CALF EXERCISE SYSTEM

Inventor: David Richter, Cameron Park, CA (US)

Correspondence Address:
JOHN P. O'BANION
O'BANION & RITCHLEY LLP
400 CAPITOL MALL SUITE 1550
SACRAMENTO, CA 95814 (US)

Appl. No.: 11/926,346
Filed: Oct. 29, 2007

Publication Classification
Int. Cl. A63B 23/04 (2006.01)
US. Cl. 482/142

ABSTRACT
A portable calf exercise device includes a base having a generally planar bottom surface configured to rest flat on the floor surface. The upper end of the base supports a plurality of elevated platform surfaces that culminate at a back panel and extend across the base to terminate at a front face. Each of the platform surfaces are configured to support purchase of either one of both of the sole of a portion of a person's foot. A person may step on to one or more of the elevated platform surfaces to perform exercises that subject the foot to plantar flexion, extension, as well as inversion and eversion.
CALF EXERCISE SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

[0003] Not Applicable

NOTICE OF MATERIAL SUBJECT TO COPYRIGHT PROTECTION

[0004] A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. §1.14.

BACKGROUND OF THE INVENTION

[0005] 1. Field of the Invention

[0006] This invention pertains generally to an exercise device, and more particularly to an exercise device for training and building lower leg muscles.

[0007] 2. Description of Related Art

[0008] The use of exercising equipment is well known in today's health-conscious world. When training (e.g., strength training, muscle building, etc.) a particular body part or muscle group, it is generally desirable to isolate a particular muscle or group of muscles to concentrate development on the target anatomy.

[0009] Generally, calf exercise devices fit into two distinct groups. A first group generally comprises calf extension/press machines (e.g., U.S. Pat. No. 5,762,590) that are seated or standing and use weights and/or cables to deliver resistance against the sole of a person’s foot when extended from a platform surface. A second group comprises a single step (e.g., U.S. Pat. No. 6,908,417) that is typically square or rectangular, having one raised platform or surface, and that allows a person to begin a series of step up and step down motions (aerobics) or raises (anaerobic) from the floor.

[0010] All of the above devices generally assume a simplified anatomy and motion of the foot and ankle (e.g., a single articular mode) that results in building/training of the calf muscles in a generic and non-isolated fashion. However, the foot and ankle anatomy and articulations are in actuality quite intricate, and slight variations of different articular modes of the ankle joints can result in large variations in the distributions of load to the muscles in the lower leg.

[0011] Therefore, an object of the present invention is to provide a calf exercise system that provides different platforms to vary the articular modes of the ankle and foot to isolate development and training of the calf/lower leg muscles.

BRIEF SUMMARY OF THE INVENTION

[0012] An aspect of the invention is an exercise apparatus having a base configured to lie flat on a floor surface, and a first elevated platform surface coupled to the base, wherein the first elevated platform surface is configured to slope at an angle with respect to the floor surface when the base is positioned on the floor surface. The apparatus further comprises a second elevated platform surface configured to slope at an angle different than the first platform surface, wherein the first and second elevated platform surfaces are configured to individually support at least a portion of the person's foot.

[0013] In one embodiment, the first and second platform surfaces terminate at a front face configured to allow clearance for the heel of the foot to hang over and under the platform surface on which the foot is disposed. Also, the first platform surface may be sloped to orient the person's foot in dorsiflexion when the person is standing upright.

[0014] The second platform surface may be parallel to the floor surface when the base is positioned on the floor. Alternatively, the second platform surface is sloped laterally in a direction perpendicular to the slope of the first platform surface. Under this configuration, the foot may be subjected to evasion or inversion when positioned on the second surface substantially perpendicular to the upper edge of the front face. In one mode, the second platform surface is adjacent to the first platform surface and slopes away from the first platform surface.

[0015] The apparatus may further comprise a third platform surface adjacent to the first platform surface and opposite the second platform surface. In one embodiment, the third platform surface is sloped away from the first platform surface at the same angle as the second platform surface.

[0016] The apparatus may further comprise a fourth platform surface laterally adjacent to the third platform surface, wherein the fourth platform surface is substantially parallel to the floor surface when the base is positioned on the floor.

[0017] In one embodiment, the apparatus includes notches in a bottom surface of the base, wherein the notches are configured to accommodate placement of one or more resistance bands.

