

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2016/147053 A1

(43) International Publication Date
22 September 2016 (22.09.2016)(51) International Patent Classification:
A61K 31/551 (2006.01) A61P 37/02 (2006.01)
A61K 31/517 (2006.01) C07D 239/91 (2006.01)

(71) Applicant: RESVERLOGIX CORP. [CA/CA]; 300, 4820 Richard Road Sw, Calgary, AB, T3E 6L1 (CA).

(21) International Application Number:
PCT/IB2016/000443

(72) Inventors: WASIAK, Sylwia; 431 Whispering Water Trail, Calgary, AB, T3Z 3V1 (CA). KULIKOWSKI, Ewelina, B.; 31100 Swift Creek Terrace, Calgary, AB, T3Z 0B7 (CA). HALLIDAY, Christopher, R.A.; 403 138-18th Avenue SE, Calgary, AB, T2G 5P9 (CA). GILHAM, Dean; 249 Scenic View Close NW, Calgary, AB, T3L 1Y5 (CA).

(22) International Filing Date:
10 March 2016 (10.03.2016)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(25) Filing Language:
English(26) Publication Language:
English(30) Priority Data:
62/132,572 13 March 2015 (13.03.2015) US
62/264,768 8 December 2015 (08.12.2015) US

[Continued on next page]

(54) Title: COMPOSITIONS AND THERAPEUTIC METHODS FOR THE TREATMENT OF COMPLEMENT-ASSOCIATED DISEASES

(57) Abstract: The invention comprises methods of modulating the complement cascade in a mammal and for treating and/or preventing diseases and disorders associated with the complement pathway by administering a compound of Formula I or Formula II, such as, for example, 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one or a pharmaceutically acceptable salt thereof.

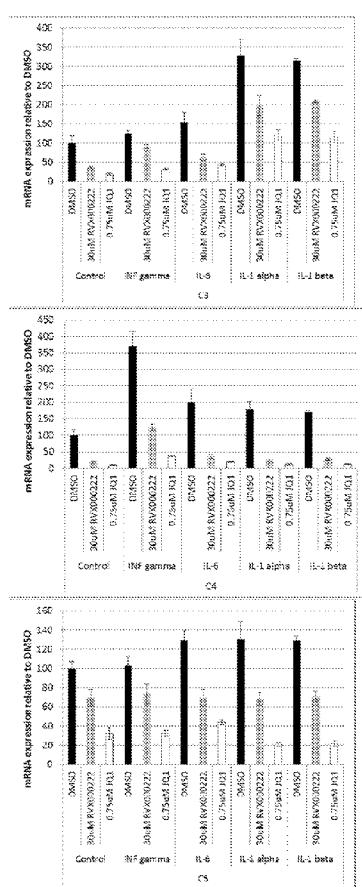


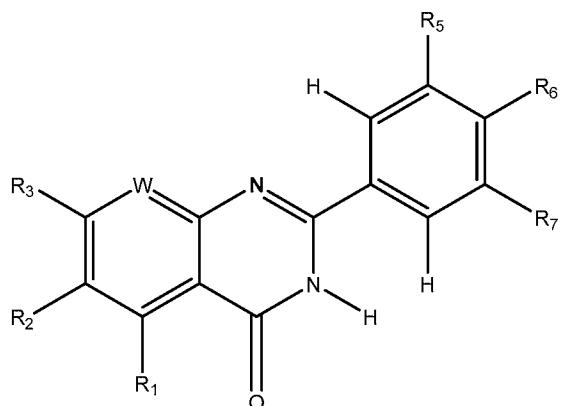
FIG. 1

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:


— with international search report (Art. 21(3))

**COMPOSITIONS AND THERAPEUTIC METHODS FOR THE TREATMENT OF
COMPLEMENT-ASSOCIATED DISEASES**

[0001] This application claims priority from U.S. Provisional Patent Application No. 62/132,572, filed March 13, 2015, and U.S. Provisional Patent Application No. 62/264,768, filed December 8, 2015, which are hereby incorporated by reference in their entirety.

[0002] The present disclosure relates to methods of treating or preventing complement-associated diseases or disorders by administering to a subject in need thereof, a compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof. Therapeutic strategies for modulating the complement system to treat or prevent diseases or disorders associated with aberrant complement system activity are disclosed.

[0003] Compounds of Formula I and methods of making those compounds have previously been described in U.S. Patent 8,053,440, incorporated herein by reference. Compounds of Formula I include:

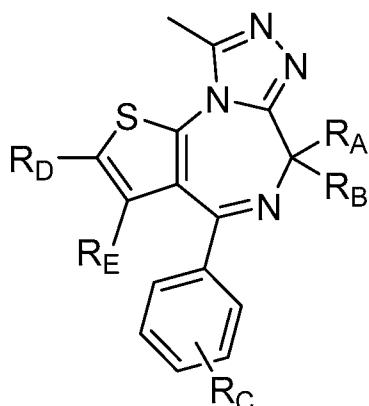
Formula I

and stereoisomers, tautomers, pharmaceutically acceptable salts, or hydrates thereof,

wherein:

R₁ and R₃ are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;

R₂ is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;


R_5 and R_7 are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;

R_6 is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy; and

W is CH or N.

In some embodiments, when R_6 is selected from alkoxy, it is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocycl, hydroxyl, methoxy, and sulfonamide.

[0004] Compounds of Formula II and methods of making those compounds have previously been described in US Patent No. 8,569,288 and PCT Publication No. WO2010/049466, incorporated herein by reference. Compounds of Formula II include:

Formula II

and stereoisomers, tautomers, pharmaceutically acceptable salts, or hydrates thereof, wherein:

R_A and R_B are independently selected from hydrogen, methyl, $-(CH_2)_nR_F$, $-(CH_2)_nOR_F$, and $-CH_2C(O)OR_G$;

R_C is selected from hydrogen, para-halogen, and $-OCH_2O-$ or $-OCH_2CH_2O-$ connected to the ortho and meta positions or connected to the meta and para positions of the phenyl ring;

R_D and R_E are independently selected from hydrogen and methyl;

R_F is selected from methyl, ethyl, and $-CH_2CH_2OCH_3$;

R_G is selected from methyl, Ethyl, n-propyl, isopropyl, n-butyl, and tert-butyl; and

n is selected from 1,2,3, and 4.

[0005] The main function of the human immune system is host defense. This system distinguishes locally-produced entities, including tissues, cells and molecules, from foreign entities, referred to as pathogens, and eliminates these potentially harmful molecules and cells from the body. Additionally, the immune system has the ability to recognize and remove abnormal cells that are derived from host tissues. Molecules that are recognized as foreign entities by the immune system are termed antigens. The immune system is composed of two responses, the innate response and the adaptive response. Several molecular components, such as, complement proteins, cytokines and acute phase proteins, act in both the innate and adaptive immune responses.

[0006] Adaptive immunity is known as the antigen-specific immune response. It functions through a sequence of recognition and processing events that result in either an antibody or cell-mediated response. Two main classes of lymphocytes (white blood cells), T cells and B cells, are involved in adaptive immunity. The recognition of foreign antigens by a vast array of antigen-specific receptors on these lymphocytes enables specific identification and elimination of pathogens. This process may take several days or weeks to develop, but the adaptive immune response employs immunological memory to incur a stronger, more rapid response upon subsequent exposure to the specific antigen.

[0007] In contrast, innate immunity refers to the non-specific immune response that is activated immediately following the introduction of an entity recognized as foreign into the body. The innate immune response is not adaptable and does not change over the course of an individual's lifetime. The components of the innate immune response, including monocytes, neutrophils, eosinophils, basophils and natural killer cells, circulate in the blood and are readily activated and localized at the site of an immune breach.

[0008] The complement system contains a network of tightly regulated proteins when taken together are a key part of the innate immune response. The complement system represents one of the major effector mechanisms of the innate immune response, and comprises more than 30 blood soluble or membrane-associated proteins. The concentration of these proteins in the plasma totals more

than 3 g per liter. Walport (2001) "Complement First of two parts." *N Engl J Med* **344**(14): 1058-1066.

[0009] Most complement proteins circulate as pro-proteins and the complement system remains inactive until triggered. The array of complement proteins are organized in a hierarchy of proteolytic cascades that are triggered by the recognition of antigen-antibody complex or simply an antigen on the surface of a pathogen. Antibodies are serum proteins that are produced by B cells in the adaptive immune response to enable more rapid recognition of known antigens. Therefore, if a like-antigen is reintroduced, the circulating antibodies are readily available to bind the antigen and create the antigen-antibody complex, which is subsequently recognized by T cells or the complement system.

[0010] The activation of the complement system involves zymogenic proteins (inactive enzymatic protein) that are subsequently cleaved and activated by a series of proteases. Complement activation is known to occur through three principal pathways: classical, alternative and lectin. Though various factors can initiate complement activation, the three main pathways converge at the cleavage of C3, the most abundant complement protein in the blood. Dunkelberger and Song (2010) "Complement and its role in innate and adaptive immune responses" *Cell Res* **20**(1): 34-50.

[0011] The initiation of the classical pathway is triggered via the recognition of antigen-antibody (immune) complexes on the surface of foreign cells by complement protein C1q in complex with C1r and C1s (the C1 complex). Sarma and Ward (2011) "The complement system" *Cell Tissue Res* **343**(1): 227-235. The interaction of the C1 complex with the immune complex results in the autocatalytic activation of the two C1-associated proteases, C1r and C1s. Other activation stimuli of the C1 complex include lipopolysaccharides, polyanions, RNA and DNA from foreign cells. Activated C1s cleaves C2 and C4 into larger (C4b and C2a) and smaller (C4a and C2b) fragments. Dunkelberger and Song (2010). The C4b and C2a fragments subsequently bind to the cell membrane of the foreign cell being attacked by the immune system. The resultant C4bC2a complex functions as a C3 convertase. Amplification of the proteolytic complement cascade occurs on the cell membrane through the sequential cleavage of

complement proteins including C3, C5, and the recruitment of new factors, until a cell surface complex containing C5b, C6, C7, and C8 is formed. The additional accumulation of multiple C9 proteins to the C5b through C8 complex generates the membrane attack complex (MAC), which leads to the formation of a pore that spans the membrane of the foreign cell, resulting in cell lysis.

[0012] The lectin-induced complement pathway functions in analogous, yet immune complex-independent fashion, compared to the classical pathway. Dunkelberger and Song (2010). Its activation occurs via by the binding of mannose-binding lectin (MBL) or ficolin to carbohydrates on the surface of foreign cells. Sarma and Ward (2011). MBL is an acute phase serum protein and circulates in the serum in complex with the MBL-associated proteases (MASPs) -1, -2 and -3. Dunkelberger and Song (2010). The binding of MBL to the surface of the foreign cell, activates MASP1 and MASP2 which subsequently trigger the cleavage of C2 and C4 resulting in the creation of C4b and C2a fragments, and the formation of the C3 convertase, C4bC2a. MASP1 and MASP2 are structurally similar and act in a comparable manner to the C1 protease in the classical complement pathway. The lectin-induced pathway is then amplified in a similar manner as the classical pathway. The remaining complement proteins (C3 through C9) are recruited and activated, resulting in the assembly of the MAC that lyses the foreign cell.

[0013] The alternative pathway (AP) does not require an antigen-antibody complex to be triggered. In addition to the complement proteins (C3 through C9) that function readily in the classical and lectin-induced pathways, circulating serum proteins referred to as factors (factor B, factor D, factor H, factor I) also function in the activation and regulation of the AP.

[0014] The AP initiates with the low-level spontaneous conversion of C3 to an active protease, C3b. Sarma and Ward (2011). Circulating factor B is recruited and cleaved by circulating factor D to create the active protease C3 convertase. This enzyme cleaves C3 to form C3b, the AP specific C3 convertase, which is stabilized by the presence of plasma properdin, a protein released by activated neutrophils. The C3b functions in an analogous fashion to the classical and lectin-induced C3 convertase, C4bC2a. Dunkelberger and Song (2010). The alternative pathway is then

amplified in a similar manner as the classical pathway, recruiting additional complement proteins (C6, C7, C8 and C9), resulting in the formation of the membrane attack complex and cell lysis. In the absence of an antibody targeted response, the constant low level of C3b formation ensures that C3b can bind to invading cells, triggering cell lysis. Factor H and factor I act as regulators of the alternative pathway via their ability to inactivate C3b. The recruitment of plasma properdin protects the C3b when it is membrane bound, and thus the alternative pathway is only active on the surface of foreign cells and not continuously active in plasma.

[0015] Additional proteases released by neutrophils and macrophages, including kallikrein, plasmin and Factor XIIa, produce complement activation products. For example, kallikrein can replace factor D in the AP and cleaves factor B. DiScipio (1982) "The activation of the alternative pathway C3 convertase by human plasma kallikrein" *Immunology* **45**(3): 587-595. These pathways are referred to as C3-independent pathways.

[0016] The complement and coagulation systems are both proteolytic cascades. The elements of these cascades have multiple structurally common characteristics. Markiewski et al. (2007) "Complement and coagulation: strangers or partners in crime?" *Trends Immunol* **28**(4): 184-192. Activation of the complement system is induced by the same stimuli as inflammation and in general, these responses are associated with an increase in blood clotting. Esmon (2004) "The impact of the inflammatory response on coagulation" *Thromb Res* **114**(5-6): 321-327. Injuries to the vasculature result in the activation of blood coagulation and are associated with an increased risk of infection, and thus a subsequent inflammatory response is triggered. Keel and Trentz (2005) "Pathophysiology of polytrauma" *Injury* **36**(6): 691-709. Therefore, the activation of the complement and coagulation cascades are triggered concurrently. Markiewski et al. (2007). Complement proteins including C5a and MASP_s, are known to amplify the coagulation cascade and inhibit fibrinolysis (the breakdown of polymerized fibrin, the main protein component of a blood clot) through the induced expression of tissue factor and plasminogen-activator inhibitor 1, and the formation of thrombin (the active form of prothrombin that functions by facilitating the conversion of fibrinogen to fibrin) from prothrombin, respectively. Ricklin et al.

(2010) "Complement: a key system for immune surveillance and homeostasis" *Nat Immunol* **11**(9): 785-797.

[0017] Complement proteins C3 and C5 are large proteins that are proteolytically cleaved into a- and b- fragments. Ogata et al. (1989) "Sequence of the gene for murine complement component C4" *J Biol Chem* **264**(28): 16565-16572. Several mechanisms exists which function to regulate complement activity. Plasma carboxypeptidases cleave both C3a and C5a to significantly reduce their biological activity, proteases factors I and H function in the cleavage of C3b and C4b, and C1 inhibitor inactivates the C1 receptor and MASP2. Sarma and Ward (2011).

[0018] The activity of complement in terms of initiating immune responses makes it a target for immune evasion and a contributor to many disease states. Ricklin and Lambris (2007) "Complement-targeted therapeutics" *Nat Biotechnol* **25**(11): 1265-1275. Excessive complement activity is associated with several inflammatory, autoimmune, neurodegenerative and infectious diseases. Ricklin and Lambris (2007). The involvement of complement in the pathologies of such diseases may be a result of either the inappropriate initiation of the complement cascade or deficiencies in specific factors or regulators of the various pathways. Ricklin and Lambris (2007).

[0019] Age-related macular degeneration (AMD) has recently emerged as being strongly linked to the complement system as complement deposits were identified in sub-retinal lipoprotein deposits. Anderson et al. (2010) "The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis revisited" *Prog Retin Eye Res* **29**(2): 95-112. Genome wide association studies (GWAS) showed that polymorphisms in the factor H gene were major risk factors of AMD. Klein et al. (2005) "Complement factor H polymorphism in age-related macular degeneration" *Science* **308**(5720): 385-389. Genetically determined protein dysfunction of factor H can lead to uncontrolled activation and/or regulation of the alternative complement pathway. Gehrs et al. (2010) "Complement, age-related macular degeneration and a vision of the future" *Arch Ophthalmol* **128**(3): 349-358. In addition, genetic variants of the C3 and Factor B genes, whose products play a role in the activation and regulation of the alternative complement pathway within the sub-retinal tissue have been identified. Gehrs et al. (2010). The exact pathogenesis of

AMD is not yet fully understood, however, a cycle of tissue damage, accumulation of cellular debris, chronic activation of complement and inflammation appears to be the main contributor to the disease state. Anderson et al. (2010). Hereditary angioedema (HAE) is caused by a deficiency in functional C1 esterase inhibitor (C1INH), a complement protein that prevents spontaneous activation of the complement system. Deficiency in functional C1INH results in overproduction of bradykinin and unregulated C4 and C2 cleavage, which causes auto-activation of the complement system. Recombinant human C1INH has been shown to be effective in improving symptoms of repeat HAE attacks (Li et al. 2015).

[0020] Allergic asthma is a chronic inflammatory disease which is associated with the activation of complement. Zhang and Kohl (2010) "A complex role for complement in allergic asthma" *Expert Rev Clin Immunol* **6**(2): 269-277. In animal models of the disease state, inhibition of complement activation via the *Crry* gene (a known mouse membrane complement inhibitor), targeting C3 and C5, decreased the allergic asthma phenotype. Walters et al. (2002) "Complement factor 3 mediates particulate matter-induced airway hyperresponsiveness" *Am J Respir Cell Mol Biol* **27**(4): 413-418; Peng et al. (2005) "Role of C5 in the development of airway inflammation, airway hyperresponsiveness, and ongoing airway response" *J Clin Invest* **115**(6): 1590-1600. Evidence suggests a strong association between complement activation and the pathogenesis of allergic asthma.

[0021] There is strong evidence that both the classical and the alternative pathways of complement are pathologically activated during rheumatoid arthritis (RA) as well as in animal models for RA. Okroj et al. (2007) "Rheumatoid arthritis and the complement system" *Ann Med* **39**(7): 517-530. The genetic inactivation of C3, C5 or Factor B in the DBA/1J (Dilute Brown Non-Agouti) mouse (RA mouse model) showed that the mice developed resistance to collagen-induced arthritis. Wang et al. (2000) "A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis" *J Immunol* **164**(8): 4340-4347. In addition, C3 knockout mice as well as Factor B knockout mice were highly resistant to the development of arthritis (collagen-induced arthritis in the mouse). Hietala et al. (2002) "Complement deficiency ameliorates collagen-induced arthritis in mice" *J Immunol*

169(1): 454-459. Evidence suggests a strong association between complement activation and the pathogenesis of RA.

[0022] Deficiencies and polymorphisms of components of the alternative pathway, including Factor H, C3, Factor B, and Factor I, may result in the induction of excessive complement activation leading to two severe kidney diseases. Noris and Remuzzi (2009) "Atypical hemolytic-uremic syndrome" *N Engl J Med* **361**(17): 1676-1687. Both atypical hemolytic uremic syndrome (aHUS) and membranoproliferative glomerulonephritis result from the inability of the complement system to neutralize or stabilize the C3 convertase. Ricklin et al. (2010). These two diseases can lead to hemolytic anemia, thrombocytopenia and acute renal failure. Sarma and Ward (2011).

