
US 2013 0067592A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0067592 A1

Sreedhar (43) Pub. Date: Mar. 14, 2013

(54) SYSTEMAND METHOD FOR ROLE BASED Related U.S. Application Data
ANALYSIS AND ACCESS CONTROL (63) Continuation of application No. 12/196.682, filed on

Aug. 22, 2008, which is a continuation of application
(71) Applicant: INTERNATIONAL BUSINESS No. 1 1/446,104, filed on Jun. 1, 2006, now Pat. No.

MACHINES CORP, Armonk, NY (US) 7.933.925.

(72) Inventor: Vugranam C. Sreedhar, Yorktown Publication Classification
Heights, NY (US) (51) Int. Cl.

G06F2L/00 (2006.01)
(52) U.S. Cl.

(73) Assignee: INTERNATIONAL BUSINESS USPC .. T26/27
MACHINES CORPORATION,
Armonk, NY (US) (57) ABSTRACT

A system and method for program access control includes, for
a typestate, providing typestate properties and assigning a

(21) Appl. No.: 13/668,918 role to the typestate in a program in accordance with the
typestate properties. Access to operations is limited for the
typestate in the program based on the role assigned to the

(22) Filed: Nov. 5, 2012 typestate and an access permission level.

Open ()
Read ()
Write ()
Create()

OpenRead

OpenWrite

Create()

Patent Application Publication Mar. 14, 2013 Sheet 1 of 11 US 2013/OO67592 A1

1: interface Observer {
void update(Data info);

4; interface Subject{
5: void addObs(Observer obs);
6: void removeObs

10 7:}
8:class Obsid implements Observer
9: Obsld()0 ;
10: void update(Data info) {
11: info.printld();
12: }
13: }
14: class Obs\ame implements Observer
15: Obs\ame () { };
16; void update (Data info) {
17: info.printName() ;
18:
19: }

20; class Subject implements Subject
21: private ArrayList obsList;
22; private Data data,
23: Subject () {
24: obsList = new ArrayList ();
25: data = new Data ();
26:
27: set Data (String name, int id) {
28; dat.name = name;
29; data, id = id ;
30; notifyObs () ;
31: }
32: void addObS (Observer obs) {
33: obsList, add (obs);
34: }
35: void removeObs (IObserver obs) {
35. } obsList, remove (obs);
7:

38: private void notifyObs() {
39: for (int i = 0;
40: icobsList.size (); i++) {
41: Observer obS =
42: (Observer) obsList.get();
43: obs, update(data);

47: class Data
48; String name;
49: int id;
50: Data () };
51: printName() {
3. System.out.print (name);
53:
54: printld() {
55: System.out.print(id);
56: }
51:
58: Class Driver
59 public static void main (String args)
60: {
61: Subject Sub = new Subject ();
62: Observerdoid = new Obsld () ;
63: Sub, addObS (oid);
64: ObsWarne oname = new ObsName () ;
65 sub-addObs (oname) ;
S5. subsetData ("Ramanujam", 1729); 1:
68: }

FIG. 1

Patent Application Publication Mar. 14, 2013 Sheet 2 of 11 US 2013/OO67592 A1

<method - permissions
<role - name> Notifier </role - name>

<methods
<class - name> Subject </class - name>
<method - name> SetData </method - name>

</methods
<role - name> Manager </role - name>

<methods
<class-name> Subject </class - name>
<method - name> addObS </method - name>
<method - name> removeObS </method - name>

</methods
<role - name> DirectOr </rOle - name>

<nneth Ods
<class - name> Subject </class - name>
<method - name> * </method - name>

</methods
<role-name> Displayld </role - name>

< methods
<class - name> Obsld </class - name>
<method - name> * </method - name>

</methods
<role - name> DisplayName </role-name>

<methods
<class - name> ObS Name </Class - name>
<method - name> * </method - name>

</methods
<method - permissions

FIG.2

Patent Application Publication Mar. 14, 2013 Sheet 3 of 11 US 2013/OO67592 A1

Driver, main

63:SubaddObs 65:Sub.addObs 66:Sub. SetData

Subject.addObs SubjectSetData

30:this, notifyObs

Subject.notifyObs

43:ObS.update

Obsld update

11:info.printild

ObsName.update

17:info.printName

Data printild Data printName

FIG. 3

Patent Application Publication Mar. 14, 2013 Sheet 4 of 11 US 2013/OO67592 A1

Driver. main. Sub Obsld update.info

Obsld update.info

24:ArrayList

O 1

66:String Subject.addObs.ob
Driver, main.oid

62;Obsid 64:ObSName

Subject.notify, obs
ObsName update.this

Obsld update.this Driver, main.Oname

FIG. 4

Patent Application Publication Mar. 14, 2013 Sheet 5 of 11 US 2013/0067592 A1

FIG.5

Patent Application Publication Mar. 14, 2013 Sheet 6 of 11 US 2013/OO67592 A1

Driver, main

65:SubaddObS 63:Sub, addObS 66:Sub. SetData

Subject.addObs

Role = {Director, Manager} Role = {Notifier, Director)
Rolet = (Manager) Role' = (Notifier, Displayld,

SubjectSetData DisplayName}

30:this, notifyObs Role = {}
Rolet = Notifier, Displayld,

Subject.notifyObs DisplayName}

43:Obs, update
Role = {DisplayName}

Role = {Displayld} Rolet = {Display Name}
Role+ = {Displayld}

Obsld update ObsName. update

17:info.printName

Data printName

11:info.printild

Data printild

F.G. 6

Patent Application Publication Mar. 14, 2013 Sheet 7 of 11 US 2013/OO67592 A1

Create()

Write ()

FIG.7

Patent Application Publication Mar. 14, 2013 Sheet 8 of 11 US 2013/0067592 A1

Open ()
Read ()
Write ()
Create()