[0018] Another aspect of the invention is a portable platform for performing calf exercises. The platform comprises a base having a lower surface configured to lie flat on a floor surface, and a first elevated platform surface coupled to the base. The first elevated platform surface configured to slope at an angle with respect to the lower surface of the base. In addition, the platform has a second elevated platform surface configured to slope at an angle different than the first platform surface, wherein the first and second elevated platform surfaces are configured to individually support at least a portion of the person's foot. The first and second platform surfaces terminate at a front face configured to allow clearance for the heel of the foot to hang over and under the platform surface on which the foot is disposed, and are laterally adjacent to each other across an upper edge of the front face.

[0019] In a preferred embodiment of the current aspect, the first platform surface slopes laterally along the upper edge of a front face. The second platform surface is sloped downward toward the front face to orient the person's foot in dorsiflexion when the person is standing upright. In this configu-
ration, the first platform surface slopes away from the second platform surface at a direction perpendicular to the direction of the slope of second platform surface. The foot is subjected to eversion or inversion when positioned on the first surface substantially perpendicular to the upper edge of the front face.

[0020] The current aspect may also include a third platform surface adjacent to the second platform surface and opposite the first platform surface. The third platform surface is sloped away from the second platform surface at the same angle as the first platform surface.

[0021] A fourth platform surface positioned laterally adjacent to the third platform surface, and a fifth platform surface positioned laterally adjacent to the first platform surface, so that the fourth and fifth platform surfaces are substantially parallel to the lower surface of the base.

[0022] In some embodiments, a rear panel is disposed on the opposite side of the first and second platform surfaces from the front face. The rear panel may have a cutout to form a handle for carrying the platform.

[0023] Another aspect is a training apparatus for performing calf exercises having a base having a lower surface configured to lie flat on a floor surface, a rear panel extending vertically upward from the base, and an upper elevated platform surface coupled to the base, wherein the upper elevated platform surface slopes downward from the rear panel at an angle with respect to the lower surface of the base. The training apparatus includes a pair of lateral inclined platform surfaces adjacent to the upper elevated platform surface and sloping downward at an angle from the first platform surface. The direction of the slope of the lateral inclined platform surfaces are substantially perpendicular to the direction of the slope of the upper platform surface. The upper and lateral elevated platform surfaces are configured individually to support at least a portion of the person’s foot. The upper and lateral platform surfaces terminate at a front face configured to allow clearance for the heel of the foot to hang over and under the platform surface on which the foot is disposed. The first and second platform surfaces are laterally adjacent to each other across an upper edge of the front face.

[0024] Ideally, the upper platform surface is configured to orient the person’s foot in dorsiflexion when the person is standing upright. The foot may be subjected to eversion or inversion when positioned on either lateral surface substantially perpendicular to the upper edge of the front face.

[0025] The present aspect may also include a pair of level platform surfaces disposed on either side of the lateral inclined platform surfaces, wherein the level platform surfaces are substantially perpendicular to the lower surface of the base.

[0026] Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

[0027] The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:

[0028] FIG. 1 is a side view of a human skeletal system making up the foot and ankle.

[0029] FIG. 2 is a posterior view depicting a portion of the muscles present in the lower leg.

[0030] FIG. 3 is an anterior view depicting a portion of the muscles present in the lower leg.

[0031] FIG. 4 is a schematic diagram of dorsiflexion and plantar flexion of a human ankle.

[0032] FIG. 5 is a schematic diagram of inversion and eversion of a human ankle.

[0033] FIG. 6 is a front view of the calf exercise platform of the present invention.

[0034] FIG. 7 is a side view of the platform of FIG. 6.

[0035] FIG. 8 is a perspective view of the platform of FIG. 6.

[0036] FIG. 9 is an illustration of a person positioned on a laterally sloped platform surface of the present invention.

[0037] FIG. 10 is an illustration of a person positioned on an upper sloped platform surface of the present invention.

[0038] FIG. 11 is an illustration of a person using a tension band in accord with the present invention.

[0039] FIG. 12 illustrates an alternative embodiment of the present invention having leg extensions.

DETAILED DESCRIPTION OF THE INVENTION

[0040] Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus generally shown in FIG. 6 through FIG. 12. It will be appreciated that the apparatus may vary as to configuration and as to details of the parts, and that the method may vary as to the specific steps and sequence, without departing from the basic concepts as disclosed herein.

