WO 02/37245 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
10 May 2002 (10.05.2002)

(10) International Publication Number

WO 02/37245 A2

(51) International Patent Classification”:
(21) International Application Number: PCT/US01/44971
(22) International Filing Date:
1 November 2001 (01.11.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

09/706,074 3 November 2000 (03.11.2000) US
(71) Applicants and
(72) Inventors: RABIN, Michael, O. [IL/US]; 243 Concord

Avenue, Apartment 13, Cambridge, MA 02138 (US).
SHASHA, Dennis, E. [US/US]; 100 Bleeker Street,
Apartment 7A, New York, NY 10012 (US).

@n

84

GOG6F 1/00 (74) Agents: SMITH, James, M. et al.; Hamilton, Brook,

Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box
9133, Concord, MA 01742-9133 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, 7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR PROTECTING INFORMATION AND PRIVACY

\
/HO

Establish a secure connection between Purchaser and Vendor.
Purchaser pays for goods.

jloZ l

Purchaser creates a Software-Identifying
Structure S. S = (NAME_SW, 1D,
HASH(SW), USAGE POLICY, NONCE)

Ad l

Purchaser sends HASH(S), the name of the software
NAME_SW, the hash of the contents of the software
HASH(SW), and USAGE_POLICY to Vendor as purchase order

A% l

Vendor verifies that Vendor has agreed to sell a copy of NAME_SW with the
proposed USAGE_POLICY having HASH(SW) to Purchaser.

T
v

0 o5 pait
M n |
1110
No Discontinue
This was agreed? —— protocol.

/"Ob

Vendor sends SGN_Vendor(HASH(S), NAME_SW, HASH(SW), USAGE_POLICY} to

Purchaser

¥

User Device's Supervising Program verifies that it has received the Vendor’s digital signature
on purchase order. If verification succeeds, then Supervisory Program places § and digitally

signed message together forming the tag into the Tag Table having Tag Table Identifier Value
ID. Otherwise, the Supervising Program aborts the protocol.

(57) Abstract: A mechanism for the purchase of
tags for copies of software ensures taht identity
of the purchaser of a tag table identifier value
included in a purchased tag is not revealed. A
mechanism of Call-Ups from the user device
to a guardian center ensures that each tag table
identifier value appears in only one user device
and that the data included in a tag table and other
data stored in the user device for the purpose
of protecting vendor’s and owner’s rights in
software, cannot be modified.

w0 02/37245 A2 D000 0O A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

WO 02/37245 PCT/US01/44971

METHOD AND APPARATUS FOR PROTECTING
INFORMATION AND PRIVACY

BACKGROUND OF THE INVENTION
Software or information piracy is the activity of uéing or making copies of
5 software or information without the authorization of the creator or legitimate owner
of that software or information. Piracy is prevalent in the computer software
application industry where people frequently make unlicenced illegal copies of a
software application. The application may be copied for use among a circle of
acquaintances or for re-production and commercial profit. Other types of piracy
10 include acts of copying information such as musical recordings or an electronically
readable version of documentation or an electronic book. In all cases, piracy costs
billions of dollars of lost profits to legitimate business annually.
The software and information technology industries have responded to the
threat of piracy through the use of locking schemes. Locking schemes can include
15 software locking mechanisms, licenses and specialized hardware devices which
prevent unauthorized use of software, information, or an "i‘e:‘ntire electronic device.
These schemes seek to prevent adversaries from being able to freely copy software.
‘There are many types of software locking mechanisms. For example, a
manufacturer can encrypt portions of a copy of a software program with an encryption
20 key uniquely associated with that copy. A customer who purchases the software is
given the associated decryption key which allows decryption and execution of the

software. Another form of software protection mechanism involves a "Certificate of

