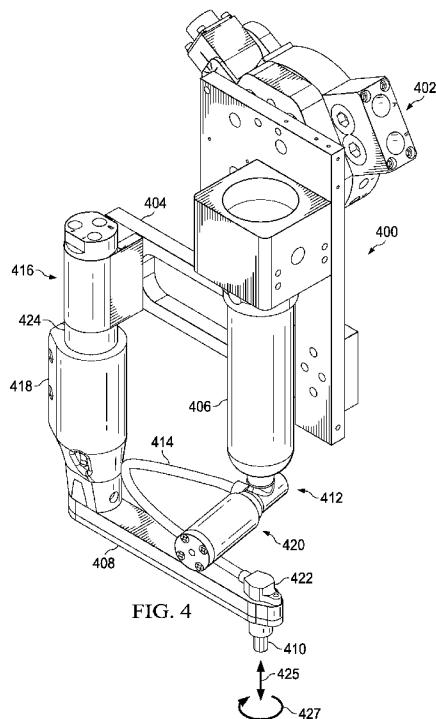


(43) International Publication Date
21 August 2014 (21.08.2014)(51) International Patent Classification:
B05B 13/04 (2006.01) **B25J 15/00** (2006.01)
B05C 5/02 (2006.01) **B05C 1/06** (2006.01)
B25J 9/00 (2006.01)
California 90740-5600 (US). **SARH, Branko**; 2201 Seal Beach Boulevard, Mail Code 220-SK55, Seal Beach, California 90740-1515 (US).(21) International Application Number:
PCT/US2014/011879(74) Agents: **HALPERIN, Brett L** et al.; The Boeing Company, PO Box 2515, MC 110-SD54, Seal Beach, California 90740-1515 (US).(22) International Filing Date:
16 January 2014 (16.01.2014)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(26) Publication Language: English

(30) Priority Data:
13/769,569 18 February 2013 (18.02.2013) US(71) Applicant: **THE BOEING COMPANY** [US/US]; 100 North Riverside Plaza, Chicago, Illinois 60606-2016 (US).(72) Inventors: **TOMUTA, Raul**; 2600 Westminster Boulevard, Mail Code 110-SK55, Seal Beach, California 90740-7644 (US). **DAVANCEENS, Angelica**; 2600 Westminster Boulevard, Mail Code 110-SK55, Seal Beach, California 90740-7644 (US). **TOPF, Richard P.**; 2600 Westminster Boulevard, Mail Code 110-SK56, Seal Beach,*[Continued on next page]*

(54) Title: FLUID APPLICATION DEVICE

(57) Abstract: A method and apparatus for applying a viscous fluid onto a surface. An applicator associated with an extension member may be positioned over the surface using a robotic operator. The extension member may be configured to maintain a selected distance between the applicator and a fluid source for the viscous fluid. The viscous fluid may be dispensed from the fluid source to the applicator. The viscous fluid may be applied onto the surface using the applicator.

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

FLUID APPLICATION DEVICE

BACKGROUND INFORMATION

5 1. **Field:**

The present disclosure relates generally to applying fluid onto a surface and, in particular, to applying fluid onto a surface using an applicator. Still more particularly, the present disclosure relates to a method and apparatus for dispensing a fluid from a fluid source to the applicator while applying the fluid onto a surface using the applicator.

10

2. **Background:**

In some cases, during the manufacturing process, a fluid may need to be applied over a surface. The fluid may be, for example, without limitation, a sealant, a paste, a type of paint, an adhesive, or some other type of fluid. Oftentimes, brushes may be used to apply 15 these fluids over a surface.

As one illustrative example, a brush may be dipped into a container holding a fluid, such as, for example, without limitation, a sealant. The container may be, for example, without limitation, a cup, a can, a tank, or some other type of container. Dipping the brush into the sealant in the container may allow some of the sealant to be retained by the bristles of 20 the brush. After the brush is dipped into the sealant within the container, the brush may be used to manually apply the sealant onto a surface. In other words, the brush may be used to brush the sealant onto the surface.

As the sealant is applied onto the surface, the amount of sealant retained by the brush may decrease. Consequently, the brush may need to be re-dipped into the sealant in the 25 container. When the area of the surface over which the sealant is to be applied is large, the process of re-dipping the brush between applications of the sealant onto the surface may need to be performed multiple times. This type of process may be more time-consuming than desired. Further, with this type of process, the amount of sealant used may exceed the actual amount of sealant that was needed. Therefore, it would be desirable to have a method and 30 apparatus that take into account at least some of the issues discussed above, as well as possibly other issues.

SUMMARY

In one illustrative embodiment, an apparatus may comprise a platform, a fluid source associated with the platform, an extension member associated with the platform, and an applicator associated with the extension member. The fluid source may be configured to dispense a fluid. The extension member may be configured to extend from the platform. The 5 applicator may be configured to receive the fluid dispensed by the fluid source. The applicator may be configured for use in applying the fluid onto a surface.

In another illustrative embodiment, an end effector may comprise an extension member, a platform associated with the extension member, a cartridge associated with the platform, an applicator associated with the extension member such that a selected distance 10 may be maintained between the applicator and the cartridge, and an attachment unit. The cartridge may be configured to dispense a sealant. The applicator may be configured to receive the sealant dispensed by the cartridge. The applicator may be further configured for use in applying the sealant onto a surface. The attachment unit may be configured to attach the end effector to a robotic operator. The robotic operator may be configured to move at 15 least one of the platform and the extension member to position the applicator over the surface.

In yet another illustrative embodiment, a fluid application device may comprise a platform, a cartridge associated with the platform, an extension member associated with the platform, a brush associated with the extension member, a fluid control system, an applicator 20 movement system, an applicator coupling unit, and an attachment unit. The cartridge may be configured to dispense a sealant. The extension member may be configured to extend from the platform. The brush may be configured to receive the sealant dispensed by the cartridge. The brush may be configured for use in applying the sealant onto a surface. The fluid control system may be configured to control at least one of an amount of the sealant and a rate of the 25 sealant dispensed to the brush. The fluid control system may comprise at least one of a hose, a valve system, and a nozzle. The applicator movement system may be configured to move the brush. The applicator movement system may comprise at least one of a first movement system and a second movement system. The first movement system may be configured to rotate the brush about a brush axis through the brush independently of the extension member. 30 The first movement system may comprise at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears. The second movement system may be configured to rotate the extension member about an axis through the extension member. Rotation of the extension member may cause rotation of the brush about the axis. The second movement system may comprise at least one of a number of motors, a number of shafts, a

number of belt systems, and a number of gears. The applicator coupling unit may be configured to couple the brush to the extension member. The attachment unit may be configured for association with the platform. The attachment unit may be configured for use in attaching the fluid application device to a robotic arm as an end effector.

5 In still yet another illustrative embodiment, a method for applying a viscous fluid onto a surface may be provided. An applicator associated with an extension member may be positioned over the surface using a robotic operator. The extension member may be configured to maintain a selected distance between the applicator and a fluid source for the viscous fluid. The viscous fluid may be dispensed from the fluid source to the applicator.

10 The viscous fluid may be applied onto the surface using the applicator.

In yet another illustrative embodiment, a method for applying a sealant onto a surface may be present. A platform may be positioned using a robotic arm to position an extension member associated with the platform over the surface. The platform may be attached to the robotic arm by an attachment unit. The sealant may be dispensed from a cartridge associated 15 with the platform to an applicator associated with the extension member. At least one of an amount of the sealant and a rate of the sealant dispensed from the cartridge to the applicator may be controlled using a fluid control system. The applicator may be rotated about an applicator axis through the applicator independently of the extension member using an applicator movement system. The extension member may be rotated about an axis through 20 the extension member using the applicator movement system. Rotation of the extension member may cause rotation of the applicator about the axis. The sealant may be applied onto the surface using the applicator to seal a number of interfaces on the surface.

In still yet another illustrative embodiment, a method for applying a sealant onto a plurality of fasteners installed in a structure may be provided. An applicator associated with 25 an extension member in a fluid application device may be moved to an initial position over a fastener in the plurality of fasteners using a robotic arm. The applicator may be rotated using an applicator movement system. A controlled amount of the sealant may be dispensed from a cartridge held by a platform associated with the extension member to the applicator at a controlled rate while the applicator is rotating. The sealant may be applied onto the fastener 30 using the applicator according to a predefined application routine.

In summary, according to one aspect of the invention there is provided an apparatus including a platform (114); a fluid source (116) associated with the platform (114) and configured to dispense a fluid (102); an extension member (117) associated with the platform (114) and configured to extend from the platform (114); and an applicator (120) associated

with the extension member (117) and configured to receive the fluid (102) dispensed by the fluid source (116) in which the applicator (120) is configured for use in applying the fluid (102) onto a surface (104).

Advantageously the apparatus further including an applicator movement system (124)

5 configured to move the applicator (120).

Advantageously the apparatus wherein the applicator movement system (124) comprises at least one of: a first movement system (154) configured to rotate the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117); and a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.

Advantageously the apparatus wherein the second movement system (156) is used to move the applicator (120) to a position over the surface (104).

Advantageously the apparatus wherein the first movement system (154) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears.

Advantageously the apparatus wherein the second movement system (156) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears.

20 Advantageously the apparatus further including an applicator coupling unit (152) configured to couple the applicator (120) to the extension member (117).

Advantageously the apparatus wherein the applicator (120) is a brush (148) and the fluid (102) is sealant (130).

25 Advantageously the apparatus wherein the fluid source (116) is a cartridge (126) configured to be held and supported by the platform (114).

Advantageously the apparatus wherein the extension member (117) is a telescopic arm configured to extend and retract with respect to an arm axis (174) through the telescopic arm.

30 Advantageously the apparatus further including a fluid control system (122) configured to control at least one of an amount (142) of the fluid (102) and a rate (144) of the fluid (102) dispensed to the applicator (120).

Advantageously the apparatus wherein the fluid control system (122) comprises at least one of a hose (132), a valve system (134), and a nozzle (136).

Advantageously the apparatus wherein the extension member (117) is configured to maintain a selected distance between the applicator (120) and the fluid source (116).

Advantageously the apparatus wherein the extension member (117) allows the applicator (120) to be positioned within an area in which the fluid source (116) does not fit.

5 Advantageously the apparatus wherein the extension member (117) with the applicator (120) is configured for being inserted into an opening through which the fluid source (116) does not fit.

Advantageously the apparatus further including an attachment unit (125) configured for association with the platform (114), wherein the attachment unit (125) is configured for 10 use in attaching the platform (114) to a robotic arm (110).

Advantageously the apparatus further including an attachment unit (125) configured for association with the extension member (117), wherein the attachment unit (125) is configured for use in attaching the extension member (117) to a robotic arm (110).

Advantageously the apparatus wherein the platform (114), the fluid source (116), the 15 extension member (117), and the applicator (120) form a fluid application device (100).

Advantageously the apparatus wherein the fluid application device (100) is configured for use as an end effector (112) for a robotic arm (110).

According to another aspect of the invention there is provided a n end effector (112) including an extension member (117); a platform (114) associated with the extension member 20 (117); a cartridge (126) associated with the platform (114) and configured to dispense a sealant (130); an applicator (120) associated with the extension member (117) such that a selected distance is maintained between the applicator (120) and the cartridge (126) in which the applicator (120) is configured to receive the sealant (130) dispensed by the cartridge (126) and in which the applicator (120) is configured for use in applying the sealant (130) onto a 25 surface (104); and an attachment unit (125) configured to attach the end effector (112) to a robotic operator (108) in which the robotic operator (108) is configured to move at least one of the platform (114) and the extension member (117) to position the applicator (120) over the surface (104).

Advantageously the end effector further including an applicator movement system 30 (124) configured to move the applicator (120).

Advantageously the end effector wherein the applicator movement system (124) is configured to rotate the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117) during application of the sealant (130) onto the surface (104).

Advantageously the end effector wherein the applicator movement system (124) is configured to rotate the applicator (120) about an axis through the extension member (117).

Advantageously the end effector wherein the applicator movement system (124) comprises at least one of: a first movement system (154) configured to rotate the applicator (120) about the applicator axis (158) through the applicator (120) independently of the extension member (117); and a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.

According to another aspect of the invention there is provided a fluid application device (100) including a platform (114); a cartridge (126) associated with the platform (114) and configured to dispense a sealant (130); an extension member (117) associated with the platform (114) and configured to extend from the platform (114); a brush (148) associated with the extension member (117) and configured to receive the sealant (130) dispensed by the cartridge (126) in which the brush (148) is configured for use in applying the sealant (130) onto a surface (104); a fluid control system (122) configured to control at least one of an amount (142) of the sealant (130) and a rate (144) of the sealant (130) dispensed to the brush (148) in which the fluid control system (122) comprises at least one of a hose (132), a valve system (134), and a nozzle (136); an applicator movement system (124) configured to move the brush (148) in which the applicator movement system (124) comprises at least one of: a first movement system (154) configured to rotate the brush (148) about a brush axis through the brush (148) independently of the extension member (117) in which the first movement system (154) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears; and a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117) in which rotation of the extension member (117) causes rotation of the brush (148) about the axis and in which the second movement system (156) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears; an applicator coupling unit (152) configured to couple the brush (148) to the extension member (117); and an attachment unit (125) configured for association with the platform (114) and configured for use in attaching the fluid application device (100) to a robotic arm (110) as an end effector (112).

According to still another aspect of the invention there is provided a method for applying a viscous fluid (128) onto a surface (104), the method including positioning an applicator (120) associated with an extension member (117) over the surface (104) using a

robotic operator (108) in which the extension member (117) is configured to maintain a selected distance between the applicator (120) and a fluid source (116) for the viscous fluid (128); dispensing the viscous fluid (128) from the fluid source (116) to the applicator (120); and applying the viscous fluid (128) onto the surface (104) using the applicator (120).

5 Advantageously the wherein positioning the applicator (120) associated with the extension member (117) over the surface (104) using the robotic operator (108) includes moving at least one of the extension member (117) and a platform (114) associated with the extension member (117) using the robotic operator (108) to move the applicator (120) to a position over the surface (104), wherein the fluid source (116) is associated with the platform 10 (114).

Advantageously the method further including controlling at least one of an amount (142) of the viscous fluid (128) and a rate (144) of the viscous fluid (128) dispensed from the fluid source (116) to the applicator (120) using a fluid control system (122).

15 Advantageously the method further including rotating the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117) using an applicator movement system (124).

20 Advantageously the method further including rotating the extension member (117) about an axis through the extension member (117) using an applicator movement system (124), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.

Advantageously the method wherein applying the viscous fluid (128) onto the surface (104) using the applicator (120) includes applying the viscous fluid (128) onto the surface (104) using the applicator (120) to seal a number of interfaces (131) on the surface (104), wherein the viscous fluid (128) is a sealant (130) and the applicator (120) is a brush (148).

25 Advantageously the method further including extending the applicator (120) away from a platform (114) using the extension member (117), wherein the extension member (117) is a telescopic arm configured to extend and retract with respect to an arm axis (174) through the telescopic arm.

30 Advantageously the method wherein positioning the extension member (117) over the surface (104) includes positioning a platform (114) using a robotic arm (110) to position the extension member (117) over the surface (104), wherein the platform (114) is attached to the robotic arm (110) by an attachment unit (125).

Advantageously the method wherein dispensing the viscous fluid (128) from the fluid source (116) to the applicator (120) includes dispensing the viscous fluid (128) from the fluid

source (116) to the applicator (120), wherein the viscous fluid (128) has a viscosity between about 50 poise and about 12,500 poise.

According to yet another aspect of the invention there is provided a method for applying a sealant (130) onto a surface (104), the method including positioning a platform (114) using a robotic arm (110) to position an extension member (117) associated with the platform (114) over the surface (104) in which the platform (114) is attached to the robotic arm (110) by an attachment unit (125); dispensing the sealant (130) from a cartridge (126) associated with the platform (114) to an applicator (120) associated with the extension member (117); controlling at least one of an amount (142) of the sealant (130) and a rate (144) of the sealant (130) dispensed from the cartridge (126) to the applicator (120) using a fluid control system (122); rotating the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117) using an applicator movement system (124); rotating the extension member (117) about an axis through the extension member (117) using the applicator movement system (124), in which rotation of the extension member (117) causes rotation of the applicator (120) about the axis; and applying the sealant (130) onto the surface (104) using the applicator (120) to seal a number of interfaces (131) on the surface (104).

