
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0254219 A1

US 20130254219A1

Zhang (43) Pub. Date: Sep. 26, 2013

(54) PROCESSING STRUCTURED DATA Publication Classification

(71) Applicant: Ximpleware, Inc., Milpitas, CA (US) (51) Int. Cl.
G06F 7/27 (2006.01)

(72) Inventor: Zhengyu Zhang, Milpitas, CA (US) (52) U.S. Cl.
- 0 CPC G06F 17/2705 (2013.01)

(73) Assignee: Ximpleware, Inc., Milpitas, CA (US) USPC .. 707f755

(21) Appl. No.: 13/894,118
(57) ABSTRACT

(22) Filed: May 14, 2013
O O The present invention provides a fast and efficient way of

Related U.S. Application Data processing structured data by utilizing an intermediate file to
(63) Continuation of application No. 13/099.237, filed on store the structural information. The structured data may be

May 2, 2011, which is a continuation of application
No. 1 1/777,110, filed on Jul. 12, 2007, now aban
doned, which is a continuation-in-part of application
No. 1 1/581,211, filed on Oct. 13, 2006, now Pat. No.
7,761.459, which is a continuation-in-part of applica
tion No. 10/272,077, filed on Oct. 15, 2002, now Pat.
No. 7,133,857.

processed into a Binary mask Format (BMF) file which may
serve as a starting point for post-processing. A tree structure
built on top of the BMF file may be constructed very quickly,
and also takes up less space than a DOM tree. Additionally,
BMF records may reside entirely in the memory and contain
structural information, allowing SAX-like sequential data
aCCCSS,

204

PC Bus //

2O2 218

PC Interface DMA Engine

214 216

212 //

BMF Buffer Document Buffer H-. String Cache

2O6
Memory Controller Text Processor

Configuration
Flash 8 ROM

208

Configuration
Registers

Patent Application Publication Sep. 26, 2013 Sheet 1 of 6 US 2013/0254.219 A1

Software AP

104

Device Driver

102

Hardware Text Processing Accelerator
100

FIG. 1

Patent Application Publication Sep. 26, 2013 Sheet 2 of 6 US 2013/0254.219 A1

204

PC Bus //

2O2 218

PC interface DMA Engine

214 216

212

BMF Buffer Document Buffer String Cache

208

Configuration
Registers

206 NN Memory Controller // Text Processor

210

Configuration
Flash 8 ROM

FIG. 2

Patent Application Publication Sep. 26, 2013 Sheet 3 of 6 US 2013/0254.219 A1

300

// 302
Reset

Start

NSN
Frame if 304 306

s , PCI write XXX 308

Caching XXX 17 310
M

VW/ V Parsing XXX
Caching X X X
Parsing X X X

Frame if 312 314

PCI read x x s 7.

End 2.

- .
FIG. 3

Patent Application Publication Sep. 26, 2013 Sheet 4 of 6 US 2013/0254.219 A1

400
Allocate a piece of
memory of the //

length of the new
string

Fill the new string W
into the memory

404
Locate a record in

the BMF file /
corresponding to
the old string

406 Change a
corresponding bit
flag for the record
from relative offset
to absolute offset

-- Replace an offset
Value in the BMF 408
record for the old //

string with a
pointer value of
the new string in

memory

-- Replace a length 410
field in the BMF
record for the old //
string with the

length of the new
string

FIG. 4

Patent Application Publication Sep. 26, 2013 Sheet 5 of 6 US 2013/0254.219 A1

500 502 504 506 508 50 512 514 516 518 520

A m End of Record in Contant Modification insertion Name space Reference Depth document Se Reserved length Type indicator indicator inE. indicator indicator
Starting
Offset

F.G. 5

Patent Application Publication Sep. 26, 2013 Sheet 6 of 6 US 2013/0254.219 A1

6O2 604
600

Store a depth of the
piece of content in the
BMF record, the depth
indicating a level in a
hierarchy of tags in

the structured data file

Store an offset in the
BMF record indicating a
starting position for the
piece of content relative
to the beginning of the
structured data file

Create a BMF
record in a BMF

file

606
Store a content type in
the BMF record, the

content type indicating
a type of information for
the piece of content

Store a length for
the piece of

content in the BMF
record

Store a modification indicator for
the piece of content in the BMF
record, the modification indicator
indicating if the BMF record has

been modified and the
modification indicator initially set
to indicate that no modification

has been made

Store an insertion indicator for the
piece of content in the BMF record, 612
the insertion indicator indicating if
the BMF record has been inserted
between two existing BMF records
and the insertion indicator initially
set to indicate that the BMF record
has not been inserted between two

existing BMF records.