[0041] FIGS. 1-5 illustrate various aspects of human anatomy that correlate to the function/development of the calf muscles.

[0042] FIG. 1 illustrates a skeletal diagram of bones making up the ankle and foot. The ankle joint 10 connects the tibia 12 and fibula 14 with the foot 18 at the talus 16. The foot 26 is composed of the five toes 20 (phalanges) and their connecting long bones 22 (metatarsals). The phalanges 20 are connected to the metatarsals 22 by five metatarsal phalangeal joints at the ball of the foot 24. The forefoot 26 bears half the body’s weight and balances pressure on the ball 24 of the foot 18.

[0043] The midfoot 28 comprises five irregularly shaped tarsal bones (cuneiform bones 34, navicular bones 30), forms the foot’s arch, and serves as a shock absorber. The bones of the midfoot 28 are connected to the forefoot and the hindfoot by muscles and the plantar fascia (arch ligament) (not shown).

[0044] The hindfoot 30 is composed of three joints and links the midfoot 28 to the ankle (talis). The top of the talus bone 36 is connected to the two long bones of the lower leg (tibia 12 and fibula 14), forming a hinge (upper ankle joint 10) that allows the foot 18 to move up and down. The heel bone 36 (calcaneus) is the largest bone in the foot. It joins the talus bone to form the lower (subtalar) ankle joint 38. The bottom of the heel bone is cushioned by a layer of fat and skin making up the sole of the foot.

[0045] FIGS. 2 and 3 illustrate some of the calf muscles of the lower leg in relation to the ankle and foot 18. Referring to the posterior view of the lower leg illustrated in FIG. 2, the gastrocnemius 42 is the most superficial muscle, and forms the greater part of the calf. It arises by two heads, which are connected to the condyles of the femur by strong, flat tendons. The medial head 44 is generally larger and runs along the inner and posterior side of the calf. The lateral head 44 runs along the outer posterior side of the calf. Both the lateral head 44 and medial head originate at the condyles of the femur; and
extend down the posterior side of the leg to unite at the midline of the muscle with the tendon of the soleus 48. The soleus 48 is a broad flat muscle situated immediately in front, or underneath, of the gastrocnemius 42. Referring now to FIG. 3 showing a frontal view of the lower leg, the tibialis anterior 52 runs from the upper tibia 12 and fibula 14 anteriorly and laterally toward the ankle.

[0046] When the body is in the erect position, the foot 18 is generally at right angles to the leg 40. FIG. 4 illustrates the articulation of the upper (talocrural) ankle joint 10, which generally acts as a simple hinge about axis 50. The axis 50 is a transverse axis that runs slightly oblique through the left and right ankles. The movements of the upper joint 10 are generally limited to dorsi flexion and planatar flexion. Dorsi flexion, or flexion, consists in the approximation of the dorsum or forefoot 26 of the foot upwards to the front of the leg 40. During planatar flexion, or extension, the heel 36 is drawn up and the toes 20 pointed downward. The range of movement varies in different individuals from about 50° to 90°. The transverse axis about which movement takes place is slightly oblique.

[0047] FIG. 5 illustrates the primary articulation mode of the lower, or subtalar ankle joint 38 of the left foot 18. The subtalar joint 38 rotates about axis 60 that runs antero-posteriorly and slightly transverse. The subtalar joint movements are commonly referred to as inversion and eversion. During inversion, or abduction, the bottom or sole 50 of the foot 18 is turned inward and upward (depicted on the right in FIG. 5). During eversion, also known as abduction, the sole 50 of the foot 18 is turned outwards and upwards (with the toes of the foot pointing outwards as shown in the left side of FIG. 5).

[0048] The movements of inversion and eversion of the foot, together with the minute changes in form by which it is applied to the ground or takes hold of an object in climbing, etc., may also be affected in the transverse tarsal joint, allowing motion between the talus 16 and calcaneus 306 behind and the navicular 32 and cuboid in front.

[0049] These articulations have a profound effect on the distribution of load affected on the muscles in the lower leg. Plantar flexion tends to engage the gastrocnemius 42, soleus 48, plantaris (not shown), tibialis posterior (not shown), and flexor digitorum/hallis longus (not shown). Whereas dorsiflexion tends to engage tibialis anterior 52, peronea tertius, extensor digitorum longus, and extensor hallucis proprius (not shown).