According to a further aspect of the present invention there is provided a method for applying a sealant (130) onto a plurality of fasteners installed in a structure, the method including moving an applicator (120) associated with an extension member (117) in a fluid application device (100) to an initial position over a fastener in the plurality of fasteners using a robotic arm (110); rotating the applicator (120) using an applicator movement system (124); dispensing a controlled amount (142) of the sealant (130) from a cartridge (126) held by a platform (114) associated with the extension member (117) to the applicator (120) at a controlled rate (144) while the applicator (120) is rotating; and applying the sealant (130) onto the fastener using the applicator (120) according to a predefined application routine.

Advantageously the method further including stopping a flow of the sealant (130) to the applicator (120); stopping rotation of the applicator (120); moving the applicator (120) to a next fastener in the plurality of fasteners using the robotic arm (110); and repeating the steps of rotating the applicator (120) using the applicator movement system (124), dispensing the controlled amount (142) of the sealant (130) from the cartridge (126) held by the platform (114) associated with the extension member (117) to the applicator (120) at the controlled rate (144) while the applicator (120) is rotating, and applying the sealant (130) onto the

fastener using the applicator (120) according to the predefined application routine for the next fastener.

Advantageously the method wherein moving the applicator (120) associated with the extension member (117) in the fluid application device (100) to the initial position over the fastener in the plurality of fasteners using the robotic arm (110) includes moving at least one of the extension member (117) and the platform (114) associated with the extension member (117) using the robotic arm (110) to move the applicator (120); and rotating the extension member (117) about an axis through the extension member (117) using the applicator movement system (124) to move the applicator (120) to a position over the fastener, wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis through the extension member (117).

Advantageously the method wherein applying the sealant (130) onto the fastener using the applicator (120) according to the predefined application routine includes rotating the extension member (117) about an axis through the extension member (117) using the applicator movement system (124) such that the applicator (120) is rotated about the axis through the extension member (117) while the sealant (130) is being applied onto the fastener.

The features and functions can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments in which further details can be seen with reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the illustrative embodiments are set forth in the appended claims. The illustrative embodiments, however, as well as a preferred mode of use, further objectives and features thereof, will best be understood by reference to the following detailed description of an illustrative embodiment of the present disclosure when read in conjunction with the accompanying drawings, wherein:

Figure 1 is an illustration of a fluid application device in the form of a block diagram in accordance with an illustrative embodiment;

10 **Figure 2** is an illustration of an isometric view of a fluid application device in accordance with an illustrative embodiment;

Figure 3 is an illustration of a cross-sectional view of a fluid application device in accordance with an illustrative embodiment;

15 **Figure 4** is an illustration of an isometric view of a different implementation for a fluid application device in accordance with an illustrative embodiment;

Figure 5 is an illustration of an isometric view of a fluid application device in accordance with an illustrative embodiment;

Figure 6 is an illustration of a cross-sectional view of a fluid application device in accordance with an illustrative embodiment;

20 **Figure 7** is another illustration of a cross-sectional view of a fluid application device in accordance with an illustrative embodiment;

Figure 8 is yet another illustration of a cross-sectional view of a fluid application device in accordance with an illustrative embodiment;

25 **Figure 9** is an illustration of a view of a turning mechanism in accordance with an illustrative embodiment;

Figure 10 is an illustration of a fluid application device in accordance with an illustrative embodiment;

Figure 11 is an illustration of a cross-sectional view of a fluid application device in accordance with an illustrative embodiment;

30 **Figure 12** is an illustration of a view of a fluid application device in accordance with an illustrative embodiment;

Figure 13 is an illustration of a process for applying a fluid onto a surface in the form of a flowchart in accordance with an illustrative embodiment;

Figure 14 is an illustration of a process for applying a sealant onto a surface in the form of a flowchart in accordance with an illustrative embodiment;

Figure 15 is an illustration of a process for applying a sealant onto a plurality of fasteners in the form of a flowchart;

5 **Figure 16** is an illustration of an aircraft manufacturing and service method in the form of a flowchart in accordance with an illustrative embodiment; and

Figure 17 is an illustration of an aircraft in the form of a block diagram in accordance with an illustrative embodiment.

10

DETAILED DESCRIPTION

Referring now to the figures and, in particular, with reference to **Figure 1**, an illustration of a fluid application device is depicted in the form of a block diagram in accordance with an illustrative embodiment. In this illustrative example, fluid application device **100** may be used to apply fluid **102** onto surface **104**.

15 Fluid application device **100** may be operated by human operator **106** or robotic operator **108**. For example, robotic operator **108** may be configured to operate fluid application device **100** and move fluid application device **100**. In particular, robotic operator **108** may be used to position fluid application device **100** relative to surface **104** and/or move 20 fluid application device **100** over surface **104**.

In one illustrative example, robotic operator **108** comprises robotic arm **110**. In this example, fluid application device **100** may take the form of end effector **112** configured for attachment to robotic arm **110**.

25 As depicted, fluid application device **100** may include platform **114**, fluid source **116**, extension member **117**, applicator **120**, fluid control system **122**, applicator movement system **124**, and attachment unit **125**. Attachment unit **125** may be configured to attach end effector **112** to robotic arm **110**.

30 Platform **114** may be comprised of one or more structures configured to hold and support the various components of fluid application device **100**. Depending on the implementation, one or more of fluid source **116**, extension member **117**, fluid control system **122**, applicator movement system **124**, and attachment unit **125** may be associated with platform **114**. In some illustrative examples, attachment unit **125** may be associated with extension member **117**.

When one component is “associated” with another component, as used herein, this association is a physical association in the depicted examples. For example, a first component, such as fluid source **116**, may be considered to be associated with a second component, such as platform **114**, by being secured to the second component, bonded to the second component, mounted to the second component, welded to the second component, fastened to the second component, and/or connected to the second component in some other suitable manner. In some cases, the first component may be considered associated with the second component by being connected to the second component by a third component. The first component also may be considered to be associated with the second component by being formed as part of and/or as an extension of the second component.

Fluid source **116** is configured to hold, or store, fluid **102**. In this illustrative example, fluid source **116** may take the form of cartridge **126**. However, in other illustrative examples, fluid source **116** may take some other form such as, for example, without limitation, a container, a tank, a reservoir, a casing, or some other type of storage structure.

In this illustrative example, fluid **102** held by cartridge **126** may be viscous fluid **128**. As used herein, a “viscous” fluid may be a fluid that resists shear flow and strain linearly with time when a stress is applied. Viscous fluids may be considered as having a thick consistency. Viscous fluid **128** may have a viscosity between about 50 poise and about 12,500 poise in some illustrative examples. Of course, in other illustrative examples, viscous fluid **128** may have a viscosity less than about 50 poise or greater than about 12,500 poise.

In one illustrative example, viscous fluid **128** takes the form of sealant **130**. Of course, in other illustrative examples, viscous fluid **128** may take the form of an adhesive. When viscous fluid **128** takes the form of sealant **130**, fluid application device **100** may be referred to as a “sealant application device.”

Sealant **130** may be applied onto surface **104** to, for example, without limitation, seal number of interfaces **131** on surface **104**. As used herein, a “number of” items may be one or more items. For example, number of interfaces **131** may include one or more interfaces. An “interface,” such as one of number of interfaces **131**, as used herein, may be an interface between any two objects. For example, an interface may be the boundary between two objects that have been joined together. An interface may be the boundary between a fastener element and the object into which the fastener element has been installed.

Fluid **102** may be dispensed from fluid source **116** to applicator **120** using fluid control system **122**. Fluid control system **122** may be configured to control the flow of fluid **102** from fluid source **116** to applicator **120**. Fluid control system **122** may include at least

one of hose **132**, valve system **134**, nozzle **136**, and some other type of fluid transport element or flow control element.

As used herein, the phrase “at least one of,” when used with a list of items, may mean that different combinations of one or more of the listed items may be used. In some cases, 5 only one item in the list of items may be needed. For example, “at least one of item A, item B, and item C” may include item A; item A and item B; item A, item B, and item C; item B and item C; or some other type of combination. As another example, “at least one of item A, item B, and item C” may include, but is not limited to, two of item A, one of item B, and ten of item C; four of item B and seven of item C; or some other type of combination. The item 10 may be a particular object, thing, or a category. In other words, at least one of means any combination items and number of items may be used from the list but not all of the items in the list are required.

Hose **132** may be attached to fluid source **116** such that hose **132** is configured to receive fluid **102** dispensed by fluid source **116**. The flow of fluid **102** from hose **132** to 15 applicator **120** may be controlled using valve system **134** and/or nozzle **136**. Valve system **134** may include, for example, without limitation, at least one of number of valves **138** and number of actuators **140**. In one illustrative example, valve system **134** may be used to control amount **142** of fluid **102** sent to applicator **120**, while nozzle **136** may be used to control rate **144** at which fluid **102** is sent to applicator **120**. In this manner, a controlled 20 amount **142** of fluid **102** may be dispensed, or supplied, to applicator **120** at a controlled rate **144**.

As depicted, extension member **117** may be associated with end **146** of platform **114**. In particular, extension member **117** may extend from end **146** of platform **114**. In this 25 illustrative example, extension member **117** may take the form of arm **118**. However, in other illustrative examples, extension member **117** may take some other form.

Extension member **117** allows applicator **120** to be extended away from fluid source **116** such that fluid source **116** and applicator **120** are not co-located together. More specifically, extension member **117** may be configured to maintain a selected distance between fluid source **116** and applicator **120**. In this manner, extension member **117** may 30 allow applicator **120** to be positioned within an area in which fluid source **116** does not fit. The area may be, for example, a compartment, a hollow portion of a tube, an interior of a structure, a confined area, or some otherwise difficult-to-reach area. For example, without limitation, extension member **117** may have a size configured such that extension member

117 and applicator 120 may be inserted into an opening in a structure through which fluid source 116 does not fit.

Applicator 120 may be associated with arm 118. Applicator 120 may take the form of any type of device or tool configured for use in applying fluid 102 onto surface 104. As one 5 illustrative example, applicator 120 may take the form of brush 148. Brush 148 may have bristles 150 configured for use in applying fluid 102 onto surface 104.

In one illustrative example, applicator coupling unit 152 may be used to couple applicator 120 to arm 118. Applicator coupling unit 152 may comprise any number of structures, fasteners, and/or other components needed to couple applicator 120 to arm 118. In 10 this illustrative example, applicator coupling unit 152 may couple applicator 120 to arm 118 in a manner that allows applicator 120 to move independently of at least one of applicator coupling unit 152 and arm 118.

Applicator 120 may be moved using applicator movement system 124. Applicator movement system 124 may include at least one of first movement system 154 and second 15 movement system 156. First movement system 154 may be configured to rotate applicator 120 about applicator axis 158. Applicator axis 158 may be a center axis through applicator 120 in one illustrative example. Applicator 120 may be rotated independently of applicator coupling unit 152 and/or arm 118.

As depicted, first movement system 154 may include, for example, without limitation, 20 at least one of number of motors 160, number of shafts 162, number of belt systems 164, and some other type of movement device or element. Belt system 166 may be an example of one of number of belt systems 164. In one illustrative example, belt system 166 may be used to rotate applicator 120 about applicator axis 158.

Belt system 166 may include, for example, without limitation, first pulley 168, second 25 pulley 170, and belt 172. Belt 172 may wrap around both first pulley 168 and second pulley 170. First pulley 168 may be connected to one of number of motors 160 by one of number of shafts 162. Operation of this motor may cause rotation of first pulley 168 in a direction around applicator axis 158, which may, in turn, cause movement of belt 172. Movement of belt 172 may then cause rotation of second pulley 170 in the same direction around applicator 30 axis 158. For example, clockwise rotation of first pulley 168 may result in clockwise rotation of second pulley 170.

Second pulley 170 may be connected to applicator 120 by another one of number of shafts 162 or in some other manner. Rotation of second pulley 170 in a direction around applicator axis 158 may cause rotation of applicator 120 about applicator axis 158. For

example, clockwise rotation of second pulley **170** may lead to clockwise rotation of applicator **120** about applicator axis **158**. In this manner, first movement system **154** may be configured to move rotate applicator **120** about applicator axis **158**. Of course, any configuration of number of motors **160**, number of shafts **162**, and/or number of belt systems

5 **164** may be used to rotate applicator **120**.

Second movement system **156** may also be configured to move applicator **120**. In particular, second movement system **156** may be configured to rotate arm **118** about an axis through arm **118**, which may be referred to as arm axis **174**. Arm axis **174** may be a longitudinal axis through arm **118**. In one illustrative example, arm axis **174** may be 10 substantially perpendicular to applicator axis **158**. However, in other illustrative examples, applicator **120** may be coupled to arm **118** in such a manner that arm axis **174** is at some other angle relative to applicator axis **158**.

When arm **118** rotates about arm axis **174**, applicator **120** may be moved along with arm **118**. In this manner, the coupling of applicator **120** to arm **118** may be configured such 15 that movement of arm **118** causes the same movement of applicator **120** but movement of applicator **120** may not cause the same movement of arm **118**.

Second movement system **156** may include, for example, without limitation, at least one of number of motors **176**, number of shafts **178**, number of gears **180**, number of belt systems **182**, and some other type of movement device or element. One or more of number 20 of belt systems **182** may be implemented in a manner similar to the implementation of belt system **166**. In some cases, second movement system **156** may be configured to restrict the range of rotation of arm **118** about arm axis **174**. In other illustrative examples, second movement system **156** may be configured to allow arm **118** to fully rotate about 360 degrees about arm axis **174**.

25 Of course, depending on the implementation, first movement system **154** and/or second movement system **156** may be implemented in some other manner than described. For example, first movement system **154** and/or second movement system **156** may be implemented using a number of actuators, a number of slip rings, a number of wheels, a number of gears, and/or any number of other types of components. The actuators used may 30 be selected from, for example, without limitation, linear actuators, rotary actuators, shape-memory alloy actuators, electromechanical actuators, hydraulic actuators, pneumatic actuators, and/or other types of actuators.

The illustration of fluid application device **100** in **Figure 1** is not meant to imply physical or architectural limitations to the manner in which an illustrative embodiment may

be implemented. Other components in addition to or in place of the ones illustrated may be used. Some components may be optional. Also, the blocks are presented to illustrate some functional components. One or more of these blocks may be combined, divided, or combined and divided into different blocks when implemented in an illustrative embodiment.

5 With reference now to **Figure 2**, an illustration of an isometric view of a fluid application device is depicted in accordance with an illustrative embodiment. In this illustrative example, fluid application device **200** may be an example of one implementation for fluid application device **100** in **Figure 1**.

10 Fluid application device **200** may be used to apply sealant **202** onto surface **204**. Sealant **202** may be an example of one implementation for sealant **130** in **Figure 1**. Surface **204** may be an example of one implementation for surface **104** in **Figure 1**.

15 As depicted, surface **204** may include a portion of surface **206** of object **205** and a portion of surface **208** of object **207**. Object **205** and object **207** have been joined using bracket **210**. Fluid application device **200** may apply sealant **202** over surface **204** to seal interface **212** formed between object **205** and object **207** using bracket **210**. Interface **212** may be an example of one implementation for one of number of interfaces **131** in **Figure 1**.

20 In this illustrative example, fluid application device **200** may include platform **214**, cartridge **216**, arm **218**, brush **220**, fluid control system **222**, and applicator movement system **224**. Platform **214**, cartridge **216**, arm **218**, brush **220**, fluid control system **222**, and applicator movement system **224** may be examples of implementations for platform **114**, cartridge **126**, arm **118**, brush **148**, fluid control system **122**, and applicator movement system **124**, respectively, in **Figure 1**.

25 Cartridge **216** may be configured to hold sealant **202** within a chamber (not shown in this view) inside cartridge **216**. Cartridge **216** may dispense sealant **202** to brush **220**. Brush **220** may be associated with arm **218** in this illustrative example. Further, in this example, arm **218** may be fixedly attached to platform **214**. In other words, arm **218** may be unable to move relative to platform **214** in this illustrative example.

30 Fluid control system **222** may be used to control the amount of sealant **202** dispensed to brush **220** and the rate at which sealant **202** is dispensed to brush **220**. In this illustrative example, fluid control system **222** may include valve system **226** and nozzle **228**. Valve system **226** and nozzle **228** may be examples of implementations for valve system **134** and nozzle **136**, respectively, in **Figure 1**.