OpenRead

OpenWrite

OpenRead OpenWrite

FIG. 9

Patent Application Publication Mar. 14, 2013 Sheet 9 of 11 US 2013/OO67592 A1

Determine / provide typestate properties
(e.g., Security properties)

202

Assign roles to typestates in accordance
with the typestate properties

204

Generate typestate hierarchy
tree With roles

206

Access is limited to the typestates based upon
role assigned and a permission level of an

accessor (e.g., deny Or permit access)

210

Perform role consistency analysis

Perform role escape analysis

214

Include method-based Security with
the present method

Patent Application Publication Mar. 14, 2013 Sheet 10 of 11 US 2013/OO67592 A1

For each object Compute
a Set of methods that

directly access the object
(may uSe a pointer graph)

Construct a pointer graph
with assigned roles

320
302

Check role assignments
for each object to

determine if the object
is assigned a role that is
at least the least upper

bOund role

Determine escaped roles

322

304

Permit aCCeSS if the
aCCeSSOr'SrOle is at leaSt

equal to the least
upper bound role

Determine Whether
information is leaked

Or COntained

308 324

FIG 11

Patent Application Publication Mar. 14, 2013 Sheet 11 of 11 US 2013/OO67592 A1

400

Node / Computer - 404

Role-based
Program

PrOCeSSOr MOdule

407 402

Node / Computer - 404

Role-based
Program
Module

402

Server - 401

407

403

406 408
OS

Role-based
Program
MOdule

402

Role-based
Program
Module

402

Computer - 409
PrOCeSSOr

407

403
Methods Typestates

406 408
OS

Role-based
Program
MOCule

402
FG, 12

US 2013/OO67592 A1

SYSTEMAND METHOD FOR ROLE BASED
ANALYSIS AND ACCESS CONTROL

RELATED APPLICATION INFORMATION

0001. This application is a Continuation of cop-pending
U.S. patent application Ser. No. 12/196.682, filed on Aug. 22.
2008, which in turn was a Continuation application of U.S.
patent application Ser. No. 1 1/446,104 filed on Jun. 1, 2006,
issued as U.S. Pat. No. 7,933,925, both of which are incor
porated by reference herein in their entirety.

BACKGROUND

0002 1. Technical Field
0003. The present invention relates to access control of
programs and more particularly to systems and methods for
role based security and role based security analysis.
0004 2. Description of the Related Art
0005. In Java 2 Enterprise EditionTM (J2EETM) and
MICROSOFTTM XML Web Services platform (.NETTM)
roles are assigned to methods using external configuration
files, called the deployment descriptors. The security model
of J2EETM and .NETTM are quite similar, and for simplicity
examples herein will employ the JavaTM programming lan
guage. J2EETM and the JavaTM programming language are
trademarks of SUN MICROSYSTEMSTM. .NETTTM is a
trademark of the MICROSOFT CORPORATIONTM.
0006 Assigning roles to methods, although conceptually
simple, in practice is quite complicated. For instance, in order
for a deployer to assign a role r to a method m, the deployer
must understand the set of roles R that are assigned to each
method in that can be invoked directly or indirectly from m,
and that r has to be “consistently assigned with respect R.
Understanding Such role consistency is a non-trivial task.
Also, in J2EETM roles are defined with respect to method
access and not data access. Therefore, in order to protect
sensitive data, one has to encode data access control using
method access control. This can lead to interesting and Subtle
access control problems when accessing sensitive data,
including information leakage through data flow from one
method to another.

SUMMARY

0007. A system and method for program access control
includes, for a typestate, providing typestate properties and
assigning a role to the typestate in a program in accordance
with the typestate properties. Access to operations is limited
for the typestate in the program based on the role assigned to
the typestate and an access permission level.
0008. These and other objects, features and advantages
will become apparent from the following detailed description
of illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

0009. The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:
0010 FIG. 1 is an illustrative observer pattern program
used as an example for demonstrating present principles;
0011 FIG. 2 illustratively shows code for role definitions
in accordance with an illustrative embodiment;
0012 FIG. 3 is a call graph for the program depicted in
FIG. 1:

Mar. 14, 2013

0013 FIG. 4 is an illustrative pointer graph for the pro
gram depicted in FIG. 1;
0014 FIG. 5 is an application model showing entry meth
ods and role assignments in accordance with an illustrative
example;
0015 FIG. 6 is an annotated call graph showing Role, and
Role" role assignments for each method in accordance with
one illustrative embodiment;
0016 FIG. 7 is a typestate diagram for a File program
operation in accordance with an illustrative example;
0017 FIG. 8 is a hierarchical typestate diagram for the
diagram of FIG. 7:
0018 FIG.9 is a diagram showing a role hierarchy assign
ment in accordance with an illustrative embodiment;
0019 FIG. 10 is a block/flow diagram showing a system/
method for access control using typestate role assignments in
accordance with one embodiment;
0020 FIG. 11 is a block/flow diagram showing a system/
method for analyzing role consistency for program access
control in accordance with illustrative embodiments; and
0021 FIG. 12 is a block diagram showing an illustrative
system for employing role based analysis and access control
in accordance with an illustrative embodiment.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0022. A data-centric security system and method are pre
sented, which include at least the following two concepts. 1)
Role Analysis: A simple interprocedural static analysis for
detecting security problems when objects are accessed by
multiple methods that do not have compatible or consistent
assignment of roles is provided. Then, a notion of an object
“escaping a role is presented, and a simple interprocedural
static analysis for computing the set of objects that may
escape a role is provided.
0023. 2) Consistency-Based Security and Role
Typestates: J2EETM method-based role assignment is
extended to consistency-based role assignment. One focus
includes assigning roles to typestates rather than methods.
0024 Role Based Access Control (RBAC) is a popular
mechanism for defining and managing access to security
sensitive resources. In RBAC, security properties. Such as
access control to sensitive resources, are controlled through
roles. Users are assigned one or more roles, who then inherit
the security properties associated with the roles. RBAC pro
vides greater security by preventing users from obtaining
inconsistent or incompatible security properties. J2EETM and
.NETTM support RBAC by restricting the roles to method
access. In J2EETM, a role r is simply a named set of methods
M, and whenever a principal P is assigned the role r the
principal can then access any of the methods in M. In practice
only application entry methods are assigned roles.
(0025. In J2EETM, there are two ways to specify access
control Security: (1) declarative or container security and (2)
programmatic or application security. In container security,
access control to sensitive resources is defined in an external
configuration file, as part of a deployment descriptor. The
container then manages the access control to sensitive
resources. In application security, access controls are
encoded within the application and the application directly
manages the access control to sensitive resources. The
J2EETM framework encourages the use of declarative security
since it enables greater flexibility by separating security prop
erties from the application logic. Declarative security will