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-2~ i

Authenticity" supplied with the purchase of a copy of a software program. The
Certificate of Authenticity includes a unique number associated with the copy. During
installation of the copy of software, the copy number is requested and must be entered
correctly by the user. If the copy number entered matches a number expected by the
installation program, the copy of the software is assumed to be legitimate and is
installed and executed as being legitimate. If the number entered is incorrect, the
software will not install properly. Neither of the above schemes provides full
protection against illegal copying and use of software. For the scheme employing
encryption, if the original customer wishes to distribute illegal copies, he or she needs
only to transfer the copy together with the decryption key to others. Similarly, the
original purchaser of the copy of software can circumvent the protection offered by the
Certificate of Authenticity by passing the software along with the Certificate of
Authenticity to other users. |
Protection against piracy schemes often employ features of a User Device's

operating system. Thus, it is important to protect the operating system against
modifications that would circumvent the protections. Ensuring that an operating
system is unmodified can be achieved though hardware. An example of a hardware
protection scheme for the integrity of the operating system is provided in U.S. Patent
No. 3,996,449 which discloses a method for determining if a program or a portion of a
program when running on a computer is unmodified. In this system, a hash function is
applied to a user's identification code or key along with the text of the program itself in
a special tamper-proof hardware checking device. The checking device compares a
resulting value from the hash function with a verifier value to see if the program text is
correct. If the text is correct, the program is allowed to execute on the device.

- Schemes to protect against piracy using hardware entail attaching a device to the
processor, typically through a communications port of the User Device. These types of
hardware devices are often called "dongles". Protection schemes may employ dongles
in a variety of ways. For example, software may have a specific dongle associated with
it where that dongle stores information or a number unique to that software. The
software periodically checks whether the dongle is present at the communications port

by requesting the information or number. One dongle is sold with each copy of the

WO 02/37245 PCT/US01/44971

3.

software. Since, presumably, the dongle cannot be reproduced, there can be only as
many running copies of the software as there are dongles sold. In another application
of dongles to protection against piracy of software, the dongle is an attached processor
that executes parts of the application program which are inaccessible to the user.

5 Again, the program cannot be executed without having the dongle attached to the User
Device. Protection through dongles has a number of severe disadvantages. First, the
user needs one dongle per protected program and has to attach and replace dongles
when switching between programs. Users find this to be an inconvenience. Second,
dongles are viable only provided they are tamper-proof and their internal algorithms

10 and data are hidden from an attacker. In many instances in the past, both of these
provisions have been violated by sophisticated, determined pirates. Third, in many
instances software protected against piracy through dongles has been modified so as to
eliminate the reference to dongles and thereby circumvent the protection. Finally, in
the coming years where software will be preferably downloaded to customers through

15 the Internet, accompanying physical devices such as dongles cannot be downloaded and
thus become a burden to commerce.

Another hardware related approach assigns a unique identifier to each processor
that can execute software. Software copies purchased for a User Device include the
identifier of the processor on that device. When a User Device executes a software

20 copy, the identifier included in that software copy is compared with the Device's
processor identifier. Processing is enabled only if these two identifiers are equal. This
approach has a number of drawbacks. In its basic version, there is no stopping a pirate
from modifying a legitimate software copy by replacing the original identifier with the
identifiers of the processors on which he or his'illegal customers wish to install this

25 software. Furthermore, this method inextricably links a software copy to a single User
Device. This renders it impossible to move the software another User Device as
required, for example, when a customer upgrades his computer. Finally, the unique
processor identifier on User Devices has raised grave concerns of intrusion on users'
privacy through monitoring their software purchases which are identified by the same

30 number.

WO 02/37245 PCT/US01/44971

10

15

20

25

4-

Digital water marking is a technique that places invisible, or inaudible
identifying data in certain types of content primarily to identify the user to whom the
content was sold. If that same content is found elsewhere, then the original buyer is
suspected of participating in privacy.

Ideally, watermarks are persistent in that they can not be removed or altered
without degrading the content. While these techniques contribute to detection of theft,
they do not prevent someone from copying the content, so they require legal
intervention to prevent continued copyright infringement. Further there are many

attacks on such systems.

SUMMARY OF THE INVENTION

In accordance with the invention, a method for linking a first software module
with a second software module is presented. A public key is stored in the first software
module. A stub digitally signed by an owner of the public key is associated with the
second software module. A hash fuﬁction value is computed on of the second software
module and the first software module is linked with the second software module upon
verifying by use of said pﬁblic key the digital signature on the stub and that the
computed hash function value equals a hash function value included in the digitally
signed stub.