Repeat for each
(relevant) piece of

Content in the
structured data file

Store an end of document
indicator for the piece of 614

Content in the BMF record,
the end of document

indicator indicating if the
BMF record corresponds to a
last piece of content in the

structured data file

Store a Current record in
use field for the piece of

content in the BMF record,
the current record in use

field indicating whether the
piece of Content has been

deleted

616

FIG. 6

US 2013/02542.19 A1

PROCESSING STRUCTURED DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/777,110, filed Jul. 12, 2007, entitled
“PROCESSING STRUCTURED DATA, which is a continu
ation-in-part of U.S. patent application Ser. No. 1 1/581,211
filed Oct. 13, 2006, U.S. Pat. No. 7,761,459, entitled “PRO
CESSING STRUCTURED DATA, which is a continuation
in-part of U.S. patent application Ser. No. 10/272,077, filed
Oct. 15, 2002, now U.S. Pat. No. 7,133,857, issued Nov. 7,
2006, entitled “PROCESSING STRUCTURED DATA all
of which are hereby incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention relates to the field of struc
tured data files in computer systems. More specifically, the
present invention relates to the processing of structured data
in an efficient manner.

BACKGROUND OF THE INVENTION

0003 Structured data represents a large portion of the
information accessed on the Internet and other computer net
works. There are several reasons why structured data is so
popular. American Standard Code for Information Inter
change (ASCII) and its extensions, such as Unicode Trans
formation Formats UTF-8 and UTF-16 are among the most
common standard encoding formats. Text encoding puts
information into a format that is easily readable by a human,
thus it is easy for programmers to develop and debug appli
cations. Lastly, textual encoding is extensible and adding new
information may be as simple as adding a new key-value pair.
0004 Recently, Extensible Markup Language (XML) has
been growing in popularity. XML is a markup language for
documents containing structured information. Unlike its pre
decessor, Hypertext Markup Language (HTML), where tags
are used to instruct a web browser how to render data, in XML
the tags are designed to describe the data fields themselves.
XML, therefore, provides a facility to define tags and the
structural relationships between them. This allows a great
deal of flexibility in defining markup languages to using
information. Because XML is not designed to do anything
other than describe what the data is, it serves as the perfect
data interchange format.
0005 XML, however, is not without its drawbacks. Com
pared with other data formats, XML can be very verbose.
Processing an XML file can be very CPU and memory inten
sive, severely degrading overall application performance.
Additionally, XML suffers many of the same problems that
other software-based text-based processing methods have.
Modern processors prefer binary data representations, par
ticularly ones that fit the width of the registers, over text
based representations. Furthermore, the architecture of many
general-purpose processors trades performance for program
mability, thus making them ill-suited for text processing.
Lastly, the efficient parsing of structured text, no matter the
format, can present a challenge because of the added steps
required to handle the structural elements.
0006 Most current XML parsers are software-based solu
tions that follow either the Document Object Model (DOM)
or Simple API for XML (SAX) technologies. DOM parsers
convert an XML document into an in-memory hierarchical

Sep. 26, 2013

representation (known as a DOM tree), which can later be
accessed and manipulated by programmers through a stan
dard interface. SAX parsers, on the other hand, treat an XML
document as a stream of characters. SAX is event-driven,
meaning that the programmer specifies an event that may
happen, and if that event occurs, SAX gets control and
handles the situation.
0007. In general, DOM and SAX are complementary, not
competing, XML processing models, each with its own ben
efits and drawbacks. DOM programming is programmer
friendly, as the processing phase is separate from application
logic. Additionally, because the data resides in the memory,
repetitive access is fast and flexible. However, DOM requires
that the entire document data structure, usually occupying
7-10 times the size of the original XML document, be loaded
into the memory, thus making it impractical for large XML
documents. SAX, on the other hand, can be efficient in pars
ing large XML documents (at least when only small amounts
of information need to be processed at once), but it maintains
little of the structural information of the XML data, putting
more of a burden on programmers and resulting in code that
is hardwired, bulky, and difficult to maintain.
0008 What is needed is an application program interface
(API) that combines the best attributes of both DOM and
SAX parsing.

BRIEF DESCRIPTION OF THE INVENTION

0009. The present invention provides a fast and efficient
way of processing structured data by utilizing an intermediate
file to store the structural information. The structured data
may be processed into a Binary mask Format (BMF) file
which may serve as a starting point for post-processing. A tree
structure built on top of the BMF file may be constructed very
quickly, and also takes up less space than a DOM tree. Addi
tionally, BMF records may reside entirely in the memory and
contain structural information, allowing SAX-like sequential
data access.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The accompanying drawings, which are incorpo
rated into and constitute a part of this specification, illustrate
one or more embodiments of the present invention and,
together with the detailed description, serve to explain the
principles and implementations of the invention.
0011. In the drawings:
0012 FIG. 1 is a block diagram illustrating a layer view of
an apparatus for efficiently processing structured data in
accordance with an embodiment of the present invention.
0013 FIG. 2 is a block diagram illustrating an apparatus
for efficiently processing structured data in accordance with
an embodiment of the present invention.
0014 FIG. 3 is a timing diagram illustrating the operation
of the hardware in accordance with an embodiment of the
present invention.
0015 FIG. 4 is a flow diagram illustrating a method for
modifying the content of a target string in a BMF file from an
old string to a new string in accordance with an embodiment
of the present invention.
0016 FIG. 5 is a diagram illustrating a BMF record format
in accordance with an embodiment of the present invention.
0017 FIG. 6 is a flow diagram illustrating a method for
efficiently processing a structured data file, the structured

US 2013/02542.19 A1

data file including one or more pieces of content, in accor
dance with an embodiment of the present invention.

