(54) 发明名称

使用 TRIAC 调光器的调光控制系统和方法

(57) 摘要

本发明公开了使用 TRIAC 调光器的调光控制系统和方法。用于一个或多个发光二极管的调光控制的系统和方法。示例系统包括一个或多个信号处理组件，被配置为接收与 TRIAC 调光器相关联的第一信号，处理与第一信号相关联的信息，判断 TRIAC 调光器是处于第一条件还是第二条件下，至少基于与第一信号相关联的信息生成第二信号，并且将第二信号发送给开关。一个或多个信号处理组件还被配置为：如果 TRIAC 调光器被确定为处于第一条件下，则生成第二信号以便与调制频率相应地使开关断开和闭合。
1. 一种使用TRIAC调光器进行调光控制的系统，该系统包括：
一个或多个信号处理组件，被配置为接收与所述TRIAC调光器相关联的第一信号，处理
与所述第一信号相关联的信息，判断所述TRIAC调光器是处于第一条件还是第二条件下，至
少基于与所述第一信号相关联的信息生成第二信号，并且将所述第二信号发送给开关；其
中，
如果所述第二信号的占空比大于阈值并且如果所述第一信号的大小大于阈值信号，则
确定所述TRIAC调光器处于第一条件下，此时与调制频率相应地使所述开关断开和闭合；
如果所述第二信号的占空比大于所述阈值并且所述第一信号的大小小于所述阈值信
号，则确定所述TRIAC调光器处于第二条件下，此时使所述开关保持闭合达第一时间段直到
至少所述TRIAC调光器从所述第二条件变为所述第一条件为止；以及
如果所述第二信号的占空比小于所述阈值，则确定所述TRIAC调光器处于第三条件下，
此时所述开关保持断开第二时间段。
2. 如权利要求1所述的系统，其中，所述第一时间段大于所述调制频率所对应的调制周
期。
3. 如权利要求1所述的系统，其中，所述第二时间段大于所述调制频率所对应的调制周
期。
4. 如权利要求1所述的系统，其中，所述一个或多个信号处理组件包括乘法器，被配置
为至少基于与所述第一信号相关联的信息生成第三信号，所述一个或多个信号处理组件还
处理与所述第三信号相关联的信息，并且至少基于与所述第三信号相关联的信息生成所述
第二信号。
5. 如权利要求1所述的系统，其中，所述一个或多个信号处理组件包括：
第一比较器，被配置为接收第一阈值信号和所述第一信号并且至少基于与所述第一阈
值信号和所述第一信号相关联的信息生成比较信号；以及
驱动组件，被配置为接收所述比较信号，至少基于与所述比较信号相关联的信息生成
所述第二信号，并且向所述开关输出所述第二信号。
6. 如权利要求5所述的系统，其中，所述一个或多个信号处理组件还包括：
乘法器，被配置为至少基于与所述第一信号相关联的信息生成第三信号；
调制组件，被配置为接收与所述电流传感器的初级绕组的初级电流相关联的电流检测信号
和所述第三信号，并且至少基于与所述电流检测信号和所述第三信号相关联的信息向所述
驱动组件输出调制信号，所述电流传感器还包括次级绕组和辅助绕组；
其中，所述调制组件还被配置为：
如果所述电流检测信号的大小大于所述第三信号，则生成逻辑低电平的所述调制信号
以使所述开关断开；以及
如果所述电流检测信号的大小小于所述第三信号，则生成逻辑高电平的所述调制信号
以使所述开关闭合。
7. 如权利要求6所述的系统，其中，所述一个或多个信号处理组件还包括电流调整组
件，该电流调整组件被配置为接收所述电流检测信号并且至少基于与所述电流检测信号相
关联的信息向所述乘法器输出经处理信号。
8. 如权利要求7所述的系统，其中，所述乘法器被进一步配置为接收所述第一信号和所
权利要求书

述经处理信号并且至少基于与所述第一信号和所述经处理信号相关联的信息生成第五信号；以及所述一个或多个信号处理组件还包括：

偏移组件，被配置为接收所述第五信号，并且当所述TRIAC调光器处于所述第二条件下时通过向所述第五信号添加预定偏移来输出所述第三信号以使所述第三信号的大小不小于所述电流感测信号。

9. 如权利要求6所述的系统，其中，所述一个或多个信号处理组件还包括：

第二比较器，被配置为接收所述电流感测信号和第二阈值信号并且至少基于与所述电流感测信号和所述第二阈值信号相关联的信息向所述驱动组件输出第四信号；

其中，所述第二比较器还被配置为：如果所述电流感测信号的大小小于所述第二阈值信号，则生成逻辑低电平的所述第四信号以使所述开关关闭。

10. 如权利要求6所述的系统，其中，所述乘法器被进一步配置为接收所述第一信号和第二信号并且至少基于与所述第一信号和所述第四信号相关联的信息向所述调制组件输出所述第三信号。

11. 如权利要求6所述的系统，其中，所述一个或多个信号处理组件还包括第二比较器，该第二比较器被配置为接收与所述辅助绕组相关联的第四信号以及第二阈值信号，并且至少基于与所述第四信号和所述第二阈值信号相关联的信息向所述驱动组件输出第五信号，所述第五信号指示与所述变压器相关联的退磁过程是否完成。

12. 一种使用TRIAC调光器进行调光控制的系统，该系统包括：

第一比较器，被配置为接收第一阈值信号和与所述TRIAC调光器相关联的输入信号并且至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号；

驱动组件，被配置为接收所述比较信号，至少基于与所述比较信号相关联的信息生成输出信号，并且向开关发送所述输出信号；

其中：

所述第一比较器还被配置为：如果所述输入信号的大小大于所述第一阈值信号则生成逻辑高电平的所述比较信号，并且如果所述输入信号的大小小于所述第一阈值信号则生成逻辑低电平的所述比较信号；以及

所述驱动组件还被配置为生成所述输出信号并且使所述开关保持闭合达一时间段直到所述比较信号从逻辑低电平变为逻辑高电平为止；

乘法器，被配置为至少基于与所述输入信号相关联的信息生成第三信号；

调制组件，被配置为接收与第一电流传感器的初级绕组的初级电流相关联的电流感测信号和所述第三信号，并且至少基于与所述电流感测信号和所述第三信号相关联的信息向所述驱动组件输出调制信号，所述变压器还包括次级绕组和辅助绕组；

其中，所述调制组件还被配置为：

如果所述电流感测信号的大小大于所述第三信号，则生成逻辑低电平的所述调制信号以使所述开关断开；以及

如果所述电流感测信号的大小小于所述第三信号，则生成逻辑高电平的所述调制信号以使所述开关闭合。

13. 如权利要求12所述的系统，其中，所述驱动组件还被配置为：如果所述比较信号为逻辑高电平，则生成所述输出信号以便与所述频率相应地使所述开关断开和闭合。
14. 如权利要求13所述的系统，其中，所述时间段大于所述调制频率所对应的调制周期。

15. 如权利要求12所述的系统，还包括：
电流调整组件，被配置为接收所述电流反馈信号并且至少基于与所述电流反馈信号相 relational的信息向所述乘法器输出积分处理信号。

16. 如权利要求15所述的系统，其中，所述乘法器，被进一步配置为接收所述输入信号和所述积分处理信号并且至少基于与所述输入信号和所述积分处理相关联的信息生成第五信号；以及所述系统还包括：
偏移组件，被配置为接收所述第五信号，并且当所述输入信号的大小小于所述第一阈值信号时通过向所述第五信号添加预定偏移来输出所述第三信号以使所述第三信号的大小小于所述电流反馈信号。

17. 如权利要求12所述的系统，还包括：
第二比较器，被配置为接收所述电流反馈信号和第二阈值信号并且至少基于与所述电流反馈信号和所述第二阈值信号相关联的信息向所述驱动组件输出第四信号；
其中，所述第二比较器还被配置为：如果所述电流反馈信号的大小小于所述第二阈值信号，则生成逻辑低电平的所述第四信号以便所述开关开合。

18. 如权利要求15所述的系统，其中，所述乘法器，被进一步配置为接收所述输入信号和所述积分处理信号并且至少基于与所述输入信号和所述积分处理信号相关联的信息向所述调制组件输出所述第三信号。

19. 如权利要求12所述的系统，还包括：
第二比较器，被配置为接收与所述辅助绕组相关联的信号以及第二阈值信号，并且至少基于同与所述辅助绕组相关联的信号和所述第二阈值信号相关联的信息向所述驱动组件输出第五信号，所述第五信号指示与所述变压器相关联的退磁过程是否完成。

20. 一种使用TRIAC调光器进行调光控制的系统，该系统包括：
第一比较器，被配置为接收第一阈值信号和与所述TRIAC调光器相关联的第一信号并且至少基于与所述第一阈值信号和所述第一信号相关联的信息生成第一比较信号；
检测组件，被配置为接收所述第一比较信号，确定所述第一比较信号的占空比，处理与所述占空比和阈值相关联的信息，并且至少基于与所述第一比较信号相关联的信息生成检测信号；以及
驱动组件，被配置为接收所述检测信号，至少基于与所述检测信号相关联的信息生成第二信号，并且向开关输出所述第二信号；
其中：
所述第一比较器还被配置为：如果所述第一信号的大小大于所述阈值信号则生成逻辑高电平的所述第一比较信号，并且如果所述第一信号的大小小于所述阈值信号则生成逻辑低电平的所述第一比较信号；
所述检测组件还被配置为：如果所述第一比较信号的占空比在大小上大于所述阈值，则生成逻辑低电平的所述检测信号，并且如果所述第一比较信号的占空比在大小上小于所述阈值，则生成逻辑高电平的所述检测信号；以及
所述驱动组件还被配置为：如果所述检测信号为逻辑高电平，则生成所述第二信号以便
所述开关保持断开达第一时间段。

21. 如权利要求20所述的系统，其中：
所述第一比较器还被配置为向所述驱动组件输出所述第一比较信号；以及
所述驱动组件还被配置为生成所述第二信号以使所述开关保持闭合达第二时间段直到至少所述第一比较信号从逻辑高电平变为逻辑低电平为止。

22. 如权利要求21所述的系统，其中，所述驱动组件还被配置为如果所述第一比较信号为逻辑高电平并且所述检测信号为逻辑低电平，则生成所述第二信号以便与调制频率相应地使所述开关断开和闭合。

23. 如权利要求22所述的系统，其中，所述第一时间段大于所述调制频率所对应的调制周期。

24. 如权利要求22所述的系统，其中，所述第二时间段大于所述调制频率所对应的调制周期。

25. 如权利要求20所述的系统，其中，所述检测组件包括：
电压生成器，被配置为接收所述第一比较信号并且至少基于与所述第一比较信号相关联的信息生成第一电压信号；
第二比较器，被配置为接收所述第一电压信号和阈值信号，并且至少基于与所述第一电压信号和所述阈值信号相关联的信息生成第二比较信号；以及
信号处理器，被配置为接收所述第一比较信号和所述第二比较信号并且至少基于与所述第一比较信号和所述第二比较信号相关联的信息生成输出信号。

26. 一种用于检测信号的占空比的系统，该系统包括：
电压生成器，被配置为接收输入信号并且至少基于与所述输入信号相关联的信息生成第一电压信号；
比较器，被配置为接收所述第一电压信号和阈值信号并且至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号；以及
信号处理器，被配置为接收所述比较信号和所述输入信号并且至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号；
其中，所述比较器还被配置为：
如果所述第一电压信号的大小大于所述阈值信号，则生成逻辑高电平的所述比较信号；以及
如果所述第一电压信号的大小小于所述阈值信号，则生成逻辑低电平的所述比较信号；
其中，所述信号处理器还被配置为：
如果所述输入信号的占空比大于阈值，则生成逻辑低电平的所述输出信号；以及
如果所述输入信号的占空比小于所述阈值，则生成逻辑高电平的所述输出信号；
其中，所述信号处理器还被配置为：如果所述输入信号从逻辑高电平变为逻辑低电平并且如果所述比较信号为逻辑高电平，则将所述输出信号从逻辑低电平变为逻辑高电平。