US 2013/OO67592 A1

illustratively be employed in describing embodiments of the
present invention. Further description will follow on systems
and methods which employ these aspects and features.
0026. Embodiments of the present invention can take the
form of an entirely hardware embodiment, an entirely soft
ware embodiment or an embodiment including both hard
ware and software elements. In a preferred embodiment, the
present invention is implemented in Software, which includes
but is not limited to firmware, resident software, microcode,
etc.

0027. Furthermore, the present invention can take the
form of a computer program product accessible from a com
puter-usable or computer-readable medium providing pro
gram code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer readable medium
can be any apparatus that may include, store, communicate,
propagate, or transport the program for use by or in connec
tion with the instruction execution system, apparatus, or
device. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or Solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD.
0028. A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least Some program code to reduce the number of
times code is retrieved from bulk storage during execution.
Input/output or I/O devices (including but not limited to key
boards, displays, pointing devices, etc.) may be coupled to the
system either directly or through intervening I/O controllers.
0029 Network adapters may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.
0030 Referring now to the drawings in which like numer
als represent the same or similar elements and initially to FIG.
1, to illustrate how security roles are defined in J2EETM, an
example application of an Observer Pattern 10 is illustratively
shown. The Observer Pattern 10 is made of two entities: (1) a
subject that includes data of interest (see e.g., ISubject in FIG.
1) and (2) one or more observers (IObserver in FIG. 1) that
display the data of interest. The Observer Pattern 10 defines a
one-to-many dependency between the Subject and the set of
observers. Whenever the data in the subject is updated, all the
observers that have been registered with the subject for the
data are notified of the update.
0031. In J2EETM the security roles are defined within an
assembly descriptor as shown below:

<assembly-description>
<security-role>

Mar. 14, 2013

-continued

<role-name> Manager </role-name>
<role-name> Notifier < role-name>
<role-name> Director <role-name>
<role-name> DisplayId </role-name>
<role-name> DisplayName < role-name>

<security-role>
</assembly-description>

0032. Once the security roles are defined, the application
deployer then associates each role with a set of methods.
0033 Referring to FIG. 2, how roles are defined as a set of
method permissions is illustratively shown. As can be seen in
FIG. 2, roles may include, e.g., a Notifier, a Manager, a
Director, DisplayID and DisplayName. For example, the
Notifier role has the permission to invoke the method setData
defined in the Subject class.
0034. In J2EETM roles are typically defined for enterprise
JavaTM beans (EJB) components rather than arbitrary classes.
For simplicity, examples of general JavaTM classes will be
employed, instead of EJB examples. For the example shown
in FIG. 2, a principal with the Notifier role is permitted to
access (that is, invoke) the method setData that is defined in
the class Subject. Similarly, a principal with the DisplayId
role is permitted to access all the methods (denoted by the “*”
operator) that are defined in the class Obsld.
0035. In J2EETM one can use such access control specifi
cations for other Web resources such as access to a HTTP
method on a URI (Universal Resource Identifier). Also, meth
ods that are not part of any role, are permitted to be accessed
by any principal.
0036 Consider a principal “Mark' who is authorized with
the role DisplayId. It may be assumed that an authentication
mechanism similar to a J2EETM authentication mechanism
may be employed as in known in the art. Further, assume that
Mark invokes a method Driver main. Since this method is not
part of any role, an access control manager does not prevent
Mark from executing the method. Now when “Mark”
attempts to invoke Subject.addObs (indirectly through Drive.
main), a security exception will be thrown since Mark does
not have either the Director role or the Manager role. At this
point, an application deployer may assign the Director role to
Mark so as to avoid an access control exception, which in turn
may violate the principle of least privilege. Essentially this
means that to associate a role r to a method m, an application
deployer has to understand the set of methods S that can be
directly or indirectly invoked by m.
0037 Understanding such control flow is not a trivial task,
especially by an application deployer. In the J2EETM security
model as known to those skilled in the art, one can also
delegate permissions by associating the <run-as-> tag to a
class C in the deployment descriptor. The effect of such an
association is to grant the permission of C to all methods that
can be directly or indirectly invoked from C. A careless run-as
delegation can introduce Some interesting and unforeseen
permission problems.
0038. One main problem with role based access control
(RBAC) in J2EETM is that roles are defined for controlling
access to methods and not for explicitly controlling access to
data. In other words, there is no explicit mechanism for con
trolling access to data fields and object instances.
0039. Access control to data and objects has to be per
formed implicitly by giving access to methods which in turn