DETAILED DESCRIPTION

00.18 Embodiments of the present invention are described
herein in the context of a system of computers, servers, and
software. Those of ordinary skill in the art will realize that the
following detailed description of the present invention is
illustrative only and is not intended to be in any way limiting.
Other embodiments of the present invention will readily sug
gest themselves to such skilled persons having the benefit of
this disclosure. Reference will now be made in detail to
implementations of the present invention as illustrated in the
accompanying drawings. The same reference indicators will
be used throughout the drawings and the following detailed
description to refer to the same or like parts.
0019. In the interest of clarity, not all of the routine fea
tures of the implementations described herein are shown and
described. It will, of course, be appreciated that in the devel
opment of any such actual implementation, numerous imple
mentation-specific decisions must be made in order to
achieve the developer's specific goals, such as compliance
with application- and business-related constraints, and that
these specific goals will vary from one implementation to
another and from one developer to another. Moreover, it will
be appreciated that such a development effort might be com
plex and time-consuming, but would nevertheless be a routine
undertaking of engineering for those of ordinary skill in the
art having the benefit of this disclosure.
0020. In accordance with the present invention, the com
ponents, process steps, and/or data structures may be imple
mented using various types of operating systems, computing
platforms, computer programs, and/or general purpose
machines. In addition, those of ordinary skill in the art will
recognize that devices of a less general purpose nature. Such
as hardwired devices, field programmable gate arrays (FP
GAS), application specific integrated circuits (ASICs), or the
like, may also be used without departing from the Scope and
spirit of the inventive concepts disclosed herein.
0021 For purposes of this disclosure, a structured data file

is any file containing content as well as some information
regarding the structural organization of the content. The
present invention provides a fast and efficient way of process
ing structured data by utilizing an intermediate file to store the
structural information. The structured data may be processed
into a Binary mask Format (BMF) file which may serve as a
starting point for post-processing. A tree structure built on top
of the BMF file may be constructed very quickly, and also
takes up less space than a DOM tree. Additionally, BMF
records may reside entirely in the memory and contain struc
tural information, allowing SAX-like sequential data access.
However, while this document will describe advantages that
the present invention provides over DOM or SAX, one of
ordinary skill in the art will recognize that the present inven
tion need not be limited to replacing DOM or SAX, and can be
expanded to non-XML type processing.
0022 FIG. 1 is a block diagram illustrating a layer view of
an apparatus for efficiently processing structured data in
accordance with an embodiment of the present invention. The
apparatus may comprise three layers. A hardware text pro
cessing accelerator 100, occupying the lowest layer, may
offer the horsepower necessary to relieve the central process
ing unit (CPU) from the most processor intensive part of the
task. On top of the hardware text processing accelerator 100

Sep. 26, 2013

may lie a device driver layer 102 that is responsible for the
communication between the hardware text processing accel
erator 100 and a software layer 104. The software layer 104
may be designed to offer maximum flexibility and further
improve the performance. It may export APIs that are stan
dard-compliant.
0023 The hardware may be designed such that it may
quickly match multiple patterns against an incoming data
stream. FIG. 2 is a block diagram illustrating an apparatus for
efficiently processing structured data in accordance with an
embodiment of the present invention. A text processor 200
may be the core of the accelerator. It may be composed of
multiple Finite State Machines (FSMs) that process an
incoming document in parallel. The output may be the BMF
file. It also may set several result registers (not pictured). A
PCI interface 202 may handle all handshaking between the
hardware and a server PCI bus 204. A memory controller 206
may receive commands from the PCI interface 202 and con
vert the PCI address to on-board memory address space. It
also may access the board memory accordingly. Configura
tion registers 208 may determine the configuration of the text
processing pipeline and the organization of the memory con
troller 206. It may load default values from configuration
ROM 210. Some of the values may be modified by software
through the PCI interface 202. The Configuration ROM 210
may store the default setting of the text processor configura
tion. It also may store the configuration map of FPGAs.
0024. A document buffer 212 may store the incoming
document. This may be a Synchronous Dynamic Random
Access Memory (SDRAM). Paging may be utilized if the
incoming document is larger than the total buffer size. A BMF
buffer 214 may store the output BMF files, together with
several other text processor result register values. This may be
a separate SDRAM, although in one embodiment of the
present invention it may share a single SDRAM with the
document buffer. A string cache 216 may buffer the incoming
data to smooth out and speed up SDRAM access. A DMA
engine 218 may grab the frame data from server main
memory and send it back the BMF file.
0025 FIG. 3 is a timing diagram illustrating the operation
of the hardware in accordance with an embodiment of the
present invention. A reset 300 may be sent out by the host
computer system, or by a specific application. While reset is
asserted, the configuration may be loaded from ROM to the
configuration registers. The text processor then may be set to
a default state according to the configuration registers. When
software calls the device driver, a start signal 302 may be sent
through the PCI to indicate the beginning of a document
processing cycle. Then the PCI master may assert a frame
number 304 to indicate the beginning of a write transaction.
The PCI master may then drive the address/data 306 to the
PCI bus. The PCI target interface may respond, causing the
DMA to read the document into the SDRAM document
buffer 308. There may also be certain PCI commands
reserved to update the configuration registers. The memory
controller may be activated by PCI command. It may start
processing data in the string buffer 310. It also may send Sync
signals to the memory controller. The transferring and pro
cessing may be repeated.
0026. The PCI target may sense a valid window to send
data. Then the PCI master may assert the frame number to
indicate the beginning of a read transaction 312. The PCI
target holds the bus. The DMA engine may then transfer the
BMF and result register data to main memory 314. When all