[0023] IgA nephropathy (IgAN) is characterized by the mesangial accumulation of polymeric IgA1 and C3 with variable IgG and/or IgM co-deposits. Previous studies have shown that complement proteins are important for initiation and progression of IgAN in animal models and human diseases. Suzuki et al. (2014) "Development of animal models of human IgA nephropathy" *Drug Discov Today Dis Models* **11**: 5-11. Thus, modulating the complement cascade and its components may prevent or treat IgAN.

[0024] There is evidence that complement factor H related protein 5 (CFHR5) protects from complement dysregulation. CFHR5 nephropathy is a type of C3 glomerulopathy with autosomal dominant inheritance and is associated with a single genetic abnormality, causing an internal duplication in the *CFHR5* gene. The mutant CFHR5 protein binds to membrane-associated C3b less effectively than the wild-type protein, causing dysregulation of the complement system. Skerka et al. (2013) "Complement factor H related proteins (CFHRs)" *Mol Immunol* **56**: 170-180.

[0025] Complement factor H related protein 3 (CFHR3) also has complement regulatory activity as it inhibits C3-invertase. In a previous study, a hybrid *CFHR3-1* gene was shown to cause familial C3 glomerulopathy. The authors suggested that this genetic mutation increased expression of both CFHR5 and CFHR3 and interfered with complement processing, leading to C3 accumulation. Malik et al. (2012) "A hybrid CFHR3-1 gene causes familial C3 glomerulopathy" *J Am Soc Nephrol* **23**(7): 1155-1160.

[0026] C3 glomerulonephritis (C3GN) is a key example of a dysregulated alternative and terminal complement pathway. C3GN, characterized by C3 deposition in the absence of local immunoglobulin deposits, is caused by disease-causing mutations in alternative pathway inhibitors as well as autoantibodies leading to the blockage of activation of alternative pathway proteins. Heeringa and Cohen (2012) "Kidney diseases caused by complement dysregulation: acquired, inherited, and still more to come" *Clin Dev Immunol* 1-6.

[0027] CD59, the inhibitory membrane attack complex protein, and DAF, the complement decay-accelerating factor, are important in the inhibition of the MAC and function by dissociating C3 and C5 convertase, respectively. Sarma and Ward (2011). These regulators are membrane-bound via a glycophasphatidylinositol (GPI) anchor. A genetic mutation resulting in decreased expression of the GPI containing proteins leads to paroxysmal nocturnal hemoglobinuria (PNH), which results in complement-mediated lysis of red blood cells. Liebman and Feinstein (2003) "Thrombosis in patients with paroxysmal nocturnal hemoglobinuria is associated with markedly elevated plasma levels of leukocyte-derived tissue factor" *Thromb Res* 111(4-5): 235-238. A direct link exists between the excessive complement activation, due to the inability to inhibit the MAC and the clinical manifestation of PNH.

[0028] Complement regulatory protein CD59 plays an important role in the complement cascade by preventing C9 from polymerizing and forming the complement membrane attack complex. Thus, CD59 deficiency can result in increased complement sensitivity and dysregulation of the complement system. A previous study using the complement lysis sensitivity (CLS) test found that the erythrocytes from a patient with inherited complete deficiency of CD59 were about 8 times more sensitive to complement than normal erythrocytes, demonstrating the link between CD59 deficiency and complement-mediated hemolysis. Shuchishima et al. (1999) "Complement sensitivity of erythrocytes in a patient with inherited complete deficiency of CD59 or with the Inab phenotype" *Brit J Haematol* 104: 303-306. Therefore, modulating the complement cascade and its components may ameliorate one or more symptoms suffered by subjects with CD59 deficiency.

[0029] Alzheimer's disease (AD) has been shown to be associated with persistent complement activation as both C1q and C3 recognize amyloid fibrils as foreign entities and induce continuous complement activation. Ricklin et al. (2010). The administration of a C5aR (the cell-surface receptor of C5a) antagonist to two mouse models of AD resulted in the reduction of amyloid deposits, an AD pathological hallmark, as well as improvements of memory performance. Fonseca et al. (2009) "Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease" *J Immunol* **183**(2): 1375-1383. Evidence suggests a strong association between complement activation and the pathogenesis of AD.

[0030] The restoration of blood flow to damaged tissue following an ischemic event can induce an inflammatory response known as ischemia-reperfusion injury. Yellon and Hausenloy (2007) "Myocardial reperfusion injury" *N Engl J Med* **357**(11): 1121-1135. Evidence suggests that complement-mediated tissue damage can occur as a result of this inflammatory response. Diepenhorst et al. (2009) "Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies" *Ann Surg* **249**(6): 889-899. The inhibition of complement via the *Crry* gene, anti-C5 antibodies and Factor B antagonists in both rat and mouse models has been shown to be tissue protective. Diepenhorst et al. (2009). In addition, the genetic inactivation of C3 as well as C4 in mice has been shown to incur protective effects from local and remote injury in various ischemia reperfusion models of various organs. Diepenhorst et al. (2009). Evidence suggests a role of complement activation in ischemia reperfusion injury.

[0031] An association between serum C3 levels and the risk of myocardial infarction has been previously elucidated. During a 4-year follow-up study of individuals who had not previously suffered an ischemic event (including myocardial infarction, angina pectoris, stroke, transient ischemic attack or intermittent claudication), C3 levels were found to be independently associated with the occurrence of ischemic events. Muscari et al. (1995) "Association of serum C3 levels with the risk of myocardial infarction." *Am J Med* **98**(4): 357-364. Therefore, complement C3 is a predictor of future ischemic events. In addition, complement C3

and C4 levels have been shown to be higher in patients with severe angiographically assessed atherosclerosis who had previously suffered ischemic events. Muscariet al. (1988) "Association of serum IgA and C4 with severe atherosclerosis" *Atherosclerosis* **74**(1-2): 179-186. Atheroma development may be associated with the chronic activation of the complement system, since the occurrence of complement activation has been well documented in human atherosclerotic lesions. Seifert and Kazatchkine (1988) "The complement system in atherosclerosis" *Atherosclerosis* **73**(2-3): 91-104. Therefore, complement system may play a role in coronary atherosclerosis and/or thrombosis.

[0032] Accordingly, there have been various attempts to inhibit or modulate the complement cascade and its components, which are believed to be associated with the pathogenic mechanisms of these various diseases and conditions. Various therapeutic formulations have been used for suppressing the complement system in the art, but such medicines increase the susceptibility to infections.

[0033] Anti-C5 antibodies have been shown to be effective in treating several diseases and disorders. For example, anti-C5 antibodies have been shown to reduce the clinical symptoms of PNH including blood transfusions, fatigue and abdominal pain. Ricklin and Lambris (2007). Anti-C5 antibodies have undergone preclinical and clinical testing for additional diseases including psoriasis, rheumatoid arthritis, SLE, and transplant rejection. Ricklin and Lambris (2007).

[0034] Cold agglutinin disease (CAD) involves immunoglobulin M (IgM)-mediated hemagglutination and robust complement activation. One study showed long-term efficacy in treating a patient with CAD with the complement inhibitor eculizumab, a humanized anti-C5 monoclonal antibody that blocks C5b-9 formation, the terminal event in the complement cascade. Roth et al. (2009) "Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease" *Blood* **113**(16): 3885-3886.

[0035] Compstatin, a small molecule inhibitor of the cleavage of C3 has been shown to be effective in preventing complement activation and associated inflammatory responses both in vivo and in vitro. Holland et al. (2004) "Synthetic small-molecule complement inhibitors" *Curr Opin Investig Drugs* **5**(11): 1164-1173. For

example, compstatin reduced hemolysis by 50% in an erythrocyte lysis animal model of the disease and prolonged graft survival in a porcine-to-human kidney perfusion animal model of the disease. Fiane et al. (1999) "Compstatin, a peptide inhibitor of C3, prolongs survival of ex vivo perfused pig xenografts" *Xenotransplantation* **6**(1): 52-65.

[0036] Other potential targets for complement targeted therapeutics include protease inhibitors, small molecule complement regulators, therapeutic antibodies and complement protein inhibitors. Ricklin and Lambris (2013) "Progress and Trends in Complement Therapeutics" *Adv Exp Med Biol* **735**: 1-22.

[0037] Given the strong involvement of complement in various inflammatory, immune and degenerative diseases, the potential vast array of targets for modulation, and the cascade organization allowing for multiple points of intervention, complement is an attractive target for therapeutic intervention. Ricklin and Lambris (2013). Current therapies are only approved for orphan indications including PNH, aHUS and hereditary angioedema, and therefore the potential for complement targeted therapies in more prevalent disease states exists. Ricklin and Lambris (2013).

[0038] The compounds disclosed in US 8,053,440 have been shown to possess the ability to increase expression of apolipoprotein A-I (ApoA-I) and may be used as therapeutics for cardiovascular disease and cholesterol- or lipid-related disorders. Many of these same compounds have been described as possessing IL-6 and VCAM-1 inhibitory activity and may be used to treat or prevent inflammatory and autoimmune diseases and cancers. See WO2010/123975.

[0039] Surprisingly, the compounds of Formula I and Formula II also have the ability to modulate complement-associated diseases. Thus, one aspect of the invention provides methods of modulating the complement cascade in a mammal by administering one or more compounds of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof. The invention also provides methods of treating or preventing complement-associated diseases by administering one or more compounds of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

[0040] In some embodiments, the complement-associated disease is selected from atherosclerosis, membranous glomerulonephritis, asthma, organ transplantation

rejection, thrombosis, deep vein thrombosis, disseminated venous thromboembolism, disseminated intravascular coagulation, and chronic obstructive pulmonary disease (COPD). In certain embodiments, the complement-associated disease is selected from paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms, and may be treated or prevented by administration of one or more compounds of Formula I or Formula II. In yet other embodiments, the complement-associated disease is selected from familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

BRIEF DESCRIPTION OF THE FIGURES

[0041] FIG. 1 demonstrates that RVX000222 reduces expression of complement component 3, 4 and 5 at the mRNA level in Huh-7 cells treated simultaneously with cytokines that induce complement expression during inflammation. mRNA level was determined by TaqMan real-time PCR and is normalized to the level of cyclophilin mRNA. Data is the mean of triplicate samples.

[0042] FIG. 2 demonstrates that RVX000222 reduces expression of complement component 3, 4 and 5 at the mRNA level in HepG2 cells treated simultaneously with cytokines that induce complement expression during inflammation. mRNA level was determined by TaqMan real-time PCR and is normalized to the level of cyclophilin mRNA. Data is the mean of triplicate samples.

[0043] FIG. 3 RVX000222 reduces expression of complement component 3, 4 and 5 at the mRNA level in Huh-7 cells pre-treated with cytokines that induce complement expression during inflammation. mRNA level was determined by TaqMan real-time PCR and is normalized to the level of cyclophilin mRNA. Data is the mean of triplicate samples.

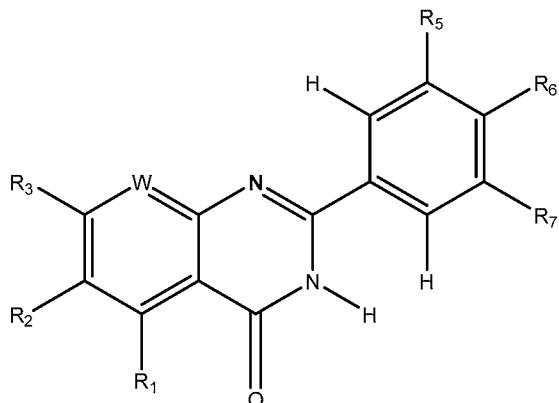
[0044] FIG. 4 RVX000222 reduces expression of complement component 3, 4 and 5 at the mRNA level in HepG2 cells pre-treated with cytokines that induce complement expression during inflammation. mRNA level was determined by TaqMan real-time PCR and is normalized to the level of cyclophilin mRNA. Data is the mean of triplicate samples.

[0045] FIG. 5 demonstrates that 30uM RVX000222 reduces secretion of C3, C4, and C5 proteins by Huh-7 cells treated simultaneously with interleukin 6 (IL-6). IL-6 induces complement expression during inflammation. Protein levels were quantitated by ELISA. Data is the mean of duplicate samples.

[0046] FIG. 6: demonstrated that 30uM RVX000222 reduces secretion of C3, C4, C5 and C9 proteins by primary human hepatocytes treated simultaneously with interleukin 6 (IL-6). IL-6 induces complement expression during inflammation. Protein levels were quantitated by ELISA. Data is the mean of duplicate samples.

[0047] FIG. 7A: RVX000222 reduces complement activity in clinical samples as measured by AH50 assay. FIG. 7B: RVX000222 reduces complement activity in clinical samples as measured by CH50 assay.

DESCRIPTION OF EMBODIMENTS


[0048] In certain embodiments, the method for modulating the complement system in a subject in need thereof comprises administering a therapeutically effective amount of at least one compound of Formula I or Formula II as described herein or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

[0049] In certain embodiments, the method for treating complement-associated diseases or disorders in a subject in need thereof comprises administering a therapeutically effective amount of at least one compound of Formula I or Formula II as described herein or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

Definitions

[0050] As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise. The following abbreviations and terms have the indicated meanings throughout:

[0051] The term “compound of Formula I” refers to compounds having the general structure:

Formula I

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof,

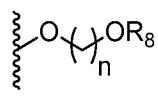
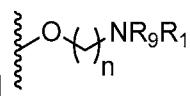
wherein:

R₁ and R₃ are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;

R₂ is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R₅ and R₇ are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;

R₆ is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and



W is CH or N.

[0052] In some embodiments, W is CH in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, and R₁, R₂, R₃, R₅, R₆, and R₇, are as defined in paragraph [0051].

[0053] In some embodiments, R₆ in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is selected from alkoxy optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy,

and sulfonamide, and R₁, R₂, R₃, R₅, R₇, and W are as defined in any of paragraphs [0051]-[0052].

[0054] In some embodiments, R₆ in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is

selected from hydrogen, methoxy, , and wherein

n is 1, 2, or 3;

R₈ is selected from hydrogen or C₁-C₆ alkyl substituted with one or more groups selected from methyl, phenyl, and pyridinyl;

R₉ and R₁₀ are independently selected from unsubstituted C₁-C₆ alkyl, wherein R₉ and R₁₀ may be joined together with N to form a 3- to 12-membered ring; and

R₁, R₂, R₃, R₅, R₇, and W are as defined in any of paragraphs [0051]-[0052].

[0055] In some embodiments, R₆ in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is selected from 2-(hydroxy)ethoxy, 2-(pyrrolidin-1-yl)ethoxy, 4-isopropylpiperazin-1-yl, and 2-(isopropylamino)ethoxy, and R₁, R₂, R₃, R₅, R₇, and W are as defined in any of paragraphs [0051]-[0052].

[0056] In some embodiments, R₆ in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is 2-(hydroxy)ethoxy, and R₁, R₂, R₃, R₅, R₇, and W are as defined in any of paragraphs [0051]-[0052].

[0057] In some embodiments, R₁ and R₃ in the compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, are both methoxy, R₂, R₅, R₆, R₇, R₈, R₉, R₁₀, and W are as defined in any of paragraphs [0051]-[0056].

[0058] In some embodiments, the compound of Formula I is selected from: 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

5,7-dimethoxy-2-{4-[4-(propan-2-yl)piperazin-1-yl]phenyl}-3,4-dihydroquinazolin-4-one ;

5,7-dimethoxy-2-{3-methoxy-5-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-3,4-dihydroquinazolin-4-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3H,4H-pyrido[2,3-d] pyrimidin-4-one;

2-{4-[2-(3,3-difluoropyrrolidin-1-yl)ethoxy]-3,5-dimethylphenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}-2-methylpropanamide;

5,7-dimethoxy-2-[4-(piperazin-1-yl)phenyl]-3,4-dihydroquinazolin-4-one;

2-(4-hydroxy-3,5-dimethylphenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}acetamide;

methyl N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}carbamate;

2-[4-(2,3-dihydroxypropoxy)-3,5-dimethylphenyl]-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

N-(2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methylbenzamide;

2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl methylcarbamate;

2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl propylcarbamate;

N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)methanesulfonamide (RVX002093);

4-chloro-N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)benzenesulfonamide;

N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methoxybenzenesulfonamide;

2-(4-(2-aminoethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

N¹-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-N²-methylphthalamide;

2-(4-(2-hydroxyethoxy)-3-methylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(benzyloxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

6-bromo-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

6-bromo-2-(4-hydroxy-3,5-dimethylphenyl)quinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6-methoxyquinazolin-4(3H)-one;

5,7-dichloro-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

5,7-dimethoxy-2-(4-(2-methoxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

N-(2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;

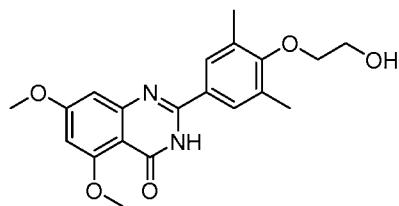
2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxypyrido[2,3-d]pyrimidin-4(3H)-one;

5,7-dimethoxy-2-(4-methoxy-3-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

2-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

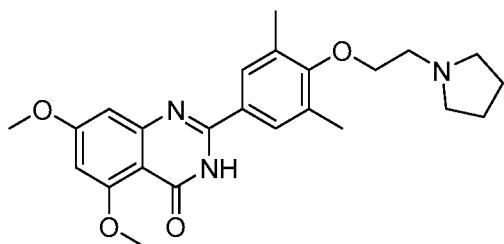
5,7-dimethoxy-2-(4-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl)-2-hydroxyacetamide;


2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetic acid;

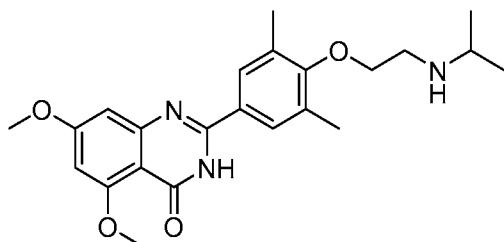
N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenyl)-2-hydroxyacetamide;

5,7-dimethoxy-2-(4-((4-methylpiperazin-1-yl)methyl)phenyl)quinazolin-4(3H)-one;


2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one;
 2-(4-(2-hydroxyethoxy)-3-methoxyphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
 2-(3-chloro-4-(2-hydroxyethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
 2-(4-(6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetamide;
 N-(2-(4-hydroxy-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;
 2-(4-(bis(2-hydroxyethyl)amino)phenyl)-6,7-dimethoxyquinazolin-4(3H)-one;
 2-(4-(bis(2-hydroxyethyl)amino)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
 5,7-dimethoxy-2-(4-(4-methylpiperazin-1-yl)phenyl)quinazolin-4(3H)-one
 (RVX000255);
 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;
 2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)quinazolin-4(3H)-one;
 2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one; and
 stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

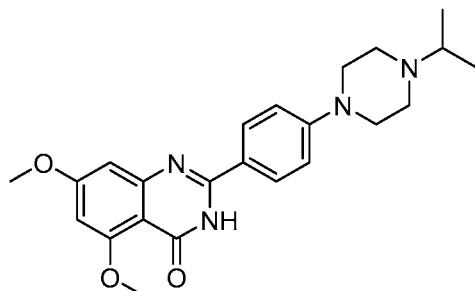
[0059] In some embodiments, the compound of Formula I is 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (RVX000222) (also known as RVX-208)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0060] In certain embodiments, the compound of Formula I is 2-[3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl]-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