27. 如权利要求26所述的系统，其中，所述电压生成器包括：
第一电流源，被配置为提供第一电流；
第二电流源，被配置为提供第二电流；
权利要求书

第一晶体管，被配置为如果所述输入信号为逻辑低电平，则传导所述第一电流；
第二晶体管，被配置为如果所述输入信号为逻辑高电平，则传导所述第二电流；以及
电容器，被配置为；
如果所述输入信号为逻辑低电平，则由流经所述第一晶体管的所述第一电流充电；以及
如果所述输入信号为逻辑高电平，则由流经所述第二晶体管的所述第二电流充电。
28. 如权利要求26所述的系统，还包括；
开关，该开关被耦合在所述比较器的第一输入端子与所述比较器的第二输入端子之间，所述比较器还被配置为在所述第一输入端子处接收所述第一电压信号并且在所述第二输入端子处接收所述阈值信号；
其中，所述开关被配置为如果所述输入信号从逻辑高电平变为逻辑低电平，则在预定延迟之后闭合。
29. 如权利要求28所述的系统，还包括；
信号生成器，被配置为接收所述输入信号，至少基于与所述输入信号相关联的信息生成第一信号，并且向所述开关发送所述第一信号；
其中，所述信号生成器还被配置为如果所述输入信号从逻辑高电平变为逻辑低电平，则在所述预定延迟之后将所述第一信号从逻辑低电平变为逻辑高电平。
30. 如权利要求29所述的系统，其中，所述信号生成器还被配置为；如果所述输入信号从逻辑高电平变为逻辑低电平，则在所述第一信号从逻辑低电平变为逻辑高电平之后，将所述第一信号从逻辑高电平变回逻辑低电平以形成信号脉冲。
31. 如权利要求29所述的系统，其中，所述开关还被配置为；
如果所述第一信号为逻辑低电平，则断开；以及
如果所述第一信号为逻辑高电平，则闭合。
32. 如权利要求29所述的系统，其中，所述信号生成器被配置为生成一个或多个脉宽调制信号。
33. 一种使用TRIAC调光器进行调光控制的方法，该方法包括；
接收与所述TRIAC调光器相关联的第一信号；
处理与所述第一信号相关联的信息；
至少基于与所述第一信号相关联的信息判断所述TRIAC调光器是处于第一条件还是第二条件；
至少基于与所述第一信号相关联的信息生成第二信号；以及
将所述第二信号输出给开关；
其中，至少基于与所述第一信号相关联的信息生成第二信号的处理包括；
如果所述第二信号的占空比大于阈值并且如果所述第一信号的大小大于阈值信号，则确定所述TRIAC调光器处于第一条件下，此时与调制频率相应地使所述开关断开和闭合；
如果所述第二信号的占空比大于所述阈值并且所述第一信号的大小小于所述阈值信号，则确定所述TRIAC调光器处于第二条件下，此时使所述开关保持闭合达第一时间段直到至少所述TRIAC调光器从所述第二条件变为所述第一条件为止；以及
如果所述第二信号的占空比小于所述阈值，则确定所述TRIAC调光器处于第三条件下，
此时所述开关保持断开达第二时间段。
34. 如权利要求33所述的方法，还包括：
判断所述TRIAC调光器是否在第三状态下；
其中，至少基于与所述第一信号相关联的信息生成第二信号的处理还包括：如果所述
TRIAC调光器被确定为处于所述第三状态下，则生成所述第二信号使所述开关保持断开
达第二时间段。
35. 如权利要求34所述的方法，其中所述第一时间段大于所述调节频率所对应的调节
周期。
36. 如权利要求34所述的方法，其中所述第二时间段大于所述调节频率所对应的调节
周期。
37. 如权利要求34所述的方法，还包括：
由乘法器至少基于与所述第一信号相关联的信息生成第三信号；
处理与所述第三信号相关联的信息，以及
至少基于与所述第三信号相关联的信息生成所述第二信号。
38. 如权利要求37所述的方法，其中，判断所述TRIAC调光器是处于第一条件还是第二
条件下的处理包括：如果所述第二信号的占空比大于阈值并且如果所述第一信号的大小大
于阈值信号，则确定所述TRIAC调光器处于所述第一条件下。
39. 如权利要求38所述的方法，其中，判断所述TRIAC调光器是处于第一条件还是第二
条件下的处理包括：如果所述第二信号的占空比大于所述阈值并且所述第一信号的大小大
于所述阈值信号，则确定所述TRIAC调光器处于所述第二条件下。
40. 如权利要求39所述的方法，其中，判断所述TRIAC调光器是否在第三条件下的处理
包括：如果所述第二信号的占空比小于所述阈值，则确定所述TRIAC调光器处于所述第三
条件下。
41. 一种使用TRIAC调光器进行调光控制的方法，该方法包括：
接收第一阈值信号和与所述TRIAC调光器相关联的输入信号；至少基于与所述第一阈
值信号和所述输入信号相关联的信息生成比较信号；
接收所述比较信号；
至少基于与所述比较信号相关联的信息生成输出信号；以及
向开关发送所述输出信号；
其中，至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号的处
理包括：
如果所述输入信号的大小大于所述第一阈值信号，则生成逻辑高电平的所述比较信
号；以及
如果所述输入信号的大小小于所述第一阈值信号，则生成逻辑低电平的所述比较信
号；
其中，向开关发送所述输出信号的处理包括：发送所述输出信号以使所述开关保持闭
合达一时间段直到至少所述比较信号从逻辑低电平变为逻辑高电平为止；
至少基于与所述输入信号相关联的信息生成第三信号；以及
接收与流经变压器的初级绕组的初级电流相关联的电流感测信号和与所述输入信号
相关联的第三信号，并且至少基于与所述电流感测信号和所述第一信号相关联的信息向驱动组件输出调制信号；

其中，至少基于与所述电流感测信号和所述第一信号相关联的信息向所述驱动组件输出所述调制信号的处理包括：

如果所述电流感测信号的大小大于所述第一信号，则生成逻辑低电平的所述调制信号以使所述开关开断开；以及

如果所述电流感测信号的大小小于所述第一信号，则生成逻辑高电平的所述调制信号以使所述开关闭合。

42. 如权利要求41所述的方法，其中，向开关发送所述输出信号的处理包括：如果所述比较信号为逻辑高电平，则发送所述输出信号以便与调制频率具相地使所述开关断开和闭合。

43. 如权利要求42所述的方法，其中，所述时间段大于所述调制频率所对应的调制周期。

44. 一种使用TRIAC调光器进行调光控制的方法，该方法包括：

接收阈值信号和与所述TRIAC调光器相关联的输入信号；

至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号；

接收所述比较信号；

确定所述比较信号的占空比；

处理与所述占空比和阈值相关联的信息；

至少基于与所述比较信号相关联的信息生成检测信号；

接收所述检测信号；

至少基于与所述检测信号相关联的信息生成输出信号；以及

向开关发送所述输出信号。

其中，至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号的处理包括：

如果所述输入信号的大小大于所述阈值信号，则生成逻辑高电平的所述比较信号；以及

如果所述输入信号的大小小于所述阈值信号，则生成逻辑低电平的所述比较信号；

其中，至少基于与所述比较信号相关联的信息生成检测信号的处理包括：

如果所述比较信号的占空比在大小上大于所述阈值，则生成逻辑低电平的所述检测信号；以及

如果所述比较信号的占空比在大小上小于所述阈值，则生成逻辑高电平的所述检测信号；

其中，至少基于与所述检测信号相关联的信息生成输出信号的处理包括：如果所述检测信号为逻辑高电平，则生成所述输出信号以便所述开关保持断开第一时间段。

45. 如权利要求44所述的方法，其中，至少基于与所述检测信号相关联的信息生成输出信号的处理还包括：生成所述输出信号以便所述开关保持闭合第二时间段直到至少所述比较信号从逻辑高电平变为逻辑低电平为止。

46. 如权利要求45所述的方法，其中，至少基于与所述检测信号相关联的信息生成输出信号
信号的处理还包括：如果所述比较信号为逻辑高电平并且所述检测信号为逻辑低电平，则生成所述输出信号以便与调制频率相应地使所述开关断开和闭合。

47. 如权利要求46所述的方法，其中，所述第一时间段大于所述调制频率所对应的调制周期。

48. 如权利要求46所述的方法，其中，所述第二时间段大于所述调制频率所对应的调制周期。

49. 一种用于检测信号的占空比的方法，该方法包括：
接收输入信号；
至少基于与所述输入信号相关联的信息生成第一电压信号；
接收所述第一电压信号和阀值信号；
至少基于与所述第一电压信号和所述阀值信号相关联的信息生成比较信号；
接收所述比较信号和所述输入信号；
至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号；
其中，至少基于与所述第一电压信号和所述阀值信号相关联的信息生成比较信号的处理包括：
如果所述第一电压信号的大小大于所述阀值信号，则生成逻辑高电平的所述比较信号；
如果所述第一电压信号的大小小于所述阀值信号，则生成逻辑低电平的所述比较信号；
其中，至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号的处理包括：
如果所述输入信号的占空比大于阈值，则生成逻辑低电平的所述输出信号；
如果所述输入信号的占空比小于所述阈值，则生成逻辑高电平的所述输出信号；以及
如果所述输入信号从逻辑高电平变为逻辑低电平并且如果所述比较信号为逻辑高电平，则将所述输出信号从逻辑低电平变为逻辑高电平。
使用TRIAC调光器的调光控制系统和方法

技术领域
【0001】本发明涉及集成电路。具体地，本发明提供了使用TRIAC调光器（TRIAC dimmer）的调光控制系统和方法。仅仅作为示例，本发明已应用于用于驱动发光二极管（LED）的系统。但是将认识到，本发明具有更广泛的应用范围。

背景技术
【0002】包含发光二极管（LED）的照明系统常常使用包括交流三极管（TRIAC, Triode for Alternating Current）的传统电调光器（例如，路灯式）来调节LED的亮度。TRIAC是双向的并且电流可在任一方向通过TRIAC（例如，流进TRIAC或流出TRIAC）。TRIAC可由栅极电流（例如，在任一方向上流动）触发，栅极电流通常是通过向TRIAC的栅极施加电压（例如，正电压或负电压）生成的。一旦被触发，TRIAC就持续引导电流直到电流下降到某个阈值（例如，保持电流）之下为止。

【0003】图1是示出使用TRIAC调光器的传统LED照明系统的简化示例。例如，照明系统100实现初级侧调整方案和用于驱动一个或多个LED 172的具有单级功率因数校正（PFC）的反馈式结构。系统100包括控制器102、AC/DC电源组件122、TRIAC调光器118、全波整波器124、电容器器126,136,140,150和170、电阻器128,130,134,138,146,148,154和156、电源开关132和152、二极管142,144和168,以及包括初级级组162、次级级组164和辅助级组166的变压器。控制器102包括端子104,106,108,110,112,114,116和120。例如，电源开关132和152是晶体管。在另一示例中，TRIAC调光器118是包括交流三极管（TRIAC）的调光器。

【0004】如图1所示，TRIAC调光器118处理来自AC/DC电源组件122的AC输入信号121，并且生成由交流供应组件122处理的电压信号123，以便生成电压信号174（例如，V_{bus1}）。TRIAC调光器118与包括接通时段和关断时段的调光周期相关联。在TRIAC调光器118的接通时段期间，电压信号174的大小近似等于AC输入信号121。在TRIAC调光器118的关断时段期间，电压信号174具有低的大小（例如，近似为零）。电容器器150（例如，C_i）响应于电压信号174（例如，V_{bus1}）通过电阻器138（例如，R_3）被充电，并在端子112（例如，端子VCC）处生成电压信号176。如果电压信号176超过欠压锁定（UVLO，under-voltage lock-out）阈值电压，则控制器102被激活，并通过端子116（例如，端子GATE）输出调制信号178（例如，脉宽调制（PWM）信号）用于控制（例如，接通）或断开（例如，关断）用于系统100的常规操作的开关152（例如，M2）。包括电阻器130（例如，R_3）和电阻器134（例如，R_4）的分压器电路至少基于与电压信号174（例如，V_{bus1}）相关联的信息生成电压信号179。控制器102检测端子106（例如，端子V_S）处的信号179，以影响功率因数并确定TRIAC调光器的状态。

【0005】当控制器102改变调制信号178以闭合（例如，接通）开关152（例如，M2）时，初级电流180流经初级绕组162，并且通过电阻器154（例如，R_3）生成电流感应信号188。控制器102检测端子120（例如，端子CS）处的电流感应信号188。例如，电流感应信号188的峰值影响信号178在每个周期中断开（例如，关断）开关152。辅助电流182流经辅助绕组166以对电容器150（例如，C_i）充电，并在辅助绕组166处生成电压信号184。包括电阻器146（例如，R_3）和电
阻器148(例如，R3的分压器电路至少基于与电压信号184相关联的信息在发送电压信号186。控制器102在端子114(例如，端子ZCD)处接收信号186，以检测与包括次级绕组164的变压器相关联的退磁过程的结束。另外，电容器170未被用来维持输出电压以将稳定电流输出给LED172。在TRIAC调光器118的接通时段期间，电源开关132(例如，M1)断开(例如，关断)。在TRIAC调光器118的关断时段期间，电源开关132闭合(例如，接通)以提供排他电流(bleeding current)从而使TRIAC调光器118正常地操作。

图2是图1所示的控制器102的简化传统示图。控制器102包括比较器202、包含比较器204和开关205的误差放大器，逻辑控制组件206，栅极驱动组件208，信号生成器210(例如，PWM信号生成器)、乘法器212和电流调整组件214，例如，PWM信号生成器被配置为生成一个或多个脉宽调制信号。在另一示例中，PWM信号生成器比较器。