US 2013/02542.19 A1

the data is transferred, the PCI target interface may send an
end signal to the device driver 316. The next document pro
cessing cycle may start again with a start signal from the
device driver 318.
0027. The output of the hardware is a BMF. In one
embodiment of the present invention, the BMF defines a
binary record format that is used to describe various fields in
a structured data file. It can be viewed as a two-dimensional
field of bits. Each piece of useful information in the structured
data file may correspond to a record in the BMF file. A record
may comprise a starting offset and length of a target String in
the structured data file. It may also comprise the depth value,
node type, and bit-wide flags. These will be discussed in more
detail below. The total length of a record may be an integer
multiple of a 32-bit word—the width of the memory bus in
most commercial architectures. Two record types may be
defined: a full version of 12 bytes in length, and a compressed
version of 8 bytes in length. The full version may be based on
the assumption that both the String length and the starting
offset are 32-bits wide, whereas the compressed version may
assume a 16-bit field, which translates to a maximum length
of 65536 bytes.
0028 FIG. 4 is a flow diagram illustrating a method for
modifying the content of a target string in a BMF file from an
old string to a new string in accordance with an embodiment
of the present invention. At 400, a piece of memory of the
length of the new string may be allocated. At 402, the new
string may be filled into the memory. At 404, a record in the
BMF file corresponding to the old string may be located. At
406, a corresponding bit flag for the record may be changed
from relative offset to absolute offset. The first time a file is
converted to BMF form, relative offsets may be used. How
ever, as soon as a modification is made to a specific string, it
can often be difficult if not impossible to continue to track the
relative offset for that string. Therefore, absolute offsets may
be utilized for all modified strings. At 408, an offset value in
the BMF record for the old string may be replaced with a
pointer value of the new string in memory. At 410, a length
field in the BMF record for the old string may be replaced
with the length of the new string.
0029. There are at least three types of possible BMF file
modes: read-only mode, read-modify mode, and read
modify-add mode. In read-only mode, records representing
various types of nodes may be placed sequentially into a BMF
file, leaving no empty records. For example, a leaf-level ele
ment may be represented as a record for the starting tag, 2n
records (one ofr property name and one property value) for n
properties, and one record for the text for the element, and
finally one record for an ending tag name. The presence of the
ending tag record may be used for document validation.
0030 The read-modify mode may be identical to read
only mode except each record allows for limited write-access,
meaning content can be altered, but not added.
0031. The read-modify-add mode allows complete write
access, which is done by embedding empty records into the
file.
0032. The record format may be picked to efficiently rep
resent the necessary information of the original data structure.
It may also be made less efficient on purpose to speed up
downstream processing.
0033 FIG.5 is a diagram illustrating a BMF record format
in accordance with an embodiment of the present invention. A
control word 500 may be thirty-two bits in total in this
embodiment. This may include a depth value 502 of sixteen

Sep. 26, 2013

bits. The depth value may indicate the depth of a tag in the
hierarchy of tags in the structured data file. Thus, the first tag
in a file will have a depth of Zero, whereas if another starting
tag appears before an ending tag for the first tag, that second
starting tag will have a depth of one. A content type 504 may
be provided, which indicates what type of information the
content is. In an embodiment of the present invention, the
following value/content type pairs may be used in this field:

TABLE 1

Content Types and Corresponding Values

Content
Type
Value Content name Example

O Starting Tag <example>
1 Ending Tag <example>
2 Property Name <example property1=''this's
3 Property Value <example property2=''that's
4 Text <example> tasty fruit

