一种 In₂O₃/SnO₂ 多孔道结构气敏材料的制备方法

本发明是一种 In₂O₃/SnO₂ 多孔道结构气敏材料的制备方法。将市售 In₂O₃ 和 SnO₂ 粉按 4：1 或 7：3 或 3：2 的比例在钢模中进行压制成素坯，然后将素坯装入氧气氛烧结炉中进行固相烧结，最终获得多孔道结构 In₂O₃/SnO₂ 气敏材料。该方法通过对烧结温度的调控来获得孔型规整的微米及亚微米级孔道结构 In₂O₃/SnO₂ 气敏材料，一方面通过多孔道结构增加比表面积以提高气敏性，另一方面通过调控 In₂O₃/SnO₂ 的量来提高对不同气体的选择性。最终获得灵敏度高、选择性强的多孔道结构气敏材料。本发明所采用的方法具有原料准备简单、成本低、易控制、生产清洁等优点。
1. 一种 In$_2$O$_3$/SnO$_2$ 多孔道结构气敏材料的制备方法，其特征在于：将市售 In$_2$O$_3$ 和 SnO$_2$ 粉按 4：1 或 7：3 或 3：2 的比例在钢模中压制成素坯，然后将素坯装入氧气气氛烧结炉中进行固相烧结，获得多孔道结构 In$_2$O$_3$/SnO$_2$ 气敏材料。原位烧结生长氧气气氛烧结条件；升温速率 50-500℃/h；保温分为两段，第一段温度范围 600-700℃，第二段温度范围 1250-1450℃；保温时间 1-5 小时；氧气流量 3-8L/min。

2. 根据权利要求 1 所述的 In$_2$O$_3$/SnO$_2$ 多孔道结构气敏材料的制备方法，其特征在于市售 In$_2$O$_3$ 和 SnO$_2$ 粉，粉末粒度在 50-500nm 之间，纯度达到 99.995%。

3. 根据权利要求 1 所述的 In$_2$O$_3$/SnO$_2$ 多孔道结构气敏材料的制备方法，其特征在于钢模压制；压制压力 60-90Mpa；保压时间 2-5min。

4. 根据权利要求 1 所述的 In$_2$O$_3$/SnO$_2$ 多孔道结构气敏材料的制备方法，其特征在于烧结时使用的氧气纯度高于 99.999%，露点低于 -2℃。
说明书

一种 In₂O₃/SnO₂ 多孔道结构气敏材料的制备方法

技术领域
[0001] 本发明涉及陶瓷材料合成技术领域，具体地说是一种 In₂O₃/SnO₂ 多孔道结构气敏材料的制备方法。

背景技术
[0002] 随着科学技术的发展，对可燃性气体及毒性气体的检测、监控、报警的要求越来越高，这就对检测所依赖气敏材料提出了更高的要求；因此，提高气敏材料的灵敏度、选择性及长期稳定性以及降低工作温度、缩短响应恢复时间等成为气敏材料发展的重要方向。
[0003] 目前研究者普遍认为改善气敏材料综合性能的方法主要有掺杂金属离子（包括贵金属或稀土元素）或金属氧化物、增大气敏材料比表面积、加强气敏机理的研究等。
[0004] 多孔道结构金属氧化物气敏材料正是利用多孔结构比表面积大，介孔（几十到几十个纳米）结构对气体的吸附性强，增加了化学反应的活性点，这一材料微观结构特性提出的，这种结构的金属氧化物气敏材料的气体敏感性远优于常规金属氧化物复合材料。虽然多孔道微观结构对提高气敏材料气体敏感性起到了重要作用，但同一种金属氧化物在特定温度条件下不仅仅对一种气体敏感，可能对几种气体都敏感，导致人们对气体种类检测的困难，需要对气敏材料的选择性进一步提高，以实现所制备的传感器在使用过程中仅对所检测的气体敏感；这一目标的实现，仅靠一种金属氧化物材料很困难，因此，气敏材料研究工作者提出了采用复合金属氧化物来提高气敏材料的选择性。正是基于多孔结构金属氧化物对气体的选择性和敏感性都有所提高的基础上，开发孔道结构复合金属氧化物气敏材料，对提高金属氧化物气敏材料的气敏效应具有重要意义。