Applicator movement system **224** may include motor **230** in this illustrative example. Motor **230** may be an example of one implementation for a motor in number of motors **160** in

Figure 1. Operation of motor 230 may cause the activation of a belt system (not shown in this view). Activation of the belt system may cause brush 220 to rotate about applicator axis 231 through brush 220 during the application of sealant 202 onto surface 204. Applicator axis 231 may be an example of one implementation for applicator axis 158 in **Figure 1**.

5 When an applicator axis, such as applicator axis 231, is through an applicator in the form of a brush, such as brush 220, the applicator axis may be referred to as a brush axis.

In this manner, applicator movement system 224 may be used to rotate brush 220 about applicator axis 231 as brush 220 is moved along surface 204. Rotating brush 220 during the application of sealant 202 may ensure that sealant 202 is distributed over surface 10 204 substantially smoothly and evenly.

As depicted, attachment unit 232 may be associated with platform 214. Attachment unit 232 may be an example of one implementation for attachment unit 125 in **Figure 1**.

Attachment unit 232 may be used to attach platform 214, and thereby fluid application device 15 200, to a robotic arm (not shown). In other words, attachment unit 232 may allow fluid application device 200 to be used as an end effector for a robotic arm (not shown).

With reference now to **Figure 3**, an illustration of a cross-sectional view of a fluid application device 200 from **Figure 2** is depicted in accordance with an illustrative embodiment. In this illustrative example, a cross-sectional view of fluid application device 200 from **Figure 2** is depicted, taken along lines 3-3 in **Figure 2**.

20 As depicted, sealant 202 may be held within chamber 300 of cartridge 216. Sealant 202 may be dispensed from cartridge 216 and allowed to flow through fluid control system 222. In this illustrative example, sealant 202 may flow from cartridge 216 to brush 220 along path 302. Valve 304 in valve system 226 of fluid control system 222 may be used to control the amount of sealant 202 dispensed along path 302. Nozzle 228 may be used to control the 25 rate at which sealant 202 flows along path 302 to brush 220.

Additional components of applicator movement system 224 may be seen in this view. In addition to motor 230, applicator movement system 224 may include belt system 305 and shaft 307. Belt system 305 and shaft 307 may be substantially located within platform 214. Belt system 305 may be an example of one implementation for belt system 166 in **Figure 1**.

30 Shaft 307 may be an example of one implementation for one of number of shafts 162 in **Figure 1**.

Belt system 305 may include first pulley 306, second pulley 308, and belt 310. First pulley 306 and second pulley 308 may be toothed wheels in this illustrative example. Belt 310 may be wrapped around both first pulley 306 and second pulley 308. First pulley 306,

second pulley **308**, and belt **310**, may be examples of implementations for first pulley **168**, second pulley **170**, and belt **172**, respectively, in **Figure 1**.

As depicted, first pulley **306** may be connected to motor **230** by shaft **307** and coupling unit **312**. Further, second pulley **308** may be connected to brush **220** by applicator coupling unit **314**. In this manner, applicator coupling unit **314** may be used

Operation of motor **230** may cause rotation of first pulley **306**. In one illustrative example, this rotation may be in the direction of arrow **316**, a clockwise direction. However, in other examples, the rotation may be in the reverse of the direction of arrow **316**, a counter-clockwise direction.

Rotation of first pulley **306** may move belt **310** around first pulley **306** and second pulley **308**, which may, in turn, cause rotation of second pulley **308**. Rotation of second pulley **308** may cause rotation of brush **220** about applicator axis **231**.

Depending on the implementation, a human operator (not shown) or a robotic operator (not shown) may control operation of motor **230**, and thereby the rotation of brush **220**. Brush **220** may be moved along surface **204** in **Figure 2** to various positions along surface **204** by the human operator or the robotic operator. In this illustrative example, sealant **202** may be dispensed from cartridge **216** to brush **220** in a continuous manner such that sealant **202** may be applied onto surface **204** in **Figure 2** without undesired interruption.

With reference now to **Figure 4**, an illustration of an isometric view of a different implementation for a fluid application device is depicted in accordance with an illustrative embodiment. In this illustrative example, fluid application device **400** may be an example of one implementation for fluid application device **100** in **Figure 1**.

Fluid application device **400** may include attachment unit **402**, platform **404**, cartridge **406**, arm **408**, brush **410**, fluid control system **412**, and applicator movement system **416**. Attachment unit **402**, platform **404**, cartridge **406**, arm **408**, brush **410**, fluid control system **412**, and applicator movement system **416**, which may be examples of implementations for attachment unit **125**, platform **114**, cartridge **126**, arm **118**, brush **148**, fluid control system **122**, and applicator movement system **124**, respectively, in **Figure 1**.

In this illustrative example, applicator movement system **416** may be associated with platform **404**. Further, structure **418** may be associated with applicator movement system **416**. Structure **418** may be used to associate arm **408** with platform **404**. Arm **408** may be fixedly associated with platform **404** in this illustrative example. In other words, neither arm **408** nor structure **418** may be moved relative to platform **404** in this example.

As depicted, brush **410** may be associated with arm **408**. In this illustrative example, arm **408** may be longer than arm **218** in **Figures 2-3**. In other words, arm **408** may be further extended than arm **218**. Consequently, arm **408** may be used to allow brush **410** to be positioned within otherwise difficult to reach locations.

5 Fluid control system **412** may include valve system **420**, nozzle **422**, and hose **414**. Valve system **420** and nozzle **422** may be examples of implementations for valve system **134** and nozzle **136**, respectively, in **Figure 1**. Valve system **420** and nozzle **422** may be used to control the amount of sealant (not shown) and the rate of flow of sealant (not shown), respectively, dispensed through hose **414** from cartridge **406** to brush **410**.

10 Applicator movement system **416** may include motor **424**. Motor **424** may be operated to rotate brush **410** about applicator axis **425**. As one illustrative example, operation of motor **424** may cause rotation of brush **410** about applicator axis **425** in the direction of arrow **427**.

15 With reference now to **Figures 5-8**, illustrations of a fluid application device having different configurations for an applicator movement system are depicted in accordance with an illustrative embodiment. Fluid application device **500** depicted in **Figures 5-8** may be an example of one implementation for fluid application device **100** in **Figure 1**.

20 Turning now to **Figure 5**, an illustration of an isometric view of a fluid application device is depicted in accordance with an illustrative embodiment. As depicted, fluid application device **500** may include platform **502**, cartridge **504**, hose **505**, arm **506**, brush **508**, applicator movement system **510**, and attachment unit **512**. Platform **502**, cartridge **504**, hose **505**, arm **506**, brush **508**, applicator movement system **510**, and attachment unit **512** may be examples of implementations for platform **114**, cartridge **126**, hose **132**, arm **118**, brush **148**, and applicator movement system **124**, respectively, in **Figure 1**. Attachment unit **512** may be used to attach fluid application device **500** to, for example, without limitation, robotic arm **514**.

25 In this illustrative example, cartridge **504** may be configured to dispense sealant (not shown) to brush **508** through hose **505**. Brush **508** may be used to apply the sealant onto a surface (not shown).

30 Applicator movement system **510** may be configured to move brush **508**. As depicted, applicator movement system **510** may include first movement system **516** and second movement system **518**. First movement system **516** and second movement system **518** may be an example of one implementation for first movement system **154** and second

movement system **156**, respectively, in **Figure 1**. In this illustrative example, first movement system **516** and second movement system **518** may be entirely housed within platform **502**.

First movement system **516** may be configured to rotate brush **508** about applicator axis **519**. First movement system **516** may include motor **520**, shaft **521**, and belt system **523**. Belt system **523** may be an example of one implementation for belt system **166** in **Figure 1**. Belt system **523** may include first pulley **522**, second pulley **524**, and belt **526**. Second pulley **524** may be associated with applicator coupling unit **527**. Applicator coupling unit **527** may be an example of one implementation for applicator coupling unit **152** in **Figure 1**. Applicator coupling unit **527** may couple brush **508** to arm **506** in this example.

Operation of motor **520** may cause rotation of first pulley **522**, which may, in turn, cause movement of belt **526**. Movement of belt **526** may rotate second pulley **524**, which may, in turn cause rotation of brush **508** about applicator axis **519**. As one illustrative example, brush **508** may be rotated in the direction of arrow **528**.

Second movement system **518** may include motor **530**, shaft **532**, inner gear **534**, and outer gear **536**. Outer gear **536** may be fixedly attached to arm **506** in this example.

Operation of motor **530** may rotate shaft **532**, which may cause rotation of inner gear **534**. Rotation of inner gear **534** may cause rotation of outer gear **536**, which may, in turn, cause rotation of arm **506** about arm axis **540**. Arm axis **540** may be an example of one implementation for arm axis **174** in **Figure 1**. For example, without limitation, arm **506** may be rotated in the direction of arrow **538** about arm axis **540**.

Turning now to **Figure 6**, an illustration of a cross-sectional view of fluid application device **500** from **Figure 5** is depicted in accordance with an illustrative embodiment. In this illustrative example, a cross-sectional view of fluid application device **500** from **Figure 5** is seen taken along lines **6-6** in **Figure 5**.

As depicted, fluid application device **500** may have a different configuration for second movement system **518**. In particular, in this example, motor **530** may be located outside of platform **502**. Additionally, in this view, coupling unit **600** may be seen. Coupling unit **600** may be configured to couple motor **520** to shaft **521**.

With reference now to **Figure 7**, another illustration of a cross-sectional view of fluid application device **500** from **Figure 6** is depicted in accordance with an illustrative embodiment. In this illustrative example, fluid application device **500** may have the same configuration for second movement system **518** as depicted in **Figure 5**. However, fluid application device **500** may have a different configuration for first movement system **516**.

In this illustrative example, first movement system **516** may include motor **520**, shaft **521**, miter gear **702**, miter gear **704**, shaft **706**, miter gear **708**, miter gear **710**, shaft **712**, and belt system **713**. The miter gears may also be referred to as bevel gears in some cases. Belt system **713** may include first pulley **714**, belt **716**, and second pulley **718**.

5 Operation of motor **520** may cause rotation of shaft **712** and thereby, rotation of miter gear **702**. Rotation of miter gear **702** may, in turn, cause rotation of miter gear **704**, shaft **706** connected to miter gear **704**, and miter gear **708** connected to shaft **706**. Rotation of miter gear **708** may cause rotation of miter gear **710** and shaft **712** connected to miter gear **710**.
10 Rotation of shaft **712** may cause rotation of first pulley **714**, which may lead to the rotation of second pulley **718** by belt **716**. Rotation of second pulley **718** may then cause rotation of brush **508** about applicator axis **519**.

15 With reference now to **Figure 8**, yet another illustration of a cross-sectional view of fluid application device **500** from **Figure 7** is depicted in accordance with an illustrative embodiment. In this illustrative example, fluid application device **500** may have the same configuration for first movement system **516** as depicted in **Figure 6**. However, fluid application device **500** may have a different configuration for second movement system **518**.

20 In this illustrative example, the length of shaft **521** has been extended as compared to the length of shaft **521** in **Figures 5-7**. In **Figure 8**, second movement system **518** may include motor **800**, turning mechanism **802**, shaft **804**, belt system **805**, shaft **532**, inner gear **534**, and outer gear **536**. Belt system **805** may include first pulley **806**, belt **808**, and second pulley **810**.

25 Operation of motor **800** may cause activation of turning mechanism **802**. Turning mechanism **802** may be used to activate belt system **805**. When belt system **805** is activated, first pulley **806** may rotate, thereby causing movement of belt **808** and rotation of second pulley **810**. Rotation of second pulley **810** may cause rotation of inner gear **534** by shaft **532**, which may, in turn cause rotation of outer gear **536**. Rotation of outer gear **536** may cause rotation of arm **506** about arm axis **540**.

30 In this illustrative example, turning mechanism **802** may only activate belt system **805** such that arm **506** may be rotated about arm axis **540** in about 90 degree increments. Turning mechanism **802** may be described in greater detail in **Figure 9**.

With reference now to **Figure 9**, an illustration of a view of turning mechanism **802** from **Figure 8** taken with respect to lines **9-9** is depicted in accordance with an illustrative embodiment. In this illustrative example, turning mechanism **802** may be implemented using a Geneva drive mechanism.

As depicted, turning mechanism **802** may include drive wheel **900**, driven wheel **902**, and pin **904** attached to drive wheel **900**. Driven wheel **902** may have plurality of slots **905**. Plurality of slots **905** includes four slots in this example. Each full rotation of pin **904** of about 360 degrees about pivot point **906** may cause rotation of driven wheel **902** by about 90 degrees about pivot point **908**. In this manner, driven wheel **902** may only be advanced in about 90 degree increments.

Driven wheel **902** may be connected to shaft **804** in **Figure 8** at pivot point **908**. Shaft **804** in **Figure 8** may be connected to first pulley **806** in **Figure 8**. Each advance of driven wheel **902** may cause rotation of shaft **804**, and thereby rotation of first pulley **806** in **Figure 8**. Further, first pulley **806** in **Figure 8** may only be rotated when driven wheel **902** advances. In this manner, the rotation of arm **506** in **Figure 8** may be controlled such that arm **506** remains stabilized when driven wheel **902** is not being advanced.

With reference now to **Figure 10**, an illustration of a fluid application device is depicted in accordance with an illustrative embodiment. In this illustrative example, fluid application device **1000** may be an example of one implementation for fluid application device **100** in **Figure 1**.

Fluid application device **1000** may include platform **1002**, cartridge **1004**, arm **1006**, brush **1008**, fluid control system **1010**, applicator movement system **1012**, and attachment unit **1014**. Platform **1002**, cartridge **1004**, arm **1006**, brush **1008**, fluid control system **1010**, applicator movement system **1012**, and attachment unit **1014** may be examples of implementations for platform **114**, cartridge **126**, arm **118**, brush **148**, fluid control system **122**, applicator movement system **124**, and attachment unit **125**, respectively, in **Figure 1**.

In **Figure 10**, fluid control system **1010** may include valve system **1016**, hose **1018**, and nozzle **1020**. Fluid control system **1010** may be used to control the dispensing of a sealant held by cartridge **1004** to brush **1008**.

In this illustrative example, brush **1008** may be associated with arm **1006** through applicator coupling unit **1022**. In this illustrative example, arm **1006** may be attached to end **1024** of platform **1002**.

As depicted, applicator movement system **1012** may include first movement system **1025**. First movement system **1025** may include motor **1026**, shaft **1028**, miter gears **1029**, telescopic shaft **1030**, and miter gears **1032**. Operation of motor **1026** may cause rotation of brush **1008** about applicator **1027** through shaft **1028**, miter gears **1029**, telescopic shaft **1030**, and miter gears **1032**. When telescopic shaft **1030** is present, arm **1006** may be referred to as a telescopic arm.

Applicator movement system **1012** may also include second movement system **1034**. Second movement system **1034** may include motor **1036**, belt system **1037**, shaft **1038**, belt system **1040**, and worm drive mechanism **1042**. Operation of motor **1036** may cause rotation of arm **1006** about arm axis **1035** in this illustrative example. In particular, operation of motor **1036** may activate belt system **1037**, which may, in turn, cause activation of belt system **1040** and worm drive mechanism **1042**. Worm drive mechanism **1042** may be configured to cause rotation of a toothed wheel (not shown) fixedly attached to arm **1006**.

In this illustrative example, deployment cylinder **1044** may be used to extend and retract arm **1006** with respect to arm axis **1035**. Arm **1006** may be connected to deployment cylinder by interface **1046**.

With reference now to **Figure 11**, an illustration of a cross-sectional view of fluid application device **1000** from **Figure 10** is depicted in accordance with an illustrative embodiment. In this illustrative example, a cross-sectional view of fluid application device **1000** from **Figure 10** is depicted taken along lines **11-11** in **Figure 10**. A portion of the various components of applicator movement system **1012** may be more clearly seen in this view.

Turning now to **Figure 12**, an illustration of a view of fluid application device **1000** from **Figure 11** taken with respect to lines **12-12** is depicted in accordance with an illustrative embodiment. In this illustrative example, arm **1006** may be configured to extend and retract with respect to arm axis **1035**. For example, without limitation, arm **1006** may be extended, or lengthened, in the direction of arrow **1200** along arm axis **1035**. This lengthening may be performed using telescopic element **1201**.