<example>
5 Comment <!-- this is a comment -->
6 Processing Instruction <?...... ?-
7 Markup declaration I <!CDATA.<<>>...)>

l8le

8 Markup declaration I <!CDATA.<<>>...)>
value

9 Markup declaration II <ENTITY -
l8le

10 Markup declaration II <ENTITY -
value

11 Entity reference &example.bib;
12 Property Name Value <example property1=''this's

Pair
13 Starting tag for empty <examplef>

element

0034. A modification indicator 506 may also be provided,
which indicates whether or not the record has been modified.
This is important because, as described above, if the record
has been modified, then the offset field will contain the real
pointer value, not a relative offset. An insertion indicator 508
may indicate that data was inserted in between two existing
records. Once again, this is important in determining how to
utilize the offset field. If the insertion indicator is set to 1, it
indicates that the offset field contains a pointer to an external
piece of memory, one that can be used to add child nodes to
the current node. An end of document indicator 510 may
indicate whether the tag is the last one in the document. This
can be important because in some embodiments, ending tags
may be ignored when encoding the BMF file in order to save
space. Therefore, the last tag in the BMF file may not corre
spond to the last tag in the structured data file.
0035. A current record in use field 512 may be used to
indicate that a record has been deleted. If the field is set to 0,
the record may be safely ignored because it has been deleted.
A name space indicator 514 may indicate whether or not there
is a name space within the token (which may be represented
by an "=" sign). A reference bit 516 may indicate when there
is an external reference, such as an “&’ in a text string.
0036. There may be one or more reserved bits 518, which
are set aside for future uses. Lastly, a length field 520 may
indicate the length of the content.
0037. The BMF file, together with the original data in
memory, completely describes the original data and its inher
ent data structure. Traversing the data structure may be easily
accomplished using the BMF records. Higher level applica

US 2013/02542.19 A1

tions and processing are therefore facilitated by using the
BMF. To make it easily accessible and readily integrated to
higher level application and processing, device drivers and an
application programming interface (API) may be built on top
of the BMF.

0038 FIG. 6 is a flow diagram illustrating a method for
efficiently processing a structured data file, the structured
data file including one or more pieces of content, in accor
dance with an embodiment of the present invention. The
structured data file may be an extensible markup language
file. The process loops through each piece of content. In
another embodiment of the present invention, the process
loops through each relevant piece of content. Relevancy can
be determined by the programmer and may be chosen so as to
minimize the amount of space used for a BMF file. At 600, a
BMF record is created in a BMF file, the BMF record corre
sponding to the piece of content. At 602, an offset may be
stored in the BMF record indicating a starting position for the
piece of content relative to the beginning of the structured
data file. At 604, a depth of the piece of content may be stored
in the BMF record, the depth indicating a level in a hierarchy
of tags in the structured data file. At 606, a content type of the
piece of content may be stored in the BMF record, the content
type indicating a type of information for the piece of content.
The content type may take many forms, such as a starting tag,
ending tag, property name, property value, text, comment,
processing instruction, markup declaration name, markup
declaration value, external reference, property name pair, etc.
At 608, a length may be stored for the piece of content in the
BMF record.

0039. At 610, a modification indicator for the piece of
content may be stored in the BMF record, the modification
indicator indicating if the BMF record has been modified and

Starting Token Modify
offset Depth type indicator
32 bit S bit 4 bit 1 bit

2
42
61
78
116
133
137
147
163
169
18S
218
234

O

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO10
OOOOOOOOOOOOOOOOOOOOOOOOOO101010
OOOOOOOOOOOOOOOOOOOOOOOOOO111101
OOOOOOOOOOOOOOOOOOOOOOOOO1001110
OOOOOOOOOOOOOOOOOOOOOOOOO1110100
OOOOOOOOOOOOOOOOOOOOOOOO1 OOOO101
OOOOOOOOOOOOOOOOOOOOOOOO1 OOO1 OO1
OOOOOOOOOOOOOOOOOOOOOOOO1 OO1 OO11

Sep. 26, 2013

the modification indicator initially set to indicate that no
modification has been made. At 612, an insertion indicator for
the piece of content may be stored in the BMF record, the
insertion indicator indicating if the BMF record has been
inserted between two existing BMF records and the insertion
indicator initially set to indicate that the BMF record has not
been inserted between two existing BMF records. At 614, an
end of document indicator for the piece of content may be
stored in the BMF record, the end of document indicator
indicating if the BMF record corresponds to a last piece of
content in the structured data file. At 616, a current record in
use field may be stored for the piece of content in the BMF
record, the current record in use field indicating whether the
piece of content has been deleted.
0040. The following example may be used to illustrate an
embodiment of the present invention. One of ordinary skill in
the art will recognize that this is merely an example and
should not be read to be limiting in any way. Suppose an XML
file as follows:

<?xml version=“1.0 encoding=“US-ASCII's
<benchmark:database
Xmlins:benchmark="http://example.com/xml/benchmark's
<benchmark:person id="012345">
<benchmark:email name="Name012345 fic
<!--Edited with XML spy v4.2 -->
<benchmark:line1-L in e1 012345 012345<benchmark:line1 >
</benchmark:person>
</benchmark:database

0041 An embodiment of the present invention may ignore
ending tags and produce the following BMF file:

End of Current
Insertion Document Record Name space
Indicator Indicator in use indicator Reference Length

1 bit 1 bit 1 bit 1 bit indicator unused 16 bit

O O O O O 38
O O 1 O O 18
O O 1 O O 14
O O O O O 35
O O 1 O O 16
O O O O O 2
O O O O O 6
O O 1 O O 15
O O O O O 4
O O O O O 10
O O O O O 25
O O 1 O O 15
O O O O O 23
O 1 O O O O