US 2013/OO67592 A1

accesses the data. An important security implication of Such
access control through methods is that information could
potentially be leaked through data flow across methods.
0040. Referring again to the example in FIG. 1, using
pointer analysis, one can determine that the object referenced
in statement 43: is accessed by more than one method (e.g.,
Subject.notifyObs, Subject.addObs, and Obsld.update).
Unless the roles are assigned correctly or consistently among
these methods, there could be potential access control and
information flow security problems.
0041 Referring again to FIG. 2, the method ObsName.
update and the method Obsld.update are part of two different
roles. Therefore, when obs.update() is invoked at statement
43:... the target method could be either Obsld.update or
ObsName.update depending on the runtime type of obs.
Since, ObsName.update and Obsld.update have two different
roles, there could be a potential security problem when the
method is dispatched. Therefore, it is important to ensure that
both methods are assigned the same role. The security prob
lems that arise are either: (1) too many permissions are given
to a principal, which in turn may violate the principle of least
privilege, or (2) inadequate permissions are given, which can
lead to unnecessary access control exceptions. There can be
Subtle security violations, such as information tainting and
information leakage, when the principle of least privilege is
compromised. Note that a simple propagation of roles over
the call graph of the program is not sufficient to detect Such
data flow security problems.
0042 Aspects of the present embodiments focus on data
centric security by introducing two concepts: (1) Role Analy
sis and (2) Consistency-Based Security and Role Typestates.
0043 (1) Role Analysis: A simple interprocedural static
analysis for detecting security problems that may arise when
objects are accessed by multiple methods that do not have
compatible or consistent assignment of roles to methods is
provided. The notion of an object “escaping a role is pre
sented and a simple interprocedural static analysis for com
puting the set of objects that may escape a role is described.
0044 (2) Consistency-Based Security and Role
Typestates: Method-based role assignments are extended to
consistency-based role assignments and roles are assigned to
typestates rather than methods. The typestate description of a
class is a configuration of its fields, and essentially abstract
consistency properties of the fields.
0045 RBAC Models and Program Representation: Static
analysis is a process for determining the relevant properties of
a program without actually executing the program. A pro
gram includes a collection of methods or procedures and is
represented using a call graph (CG). A CG G=(N, E) is a
directed graph, where N is a set of nodes and E is a set of
edges. The set of nodes N is partitioned into two disjoint sets:
(1) N is a set of call site nodes and (2) N is a set of method
nodes. The set of edges E is also partitioned into two disjoint
sets: (1) E, is a set of edges from a method node X, to each
call site nodex, defined in the method, and (2) E, is a set of
edges from a call site nodeX to each method node X, that can
possibly be invoked from the call site X. A path is a sequence
of edges starting from Some node in the call graph. If there is
a path from a method node X, to another method nodey, then
the method corresponding to X, may directly or indirectly
invoke the method corresponding to y.
0046 Referring to FIG.3, a call graph 200 is illustratively
shown for the example program of FIG. 1, where numbers in
FIG. 3 correspond to statement numbers in FIG. 1. Pointer

Mar. 14, 2013

analysis includes computing points-to information, repre
sented as a pointer graph, at relevant program points. A
pointer graph includes a set of nodes representing compile
time objects and pointer references. For heap allocated
objects, pointerp can point-to an object O if p can include the
address of O. Typically, the address of O is not known at
compile-time and one then assigns compile-time labels to
heap objects. There are several different kinds of pointer
analyses depending on precision and cost of the analysis.
Typically, flow insensitive and context insensitive analysis
tends to be cheaper, but less precise than flow sensitive and
context sensitive analysis.
0047 Referring to FIG.4, a pointergraph is illustrated that

is computed using a flow insensitive pointer analysis for the
code of FIG. 1, where non-bracketed numbers in FIG. 4
correspond to statement numbers in FIG. 1. The notation
p->O may be employed to denote that p points-to O. It will
also be assumed that objects have fields and each field has a
name that can be accessed from the object type or class.
Dot-notation is used to access fields, e.g., p.for O.f. and it can
be stated that: p.f->O to denote that p points to some object O,
and the field f of Opoints to another object O.
0048 Role Modeling: J2EETM security is defined in terms
of: (1) principals or authenticated users, (2) roles that define
named job functions, and (3) permissions that map a role to a
set of operations or methods defined in one or more classes. In
J2EETM, roles are often defined for Enterprise JavaBeans
(EJBs), and for simplicity, herein, JavaTM classes will be
employed instead of EJBs. For instance, consider the Subject
class that includes the methods setData, addObs, remove(Obs,
and notifyObs. A role such as Notifier (see FIG. 2) is given
permission to invoke setData. On the other hand, a role such
as Director is given permission to invoke all four operations.
Notice that a principal with a Director role can invoke any
operation that a principal with a Manager role or a Notifier
role can invoke. In other words, Director is considered to be
“senior to Manager and Notifier.
0049. Let C denote a set of classes for which RBAC is
provided, and let M denote a set of methods in C. A permis
sion Per is a mapping from role r in R to a subset of methods
in M. Now, let Per(r) denote the set of method permissions
assigned to a role r. For example, Per(Manager)={Subject.
addObs, Subject.removeobs}.

DEFINITION

0050 Senior Roles. Let rands be any two roles in R. ris
a senior role of s, denoted as res, if Per(r) DPer(s).
I0051 Conversely, a junior role may be defined as follows.
rises, if Per(r) C Per(s).
0.052 Next, a role graph is defined in which nodes repre
sent roles and edges represent the senior (junior) relations.
The role graph form employed in this disclosure will include
a lattice structure, with Trepresenting a role that is the union
of all method permissions and I representing a role whose
permission set is the empty set. A lattice is a partial order with
a join and a meet for every pair of nodes. Given any two nodes
X and y, the set union of X and y is the join (), and the set
intersection of X and y is the meet (II).
0053. Now let Per(r) be a set of method permission that is
initially assigned a role r (as specified in the deployment
descriptor). In J2EETM a method permission can be assigned
to more than one role. Let Role,(m) denote the set of roles that
an application deployer initially assigns to m. In other words,