Arm **1006** may be configured to move relative to telescopic element **1201** along arm axis **1035**. For example, without limitation, arm **1006** may be moved in the direction of arrow **1200** independently of telescopic element **1201**. Telescopic element **1201** may be associated with telescopic shaft **1030**.

Telescopic shaft **1030** may be associated with miter gears **1029** in **Figure 10** and miter gears **1032**. Rotation of miter gears **1029** caused by motor **1026** in **Figure 10** may cause rotation of telescopic shaft **1030**. The hexagonal shape of telescopic shaft **1030** may cause telescopic element **1201** to rotate when telescopic shaft **1030** is rotated. Further, interface **1202** between telescopic element **1201** and arm **1006** may ensure that rotation of telescopic element **1201** causes rotation of arm **1006** with telescopic element **1201**.

The illustrations of fluid application device **200** in **Figures 2-3**, fluid application device **400** in **Figure 4**, fluid application device **500** in **Figures 5-8**, turning mechanism **802**

in **Figure 8**, fluid application device **1000** in **Figures 10-12** are not meant to imply physical or architectural limitations to the manner in which an illustrative embodiment may be implemented. Other components in addition to or in place of the ones illustrated may be used.

5 The different components shown in **Figures 2-12** may be illustrative examples of how components shown in block form in **Figure 1** may be implemented as physical structures. Additionally, some of the components in **Figures 2-12** may be combined with components in **Figure 1**, used with components in **Figure 1**, or a combination of the two.

With reference now to **Figure 13**, an illustration of a process for applying a fluid onto 10 a surface is depicted in the form of a flowchart in accordance with an illustrative embodiment. The process illustrated in **Figure 13** may be implemented using, for example, without limitation, fluid application device **100** to apply fluid **102** onto surface **104** in **Figure 1**.

The process may begin by positioning applicator **120** associated with extension 15 member **117** over surface **104** using robotic operator **108** (operation **1300**). Extension member **117** may be configured to maintain a selected distance between applicator **120** and fluid source **116** for fluid **102**. In one illustrative example, operation **1300** may be performed by robotic operator **108** in the form of robotic arm **110**.

Next, fluid **102** may be dispensed from fluid source **116** to applicator **120** associated 20 with extension member **117** (operation **1302**). Extension member **117** may hold applicator **120** at some selected distance away from platform **114**. In this manner, applicator **120** may be positioned within otherwise difficult to reach areas.

Thereafter, fluid **102** may be applied onto surface **104** using applicator **120** (operation 25 **1304**), with the process terminating thereafter. In one illustrative example, applicator **120** may take the form of brush **148**. Brush **148** may be configured to apply fluid **102** onto surface **104** such that fluid **102** is substantially smoothly and evenly distributed.

With reference now to **Figure 14**, an illustration of a process for applying a sealant onto a surface is depicted in the form of a flowchart in accordance with an illustrative embodiment. The process illustrated in **Figure 14** may be implemented using, for example, 30 without limitation, fluid application device **100** to apply sealant **130** onto surface **104** in **Figure 1**.

Platform **114** of fluid application device **100** may be positioned over surface **104** using robotic arm **110** to which platform **114** is attached (operation **1400**). In operation **1400**, positioning platform **114** may include positioning arm **118** associated with platform **114**.

Operation **1400** may be performed in a number of different ways. Robotic arm **110** may be commanded to move platform **114** to move fluid application device **100** using information provided by a positioning system. The positioning system may comprise, for example, without limitation, a vision-based positioning system, a preprogrammed coordinate system, 5 or some other type of positioning system.

The vision-based positioning system may use images generated by cameras to position fluid application device **100**. The pre-programmed coordinate system may be configured to provide predefined coordinates to robotic arm **110** for moving platform **114**.

Arm **118** associated with platform **114** may be rotated about arm axis **174** through 10 arm **118** using applicator movement system **124** such that applicator **120** associated with arm **118** is also rotated about arm axis **174** (operation **1402**).

Sealant **130** may be dispensed from fluid source **116** associated with platform **114** to applicator **120** (operation **1404**). At least one of amount **142** of and rate **144** of flow of sealant **130** dispensed from fluid source **116** to applicator **120** may be controlled using fluid 15 control system **122** (operation **1406**).

Applicator **120** may be rotated about applicator axis **158** through applicator **120** independently of arm **118** using applicator movement system **124** (operation **1408**).

Thereafter, sealant **130** may be applied onto surface **104** using applicator **120** to seal number of interfaces **131** on surface **104** (operation **1410**), with the process terminating thereafter.

20 Operation **1408** may be continuously performed during operation **1410** in this illustrative example. In other words, applicator **120** may be continuously rotated while sealant **130** is applied onto surface **104**. This type of application of sealant **130** onto surface **104** may improve the consistency with which sealant **130** is applied onto surface **104**.

25 With reference now to **Figure 15**, an illustration of a process for applying a sealant onto a plurality of fasteners is depicted in the form of a flowchart in accordance with an illustrative embodiment. The process illustrated in **Figure 15** may be implemented using fluid application device **100** in **Figure 1**.

The process may begin moving fluid application device **100** to an initial position such 30 that brush **148** is positioned over a first fastener in a plurality of fasteners installed in a structure using robotic arm **110** (operation **1500**). Brush **148** is then rotated using first movement system **154** of applicator movement system **124** (operation **1502**). Valve system **134** is then used to allow a controlled amount **142** of sealant **130** to flow from cartridge **126** to brush **148** at a controlled rate **144** (operation **1504**).

Brush **148** is then used to apply sealant **130** to the fastener according to a predefined application routine (operation **1506**). For example, without limitation, robotic arm **110** may be used to control the movement of brush **148** over the fastener by sending commands to second movement system **156** of applicator movement system **124**. The predefined application routine for brush **148** may be a particular pattern according to which brush **148** is to be moved to apply sealant **130** over the fastener.

Once sealant **130** has been applied to the fastener, the rotation of brush **148** and the flow of sealant **130** to brush **148** are stopped (operation **1508**). A determination is then made as to whether any additional fasteners in the plurality of fasteners need sealant **130** (operation **1510**). If no fasteners in the plurality of fasteners still need sealant **130**, the process terminates. Otherwise, fluid application device **100** is moved to a next position such that brush **148** is positioned over a next fastener in the plurality of fasteners using robotic arm **110** (operation **1512**). The process then returns to operation **1502** as described above.

The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of apparatuses and methods in an illustrative embodiment. In this regard, each block in the flowcharts or block diagrams may represent a module, a segment, a function, and/or a portion of an operation or step.

In some alternative implementations of an illustrative embodiment, the function or functions noted in the blocks may occur out of the order noted in the figures. For example, in some cases, two blocks shown in succession may be executed substantially concurrently, or the blocks may sometimes be performed in the reverse order, depending upon the functionality involved. Also, other blocks may be added in addition to the illustrated blocks in a flowchart or block diagram.

Illustrative embodiments of the disclosure may be described in the context of aircraft manufacturing and service method **1600** as shown in **Figure 16** and aircraft **1700** as shown in **Figure 17**. Turning first to **Figure 16**, an illustration of an aircraft manufacturing and service method is depicted in the form of a flowchart in accordance with an illustrative embodiment. During pre-production, aircraft manufacturing and service method **1600** may include specification and design **1602** of aircraft **1700** in **Figure 17** and material procurement **1604**.

During production, component and subassembly manufacturing **1606** and system integration **1608** of aircraft **1700** in **Figure 17** takes place. Thereafter, aircraft **1700** in **Figure 17** may go through certification and delivery **1610** in order to be placed in service **1612**. While in service **1612** by a customer, aircraft **1700** in **Figure 17** is scheduled for

routine maintenance and service **1614**, which may include modification, reconfiguration, refurbishment, and other maintenance or service.

Each of the processes of aircraft manufacturing and service method **1600** may be performed or carried out by a system integrator, a third party, and/or an operator. In these examples, the operator may be a customer. For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors; a third party may include, without limitation, any number of vendors, subcontractors, and suppliers; and an operator may be an airline, a leasing company, a military entity, a service organization, and so on.

With reference now to **Figure 17**, an illustration of an aircraft is depicted in the form of a block diagram in which an illustrative embodiment may be implemented. In this example, aircraft **1700** is produced by aircraft manufacturing and service method **1600** in **Figure 16** and may include airframe **1702** with plurality of systems **1704** and interior **1706**. Examples of systems **1704** include one or more of propulsion system **1708**, electrical system **1710**, hydraulic system **1712**, and environmental system **1714**. Any number of other systems may be included. Although an aerospace example is shown, different illustrative embodiments may be applied to other industries, such as the automotive industry.

Apparatuses and methods embodied herein may be employed during at least one of the stages of aircraft manufacturing and service method **1600** in **Figure 16**. For example, without limitation, number of interfaces **131** in **Figure 1** may be located on aircraft **1700**. A fluid application device, such as fluid application device **100** from **Figure 1**, may be used to apply sealant **130**, or some other type of fluid **102**, to number of interfaces **131** during component and subassembly manufacturing **1606**, system integration **1608**, in service **1612**, routine maintenance and service **1614**, and/or some other stage of aircraft manufacturing and service method **1600** in **Figure 16**.

In one illustrative example, components or subassemblies produced in component and subassembly manufacturing **1606** in **Figure 16** may be fabricated or manufactured in a manner similar to components or subassemblies produced while aircraft **1700** is in service **1612** in **Figure 16**. As yet another example, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during production stages, such as component and subassembly manufacturing **1606** and system integration **1608** in **Figure 16**. One or more apparatus embodiments, method embodiments, or a combination thereof may be utilized while aircraft **1700** is in service **1612** and/or during maintenance and service **1614** in

Figure 16. The use of a number of the different illustrative embodiments may substantially expedite the assembly of and/or reduce the cost of aircraft 1700.

Thus, the illustrative embodiments provide a method and apparatus for applying fluid onto a surface. In one illustrative embodiment, an apparatus may comprise a platform, a fluid source associated with the platform, an arm associated with the platform, and an applicator associated with the arm. The fluid source may be configured to dispense a fluid. The arm may be configured to extend from the platform. The applicator may be configured to receive the fluid dispensed by the fluid source. The applicator may be configured for use in applying the fluid onto a surface.

10 In another illustrative embodiment, a fluid application device may comprise a platform, a cartridge associated with the platform, an arm associated with the platform, a brush associated with the arm, a fluid control system, an applicator movement system, an applicator coupling unit, and an attachment unit. The cartridge may be configured to dispense a fluid. The arm may be configured to extend from the platform. The brush may be 15 configured to receive the fluid dispensed by the cartridge. The brush may be configured for use in applying the fluid onto a surface. The fluid control system may be configured to control at least one of an amount of the fluid and a rate of the fluid dispensed to the brush. The fluid control system may comprise at least one of a hose, a valve system, and a nozzle.

10 The applicator movement system may be configured to move the brush. The applicator movement system may comprise at least one of a first movement system and a second movement system. The first movement system may be configured to rotate the brush about a brush axis through the brush independently of the arm. The first movement system may comprise at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears. The second movement system may be configured to rotate 25 the arm about an arm axis through the arm. Rotation of the arm may cause rotation of the brush about the arm axis. The second movement system may comprise at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears. The applicator coupling unit may be configured to couple the brush to the arm. The attachment unit may be configured for association with the platform. The attachment unit may be 30 configured for use in attaching the fluid application device to a robotic arm as an end effector.

The fluid application device described by the various illustrative embodiments may be used to automate the process of applying fluids, such as sealant, over surfaces. Further, the fluid application device described by the various illustrative embodiments may be used to

reduce the time needed to perform these sealant application operations. Still further, the expense of sealant application operations may be reduced by the ability of the fluid application device to control the amount of fluid applied and the rate at which the fluid is applied.

5 The description of the different illustrative embodiments has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different illustrative embodiments may provide different features as compared to other desirable embodiments. The embodiment or
10 embodiments selected are chosen and described in order to best explain the principles of the embodiments, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

CLAIMS:

What is claimed is:

- 5 1. An apparatus comprising:
 - a platform (114);
 - a fluid source (116) associated with the platform (114) and configured to dispense a fluid (102);
 - an extension member (117) associated with the platform (114) and configured to extend from the platform (114); and
 - an applicator (120) associated with the extension member (117) and configured to receive the fluid (102) dispensed by the fluid source (116) in which the applicator (120) is configured for use in applying the fluid (102) onto a surface (104).
- 15 2. The apparatus of claim 1 further comprising:
 - an applicator movement system (124) configured to move the applicator (120).
 3. The apparatus of claim 2, wherein the applicator movement system (124) comprises at least one of:
 - 20 a first movement system (154) configured to rotate the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117); and
 - 25 a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.
 4. The apparatus of claim 3, wherein the second movement system (156) is used to move the applicator (120) to a position over the surface (104).
 - 30 5. The apparatus of claim 3, wherein the first movement system (154) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears.

6. The apparatus of claim 3, wherein the second movement system (156) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears.

5 7. The apparatus of claim 1 further comprising:
an applicator coupling unit (152) configured to couple the applicator (120) to the extension member (117).

8. The apparatus of claim 1, wherein the applicator (120) is a brush (148) and the fluid
10 (102) is sealant (130).

9. The apparatus of claim 1, wherein the fluid source (116) is a cartridge (126) configured to be held and supported by the platform (114).

15 10. The apparatus of claim 1, wherein the extension member (117) is a telescopic arm configured to extend and retract with respect to an arm axis (174) through the telescopic arm.

11. The apparatus of claim 1 further comprising:
a fluid control system (122) configured to control at least one of an amount (142) of
20 the fluid (102) and a rate (144) of the fluid (102) dispensed to the applicator (120).

12. The apparatus of claim 11, wherein the fluid control system (122) comprises at least one of a hose (132), a valve system (134), and a nozzle (136).

25 13. The apparatus of claim 1, wherein the extension member (117) is configured to maintain a selected distance between the applicator (120) and the fluid source (116).

14. The apparatus of claim 1, wherein the extension member (117) allows the applicator (120) to be positioned within an area in which the fluid source (116) does not fit.

30 15. The apparatus of claim 1, wherein the extension member (117) with the applicator (120) is configured for being inserted into an opening through which the fluid source (116) does not fit.

16. The apparatus of claim 1 further comprising:

an attachment unit (125) configured for association with the platform (114), wherein the attachment unit (125) is configured for use in attaching the platform (114) to a robotic arm (110).

5

17. The apparatus of claim 1 further comprising:

an attachment unit (125) configured for association with the extension member (117), wherein the attachment unit (125) is configured for use in attaching the extension member (117) to a robotic arm (110).

10

18. The apparatus of claim 1, wherein the platform (114), the fluid source (116), the extension member (117), and the applicator (120) form a fluid application device (100).

19. The apparatus of claim 18, wherein the fluid application device (100) is configured 15 for use as an end effector (112) for a robotic arm (110).

20. An end effector (112) comprising:

an extension member (117);

a platform (114) associated with the extension member (117);

20 a cartridge (126) associated with the platform (114) and configured to dispense a sealant (130);

an applicator (120) associated with the extension member (117) such that a selected distance is maintained between the applicator (120) and the cartridge (126) in which the applicator (120) is configured to receive the sealant (130) dispensed by the cartridge (126) 25 and in which the applicator (120) is configured for use in applying the sealant (130) onto a surface (104); and

an attachment unit (125) configured to attach the end effector (112) to a robotic operator (108) in which the robotic operator (108) is configured to move at least one of the platform (114) and the extension member (117) to position the applicator (120) over the 30 surface (104).

21. The end effector (112) of claim 20 further comprising:

an applicator movement system (124) configured to move the applicator (120).

22. The end effector (112) of claim 21, wherein the applicator movement system (124) is configured to rotate the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117) during application of the sealant (130) onto the surface (104).

5

23. The end effector (112) of claim 22, wherein the applicator movement system (124) is configured to rotate the applicator (120) about an axis through the extension member (117).

24. The end effector (112) of claim 22, wherein the applicator movement system (124) 10 comprises at least one of:

a first movement system (154) configured to rotate the applicator (120) about the applicator axis (158) through the applicator (120) independently of the extension member (117); and

15 a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.