The second software module is one of a plurality of software modules to be
linked and the first software module includes a plurality of previously linked software
modules. The steps of computing and verifying may be performed by a dedicated
Pprocessor.

Alternatively, a first software module is linked with a second software module
by storing a first hash function value in the first software module,
computing a second hash function value on a portion of the contents of the second
software module and linking the first software module with the second software
module upon verifying that the second hash function value is equal to the first hash
function value. The second software module is one of a plurality of software modules

to be linked. The first software module includes a plurality of previously linked

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-5-

software modules. The steps of computing and verifying may be performed by a
dedicated processor.

In one embodiment a user device includes a first storage module and a second
storage module into which a software module is stored. Verification software is stored
in the first storage module. The verification software verifies that a portion of said
software module is authorized by computiﬁg a hash function value on the portion and
comparing the computed hash function value with a hash function value stored in the
verification software.

The first storage is difficult to modify by software means. The user device may
also include a public key within the first storage module, an additional verification
software within the first storage module and a digitally signed stub within the second
storage module. The digitally signed stub is associated with the second software
module. The additional verification software computes a hash function value on a
portion of said second software module and verifies by use of said public key that the
digitally signed stub includes a digital signature on the computed hash function value.

In an alternate embodiment a user device includes a first storage module. A
public key and verification software are stored in the first storage module. The user
device also includes a second storage module into which a software module is stored.
A digitally signed stub is associated with the second software module. The verification
software computes a hash function value on a portion of said second software module
and verifies by use of said public key that the digitally signed stub associated with said
second software module includes a digital signature on the computed hash function
value. The user device also includes a hash function value within the first sforage
module. The verification software further verifies that a portion of said second
software module is authorized by computing a hash function value on the portion and
comparing the computed hash function value with a hash function value stored in the
verification software.

A watchdog program includes a value, a function to compute and means for
verifying a software module stored in memory by cdmputing the function on a
sequence of locations in the software module and comparing the result of the

computation with the value.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-6-

The function may be a hash function and the means for verifying computes the
hash function value on the sequence of locations and compares the result of the
computation with the value.

The watchdog program can include a watchdog action and means for
performing said watchdog action dependent on the result of the comparison. The
watchdog action may include halting the operation of a user device on which said
watchdog program is executing.

The watchdog program can include a plurality of watchdog actions and means
for performing at least one watchdog action dependent on the result of the comparison.

The watchdog program can include means for performing a need-to-check test
and means for determining whether to perform the function on the sequence of
locations in the software module dependent on the result of the need-to-check test.

The watchdog program can include a plurality of sequences of locations,

a plurality of stored values, a plurality of watchdog actions and means for performing at
least one said watchdog action dependent on the result of a comparison between values
computed by the function on the plurality of sequences of locations and the stored
values. The watchdog program can also include a plurality of memory locations,
means for selecting a software module and means for storing a start execution time and
an'end execution time for said software module in said memory locations.

The watchdog program can be a subroutine stored in a watchdog field in
another program. The subroutine is placed within the watchdog field in a location
dependent on conditions present when said another program is loaded. The location of
said subroutine is changed after said subroutine is loaded. The placement of calls to the
subroutine is determined based on conditions present when said another pro grém is
loaded. The placement of calls to the subroutine is changed after said subroutine is
loaded. The watchdog action may include moving other watchdog subroutines within a
watchdog field.

A tag table includes a tag table identifier having a value, a tag for a copy of
software, and a digitally signed message. The tag includes said tag table identifier
value and a hash function value of a portion of said copy of software and the digitally

signed message comprising the tag table identifier value and the hash function value.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-

The tag further comprises a usage policy and said digitally signed message further
comprises a usage policy. The tag further comprises a name and said digitally signed
message further comprises a name. The tag table may also include a hash function
value for the tag table sent from a guardian center in a previous guardian center
call-up. The tag table may also include a header. The header includes a continuation
message sent from a guardian center in a previous guardian center call-up. The tag
table may also include

usage statistics for the copy of software.