发明内容
[0005] 本发明的目的是针对气敏材料的发展趋势，结合多孔道结构和复相金属氧化物的敏感性和选择性的特点，提供一种采用原位生长法来合成 In₂O₃/SnO₂ 多孔道结构气敏材料的方法。
[0006] 本发明采用原位生长来制备 In₂O₃/SnO₂ 多孔道结构气敏材料。该方法主要是通过对 In₂O₃/SnO₂ 气敏材料烧结温度和烧结时间的调控来控制复相金属氧化物原位生长的动力学，从而来调控孔道结构及其配位缺陷的数量，以获得 In₂O₃ 和 SnO₂ 成分比例不同的多孔道结构 In₂O₃/SnO₂ 气敏材料。
[0007] 本发明通过如下方案来实现：
[0008] 首先将市售 In₂O₃ 和 SnO₂ 粉按 4：1 或 7：3 或 3：2 的比例在钢模中压制成素坯，然后将素坯装入氧气氛围烧结炉中进行固相烧结，最终获得多孔道结构 In₂O₃/SnO₂ 气敏材料。
[0009] 原料：市售 In₂O₃ 和 SnO₂ 粉，粉末粒度在 50–500nm 之间，纯度达到 99.995%。
[0010] 钢模压制：压制压力：60–90MPa；保压时间：2–5min。
原位烧结生长氧气氛烧结条件：
1) 使用的氧气要求纯度高于 99.999%,露点低于 -72℃；
2) 烧结条件：升温速率 50-500℃/h；保温分为两段，第一段温度范围 600-700℃，第二段温度范围 1250-1450℃；保温时间 1-5 小时；氧气流量 3-8L/min。
本发明通过对烧结温度的调控来获得性能优良的多孔结构的气敏材料，一方面通过多孔道结构增加比表面积以提高气敏性，另一方面通过调控/SnO₂ 的量来提高对不同气体的选择性。最终获得灵敏度高、选择性强的多孔道结构气敏材料。本发明所采用的方法具有原料准备简单、成本低、易控制、生产清洁等优点。
具体实施方式
实施例 1：
将市售 In₂O₃ 和 SnO₂ 粉装入钢模中 (In₂O₃ : SnO₂ = 4 : 1)，按照压制成型压力为 90MPa，保压 3min 的条件压成素坯，然后将素坯放入烧结炉进行原位烧结生长，烧结工艺为：以 500℃/h 升温速率升到 600℃，保温 1h 后，再升温到 1300℃，保温 5h，最后随炉冷却。在升温过程中氧气流量保持 8L/min。
实施例 2：
将市售 In₂O₃ 和 SnO₂ 粉装入钢模中 (In₂O₃ : SnO₂ = 7 : 3)，按照压制成型压力为 65MPa，保压 2min 的条件压成素坯，然后将素坯放入烧结炉进行原位烧结生长，烧结工艺为：以 300℃/h 升温速率升到 700℃，保温 2h 后，再升温到 1450℃，保温 2h，最后随炉冷却。在升温过程中氧气流量保持 5L/min。
实施例 3：
将市售 In₂O₃ 和 SnO₂ 粉装入钢模中 (In₂O₃ : SnO₂ = 3 : 2)，按照压制成型压力为 80MPa，保压 5min 的条件压成素坯，然后将素坯放入烧结炉进行原位烧结生长，烧结工艺为：以 80℃/h 升温速率升到 650℃，保温 1h 后，再升温到 1250℃，保温 3h，最后随炉冷却。在升温过程中氧气流量保持 3L/min。