25. A fluid application device (100) comprising:

a platform (114);

20 a cartridge (126) associated with the platform (114) and configured to dispense a sealant (130);

an extension member (117) associated with the platform (114) and configured to extend from the platform (114);

25 a brush (148) associated with the extension member (117) and configured to receive the sealant (130) dispensed by the cartridge (126) in which the brush (148) is configured for use in applying the sealant (130) onto a surface (104);

30 a fluid control system (122) configured to control at least one of an amount (142) of the sealant (130) and a rate (144) of the sealant (130) dispensed to the brush (148) in which the fluid control system (122) comprises at least one of a hose (132), a valve system (134), and a nozzle (136);

an applicator movement system (124) configured to move the brush (148) in which the applicator movement system (124) comprises at least one of:

a first movement system (154) configured to rotate the brush (148) about a brush axis through the brush (148) independently of the extension member (117) in

which the first movement system (154) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears; and

5 a second movement system (156) configured to rotate the extension member (117) about an axis through the extension member (117) in which rotation of the extension member (117) causes rotation of the brush (148) about the axis and in which the second movement system (156) comprises at least one of a number of motors, a number of shafts, a number of belt systems, and a number of gears;

an applicator coupling unit (152) configured to couple the brush (148) to the extension member (117); and

10 an attachment unit (125) configured for association with the platform (114) and configured for use in attaching the fluid application device (100) to a robotic arm (110) as an end effector (112).

26. A method for applying a viscous fluid (128) onto a surface (104), the method comprising:

15 positioning an applicator (120) associated with an extension member (117) over the surface (104) using a robotic operator (108) in which the extension member (117) is configured to maintain a selected distance between the applicator (120) and a fluid source (116) for the viscous fluid (128);

20 dispensing the viscous fluid (128) from the fluid source (116) to the applicator (120); and

applying the viscous fluid (128) onto the surface (104) using the applicator (120).

27. The method of claim 26, wherein positioning the applicator (120) associated with the extension member (117) over the surface (104) using the robotic operator (108) comprises:

25 moving at least one of the extension member (117) and a platform (114) associated with the extension member (117) using the robotic operator (108) to move the applicator (120) to a position over the surface (104), wherein the fluid source (116) is associated with the platform (114).

30

28. The method of claim 26 further comprising:

controlling at least one of an amount (142) of the viscous fluid (128) and a rate (144) of the viscous fluid (128) dispensed from the fluid source (116) to the applicator (120) using a fluid control system (122).

29. The method of claim 26 further comprising:
rotating the applicator (120) about an applicator axis (158) through the applicator (120) independently of the extension member (117) using an applicator movement system (124).

30. The method of claim 26 further comprising:
rotating the extension member (117) about an axis through the extension member (117) using an applicator movement system (124), wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis.

31. The method of claim 26, wherein applying the viscous fluid (128) onto the surface (104) using the applicator (120) comprises:

applying the viscous fluid (128) onto the surface (104) using the applicator (120) to seal a number of interfaces (131) on the surface (104), wherein the viscous fluid (128) is a sealant (130) and the applicator (120) is a brush (148).

32. The method of claim 26 further comprising:

extending the applicator (120) away from a platform (114) using the extension member (117), wherein the extension member (117) is a telescopic arm configured to extend and retract with respect to an arm axis (174) through the telescopic arm.

33. The method of claim 26, wherein positioning the extension member (117) over the surface (104) comprises:

positioning a platform (114) using a robotic arm (110) to position the extension member (117) over the surface (104), wherein the platform (114) is attached to the robotic arm (110) by an attachment unit (125).

34. The method of claim 26, wherein dispensing the viscous fluid (128) from the fluid source (116) to the applicator (120) comprises:

dispensing the viscous fluid (128) from the fluid source (116) to the applicator (120), wherein the viscous fluid (128) has a viscosity between about 50 poise and about 12,500 poise.

35. A method for applying a sealant (130) onto a surface (104), the method comprising:
positioning a platform (114) using a robotic arm (110) to position an extension
member (117) associated with the platform (114) over the surface (104) in which the platform
(114) is attached to the robotic arm (110) by an attachment unit (125);

5 dispensing the sealant (130) from a cartridge (126) associated with the platform (114)
to an applicator (120) associated with the extension member (117);

controlling at least one of an amount (142) of the sealant (130) and a rate (144) of the
sealant (130) dispensed from the cartridge (126) to the applicator (120) using a fluid control
system (122);

10 rotating the applicator (120) about an applicator axis (158) through the applicator
(120) independently of the extension member (117) using an applicator movement system
(124);

rotating the extension member (117) about an axis through the extension member
(117) using the applicator movement system (124), in which rotation of the extension
member (117) causes rotation of the applicator (120) about the axis; and

15 applying the sealant (130) onto the surface (104) using the applicator (120) to seal a
number of interfaces (131) on the surface (104).

36. A method for applying a sealant (130) onto a plurality of fasteners installed in a
20 structure, the method comprising:

moving an applicator (120) associated with an extension member (117) in a fluid
application device (100) to an initial position over a fastener in the plurality of fasteners using
a robotic arm (110);

25 rotating the applicator (120) using an applicator movement system (124);

dispensing a controlled amount (142) of the sealant (130) from a cartridge (126) held
by a platform (114) associated with the extension member (117) to the applicator (120) at a
controlled rate (144) while the applicator (120) is rotating; and

30 applying the sealant (130) onto the fastener using the applicator (120) according to a
predefined application routine.

37. The method of claim 36 further comprising:

stopping a flow of the sealant (130) to the applicator (120);

stopping rotation of the applicator (120);

moving the applicator (120) to a next fastener in the plurality of fasteners using the robotic arm (110); and

repeating the steps of rotating the applicator (120) using the applicator movement system (124), dispensing the controlled amount (142) of the sealant (130) from the cartridge (126) held by the platform (114) associated with the extension member (117) to the applicator (120) at the controlled rate (144) while the applicator (120) is rotating, and applying the sealant (130) onto the fastener using the applicator (120) according to the predefined application routine for the next fastener.

10 38. The method of claim 36, wherein moving the applicator (120) associated with the extension member (117) in the fluid application device (100) to the initial position over the fastener in the plurality of fasteners using the robotic arm (110) comprises:

moving at least one of the extension member (117) and the platform (114) associated with the extension member (117) using the robotic arm (110) to move the applicator (120);

15 and

rotating the extension member (117) about an axis through the extension member (117) using the applicator movement system (124) to move the applicator (120) to a position over the fastener, wherein rotation of the extension member (117) causes rotation of the applicator (120) about the axis through the extension member (117).

20

39. The method of claim 36, wherein applying the sealant (130) onto the fastener using the applicator (120) according to the predefined application routine comprises:

rotating the extension member (117) about an axis through the extension member (117) using the applicator movement system (124) such that the applicator (120) is rotated about the axis through the extension member (117) while the sealant (130) is being applied onto the fastener.

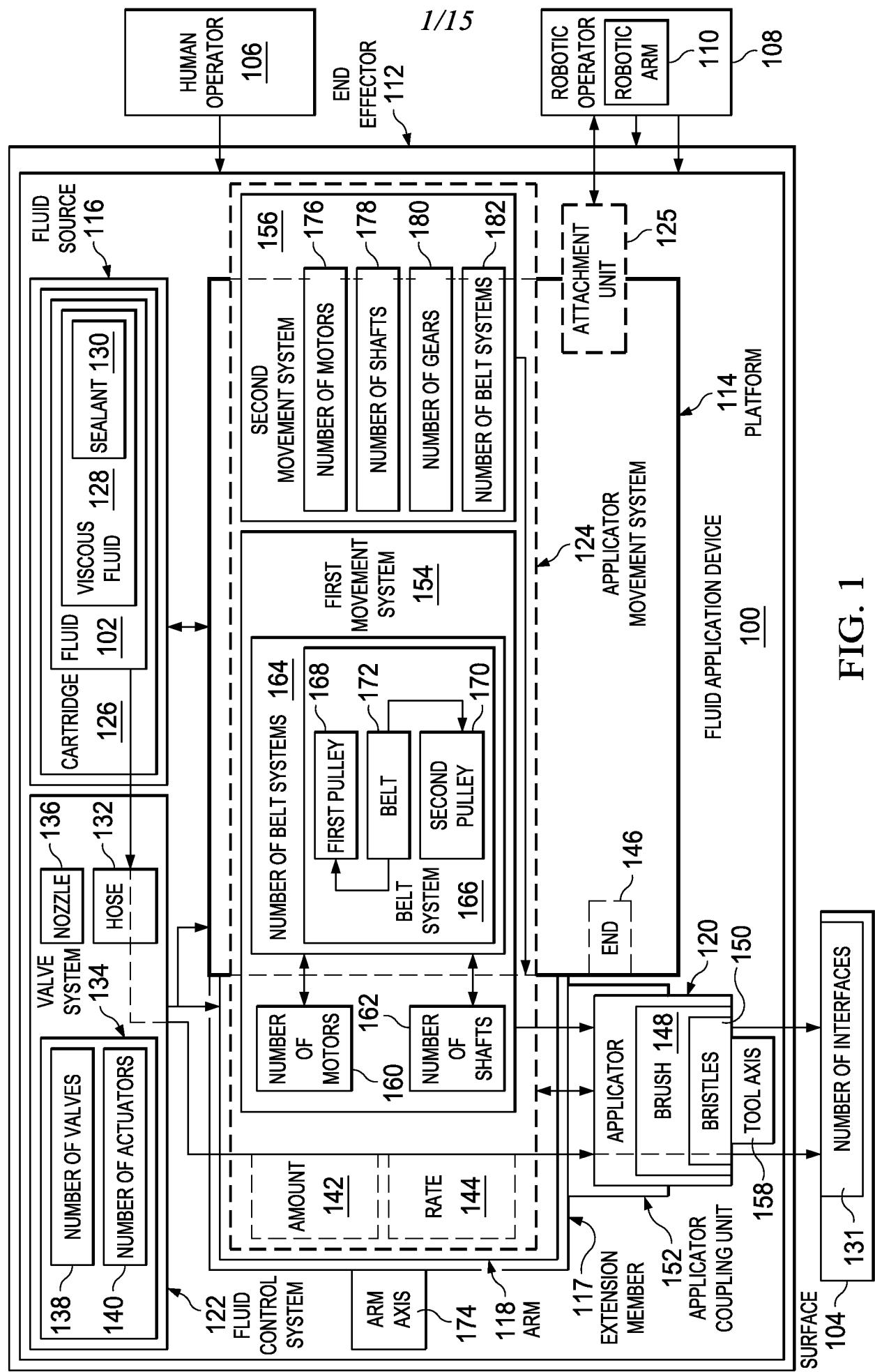
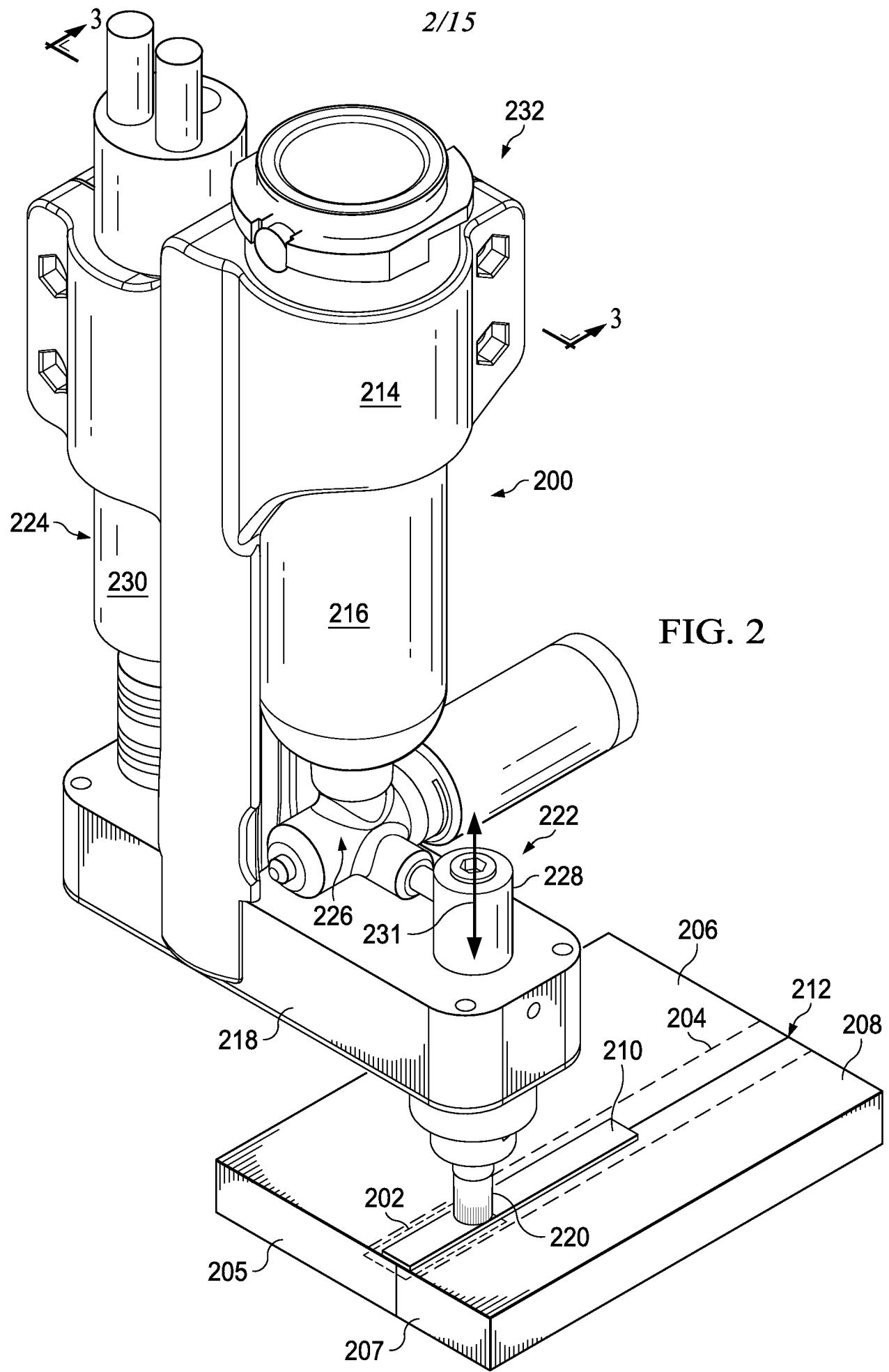
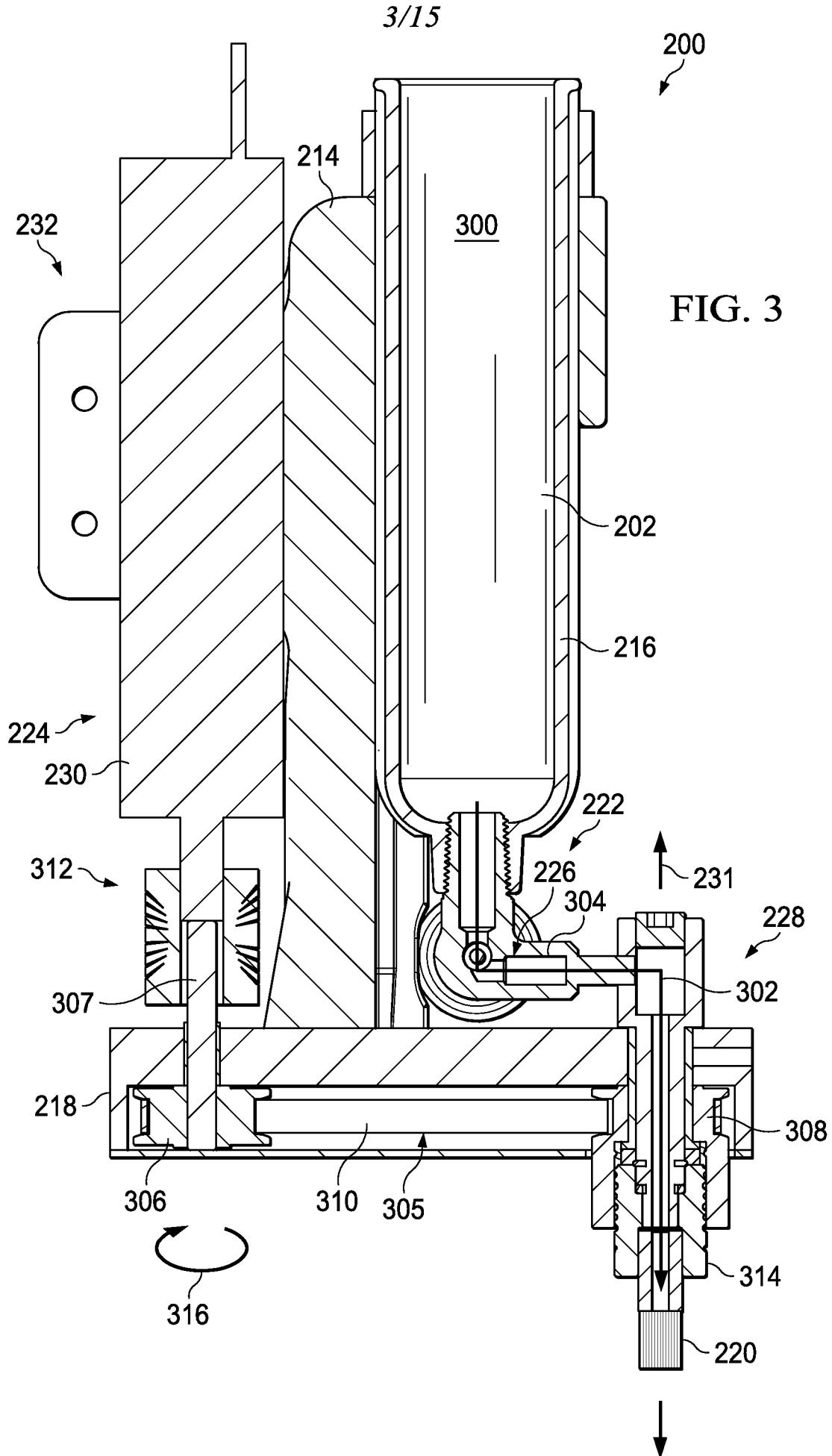
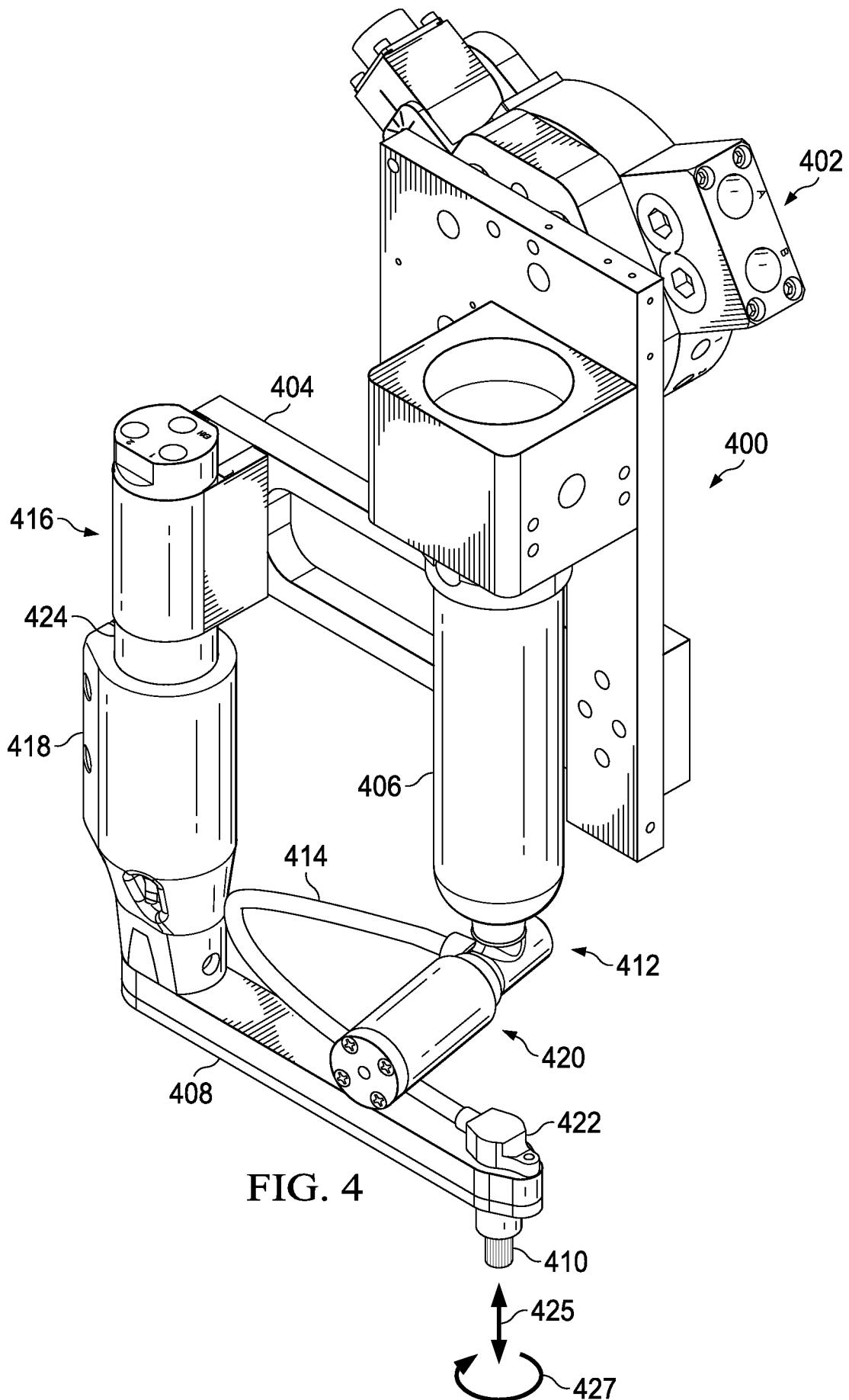
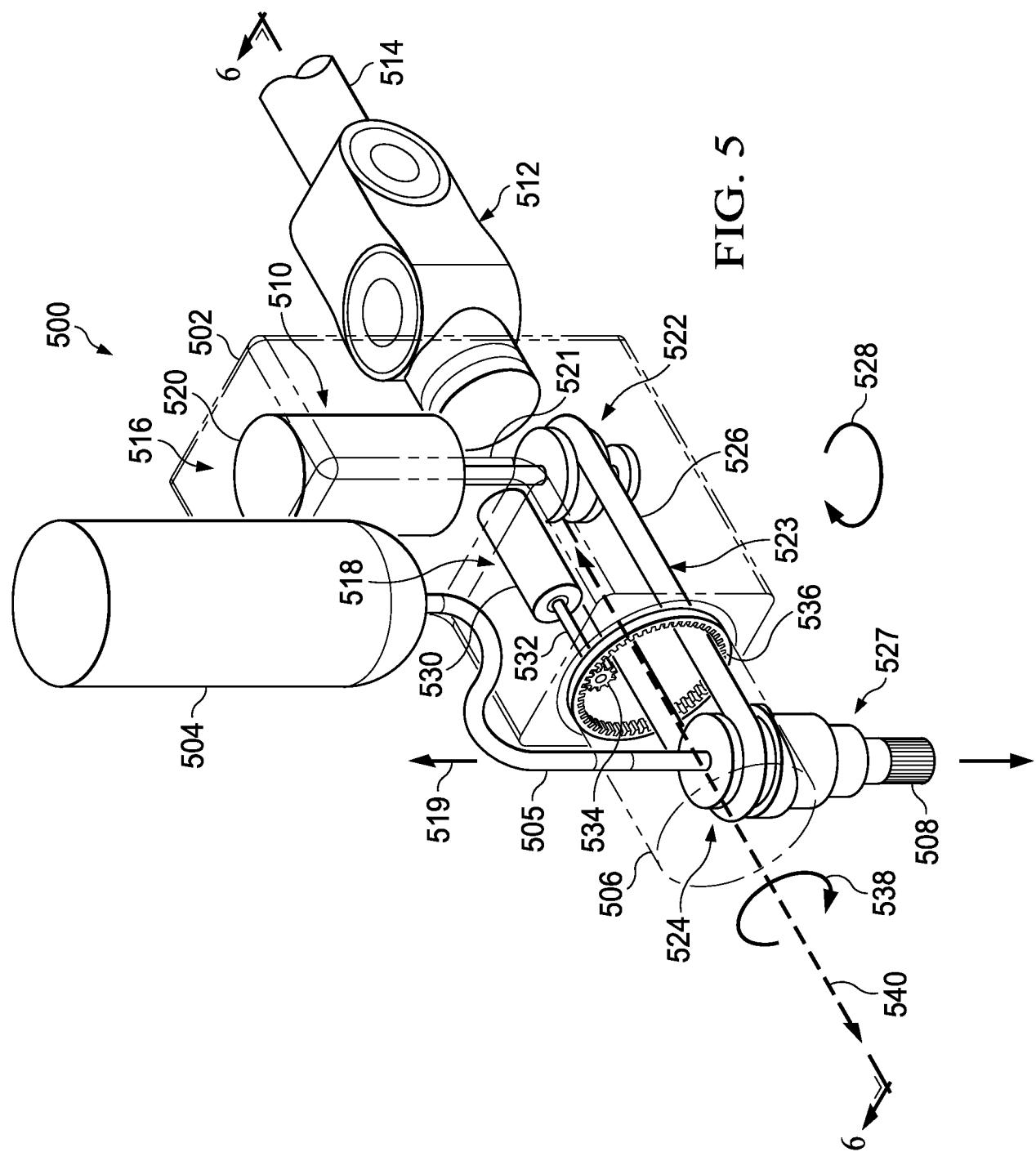