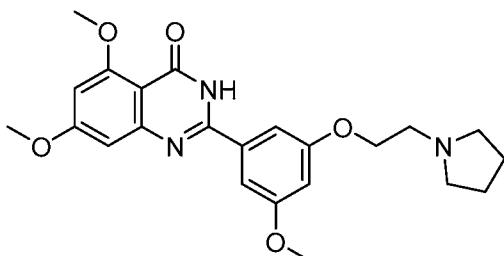
(RVX000297)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0061] In other embodiments, the compound of Formula I is 2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

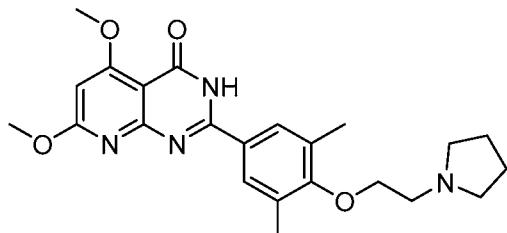
(RVX002135)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0062] In yet other embodiments, the compound of Formula I is 5,7-dimethoxy-2-{4-[4-(propan-2-yl)piperazin-1-yl]phenyl}-3,4-dihydroquinazolin-4-one

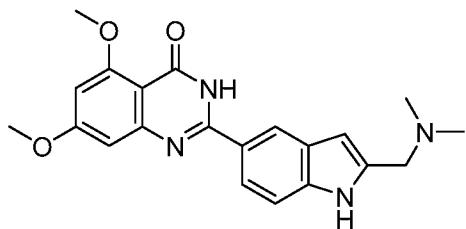
(RVX002109)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0063] In some embodiments, the compound of Formula I is 5,7-dimethoxy-2-{3-methoxy-5-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-3,4-dihydroquinazolin-4-one

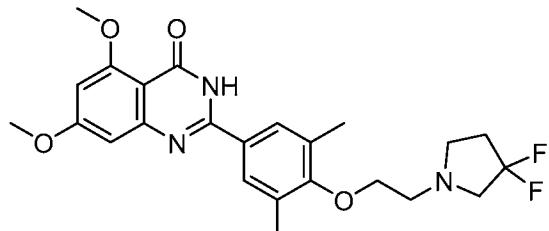
(RVX000641)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0064] In some embodiments, the compound of Formula I is 2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3H,4H-pyrido[2,3-d] pyrimidin-4-one

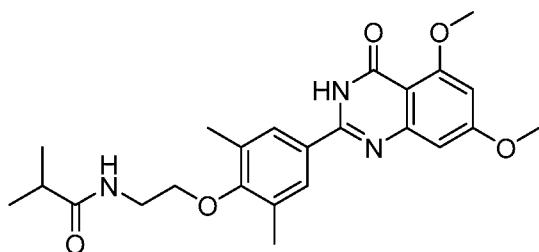
(RVX000662)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0065] In some embodiments, the compound is 2-{2-[(dimethylamino)methyl]-1H-indol-5-yl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

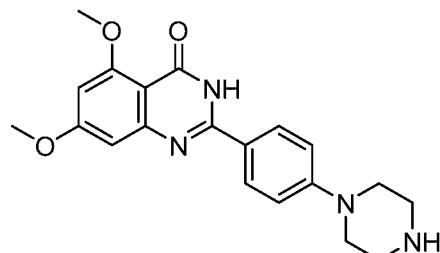
(RVX000668)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0066] In some embodiments, the compound of Formula I is 2-{4-[2-(3,3-difluoropyrrolidin-1-yl)ethoxy]-3,5-dimethylphenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

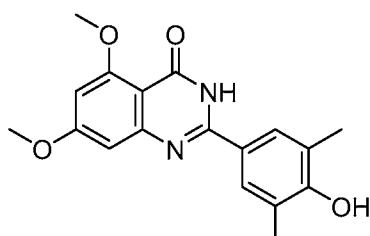
(RVX000843)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0067] In some embodiments, the compound of Formula I is N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}-2-methylpropanamide

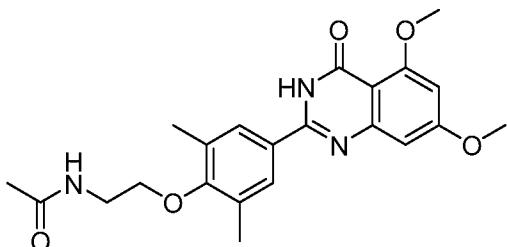
(RVX002103)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0068] In some embodiments, the compound of Formula I is 5,7-dimethoxy-2-[4-(piperazin-1-yl)phenyl]-3,4-dihydroquinazolin-4-one

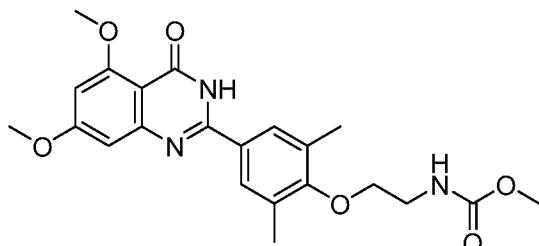
(RVX002141)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0069] In some embodiments, the compound of Formula I is 2-(4-hydroxy-3,5-dimethylphenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

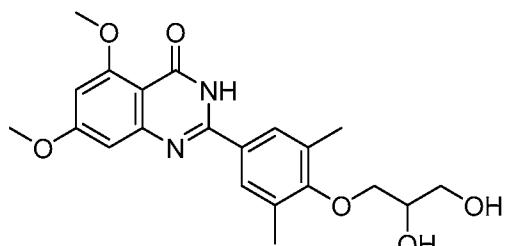
(RVX000206)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0070] In some embodiments, the compound of Formula I is N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}acetamide

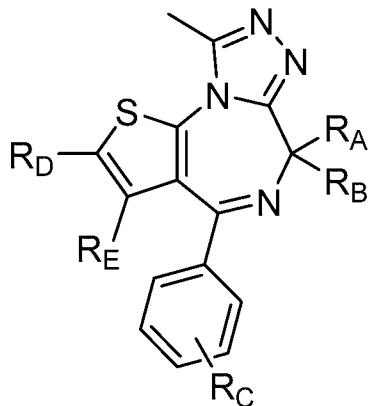
(RVX002101)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0071] In some embodiments, the compound of Formula I is methyl N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}carbamate

(RVX002113)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.


[0072] In some embodiments, the compound of Formula I is 2-[4-(2,3-dihydroxypropoxy)-3,5-dimethylphenyl]-5,7-dimethoxy-3,4-dihydroquinazolin-4-one

(RVX000344)

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

[0073] The term “compound of Formula II” refers to compounds having the general structure:

Formula II

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, wherein:

R_A and R_B are independently selected from hydrogen, methyl, -(CH₂)_nR_F, -(CH₂)_nOR_F, and -CH₂C(O)OR_G;

R_C is selected from hydrogen, para-halogen, and -OCH₂O- or -OCH₂CH₂O- connected to the ortho and meta positions or connected to the meta and para positions of the phenyl ring;

R_D and R_E are independently selected from hydrogen and methyl;

R_F is selected from methyl, ethyl, and -CH₂CH₂OCH₃;

R_G is selected from methyl, Ethyl, n-propyl, isopropyl, n-butyl, and tert-butyl; and

n is selected from 1,2,3, and 4.

[0074] In some embodiments, R_C is para-Cl.

[0075] In some embodiments, the compound of Formula II is selected from:

6,6-dimethyl-4-phenyl-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

4-(3', 4'-mehylenedioxyphenyl)-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

9-methyl-4-phenyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

(S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate (JQ1); and stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

[0076] In some embodiments, the compound of Formula I or Formula II is in the form of a solvate. In some embodiments, the compound of Formula I or Formula II is in the form of a hydrate. In some embodiments, the compound of Formula I or Formula II is in the form of a chelate. In some embodiments, the compound of Formula I or Formula II is in the form of a pharmaceutically acceptable salt. In some embodiments, the compound of Formula I or Formula II is in crystalline form. In some embodiments, the compound of Formula I or Formula II is a polymorph or a pseudopolymorph. In some embodiments, the compound of Formula I or Formula II is in the form of an unsolvated polymorph, such as, e.g., an anhydrate. In some embodiments, the compound of Formula I or Formula II is in the form of a conformational polymorph. In some embodiments, the compound of Formula I or Formula II is amorphous. In some embodiments, the compound of Formula I or Formula II is in the form of a non-covalent complex. In some embodiments, the compound of Formula I or Formula II is in the form of a solvate of a salt. In some embodiments, the compound of Formula I or Formula II is in the form of a chelate of a salt. In some embodiments, the compound of Formula I or Formula II is in the form of a hemi-hydrate. In some embodiments, the compound of Formula I or Formula II is in the form of a monohydrate.

[0077] In some embodiments, a “prodrug” is administered to a patient to become a compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, e.g., upon metabolic processing of the prodrug. Examples of prodrugs include derivatives of functional groups, such as a carboxylic acid group, in the compounds of Formula I or Formula II. Exemplary prodrugs of a carboxylic acid group include, but are not limited to, carboxylic acid esters such as alkyl esters, hydroxyalkyl esters, arylalkyl esters, and aryloxyalkyl esters.

[0078] A “solvate” is formed by the interaction of a solvent and a compound, and the compounds of Formula I or Formula II may be in the form of a solvate.

Similarly, a “salt” of the compounds of Formula I or Formula II may be in the form of a solvate of salt. Suitable solvates are pharmaceutically acceptable solvates, such as hydrates, including monohydrates and hemi-hydrates.

[0079] A “chelate” is formed by the coordination of a compound to a metal ion at two (or more) points. The compound of Formula I or Formula II may be in the form of a chelate. Similarly, a salt of a compound of Formula I or Formula II may be in the form of a chelate.

[0080] A “non-covalent complex” may be formed by the interaction of a compound of Formula I or Formula II and another molecule wherein a covalent bond is not formed between the compound and the molecule. For example, complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding).

[0081] A dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, -CONH₂ is attached through the carbon atom.

[0082] By “optional” or “optionally” is meant that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” encompasses both “aryl” and “substituted aryl” as defined below. It will be understood by those skilled in the art, with respect to any group containing one or more substituents, that such groups are not intended to introduce any substitution or substitution patterns that are sterically impractical, synthetically non-feasible and/or inherently unstable.

[0083] The term “acyl” term as used herein refers to a carbonyl radical attached to an alkyl, alkenyl, alkynyl, cycloalkyl, heterocycyl, aryl, or heteroaryl. Exemplary acyl groups include, but are not limited to, acetyl, formyl, propionyl, benzoyl, and the like.

[0084] The term “aldehyde” or “formyl” as used herein refers to -CHO.

[0085] The term “alkenyl” as used herein refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon double bond, such as a

straight or branched group of 2-22, 2-8, or 2-6 carbon atoms, referred to herein as (C₂-C₂₂)alkenyl, (C₂-C₈)alkenyl, and (C₂-C₆)alkenyl, respectively. Exemplary alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, 2-propyl-2-butenyl, and 4-(2-methyl-3-butene)-pentenyl.

[0086] The term “alkoxy” as used herein refers to an alkyl group attached to an oxygen (-O-alkyl-). “Alkoxy” groups also include an alkenyl group attached to an oxygen (“alkenyloxy”) or an alkynyl group attached to an oxygen (“alkynyloxy”) groups. Exemplary alkoxy groups include, but are not limited to, groups with an alkyl, alkenyl or alkynyl group of 1-22, 1-8, or 1-6 carbon atoms, referred to herein as (C₁-C₂₂)alkoxy, (C₁-C₈)alkoxy, and (C₁-C₆)alkoxy, respectively. Exemplary alkoxy groups include, but are not limited to methoxy and ethoxy.

[0087] The term “alkyl” as used herein refers to a saturated straight or branched hydrocarbon, such as a straight or branched group of 1-22, 1-8, or 1-6 carbon atoms, referred to herein as (C₁-C₂₂)alkyl, (C₁-C₈)alkyl, and (C₁-C₆)alkyl, respectively. Exemplary alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, and octyl.

[0088] The term “alkynyl” as used herein refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon triple bond, such as a straight or branched group of 2-22, 2-8, or 2-6 carbon atoms, referred to herein as (C₂-C₂₂)alkynyl, (C₂-C₈)alkynyl, and (C₂-C₆)alkynyl, respectively. Exemplary alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, 4-methyl-1-butynyl, 4-propyl-2-pentynyl, and 4-butyl-2-hexynyl.

[0089] The term “amide” as used herein refers to the structure -NR_aC(O)(R_b)- or -C(O)NR_bR_c, wherein R_a, R_b and R_c are each independently selected from alkyl, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, haloalkyl, heteroaryl, heterocyclyl, and

hydrogen. The amide can be attached to another group through the carbon, the nitrogen, R_b, or R_c. The amide also may be cyclic, for example R_b and R_c, may be joined to form a 3- to 12-membered ring, such as a 3- to 10-membered ring or a 5- or 6-membered ring. The term "amide" encompasses groups such as sulfonamide, urea, ureido, carbamate, carbamic acid, and cyclic versions thereof. The term "amide" also encompasses an amide group attached to a carboxy group, e.g., -amide-COOH or salts such as -amide-COONa, an amino group attached to a carboxy group (e.g., -amino-COOH or salts such as -amino-COONa).

[0090] The term "amine" or "amino" as used herein refers to the structure -NR_dR_e or -N(R_d)R_e-, where R_d and R_e are independently selected from alkyl, alkenyl, alkynyl, aryl, arylalkyl, carbamate, cycloalkyl, haloalkyl, heteroaryl, heterocyclyl, and hydrogen. The amino can be attached to the parent molecular group through the nitrogen. The amino also may be cyclic, for example any two of R_d and R_e may be joined together or with the N to form a 3- to 12-membered ring (e.g., morpholino or piperidinyl). The term amino also includes the corresponding quaternary ammonium salt of any amino group. Exemplary amino groups include alkylamino groups, wherein at least one of R_d or R_e is an alkyl group.

[0091] The term "aryl" as used herein refers to a mono-, bi-, or other multi-carbocyclic, aromatic ring system. The aryl group can optionally be fused to one or more rings selected from aryls, cycloalkyls, and heterocyclyls. The aryl groups of this invention can be substituted with groups selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, and thioketone. Exemplary aryl groups include, but are not limited to, phenyl, tolyl, anthracenyl, fluorenyl, indenyl, azulenyl, and naphthyl, as well as benzo-fused carbocyclic moieties such as 5,6,7,8-tetrahydronaphthyl. Exemplary aryl groups also include, but are not limited to a monocyclic aromatic ring system, wherein the ring comprises 6 carbon atoms, referred to herein as "(C₆)aryl."

[0092] The term "arylalkyl" as used herein refers to an alkyl group having at least one aryl substituent (e.g., -aryl-alkyl-). Exemplary arylalkyl groups include, but are not limited to, arylalkyls having a monocyclic aromatic ring system, wherein the ring comprises 6 carbon atoms, referred to herein as "(C₆)arylalkyl."

[0093] The term "aryloxy" as used herein refers to an aryl group attached to an oxygen atom. Exemplary aryloxy groups include, but are not limited to, aryloxys having a monocyclic aromatic ring system, wherein the ring comprises 6 carbon atoms, referred to herein as "(C₆)aryloxy."

[0094] The term "arylthio" as used herein refers to an aryl group attached to an sulfur atom. Exemplary arylthio groups include, but are not limited to, arylthios having a monocyclic aromatic ring system, wherein the ring comprises 6 carbon atoms, referred to herein as "(C₆)arylthio."

[0095] The term "arylsulfonyl" as used herein refers to an aryl group attached to a sulfonyl group, e.g., -S(O)₂-aryl-. Exemplary arylsulfonyl groups include, but are not limited to, arylsulfonyls having a monocyclic aromatic ring system, wherein the ring comprises 6 carbon atoms, referred to herein as "(C₆)arylsulfonyl."

[0096] The term "benzyl" as used herein refers to the group -CH₂-phenyl.

[0097] The term "bicyclic aryl" as used herein refers to an aryl group fused to another aromatic or non-aromatic carbocyclic or heterocyclic ring. Exemplary bicyclic aryl groups include, but are not limited to, naphthyl or partly reduced forms thereof, such as di-, tetra-, or hexahydronaphthyl.

[0098] The term "bicyclic heteroaryl" as used herein refers to a heteroaryl group fused to another aromatic or non-aromatic carbocyclic or heterocyclic ring. Exemplary bicyclic heteroaryls include, but are not limited to 5,6- or 6,6-fused systems, wherein one or both rings contain heteroatoms. The term "bicyclic heteroaryl" also encompasses reduced or partly reduced forms of fused aromatic system wherein one or both rings contain ring heteroatoms. The ring system may contain up to three heteroatoms, independently selected from oxygen, nitrogen, and sulfur. The bicyclic system may be optionally substituted with one or more groups selected from alkoxy,

aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone. Exemplary bicyclic heteroaryl's include, but are not limited to, quinazolinyl, benzothiophenyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzofuranyl, indolyl, quinolinyl, isoquinolinyl, phthalazinyl, benzotriazolyl, benzopyridinyl, and benzofuranyl.

[0099] The term "carbamate" as used herein refers to the form $-R_gOC(O)N(R_h)-$, $-R_gOC(O)N(R_h)R_i-$, or $-OC(O)NR_hR_i$, wherein R_g , R_h and R_i are each independently selected from alkyl, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, haloalkyl, heteroaryl, heterocyclyl, and hydrogen. Exemplary carbamates include, but are not limited to, arylcarbamates or heteroaryl carbamates (e.g., wherein at least one of R_g , R_h and R_i are independently selected from aryl or heteroaryl, such as pyridine, pyridazine, pyrimidine, and pyrazine).

[0100] The term "carbonyl" as used herein refers to $-C(O)-$.

[0101] The term "carboxy" as used herein refers to $-COOH$ or its corresponding carboxylate salts (e.g., $-COONa$). The term carboxy also includes "carboxycarbonyl," e.g. a carboxy group attached to a carbonyl group, e.g., $-C(O)-COOH$ or salts, such as $-C(O)-COONa$.

[0102] The term "cyano" as used herein refers to $-CN$.

[0103] The term "cycloalkoxy" as used herein refers to a cycloalkyl group attached to an oxygen.

[0104] The term "cycloalkyl" as used herein refers to a saturated or unsaturated cyclic, bicyclic, or bridged bicyclic hydrocarbon group of 3-12 carbons, or 3-8 carbons, referred to herein as " $(C_3-C_8)cycloalkyl$," derived from a cycloalkane. Exemplary cycloalkyl groups include, but are not limited to, cyclohexanes, cyclohexenes, cyclopentanes, and cyclopentenes. Cycloalkyl groups may be substituted with alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl,

heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone. Cycloalkyl groups can be fused to other cycloalkyl saturated or unsaturated, aryl, or heterocyclyl groups.