US 2013/OO67592 A1

Role,(m)={rimePer(r)}. For example, Role,(Subject.set
Data)={Notifier, Director}. If a method is not explicitly
assigned to any role, then it can be accessed by any principal.
Note that one can also use the “*” to indicate all the methods
in a class as belonging to a specific role.
0054 Role Analysis: Two illustrative role analyses are
presented and include: (1) role consistency analysis for com
puting consistent role assignment and (2) role escape analysis
for computing the set of objects that may escape a role.
0055 Role Consistency Analysis: Let r be a role assigned
to m (by an application deployer), and let m'be a method that
can be invoked directly or indirectly from m. A principal who
is assigned the role r should also have permission to invoke
the method m', i.e., m' should also be in Per(r). Often an
application deployer handles only entry methods of an appli
cation or a component. These entry methods are essentially
the application programming interface (API) of the applica
tion. In the case of a JavaTM application, the entry methods are
the set of public and protected methods defined in interfaces
and classes. Therefore, an application deployer has the capa
bility to define permission sets and assign roles based on the
entry methods defined in an API.
0056 Let A be an application, let M be a set of entry
methods to A (as defined in its API), and R be the set of roles
defined using the entry methods.
0057 Referring to FIG. 5, an application or component
model is illustratively shown. Notice that an entry method
Such as m1 can directly or indirectly invoke another entry
method m2. One question is how to define consistent roles
and permission sets that are based on only the entry methods
of an application. Consider an entry method m1eM and let
reR. Now, definer to include m1 in its permission set, that
is m1e Per(r), and therefore reRole(m1). What this essen
tially means is that ifa principal P is assigned ther, then Phas
the permission to invoke m1. Now let m2 be some other
method reachable from m1, and so P should also have the
permission to invoke m2. Let Per(r)={m2, m3, and so
m2e Role(r). r1 and r should be ensured to have a consistent
permission set.
0058. There are two cases to consider: (1) m2 is not in
Per(r), and in this case P should also be assigned the role r
So as to avoid access control exception. On one hand, by
assigning r to P, also give P the permission to access m3.
which violates the principle of least privilege. On the other
hand, m3 may be in a different Sub-component, in which case
separating the roles makes sense in some situations, even if
the principle of least privilege is violated. (2) m2 is in Per(r),
and in this case the assignment is consistent.
0059. One way to compute consistent role assignment is to

first determine the set of methods that are reachable from an
entry point in the call graph of the program. Let L be the set of
methods that are reachable from an entry point me M in the
call graph. Let L'L? 3 M, and So L', is a set of methods
that are reachable from mand the set of methods are also entry
methods. Now let r be a role with mePer(r). Since a method
1'eL', is also reachable from m, ensure that l'ePer(r). So rather
than defining arbitrary roles and permission set, a deployer
first computes L', for each entry method m. The deployer can
then define roles based on the entry method m and L', by
ensuring that L', C Role(m).
I0060 Applications may be composed of many compo
nents and the components are assigned with consistent roles.
Consider the example shown in FIG. 1 and the role assign
ment shown in FIG. 2. Let Role, denote the initial set of role

Mar. 14, 2013

assignments. In order for a principal to invoke Subject. Set
Data the principal not only needs the Notifier, but also Dis
playId and DisplayName roles.
0061 Referring to FIG. 6, an annotated call graph is illus
tratively shown with Role, and Role", which are the initial
role assignments and the minimum roles needed to invoke the
methods. Computing Role" for each method is a straightfor
ward backward propagation of roles over the call graph and at
each step only propagation of junior roles up the call graph is
performed. That is, a lattice join is performed at each step and
the joined role information is propagated.
0062. The role analysis described previously is preferably
based on reachability over a call graph of a program.
Although role propagation over the call graph may be impor
tant in preventing certain kinds of access control problems, it
does not detect access problems that could happen due to data
flow across methods. A limitation of the J2EETM security
model is that it focuses on securing the mechanism (that is,
methods) that access sensitive information or resources. For
instance, J2EETM does not allow one to specify roles for class
fields and class instances. Subtle problems may arise due to
data flow across methods. For example, the receiver expres
sion (such as 43: obs.update(data) in FIG. 1 can target more
than one method. Programmers have to make Sure that the
roles assigned to the target method are consistent with the role
assigned to a method that invokes the object.
0063 Also, an object is often accessed by multiple meth
ods that have different roles assigned to them. Consider the
points-tograph shown in FIG. 4, and, in particular, the object
62:Obsld. This object is directly accessed by the methods
Drivermain (which created the object), Obsld.update (via the
“this parameter), and Subject.notifyObs. Now, consider the
role assignment and method permission shown in FIG. 6. The
method Obsld.update is assigned only to role Display. Unfor
tunately, since the object, 62:Obsld, is also accessed by other
methods, there can be inconsistencies among roles assigned
to different methods that access the same object. This can lead
to information leakage.
0064. Given the pointer graph of a program, for each
object, the set of methods are computed that directly access
the object. Call the resulting graph a method-annotated
pointer graph (MAPG). It is straightforward to compute this
information if fully qualified names are used for reference.
Consider the pointer graph shown in FIG. 4 and the object
62:Obsld. The set of methods that access this object can be
read off from the pointer graph, which is Drivermain, Sub
ject.addObs, Subject.notify, and Obsld.update. Since any of
these methods have the “capability” to access the object, the
object is assigned a role that is the least upper bound of the
roles assigned to these methods. Now a principal who wants
to access the object referenced by 62:Obsld should have a role
that is at least equal to the least upper bound of the roles
assigned to the methods that access the object. Unfortunately,
in J2EETM, it is not possible to assign roles to objects or class
instances.
0065 Role Escape Analysis: The concept of role escape
analysis will now be described in accordance with present
principles. Escape analysis is a procedure for determining the
set of objects that escape the lifetime of a method or a thread.
Consider the following simple example:

1: void foo() {
2: LinkedList head = new Linked List();

US 2013/OO67592 A1

-continued

3: bar(head);
4: }
5: void bar(LinkedListh){
6: LinkedList n = new Linked List();
7: n.next = null:
8: h.next = n :
9: }

0066. The object 6:bar. LinkedList created at 6: escapes the
method bar because there is an access path to the object from
the parameter reference h. On the other hand, the object
2:foo. LinkedList created at 2: and the object 6:bar. LinkedList
created at 6: do not escape foo. One simple way to compute
whether an object O escapes a method M is first to construct
the pointer graph and then check if there is a path to O in the
graph that can be reached by some node O' that is accessed in
some other method M and the lifetime of M that exceeds the
life time of M.