FIG. 1



4/15

5/15

6/15

FIG. 6

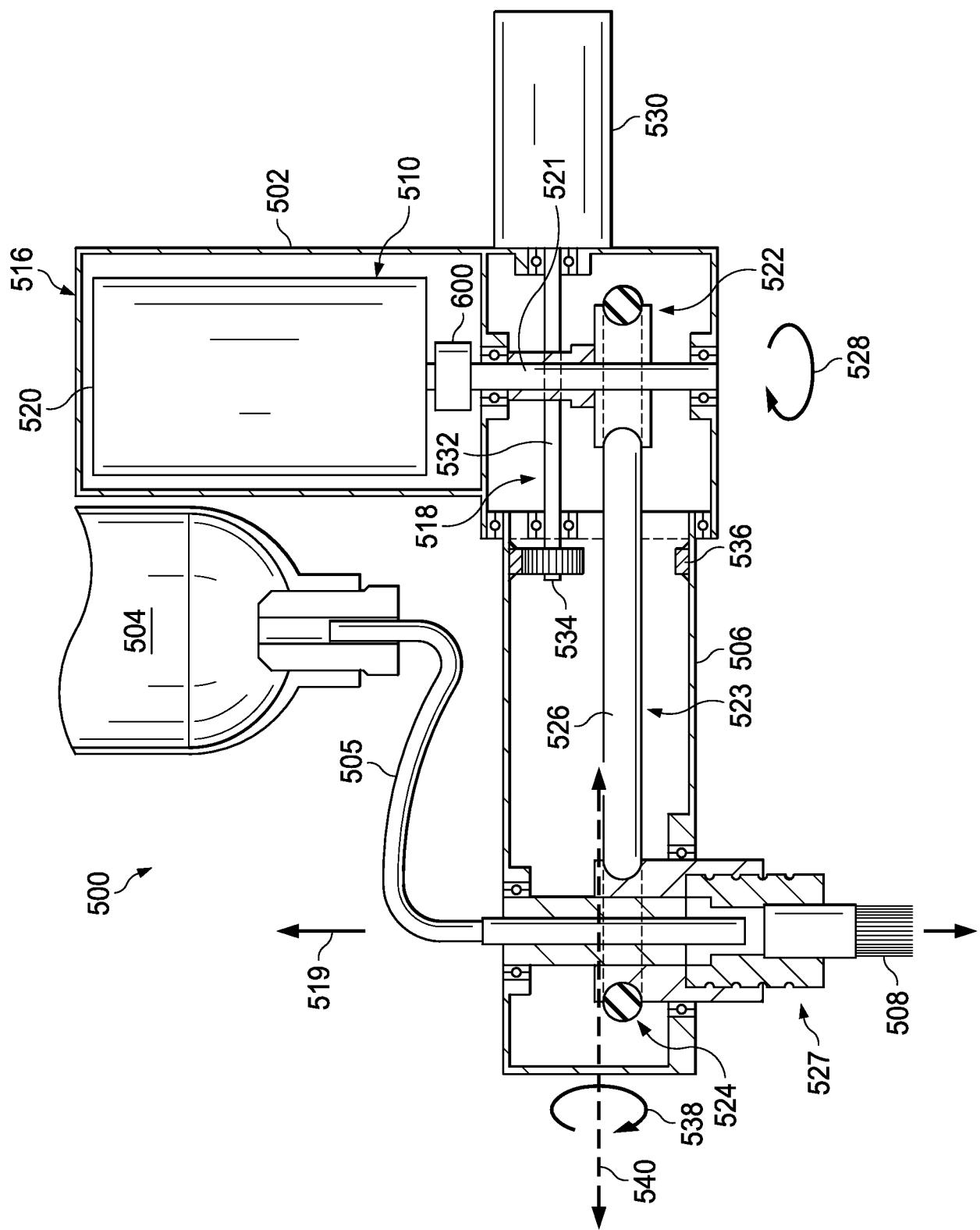
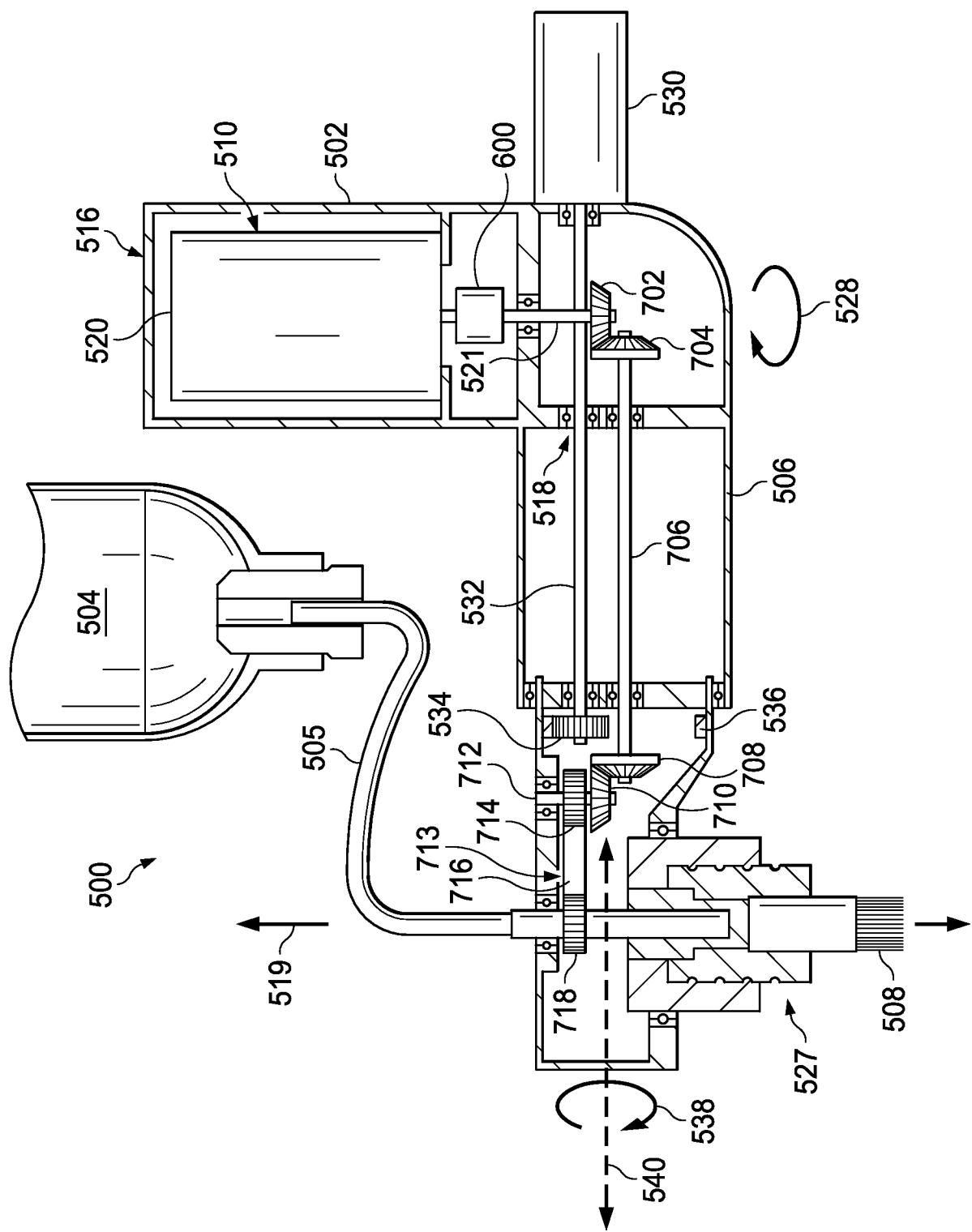
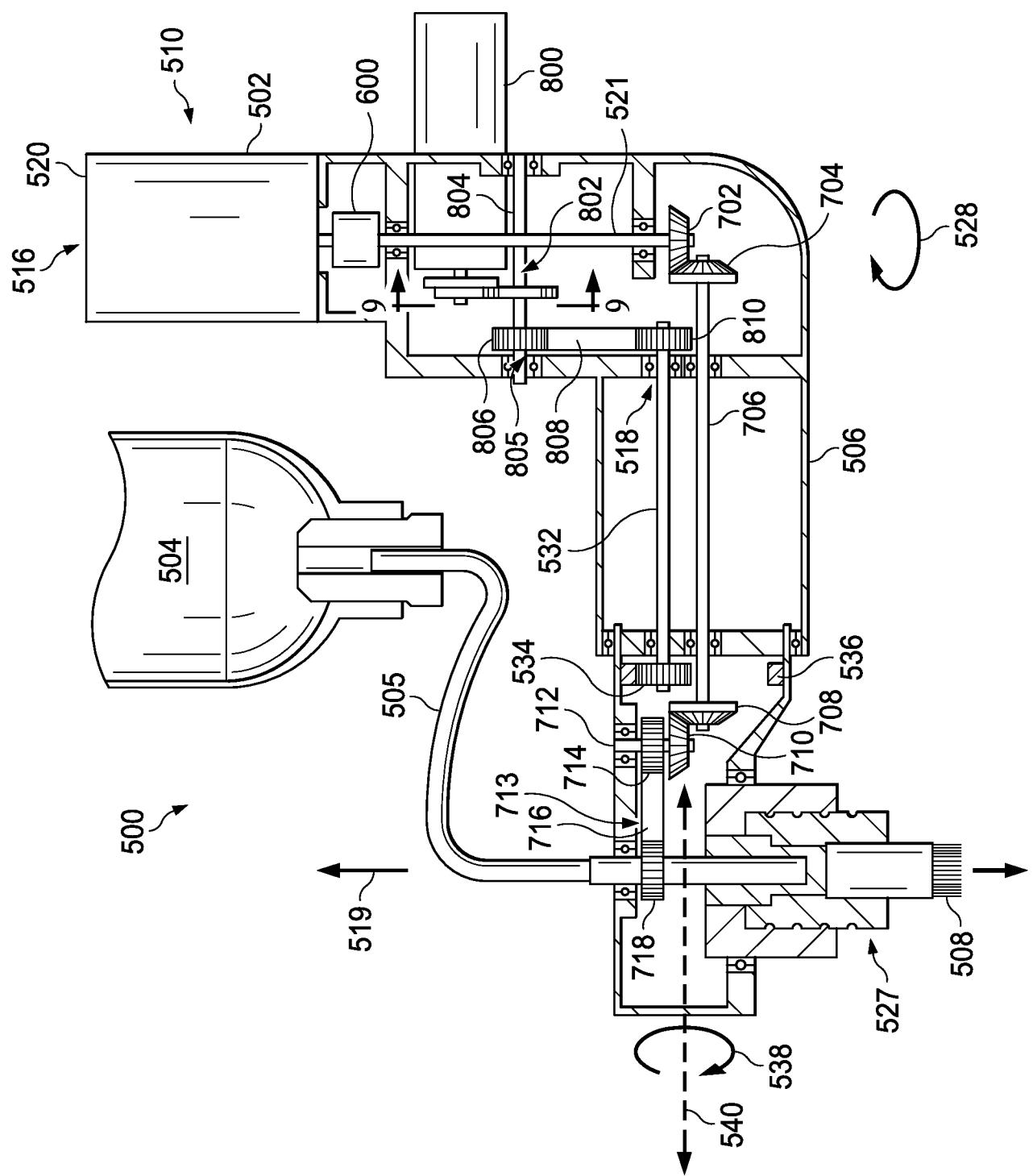