[0105] The term “dicarboxylic acid” as used herein refers to a group containing at least two carboxylic acid groups such as saturated and unsaturated hydrocarbon dicarboxylic acids and salts thereof. Exemplary dicarboxylic acids include alkyl dicarboxylic acids. Dicarboxylic acids may be substituted with alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydrogen, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone. Dicarboxylic acids include, but are not limited to succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, azelaic acid, maleic acid, phthalic acid, aspartic acid, glutamic acid, malonic acid, fumaric acid, (+)/(−)-malic acid, (+)/(−) tartaric acid, isophthalic acid, and terephthalic acid. Dicarboxylic acids further include carboxylic acid derivatives thereof, such as anhydrides, imides, hydrazides (for example, succinic anhydride and succinimide).

[0106] The term “ester” refers to the structure $-C(O)O-$, $-C(O)O-R_j-$, $-R_kC(O)O-$ R_j- , or $-R_kC(O)O-$, where O is not bound to hydrogen, and R_j and R_k can independently be selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, cycloalkyl, ether, haloalkyl, heteroaryl, and heterocyclyl. R_k can be a hydrogen, but R_j cannot be hydrogen. The ester may be cyclic, for example the carbon atom and R_j , the oxygen atom and R_k , or R_j and R_k may be joined to form a 3- to 12-membered ring. Exemplary esters include, but are not limited to, alkyl esters wherein at least one of R_j or R_k is alkyl, such as $-O-C(O)-alkyl$, $-C(O)-O-alkyl-$, and $-alkyl-C(O)-O-alkyl-$. Exemplary esters also include aryl or heteroaryl esters, e.g. wherein at least one of R_j or R_k is a heteroaryl group such as pyridine, pyridazine, pyrimidine and pyrazine, such as a nicotinate ester. Exemplary esters also include reverse esters having the structure $-R_kC(O)O-$, where the oxygen is bound to the parent molecule. Exemplary

reverse esters include succinate, D-argininate, L-argininate, L-lysinate and D-lysinate. Esters also include carboxylic acid anhydrides and acid halides.

[0107] The term “ether” refers to the structure $-R_1-O-R_M-$, where R_1 and R_M can independently be alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclyl, and ether. The ether can be attached to the parent molecular group through R_1 or R_M . Exemplary ethers include, but are not limited to, alkoxyalkyl and alkoxyaryl groups. Ethers also includes polyethers, e.g., where one or both of R_1 and R_M are ethers.

[0108] The terms “halo” or “halogen” or “Hal” as used herein refer to F, Cl, Br, or I.

[0109] The term “haloalkyl” as used herein refers to an alkyl group substituted with one or more halogen atoms. “Haloalkyls” also encompass alkenyl or alkynyl groups substituted with one or more halogen atoms.

[0110] The term “heteroaryl” as used herein refers to a mono-, bi-, or multi-cyclic, aromatic ring system containing one or more heteroatoms, for example 1-3 heteroatoms, such as nitrogen, oxygen, and sulfur. Heteroaryls can be substituted with one or more substituents including alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone. Heteroaryls can also be fused to non-aromatic rings. Illustrative examples of heteroaryl groups include, but are not limited to, pyridinyl, pyridazinyl, pyrimidyl, pyrazyl, triazinyl, pyrrolyl, pyrazolyl, imidazolyl, (1,2,3)- and (1,2,4)-triazolyl, pyrazinyl, pyrimidinyl, tetrazolyl, furyl, thieryl, isoxazolyl, thiazolyl, furyl, phenyl, isoxazolyl, and oxazolyl. Exemplary heteroaryl groups include, but are not limited to, a monocyclic aromatic ring, wherein the ring comprises 2-5 carbon atoms and 1-3 heteroatoms, referred to herein as “(C₂-C₅)heteroaryl.”

[0111] The terms “heterocycle,” “heterocyclyl,” or “heterocyclic” as used herein refer to a saturated or unsaturated 3-, 4-, 5-, 6- or 7-membered ring containing one, two, or three heteroatoms independently selected from nitrogen, oxygen, and

sulfur. Heterocycles can be aromatic (heteroaryls) or non-aromatic. Heterocycles can be substituted with one or more substituents including alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone. Heterocycles also include bicyclic, tricyclic, and tetracyclic groups in which any of the above heterocyclic rings is fused to one or two rings independently selected from aryls, cycloalkyls, and heterocycles. Exemplary heterocycles include acridinyl, benzimidazolyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, biotinyl, cinnolinyl, dihydrofuryl, dihydroindolyl, dihydropyranyl, dihydrothienyl, dithiazolyl, furyl, homopiperidinyl, imidazolidinyl, imidazolinyl, imidazolyl, indolyl, isoquinolyl, isothiazolidinyl, isothiazolyl, isoxazolidinyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolidinyl, oxazolyl, piperazinyl, piperidinyl, pyranyl, pyrazolidinyl, pyrazinyl, pyrazolyl, pyrazolinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrimidyl, pyrrolidinyl, pyrrolidin-2-onyl, pyrrolinyl, pyrrolyl, quinolinyl, quinoxaloyl, tetrahydrofuryl, tetrahydroisoquinolyl, tetrahydropyranyl, tetrahydroquinolyl, tetrazolyl, thiadiazolyl, thiazolidinyl, thiazolyl, thienyl, thiomorpholinyl, thiopyranyl, and triazolyl.

[0112] The terms “hydroxy” and “hydroxyl” as used herein refers to -OH.

[0113] The term “hydroxyalkyl” as used herein refers to a hydroxy attached to an alkyl group.

[0114] The term “hydroxyaryl” as used herein refers to a hydroxy attached to an aryl group.

[0115] The term “ketone” as used herein refers to the structure -C(O)-R_n (such as acetyl, -C(O)CH₃ or -R_n-C(O)-R_o-). The ketone can be attached to another group through R_n or R_o. R_n or R_o can be alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl or aryl, or R_n or R_o can be joined to form a 3- to 12-membered ring.

[0116] The term “monoester” as used herein refers to an analogue of a dicarboxylic acid wherein one of the carboxylic acids is functionalized as an ester and the other carboxylic acid is a free carboxylic acid or salt of a carboxylic acid. Examples

of monoesters include, but are not limited to, to monoesters of succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, azelaic acid, oxalic and maleic acid.

[0117] The term "nitro" as used herein refers to -NO₂.

[0118] The term "perfluoroalkoxy" as used herein refers to an alkoxy group in which all of the hydrogen atoms have been replaced by fluorine atoms.

[0119] The term "perfluoroalkyl" as used herein refers to an alkyl group in which all of the hydrogen atoms have been replaced by fluorine atoms. Exemplary perfluoroalkyl groups include, but are not limited to, C₁-C₅ perfluoroalkyl, such as trifluoromethyl.

[0120] The term "perfluorocycloalkyl" as used herein refers to a cycloalkyl group in which all of the hydrogen atoms have been replaced by fluorine atoms.

[0121] The term "phenyl" as used herein refers to a 6-membered carbocyclic aromatic ring. The phenyl group can also be fused to a cyclohexane or cyclopentane ring. Phenyl can be substituted with one or more substituents including alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocyclyl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide and thioketone.

[0122] The term "phosphate" as used herein refers to the structure -OP(O)O₂⁻, -R_xOP(O)O₂⁻, -OP(O)O₂R_y⁻, or -R_xOP(O)O₂R_y⁻, wherein R_x and R_y can be alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclyl, and hydrogen.

[0123] The term "sulfide" as used herein refers to the structure -R_ZS-, where R_Z can be alkyl, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, haloalkyl, heteroaryl, heterocyclyl. The sulfide may be cyclic, forming a 3 to 12-membered ring. The term "alkylsulfide" as used herein refers to an alkyl group attached to a sulfur atom.

[0124] The term "sulfinyl" as used herein refers to the structure -S(O)O-, -R_pS(O)O-, -R_pS(O)OR_q⁻, or -S(O)OR_q⁻, wherein R_p and R_q can be alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, haloalkyl, heteroaryl, heterocyclyl, hydroxyl. Exemplary sulfinyl groups

include, but are not limited to, alkylsulfinyls wherein at least one of R_p or R_q is alkyl, alkenyl, or alkynyl.

[0125] The term “sulfonamide” as used herein refers to the structure -(R_r)-N-S(O)₂-R_S- or -R_t(R_r)-N-S(O)₂-R_S, where R_t, R_r, and R_S can be, for example, hydrogen, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, and heterocyclyl. Exemplary sulfonamides include alkylsulfonamides (e.g., where R_S is alkyl), arylsulfonamides (e.g., where R_S is aryl), cycloalkyl sulfonamides (e.g., where R_S is cycloalkyl), and heterocyclyl sulfonamides (e.g., where R_S is heterocyclyl).

[0126] The term “sulfonate” as used herein refers to -OSO₃⁻. Sulfonate includes salts such as -OSO₃Na, -OSO₃K and the acid -OSO₃H.

[0127] The term “sulfonic acid” refers to -SO₃H- and its corresponding salts (e.g., -SO₃K- and -SO₃Na-).

[0128] The term “sulfonyl” as used herein refers to the structure R_USO₂⁻, where R_U can be alkyl, alkenyl, alkynyl, aryl, cycloalkyl, and heterocyclyl (e.g., alkylsulfonyl). The term “alkylsulfonyl” as used herein refers to an alkyl group attached to a sulfonyl group. “Alkylsulfonyl” groups can optionally contain alkenyl or alkynyl groups.

[0129] The term “thioketone” refers to the structure -R_V-C(S)-R_W⁻. The ketone can be attached to another group through R_V or R_W. R_V or R_W can be alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl or aryl, or R_V or R_W can be joined to form a 3- to 12-membered ring.

[0130] “Alkyl” groups can be substituted with or interrupted by or branched with at least one group selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, ketone, heteroaryl, heterocyclyl, hydroxyl, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, thioketone, ureido and N. The substituents may be branched to form a substituted or unsubstituted heterocycle or cycloalkyl.

[0131] "Alkenyl," "alkynyl", "alkoxy", "amino" and "amide" groups can be substituted with or interrupted by or branched with at least one group selected from alkoxy, aryloxy, alkyl, alkenyl, alkynyl, amide, amino, aryl, arylalkyl, carbamate, carbonyl, carboxy, cyano, cycloalkyl, ester, ether, formyl, halogen, haloalkyl, heteroaryl, heterocycl, hydroxyl, ketone, nitro, phosphate, sulfide, sulfinyl, sulfonyl, sulfonic acid, sulfonamide, thioketone, ureido and N. The substituents may be branched to form a substituted or unsubstituted heterocycle or cycloalkyl.

[0132] As used herein, a "suitable substituent" refers to a group that does not nullify the synthetic or pharmaceutical utility of the compounds of Formula I or Formula II. Examples of suitable substituents include, but are not limited to: C₁₋₂₂, C₁₋₈, and C₁₋₆ alkyl, alkenyl or alkynyl; C₁₋₆ aryl, C₂₋₅ heteroaryl; C₃₋₇ cycloalkyl; C₁₋₂₂, C₁₋₈, and C₁₋₆ alkoxy; C₆ aryloxy; -CN; -OH; oxo; halo, carboxy; amino, such as -NH(C₁₋₂₂, C₁₋₈, or C₁₋₆ alkyl), -N(C₁₋₂₂, C₁₋₈, and C₁₋₆ alkyl)₂, -NH((C₆)aryl), or -N((C₆)aryl)₂; formyl; ketones, such as -CO(C₁₋₂₂, C₁₋₈, and C₁₋₆ alkyl), -CO((C₆)aryl) esters, such as -CO₂(C₁₋₂₂, C₁₋₈, and C₁₋₆ alkyl) and -CO₂ (C₆aryl). One of skill in art can readily choose a suitable substituent based on the stability and pharmacological and synthetic activity of the compound of the invention.

[0133] The term "pharmaceutically acceptable carrier" as used herein refers to any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. The compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.

[0134] The term "pharmaceutically acceptable composition" as used herein refers to a composition comprising at least one compound as disclosed herein formulated together with one or more pharmaceutically acceptable carriers.

[0135] The term "pharmaceutically acceptable prodrugs" as used herein represents those prodrugs of the compounds of the present invention that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response,

commensurate with a reasonable benefit / risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of Formula I or Formula II. A discussion is provided in Higuchi *et al.*, "Prodrugs as Novel Delivery Systems," *ACS Symposium Series*, Vol. 14, and in Roche, E.B., ed. *Bioreversible Carriers in Drug Design*, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference.

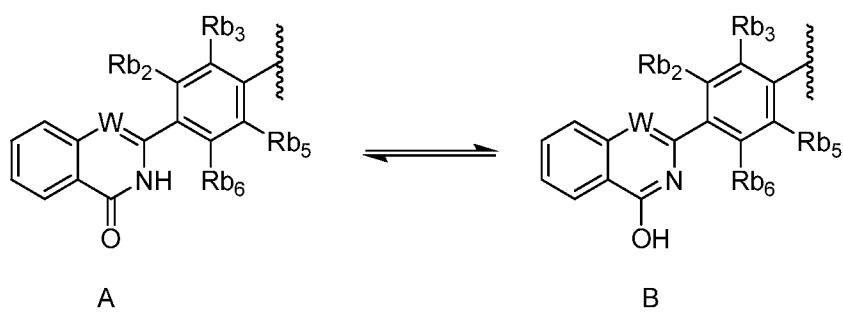
[0136] The term "pharmaceutically acceptable salt(s)" refers to salts of acidic or basic groups that may be present in compounds used in the present compositions. Compounds included in the present compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to sulfate, citrate, matate, acetate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, *p*-toluenesulfonate and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Compounds included in the present compositions that include an amino moiety may form pharmaceutically acceptable salts with various amino acids, in addition to the acids mentioned above. Compounds included in the present compositions, that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.

[0137] In addition, if the compounds described herein are obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with

conventional procedures for preparing acid addition salts from base compounds.

Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.

[0138] The compounds of Formula I and Formula II may contain one or more chiral centers and/or double bonds and, therefore, exist as stereoisomers, such as geometric isomers, enantiomers or diastereomers. The term “stereoisomers” when used herein consist of all geometric isomers, enantiomers or diastereomers. These compounds may be designated by the symbols “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom. The present invention encompasses various stereoisomers of these compounds and mixtures thereof. Stereoisomers include enantiomers and diastereomers. Mixtures of enantiomers or diastereomers may be designated “(±)” in nomenclature, but the skilled artisan will recognize that a structure may denote a chiral center implicitly.


[0139] Individual stereoisomers of compounds for use in the methods of the present invention can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, or (3) direct separation of the mixture of optical enantiomers on chiral chromatographic columns. Stereoisomeric mixtures can also be resolved into their component stereoisomers by well-known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Stereoisomers can also be obtained from stereomerically-pure intermediates, reagents, and catalysts by well-known asymmetric synthetic methods.

[0140] Geometric isomers can also exist in the compounds of Formula I and Formula II. The present invention encompasses the various geometric isomers and

mixtures thereof resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a carbocyclic ring. Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration wherein the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the *E* and *Z* isomers.

[0141] Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond. The arrangements of substituents around a carbocyclic ring are designated as “cis” or “trans.” The term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring. Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”

[0142] The compounds of Formula I and Formula II disclosed herein may exist as tautomers and both tautomeric forms are intended to be encompassed by the scope of the invention, even though only one tautomeric structure is depicted. For example, any claim to compound A below is understood to include tautomeric structure B, and vice versa, as well as mixtures thereof.

[0143] As used herein, "complement-associated disease", "complement-associated disorder" and "complement-associated condition" refers to diseases, disorders and conditions mediated by aberrant activity of one or more of the components of the complement cascade and its associated systems. Exemplary complement-associated diseases include, but are not limited to, atherosclerosis,

membranous glomerulonephritis, asthma, organ transplantation rejection, thrombosis, deep vein thrombosis, disseminated venous thromboembolism, disseminated intravascular coagulation, and chronic obstructive pulmonary disease (COPD). Additional exemplary complement-associated diseases include, but are not limited to, paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms. Further exemplary complement-associated diseases include, but are not limited to, familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

[0144] "Subject" refers to an animal, such as a mammal, that has been or will be the object of treatment, observation, or experiment. The methods described herein may be useful for both human therapy and veterinary applications. In one embodiment, the subject is a human.

[0145] As used herein, "treatment" or "treating" refers to an amelioration of a disease or disorder, or at least one discernible symptom thereof. In another embodiment, "treatment" or "treating" refers to an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient. In yet another embodiment, "treatment" or "treating" refers to reducing the progression of a disease or disorder, either physically, e.g., stabilization of a discernible symptom, physiologically, e.g., stabilization of a physical parameter, or both. In yet another embodiment, "treatment" or "treating" refers to delaying the onset of a disease or disorder. For example, treating a cholesterol disorder may comprise decreasing blood cholesterol levels.

[0146] As used herein, "prevention" or "preventing" refers to a reduction of the risk of acquiring a given disease or disorder or a symptom of a given disease or disorder.

[0147] As used herein, “modulate”, “modulation” or “modulating” refers to a downregulation of expression of components of the complement cascade resulting in reduced activity of the complement pathway.

Pharmaceutical Compositions

[0148] In certain embodiments, the compound of Formula I or Formula II (or a tautomer, stereoisomer, pharmaceutically acceptable salt, or hydrate thereof) is formulated for oral administration. Formulations suitable for oral administration may be presented in discrete units, such as capsules, cachets, lozenges, tablets, or patches, each containing a predetermined amount of a compound of the present disclosure as powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion. Such formulations may be prepared by any suitable method of pharmacy which includes the step of bringing into association at least one compound of the present disclosure as the active compound and a carrier or excipient (which may constitute one or more accessory ingredients). The carrier must be acceptable in the sense of being compatible with the other ingredients of the formulation and must not be deleterious to the recipient. The carrier may be a solid or a liquid, or both, and may be formulated with at least one compound described herein as the active compound in a unit-dose formulation, for example, a tablet, which may contain from about 0.05% to about 95% by weight of the at least one active compound. Other pharmacologically active substances may also be present including other compounds. The formulations of the present disclosure may be prepared by any of the well-known techniques of pharmacy consisting essentially of admixing the components.

[0149] For solid compositions, conventional nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, magnesium carbonate, and the like. Liquid pharmacologically administrable compositions can, for example, be prepared by, for example, dissolving or dispersing, at least one active compound of the present disclosure as described herein and optional pharmaceutical adjuvants in an excipient, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol, and the like, to thereby form a solution, ointment, or suspension. In general, suitable formulations

may be prepared by uniformly and intimately admixing at least one active compound of the present disclosure with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the product. For example, a tablet may be prepared by compressing or molding a powder or granules of at least one compound of the present disclosure, which may be optionally combined with one or more accessory ingredients.

[0150] Compressed tablets may be prepared by compressing, in a suitable machine, at least one compound of the present disclosure in a free-flowing form, such as a powder or granules, which may be optionally mixed with a binder, lubricant, inert diluent and/or surface active/dispersing agent(s). Molded tablets may be made by molding, in a suitable machine, where the powdered form of at least one compound of the present disclosure is moistened with an inert liquid diluent.

[0151] Formulations suitable for buccal (sub-lingual) administration include lozenges comprising at least one compound of the present disclosure in a flavored base, usually sucrose and acacia or tragacanth, and pastilles comprising the at least one compound in an inert base such as gelatin and glycerin or sucrose and acacia.

[0152] The amount of active compound administered may be dependent on the subject being treated, the subject's weight, the manner of administration and the judgment of the prescribing physician. For example, a dosing schedule may involve the daily or twice-daily administration of the encapsulated compound or compounds at a dosage of about 1-100 mg or 100-300 mg of a compound of Formula I or Formula II (or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof).