The packet BMF records are:

OOOOO O110 O O O 1 O O O OO1 OO110
OOOOO OOOO O O O 1 1 O O OOO10010
OOOOO OO10 O O O 1 1 O O OOOO1110
OOOO1 OO11 O O O 1 O O O OO1 OOO11
OOOO1 OOOO O O O 1 1 O O OOO1OOOO
OOOO1 OO10 O O O 1 O O O OOOOOO10
OOO10 OO11 O O O 1 O O O OOOOO110
OOO10 OOOO O O O 1 1 O O OOOO1111

US 2013/02542.19 A1

-continued

OOOOOOOOOOOOOOOOOOOOOOOO101 OOO11 OOO10 OO10 O O O 1
OOOOOOOOOOOOOOOOOOOOOOOO10101001 OOOO1 OO11 O O O 1
OOOOOOOOOOOOOOOOOOOOOOOO10111001 OOO10 O101 O O O 1
OOOOOOOOOOOOOOOOOOOOOOOO11011010 OOO10 OOOO O O O 1
OOOOOOOOOOOOOOOOOOOOOOOO11101010 OOO10 O1 OO O O O 1
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOO OOOO O 1 1 1

0042 Currently, DOM (a W3C standard) is well-defined
and the most widely used representation of XML’s inherent
hierarchy. DOM represents an XML document as a tree struc
ture, with the elements, attributes, and text defined as nodes.
A node may have a single parent node, sibling nodes and child
nodes. For example, consider the following XML snippet:

0043. The node named “B1” has a parent node named “A.”
It also has two child nodes, respectively named “C1 and
“C2. The “C1' node is the first child node as it appears before
the “C2 node in the XML text. The “B1” node also has
sibling nodes named “text0”, “B2” and “B3’ respectively.
The text node named “Text O’ is the previous sibling of the
node “B1” The “B2” is the next sibling for “B1” node as it
appears before “B3' node. By the same token, the “B3' node
is the next sibling node for “B2 node. Also the first and only
child of the “C1' node is a text node named "text.”
0044) DOM treats attribute nodes differently. In the XML
snippet shown above, the “B1” node doesn’t treat its attribute
named “attrName” as its child.
0045. Many DOM node types have their equivalent BMF
types. For example, an element type in DOM corresponds to
the starting tag. DOM, however, does not have a node type
corresponding to BMF's ending tag type.
0046. Since a BMF file completely describes the inherent
structure in the data file as one can navigate the document by
scanning across of BMF records and keeping track of their
token types. And they don’t need any additional descriptors to
identify its siblings, children, or parent. The inclusion of
ending tag as a type is important. DOM resorts to various
pointers and complex data structures to maintain the hierar
chical information of XML, and does not have a node type
corresponding to ending tag. SAX returns ending tags of
XML, but discards them by default. In contrast, a BMF file
maintains the ending tag in memory as a record so the struc
ture information of an XML file is unambiguous. Consider
the following examples:
0047. Example 1:
0048 <a><b1></b1><b2></b2></ad
0049. Example 2:
0050 <adCb1><b2></b2></b1d-C/ad
0051. If the ending tags are missing, the corresponding
BMF have identical record types
0052 Starting tag for a
0053 Starting tag for b1
0054 Starting tag for b2
0055 Without ending tags, it will be difficult to determine
whether b2 is the sibling, or child, of b2. With ending tags, one
can clearly tell the relationship between b1 and b2 in the
above examples.

Sep. 26, 2013

O O OOOOO1 OO
O O OOOO1010
O O OOO11OO1
O O OOOO1111
O O OOO10111
O O OOOOOOOO

0056. In Example 1, the token types are:
0057 Starting tag for a
0058 Starting tag for b1
0059 Ending tag for b1
0060 Starting tag for b2
0061 Ending tag for b2
0062 Ending tag for a
0063. In Example 2, the token types are:
0064 Starting tag for a
0065 Starting tag for b1
0.066 Starting tag for b2
0067. Ending tag for b2
0068 Ending tag for b1
0069. Ending tag for a
(0070. To tell whether b1 is a sibling, or child, of b2, one
can calculate the depth value of each tags. In example 1, b1
and b2 both have the same depth value so they are siblings. In
example 2, b1 and b2 have depth value of 1 and 2 respectively,
so b2 is the child ofb1.
(0071. When the depth value is included in the BMF
records, ending tags can be ignored to save space.
0072 For BMF records to maintainstructural information
of XML documents containing empty elements (elements
having no content, denoted by a specially defined starting tag
that indicates an empty element), there are at least two
options.
0073. The first option is to assign the starting tag of an
empty element a content type that is different from a starting
tag of a non-empty element. Consider the following XML:
<root (element/></rootd. Its corresponding BMF file may
contain three BMF records: the first one for “root’ as a non
empty starting tag, the second for "element as an empty
starting tag, and the third for the ending tag for "-?rootd.”
When the BMF records choose to include a depth value, the
ending tag's BMF record may be ignored.
0074 The second option is to use the same content type for
both empty and non-empty starting tag, and to insert a BMF
recordofa'dummy” ending tag for an empty starting tag. The
dummy tag can take various forms, all aiming to preserve the
structural integrity of the BMF file. For example, one can
insert a BMF record corresponding to a Zero-length ending
tag at the end of an empty element. Or alternatively, he can
add a BMF record for “d” or "/> to emulate the ending tag.
It is called a “dummy’ because it doesn’t represent a real
ending tag.
0075. In some cases, it would be beneficial to have some
additional way to speed up the traversal of document struc
ture. For example, a BMF record can contain a 32-bit descrip
tor which contains the reference in various forms, such as the
relative index value, absolute index value or memory address,
of the next sibling or first child, but not both, as there is
additional storage overhead for having Such descriptors.
0076. The reference to the next sibling makes it possible to
jump to the next sibling without scanning the BMF records
between the current record and its next sibling. The reference