0067. In role escape analysis, the method escape analysis
may be extended as follows. An object O role escapes a
method M with role R if there is a path in the pointer graph
from some node O' that is accessed in some other method M
with role R' and R 1 R'. Conversely, an object O is role
confined to a M if Odoes not role escape M. A definition of
role escape employed herein is more general than the tradi
tional method or thread escape, whereby method lifetime is
defined herein as a role. The role escape analysis essentially
includes determining if a node p in the pointer graph that is
annotated with method m and role rRole" (m) is reachable
from another node p' that is annotated with m' and role
reRole" (m') and rsr.
0068. Notice that the converse of role escape, which is role
confinement, of an object is closely related to information
flow security. Since roles are modeled using a lattice struc
ture, if an object O does not escape a role R then the object
cannot leak information outside the role. Also, if an object
escapes a role, the object can become “tainted by an external
principal with access to the object.
0069 Consistency-Based Security: It is often the case that
an application developer has a better understanding of the
application that he or she is developing than an application
deployer or the system administrator. On the other hand an
application deployer has a better understanding of the appli
cation deployment environment than an application devel
oper. One idea behind consistency-based security (CBS) is to
focus on the consistency properties of data and methods. An
application developer simply identifies and defines the con
sistency properties as code annotation. A simple consistency
property could be that two fields of a JavaTM class are modi
fied by the same set of methods. Another consistency property
is the typestate property, which is often used to specify order
ing of methods in an application. In CBS, a tool can scan the
code and present the developer's consistency properties to an
application deployer. An application deployer can then use
the consistency properties as a guide for associating security
properties to roles, and then grant authorization to users.
0070 Data Consistency Security: a simple consistency
property in which two or more fields of an object are all
accessed by the same set of methods. Given this property, an
application deployer can then associate the same role for all
methods that access these fields. Consider a simple employee
record in a company.

Mar. 14, 2013

(0071 Employee Record:

enum EmpType = {RSM, Manager, SoftEng, Staff} :
class Employee {

String finame; if first name
String Iname; last name:
int id: if company identity number
intsSn; if social Security number
String gender ;
String ethnic ; fi ethnicity
EmpType etype:

0072 Suppose an application developer is developing a
business application, Such as a payroll application, and
decides that gender, and ethnicity (“ethnic”) have the same
“consistency property. A simple example of a consistency
property is that the two fields are always accessed by the same
set of methods. Another example of a consistency property is
access rights; if a user is permitted to access one of the two
data fields, then the user is automatically allowed to access the
other data field. Yet another example of a consistency prop
erty is encryption; the values of the two data fields should use
the same encryption/decryption keys. An application devel
oper usually has a better understanding of the consistency
properties than the application deployer. For instance, if gen
der, and ethnic are always accessed by the same set of meth
ods, the developer can then define a simple consistency prop
erty classification called race.
0073 Consistency Property Classification Race:

class Employee {
access(name, idy) String finame:
access(name, idy) String Iname:
access(idy) int id:
access(idy) intsSn;
access(race) String gender ;
access(race) String ethnic ;

0074. Often a field (or a method) can belong to more than
one class of a consistency property. For instance, finame (first
name) and lname (last name) belong to two different classes
of the access property. A consistency property includes two
parts: (1) a property name Such as access and (2) a set of
classifications, such as name, idy, and race. Given the consis
tency properties defined by an application developer, a natu
ral question to ask is how will the application deployer use
them. An application deployer first queries the application for
all application-defined properties. Next, the application
deployer associates roles to consistency properties. Suppose
an application deployer defines two roles called Manager and
NonManager, and associates the Manager role with access
(name, idy, race) and NonManager role with access(name).
With this association, a Manager can access all the defined
fields, whereas a NonManager can only access the fields
fname and lname. Notice that a deployer does not need to
understand how a developer defined the consistency proper
ties. The deployer only has to know what set of consistency
properties have been defined by the developer.
(0075 Role Typestates: RBAC's are defined by focusing
on the typestate consistency property. The approach that may
be employed is very simple: an application developer defines
the typestate properties and an application deployer then
assigns roles based on the typestate properties. Typestates

US 2013/OO67592 A1

provide much richer information than simple method inter
faces to an application deployer.
0076. The concept of a typestate may be understood as an
extension to the notion of a type by providing that a variable
be in a certain state before operations on the variable can be
performed. In other words, certain preconditions have to be
met prior to performing any operation on a variable. Typestate
is useful for tracking certain kinds of flow-sensitive errors or
bugs, such as uninitialized variables. For object-oriented
(OO) programs, the typestate of an object (that is, an instance
of a class) is a description or a configuration of all its fields. In
OO programs, a method that is invoked on an object o typi
cally has a partial view of the object o. One can use typestates
to define a consistent view of an object prior to an invocation
of a method on the object. Consider a simple file object that
includes two typestates Open and Close.
0077 File Object with Two Typestates:

class File {
typestate = Start, Open, Close
if (a)requires Start
File create(String finame); // create file
if (a)requires Close
void open() f/
if (a)requires Open
String read.(); // returns the content of file
if (a)requires Open
void write(String data); // write to file
frequires Open
void close(); // close the file