[0153] In another embodiment, intermittent administration, such as on a monthly or yearly basis, of a dose of the encapsulated compound may be employed. Encapsulation facilitates access to the site of action and allows the administration of the active ingredients simultaneously, in theory producing a synergistic effect. In accordance with standard dosing regimens, physicians will readily determine optimum dosages and will be able to readily modify administration to achieve such dosages.

[0154] A therapeutically effective amount of a compound or composition disclosed herein can be measured by the therapeutic effectiveness of the compound. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being used. In

one embodiment, the therapeutically effective amount of a disclosed compound is sufficient to establish a maximal plasma concentration. Preliminary doses as, for example, determined according to animal tests, and the scaling of dosages for human administration is performed according to art-accepted practices.

[0155] Toxicity and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compositions that exhibit large therapeutic indices are preferable.

[0156] Data obtained from the cell culture assays or animal studies can be used in formulating a range of dosage for use in humans. Therapeutically effective dosages achieved in one animal model may be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., *Cancer Chemother. Reports* 50(4):219-244 (1966) and Table 1 for Equivalent Surface Area Dosage Factors).

Table 1. Equivalent Surface Area Dosage Factors

To: From:	Mouse (20 g)	Rat (150 g)	Monkey (3.5 kg)	Dog (8 kg)	Human (60 kg)
Mouse	1	1/2	1/4	1/6	1/12
Rat	2	1	1/2	1/4	1/7
Monkey	4	2	1	3/5	1/3
Dog	6	4	3/5	1	1/2
Human	12	7	3	2	1

[0157] The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. Generally, a therapeutically effective amount may vary with

the subject's age, condition, and gender, as well as the severity of the medical condition in the subject. The dosage may be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.

Methods of Treatment

[0158] The invention provides methods for modulating the complement system in a patient in need thereof. In some embodiments, the methods comprise treating or preventing complement-associated diseases or disorders by administering to a subject (e.g., a mammal, such as e.g., a human) a therapeutically effective amount of at least one compound of the invention, i.e., a compound of Formula I or Formula II, or a tautomer, stereoisomer, pharmaceutically acceptable salt, or hydrate thereof. In certain embodiments, the methods of the invention comprise administering a pharmaceutically acceptable composition, comprising one or more compounds of Formula I or Formula II and a pharmaceutically acceptable carrier.

[0159] The invention further provides a method for treating or preventing a complement-associated disease or disorder involving the modulation of one or more genes selected from, for example, Mannose-Binding Lectin (protein C) 2, complement component 9, complement component 6, complement component 8, alpha polypeptide, complement component 4B, complement component 4A, coagulation factor IX, Coagulation factor VII, complement component 4 binding protein-beta, complement component 5, Protein C, coagulation factor XI, kallikrein B, plasma, tissue factor pathway inhibitor, complement component 8, gamma polypeptide, complement component 1-s subcomponent, complement component 8-beta polypeptide, coagulation factor XII, coagulation factor II, coagulation factor XIII B polypeptide, serpin peptidase inhibitor clade E, complement component 2, alpha-2-macroglobulin, complement factor H, complement factor I, complement factor B, complement component 1 R subcomponent, mannan-binding lectin serine peptidase 1, protein S, coagulation factor V, complement component 5a receptor 1, complement component 4 binding protein alpha, serpin peptidase inhibitor clade C member 1, complement component 3, mannan-binding lectin serine peptidase 2, coagulation factor X, coagulation factor VIII, serpin peptidase inhibitor clade D member 1, serpin peptidase inhibitor clade F member 2, plasminogen, bradykinin receptor B2, bradykinin receptor

B1, serpin peptidase inhibitor clade A member 5, coagulation factor III, serpin peptidase inhibitor, clade G (C1 inhibitor) member 1, carboxypeptidase B2 (Plasma), fibrinogen beta chain, kininogen 1, complement component (3b/4b) receptor 1, plasminogen activator tissue, complement component (3d/epstein barr virus) receptor 2, thrombomodulin, CD55 molecule, decay accelerating factor for complement, complement component 1 Q subcomponent A chain, or complement component 7, plasminogen activator urokinase, complement factor D, complement component 1 Q subcomponent C chain, CD46 molecule complement regulatory protein, fibrinogen gamma chain, von willebrand factor, CD59 molecule complement regulatory, plasminogen activator urokinase receptor, serpin peptidase inhibitor clade A member 1, coagulation factor XIII A1 polypeptide, complement component 3a receptor 1, fibrinogen alpha chain, complement component 1 Q subcomponent, B chain, and/or coagulation factor II (thrombin) receptor, by administering a therapeutically effective amount of at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

[0160] Another embodiment comprises a method for treating or preventing a complement-associated disease or disorder involving the modulation of one or more genes selected from, Mannose-Binding Lectin (protein C) 2, complement component 3, complement component 5, complement factor D, complement factor H, and/or complement component 9.

[0161] In one embodiment, the method comprises administering at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, to a subject, such as a human, as a preventative against complement-associated diseases and disorders, such as, for example, atherosclerosis, membranous glomerulonephritis, asthma, organ transplantation rejection, thrombosis, deep vein thrombosis, disseminated venous thromboembolism, disseminated intravascular coagulation, and chronic obstructive pulmonary disease (COPD).

[0162] In another embodiment, the method comprises administering at least one compound of Formula I or Formula II or a stereoisomer, tautomer,

pharmaceutically acceptable salt, or hydrate thereof, to a subject, such as a human, as a preventative against complement-associated diseases and disorders, such as, for example, paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

[0163] In another embodiment, the method comprises administering at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, to a subject, such as a human, as a preventative against complement-associated diseases and disorders, such as, for example, familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

[0164] In one embodiment, at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is administered as a preventative to a subject, such as a human, having a genetic predisposition to complement-associated diseases and disorders, such as, for example, atherosclerosis, membranous glomerulonephritis, asthma, organ transplantation rejection, thrombosis, deep vein thrombosis, disseminated venous thromboembolism, disseminated intravascular coagulation, and chronic obstructive pulmonary disease (COPD).

[0165] In another embodiment, at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is administered as a preventative measure to a subject, such as a human, having a genetic predisposition to complement-associated diseases and disorders, such as, for example, paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-

phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

[0166] In another embodiment, at least one compound of Formula I or Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, is administered as a preventative measure to a subject, such as a human, having a genetic predisposition to complement-associated diseases and disorders, such as, for example, familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE)

[0167] In another embodiment, the compounds of Formula I or Formula II may be used for the prevention of one complement-associated disease or disorder while concurrently treating another.

EXAMPLES

Example 1: Gene Expression Changes

[0168] In this example, mRNA levels from cultured cells were quantitated. The assay can be used to determine the effect of compound(s) on regulating mRNA levels, including those compounds in the present invention. Complement genes are expressed at high endogenous levels, but their expression can also be stimulated with various cytokines in inflammatory conditions. Experiments in this example target both basal and inflammatory complement gene expression. Compound mediated changes in gene expression and resulting mRNA levels are presented in Tables 2, 3 and 4 as well as Figure 1, 2, 3 and 4 below.

[0169] Huh-7 and HepG2 cells are liver-derived cell lines and are models for what can occur in the liver. Huh-7 cells (JCRB Cell Bank) were introduced to 96-well plates ($\sim 2.5 \times 10^5$ per well) in 100 μ L DMEM containing 10% (v/v) FBS, 100U/mL penicillin, 100ug/mL streptomycin and 5ug/mL plasmocin (all reagents from Gibco, except for the former, which was obtained from Invivogen). After 24h, Huh-7 cells were treated with compounds in the same media formulation used for plating, and supplemented with 0.1% DMSO for the amount of time indicated in tables 2, 3, and 4. For select experiments, 24h post-plating, cells were treated with cytokines and the

compound of interest simultaneously, for a total treatment time of 48h. Alternatively, 24h after plating, cells were pre-treated with cytokines for 24h before adding the compound of interest for 48h. HepG2 cells (ATCC) were cultured in 96-well plates ($\sim 2.5 \times 10^5$ per well) in MEM containing 10% FBS, 1X non-essential amino acids, 1mM sodium pyruvate, 2mM L-glutamine, 100U/mL penicillin, 100ug/mL streptomycin and 5ug/mL plasmocin. Serum amount was reduced to 0.5% for treatments with compound or cytokines. Timing of treatment of HepG2 cells with compounds and cytokines was as described for Huh-7 cells. Primary human hepatocytes (CellzDirect / Life Technologies) were plated in collagen coated 96-well plates at 70 000 cells/well, then overlaid with Matrigel™ as recommended by the supplier. Cells were treated with compounds of interest and/or cytokines for the indicated time points in the recommended media supplemented with 0.1% DMSO and 10% FBS (v/v). Cells were harvested by mRNA Catcher PLUS Kit (Life Technologies) followed by real-time PCR using the RNA UltraSense One-Step qRT-PCR System. The level of the mRNA of interest was measured by TaqMan real-time PCR relative to the endogenous control cyclophilin A in the same sample. Data were acquired using the ViiA-7 Real Time PCR System (Applied Biosystems).

[0170] Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result. Tables 2 and 3 list the concentration of compounds at which the level of the indicated mRNA is reduced by 50%, as well as the duration of treatment with compound. Table 4 lists the maximum reduction in the indicated mRNA measured in primary human hepatocytes treated with compounds for up to 72 hours. Figures 1, 2, 3 and 4 show effects of compounds on cytokine-induced (i.e. inflammatory) expression of complement genes in Huh-7 cells and HepG2 cells.

[0171] In addition to genes shown in Tables 2 and 4, other members of the complement and coagulation cascades are assayed via real-time PCR in cultured cells such as, but not limited to, Huh-7, HepG2 and / or primary human hepatocytes.

Table 2: Suppression of complement gene expression in human hepatoma cells. Data are presented as half maximal inhibitory concentrations (IC50) of compounds in micromolar (uM).

Complement gene	RVX000222		JQ1		RVX000297	RVX002109	RVX002135
	Huh-7	HepG2	Huh-7	HepG2	Huh-7		
C3 (48h)	1.90	-	0.20	0.20	4.70	34.8	2.20
C4a/C4b (48h)	6.30	-	-	-	4.50	62.2	4.30
C5 (48h)	>30	-	-	-	>10	>50	37.9
C3 (72h)	-	25.0	-	0.49	-	-	-
MBL2 (48h)	16.3	3.88	0.16	0.03	-	-	-
C1S (48h)	18.9	9.56	0.3	0.12	-	-	-
C4a/C4b (72h)	5.40	10.0	0.07	0.25	-	-	-
C5 (72h)	21.8	20.0	0.27	0.46	-	-	-

Table 3: Suppression of C3 and C4 expression in Huh-7 cells after a 48h treatment with listed compounds. Data are presented as half maximal inhibitory concentrations (IC50) of compounds in micromolar (uM).

Compound	mRNA expression in Huh-7 cells: IC ₅₀ (uM)	
	C3	C4
RVX000206	3.6	9.3
RVX000255	20.4	17.4
RVX000344	11.6	15.6
RVX000641	12.6	9.3
RVX000662	29.2	21.1
RVX000668	9.5	15.6
RVX000843	11.1	>50uM
RVX002093	18.5	17.2
RVX002101	11.3	22.0
RVX002103	13.9	13.8
RVX002113	5.8	7.8
RVX002141	15.4	17.8
JQ1	0.18	0.065

Table 4: Downregulation of expression of complement components in primary human hepatocytes from a single donor. mRNA levels were determined at 6, 24, 48, and 72 hours of compound treatment. Values show the percent maximal reduction in gene expression and the associated treatment period (hours). Over this time course,

maximum reduction in complement C3, complement C5, and MBL2 mRNA abundance was observed at 24 hours of treatment, and at 72 hours of treatment for complement C1S and complement C2 mRNA levels. Maximum reduction in complement C4 mRNA was observed at 24 hours of treatment with JQ1, versus 72 hours of RVX000222 treatment. Maximum reduction in complement C9 mRNA was found with 48 hours of treatment with JQ1 and 72 hours with RVX000222. Differences in treatment period required for maximum reduction in mRNA levels may be related to mRNA half-life or sensitivity of a particular gene to BET inhibition.

Treatment	C3	C4	C5	C9	MBL2	C1S	C2
30uM RVX000222	13% (24h)	44% (72h)	38% (24h)	86% (72h)	92% (24h)	27% (72h)	35% (72h)
0.3uM JQ1	54% (24h)	31% (24h)	67% (24h)	72% (48h)	93% (24h)	22% (72h)	29% (72h)

Example 2: In Vivo Studies Using Mouse Models.

[0172] In this example, chimeric mice with humanized livers were generated by transplanting human hepatocytes into urokinase-type plasminogen activator^{+/+}/severe combined immunodeficient transgenic mice. Replacement with human hepatocytes can reach 80–90%. This mouse model can be used to determine the effect of compounds, including those compounds in the present invention, on regulating mRNA levels in human hepatocytes *in vivo*. Mice were treated with 150 mg/kg b.i.d. with RVX000222 or vehicle by oral gavage for 3 days. Livers were harvested and RNA levels determined by real-time PCR using human specific TaqMan primer probes and cyclophilin A as an endogenous control. Table 5 lists the reduction in the levels of the indicated mRNAs. *p<0.05, **p<0.01 versus vehicle treated animals using 2-tailed student's t-tests.

Table 5: RVX000222 reduces mRNA expression levels of complement components 3 (C3), 4 (C4) and 5 (C5) and mannose-binding lectin 2 (MBL2) in humanized livers of chimeric mice treated with 150 mg/kg b.i.d. for 3 days. Numbers represent average % reduction in expression relative to vehicle treated mice (3 mice per group). Asterisk indicates p<0.05; two asterisks indicate p<0.01.

Compound	C3	C4	C5	C9	MBL2
RVX000222	20%	36%*	17%	45%**	61%**

Example 3: Microarray Analysis in Whole Blood

[0173] In this example, RNA from human whole blood treated ex vivo was analyzed by microarray. The method can be used to determine the effect of compounds, including those in the present invention, on RNA levels (Table 6).

[0174] After obtaining informed consent, whole blood was collected from three healthy volunteers into BD Vacutainer Sodium Heparin tubes and samples were inverted 10 times. Blood samples (1mL) were combined with 1mL of RPMI containing 2mM glutamine, 100U/mL penicillin, 100ug/mL streptomycin, 20% FBS and the compound of interest or vehicle (0.1% DMSO), followed by a 24h incubation at 37°C. Treated samples were transferred to a PAXgene RNA tube (PreAnalytix / Qiagen), inverted 5 times and frozen. RNA was isolated with the PAXgene RNA kit according to manufacturer's instructions. Microarray analysis was performed by Asuragen (Austin, TX) using the Affymetrix Human U133 Plus 2.4 Array. Shown in Table 6 is the mean of 3 independent samples ($p<0.01$). Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result. Upregulation of negative regulators or downregulation of positive regulators of the pathway will also result in reduced activity of the pathway and thus will constitute a positive result.

Table 6: 20uM RVX000222 alters complement component 3, CD55 and CD59 mRNA levels in ex-vivo treated human blood.

Gene	% change in expression
Complement component 3 (C3)	-59%
CD55	58%
CD59	88%

Example 4: Measure of Secreted Complement Proteins

[0175] In this example, protein secretion from cells grown in culture in the presence of compound of interest was analyzed by enzyme linked immunosorbent assay (ELISA). In some cases, cultured cells were treated with cytokines and the compound of interest to mimic an inflammatory state. The method can be used to determine the effect of compounds, including those in the present invention, on the

secretion of specific proteins from cells grown in culture under basal and cytokine stimulated (i.e. inflammatory) conditions (Table 7, Figures 5 and 6).

[0176] Huh-7 cells (JCRB Cell Bank) were introduced to 24-well plates in 500 μ L DMEM supplemented with 10% (v/v) FBS, 100 U/mL penicillin, 100 ug/mL streptomycin and 5 ug/mL plasmocin (all reagents from Gibco, except for the former, which comes from Invivogen) at 200 000 cells/well. After 24h, cells were treated with the compound of interest and/or cytokines in DMEM with 10% FBS containing 0.1% DMSO for a total treatment time of 72h. Fresh media containing compounds and/or cytokines was introduced in the final 24h of the experiment. At harvest, media were collected, debris was removed by brief centrifugation, and ELISA assays for the indicated proteins were performed as per the manufacturer's protocol. To correct for differences in cell numbers, values obtained for complement proteins were normalized to values for transferrin. HepG2 cells (ATCC) were cultured in MEM containing 10% FBS, 1X non-essential amino acids, 1mM sodium pyruvate, 2 mM L-glutamine, 100 U/mL penicillin, 100 ug/mL streptomycin and 5 ug/mL plasmocin. Serum amount was reduced to 0.5% when compounds were present. Treatment combinations and timing were as described above for Huh-7 cells. Primary human hepatocytes (CellzDirect / Life Technologies) were plated in collagen coated 96-well plates at 70 000 cells/well, then overlaid with Matrigel™ as recommended by the supplier. Cells were treated with compounds of interest with or without the indicated cytokines for a total of 72h in the recommended media supplemented with 10% FBS and 0.1% DMSO (v/v). Media were collected for measurements of secreted proteins.

[0177] The ELISA kits for detection of complement C3, C4, C5 and C9 were obtained from AssayPro (St. Charles, MO), while the ELISA reagents for transferrin detection were from Bethyl Laboratories (Montgomery, TX). Data were collected on a Thermo Scientific Multiskan GO apparatus. Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result. **Table 7:** Figures 5 and 6 list the amount of C3, C4, C5 and C9 protein that are detected in the media of cells treated with RVX000222 (compared to DMSO).

[0178] Quantitation of additional secreted proteins from cultured cells using the ELISA method is being evaluated. This includes, but is not limited to, complement C6, C8, MBL2 or Factor H.

Table 7: Secretion of complement C3, C4, and C5 in Huh-7 and HepG2 cells. Data are the percent maximum reduction in protein levels with standard deviation derived from three independent experiments.

Treatment	C3		C4		C5	
	Huh-7	HepG2	Huh-7	HepG2	Huh-7	HepG2
30uM	87±9%	34±5%	79±3%	65±5%	53±7%	77±4%
0.75uM JQ1	99±1%	54±5%	81±6%	81±9%	50±13%	82±7%

Example 5: Multi-Analyte Profiling

[0179] In this example, plasma samples from human subjects treated with placebo or RVX000222 was analyzed by Multi-Analyte Profiling (MAP) technology. The method can be used to determine the effect of compounds, including those in the present invention, on the levels of various analytes in plasma (Table 8).

[0180] Plasma collected from twenty RVX000222 treated subjects and ten placebo treated subjects at baseline and terminal time points (26 weeks) (from the previously completed ASSURE clinical trial; NCT01067820, was sent for MAP analysis. Using microsphere-based immuno-multiplexing, each sample was analyzed and the level of 107 different plasma proteins quantitated. The changes in values for each protein analyte were calculated versus the baseline measure, and statistically significant ($p<0.05$) and trending ($0.01>p>0.05$) values reported. Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result. Table 8 summarizes changes in plasma analytes observed with 26 week treatment with RVX000222.