A method for purchasing software is presented. A purchaser creates a data
structure. The data structure includes a tag table identifier value associated with a tag
table in a user device and an identification of the software. The purchaser computes
a hash function value of the data structure and sends a message to a vendor. The
message comprises the hash function value and the identification of the software.

. Upon receiving the message, the vendor digitally signs the message and returns
the signed message to the purchaser. A supervising program on the user device verifies
the digital signature on the signed message by use of the vendor's public key and that
the signed message includes the message sent by the purchaser. A hash function value
of a portion of the software may be stored in the identification of software. The
supervising program verifies that the hash function value in the identification of
software equals the hash function value of the portion of the software. The supervising
program may store a tag for the software in the tag table. The tag includes the tag table

identifier value, the purchaser—creafed data structure, and the signed vendor message.

" A secure communication channel may be established between the purchaser and the

vendor before sending the message. The data structure may include a usage policy and
the message further comprises the usage policy. The data structure may include a new
randomly chosen value occurring only once. The message may include a proof of
payment for the software.

A method for decommissioning a copy of software in a user device is presented.
A supervising program removes a tag associated with the copy of software from a tag

table in the user device. The tag includes a digitally signed portion and a tag table

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-8-

identifier value. A communications channel is provided from the user device to a
vendor. The user device sends the tag to the vendor on the communication channel.
The vendor verifies the digital signature on the digitally signed portion by use of the
public key of the vendor and the vendor reads the tag table identifier value.

The vendor sends a certificate of credit to a purchaser of the tag. The vendor
sends the digitally signed portion of the tag and the tag table identifier value to a
guardian center. The guardian center stores the digitally signed portion of the tag and
links the digitally signed portion of the tag to the tag table identifier value.

The guardian center transmits a continuation message to the supervising
program in the user device. The continuation message includes the digitally signed
portion of the tag and the tag table identifier value. The supervising program verifies
that the digitally signed portion of the tag having the tag table identifier value is not
stored in the tag table.

A method for supervising usage of software on a user device is presented. A
supervising program on the user device computes a first hash function value of a tag
table and sends a call-up message to a guardian center. The call up message includes
the first hash function value, an identifier value of the tag table, and a second hash
function value of the tag table sent in a previous call-up message. The guardian center
verifies that the hash function value of the tag table sent in the previous call-up
message is the value most recently stored in a list of hash function values stored by the
guardian center and associated with the identifier value of the tag table. Upon
successful verification, the guardian center appends the received first tag table hash
function value to the list of hash function values associated with the identifier value of
the tag table and sends a digitally signed continuation message to the supervising
program, the continuation message comprising the call-up message.

The supervising program verifies that a portion of the digitally signed guardian
center continuation message is equal to the corresponding portion sent in the call-up
message. Upon failure of the verification, the supervising program initiates a new
call-up to the guardian center. The guardian center stores the last received call-up
message and the last sent continuation message and associates the stored messages with

the tag table identifier value. Upon receiving a call-up message from the supervising

WO 02/37245 PCT/US01/44971

10

15

20

25

30

9.

program, the guardian center sends the stored continuation message upon verifying
that the received call-up message equals the stored call-up message.

Upon failure of the verification, the guardian center may send a digitally signed
message to the calling supervising program indicating the failure. Upon receiving the
digitally signed message from the guardian center, the supervising program invalidates
the tag table.

Upon failure of the verification, the guardian center rejects future call-ups
including the tag table identifier value.

The supervising program replaces within the tag table the hash function value of
the tag table sent in the previous call-up message by the hash function value of the tag
table sent in the current call-up message. The supervising program replaces within the
tag table the ?ontinuation message received in the previous call-up by the continuation
message received in the current call-up.

The call-up to a guardian center may occur each time an operating system and
the supervising program are loaded into memory in the user device.

The supervising program measures the time elapsed between a first call-up to a
guardian center and a second call-up to a guardian center, by use of one or more event
counters. The event counters are updated periodically as recorded by a clock. The
guardian center stores a current time value in the continuation message-and the
supervising program sets an event counter to the current time received in said
continuation message.