FIG. 7

8/15

FIG. 8

9/15

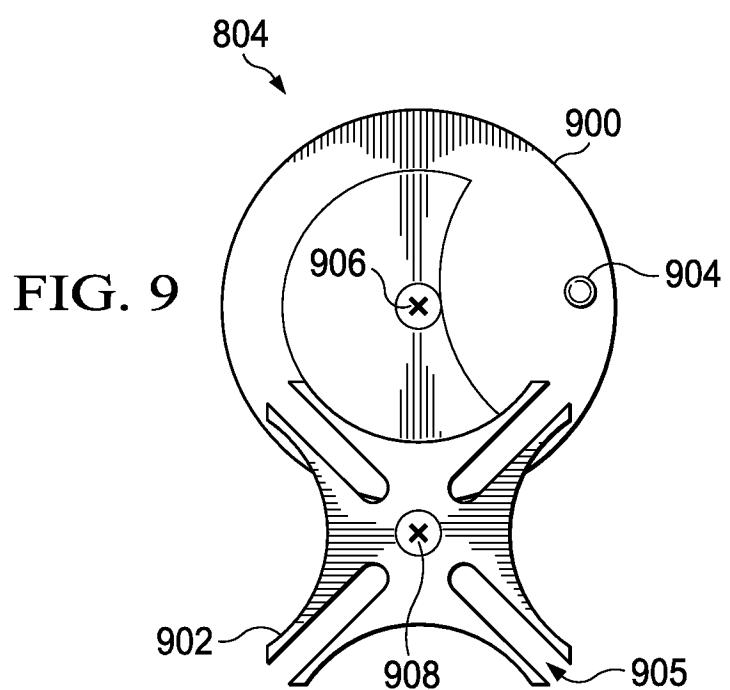
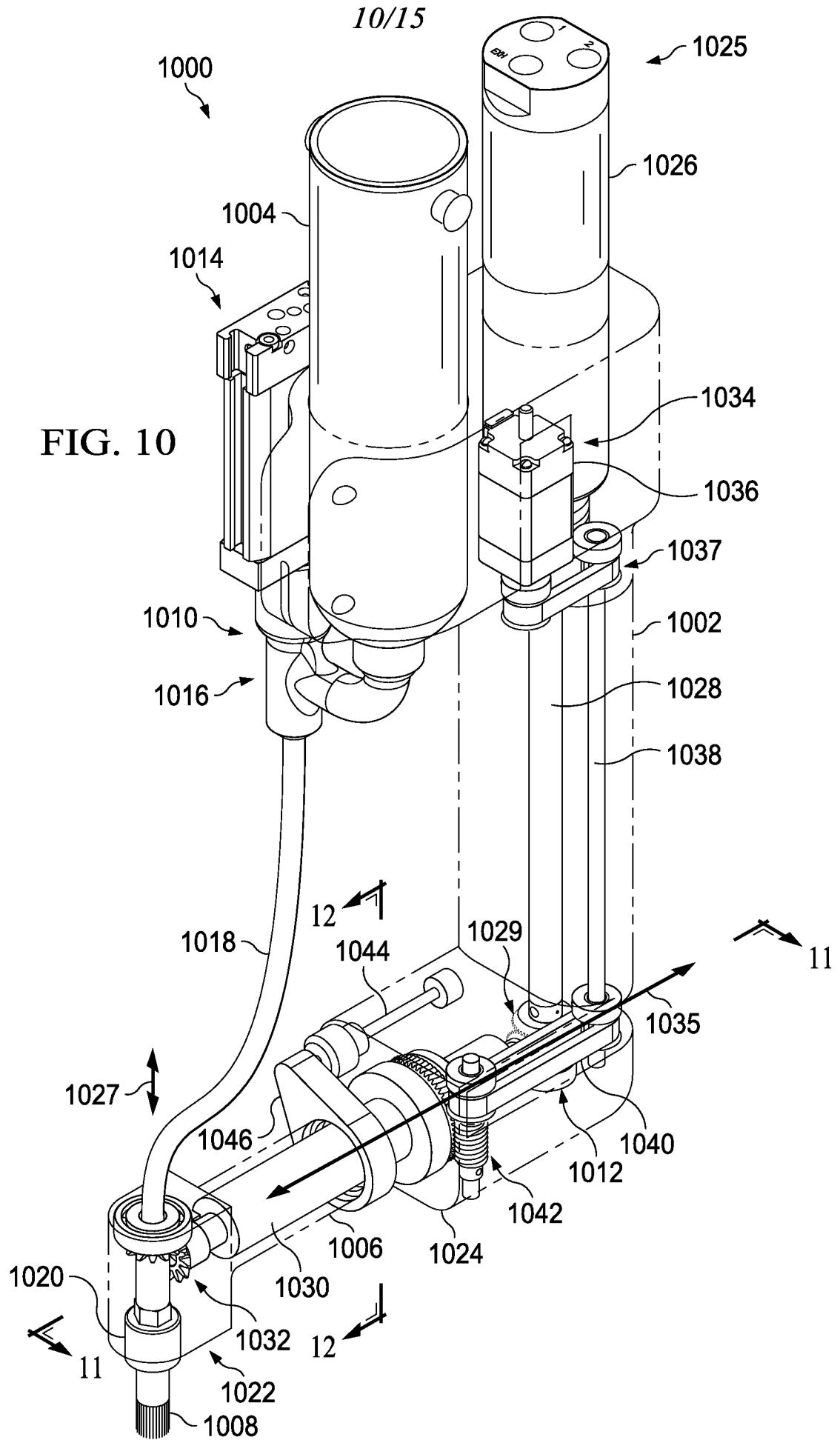
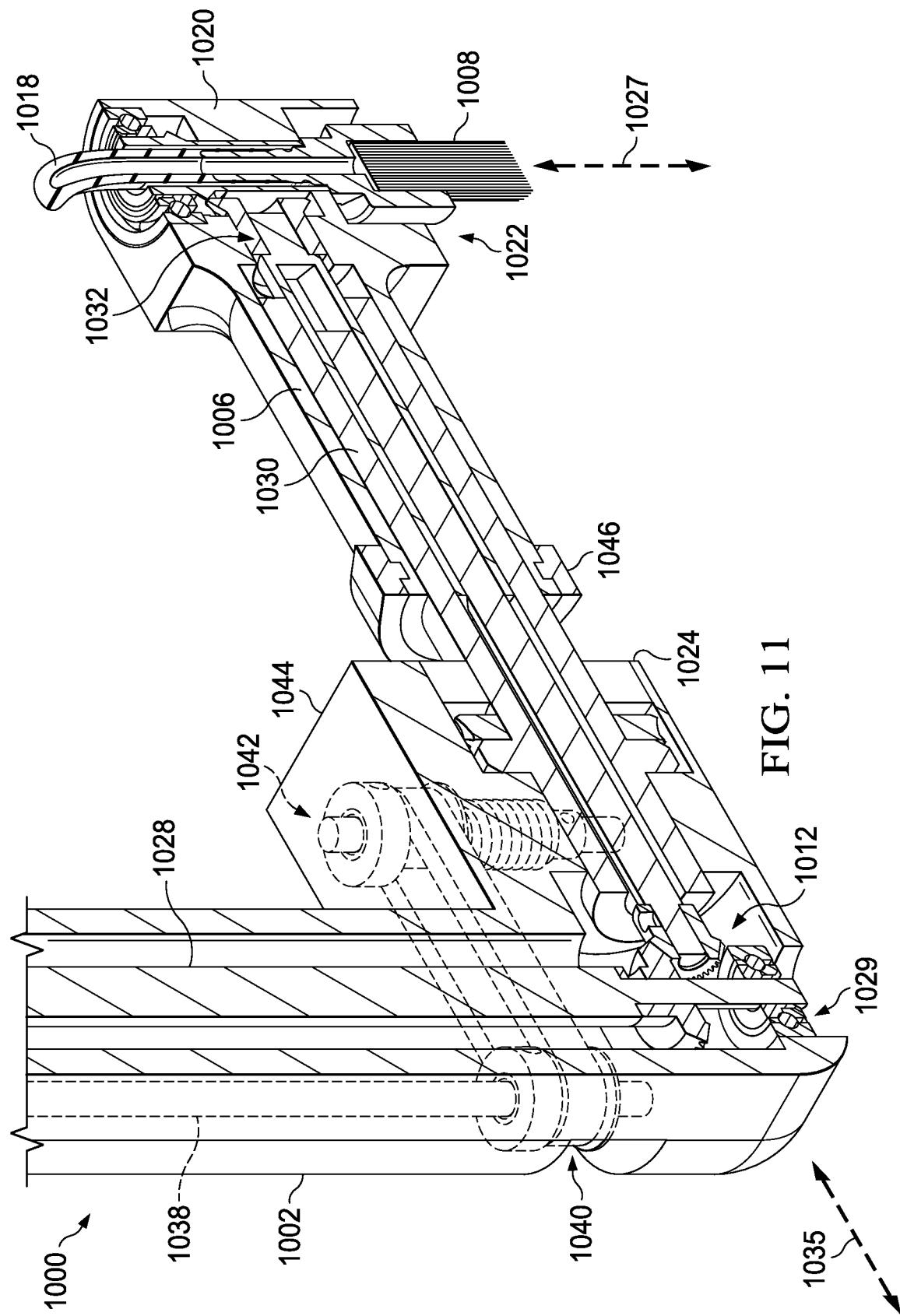