Table 8: Changes in plasma analytes from the ASSURE trial (NCT01067820) measured using multi-analyte profiling (week 26 vs. baseline $p<0.05$)

Analyte	N	Baseline	Units	Change from baseline	Percent Change from baseline	P-value vs baseline
Complement Factor H (CFH)	20	570.3	ug/mL	-75.35	-11.45	0.01
Complement Factor H – Related Protein 1 (CFHR1)	17	2353.5	ug/mL	-291.76	-10.75	0.003
Complement C3 (C3)	20	1.1	mg/mL	-0.1	-9.28	0.002

Example 6: Protein Quantitation using LC-MRM/MS

[0181] In this example, plasma samples from human subjects treated with placebo or RVX000222 were analyzed by 1D LC-MRM/MS technology. The method can be used to determine the effect of compounds, including those in the present invention, on the levels of various analytes found in plasma.

[0182] Plasma collected from 74 RVX000222 treated subjects and 17 placebo treated subjects at baseline and terminal time points (26 weeks) (from the previously completed ASSURE clinical trial; NCT01067820) was sent for absolute protein quantification. Using mass spectrometric methods, including multiple reaction monitoring (MRM) mass spectrometry (MRM-MS), each sample is analyzed for the presence and amount of 43 different plasma proteins. The changes in values for each protein analyte are calculated versus the baseline measure, and statistically significant ($p<0.05$) and trending ($0.10>p>0.05$) values are reported (Table 9). Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result.

Table 9: Changes in plasma analytes from the ASSURE trial (NCT01067820) measured using LC-MRM/MS (week 26 vs. baseline p<0.10)

Protein Peptide	Baseline (ng/mL)	Change from baseline (ng/mL)	Percent Change from baseline	P-value vs baseline
Complement component C9	37,592	-5,034	-13.8	0.0001
Complement component C8 alpha chain	<i>1,828</i>	-120	-8.6	0.0001
Complement C5	34,391	-2,228	-5.3	0.0001
Complement factor I	17,911	-1,205	-5.2	0.002
Complement C4-B	159,041	-7,492	-4.3	0.001
Complement factor H	206,226	-8,710	-4.2	0.0001
Complement component C8 beta chain	5,907	-341	-3.9	0.004
Complement C3	769,753	-34,105	-3.6	0.02
Complement C1r subcomponent	122,295	-571	-3.6	0.02
Complement factor B	131,959	-4,259	-4.2	0.06

Note: Results are shown for peptide with highest concentration; italics indicate median

Example 7: Complement Activity Assays

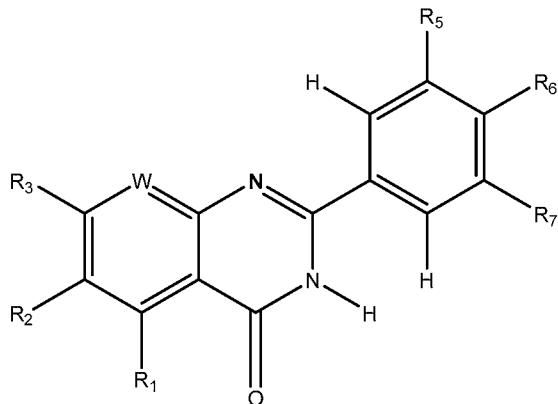
[0183] In this example, serum samples from human subjects treated with placebo or RVX000222 were analyzed by the total hemolytic complement (CH50) assay and the complement alternative pathway (AH50) assay. The method can be used to determine the effect of compounds, including those in the present invention, on the activity of the classical and alternative complement system in clinical samples.

[0184] Serum collected from RVX000222 treated subjects and placebo treated subjects at baseline and terminal time points (26 weeks) (from the previously completed ASSURE clinical trial; NCT01067820), was analyzed in the AH50 and CH50 assays. Using the CH50 screening assay to detect the hemolysis of sheep erythrocytes sensitized by specific antibodies, the hemolytic activity of the complement system in serum samples from treated and untreated subjects was measured. Likewise, using specific conditions to activate only the alternative pathway (AH50), activity of the complement response was measured. The degree of complement activation was measured at baseline and terminally to determine if there were any changes in the function of the complement system following drug treatment (Figure 7). Reduced function of the complement system constitutes a positive result.

Example 8: Protein Quantitation in Clinical Samples Using SOMAScan™.

[0185] In this example, plasma samples from human subjects treated with placebo or RVX000222 are analyzed by the SOMAScan™ assay (SomaLogic). The method can be used to determine the effect of compounds, including those in the present invention, on the abundance of proteins, including complement components, in clinical samples.

[0186] Plasma collected from 47 RVX000222 treated subjects at baseline and terminal time points (26 weeks) (from the previously completed ASSURE clinical trial; NCT01067820) was sent for analysis. Using the SOMAScan™ technology, each sample is analyzed for the relative presence and amount of 1,310 different proteins. The changes in values for each protein analyte are calculated versus the baseline measure, and statistically significant ($p<0.05$) values are reported (Table 10). Downregulation of expression of components of the complement cascade will result in reduced activity of the pathway and thus will constitute a positive result.


Table 10: Changes in serum analytes from the ASSURE trial measured using SOMAscan™ (week 26 vs. baseline p<0.05).

RVX-208 at 200mg/day			
Protein Name	Gene Symbol	% change vs. baseline	p-value vs baseline
Complement C3b	C3	-52.7	0.001
C-reactive protein	CRP	-43.6	0.0001
C5a anaphylatoxin	C5	-28.7	0.0002
Complement component C9	C9	-18.3	0.0001
Mannose-binding protein C	MBL2	-14.6	0.0002
Complement component C6	C6	-14.3	0.0001
Complement C5b-C6 complex	C5 C6	-12.0	0.0001
Complement C5	C5	-11.7	0.0001
Complement component C8	C8	-10.1	0.004
Complement factor B	CFB	-6.8	0.001
Complement C2	C2	-6.7	0.001
Complement factor I	CFI	-6.4	0.01
Complement C1s subcomponent	C1S	-6.1	0.02
Complement factor H	CFH	-5.6	0.0001
Complement decay-accelerating factor	CD55	-4.0	0.02
Mannan-binding lectin serine protease 1	MASP1	4.8	0.04

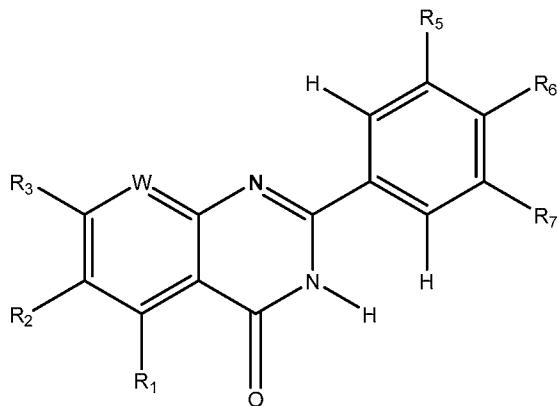
[0187] All references referred to herein are incorporated by reference in their entirety. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein.

What is claimed is:

1. A method for modulating the complement system in a subject in need thereof comprising administering a therapeutically effective amount of at least one compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, wherein:

Formula I

R₁ and R₃ are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;


R₂ is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R₅ and R₇ are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;

R₆ is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and

W is CH or N.

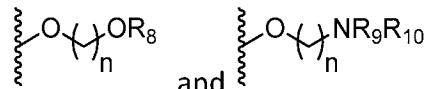
2. A method for treating a complement-associated disease or disorder in a subject in need thereof comprising administering a therapeutically effective amount of at least one compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, wherein:

Formula I

R_1 and R_3 are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;

R_2 is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R_5 and R_7 are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;


R_6 is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and

W is CH or N.

3. The method of any of claims 1-2, wherein W is CH.

4. The method of any of claims 1-3, wherein R_6 is selected from alkoxy substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide.

5. The method of any of claims 1-3, wherein:

R_6 is selected from hydrogen, methoxy,

wherein

n is 1, 2, or 3;

R_8 is selected from hydrogen or C_1 - C_6 alkyl optionally substituted with one or more groups selected from methyl, phenyl, and pyridinyl;

R_9 and R_{10} are independently selected from unsubstituted C_1 - C_6 alkyl, wherein R_9 and R_{10} may be joined together with N to form a 3- to 12-membered ring.

6. The method of any of claims 1-3, wherein R_6 is selected from 2-(hydroxy)ethoxy, 2-(pyrrolidin-1-yl)ethoxy, 4-isopropylpiperazin-1-yl, and 2-(isopropylamino)ethoxy.

7. The method of any of claims 1-3, wherein R_6 is 2-(hydroxy)ethoxy.

8. The method of any of claims 1-7, wherein R_1 and R_3 are methoxy.

9. The method of claims 1-2, wherein the compound of Formula I is selected from:

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

5,7-dimethoxy-2-{4-[4-(propan-2-yl)piperazin-1-yl]phenyl}-3,4-dihydroquinazolin-4-one ;

5,7-dimethoxy-2-{3-methoxy-5-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-3,4-dihydroquinazolin-4-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3H,4H-pyrido[2,3-d] pyrimidin-4-one;

2-{4-[2-(3,3-difluoropyrrolidin-1-yl)ethoxy]-3,5-dimethylphenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}-2-methylpropanamide;

5,7-dimethoxy-2-[4-(piperazin-1-yl)phenyl]-3,4-dihydroquinazolin-4-one;
2-(4-hydroxy-3,5-dimethylphenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;
N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}acetamide;
methyl N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}carbamate;
2-[4-(2,3-dihydroxypropoxy)-3,5-dimethylphenyl]-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;
N-(2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methylbenzamide;
2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl methylcarbamate;
2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl propylcarbamate;
N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)methanesulfonamide;
4-chloro-N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)benzenesulfonamide;
N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methoxybenzenesulfonamide;
2-(4-(2-aminoethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
N1-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-N2-methylphthalamide;
2-(4-(2-hydroxyethoxy)-3-methylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
2-(4-(benzyloxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
6-bromo-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;
6-bromo-2-(4-hydroxy-3,5-dimethylphenyl)quinazolin-4(3H)-one;
2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6-methoxyquinazolin-4(3H)-one;
5,7-dichloro-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;
5,7-dimethoxy-2-(4-(2-methoxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

N-(2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxy[2,3-d]pyrimidin-4(3H)-one;

5,7-dimethoxy-2-(4-methoxy-3-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

2-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

5,7-dimethoxy-2-(4-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl)-2-hydroxyacetamide;

2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetic acid;

N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenyl)-2-hydroxyacetamide;

5,7-dimethoxy-2-(4-((4-methylpiperazin-1-yl)methyl)phenyl)quinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3-methoxyphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-(3-chloro-4-(2-hydroxyethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetamide;

N-(2-(4-hydroxy-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;

2-(4-(bis(2-hydroxyethyl)amino)phenyl)-6,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(bis(2-hydroxyethyl)amino)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

5,7-dimethoxy-2-(4-(4-methylpiperazin-1-yl)phenyl)quinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)quinazolin-4(3H)-one;

2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

and stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

10. The method of any of claims 1-2, wherein the compound of Formula I is [2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one], or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

11. The method of any of claims 1-2, wherein the compound of Formula I is 2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

12. The method of any of claims 1-2, wherein the compound of Formula I is 2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

13. The method of any of claims 1-2, wherein the compound of Formula I is 5,7-dimethoxy-2-{4-[4-(propan-2-yl)piperazin-1-yl]phenyl}-3,4-dihydroquinazolin-4-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

14. A method for modulating the complement system in a subject in need thereof comprising administering a therapeutically effective amount of 2-{2-[(dimethylamino)methyl]-1H-indol-5-yl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

15. A method for treating a complement-associated disease or disorder in a subject in need thereof comprising administering a therapeutically effective amount of

2-{2-[(dimethylamino)methyl]-1H-indol-5-yl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

16. The method of any of claims 1-15, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 9, complement component 6, complement component 8, alpha polypeptide, complement component 4B, complement component 4A, coagulation factor IX, Coagulation factor VII, complement component 4 binding protein-beta, complement component 5, Protein C, coagulation factor XI, kallikrein B, plasma, tissue factor pathway inhibitor, complement component 8, gamma polypeptide, complement component 1-s subcomponent, complement component 8-beta polypeptide, coagulation factor XII, coagulation factor II, coagulation factor XIII B polypeptide, serpin peptidase inhibitor clade E, complement component 2, alpha-2-macroglobulin, complement factor H, complement factor I, complement factor B, complement component 1 R subcomponent, mannan-binding lectin serine peptidase 1, protein S, coagulation factor V, complement component 5a receptor 1, complement component 4 binding protein alpha, serpin peptidase inhibitor clade C member 1, complement component 3, mannan-binding lectin serine peptidase 2, coagulation factor X, coagulation factor VIII, serpin peptidase inhibitor clade D member 1, serpin peptidase inhibitor clade F member 2, plasminogen, bradykinin receptor B2, bradykinin receptor B1, serpin peptidase inhibitor clade A member 5, coagulation factor III, serpin peptidase inhibitor, clade G (C1 inhibitor) member 1, carboxypeptidase B2 (Plasma), fibrinogen beta chain, kininogen 1, complement component (3b/4b) receptor 1, plasminogen activator tissue, complement component (3d/epstein barr virus) receptor 2, thrombomodulin, CD55 molecule, decay accelerating factor for complement, complement component 1 Q subcomponent A chain, or complement component 7, plasminogen activator urokinase, complement factor D, complement component 1 Q subcomponent C chain, CD46 molecule complement regulatory protein, fibrinogen gamma chain, von willebrand factor, CD59 molecule complement regulatory, plasminogen activator urokinase receptor, serpin peptidase inhibitor clade A member 1, coagulation factor XIII A1 polypeptide,

complement component 3a receptor 1, fibrinogen alpha chain, complement component 1 Q subcomponent, B chain, and/or coagulation factor II (thrombin) receptor.

17. The method of any of claims 1-15, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 3, complement component 5, complement factor D, complement factor H and/or complement component 9.

18. The method of any of claims 1-17, wherein the complement-associated disease or disorder is selected from paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

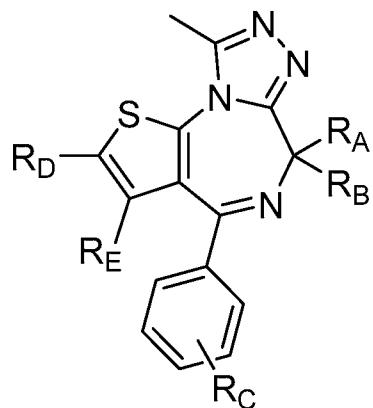
19. The method of any of claims 1-17, wherein the complement-associated disease or disorder is selected from familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

20. The method of any of claims 1-17, wherein the complement-associated disease or disorder is familial CD59 deficiency.

21. The method of any of claims 1-17, wherein the complement-associated disease or disorder is cold agglutinin disease.

22. The method of any of claims 1-17, wherein the complement-associated disease or disorder is familial C3 glomerulopathy.

23. The method of any of claims 1-17, wherein the complement-associated disease or disorder is C3 glomerulonephritis.


24. The method of any of claims 1-17, wherein the complement-associated disease or disorder is complement factor H related protein 5 nephropathy.

25. The method of any of claims 1-17, wherein the complement-associated disease or disorder is IgA nephropathy.

26. The method of any of claims 1-17, wherein the complement-associated disease or disorder is hereditary angioedema.

27. The method of any of claims 1-26, wherein the subject is a human.

28. A method for modulating the complement system in a subject in need thereof comprising administering a therapeutically effective amount of at least one compound of Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, wherein:

Formula II

or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, wherein:

R_A and R_B are independently selected from hydrogen, methyl, -(CH₂)_nR_F, -(CH₂)_nOR_F, and -CH₂C(O)OR_G;

n is selected from 1,2,3, and 4;

R_F is selected from methyl, ethyl, and -CH₂CH₂OCH₃;

R_G is selected from methyl, Ethyl, n-propyl, isopropyl, n-butyl, and tert-butyl;

R_C is selected from hydrogen, para-halogen, and -OCH₂O- or -OCH₂CH₂O- connected to the ortho and meta positions or connected to the meta and para positions of the phenyl ring; and

R_D and R_E are independently selected from hydrogen and methyl.

29. The method of claim 28, wherein the compound of Formula II is selected from:

6,6-dimethyl-4-phenyl-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

4-(3', 4'-mehylenedioxyphenyl)-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

9-methyl-4-phenyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine;

(S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate;

and stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

30. The method of claim 28 or 29, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 9, complement component 6, complement component 8, alpha polypeptide, complement component 4B, complement component 4A, coagulation factor IX, Coagulation factor VII, complement component 4 binding protein-beta, complement component 5, Protein C, coagulation factor XI, kallikrein B, plasma, tissue factor pathway inhibitor, complement component 8, gamma polypeptide, complement component 1-s subcomponent, complement component 8-beta polypeptide, coagulation factor XII, coagulation factor II, coagulation factor XIII B polypeptide, serpin peptidase inhibitor clade E, complement component 2, alpha-2-macroglobulin, complement factor H, complement factor I,

complement factor B, complement component 1 R subcomponent, mannan-binding lectin serine peptidase 1, protein S, coagulation factor V, complement component 5a receptor 1, complement component 4 binding protein alpha, serpin peptidase inhibitor clade C member 1, complement component 3, mannan-binding lectin serine peptidase 2, coagulation factor X, coagulation factor VIII, serpin peptidase inhibitor clade D member 1, serpin peptidase inhibitor clade F member 2, plasminogen, bradykinin receptor B2, bradykinin receptor B1, serpin peptidase inhibitor clade A member 5, coagulation factor III, serpin peptidase inhibitor, clade G (C1 inhibitor) member 1, carboxypeptidase B2 (Plasma), fibrinogen beta chain, kininogen 1, complement component (3b/4b) receptor 1, plasminogen activator tissue, complement component (3d/epstein barr virus) receptor 2, thrombomodulin, CD55 molecule, decay accelerating factor for complement, complement component 1 Q subcomponent A chain, or complement component 7, plasminogen activator urokinase, complement factor D, complement component 1 Q subcomponent C chain, CD46 molecule complement regulatory protein, fibrinogen gamma chain, von willebrand factor, CD59 molecule complement regulatory, plasminogen activator urokinase receptor, serpin peptidase inhibitor clade A member 1, coagulation factor XIII A1 polypeptide, complement component 3a receptor 1, fibrinogen alpha chain, complement component 1 Q subcomponent, B chain, and/or coagulation factor II (thrombin) receptor.

31. The method of any of claims 28-30, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 3, complement component 5, complement factor D, complement factor H and/or complement component 9.

32. The method of any of claims 28-31, wherein the complement-associated disease or disorder is selected from paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome,

catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

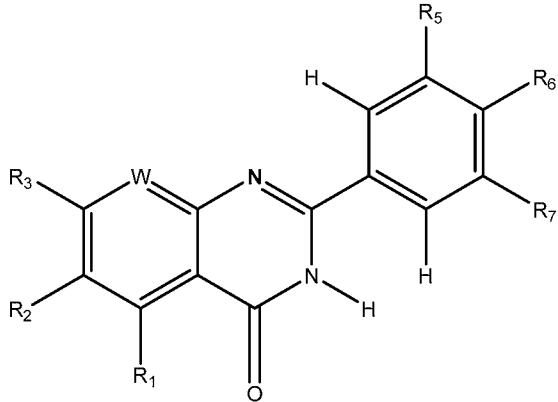
33. The method of any of claims 28-31, wherein the complement-associated disease or disorder is selected from familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

34. The method of any of claims 28-31, wherein the complement-associated disease or disorder is familial CD59 deficiency.