0078 Referring to FIG. 7, a typestate diagram is a finite
state diagram, with nodes denoting the typestates of a class
(e.g., open and close) and a labeled edges denoting transitions
between typestates of a class. The labels on the edges (e.g.,
close(), open(), create(), read(), write()) correspond to (a
subset of) methods defined in the class. The source and des
tination nodes of a transition correspond to pre- and post
conditions of the method that labels the transition, respec
tively. An execution of a method takes an instance of a class
from one typestate to another typestate. FIG. 7 illustrates a
typestate diagram for the File class code (FILE OBJECT
WITH TWOTYPESTATES) presented earlier. The typestate
diagram specifies the life-cycle of how an instance of the File
class goes between Open and Close typestates. A method,
Such as open(), is executed only when its pre-condition
typestate of the File object is Close, and after the execution
the new typestate of the object is Open. Both read() and write(
) methods can execute only when the File object is in Open
State.
007.9 The typestate diagram is an external specification of
a class. It prescribes the order in which a client can invoke
various methods defined in the class. Generally, only an appli
cation developer understands the lifecycle of an object. Given
Such a specification, an application deployer can now associ
ate security properties to typestates. For instance, an applica
tion deployer can associate Manager role to Start, Open and
Close typestates, and Engineer role to Open. What this essen
tially means is that only a Manager is permitted to execute all
methods of the class, whereas an Engineer is permitted to
execute only read() and write() methods.
0080. In accordance with present principles, a typestate
diagram may be partitioned into a hierarchical structure and
use the notion of a hierarchical typestate diagram. A hierar

Mar. 14, 2013

chical typestate diagram includes a set of States and a set of
transitions. A state may be composed of other states, called
Sub-states. This enables modeling of a complex hierarchical
typestate diagram by abstracting away detailed behavior into
multiple levels. States that do not include sub-states are called
simple states, whereas states that have Sub-states are called
composite states. States may be nested to any level. A transi
tion relates two states: a source state and a destination state.
Transitions are labeled and each label corresponds to a
method invocation. An invocation of a method can cause a
state transition. The hierarchical states in a typestate diagram
may induce a tree structure. FIG. 8 illustrates a hierarchical
typestate diagram in which the Open state shown in FIG.7 has
been expanded. For role typestates, it is natural to model roles
using a tree structure.
I0081 Referring to FIG.9, a tree structure 120 having role
assignments models is illustratively shown. Roles R0–R4 are
assigned to each method in the tree. The definition of senior
relation is simpler: res if r is a parent ofs in the role hierarchy
tree 120. Roles are assigned to hierarchical states in the
typestate diagram. If S is assigned the role r then the Per(r)
={titeRoot(s)}, where Root(s) is a set of all states in the
sub-tree that is rooted at s in the typestate hierarchy tree 120.
I0082 Consider the role assignment shown in FIG.9, and
the permission set for each role includes:

Per(R0)={File:Open, Close.OpenRead,OpenWrite,

Per(R1)={Open.OpenRead,OpenWrite},

Per(R2)={Close,
Per(R3)={OpenRead, and

Per(R4)={OpenWrite}.
I0083. If a principal P is assigned the role R1 then P can
invoke both read and write, but cannot invoke close. Now if P
is assigned R3 then P can only invoke the read method.
I0084 Consider a method such as File.close() and a prin
cipal P who is assigned the role R1. The principal P should not
be allowed to invoke File.close() even if the current typestate
of the object referenced by the principal is Open. This is
because, the method File.close() creates a state transition
from Open to Close and P is not allowed to be in state Close.
So only principals with role File are essentially permitted to
execute File.close().
I0085 Given a set of roles assigned to typestates, the roles
needed for methods can easily be computed as the least com
monancestor of the roles assigned to the pre- and post-state of
the method. Note that when a File object is passed around to
different methods that are accessed by different principals,
we only have to ensure that roles are consistent on the current
typestate of the object and do not have to worry about the
methods themselves.
I0086 Typestates are useful for modeling access patterns,
including message patterns in, e.g., Web Services. Once Such
message patterns are modeled using typestates, roles can be
assigned to states using the present principles and provide
security for applications, e.g., Web Service applications.
I0087. The present embodiments address the challenges of
role assignment and role semantics in building applications.
The prior art method-based access control is limiting in terms
of its expressive power. In accordance with one embodiment,
a data-centric security is employed to complement the

US 2013/OO67592 A1

method-based security. Role-based access control for man
aging and controlling access to sensitive resources is pro
vided. RBAC models have become popular because of their
generality in expressing a diverse set of access control poli
cies. Security analysis techniques are provided for ensuring
that security properties are correctly maintained even in the
presence of delegating administrative privileges.
0088 A simpler lattice structure for modeling roles is also
employed. The notion of role escape analysis is introduced to
specially address the need for data-centric Security. Also pre
sented is consistency-based security, along with role
typestates for specifying access control security.
0089. The role analysis described herein is related to static
analysis. The consistency-based security and role typestate is
one preferred way to extend the J2EETM model to deal with
data-centric security.
0090 Java 2 Standard EditionTM (J2SETM) provides secu
rity mechanisms for protecting resources (e.g., the file sys
tem) in terms of run-time stack inspection. The security
access control model is based on properties that include code
origin and principal's execution environment. The present
disclosure follows program analysis techniques for RBAC,
uses typestate properties for RBAC, and introduces the notion
of role escape analysis and the notion of role typestates to
model and detect security problems, e.g., in J2EETM.
0091. In accordance with present principles, role escape
analysis generalizes the traditional escape analysis, where the
method and thread lifetime are considered to be an instance of
roles. Role escape analysis is useful for detecting confine
ment properties of objects, and for detecting information
leaks through objects.
0092 Role typestates combine the notion of roles and
typestates. By associating roles to typestates, a more general
model is defined for specifying roles; instead of specifying
roles on methods, the role are now specified on typestates.
0093. The present disclosure describes some of the secu