FIG. 10

11/15

12/15

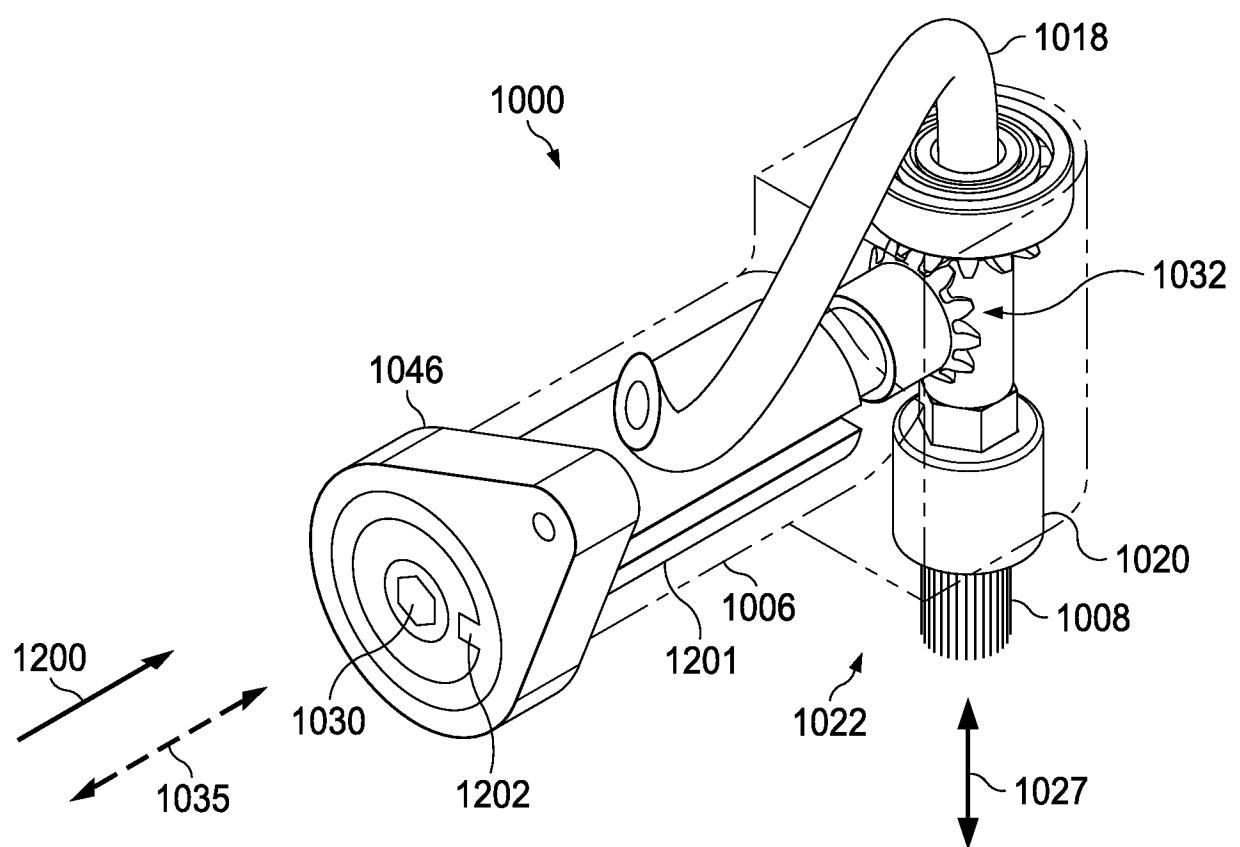


FIG. 12

13/15

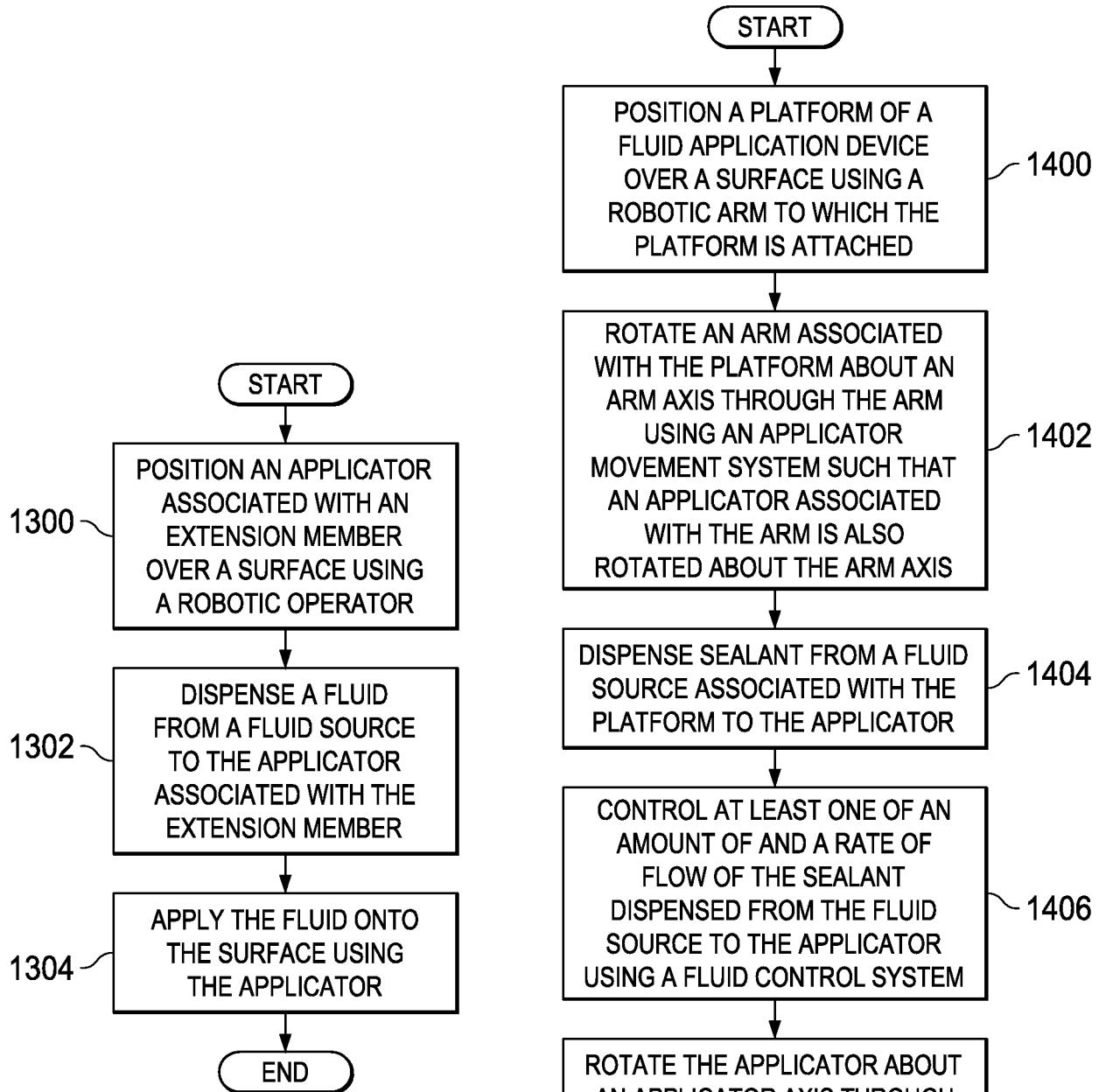
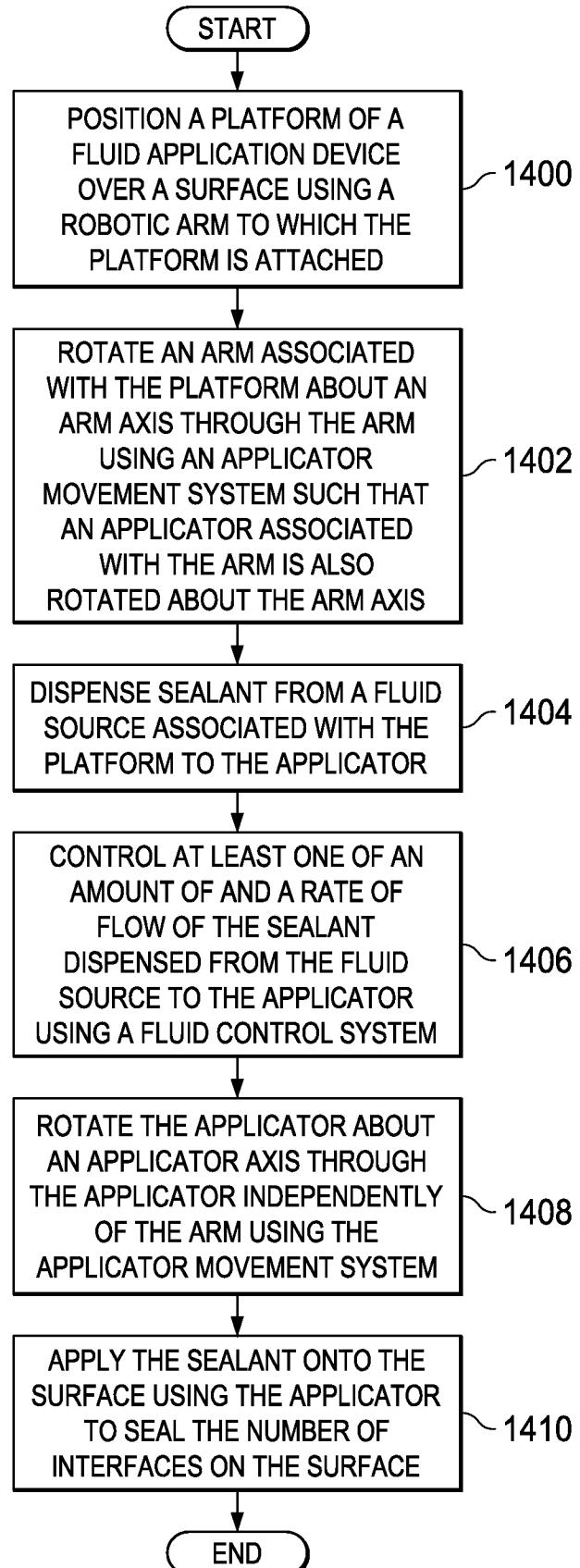



FIG. 14

14/15

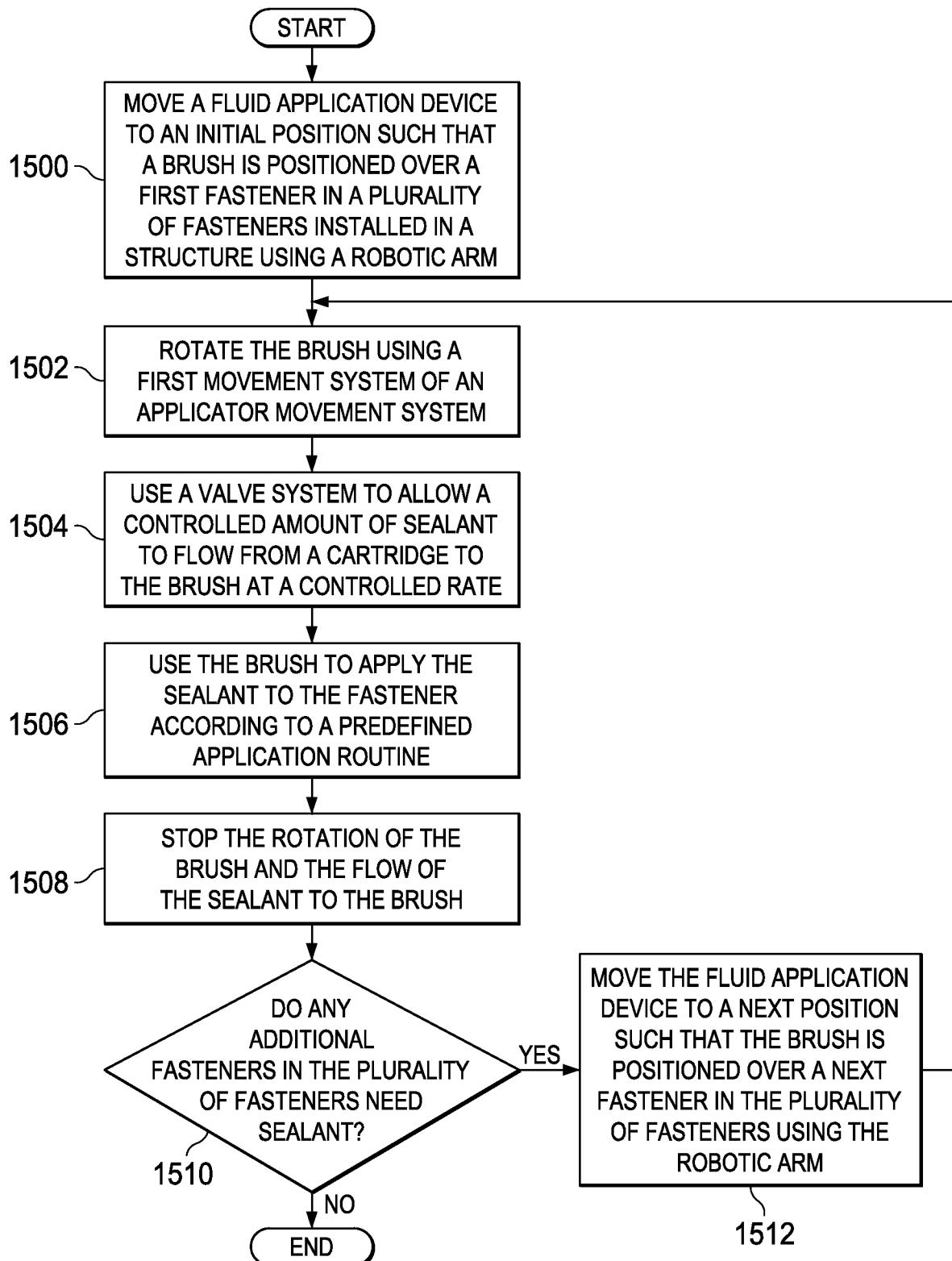


FIG. 15

15/15

FIG. 16

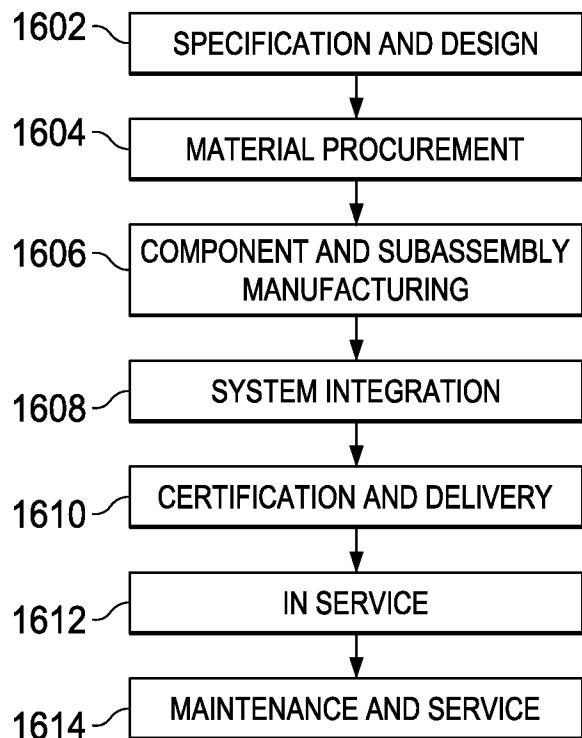
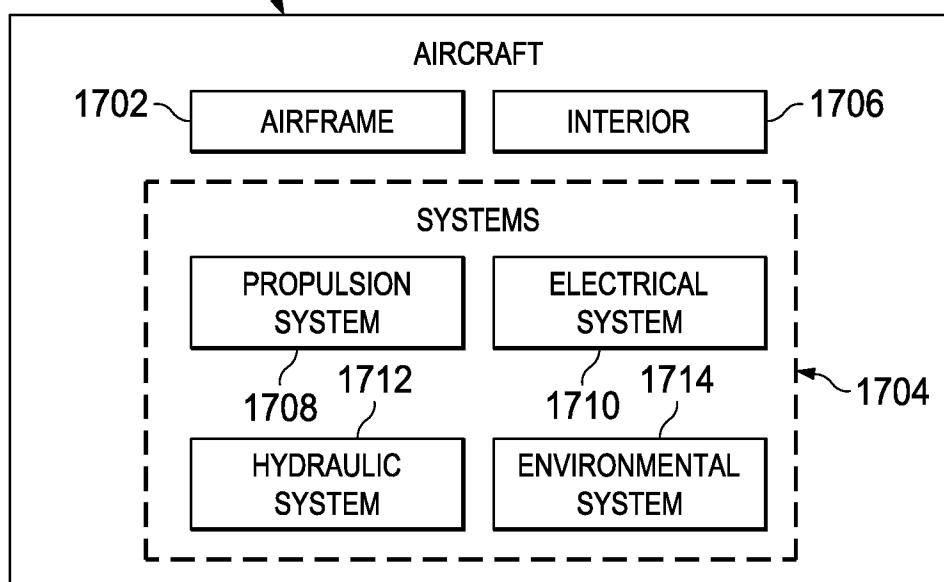



FIG. 17

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/011879

A. CLASSIFICATION OF SUBJECT MATTER

INV.	B05B13/04	B05C5/02	B25J9/00	B25J15/00	B05C1/06
ADD.					

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B25J B05B B05C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 20 2007 019244 U1 (KUKA SYSTEMS GMBH [DE]) 26 August 2011 (2011-08-26) paragraph [0049] paragraph [0056] paragraph [0059] - paragraph [0061] paragraph [0063] paragraph [0074] claims 20,21 figures -----	1-39
X	US 6 001 181 A (BULLEN GEORGE NICHOLAS [US]) 14 December 1999 (1999-12-14) column 4, line 52 - column 5, line 7	1,20,25, 26,35,36
Y	column 4, lines 8-38 figure 2 -----	2-19, 21-24, 27-34, 37-39
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
28 March 2014	04/04/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Barré, Vincent

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/011879

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 920 974 A (BULLEN GEORGE NICHOLAS [US]) 13 July 1999 (1999-07-13) abstract; figures 2a, 2b -----	2-19, 21-24, 27-34, 37-39
X	US 4 698 005 A (KIKUCHI UHEE [JP] ET AL) 6 October 1987 (1987-10-06) the whole document -----	1,8,20, 25,26
X	GB 2 282 554 A (PONT A MOUSSON [FR]) 12 April 1995 (1995-04-12) the whole document -----	1,20,25, 26,35,36

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2014/011879

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
DE 202007019244 U1	26-08-2011	NONE			
US 6001181	A	14-12-1999	NONE		
US 5920974	A	13-07-1999	US US WO	5848458 A 5920974 A 9851444 A1	15-12-1998 13-07-1999 19-11-1998
US 4698005	A	06-10-1987	CA GB JP JP US	1254859 A1 2166066 A H0230059 Y2 S6164365 U 4698005 A	30-05-1989 30-04-1986 13-08-1990 01-05-1986 06-10-1987
GB 2282554	A	12-04-1995	FR GB	2710864 A1 2282554 A	14-04-1995 12-04-1995