35. The method of any of claims 28-31, wherein the complement-associated disease or disorder is cold agglutinin disease.

36. The method of any of claims 28-31, wherein the complement-associated disease or disorder is familial C3 glomerulopathy.

37. The method of any of claims 28-31, wherein the complement-associated disease or disorder is C3 glomerulonephritis.


38. The method of any of claims 28-31, wherein the complement-associated disease or disorder is complement factor H related protein 5 nephropathy.

39. The method of any of claims 28-31, wherein the complement-associated disease or disorder is IgA nephropathy.

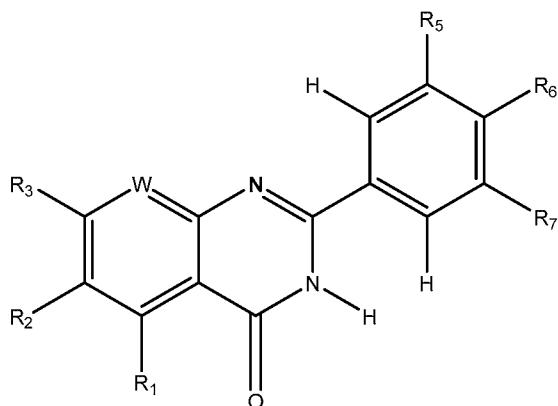
40. The method of any of claims 28-31, wherein the complement-associated disease or disorder is hereditary angioedema.

41. The method of any of claims 28-40, wherein the subject is a human.

42. Use of at least one compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof in the manufacture of a medicament for modulating the complement system in a subject in need thereof, wherein:

Formula I

R_1 and R_3 are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;


R_2 is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R_5 and R_7 are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;

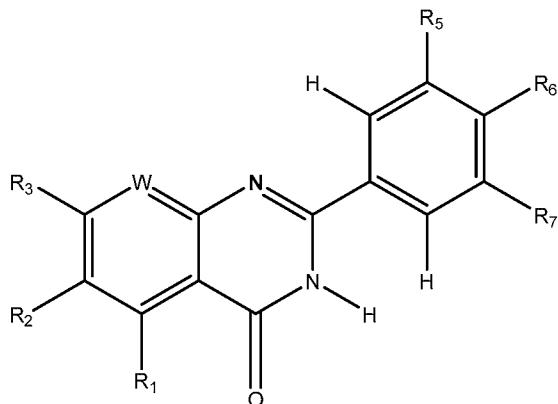
R_6 is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and

W is CH or N.

43. Use of at least one compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof in the manufacture of a medicament for treating a complement-associated disease or disorder in a subject in need thereof, wherein:

Formula I

R_1 and R_3 are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;


R_2 is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R_5 and R_7 are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;

R_6 is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and

W is CH or N.

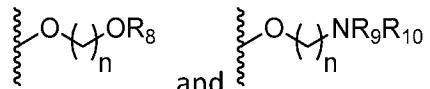
44. Use of at least one compound of Formula I or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof for modulating the complement system and/or treating a complement-associated disease or disorder in a subject in need thereof, wherein:

Formula I

R_1 and R_3 are each independently selected from alkoxy, alkyl, amino, halogen, and hydrogen;

R_2 is selected from alkoxy, alkyl, alkenyl, alkynyl, amide, amino, halogen, and hydrogen;

R₅ and R₇ are each independently selected from alkyl, alkoxy, amino, halogen, and hydrogen;


R_6 is selected from amino, amide, alkyl, hydrogen, hydroxyl, piperazinyl, and alkoxy, wherein the alkoxy is optionally substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide; and

W is CH or N.

45. The use of any of claims 42-44, wherein W is CH.

46. The use of any of claims 42-45, wherein R_6 is selected from alkoxy substituted with one or more groups chosen from amide, amine, aryl, benzyloxy, carbamate, carboxy, heterocyclyl, hydroxyl, methoxy, and sulfonamide.

47. The use of any of claims 42-45, wherein:

R₆ is selected from hydrogen, methoxy,

wherein

n is 1, 2, or 3;

R_8 is selected from hydrogen or C_1 - C_6 alkyl optionally substituted with one or more groups selected from methyl, phenyl, and pyridinyl;

R_9 and R_{10} are independently selected from unsubstituted C_1 - C_6 alkyl, wherein R_9 and R_{10} may be joined together with N to form a 3- to 12-membered ring.

48. The use of any of claims 42-45, wherein R_6 is selected from 2-(hydroxy)ethoxy, 2-(pyrrolidin-1-yl)ethoxy, 4-isopropylpiperazin-1-yl, and 2-(isopropylamino)ethoxy.

49. The use of any of claims 42-45, wherein R_6 is 2-(hydroxy)ethoxy.

50. The use of any of claims 42-49, wherein R_1 and R_3 are methoxy.

51. The use of any of claims 42-44, wherein the compound of Formula I is selected from:

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

2-(4-(4-isopropylpiperazin-1-yl)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

5,7-dimethoxy-2-{3-methoxy-5-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-3,4-dihydroquinazolin-4-one;

2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3H,4H-pyrido[2,3-d] pyrimidin-4-one;

2-{4-[2-(3,3-difluoropyrrolidin-1-yl)ethoxy]-3,5-dimethylphenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;

N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}-2-methylpropanamide;

5,7-dimethoxy-2-[4-(piperazin-1-yl)phenyl]-3,4-dihydroquinazolin-4-one;

2-(4-hydroxy-3,5-dimethylphenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;
N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}acetamide;
methyl N-{2-[4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy]ethyl}carbamate;
2-[4-(2,3-dihydroxypropoxy)-3,5-dimethylphenyl]-5,7-dimethoxy-3,4-dihydroquinazolin-4-one;
N-(2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methylbenzamide;
2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl methylcarbamate;
2-(4-(5,7-Dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl propylcarbamate;
N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)methanesulfonamide;
4-chloro-N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)benzenesulfonamide;
N-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-4-methoxybenzenesulfonamide;
2-(4-(2-aminoethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
N1-(2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)ethyl)-N2-methylphthalamide;
2-(4-(2-hydroxyethoxy)-3-methylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
2-(4-(benzyloxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;
6-bromo-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;
6-bromo-2-(4-hydroxy-3,5-dimethylphenyl)quinazolin-4(3H)-one;
2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6-methoxyquinazolin-4(3H)-one;
5,7-dichloro-2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;
5,7-dimethoxy-2-(4-(2-methoxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

N-(2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyppyrido[2,3-d]pyrimidin-4(3H)-one;

5,7-dimethoxy-2-(4-methoxy-3-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

2-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

5,7-dimethoxy-2-(4-(morpholinomethyl)phenyl)quinazolin-4(3H)-one;

N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl)-2-hydroxyacetamide;

2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetic acid;

N-(4-(5,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenyl)-2-hydroxyacetamide;

5,7-dimethoxy-2-(4-((4-methylpiperazin-1-yl)methyl)phenyl)quinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3-methoxyphenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-(3-chloro-4-(2-hydroxyethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-yl)-2,6-dimethylphenoxy)acetamide;

N-(2-(4-hydroxy-3,5-dimethylphenyl)-4-oxo-3,4-dihydroquinazolin-6-yl)acetamide;

2-(4-(bis(2-hydroxyethyl)amino)phenyl)-6,7-dimethoxyquinazolin-4(3H)-one;

2-(4-(bis(2-hydroxyethyl)amino)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

5,7-dimethoxy-2-(4-(4-methylpiperazin-1-yl)phenyl)quinazolin-4(3H)-one;

2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)quinazolin-4(3H)-one;

2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)quinazolin-4(3H)-one;

2-(3,5-dimethyl-4-(2-morpholinoethoxy)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one;

and stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

52. The use of any of claims 42-44, wherein the compound of Formula I is [2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one], or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

53. The use of any of claims 42-44, wherein the compound of Formula I is 2-{3,5-dimethyl-4-[2-(pyrrolidin-1-yl)ethoxy]phenyl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

54. The use of any of claims 42-44, wherein the compound of Formula I is 2-(3,5-dimethyl-4-{2-[(propan-2-yl)amino]ethoxy}phenyl)-5,7-dimethoxy-3,4-dihydroquinazolin-4-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

55. The use of any of claims 42-44, wherein the compound of Formula I is 2-(4-(4-isopropylpiperazin-1-yl)phenyl)-5,7-dimethoxyquinazolin-4(3H)-one, or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof.

56. Use of 2-{2-[(dimethylamino)methyl]-1H-indol-5-yl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof in the manufacture of a medicament for modulating the complement system in a subject in need thereof.

57. Use of 2-{2-[(dimethylamino)methyl]-1H-indol-5-yl}-5,7-dimethoxy-3,4-dihydroquinazolin-4-one or a stereoisomer, tautomer, pharmaceutically acceptable

salt, or hydrate thereof in the manufacture of a medicament for treating a complement-associated disease or disorder in a subject in need thereof.

58. The use of any of claims 42-57, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 9, complement component 6, complement component 8, alpha polypeptide, complement component 4B, complement component 4A, coagulation factor IX, Coagulation factor VII, complement component 4 binding protein-beta, complement component 5, Protein C, coagulation factor XI, kallikrein B, plasma, tissue factor pathway inhibitor, complement component 8, gamma polypeptide, complement component 1-s subcomponent, complement component 8-beta polypeptide, coagulation factor XII, coagulation factor II, coagulation factor XIII B polypeptide, serpin peptidase inhibitor clade E, complement component 2, alpha-2-macroglobulin, complement factor H, complement factor I, complement factor B, complement component 1 R subcomponent, mannan-binding lectin serine peptidase 1, protein S, coagulation factor V, complement component 5a receptor 1, complement component 4 binding protein alpha, serpin peptidase inhibitor clade C member 1, complement component 3, mannan-binding lectin serine peptidase 2, coagulation factor X, coagulation factor VIII, serpin peptidase inhibitor clade D member 1, serpin peptidase inhibitor clade F member 2, plasminogen, bradykinin receptor B2, bradykinin receptor B1, serpin peptidase inhibitor clade A member 5, coagulation factor III, serpin peptidase inhibitor, clade G (C1 inhibitor) member 1, carboxypeptidase B2 (Plasma), fibrinogen beta chain, kininogen 1, complement component (3b/4b) receptor 1, plasminogen activator tissue, complement component (3d/epstein barr virus) receptor 2, thrombomodulin, CD55 molecule, decay accelerating factor for complement, complement component 1 Q subcomponent A chain, or complement component 7, plasminogen activator urokinase, complement factor D, complement component 1 Q subcomponent C chain, CD46 molecule complement regulatory protein, fibrinogen gamma chain, von willebrand factor, CD59 molecule complement regulatory, plasminogen activator urokinase receptor, serpin peptidase inhibitor clade A member 1, coagulation factor XIII A1 polypeptide,

complement component 3a receptor 1, fibrinogen alpha chain, complement component 1 Q subcomponent, B chain, and/or coagulation factor II (thrombin) receptor.

59. The use of any of claims 42-57, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 3, complement component 5, complement factor D, complement factor H and/or complement component 9.

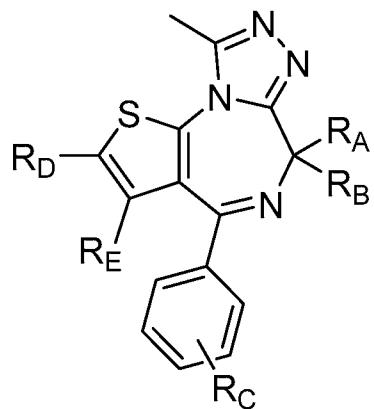
60. The use of any of claims 42-59, wherein the complement-associated disease or disorder is selected from paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

61. The use of any of claims 42-59, wherein the complement-associated disease or disorder is selected from familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

62. The use of any of claims 42-59, wherein the complement-associated disease or disorder is familial CD59 deficiency.

63. The use of any of claims 42-59, wherein the complement-associated disease or disorder is cold agglutinin disease.

64. The use of any of claims 42-59, wherein the complement-associated disease or disorder is familial C3 glomerulopathy.


65. The use of any of claims 42-59, wherein the complement-associated disease or disorder is C3 glomerulonephritis.

66. The use of any of claims 42-59, wherein the complement-associated disease or disorder is complement factor H related protein 5 nephropathy.

67. The use of any of claims 42-59, wherein the complement-associated disease or disorder is IgA nephropathy.

68. The use of any of claims 42-59, wherein the complement-associated disease or disorder is hereditary angioedema.

69. Use of at least one compound of Formula II or a stereoisomer, tautomer, pharmaceutically acceptable salt, or hydrate thereof, in the manufacture of a medicament for modulating the complement system in a subject in need thereof wherein:

R_G is selected from methyl, Ethyl, n-propyl, isopropyl, n-butyl, and tert-butyl;
 R_C is selected from hydrogen, para-halogen, and $-OCH_2O-$ or $-OCH_2CH_2O-$ connected to the ortho and meta positions or connected to the meta and para positions of the phenyl ring; and
 R_D and R_E are independently selected from hydrogen and methyl.

70. The use of claim 69, wherein the compound of Formula II is selected from: 6,6-dimethyl-4-phenyl-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine; 4-(3', 4'-mehylenedioxyphenyl)-9-methyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine; 9-methyl-4-phenyl-6H-thieno[3,2-f]-s-triazolo[4,3-a][1,4]diazepine; (S)-tert-butyl 2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetate; and stereoisomers, tautomers, pharmaceutically acceptable salts, and hydrates thereof.

71. The use of claim 69 or 70, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 9, complement component 6, complement component 8, alpha polypeptide, complement component 4B, complement component 4A, coagulation factor IX, Coagulation factor VII, complement component 4 binding protein-beta, complement component 5, Protein C, coagulation factor XI, kallikrein B, plasma, tissue factor pathway inhibitor, complement component 8, gamma polypeptide, complement component 1- s subcomponent, complement component 8-beta polypeptide, coagulation factor XII, coagulation factor II, coagulation factor XIII B polypeptide, serpin peptidase inhibitor clade E, complement component 2, alpha-2-macroglobulin, complement factor H, complement factor I, complement factor B, complement component 1 R subcomponent, mannan-binding lectin serine peptidase 1, protein S, coagulation factor V, complement component 5a receptor 1, complement component 4 binding protein alpha, serpin peptidase inhibitor

clade C member 1, complement component 3, mannan-binding lectin serine peptidase 2, coagulation factor X, coagulation factor VIII, serpin peptidase inhibitor clade D member 1, serpin peptidase inhibitor clade F member 2, plasminogen, bradykinin receptor B2, bradykinin receptor B1, serpin peptidase inhibitor clade A member 5, coagulation factor III, serpin peptidase inhibitor, clade G (C1 inhibitor) member 1, carboxypeptidase B2 (Plasma), fibrinogen beta chain, kininogen 1, complement component (3b/4b) receptor 1, plasminogen activator tissue, complement component (3d/epstein barr virus) receptor 2, thrombomodulin, CD55 molecule, decay accelerating factor for complement, complement component 1 Q subcomponent A chain, or complement component 7, plasminogen activator urokinase, complement factor D, complement component 1 Q subcomponent C chain, CD46 molecule complement regulatory protein, fibrinogen gamma chain, von willebrand factor, CD59 molecule complement regulatory, plasminogen activator urokinase receptor, serpin peptidase inhibitor clade A member 1, coagulation factor XIII A1 polypeptide, complement component 3a receptor 1, fibrinogen alpha chain, complement component 1 Q subcomponent, B chain, and/or coagulation factor II (thrombin) receptor.

72. The use of any of claims 69-71, wherein the complement-associated disease or disorder involves the modulation of one or more genes selected from Mannose-Binding Lectin (protein C) 2, complement component 3, complement component 5, complement factor D, complement factor H and/or complement component 9.

73. The use of any of claims 69-72, wherein the complement-associated disease or disorder is selected from paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, amyotrophic lateral sclerosis, macular degeneration, lupus nephritis, myasthenia gravis, neuromyelitis optica, anti-phospholipid syndrome, catastrophic anti-phospholipid syndrome, dense deposit disease (type II membranoproliferative glomerulonephritis), Shiga-like toxin-producing *E. coli* hemolytic uremic syndrome, and abdominal and thoracic aortic aneurysms.

74. The use of any of claims 69-72, wherein the complement-associated disease or disorder is selected from familial CD59 deficiency, cold agglutinin disease, familial C3 glomerulopathy, C3 glomerulonephritis, complement factor H related protein 5 nephropathy, IgA nephropathy, and hereditary angioedema (HAE).

75. The use of any of claims 69-72, wherein the complement-associated disease or disorder is familial CD59 deficiency.

76. The use of any of claims 69-72, wherein the complement-associated disease or disorder is cold agglutinin disease.

77. The use of any of claims 69-72, wherein the complement-associated disease or disorder is familial C3 glomerulopathy.

78. The use of any of claims 69-72, wherein the complement-associated disease or disorder is C3 glomerulonephritis.

79. The use of any of claims 69-72, wherein the complement-associated disease or disorder is complement factor H related protein 5 nephropathy.