rity issues related to J2EETM RBAC model, illustrated several
examples that show the limitation of method-based role
assignment, and discussed the concepts that bring out a data
centric security model. Consistency based security that
includes typestate security may be employed to complement
method-based security. In other words, the present principles
may be employed in addition to or instead of the security
measures employed in the prior art environments.
0094) Referring to FIG. 10, a block/flow diagram showing
a system/method for providing access control using roles is
illustratively depicted. In block 202, for at least one typestate,
typestate properties are determined or provided. In one
example, typestate properties include an association of a
security property (or level) with the typestate to assign the
role to the typestate.
0095. In block 204, a role is assigned to the at least one
typestate in a program in accordance with the typestate prop
erties. In block 206, a typestate hierarchy tree may be gener
ated and roles are assigned to nodes of the hierarchy tree
where the nodes represent the typestates.
0096. In block 210, access to operations of the at least one
typestate in the program are limited based on the role assigned
to the at least one typestate and an access permission level.
Limiting access may include denying access to the at least one
typestate if a role is junior to an assigned role and/or permit
ting access to the at least one typestate if a role is senior to an
assigned role.

Mar. 14, 2013

0097. In block 212, a role consistency analysis may be
performed to determine if assigning the role is consistent
throughout the program. In block 214, a role escape analysis
may be performed to determine if any program objects escape
a role assignment. In block 216, a method-based access con
trol method may be employed instead of or in addition to the
present method for access control.
0.098 Referring to FIG. 11, a block/flow diagram showing
a system/method for analyzing role consistency for program
access control is illustratively depicted. In block 302, for each
object in a program having a plurality of objects, a set of
methods that directly access an object is computed. This may
include generating a pointer graph of the program, Such as, a
method-annotated pointer graph.
0099. A role assignment is checked for each object by
determining if the object's role is a least upper bound of the
roles assigned to the methods of the set in block 304. Access
is permitted to the set of methods if an accessor's role is at
least equal to the least upper bound of the roles assigned to the
methods that access the object in block 308.
0100. A role escape analysis (blocks 320-324) may be
performed instead of or in addition to the role consistency
analysis (blocks 302-308) to determine if any program
objects escape a role assignment. The role escape analysis
includes constructing a pointer graph for a program having a
plurality of objects having assigned roles in block 320. In
block 322, each object O is checked to determine if O role
escapes a role R by determining if there exists another path to
that object O in the pointer graph that can be reached by some
node O' that is accessed in another role Randa lifetime of the
method R' exceeds the life time of R. In block 324, it is
determined whether information is leaked or contained based
upon role escaped objects or lack thereof. The role consis
tency analysis may be performed separately or in addition to
the role escape analysis.
0101 Referring to FIG. 12, an illustrative system 400
includes a program access control program or module 402
capable of Supporting role-based security and role-based
security compliance in accordance with the present prin
ciples. Program 402 is preferably incorporated into the oper
ating system of computers, nodes and servers where access
control is needed. In one embodiment, each operating system
for all devices employed in the system 400 employs the role
based system of the present invention. System 400 may
include a private computer network, a single computer (409)
or a public computer network, Such as the Internet or any
combination of these. In addition, the role-based access con
trol may be employed in telephones (cell phones), handheld
or laptop computers (e.g., PDAs), or any other computing
device or system.
0102 Server 401, computer 409 and each computer or
node 404 in the network may include memory storage 403
(e.g., RAM) where an operating system 405 in conjunction
with a processor 407 and communication protocols are
employed to facilitate communications between network or
computer users and perform the action needed for access
control in accordance with present principles. Nodes or com
puters 404 may include access points for a plurality of users to
a server 401 or may include individual computers which grant
or deny permission to gain access to methods 406 and/or
typestates 408 stored on a computer or server 401. Although
methods 406 and typestates 408 are shown in the server 401
and computer 409, any or all computers 404 in the network or
independent computers 409 may include methods and

US 2013/OO67592 A1

typestates that are under access control. The methods and
typestates include roles Such that a principal attempting to
access the method and/or the typestate can gain access to the
method or typestate only if the proper permission or access
level in afforded to that principal. By employing typestates
and other principles disclosed herein, method-based access
control is extended by moving to a more data-centric access
control system.
0103 Program 402 may be distributed over the network or
located on a server; however, program or module 402 is
preferably included in the operating system of individual
computers or servers. Program 402 further includes features
to provide for role assignment, check for role consistency and
determine whether any roles assigned can be escaped as
described above in accordance with present principles.
0104 Having described preferred embodiments of a sys
tem and method for role based analysis and access control
(which are intended to be illustrative and not limiting), it is
noted that modifications and variations can be made by per
sons skilled in the art in light of the above teachings. It is
therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the scope
and spirit of the invention as outlined by the appended claims.
Having thus described aspects of the invention, with the
details and particularity required by the patent laws, what is
claimed and desired protected by Letters Patent is set forth in
the appended claims.

Mar. 14, 2013

What is claimed is:
1. A method for analyzing role consistency for program

access control, comprising:
computing with a processor, for each object in a program

having a plurality of objects, a set of methods that
directly access an object;

checking a role assignment for the object by determining if
the objects role is a least upper bound of the roles
assigned to the methods of the set; and

permitting access to the set of methods if an accessor's role
is at least equal to the least upper bound of the roles
assigned to the methods that access the object.

2. The method as recited in claim 1, wherein computing
includes generating a pointer graph of the program.

3. The method as recited in claim 2, wherein pointer graph
includes a method-annotated pointer graph.

4. A computer program product comprising a computer
useable storage medium having a computer readable pro
gram, wherein the computer readable program when
executed on a computer causes the computer to:
compute with a processor, for each object in a program

having a plurality of objects, a set of methods that
directly access an object;

check a role assignment for the object by determining if the
object's role is a least upper bound of the roles assigned
to the methods of the set; and

permit access to the set of methods if an accessor's role is
at least equal to the least upper bound of the roles
assigned to the methods that access the object.

k k k k k