如图1和图2所示，比较器204接收信号179和阈值信号226以检测TRIAC调光器118的状态，并输出调光信号228。开关205响应于调光信号228的闭合或断开以影响输出电流从而调节LED 172的亮度(例如，线性地调节作为输出电流的函数的LED 172的亮度)。电流调整组件214在端子120(例如，端子CS)接收电流感测信号188以检测初级电流180的峰值，并且在与变压器(包括初级绕组162和次级绕组164)相关联的退磁时段中对初级电流180的峰值积分。乘法器212接收来自电流调整组件214的经处理信号216和来自端子106(例如，端子VS)的电压信号179，并生成输出信号218。

信号生成器210接收电流感测信号188和输出信号218并生成信号220。在操作周期期间，如果调制信号178为逻辑高电平并且开关152闭合(例如，接通)，则流经开关152的初级电流180的大小增大。作为响应，电流感测信号188的大小增大。如果信号188的大小变得大于输出信号218，则信号生成器210改变信号220并且控制器102将信号178从逻辑高电平变为逻辑低电平以断开(例如，关断)开关152。当开关152断开(例如，关断)时，包括初级绕组162和次级绕组164的变压器开始退磁过程。

比较器202接收信号186和阈值信号222以检测退磁过程是否完成。如果确定退磁过程完成，则比较器202输出信号224以将信号178变为逻辑高电平。在TRIAC调光器118的关断时段期间，逻辑控制组件206输出信号230以闭合(例如，接通)开关132(例如，M1)，以提供用于TRIAC调光器118的正常操作的排他电流。

系统100具有一些缺点。例如，当TRIAC调光器118的传导角较低(例如，传导时间部分小于TRIAC调光器118的操作时段的20%)或者当AC输入电压较高时，用户可感觉到LED 172的闪烁。

因此，改进调光控制技术变得非常重要。

发明内容

本发明涉及集成电路。具体地，本发明提供了使用TRIAC调光器的调光控制系统和方法。仅仅作为示例，本发明已应用于用于驱动发光二极管(LED)的系统。但是将认识到，本发明具有更广泛的应用范围。

根据一个实施例，一种用于一个或多个发光二极管的调光控制的系统包括：一个或多个信号处理组件，被配置为接收与TRIAC调光器相关联的第一信号，处理与所述第一信号相关联的信息，判断所述TRIAC调光器是处于第一条件还是第二条件下，至少基于与所述
第一信号相关联的信息生成第二信号，并且将所述第二信号发送给开关。所述一个或多个信号处理组件还被配置为：如果所述TRIAC调光器被确定为处于所述第一条件下，则生成所述第二信号以便与调制频率相适应地使所述开关断开和闭合，并且如果所述TRIAC调光器被确定为处于所述第二条件下，则生成所述第二信号以便使所述开关保持闭合第一时间段直到至少所述TRIAC调光器从所述第二条件变为所述第一条件为止。

【0014】根据另一实施例，一种用于一个或多个发光二极管的调光控制的系统包括第一比较器和驱动组件。第一比较器被配置为接收第一阈值信号和与TRIAC调光器相关联的输入信号并且至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号。驱动组件被配置为接收所述比较信号，至少基于与所述比较信号相关联的信息生成输出信号，并且向开关发送所述输出信号。所述第一比较器还被配置为：如果所述输出信号的大小小于所述第一阈值信号则生成第一逻辑电平的所述比较信号，并且如果所述输出信号的大小小于所述第一阈值信号则生成第二逻辑电平的所述比较信号。所述驱动组件还被配置为生成所述输出信号并且使所述开关保持闭合第一时间段直到至少所述比较信号从所述第二逻辑电平变为所述第一逻辑电平为止。

【0015】根据又一实施例，一种用于一个或多个发光二极管的调光控制的系统包括第一比较器、检测组件和驱动组件。第一比较器被配置为接收第一阈值信号和与TRIAC调光器相关联的第一信号并且至少基于与所述第一阈值信号和所述第一信号相关联的信息生成第一比较信号。检测组件被配置为接收所述第一比较信号，确定所述第一比较信号的占空比，处理与所述占空比和阈值相关联的信息，并且至少基于与所述第一比较信号相关联的信息生成检测信号。驱动组件被配置为接收所述检测信号，至少基于与所述检测信号相关联的信息生成第二信号，并且向开关输出所述第二信号。所述第一比较器还被配置为：如果所述第一信号的大小小于所述阈值信号则生成第一逻辑电平的所述第一比较信号，并且如果所述第一信号的大小小于所述阈值信号则生成第二逻辑电平的所述第一比较信号。所述检测组件还被配置为：如果所述第一比较信号的占空比在大小上小于所述阈值，则生成第三逻辑电平的所述检测信号，并且如果所述第一比较信号的占空比在大小上小于所述阈值，则生成第四逻辑电平的所述检测信号。所述驱动组件还被配置为：如果所述检测信号为所述第四逻辑电平，则生成所述第二信号以使所述开关保持断开第一时间段。

【0016】根据又一实施例，一种用于检测信号的占空比的系统包括电压生成器、比较器和信号处理器。电压生成器被配置为接收输入信号并且至少基于与所述输入信号相关联的信息生成第一电压信号。比较器被配置为接收所述第一电压信号和阈值信号并且至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号。信号处理器被配置为接收所述比较信号和所述输入信号并且至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号。所述比较器还被配置为：如果所述第一电压信号的大小大于所述阈值信号，生成第一逻辑电平的所述比较信号；并且如果所述第一电压信号的大小小于所述阈值信号，则生成第二逻辑电平的所述比较信号。所述信号处理器还被配置为：如果所述输入信号的占空比大于阈值，则生成第三逻辑电平的所述输出信号；以及如果所述输入信号的占空比小于所述阈值，则生成第四逻辑电平的所述输出信号。所述信号处理器还被配置为：如果所述输入信号从第五逻辑电平变为第六逻辑电平并且如果所述比较信号为所述第一逻辑电平，则将所述输出信号从所述第三逻辑电平变为所述第四逻辑电平。
在一个实施例中，一种用于一个或多个发光二极管的调光控制的方法包括：接收与TRIAC调光器相关的第一信号；处理与所述第一信号相关联的信息；并且至少基于与所述第一信号相关联的信息判断所述TRIAC调光器是处于第一条件还是第二条件下。该方法还包括至少基于与所述第一信号相关联的信息生成第二信号，并且将所述第二信号输出给开关。至少基于与所述第一信号相关联的信息生成第二信号的处理包括：如果所述TRIAC调光器被确定为处于所述第一条件下，则生成所述第二信号以便与调制频率相应地使所述开关断开和闭合；以及如果所述TRIAC调光器被确定为处于所述第二条件下，则生成所述第二信号以便使所述开关保持闭合达第一时间段直到至少所述TRIAC调光器从所述第一条件变为所述第一条件为止。

在另一实施例中，一种用于一个或多个发光二极管的调光控制的方法包括：接收第一阈值信号和与TRIAC调光器相关联的输入信号；至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号；并且接收所述比较信号。该方法还包括至少基于与所述比较信号相关联的信息生成输出信号并且向开关发送所述输出信号。至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号的处理包括：如果所述输入信号的大小大于所述第一阈值信号，则生成第一逻辑电平的所述比较信号；以及如果所述输入信号的大小小于所述第一阈值信号，则生成第二逻辑电平的所述比较信号。向开关发送所述输出信号的处理包括：发送所述输出信号以使所述开关保持闭合达第一时间段直到至少所述比较信号从所述第二逻辑电平变为所述第一逻辑电平为止。

在又一实施例中，一种用于一个或多个发光二极管的调光控制的方法包括：接收阈值信号和与TRIAC调光器相关联的输入信号；至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号；以及接收所述比较信号。该方法还包括：确定所述比较信号的占空比；处理与所述占空比和阈值相关联的信息；以及至少基于与所述比较信号相关联的信息生成检测信号。另外，该方法包括：接收所述检测信号；至少基于与所述检测信号相关联的信息生成输出信号；以及向开关发送所述输出信号。至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号的处理包括：如果所述输入信号的大小大于所述阈值信号，则生成第一逻辑电平的所述比较信号；以及如果所述输入信号的大小小于所述阈值信号，则生成第二逻辑电平的所述比较信号。至少基于与所述比较信号相关联的信息生成检测信号的处理包括：如果所述比较信号的占空比在大小上大于所述阈值，则生成第三逻辑电平的所述检测信号；以及如果所述比较信号的占空比在大小上小于所述阈值，则生成第四逻辑电平的所述检测信号。至少基于与所述检测信号相关联的信息生成输出信号的处理包括：如果所述检测信号为所述第四逻辑电平，则生成所述输出信号以使所述开关保持断开达第一时间段。

在又一实施例中，一种用于检测信号的占空比的方法包括：接收输入信号；至少基于与所述输入信号相关联的信息生成第一电压信号；以及接收所述第一电压信号和阈值信号。该方法还包括：至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号；接收所述比较信号和所述输入信号；并且至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号。至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号的处理包括：如果所述第一电压信号的大小大于所述阈值信号，则生成第一逻辑电平的所述比较信号；以及如果所述第一电压信号的大小小于所述阈值信号，则生成
第二逻辑电平的所述比较信号。至少基于与所述比较信号和所示输入信号相关联的信息生成输出信号的处理包括：如果所述输入信号的占空比大于阈值，则生成第三逻辑电平的所述输出信号；如果所述输入信号的占空比小于所述阈值，则生成第四逻辑电平的所述输出信号；以及如果所述输入信号从第五逻辑电平变为第六逻辑电平并且如果所述比较信号为所述第一逻辑电平，则将所述输出信号从所述第三逻辑电平变为所述第四逻辑电平。

【0021】取决于实施例，可以获得一个或多个益处。参考下面的详细描述和附图可以全面地理解本发明的这些益处以及各个另外的目的、特征和优点。

附图说明

【0022】图1是示出使用TRIAC调光器的照明系统的简化示图。
【0023】图2是图1所示的控制器的简化示图。
【0024】图3是示出根据本发明实施例的照明系统的简化示图。
【0025】图4是根据本发明实施例的作为如图3所示的系统一部分的系统控制器的简化示图。
【0026】图5示出了根据本发明实施例的如图3所示系统的简化时序图。
【0027】图6是示出根据本发明另一实施例的作为如图3所示系统一部分的系统控制器的简化示图。
【0028】图7是示出根据本发明又一实施例的作为如图3所示系统一部分的系统控制器的简化示图。
【0029】图8示出了用于分析如图1所示的照明系统的缺点的简化时序图。
【0030】图9(a)是示出根据本发明另一实施例的作为如图3所示系统一部分的系统控制器的简化示图。
【0031】图9(b)是示出根据本发明又一实施例的作为如图3所示系统一部分的系统控制器的简化示图。
【0032】图9(c)是示出根据本发明又一实施例的作为如图3所示系统一部分的系统控制器的简化示图。
【0033】图10是示出根据本发明一些实施例的作为图9(a)、图9(b)和/或图9(c)所示系统一部分的系统控制器的某些组件的简化示图。
【0034】图11是示出根据本发明实施例的作为图10所示的系统控制器一部分的检测组件的某些组件的简化示图。
【0035】图12(a)示出了在调光信号具有大的占空比时，作为如图10所示系统的系统控制器的一部分的检测组件的简化时序图。
【0036】图12(b)示出了根据本发明一些实施例的在调光信号具有小的占空比时，作为如图10所示系统的系统控制器的一部分的检测组件的简化时序图。

具体实施方式

【0037】本发明涉及集成电路。更具体地，本发明提供了使用TRIAC调光器的调光控制系统和方法。仅仅作为示例，本发明已应用于用于驱动发光二极管(LED)的系统。但是将认识到，本发明具有更广泛的应用范围。
[0038] TRIAC调光器的一个重要参数是保持电流，该保持电流表示用于TRIAC调光器的正常操作的最小电流。如果TRIAC调光器被用于驱动电阻性负载（例如，白炽灯），则可以容易满足保持电流要求。但如果TRIAC调光器被用于驱动电容性负载（例如，LED），则可能需要其他电路或组件以满足该保持电流要求。例如，图1所示，开关132（例如，M1）用于在TRIAC调光器的关断时段期间提供保持电流。但是，系统100实现了附加的电源开关（例如，M1）和控制器102上的额外引脚（例如，端子TRIAC），这增加了控制复杂性和系统成本。

[0039] 图3是示出根据本发明实施例的照明系统简化示图。该示图仅仅为示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。系统300包括系统控制器302、AC供电组件322、TRIAC调光器318、全波整流桥324、电容器326、336、340、350和370、电阻器330、334、338、346、348、354和356、电源开关352、二极管342、344和368、以及包括初级绕组362、次级绕组364和辅助绕组366的变压器。系统控制器302包括端子306、308、310、312、314、316和320。例如，电源开关352是晶体管。