[0050] In addition, introduction of motion or inversion during plantar and dorsiflexion results in further isolation of muscles. For example, if the ankle is positioned in inversion, plantar and dorsiflexion isolates and concentrates on the medial head 46 of the gastrocnemius, and surrounding muscles. Conversely, eversion plantar and dorsiflexion isolates and concentrates on the lateral head of the 44 of the gastrocnemius, as well as the tibialis anterior 52 and other surrounding muscles.

[0051] Referring now to FIGS. 6-8, a preferred embodiment of the portable calf exercise device 100 of the present invention is illustrated. FIG. 6 illustrates a front view of the device 100 positioned on a floor or ground surface 130. As can be seen in FIG. 6, as well as side view FIG. 7 and perspective view FIG. 8, the device 100 includes a base 102 having a generally planar bottom surface 104 configured to rest flat on the floor surface 130. The upper end of the base 102 supports a plurality of elevated platform surfaces 106, 108, 110, 112, and 114. It is appreciated that base 102 may also comprise a support structure of a non-portable device (e.g. a sitting or standing calf lift machine—not shown).

[0052] Each of platform surfaces 106, 108, 110, 112, and 114 culminate at a back panel 116 (which is generally at a right angle to the base 102) and extend across the base to terminate at front panel 118.

[0053] Each of platform surfaces 106, 108, 110, 112, and 114 are configured to support purchase of either one or both of the sole 50 (either directly if barefoot or preferably through contact of the sole of a shoe) of a portion (e.g. forefoot 26 or ball 24) of a person's foot 18. As shown in FIGS. 9-11, the device 100 is configured such that a person may step on to one or more of the elevated platform surfaces 106, 108, 110, 112, and 114 with his or her toes 20 pointed toward the rear panel 116 and chest or frontal plane generally parallel to the rear panel 116.

[0054] Referring to FIG. 7, upper platform surface 106 is generally centrally located on the base 102. Upper platform surface 106 is inclined at a slope angle Θ, such that it gradually slopes downward from the rear panel 116 to the upper edge of front panel 118 (i.e. sloping downward anteriorly to posteriorly when standing on the platform surface 106). Thus, when a person is standing upright with one or both feet having purchase parallel to surface 106, the upper ankle joint 10 is subjected to dorsi flexion. Slope angle Θ is configured to provide a moderate amount of dorsi-flexion, while still allowing traction so that the person does not slide off of the platform while performing exercises. Slope angle Θ may be varied depending on the desired effect. Typically, slope angle Θ may range from approximately 5° to approximately 45°, and preferably between approximately 10° and approximately 20°. The example shown in FIG. 7 is approximately 15°.

[0055] FIG. 10 illustrates an exemplary use of the platform with the person's left foot 26 positioned on the upper surface 106 (with right foot elevated). In this configuration the hindfoot 30 hangs elevated over front face 118 to allow the heel to be further dropped (to increase dorsi flexion) and/or raise the heel 36 to create a nominal or plantar flexion articulation. The elevated upper edge of front face 118 is spaced at a distance to allow clearance for the heel of the person's foot to extend through a full range of motion without touching the floor surface 130.

[0056] It is also appreciated that both feet may have purchase on the upper surface 106 for balance, or to work both left and right legs at the same time. However, a single foot may be preferred to maximize the loading/and or resistance on the muscle or muscle-group worked.

[0057] Referring back to FIG. 6, a pair of laterally sloped platform surfaces 110 and 108 (transversely sloped in relation to the person's body when facing the rear panel 116) are positioned on opposing sides of the upper surface 106. Surfaces 110 and 108 slope downward from about the level of the lowest extent of upper surface 106 to meet up with level surfaces 112 and 114 respectively. Surfaces 110 and 108 are sloped at angle Φ with respect to the base lower surface 104. Slope angle Φ is illustrated at approximately 15° in FIG. 6. However, slope angle Φ may typically range from less than 5° to approximately 45°, and preferably between approximately 10° and approximately 30° and more preferably between approximately 15° and approximately 20°, depending on the desired effect on the person's anatomy.

[0058] FIG. 9 illustrates an exemplary use of the device 100 with the person's left forefoot 26 positioned on the laterally
sloped surface 110 (with right foot elevated or positioned on surface 108). In this configuration the hindfoot 30 hangs elevated over front face 118 to allow the heel to be further dropped (to increase dorsi flexion) and/or raise the heel 36 to create a nominal or planar flexion articulation. It is also appreciated that either surface 110 or 108 may be sized to accommodate both feet at the same time.