User device descriptive values may be stored in the tag table. The supervising
program stores a plurality of tag tables. The tag tables include the tag table identifier
value of the tag table whose hash function values were sent to the guardian center in a
plurality of most recent call-ups. The guardian center stores a plurality of the hash
function values of the tag tables received in the plurality of the most recent call-ups, in
the continuation message. Upon receiving the continuation message, the supervising
program, computes the hash function values of the stored plurality of tag tables and
further verifies that the hash function values are equal to the corresponding values in
the continuation message. The supervising program checks whether the user device

descriptive values in the tag tables sent in the plurality of most recent call-ups belong to

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-10-

a plurality of user devices and searches the plurality of tag tables for two successive tag-
tables including user device descriptive values which differ by more than a specified
number of corresponding values. The supervising program checks by searching the
plurality of tag tables for a first tag table, a second tag table and a third tag table. The
second tag table was sent in a call-up that occurred later than the call-up in which the
first tag table was sent. The third tag table was sent in a call-up that occurred later than
the call-up in which the second tag table was sent. The user device descriptive values
stored in the first tag table and in the second table differ in more than a specified
number of corresponding values and the user device descriptive values stored in the
first tag table and in the third tag table differ in fewer than specified number of a

corresponding values. The supervising program forwards the result of the verification

. to the guardian center and said guardian center disables future call-up messages

including the tag table identifier value upon determining that the tag tables sent in the
plurality of most recent call-ups belong to a plurality of user devices. The call-up
message includes a new randomly chosen value occurring only once. The continuation
message includes a superfingerprint.

The guardian center computes a hash function value of a portion of
superfingerprints included in continuation messages sent to the supervising program in
previous call-ups and in the continuation message. The guardian center stores the hash
function value in the continuation message forwarded to the supervising program. The
supervising program verifies that a hash function value of a corresponding portion of
the superfingerprints stored on that user device and included in the continuation
message is equal to the received hash function value. The supervising program
appends the new superfingerprint to the superfingerprints stored on the user device. The
call-up message includes the current time on the user device. The guardian center may |
also verify that the received time is within a specified tolerance of the clock time on
the guardian center, and that the time difference between the arrival of the sent call-up
message and the previous call-up message exceeds a specified maximum or that the
time difference between the arrival of the sent call-up message and the previous call-up

message is below a specified minimum.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-11-

Upon receiving the continuation message, the supervising program verifies that
the total usage measured across all items in the current tag table exceeds the total usage
measured across all items in the tag table sent associated with the previous call-up
message.

A user device including user device descriptive values and a supervising
program is presented. The supervising device records the user device descriﬁtive
values.

The user device descriptive values can include processor-identifying
information, non-volatile storage device-identifying information, directory structure
identifying information or file identifying information.

A software checker including a superfingerprint, a guardian center and a
supervising program is presented. The superfingerprint includes data and a computer
program. The guardian center sends a plurality of superfingerprints for a copy of
software to a user device. The user device stores a plurality of superfingerprints. The
supervising program executes in the user device. /

The superfingerprint may include a copy of software name, the copy of software
name indicating the copy of software to be checked. The superfingerprint may include
a weight which determines the frequency of use of the superfingerprint for checking the
copy of software. The superfingerprint may include a list of hash function values of
portions of a copy of software and a hash function. The superfingerprint may include
a decryption program. The superfingerprint may include a monitoring program which
monitors the behavioral characteristics of a copy of software. The superfingerprint may
include a public key of a vendor associated with the copy of software.

The guardian center sends the superfingerprint in a digitally signed message to
the supervising program. The supervising program verifies the digital signature and
stores the superfingerprint if the verification is successful.

A method for examining a copy of software used in a user device is presented.
A plurality of superfingerprints are presented. Each superfingerprint including a value,
a program, a condition, and location information. The program is executed on a

portion of the copy of software. The portion is dependent on the location information,

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-12-

of the contents of the copy of software and the value. The computed value and the
included value are verified to determine if they satisfy the condition.

A weight may be stored in the superfingerprint. The superfingerprint to test is
selected dependent on the weight. At least one tag is presented. The tag is digitally
signed by a vendor. The tag associated with the copy of software used in a user device
is verified.

Punitive action may be taken upon the successful verification of the condition
and the faﬂuré of the verification of the associated tag. Alternatively, punitive action
may be taken upon the successful verification of the condition and the absence of any
tag on the user device. The associated tag may include the name of the copy of
software or a hash function value of a portion of the copy of software.