[0040] 如图3所示，根据某些实施例，当来自AC供电组件322的AC输入信号321被TRIAC调光器318和整流桥324处理时，生成电压信号374（例如，V_halk）。例如，TRIAC调光器318与包括接通时段和关断时段的调光周期相关联。在另一示例中，在TRIAC调光器318的接通时间段期间，电压信号374的大小近似于AC输入信号321。在又一示例中，在TRIAC调光器318的关断时段期间，电压信号374具有低的大小（例如，近似为零）。在又一示例中，电容器350（例如，C）响应于电压信号374（例如，V_halk）通过电阻器338（例如，R）被充电，并在端子312（例如，端子VCC）处生成电压信号376。在又一示例中，TRIAC调光器318在接通时段期间处于接通条件下，并在关断时段期间处于关断条件下。

[0041] 根据某些实施例，如果电压信号376超过欠压锁定（"UVLO"）阈值电压，则系统控制器302被激活，并通过端子316输出控制信号378以闭合（例如，接通）或断开（例如，关断）开关352（例如，M2）。例如，控制信号378是闭合（例如，接通）或断开（例如，关断）开关352以用于系统300的正常操作的脉宽调制（PWM）信号。

[0042] 在一个实施例中，开关352是场效应晶体管，其可通过控制信号378而闭合（例如，接通）或断开（例如，关断），例如，控制信号378是电压信号。在另一示例中，如果控制信号378为逻辑高电平，则该场效应晶体管闭合（例如，接通）。在又一示例中，如果控制信号378为逻辑低电平，则该场效应晶体管断开（例如，关断）。

[0043] 在另一实施例中，开关352是双极结型晶体管，其可通过控制信号378而闭合（例如，接通）或断开（例如，关断）。例如，控制信号378是电流信号。在另一示例中，如果控制信号378为高电流电平，则该双极结型晶体管闭合（例如，接通）。在又一示例中，如果控制信号378为低电流电平，则该双极结型晶体管断开（例如，关断）。

[0044] 例如，包括电阻器330（例如，R）和电阻器334（例如，R）的分压器电路至少基于与电压信号374（例如，V_halk）相关联的信息生成电压信号379。在另一示例中，系统控制器302检测端子306（例如，端子Vs）处的信号379，以影响功率因数并确定TRIAC调光器的状态。

[0045] 根据另一实施例，当系统控制器302改变信号378以闭合（例如，接通）开关352（例如，M2）时，初级电流380流经初级绕组362，并且通过电阻器354（例如，R）生成电流检测信号388。例如，系统控制器302检测端子320（例如，端子CS）处的电流检测信号388。在另一示例中，电流检测信号388的峰值影响信号378以在每个周期中断开（例如，关断）开关352。
又一示例中，辅助电流382流经辅助绕组366以对电容器350充电，并在辅助绕组366处生成电压信号384。在又一示例中，包括电阻器346和电阻器348的变压器电路至少基于与电压信号384相关联的信息生成电压信号386。在又一示例中，系统控制器302在端子314（例如，端子ZCD）处接收信号386，以检测与包括次级绕组364的变压器相关联的退磁过程的结束。在又一示例中，电容器370被用来维持输出电压以将稳定电流输出给LED 372。在TRIAC调光器318的关断时段期间，系统控制器302输出信号378以闭合（例如，接通）电源开关352（例如，M2）以提供电流流动路径，从而使TRIAC调光器318正常地操作。在又一示例中，电容器370被用来维持输出电压以用于向LED 372输出稳定电流。

【0046】图4是根据本发明实施例的作为系统300一部分的系统控制器302的简化示图。该示图仅仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。系统控制器302包括比较器402、包含比较器404和开关405的误差放大器、逻辑控制组件406、栅极驱动组件408、信号生成器410（例如，PWM信号生成器）、乘法器412和电流调整组件414。

【0047】如图3和图4所示，在一些实施例中，比较器404接收信号379和阈值信号426以检测TRIAC调光器318的状态，并输出调光信号428。例如，如果调光信号428为逻辑高电平，则开关405闭合或断开来影响输出电流从而调节LED 372的亮度（例如，线性地）。在另一示例中，电流调整组件414在端子320（例如，端子CS）接收电流感测信号388以检测初级电流380的峰值，并且在与变压器（包括初级绕组362和初级绕组364）相关联的退磁时段中对初级电流380的峰值积分。在又一示例中，乘法器412接收来自电流调整组件414的经处理信号416和来自端子306（例如，端子VS）的电压信号379，并生成输出信号418。

【0048】根据一个实施例，信号生成器410接收电流感测信号388和输出信号418并生成信号420。例如，在操作周期期间，如果开关352响应于信号378而闭合（例如，接通），则流经开关352的初级电流380的大小增大，并且作为响应，电流感测信号388的大小也增大。在又一示例中，如果信号388的大小变得大于输出信号418，则信号生成器410改变信号420并且系统控制器302改变信号378以断开（例如，关断）开关352。

【0049】根据另一实施例，比较器402接收信号386和阈值信号422以检测退磁过程是否完成。例如，如果确定退磁过程完成，则比较器402输出信号424以改变信号430从而闭合（例如，接通）开关352。在另一示例中，逻辑控制组件406接收信号424、调光信号428和信号420并向栅极驱动组件408输出信号430。

【0050】在一个实施例中，如果调光信号428为逻辑高电平（例如，在TRIAC调光器318的接通时段期间），则响应于信号420和424，逻辑控制组件406在逻辑高电平与逻辑低电平之间改变信号430以影响信号378从而与调制频率相应地闭合（例如，接通）或断开（例如，关断）开关352。例如，调制频率等于1除以相应的调制周期。

【0051】在另一实施例中，如果调光信号428为逻辑低电平（例如，在TRIAC调光器318的关断时段期间），则逻辑控制组件406使信号430保持逻辑高电平以影响信号378从而使开关352保持闭合（例如，接通）达第一时间段。例如，第一时间段等于或大于调制周期。在另一示例中，第一时间段大于调制周期。在又一示例中，第一时间段在持续时间内等于TRIAC调光器318的关断时段。

【0052】图5示出了根据本发明实施例的系统300的简化时序图。这些示图仅仅是示例，其
应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体，替换和修改。波形502表示作为时间的函数的电压信号374，波形504表示作为时间的函数的信号379，波形506表示作为时间的函数的调光信号382，并且波形508表示作为时间的函数的信号378。图5示出了两个时间段，即接通时间段T_on和断开时间段T_off。时间段T_on开始于t0并结束于t1，并且时间段T_off开始于t1并结束于t2。例如，t0 ≤ t1 ≤ t2。

[0053] 根据一个实施例，在TRIAC调光器318的接通时间段的开始处（例如，t0处），电压信号374（例如，V_{vank}从低的大小510（例如，近似为零）变为大的大小512，并且信号379从低的大小514变为大的大小516。例如，信号379（例如，大小516）的大小高于阈值信号426，并且作为响应，比较器404将调光信号428从逻辑低电平变为逻辑高电平。在另一示例中，在接通时间段期间，电压信号374（例如，V_{vank}）和信号379的大小随着时间减小。在又一示例中，如果信号379的大小变得低于阈值信号426，则比较器404将调光信号428从逻辑高电平变为逻辑低电平（例如，在t1处）。在又一示例中，系统控制器302输出在接通时间段期间在逻辑低电平与逻辑高电平之间变化的信号378。在又一示例中，信号378在断开时间段期间保持逻辑高电平。

[0054] 在某些实施例中，当AC输入信号321具有低的大小时，TRIAC调光器318不会遭受许多电流泄漏。例如，在TRIAC调光器318的关断时段期间，电容器530累积少量电荷并且电压信号374（例如，V_{vank}）具有低的大小。在另一示例中，来自端子316的信号378中的一些脉冲可以将电压信号374减小为低的大小（例如，近似为零），并且作为响应，信号379具有低的大小（例如，近似为零）。在又一示例中，系统控制器302在端子306处接收信号379以检测TRIAC调光器318的状态，从而使其包括比较器204的误差放大器正常地操作。在又一示例中，在TRIAC调光器318的关断时段期间，电流检测信号388具有低的峰值（例如，近似为零），并且作为响应，信号生成器410改变信号420以使信号378保持逻辑高电平。

[0055] 图6是示出根据本发明另一实施例的作为系统300一部分的系统控制器302的简化示图。该示图仅仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体，替换和修改。系统控制器302包括比较器602、包含比较器604和开关605的误差放大器、逻辑控制组件606、栅极驱动组件608。信号生成器610（例如，PWM信号生成器）、乘法器612、电流调整组件614和偏移（offset）组件615。

[0056] 在一些实施例中，如图3和图6所示，比较器604接收信号379和阈值信号626以检测TRIAC调光器318的状态，并输出调光信号628。例如，开关605响应于调光信号628而闭合或断开以影响输出电流从而调节LED 372的亮度（例如，线性地）。在另一示例中，电流调整组件614在端子320（例如，端子CS）接收电流检测信号388以检测初级电流380的峰值，并且在与变压器（包括初级绕组362和初级绕组364）相关联的退磁时段中对初级电流380的峰值积分。在又一示例中，乘法器612接收来自电流调整组件614的经处理信号616和来自端子306（例如，端子VS）的电压信号379，并向偏移组件615输出信号618。在又一示例中，信号处理器610接收电流检测信号388和来自偏移组件615的信号619，并且输出信号620。

[0057] 根据一个实施例，比较器602接收信号386和阈值信号622以检测退磁过程是否完成。例如，如果确定退磁过程完成，则比较器602输出信号624以改变信号378从而闭合（例如，接通）开关352。在另一示例中，逻辑控制组件606接收信号624、调光信号628和信号620并向栅极驱动组件608输出信号630。
在一个实施例中，如果调光信号628为逻辑高电平（例如，在TRIAC调光器318的连接时段期间），则响应于信号620和624，逻辑控制组件606在逻辑高电平与逻辑低电平之间改变信号630以影响信号378从而与调制频率相适应地闭合（例如，接通）或断开（例如，关断）开关352。因此，闭合频率等于1除以相应的调制周期。

在另一实施例中，如果调光信号628为逻辑低电平（例如，在TRIAC调光器318的关断时段期间），则逻辑控制组件606使信号630保持逻辑高电平以影响信号378从而使开关352保持闭合（例如，接通）达第一时间段。例如，第一时间段等于或大于调制周期。在另一示例中，第一时间段大于调制周期。在又一示例中，第一时间段在持续时间上等于TRIAC调光器318的关断时段。

在又一实施例中，当AC输入信号321具有大的大小时，TRIAC调光器318具有高的电流泄漏并且电容器326在TRIAC调光器318的关断时段期间积累大量电荷。例如，如果信号378中的脉冲无法将信号374（例如，Vbulk）下拉到低的大小（例如，近似为零），则信号379具有的有大于零的大小。在另一示例中，电流感应信号388在TRIAC调光器318的关断时段期间具有大于零的峰值。在又一示例中，由于偏移组件615将信号618添加预定偏移以生成信号619，因此使电流感应信号388的大小保持小于信号619，并且作为响应，信号处理器610输出信号620以影响信号378从而使开关352在TRIAC调光器318的关断时段期间保持闭合（例如，接通）。在又一示例中，信号374（例如，Vbulk）可被下拉到低的大小（例如，近似为零）以使信号378保持稳定，从而使得LED 372在TRIAC调光器318的关断时段期间不闪烁。

图7是示出根据本发明又一实施例的作为系统300一部分的系统控制器302的简化示意图。该示图仅仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。系统控制器302包括处理器702和711，包含比较器704和开关705的误差放大器、逻辑控制组件706、栅极驱动组件708、信号生成器710（例如，PWM信号生成器）、乘法器712和电流调节组件714。

如图3和图7所示，在一些实施例中，比较器704接收信号379和阈值信号726以检测TRIAC调光器318的状态，并输出调光信号728。例如，开关705响应于调光信号728而闭合或断开以影响输出电流从而调节LED 372的亮度（例如，线性地）。在另一示例中，电流调整组件714在端子320（例如，端子CS）接收电流感应信号388以检测初级电流380的峰值，并且在与变压器（包括初级绕组362和初级绕组364）相关的磁性介质中对初级电流380的峰值积分。在又一示例中，乘法器712接收来自电流调整组件714的经处理信号716和来自端子306（例如，端子VS）的电压信号379，并生成输出信号718。在又一示例中，信号生成器710接收电流感应信号388和输出信号718并且生成信号720。

根据一个实施例，比较器702接收信号386和阈值信号722以检测退磁过程是否完成。例如，如果确定退磁过程完成，则比较器702输出信号724以改变信号378而闭合（例如，接通）开关352。在另一示例中，逻辑控制组件706接收信号724、调光信号728和信号720并向栅极驱动组件708输出信号730。