[0059] If a person’s left foot (or a portion thereof, e.g. forefoot 26) is positioned flat on laterally sloped surface 110, the ankle is subjected to inversion when the person is standing upright (see FIG. 5). Thus, when performing heel raises from either a nominal or dorsi-flexion state to a plantar flexion state (or from dorsi-flexion to nominal or any variation/increment in between), the person will concentrate training on the medial head 46 of the gastrocnemius.

[0060] Conversely, when the person positions their right foot flat on the laterally sloped surface 110 the ankle is subjected to eversion. Thus, heel raises in this configuration results in isolating training on the lateral head of the 44 of the gastrocnemius.

[0061] Correspondingly, the person may position either foot on the laterally sloped platform surface 108, and perform exercises in a similar, yet reversed, fashion (e.g. right foot would be place under eversion), and left foot under inversion). The person may also train with a wider stance so that his left foot is positioned on surface 110, and right foot on surface 108, to train both legs simultaneously under inversion.

[0062] At the far sides of the device, level surfaces 112 and 114 also provide a platform for training. Surfaces 112 and 114 are substantially parallel to the bottom surface 104, such that when one’s foot is positioned on either surface the ankle is in a nominal (neither under eversion or inversion) position. As shown in FIG. 6, level surfaces 112 and 114 are positioned a distance D from the floor such that the foot may travel through a full, or substantially full, range of dorsi flexion without contacting the ground (generally approximately 3.5” to approximately 4”).

[0063] Referring to FIGS. 9 and 10, one may use weights 150 to increase the resistive load on the muscles trained. In an alternative embodiment illustrated in FIG. 11, one or more tension ropes or bands 160 may be fed through slots 120 running down the bottom surface 104 of base 102 to provide additional training resistance.

[0064] The exercise device 100 of the present invention is configured to be portable, and thus is sized to be readily transported from location to location. Generally, the device has a height H of less than a foot, and width W of approximately three feet, with a depth of approximately a foot. The rear panel 116 also has a handle cutout 124 to aid in gripping the device 100 with one’s hand.

[0065] Exercise platform 100 may be constructed with a number of different materials, such as wood, be an injection molded polymer such as polyurethane or other resin. Platform surfaces 106 through 110 may be molded as a roughened surface, or may have an additional layer high-tack material to add grip to the surfaces.

[0066] FIG. 12 comprises an alternative embodiment of the calf exercise platform 200 of the present invention. Exercise platform 200 comprises a pair of leg extensions that extend from level surfaces 212 and 214 of base 102. This configuration adds additional stability to the platform, while still allowing level surfaces 212, 214 and inclined surfaces 206, 208, and 210 to terminate at front face 218, thereby facilitating clearance for various exercises.

[0067] Although the system of the present invention is detailed as a portable device in the embodiments shown above, it may also be used in other training devices. For example, it is anticipate that the platform of the present invention, e.g. any combination of two or more of surfaces 106, 108, 110, 112, and 114, be integrated into a weight-lifting machine (e.g. standing or sitting calf raise machine) to provide the same anatomical orientation while doing weight lifting exercises as the portable platform disclosed above.

[0068] Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for:”

1. An exercise apparatus, comprising:
 a base configured to lie flat on a floor surface;
 a first elevated platform surface coupled to the base;
 the first elevated platform surface having a slope at an angle with respect to the floor surface when the base is positioned on the floor surface; and
 a second elevated platform surface having a slope at an angle different from the first platform surface;
 wherein the first and second elevated platform surfaces are configured to individually support at least a portion of the person’s foot.

2. An apparatus as recited in claim 1, wherein the first and second platform surfaces terminate at a front face configured to allow clearance for the person’s heel to hang over and under the platform surfaces on which the foot is disposed.

3. An apparatus as recited in claim 2, wherein the first platform surface is sloped to orient the person’s foot in dorsi flexion when the person is standing upright.

4. An apparatus as recited in claim 3, wherein the second platform surface is parallel to the floor surface when the base is positioned on the floor.

5. An apparatus as recited in claim 3, wherein the second platform surface is sloped laterally in a direction substantially perpendicular to the direction of the slope of the first platform surface relative to the first platform surface.