US 2013/02542.19 A1

to the first child record makes it possible to jump to the first
child without scanning the BMF records between the current
record and first child record. Some of the other possible
references a BMF record can have are parent, root, previous
sibling, last child. It should be noted that the reference to a
child node is actually a reference to a record corresponding to
the child node, as the nodes are represented in the intermedi
ate file as records Likewise the reference to a next sibling
node is actually a reference to a record corresponding to the
next sibling node.
0077. When a record does not have a sibling, it is conve
nient to use Some constant value to denote the absence of the
sibling. That constant value can be thought of as a special
reference value. For example, a constant value of Zero at the
descriptor field could be interpreted as there is not sibling or
child, depending on the actual usage of the descriptor.
0078. The concept outlined in this specification can also
be applied to processing JSON (JavaScript Object Notion).
JSON is invented to allow web browsers to exchange data
structure easily as a JSON string has browser's default Sup
port, such as JavaScript's eval().
0079 XML and JSON are similar as both represent tree
structure and are human readable. The basic textual content
types in JSON are keys and values. Consider the following
XML file:

<menu id=file' value=File'>
<popup>

<menuitems<values-New--/values--onclicks-CreateNewDoc()</onclick
</menuitem

Sep. 26, 2013

TABLE 2

Content types and values for the JSON files

JSON ContentValue JSON Content Name Example

O Left brace id: “file}
1 Right brace id: “file}
2 Key id: “file}
3 Value id: “file}

I0082 While embodiments and applications of this inven
tion have been shown and described, it would be apparent to
those skilled in the art having the benefit of this disclosure that
many more modifications than mentioned above are possible
without departing from the inventive concepts herein. The
invention, therefore, is not to be restricted except in the spirit
of the appended claims.

1.-20. (canceled)
21. A method for efficiently processing a structured data

file, the method comprising:
receiving the structured data file;
creating an intermediate file, wherein the intermediate file

is a binary file having a plurality of cells organized into
groupings, wherein each of the groupings of cells con
stitutes a record;

<menuitems<values-Open-values--onclick-OpenDoc()<onclick < menuitems
<menuitems<values-Closex values--onclick-CloselDoc()</onclick-menuitem

</popup>
</menu>
The equivalent JSON representation is shown below
{*menu": {

id: “file,
“value: “File,
“popup": {

“menuitem':
{“value”: “New”, “onclick”: “CreateNewDoc()},
{“value”: “Open”, “onclick”: “OpenDoc()},
{“value”: “Close”, “onclick”: “CloselDoc()}

}}

0080
nesting. For example, in the JSON example above, the key
"popup” has a value following “:” and because there is a .
it just indicates that there is a next level of nesting, potentially
consisting of a new key value pair. To extend BMF for JSON
processing, there needs to be content types “left brace' and
“right brace' respectively corresponding to and . Con
sider the JSON file below: “menu': “id: “file'}}
0081. To create its corresponding BMF file, one inserts a
BMF record for { whose content type is left brace, a BMF
record for the "menu' whose content type is “key, a BMF
record for “K” whose content type is “left brace,” a BMF
record for “id” whose content type is “key,” a BMF record for
“file” whose content type is “value,” a BMF record for “”
whose content type is “right brace.” and a BMF record for “”
whose content type is “right brace.” Table 2 summarizes the
content types for the above example.

The { and in JSON delimit a new level of parsing the structured data file by:
creating a first record in an intermediate file for an ele

ment in the structured data file, wherein the first
record further contains one or more descriptors
including an offset value identifying a location,
within the structured data file, of the element;

creating a second record in the intermediate file for an
attribute name in the structured data file, wherein the
second record further contains one or more descrip
tors including an offset value identifying a location,
within the structured data file, of the attribute name:
and

creating a third record in the intermediate file for an
attribute value in the structured data file, wherein the
third record further contains one or more descriptors
including an offset value identifying a location,
within the structured data file, of the attribute value;
and

US 2013/02542.19 A1

transmitting the intermediate file and the structured data
file to a component so that the component accesses data
from the structured data file using both the intermediate
file and the structured data file together.