在一个实施例中，如果调光信号728为逻辑高电平（例如，在TRIAC调光器318的连接时段期间），则响应于信号720和724，逻辑控制组件706在逻辑高电平与逻辑低电平之间改变信号730以影响信号378而与调制频率相适应地闭合（例如，接通）或断开（例如，关断）开关352。因此，调制频率等于1除以相应的调制周期。
[0065] 在另一实施例中，如果调光信号728为逻辑低电平（例如，在TRIAC调光器318的关断时段期间），则逻辑控制组件706使信号730保持逻辑高电平以影响信号378从而使开关352保持闭合（例如，接通）达第一时间段。例如，第一时间段等于或大于调制周期。在另一实施例中，第一时间段大于调制周期。在又一示例中，第一时间段在持续时间内等于TRIAC调光器318的关断时段。

[0066] 在又一实施例中，比较器711在端子320（例如，端子CS）处接收到电流检测信号388和阈值信号731并向逻辑控制组件706输出比较信号733。例如，如果电流检测信号388的大小小于阈值信号731，则比较器711改变比较信号733以改变信号378从而使开关352（例如，M2）接通。因此，在某些实施例中，电压信号374（例如，V bulk）被下拉到低的大小（例如，近似为零）以使信号378保持稳定，从而使得即使AC输入信号321具有大的大小，LED732在TRIAC调光器318的关断时段期间也不会闪烁。例如，如果电流检测信号388的大小大于阈值信号731，则信号738的状态受到信号720的影响，信号720至少基于与信号718和电流检测信号388相关的信息生成的。

[0067] 如上面讨论的并在进一步强调的，图4、图5、图6和图7仅仅是示例，其不应不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。例如，图4所示的系统控制器302的某些组件的操作也适用于如图6和/或图7所示的系统控制器302。在另一实施例中，如图6所示的系统控制器302或如图7所示的系统控制器302具有与如图5所示的时序图类似的时序图。

[0068] 图8示出了用于分析传统LED照明系统100的缺点的简化时序图。波形802表示作为时间的函数的AC输入信号121，波形804表示作为时间的函数的电压信号123，波形806表示作为时间的函数的理想的电压信号174，并且波形808表示作为时间的函数的实际的电压信号174。

[0069] 返回参考图1，TRIAC调光器118由于其固有特性对AC输入信号121的正值和负值进行不同处理以生成电压信号123（例如，如波形804所示）。理想地，电压信号174（例如，V bulk）在TRIAC调光器118的每个接通时段期间都具有相同的波形（例如，如波形806所示）。但是，实际上，电压信号174（例如，V bulk）的波形在TRIAC调光器118的每个接通时段期间会随着时间变化（例如，如波形808所示）。这样的变化会影响系统100的输出电流。如果TRIAC调光器118的传导角较大，则LED172足够亮使得人类观察者难以感觉到任何闪烁。但是，如果TRIAC调光器118的传导角较小，则LED172不是很亮。如果流经LED172的电流在不同的操作周期中变化，则人类观察者能够感觉到LED172的闪烁。

[0070] 图9(a)是示出根据本发明另一实施例的作为系统300一部分的系统控制器302的简化示图。该示图仅仅是示例，其不应不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。系统控制器302包括比较器902、包含比较器904和开关905的误差放大器、逻辑控制组件906、栅极驱动组件908、信号生成器910（例如，PWM信号生成器）、乘法器912、电流调整组件914和检测组件911。例如，比较器902、比较器904、开关905、逻辑控制组件906、栅极驱动组件908、信号生成器910、乘法器912和电流调整组件914与比较器402、比较器404、开关405、逻辑控制组件406、栅极驱动组件408、信号生成器410、乘法器412和电流调整组件414相同。

[0071] 如图3和图9(a)所示，在一些实施例中，比较器904接收信号379和阈值信号926以
检测TRIAC调光器318的状态，并输出调光信号928(例如，信号428)。例如，开关905响应于调光信号928而闭合或断开以影响输出电流从而调节LED 372的亮度(例如，线性地)。在另一示例中，电流调整组件914在端子320(例如，端子CS)接收电流感测信号388以检测初级电流380的峰值，并且在与变压器(包括初级绕组362和初级绕组364)相关联的退磁时段中对初级电流380的峰值积分。在另一示例中，乘法器912接收来自电流调整组件914的经处理信号916(例如，信号416)和来自端子306(例如，端子VS)的电压信号379，并输出信号918(例如，信号418)。在又一示例中，信号处理器910接收电流感测信号388和信号918并且输出信号920(例如，信号420)。

根据另一实施例，调光信号928的占空比表示TRIAC调光器318的传导角。例如，检测组件911接收调光信号928以确定调光信号928的占空比并且向逻辑控制组件906输出信号933。在另一示例中，如果调光信号928的占空比被确定为小于阈值，则系统控制器302被配置为改变信号378以断开(例如，关断)开关352从而关断系统300。在另一示例中，比较器902接收信号386和阈值信号922以检测退磁过程是否完成。在又一示例中，如果确定退磁过程完成，则比较器902输出信号924(例如，信号424)给逻辑控制组件906，逻辑控制组件906还接收调光信号928和信号920并且向栅极驱动组件908输出信号930。

图9(b)是示出根据本发明又一实施例的作为系统300一部分的系统控制器302的简化示图。该示例仅仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。系统控制器302包括比较器1002、包含比较器1004和开关1005的误差放大器、逻辑控制组件1006、栅极驱动组件1008、信号生成器1010(例如，PWM信号生成器)、乘法器1012、电流调整组件1014、检测组件1011和移位组件1015。例如，比较器1002、比较器1004、开关1005、逻辑控制组件1006、栅极驱动组件1008、信号生成器1010、乘法器1012、电流调整组件1014和移位组件1015与比较器602、比较器604、开关605、逻辑控制组件606、栅极驱动组件608、信号生成器610、乘法器612、电流调整组件614和移位组件615相同。

如图3和图9(b)所示，在一些实施例中，比较器1004接收信号379和阈值信号1026以检测TRIAC调光器318的状态，并输出调光信号1028(例如，信号628)。例如，开关1005响应于调光信号1028而闭合或断开以影响输出电流从而调节LED 372的亮度(例如，线性地)。在另一示例中，电流调整组件1014在端子320(例如，端子CS)接收电流感测信号388以检测初级电流380的峰值，并且在与变压器(包括初级绕组362和初级绕组364)相关联的退磁时段中对初级电流380的峰值积分。在又一示例中，乘法器1012接收来自电流调整组件1014的经处理信号1016(例如，信号616)和来自端子306(例如，端子VS)的电压信号379，并向移位组件1015输出信号1018。在又一示例中，信号处理器910接收电流感测信号388和来自移位组件1015的信号1019(例如，信号619)并且向逻辑控制组件1006输出信号1020(例如，信号920)。

根据另一实施例，调光信号1028的占空比表示TRIAC调光器318的传导角。例如，检测组件1011接收调光信号1028以确定调光信号1028的占空比并且向逻辑控制组件1006输出信号1033。在另一示例中，如果调光信号1028的占空比被确定为小于阈值，则系统控制器302被配置为改变信号378以断开(例如，关断)开关352从而关断系统300。在又一示例中，比较器1002接收信号386和阈值信号1022以检测退磁过程是否完成。在又一示例中，如果确定退磁过程完成，则比较器1002输出信号1024(例如，信号624)给逻辑控制组件1006，逻辑控
制组件1006向栅极驱动组件1008输出信号1030。

图9(c)是示出根据本发明又一实施例的作为系统300一部分的系统控制器302的简化示图。该示图仅仅是示例，其不应当不当地限制权利要求的范围。本领技术人员认识到许多变体、替换和修改。系统控制器302包括比较器1102、包含比较器1104和开关1105的误差放大器、逻辑控制组件1106、栅极驱动组件1108、信号生成器1110（例如，PWM信号生成器）、乘法器1112、电流调整组件1114、检测组件1111和比较器1115。例如，比较器1102、比较器1104、开关1105、逻辑控制组件1106、栅极驱动组件1108、信号生成器1110、乘法器1112、电流调整组件1114和比较器1115与比较器702、比较器704、开关705、逻辑控制组件706、栅极驱动组件708、信号生成器710、乘法器712、电流调整组件714和比较器711相同。

如图3和图9(c)所示，在一些实施例中，比较器1104接收信号379和阀值信号1126以检测TRIAC调光器318的状态，并输出调光信号1128（例如，信号728）。例如，开关1105响应于调光信号1128而闭合或断开以影响输出电流从而调节LED 372的亮度（例如，线性地）。在另一示例中，电流调整组件1114在端子320（例如，端子CS）接收电流检测信号388以检测初级电流380的峰值，并且在与调节器（包括初级调节器323和初级调节器364）相关联的整流时段中对初级电流380的峰值积分。在另一示例中，乘法器1112接收来自电流调整组件1114的经处理信号1116（例如，信号716）和来自端子306（例如，端子VS）的电压信号379，并向信号处理器1110输出信号1118（例如，信号718）。在另一示例中，信号处理器1110接收电流检测信号388和信号1118并且向逻辑控制组件1106输出信号1120（例如，信号720）。

根据另一实施例，调光信号1128的占空比表示TRIAC调光器318的传导角。例如，检测组件1111接收调光信号1128以确定调光信号1128的占空比并且向逻辑控制组件1106输出信号1133。在另一示例中，如果调光信号1128的占空比被确定为小于阈值，则系统控制器302被配置为改变信号378以断开（例如，关断）开关352从而关断系统300。在另一示例中，比较器1115在端子320（例如，端子CS）处接收电流检测信号388以及阈值信号11131，并向逻辑控制组件1106输出信号1119（例如，信号733）。在另一示例中，比较器1102接收信号386和阈值信号1122以检测谐振过程是否完成。在另一示例中，如果确定谐振过程完成，则比较器1102输出信号1124（例如，信号724）给逻辑控制组件1106，逻辑控制组件1106向栅极驱动组件1108输出信号1130。

图10是示出根据本发明一些实施例的作为图9(a)、图9(b)和/或图9(c)所示的系统300一部分的系统控制器302的某些组件的简化示图。该示图仅仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。如图10所示，系统控制器包括比较器1904，检测组件1911和逻辑控制组件1998。例如，比较器1904与比较器904、比较器1004或比较器1104相同。在另一示例中，检测组件1911与检测组件911、检测组件1011或检测组件1111相同。在另一示例中，逻辑控制与栅极驱动组件1998包括如图9(a)所示的逻辑控制组件906和栅极驱动组件908，如图9(b)所示的逻辑控制组件1006和栅极驱动组件1008，或者如图9(c)所示的逻辑控制组件1106和栅极驱动组件1108。

在一些实施例中，如图10所示，比较器1904将信号379与阀值信号1926（例如，阈值信号926，阈值信号1026或阀值信号1126）相比较，并且输出调光信号1928（例如，调光信号928，调光信号1028或调光信号1128）。例如，检测比较器1911接收调光信号1928并且向逻辑控制与栅极驱动组件1998输出信号1933（例如，信号933，信号1033或信号1133）。在另一示
例中，逻辑控制与栅极驱动组件9988还接收调光信号1928、控制信号1920（例如，信号920、信号1020或信号1120）和信号1924（例如，信号924、信号1024或信号1124），并输出信号378。

在又一示例中，调光信号1928的占空比表示TRIAC调光器318的传导角。在又一示例中，调光信号1928的占空比可被确定为如下：

$$\text{占空比}=\frac{T_{on}}{T_{on}+T_{off}}$$ (式1)

[0082] 其中，T_{on}表示调光信号1928处于逻辑高电平时的时间段，并且T_{off}表示调光信号1928处于逻辑低电平时的时间段。例如，T_{on}对应于TRIAC调光器318的接通通段的持续时间，并且T_{off}对应于TRIAC调光器318的断开通段的持续时间。

[0083] 根据某些实施例，检测组件1911确定调光信号1928的占空比，并且如果调光信号1928的占空比大于阈值则输出逻辑低电平的信号1933。例如，如果信号1933为逻辑低电平并且调光信号1928为逻辑高电平，则逻辑控制与栅极驱动组件1998响应于信号1920改变信号378以便与调制频率相应地闭合（例如，接通）或断开（例如，关断）开关352，只要信号1924保持为逻辑高电平。在一个实施例中，调制频率等于1除以相应的调制周期。

[0084] 在另一示例中，如果信号1933为逻辑低电平并且调光信号1928也为逻辑低电平，则逻辑控制与栅极驱动组件1998影响信号378以使开关352保持闭合（例如，接通）达第一时间段，只要信号1924保持为逻辑高电平。在一个实施例中，第一时间段等于或大于调制周期。在另一实施例中，第一时间段大于调制周期。在又一实施例中，第一时间段在持续时间上等于TRIAC调光器318的关断时段。