6. An apparatus as recited in claim 5, wherein the foot is subjected to eversion without significant dorsi flexion when positioned on the second surface substantially perpendicular to the upper edge of the front face.
7. An apparatus as recited in claim 5, wherein the foot is subjected to inversion without significant dorsi flexion when positioned on the second platform substantially perpendicular to the upper edge of the front face.

8. An apparatus as recited in claim 5, wherein the second platform surface is adjacent to and below the first platform surface and slopes downwardly away from the first platform surface.

9. An apparatus as recited in claim 8, further comprising: a third platform surface; the third platform surface being adjacent to the first platform surface and opposite the second platform surface; wherein the third platform surface is sloped away from the first platform surface at the same angle as the second platform surface.

10. An apparatus as recited in claim 9, further comprising: a fourth platform surface; the fourth platform surface being laterally adjacent to the third platform surface; wherein the fourth platform surface is substantially parallel to the floor surface when the base is positioned on the floor.

11. A portable platform for performing calf exercises, comprising: a base having a lower surface configured to lie flat on a floor surface; a first elevated platform surface coupled to the base; the first elevated platform surface having a slope at an angle with respect to the lower surface of the base; and a second elevated platform surface having a slope at an angle different than the first platform surface; wherein the first and second elevated platform surfaces are configured to individually support at least a portion of the person's foot; wherein the first and second platform surfaces terminate at a front face configured to allow clearance for the heel of the foot to hang over and under the platform surface on which the foot is disposed; wherein the first and second platform surfaces are laterally adjacent to each other across an upper edge of the front face.

12. A platform as recited in claim 11, wherein the first platform surface slopes laterally along the upper edge of the front face.

13. A platform as recited in claim 12, wherein the second platform surface is sloped downwardly toward the front face to orient the person's foot in dorsi flexion when the person is standing upright.

14. A platform as recited 12, wherein the foot is subjected to eversion or inversion when positioned on the first platform surface substantially perpendicular to the upper edge of the front face.

15. A platform as recited in claim 13, wherein the first platform surface slopes away from and downward from the second platform surface at a direction perpendicular to the direction of the slope of second platform surface.

16. A platform as recited in claim 15, further comprising: a third platform surface; the third platform surface being adjacent to the second platform surface and opposite the first platform surface.

17. A platform as recited in claim 16, wherein the third platform surface is sloped away from the second platform surface at the same angle as the first platform surface.

18. A platform as recited in claim 16, further comprising: a fourth platform surface positioned laterally adjacent to the third platform surface; and a fifth platform surface positioned laterally adjacent to the first platform surface; wherein the fourth and fifth platform surfaces are substantially parallel to the lower surface of the base.

19. A platform as recited in claim 10, further comprising: a rear panel disposed on the opposite side of the first and second platform surfaces from the front face; the rear panel having a cutout to form a handle for carrying the platform.

20. A training apparatus for performing calf exercises; comprising: a base having a lower surface configured to lie flat on a floor surface; a rear panel extending vertically upward from the base; an upper elevated platform surface coupled to the base; the upper elevated platform surface sloping downward from the rear panel at an angle with respect to the lower surface of the base; and a pair of lateral inclined platform surfaces adjacent to the upper elevated platform surface and sloping downward at an angle from the first platform surface; wherein the direction of the slope of the lateral inclined platform surfaces are substantially perpendicular to the direction of the slope of the upper platform surface; wherein the upper and lateral elevated platform surfaces are configured to individually support at least a portion of the person's foot; wherein the upper and lateral platform surfaces terminate at a front face configured to allow clearance for the heel of the foot to hang over and under the platform surface on which the foot is disposed; wherein the first and second platform surfaces are laterally adjacent to each other across an upper edge of the front face.

21. A platform as recited in claim 20, wherein the upper platform surface is configured to orient the person's foot in dorsi flexion when the person is standing upright.

22. A platform as recited 20, wherein the foot is subjected to eversion when positioned on either lateral surface substantially perpendicular to the upper edge of the front face.

23. A platform as recited 20, wherein the foot is subjected to inversion when positioned on either lateral surface substantially perpendicular to the upper edge of the front face.

24. A platform as recited in claim 20, further comprising: a pair of level platform surfaces disposed on either side of the lateral inclined platform surfaces; wherein the level platform surfaces are substantially perpendicular to the lower surface of the base.

25. A platform as recited in claim 20, wherein the rear panel has a cutout to form a handle for carrying the platform.

* * * * *