, and
destages from said data storage write cache including a
destage search, non-volatile page allocates and non-
volatile page deallocates, substantially without using
firmware; and said hardware write cache engine man-
aging said plurality of structures of Cache Lines (CLs),
said hash table, and said per array of least recently used
(LRU) queues substantially without using firmware,
and providing substantially atomic update of a cache
directory and providing substantially atomic updates of
said plurality of structures of Cache Lines (CLs), said
hash table, and said per array of least recently used
(LRU) queues.

2. The data storage system as recited in claim 1 includes
said hardware write cache engine managing cache line
updates for purges from storage write cache on an Array 1D
or an Array Logical Block Address (LBA) basis.

3. The data storage system as recited in claim 1 includes
said hardware write cache engine managing cache line
updates for purges for an Array ID or an Array Logical Block
Address (LBA) range from said data storage write cache
includes said hardware write cache engine invoking a hard-
ware purge engine for said Array ID or an Array Logical
Block Address (LBA) range.

4. The data storage system as recited in claim 3 includes
said hardware write cache engine performing hardware
manipulation of CLs and updating cache line (CL) states for
said Array ID or an Array Logical Block Address (LBA)
range.

5. The data storage system as recited in claim 4 includes
said hardware purge engine identifying CLs with Overlay In
Progress (OIP) and Destage In Progress (DIP) off, and hash
valid on.

6. The data storage system as recited in claim 5 includes
for identified CLs, said hardware purge engine turning on
purge status, and turning on Destage In Progress (DIP),
removing from a least recently used queue, and put on a
Deallocate Page List.

20

25

30

40

45

55

22

7. The data storage system as recited in claim 4 includes
said hardware purge engine identifying CLs with Overlay In
Progress (OIP) and Destage In Progress (DIP) on, or hash
valid off.

8. The data storage system as recited in claim 7 includes
for said identified CLs, said hardware purge engine turning
on purge status.

9. A method for implementing storage adapter write cache
management in a data storage system comprising:

providing a controller comprising a hardware write cache

engine managing a storage write cache;
providing said data storage write cache including a plu-
rality of structures of Cache Lines (CLs), a hash table,
and per array of least recently used (LRU) queues;

providing said hardware write cache engine for imple-
menting storage write cache hardware acceleration; and

providing said hardware write cache engine for managing
cache line updates for purges from said data storage
write cache includes invoking a hardware purge engine,
and performing cache line purge processing, substan-
tially without using firmware said hardware write cache
engine chaining together hardware engines and per-
forming cache line updates for writes, reads, and
destages from said data storage write cache including a
destage search, non-volatile page allocates and non-
volatile page deallocates, substantially without using
firmware; and said hardware write cache engine man-
aging said plurality of structures of Cache Lines (CLs),
said hash table, and said per array of least recently used
(LRU) queues substantially without using firmware,
and providing substantially atomic update of a cache
directory and providing substantially atomic updates of
said plurality of structures of Cache Lines (CLs), said
hash table, and said per array of least recently used
(LRU) queues.

10. The method as recited in claim 9 includes providing
said hardware write cache engine managing cache line
updates for purges from said data storage write cache on an
Array 1D or an Array Logical Block Address (LBA) basis.

11. The method as recited in claim 9 includes providing
said hardware write cache engine managing cache line
updates for purges for an Array ID or an Array Logical Block
Address (LBA) range from storage write cache including
said hardware write cache engine invoking said hardware
purge engine for said Array ID or an Array Logical Block
Address (LBA) range.

12. The method as recited in claim 11 includes said
hardware write cache engine performing hardware manipu-
lation of Cache Lines (CLs) and updating cache line (CL)
states for said Array ID or an Array Logical Block Address
(LBA) range.

13. The method as recited in claim 11 includes providing
said hardware purge engine for identifying CLs with Over-
lay In Progress (OIP) and Destage In Progress (DIP) off, and
hash valid on, and for identified CLs, said hardware purge
engine turning on purge status, and turning on Destage In
Progress (DIP), removing from a least recently used queue,
and put on a Deallocate Page List.

14. The method as recited in claim 13, said hardware
purge engine performing purge, turning off DIP and deal-
locating nonvolatile (NV) buffers.

15. The method as recited in claim 11 includes providing
said hardware purge engine for identifying CLs with Over-
lay In Progress (OIP) and Destage In Progress (DIP) on, or

US 9,940,257 B2

23

hash valid off, and for identified CLs said hardware purge
engine turning on purge status.

#* #* #* #* #*

24