[0085] 根据一些实施例，检测组件1911确定调光信号1928的占空比，并且如果调光信号1928的占空比小于阈值则输出逻辑高电平的信号1933。例如，如果信号1933为逻辑高电平，则逻辑控制与栅极驱动组件1998影响信号378以使开关352保持断开（例如，关断）达第二时间段直到系统300被关断为止。在一个实施例中，第二时间段等于或大于调制时间段。在另一实施例中，第二时间段大于调制时间段。

[0086] 图11是示出根据本发明实施例的作为图10所示的系统控制器302一部分的检测组件1911的某些组件的简化示图。该示图仅仅是示例，其不应正当不正当限制权利要求的范围。本领域技术人员将认识到许多变体、替换和修改。检测组件1911包括电流源1202和1204、晶体管1206和1208、比较器1210、放大器1212、D触发组件1214、触发组件1216、延迟组件1218、脉冲生成器1220、电容器1222和开关1224。例如，检测组件1911与检测组件911、检测组件1011或检测组件1111相同。在另一示例中，晶体管1206是P沟道场效应晶体管。在又一示例中，晶体管1208是N沟道场效应晶体管。

[0087] 根据一个实施例，在与TRIAC调光器318相关联的调光周期的开始处，电容器1222上的电压近似被设为预定阈值信号1234（例如，V_0）。例如，在TRIAC调光器318的关断时段的开始处，信号1234是电容器1222上的初始电压。在另一示例中，在TRIAC调光器318的关断时段期间，调光信号1928为逻辑低电平。在又一示例中，作为响应，晶体管1206被导向以传导与电流源1202相关联的电流1230（例如，I_e），并且晶体管1208截止。在又一示例中，电容器1222由电流1230（例如，I_e）充电。在又一示例中，电压信号1228的大小增大（例如，线性地或非线性地）。因此，在一些实施例中，在TRIAC调光器318的关断时段的结束处，在电容器1222处生成的电压信号1228被确定如下：

22
[0088] \[V_{\text{ramp}1} = V_0 + \frac{I_c \times T_{\text{on}}}{C_1} \] （式2）

[0089] 其中，\(V_{\text{ramp}1} \) 表示在TRIAC调光器318的接通时段的结尾处的电压信号1228，\(V_0 \) 表示预定阈值信号1234，\(I_c \) 表示电流1230，并且\(C_1 \) 表示电容器1222的容电。

[0090] 例如，TRIAC调光器318的接通时段期间，调光信号1928为逻辑高电平。在另一例中，作响应，晶体管1208导通以传导与电流源1204相关联的电流1232（例如，\(I_d \)）并且晶体管1206截止。在又一示例中，电容器1222被放电，并且电压信号1228的大小减小（例如，线性地或非线性地）。因此，在某些实施例中，在TRIAC调光器318的接通时段的结尾处，在电容器1222处生成的电压信号1228被确定如下：

[0091] \[V_{\text{ramp}2} = V_{\text{ramp}1} - \frac{I_d \times T_{\text{off}}}{C_1} \] （式3）

[0092] 其中，\(V_{\text{ramp}2} \) 表示TRIAC调光器318的接通时段的结尾处的电压信号1228，并且\(I_d \) 表示电流1232。

[0093] 将式（1）和式（2）组合，在TRIAC调光器318的接通时段的结尾处的电压信号1228被确定如下：

[0094] \[V_{\text{ramp}2} = V_0 + \frac{I_c \times T_{\text{on}}}{C_1} - \frac{I_d \times T_{\text{off}}}{C_1} \] （式4）

[0095] 根据另一实施例，放大器1212在非反相端子处接收阈值信号1234（例如，\(V_0 \）），并且放大器1212的反相端子和输出端子被相连。例如，放大器1212输出信号1239，该信号1239的大小近似等于阈值信号1234。在一些实施例中，在TRIAC调光器318的接通时段的结尾处，比较器1210将电压信号1228与信号1239相比较。从式（3）将得到下式：

[0096] \[V_{\text{ramp}2} - V_0 = \frac{I_c \times T_{\text{on}}}{C_1} - \frac{I_d \times T_{\text{off}}}{C_1} \] （式5）

[0097] 如式（4）所示，如果\(I_c, I_d, T_{\text{on}} \)和\(T_{\text{off}} \) 满足下式，则\(V_{\text{ramp}2} = V_0 \)。

[0098] \[\frac{T_{\text{on}}}{T_{\text{off}}} = \frac{I_c}{I_d} \] （式6）

[0099] 式（6）可在数学上被变换成下式：

[0100] \[\frac{T_{\text{on}}}{T_{\text{off}} + T_{\text{on}}} = \frac{I_c}{I_c + I_d} \] （式7）

[0101] 因此，在一些实施例中，如果预先定义了\(I_c, I_d \)的比率，则可以确定调光信号1928的占空比的关断阈值。例如，如果在TRIAC调光器318的接通时段的结尾处，电压信号1228的大小小于阈值信号1234，则调光信号1928的占空比大于关断阈值并且系统控制器302不关断系统300。另一方面，如果在TRIAC调光器318的接通时段的结尾处，电压信号1228的大小大于阈值信号1234，则调光信号1928的占空比小于该关断阈值并且系统控制器302关断系统300。

[0102] 根据另一实施例，延迟组件1218接收调光信号1928并且生成信号1236。该信号1236由脉冲生成器1220和D触发组件1214接收。例如，脉冲生成器1220输出信号1238（例如，信号Rst）并且开关1224响应于信号1238而闭合（例如，接通）或断开（例如，关断）。在另一示例中，信号1238在调光周期的结尾处包括一脉冲，并且开关1224响应于该脉冲而闭合（例
如，接通）以将电压信号1228（例如，V_{ref}）重置为阈值信号1234（例如，V_{o}）。在另一示例中，比较器1210生成去往D触发组件1214的输出信号1240，D触发组件1214还接收调光信号1228并输出信号1242。在另一示例中，触发组件1216接收信号1242和信号1250并且输出信号1933。在另一示例中，如果信号1933为逻辑低电平，则系统控制器302正常地操作，并且如果信号1933为逻辑高电平，则系统控制器302改变378以使开关352保持断开（例如，关断）直到系统300被关断为止。

根据本发明一些实施例的在调光信号1228具有大的占空比时、作为系统300的系统控制器302一部分的检测组件1911的简化时序图，并且图12(b)示出了根据本发明一些实施例的在调光信号1228具有小的占空比时、作为系统300的系统控制器302一部分的检测组件1911的简化时序图。这些示图仅是示例，其不应当不当地限制权利要求的范围。本领域技术人员将认识到许多变体，替换和修改。

如图12(a)所示，波形1302表示作为时间的函数的调光信号1228，波形1304表示作为时间的函数的电压信号1228，波形1306表示作为时间的函数的输出信号1240，并且波形1308表示作为时间的函数的信号1236。另外，波形1310表示作为时间的函数的信号1238，波形1312表示作为时间的函数的信号1242，波形1314表示作为时间的函数的信号1250，并且波形1316表示作为时间的函数的信号1933。

图12(a)示出了三个时间段，即，接通时间段T_{on}、关断时间段T_{off}和延迟时间段T_{dL}。时间段T_{on}开始于时刻t_4并结束于时刻t_5，时间段T_{off}开始于时刻t_6并结束于时刻t_7，并且延迟时间段T_{dL}开始于时刻t_8并结束于时刻t_9，例如，$t_3 \leq t_4 \leq t_5 \leq t_6 \leq t_7 \leq t_8 \leq t_9 \leq t_{\text{on}}$。

如图12(a)所示，在一些实施例中，当调光信号1228的占空比大于或等于1933时，检测组件1911输出逻辑低电平（例如，如波形1316所示的V_{o}）的信号1933。例如，在t_3处，信号1250从逻辑低电平变为指示操作周期的开始的逻辑高电平。在另一示例中，调光信号1228在t_3与t_4之间的时间段期间保持逻辑低电平（例如，如波形1302所示）。在另一示例中，晶体管1206导通以传导电流1230（例如，I_{c}）并且晶体管1208截止。在另一示例中，作为响应，电容器1222响应于电流1230被充电并且电压信号1228的大小增加（例如，在t_4处增加到大小1320，如波形1304所示）。

根据一个实施例，在接通时间段的开始处（例如，t_4），调光信号1228从逻辑低电平变为逻辑高电平（例如，如波形1302所示）。例如，延迟组件1218将信号1236从逻辑低电平变为逻辑高电平（例如，t_4处，如波形1308所示）。在另一示例中，晶体管1208导通以传导电流1232（例如，I_{c}）并且晶体管1206截止。在另一示例中，作为响应，电容器1222开始被放电。在另一示例中，在接通时间段期间，电压信号1228的大小减小（例如，在t_3处减小到大小1322，如波形1304所示）。在另一示例中，当电压信号1228变得小于阈值信号1234（例如，V_{o}）时，比较器1210将输出信号1240从逻辑高电平变为逻辑低电平（例如，t_3处，如波形1306所示）。在另一示例中，在接通时间段期间，信号1933保持为逻辑低电平（例如，如波形1316所示）并且系统300正常地操作。

根据另一实施例，在关断时间段的开始处（例如，t_8），调光信号1228从逻辑高电平变为逻辑低电平（例如，如波形1302所示）。例如，在一延迟（例如，T_{dL}）之后，延迟组件1218将信号1236从逻辑高电平变为逻辑低电平（例如，t_7处，如波形1308所示），以使得当调光信号1228的下降沿到来时，接收信号1236作为重置信号的D触发组件1214不立即被重置。在另一
示例中，在信号1236的下降沿时（例如，t12处），脉冲生成器1220在信号1238中生成脉冲（例如，如波形1310所示）。在又一示例中，响应于信号1238中的该脉冲，开关1224闭合（例如，接通），并且电压信号1228的大小被改变为变得近似等于放大器1212的输出信号1239（例如，大小1318，如波形1304所示）。

[0109] 根据又一实施例，在关断时间段期间（例如，ts与tS之间），调光信号1928保持逻辑低电平（例如，如波形1302所示）。在又一示例中，晶体管1206导通以传导电流1230（例如，Ic）并且晶体管1208截止。在又一示例中，电容器1222响应于电流1230被充电并且电压信号1228的大小增大（例如，如波形1304所示）。在又一示例中，在关断时间段期间，信号1933保持逻辑低电平（例如，如波形1316所示）并且系统300正常地操作。

[0110] 如图12(b)所示，波形1402表示作为时间的函数的调光信号1928，波形1404表示作为时间的函数的电压信号1228，波形1406表示作为时间的函数的输出信号1240，并且波形1408表示作为时间的函数的信号1236。另外，波形1410表示作为时间的函数的信号1238，波形1412表示作为时间的函数的信号1242，波形1414表示作为时间的函数的信号1250，并且波形1416表示作为时间的函数的信号1933。

[0111] 图12(b)示出了两个时间段，即，接通时间段T_{on3}和关断时间段T_{off3}。时间段T_{on3}开始于时刻t13并结束于时刻t13，并且时间段T_{off3}开始于时刻t13并结束于时刻t15。例如，t_{11} ≤ t_{12} ≤ t_{13} ≤ t_{14} ≤ t_{15} ≤ t_{16} ≤ t_{17}。

[0112] 如图12(b)所示，在一些实施例中，当调光信号1928的占空比小于关断阈值时，检测组件1911将信号1933从逻辑低电平变为逻辑高电平（例如，如波形1416所示）。例如，在t_{11} 处，信号1250从逻辑低电平变为指示操作周期的开始的逻辑高电平。在另一示例中，调光信号1928在t_{11}与t_{12}之间的时间段期间保持逻辑低电平（例如，如波形1402所示）。在又一示例中，晶体管1206导通以传导电流1230（例如，Ic）并且晶体管1208截止。在又一示例中，作为响应，电容器1222响应于电流1230被充电并且电压信号1228的大小增大（例如，在t_{12}处增大到大小1420，如波形1404所示）。

[0113] 根据一个实施例，在接通时间段的开始处（例如，t12），调光信号1928从逻辑低电平变为逻辑高电平（例如，如波形1402所示）。例如，延迟组件1218将信号1236从逻辑低电平变为逻辑高电平（例如，t13处，如波形1408所示）。在另一示例中，晶体管1208导通以传导电流1232（例如，Ic）并且晶体管1206截止。在又一示例中，作为响应，电容器1222开始被放电。在又一示例中，在接通时间段期间，电压信号1228的大小减小（例如，在t13处减小到大小1422），但是大小上保持大于阈值信号1234（例如，如波形1404所示）。在又一示例中，比较器1210使输出信号1240保持为逻辑高电平（例如，如波形1406所示）。在又一示例中，在接通时间段期间，信号1933保持为逻辑低电平（例如，如波形1416所示）并且系统300正常地操作。