80. The use of any of claims 69-72, wherein the complement-associated disease or disorder is IgA nephropathy.

81. The use of any of claims 69-72, wherein the complement-associated disease or disorder is hereditary angioedema.

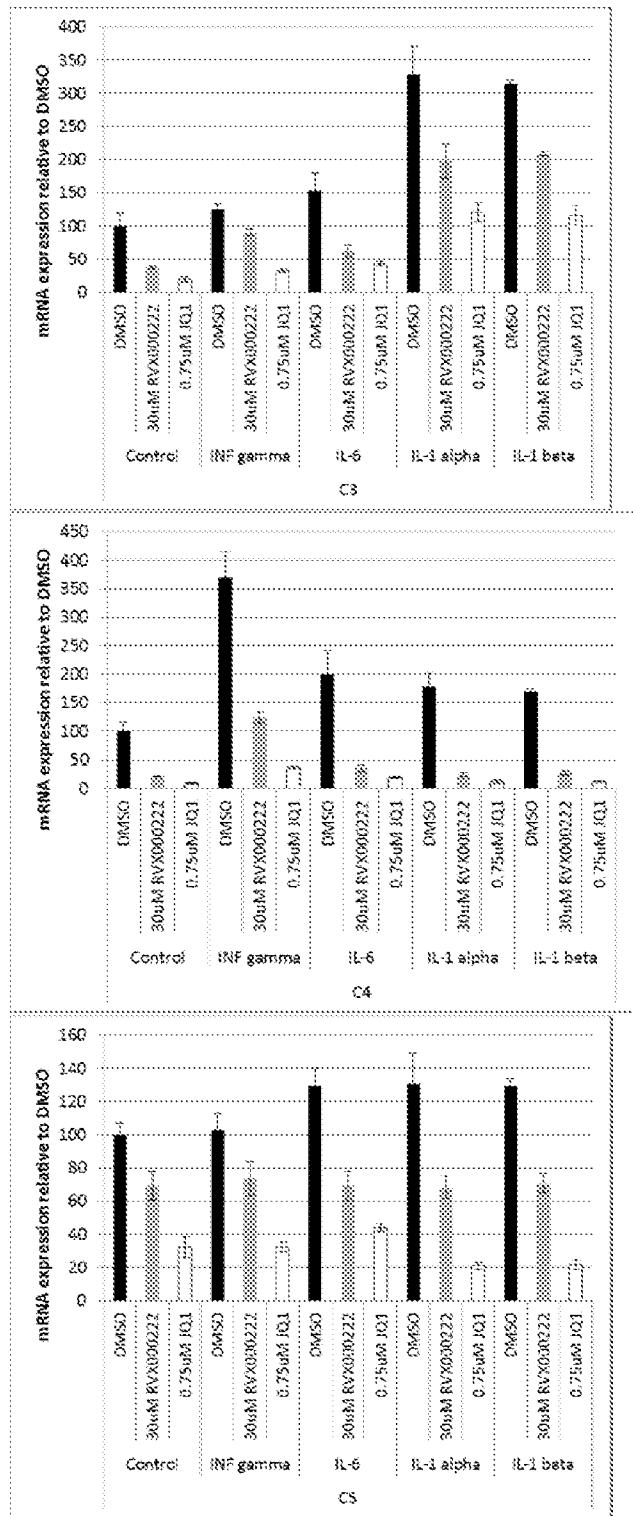
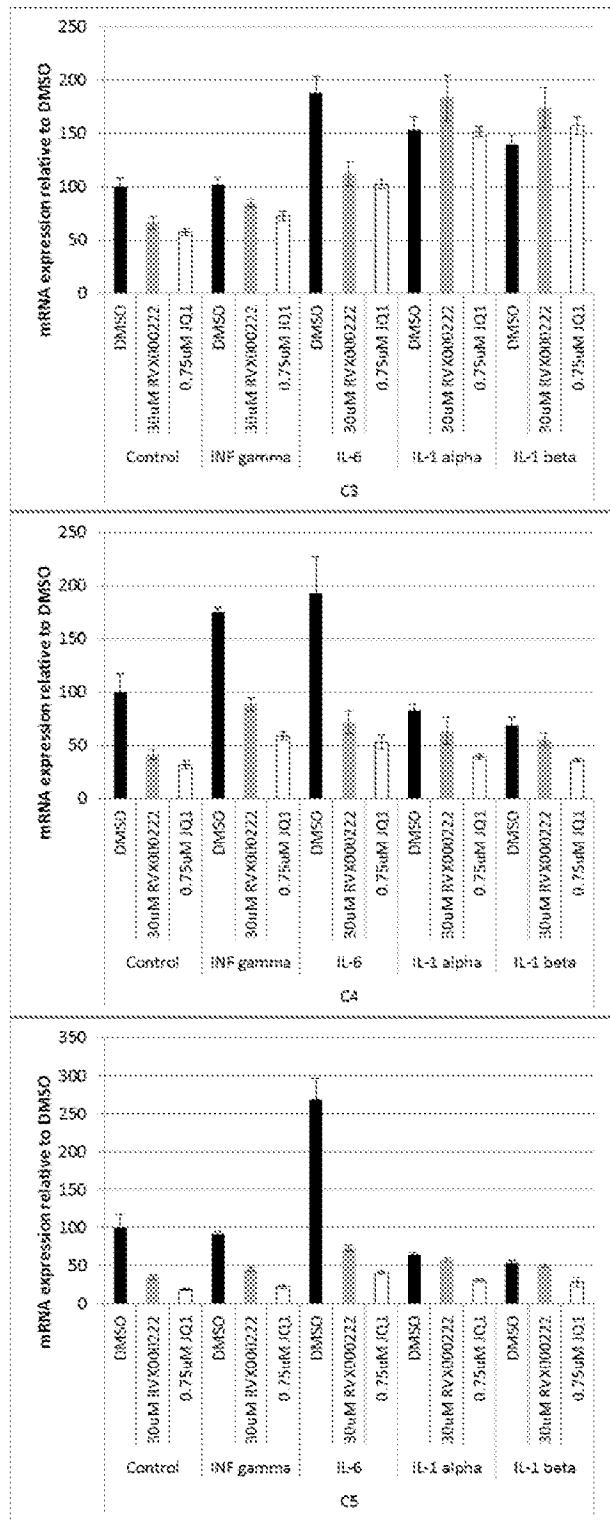



FIG. 1

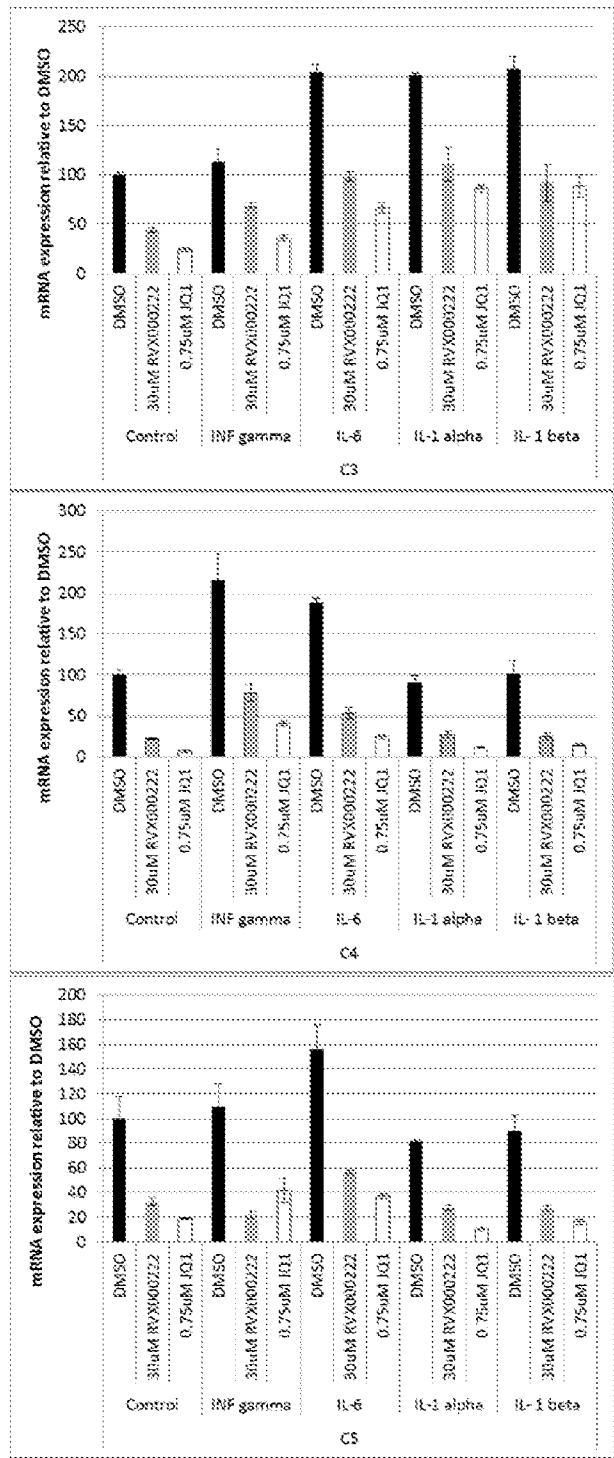


FIG. 3

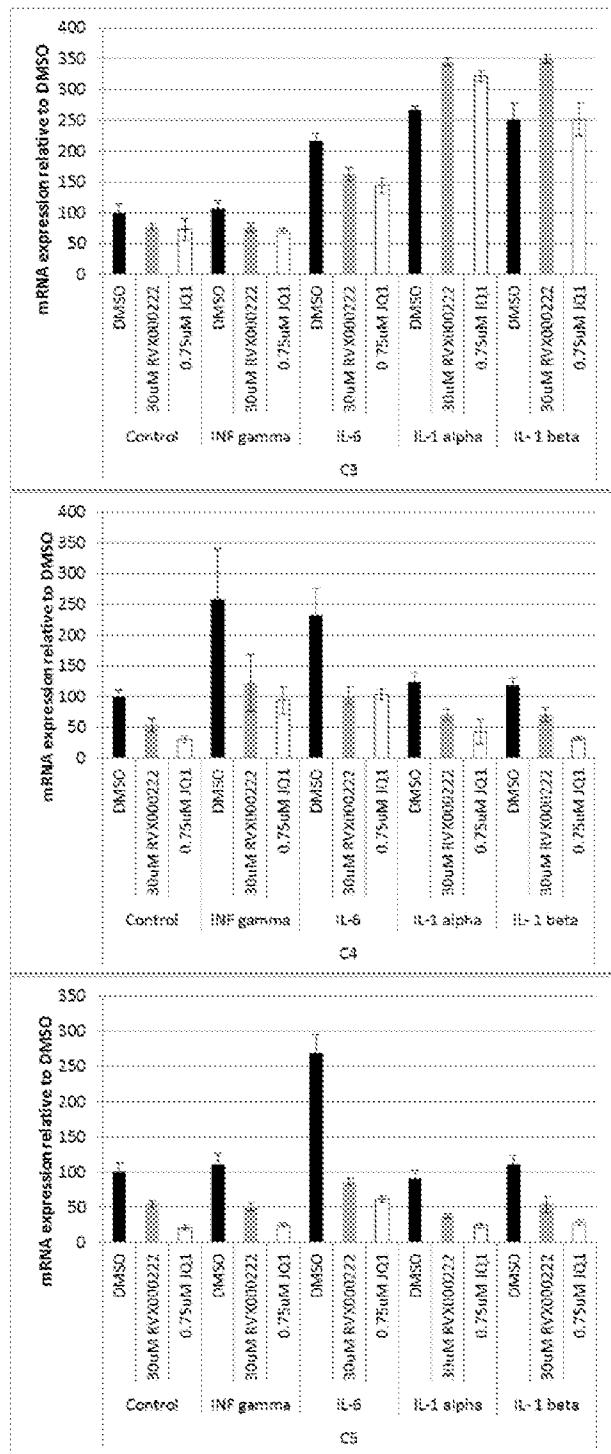


FIG. 4

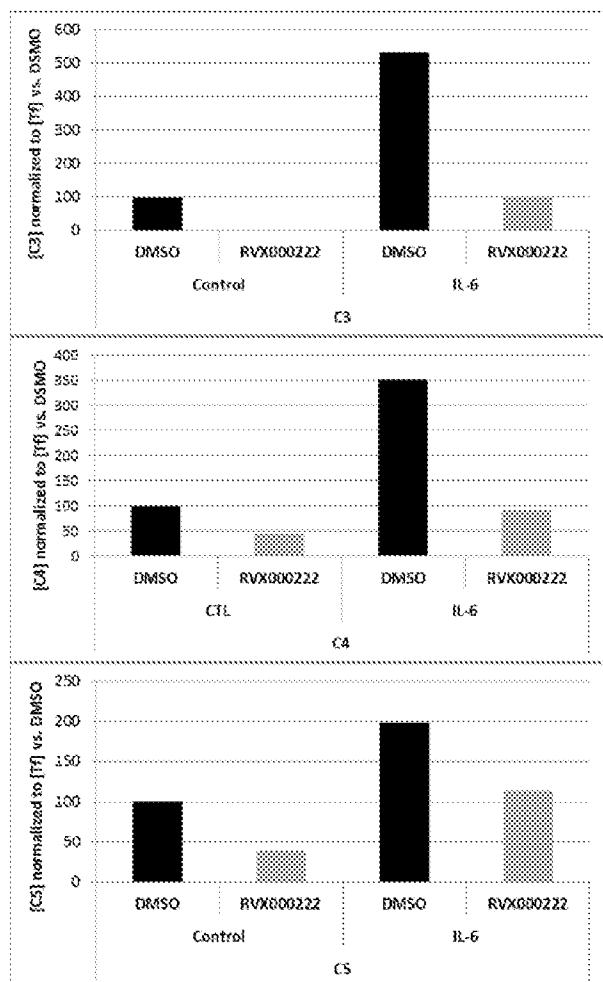


FIG. 5

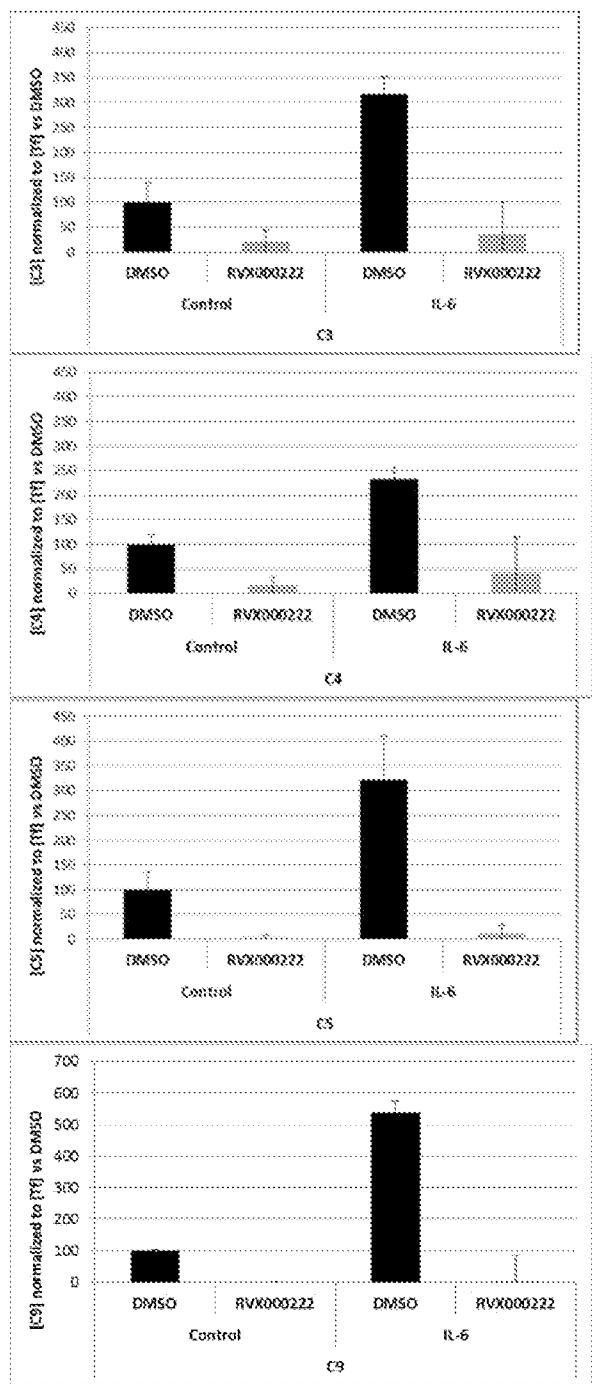


FIG. 6

FIG. 7A

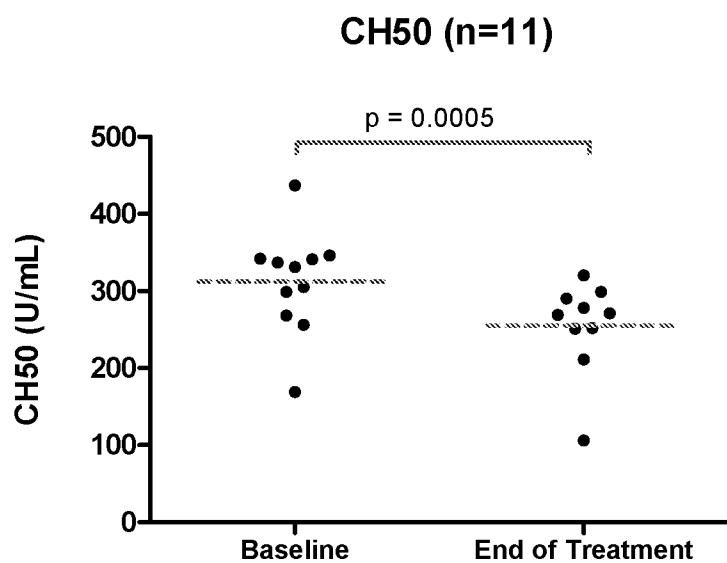


FIG. 7B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2016/000443

A. CLASSIFICATION OF SUBJECT MATTER
IPC: **A61K 31/551** (2006.01), **A61K 31/517** (2006.01), **A61P 37/02** (2006.01), **C07D 239/91** (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC (2006.01): A61K 31/517, C07D 239/91

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Database: CIPO Library Discover Tool, Questel-Orbit, PubMed, Canadian Patent Database (Intellect), Google/GoogleScholar
Keywords: quinazolinone, quinazolin*, RVX*208, RVX*000222, apabetalone, complement system, complement pathway, complement component, complement factor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CA2851996 A1 (SHENOY, N.R.) 10 May 2013 (1005/2013)	42-60
Y	*See in particular: examples, claims, Description page 29	61-68
A	MORGAN, P.A. & HARRIS, C.L. "Complement, a target for therapy in inflammatory and degenerative diseases", Nature Reviews - Drug Discovery, Vol 14, December 2015 (12-2015), pages 857-877	61-68

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
--	--

Date of the actual completion of the international search
08 June 2016 (08-06-2016)

Date of mailing of the international search report
22 June 2016 (22-06-2016)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 819-953-2476

Authorized officer
Laura Stuart (819) 635-5643

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2016/000443

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.: 1-27
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 1-27 are directed to a method for treatment of the human or animal body by surgery or therapy, which the International Searching Authority is not required to search under PCT Rule 39.1(iv). However, this Authority has carried out a search based on the alleged effect or purpose/use of the product defined in claims 1-27, as is defined by present claims 42-68.
2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The claims are directed to a plurality of inventive concepts as follows:

Group A - Claims 1-27, and 42-68 are directed to methods of treating complement-associated disorders with compounds of formula 1, and the use of compounds of formula 1 in the treatment of complement-associated disorders; and

Group B - Claims 28-41, and 69-81 are directed to methods of treating complement-associated disorders with compounds of formula 2, and the use of compounds of formula 2 in the treatment of complement-associated disorders.

The claims must be limited to one inventive concept as set out in PCT Rule 13.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos.: 42-68

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/IB2016/000443

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date
CA2851996A1	10 May 2013 (10-05-2013)	CA2851996A1	10 May 2013 (10-05-2013)
		AU2012330885A1	24 April 2014 (24-04-2014)
		CN103945848A	23 July 2014 (23-07-2014)
		EP2773354A1	10 September 2014 (10-09-2014)
		EP2773354A4	01 July 2015 (01-07-2015)
		HK1201751A1	11 September 2015 (11-09-2015)
		IL232041D0	28 May 2014 (28-05-2014)
		IN2751CHN2014A	03 July 2015 (03-07-2015)
		JP2014532638A	08 December 2014 (08-12-2014)
		KR20140088893A	11 July 2014 (11-07-2014)
		NZ623381A	31 March 2016 (31-03-2016)
		RU2014115427A	10 December 2015 (10-12-2015)
		US2013108672A1	02 May 2013 (02-05-2013)
		WO2013064900A1	10 May 2013 (10-05-2013)
		WO2013064900A8	18 July 2013 (18-07-2013)