22. The method of claim 21, wherein the creating a first
record comprises:

creating a binary mask format (BMF) record in the inter
mediate file, the BMF record corresponding to the ele
ment; and

storing an offset in the BMF record indicatingaposition for
the starting tag relative to a point in the structured data
file.

23. The method of claim 21, wherein the intermediate file
is a BMF file.

24. The method of claim 22, wherein the creating a first
record in an intermediate file further comprises:

storing a depth of the element in the BMF record, the depth
indicating a level in a hierarchy of tags in the structured
data file.

25. The method of claim 22, wherein the creating a first
record in an intermediate file further comprises:

storing a content type of content in the BMF record, the
content type indicating a type of information for the
COntent.

26. The method of claim 25, wherein the creating a first
record in an intermediate file further comprises:

storing a length for the content in the BMF record.
27. The method of claim 22, wherein the offset indicates a

starting position for the starting tag relative to a beginning of
the structured data file.

28. An apparatus for efficiently processing a structured
data file, the structured data file including a starting tag, an
attribute name, and content, the apparatus comprising:

a peripheral component interface (PCI) interface;
a direct memory access (DMA) engine coupled to the PCI

interface;
a text processor coupled to the PCI interface, the text pro

cessor configured to:
receive the structured data file;
create an intermediate file, wherein the intermediate file

is a binary file having a plurality of cells organized
into groupings, wherein each of the groupings of cells
constitutes

a record;
parse the structured data file by:

creating a first record in an intermediate file for an
element in the structured data file, wherein the first
record further contains one or more descriptors
including an offset value identifying a location,
within the structured data file, of the element;

creating a second record in the intermediate file for an
attribute name in the structured data file, wherein
the second record further contains one or more
descriptors including an offset value identifying a
location, within the structured data file, of the
attribute name; and

creating a third record in the intermediate file for an
attribute value in the structured data file, wherein
the third record further contains one or more
descriptors including an offset value identifying a
location, within the structured data file, of the
attribute value; and

transmit the intermediate file and the structured data file
to a component so that the component accesses data

Sep. 26, 2013

from the structured data file using both the interme
diate file and the structured data file together.

configuration memory coupled to the text processor and to
the PCI interface;

a memory controller coupled to the PCI interface;
BMF memory coupled to the DMA engine, the memory

controller, and the text processor,
a document buffer coupled to the DMA engine, the
memory controller, and the text processor, and

a string cache coupled to the DMA engine, the memory
controller, and the text processor.

29. The apparatus of claim 28, wherein the configuration
memory includes:

one or more configuration registers; and
configuration read-only-memory coupled to the one or
more configuration registers.

30. The apparatus of claim 28, wherein the PCI interface is
configured to handle all handshaking between the apparatus
and a server PCI bus.

31. The apparatus of claim 28, wherein the memory con
troller is configured to receive commands from the PCI inter
face and convert a PCI address to on-board memory address
Space.

32. The apparatus of claim 31, wherein the memory con
troller is further configured to access board memory accord
ing to the PCI address.

33. The apparatus of claim 31, wherein the configuration
register contains a configuration of a text processing pipeline
and organization of the memory controller.

34. The apparatus of claim 31, wherein the memory buffer
is configured to store an incoming document.

35. The apparatus of claim 31, wherein the memory buffer
is Synchronous Dynamic Random Access memory
(SDRAM).

36. The apparatus of claim 31, wherein the DMA engine is
configured to grab frame data from server main memory and
send back a BMF file.

37. The apparatus of claim 31, wherein the formatting by
the text processor includes formatting the recordina way that
allows data to be accessed using both the intermediate file and
the structured data file without traversing the entire structured
data file to determine the depth value.

38. An apparatus for efficiently processing a structured
data file, the apparatus comprising:
means for receiving the structured data file;
means for creating an intermediate file, wherein the inter

mediate file is a binary file having a plurality of cells
organized into groupings, wherein each of the groupings
of cells constitutes a record;

means for parsing the structured data file by:
creating a first record in an intermediate file for an ele

ment in the structured data file, wherein the first
record further contains one or more descriptors
including an offset value identifying a location,
within the structured data file, of the element;

creating a second record in the intermediate file for an
attribute name in the structured data file, wherein the
second record further contains one or more descrip
tors including an offset value identifying a location,
within the structured data file, of the attribute name:
and

creating a third record in the intermediate file for an
attribute value in the structured data file, wherein the
third record further contains one or more descriptors

US 2013/02542.19 A1

including an offset value identifying a location,
within the structured data file, of the attribute value;
and

means for transmitting the intermediate file and the struc
tured data file to a component so that the component
accesses data from the structured data file using both the
intermediate file and the structured data file together.

39. The apparatus of claim 38, wherein the means for
creating a first record comprises:

means for creating a binary mask format (BMF) record in
the intermediate file, the BMF record corresponding to
the element; and

means for storing an offset in the BMF record indicating a
position for the starting tag relative to a point in the
structured data file.

40. The apparatus of claim38, wherein the intermediate file
is a BMF file.

Sep. 26, 2013