[0114] 根据另一实施例，在关断时间段的开始处（例如，t13），调光信号1928从逻辑高电平变为逻辑低电平（例如，如波形1402所示）。例如，在一延迟（例如，T_{22}）之后，延迟组件1218将信号1236从逻辑高电平变为逻辑低电平（例如，t13处，如波形1408所示）。在另一示例中，在信号1236的下降沿时（例如，t14处），脉冲生成器1220在信号1238中生成脉冲（例如，如波形1410所示）。在又一示例中，接收调光信号1928的触发组件响应于调光信号1928的下降沿信号1242中生成脉冲（例如，如波形1412所示）。在又一示例中，触发组件1216响应于信号1242中的该脉冲将信号1933从逻辑低电平变为逻辑高电平（例如，如波形1416所示）。
一示例中，系统控制器302改变信号378以使开关352保持断开(例如，截止)直到系统300断开为止。
[0115] 在一些实施例中，如图12(a)和图12(b)所示，在TRIAC调光器318的断开段的结尾处(例如，如图12(a)所示的t9处或如图12(b)所示的t16处)，在电容器1222处生成的电压信号1228可被确定为如下：

\[V_{\text{ramp1}} = V_0 + \frac{I_c \times (T_{\text{off}} - T_d - T_{\text{pulse}})}{C_1} \] （式8）

[0117] 其中，\(V_{\text{ramp1}} \)表示在TRIAC调光器318的断开段的结尾处的电压信号1228，\(V_0 \)表示预定阈值信号1234，\(I_c \)表示电流1230，并且\(C_1 \)表示电容器1222的电容。另外，\(T_{\text{off}} \)表示TRIAC调光器318的断开段的持续时间，\(T_d \)表示在TRIAC调光器318的同一调光周期期间调光信号1928的下降沿与信号1236的下降沿之间的延迟（例如，图12(a)中的\(T_d \)和图12(b)中的\(T_d \)），并且\(T_{\text{pulse}} \)表示信号1238的脉冲宽度。

[0118] 例如，\(T_{\text{off}} \gg T_d + T_{\text{pulse}} \)并且因此，

\[V_{\text{ramp1}} \approx V_0 + \frac{I_c \times T_{\text{off}}}{C_1} \] （式9）

[0120] 在某些实施例中，在TRIAC调光器318的接通段的结尾处（例如，如图12(a)所示的t10处或如图12(b)所示的t16处），在电容器1222处生成的电压信号1228被确定如下：

\[V_{\text{ramp2}} \approx V_{\text{ramp1}} - \frac{I_d \times T_{\text{on}}}{C_1} \] （式10）

[0121] 其中，\(V_{\text{ramp2}} \)表示TRIAC调光器318的接通段的结尾处的电压信号1228，并且\(I_d \)表示电流1232。

[0123] 组合式(9)和式(10)则生成下式：

\[V_{\text{ramp2}} \approx V_0 + \frac{I_c \times T_{\text{off}}}{C_1} - \frac{I_d \times T_{\text{on}}}{C_1} \] （式11）

[0124] 因此，

\[V_{\text{ramp2}} - V_0 \approx \frac{I_c \times T_{\text{off}}}{C_1} - \frac{I_d \times T_{\text{on}}}{C_1} \] （式12）

[0127] 如式(12)所示，如果\(I_c, I_d, T_{\text{on}} \)和\(T_{\text{off}} \)满足式6，则\(V_{\text{ramp2}} \approx V_0 \)。因此，在一些实施例中，如果预先定义了\(I_c \)与\(I_d \)的比率，则可以根据式7近似确定调光信号1928的占空比的断开阈值。

[0128] 根据另一实施例，一种用于一个或多个发光二极管的调光控制的系统包括：一个或多个信号处理组件，被配置为接收与TRIAC调光器相关联的第一信号，处理与所述第一信号相关联的信息，判断所述TRIAC调光器是处于第一条件还是第二条件下，至少基于与所述第一信号相关联的信息生成第二信号，并且将所述第二信号发送给开关。所述一个或多个信号处理组件还被配置为：如果所述TRIAC调光器被确定为处于所述第一条件下，则生成所述第二信号以便与调制频率相应地使所述开关断开和闭合，并且如果所述TRIAC调光器被确定为处于所述第二条件下，则生成所述第二信号以便与所述开关保持闭合条件第一时间段直到可所述TRIAC调光器从所述第二条件变为所述第一条件为止。例如，根据图3、图4、图5、图6、图7、图9(a)、图9(b)、图9(c)、图10、图11、图12(a)和/或图12(b)来实现。
[0129] 例如，所述一个或多个信号处理组件还被配置为：判断所述TIRAC调光器是否在第三条件下；以及如果所述TIRAC调光器被确定为处于所述第三条件下，则生成所述第二信号以便所述开关保持断开第二时间段。在另一示例中，所述第二时间段大于所述调制频率所对应的调制周期。在又一示例中，所述第二时间段大于所述调制频率所对应的调制周期。在又一示例中，所述一个或多个信号处理组件还被配置为至少基于与所述第一信号相关联的信号生成第三信号，处理与所述第一信号相关联的信息，并且至少基于与所述第三信号相关联的信息生成所述第二信号。在又一示例中，所述一个或多个信号处理组件还被配置为：如果所述第二信号的占空比大于阈值并且如果所述第一信号的大小大于阈值信号，则确定所述TIRAC调光器处于所述第一条件下。在又一示例中，所述一个或多个信号处理组件还被配置为：如果所述第二信号的占空比大于所述阈值并且所述第一信号的大小大于所述阈值信号，则确定所述TIRAC调光器处于所述第二条件下。在又一示例中，其中，所述一个或多个信号处理组件还被配置为：如果所述第二信号的占空比大于所述阈值，所述TIRAC调光器处于所述第三条件下。在又一示例中，所述一个或多个信号处理组件还被配置为：处理与所述第一信号和阈值信号相关联的信息；如果所述第一信号的大小大于所述阈值信号，则确定所述TIRAC调光器处于所述第一条件下；以及如果所述第一信号的大小小于所述阈值信号，则确定所述TIRAC调光器处于所述第二条件下。

[0130] 例如，所述第一条件对应于所述TIRAC调光器的接通条件；以及所述第二条件对应于所述TIRAC调光器的关断条件。在另一示例中，所述一个或多个信号处理组件包括：第一比较器，被配置为接收第一阈值信号和所述第一信号并且至少基于与所述第一阈值信号和所述第一信号相关联的信号生成比较信号；以及驱动组件，被配置为接收所述比较信号，至少基于与所述比较信号相关联的信号生成第二信号，并且向所述开关输出所述第二信号。在又一示例中，所述一个或多个信号处理组件还包括：调制组件，被配置为接收与流经变压器的初级绕组的初级电流相关联的电流感应信号和与所述第一信号相关联的第三信号，并且至少基于与所述电流感应信号和所述第三信号相关联的信息向所述驱动组件输出调制信号，所述变压器还包括次级绕组和辅助绕组。所述调制组件还包括：如果所述电流感应信号的大小大于所述第三信号，则生成第一逻辑电平的所述调制信号以使所述开关断开；以及如果所述电流感应信号的大小小于所述第三信号，则生成第二逻辑电平的所述调制信号以使所述开关关闭。在又一示例中，所述一个或多个信号处理组件还包括：复用器，被配置为接收所述第一信号和第四信号并且至少基于与所述第一信号和所述第四信号相关联的信息生成第五信号；以及偏移组件，被配置为接收所述第五信号，并且当所述TIRAC调光器处于所述第二条件下时通过向所述第五信号添加预定偏移来输出所述第三信号以使所述第三信号的大小不小于所述电流感应信号。

[0131] 作为一个示例，所述一个或多个信号处理组件还包括：第二比较器，被配置为接收所述电流感应信号和第二阈值信号并且至少基于与所述电流感应信号和所述第二阈值信号相关联的信息向所述驱动组件输出第四信号。所述第二比较器还被配置为：如果所述电流感应信号的大小小于所述第二阈值信号，则生成第三逻辑电平的所述第四信号以使所述开关闭合。在另一示例中，所述一个或多个信号处理组件还包括复用器，该复用器被配置为接收所述第一信号和第四信号并且至少基于与所述第一信号和所述第四信号相关联的信息向所述驱动组件输出所述第三信号。在又一示例中，所述一个或多个信号处理组件还包括
括电流调整组件，该电流调整组件被配置为接收所述电流感测信号并且至少基于与所述电流感测信号相关联的信息向所述驱动器输出经处理信号。在又一示例中，所述一个或多个信号处理组件还包括第二比较器，该第二比较器被配置为接收与所述辅助绕组相关联的第四信号以及第二阈值信号，并且至少基于与所述第四信号和所述第二阈值信号相关联的信息向所述驱动组件输出第五信号，所述第五信号指示与所述变压器相关联的退磁过程是否完成。

[0132] 根据另一实施例，一种用于一个或多个发光二极管的调光控制的系统包括第一比较器和驱动组件。第一比较器被配置为接收第一阈值信号和与TRIAC调光器相关联的输入信号并且至少基于与所述第一阈值信号和所述输入信号相关联的信息生成比较信号。驱动组件被配置为接收所述比较信号，并且基于与所述比较信号相关联的信息生成输出信号，并且向开关发送所述输出信号。所述第一比较器还被配置为，如果所述输入信号的大小大于所述第一阈值信号则生成第一逻辑电平的所述比较信号，并且如果所述输入信号的大小小于所述第一阈值信号则生成第二逻辑电平的所述比较信号。所述驱动组件还被配置为生成所述输出信号并且当所述开关保持闭合达一时间段内时所述比较信号从所述第二逻辑电平变为所述第一逻辑电平为止。例如，该系统至少根据图3、图4、图5、图6、图7、图9 (a)、图9(b)、图9(c)、图10、图12(a)和/或图12(b)来实现。

[0133] 例如，所述驱动组件还被配置为，如果所述比较信号为所述第一逻辑电平，则生成所述输出信号以便与调制频率相应地使所述开关断开和闭合。在另一示例中，所述时间段大于所述调制频率所对应的调制周期。在又一示例中，所述系统还包括：调制组件，被配置为接收与所述变压器的初级绕组的初级电流相关联的电流感测信号和与所述输入信号相关联的第三信号，并且至少基于与所述电流感测信号和所述第三信号相关联的信息向所述驱动组件输出调制信号。所述变压器还包括次级绕组和辅助绕组。所述调制组件还被配置为，如果所述电流感测信号的大小大于所述第三信号，则生成第三逻辑电平的所述调制信号以使所述开关断开；如果所述电流感测信号的大小小于所述第三信号，则生成第四逻辑电平的所述调制信号以使所述开关闭合。在又一示例中，所述系统还包括：复用器，被配置为接收所述输入信号和第四信号并且至少基于与所述输入信号和所述第四信号相关联的信息生成第五信号；以及移位组件，被配置为接收所述第五信号，并且当所述输入信号的大小小于所述第一阈值信号时通过向所述第五信号添加预定位移来输出所述第三信号以使所述第三信号的大小小于所述电流感测信号。

[0134] 作为一个示例，所述系统还包括：第二比较器，被配置为接收所述电流感测信号和第二阈值信号并且至少基于与所述电流感测信号和所述第二阈值信号相关联的信息向所述驱动组件输出第四信号。所述第二比较器还被配置为，如果所述电流感测信号的大小小于所述第二阈值信号，则生成第四逻辑电平的所述第四信号以使所述开关断开。在另一示例中，该系统还包括：复用器，被配置为接收所述输入信号和第四信号并且至少基于与所述输入信号和所述第四信号相关联的信息向所述驱动组件输出所述第三信号。在又一示例中，该系统还包括：电流调整组件，被配置为接收所述电流感测信号并且至少基于与所述电流感测信号相关联的信息向所述复用器输出经处理信号。在又一示例中，该系统还包括：第二比较器，被配置为接收与所述辅助绕组相关联的第四信号以及第二阈值信号，并且至少基于与所述第四信号和所述第二阈值信号相关联的信息向所述驱动组件输出第五信号，所述
第五信号指示与所述变压器相关联的电磁过程是否完成。

[0135] 根据又一实施例，一种用于一个或多个发光二极管的调光控制的系统包括第一比较器、检测组件和驱动组件。第一比较器被配置为接收第一阈值信号和与TRIAC调光器相关联的第一信号并且至少基于与所述第一阈值信号和所述第一信号相关联的信息生成第一比较信号。检测组件被配置为接收所述第一比较信号，确定所述第一比较信号的占空比，处理与所述占空比和阈值相关联的信息，并且至少基于与所述第一比较信号相关联的信息生成检测信号。驱动组件被配置为接收所述检测信号，至少基于与所述检测信号相关联的信息生成第二信号，并且向开关输出所述第二信号。所述第一比较器还被配置为：如果所述第一信号的大小大于所述阈值信号，则生成第一逻辑电平的所述第一比较信号，并且如果所述第一信号的大小小于所述阈值信号则生成第二逻辑电平的所述第一比较信号。所述检测组件还被配置为：如果所述第一比较信号的占空比在大小上大于所述阈值，则生成第二逻辑电平的所述检测信号，并且如果所述第一比较信号的占空比在大小上小于所述阈值，则生成第三逻辑电平的所述检测信号，并且如果所述第一比较信号的占空比在大小上等于所述阈值，则生成第四逻辑电平的所述检测信号。所述驱动组件还被配置为：根据所述检测信号生成第四逻辑电平，所述第二信号则生成所述第二信号使所述开关保持断开第一时间段。例如，该系统至少根据图3、图9(a)、图9(b)、图9(c)、图10、图11、图12(a)和/或图12(b)来实现。

[0136] 例如，所述第一比较器还被配置为向所述驱动组件输出所述比较信号；以及所述驱动组件还被配置为生成所述第二信号以使所述开关保持闭合达第二时间段直到至少所述比较信号从所述第一逻辑电平变为所述第二逻辑电平为止。在另一示例中，所述驱动组件还被配置为如果所述第二比较信号为所述第一逻辑电平并且所述检测信号为所述第三逻辑电平，则生成所述第二信号以便与所述阈值信号和所述检测信号对所述所述开关断开和闭合。在又一示例中，所述第一时间段大于所述调制频率相适应地使所述开关断开和闭合。在又一示例中，所述第一时间段大于所述调制频率所对应的调制周期。在又一示例中，所述第二时间段大于所述调制频率所对应的调制周期。在又一示例中，所述检测组件包括：电压生成器，被配置为接收所述第一比较信号并且至少基于与所述第一比较信号相关联的信息生成第三信号；第二比较器，被配置为接收所述第二信号和阈值信号，并且至少基于与所述第二信号和所述阈值信号相关联的信息生成第二比较信号；以及信号处理器，被配置为接收所述第一比较信号和所述第二比较信号并且至少基于与所述第一比较信号和所述第二比较信号相关联的信息生成输出信号。

[0137] 根据又一实施例，一种用于检测信号的占空比的系统包括电压生成器、比较器和信号处理器。电压生成器被配置为接收输入信号并且至少基于与所述输入信号相关联的信息生成第一电压信号。比较器被配置为接收所述第一电压信号和阈值信号并且至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号。信号处理器被配置为接收所述比较信号和所述输入信号并且至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号。所述比较器还被配置为：如果所述第一电压信号的大小大于所述阈值信号，则生成第一逻辑电平的所述比较信号，并且如果所述第一电压信号的大小小于所述阈值信号，则生成第二逻辑电平的所述比较信号。所述信号处理器还被配置为：如果所述输入信号的占空比大于阈值，则生成第三逻辑电平的所述输出信号，并且如果所述输入信号的占空比小于所述阈值，则生成第四逻辑电平的所述输出信号。所述信号处理器还被配置为：如果所述输入信号从所述第一逻辑电平变为所述第二逻辑电平并且如果所述比较信号为所述第一逻辑电平，则将所述输出信号从所述第三逻辑电平变为所述第四逻辑电平。例如，该系统至
少根据图3、图9(a)、图9(b)、图9(c)、图10、图11、图12(a)和/或图12(b)来实现。

例如，所述电压生成器包括：第一直流源，被配置为提供第一直流；第二直流源，被配置为提供第二直流；第一晶体管，被配置为如果所述输入信号是所述第六逻辑电平，则传导所述第一直流；第二晶体管，被配置为如果所述输入信号是所述第五逻辑电平，则传导所述第二直流；以及电容器，被配置为：如果所述输入信号是所述第六逻辑电平，则由上述晶体管的所述第一直流供电；以及如果所述输入信号是所述第五逻辑电平，则由上述晶体管的所述第二直流供电。在另一示例中，该系统还包括：开关，该开关被耦合在所述晶体管的第一输入端子与所述晶体管的第二输入端子之间，所述比较器还被配置为在所述第一输入端子处接收所述第一电压信号并且在所述第二输入端子处接收所述阈值信号。所述开关被配置为如果所述输入信号从所述第五逻辑电平变为所述第六逻辑电平，则在预定延迟之后闭合。在又一示例中，该系统还包括：信号生成器，被配置为接收所述输入信号，至少基于与所述输入信号相关联的信息生成第一信号，并且向所述开关发送所述第一信号。所述信号生成器还被配置为如果所述输入信号从所述第五逻辑电平变为所述第六逻辑电平，则在所述预定延迟之后将所述第一信号从所述第五逻辑电平变为所述第六逻辑电平。在又一示例中，所述信号生成器还被配置为：如果所述输入信号从所述第五逻辑电平变为所述第六逻辑电平，则将所述第一信号从所述第六逻辑电平变为所述第三逻辑电平之后，将所述第一信号从所述第六逻辑电平变回所述第七逻辑电平以形成信号脉冲。在又一示例中，所述开关还被配置为：如果所述第一信号为所述第七逻辑电平，则开断；以及如果所述第一信号为所述第八逻辑电平，则闭合。

在一个实施例中，一种用于一个或多个激光二极管的调制控制的方法包括：接收与TRIAC调制器相关联的第一信号；处理与所述第一信号相关信息；并且至少基于与所述第一信号相关信息的信息判断所述TRIAC调制器是处于第一条件还是第二条件。该方法还包括至少基于与所述第一信号相关信息的信息生成第二信号，并且将所述第二信号输出给开关。至少基于与所述第一信号相关信息的信息生成第二信号的处理包括：如果所述TRIAC调制器被确定为处于所述第一条件下，则生成所述第二信号以便与调制频率相应地使所述开关断开和闭合；以及如果所述TRIAC调制器被确定为处于所述第二条件下，则生成所述第二信号以便使所述开关保持闭合。在又一示例中，所述方法还包括：判断所述TRIAC调制器是否在所述第三条件下，至少基于与所述第一信号相关信息的信息生成第二信号的处理还包括：如果所述TRIAC调制器被确定为处于所述第三条件下，则生成所述第二信号以便所述开关保持断开所述第二时间段。在另一示例中，所述第一时间段大于所述调制频率所对应的调制周期。在又一示例中，所述第二时间段大于所述调制周期所对应的调制周期。在又一示例中，该方法还包括：至少基于与所述第一信号相关信息的信息生成第三信号；处理与所述第三信号相关信息的信息；以及至少基于与所述第三信号相关信息的信息生成所述第二信号。在又一示例中，判断所述TRIAC调制器是处于第一条件还是第二条件的处理包括：如果所述第二信号的占空比大于阈值并且如果所述第一信号的大小大于阈值信号，则确定所述TRIAC调制器处于所述第一条件下。在又一示例中，判断所述TRIAC调制器是处于第一条件还是第二条件的处理包括：如果所述第二信号
的占空比大于所述阈值并且所述第一信号的大小小于所述阈值信号，则确定所述TRIAC调光器处于所述第二条件下。在另一示例中，判断所述TRIAC调光器是否在第三条件下的处理包括：如果所述第二信号的占空比大于所述阈值，则确定所述TRIAC调光器处于所述第三条件下。在另一示例中，该方法还包括：接收第一输入信号；以及处理与所述阈值信号相关联的信息。判断所述TRIAC调光器是否在第一条件下的处理包括：如果所述第一信号的大小大于所述阈值信号，则确定所述TRIAC调光器处于所述第一条件下；以及如果所述第一信号的大小小于所述阈值信号，则确定所述TRIAC调光器处于所述第二条件下。

【0141】在另一实施例中，一种用于一个或多个发光二极管的调光控制的方法包括：接收第一输入信号和与TRIAC调光器相关联的输入信号；至少基于与所述第一输入信号和所述输入信号相关联的信息生成比较信号；并且接收所述比较信号。该方法还包括至少基于与所述信号相关联的信息生成输出信号，并且向开关发送所述输出信号。至少基于与所述输入信号和所述输入信号相关联的信息生成比较信号的处理包括：如果所述输入信号的大小大于所述第一阈值信号，则生成第一逻辑电平的所述比较信号；以及如果所述输入信号的大小小于所述第一阈值信号，则生成第二逻辑电平的所述比较信号。向开关发送所述输出信号的处理包括：发送所述输出信号以使所述开关保持闭合达一时间段直到所述比较信号从所述第二逻辑电平变为所述第一逻辑电平为止。例如，该方法至少根据图3、图4、图5、图6、图7、图9(a)、图9(b)、图9(c)、图10、图12(a)和/或图12(b)来实现。

【0142】例如，向开关发送所述输出信号的处理包括：如果所述比较信号为所述第一逻辑电平，则发送所述输出信号以便与调制频率相适应地使所述开关断开和闭合。在另一示例中，所述时间段大于所述所述逻辑频率所对应的调制周期。在另一实施例中，一种用于一个或多个发光二极管的调光控制的方法包括：接收阈值信号和与TRIAC调光器相关联的输入信号；至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号；以及接收所述比较信号。该方法还包括：确定所述比较信号的占空比；处理所述占空比和阈值相关联的信息；以及至少基于所述比较信号和所述输入信号相关联的信息生成检测信号。另外，该方法还包括：接收所述检测信号；至少基于所述检测信号和所述输入信号相关联的信息生成输出信号；以及向开关发送所述输出信号。至少基于与所述阈值信号和所述输入信号相关联的信息生成比较信号的处理包括：如果所述输入信号的大小大于所述阈值信号，则生成第一逻辑电平的所述比较信号；以及如果所述输入信号的大小小于所述阈值信号，则生成第二逻辑电平的所述比较信号。至少基于与所述比较信号相关联的信息生成检测信号的处理包括：如果所述比较信号的占空比在大小小于所述阈值，那么生成第三逻辑电平的所述检测信号；以及如果所述比较信号的占空比在大小小于所述阈值，则生成第四逻辑电平的所述检测信号。至少基于与所述检测信号相关联的信息生成输出信号的处理包括：如果所述检测信号为所述第四逻辑电平，则生成所述输出信号以使所述开关保持断开达一时间段。例如，该方法至少根据图3、图9(a)、图9(b)、图9(c)、图10、图11、图12(a)和/或图12(b)来实现。

【0144】例如，至少基于与所述检测信号相关联的信息生成输出信号的处理还包括：生成所述输出信号以期所述开关在所占时间段达到所述比较信号从所述第一逻辑电平变为所述第二逻辑电平为止。在另一示例中，至少基于与所述检测信号相关联的信息生成输出信号的处理还包括：如果所述比较信号为所述第一逻辑电平并且所述检测信号
为所述第三逻辑电平，则生成所述输出信号以便与所述频率相应地使所述开关断开和闭合。在又一示例中，所述第一时间段大于所述调制频率所对应的调制周期。在又一示例中，所述第二时间段大于所述调制频率所对应的调制周期。

【0145】在又一实施例中，一种用于检测信号的占空比的方法包括：接收输入信号；至少基于与所述输入信号相关联的信息生成第一电压信号；以及接收所述第一电压信号和阈值信号。该方法还包括：至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号；接收所述比较信号和所述输入信号；并且至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号。至少基于与所述第一电压信号和所述阈值信号相关联的信息生成比较信号的处理包括：如果所述第一电压信号的大小大于所述阈值信号，则生成第二逻辑电平的所述比较信号；以及如果所述第一电压信号的大小小于所述阈值信号，则生成第二逻辑电平的所述比较信号。至少基于与所述比较信号和所述输入信号相关联的信息生成输出信号的处理包括：如果所述输入信号的占空比大于阈值，则生成第三逻辑电平的所述输出信号；如果所述输入信号的占空比小于所述阈值，则生成第四逻辑电平的所述输出信号；以及如果所述输入信号的占空比小于所述阈值，则生成第四逻辑电平的所述输出信号。例如，该方法至少根据图3、图9(a)、图9(b)、图9(c)、图10、图11、图12(a)和/或图12(b)来实现。

【0146】例如，本发明各个实施例中的一些或所有组件单独地和/或与至少另一组件相结合地是利用一个或多个软件组件、一个或多个硬件组件和/或软件与硬件组件的一种或多种组合来实现的。在另一示例中，本发明各个实施例中的一些或所有组件单独地和/或与至少另一组件相结合地在一个或多个电路中实现，例如在一个或多个模拟电路和/或一个或多个数字电路中实现。在又一示例中，本发明的各个实施例和/或示例可以相结合。

【0147】虽然已描述了本发明的具体实施例，然而本领域技术人员将明白，还存在于所述实施例等同的其它实施例。因此，将明白，本发明不受所述具体实施例的限制，而是仅由权利要求的范围来限定。
图7
图8
图9(a)
图10
图12(b)