The program may includes a hash function, the value is a list of hash function
values, and verifying of the condition further comprises general-location hash function
value checking.

The program may be a hash function, the value is a list of hash function values,
and verifying the condition further comprises same-location hash function value
checking.

The program may monitor behavior of a used copy of software, the value
includes a list of actions, and verifying the condition further comprises comparing the
monitored behavior against the list.

Ther program may evaluates intermediate results produced by software, the
value includes a list of results, and verifying the condition further comprises comparing
the evaluated intermediate results with the list.

The copy of sofiware may be a computer program and the location information
specifies a sequence of counts of bytes starting at the beginning of the computer
program.

The copy of software may be a computer-program and the value is a list
including an instruction. No-operation instructions may be excluded from the counts.
The location information in the superfingerprints may exclude certain portions of
instructions. The excluded portions of instructions may comprise memory locations or

register locations.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-13-

A method for examining a copy of software used in a user device is presented.
A superfingerprint is presented. The superfingerprint includes a program using the
copy of software. The program tracks the copy of software and records data related to
the use.

A method for allowing use of a copy of software having a tag on a user device
is presented. The tag is obtained from a tag table in the user device. A hash function
value of a portion of the copy of software is computed. The computed hash function
value is compared with a hash function value stored in the tag. Use of the copy of
software is allowed upon successful verification of equality of the values. The
comparison may further comprise checking that the use of the copy of software is
allowed by comparing the use with a usage policy stored in the tag and the verification
comprises success of check. The comparison further includes comparing a tag table
identifier value included in the tag with a tag table identifier value for the tag table.
Allowing use of the software includes recording usage statistics for the copy of
software.

A superfingerprint stored in the user device is checked for a match with the
copy of software. Upon detecting a match, a vendor name and a public key included
in the superfingerprint are verified to be equal to a vendor name and a public key
included in the tag. Upon failure of the verification, the use of the copy of software is
disallowed.

A superfingerprint stored in the user device is checked for a match with the
copy of software. Upon detecting no match, the use of the copy of software is allowed.

A method for supervising use of software on a user device is presented. A tag
table is provided in the user device. The tag table includes a tag table identifier value.
The user device sends a call-up message to a guardian center. The call-up message
includes the tag table identifier value. The guardian center verifies that the difference
between the time of the call-up message and the time of a last call-up message
including the tag table identifier value exceeds a specified minimum value.

Upon successful verification, the guardian center generates a digitally signed
continuation message. The digitally signed continuation message includes the call-up

message. The guardian center stores the call-up message and sends the digitally signed

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-14-

continuation message to the user device. The guardian center verifies by computing a
difference between a time as recorded on the user device included in the call-up
message and the time as recorded in the guardian center.

The digitally signed continuation message sent by the guardian center includes
a hash function value of a portion of superfingerprints previously sent by the guardian
center in response to a call-up message including the tag table identifier value. The
continuation message includes a new superfingerprint provided by the guardian center.
The user device verifies the signature of the guardian center and the tag table identifier
value included in the continuation message.

A user device time as recorded on the user device is stored in the call-up
message. The time is stored in the continuation message and the time is verified to be
earlier than by less than a specified value from the user device time upon receiving the
continuation message.

The user device verifies that the hash function value of the portion of
previously sent superfingerprints stored in the user device is equal to the hash function
value included in the continuation message.

The digitally signed continuation message sent by the guardian center further
includes a hash function value of a portion of the superfingerprints previously sent by
the guardian center in response to a call-up message including the tag table identifier
value and a superfingerprint sent in the continuation message. The user device verifies
that the hash function value of the portion of previously superfingerprints sent by the
guardian center and stored in the user device is equal to the hash function value
included in the continuation message.

The user device installs a new superfingerprint in the tag table.

A method for ensuring that a user-specified user device identifier value is
present on only one user device is presented. A message is sent from the user device to
a receiver. The message includes the device identifier value associated with the user
device. The receiver searches a data structure associated with each possible user
device identifier value. An ID-checking procedure determines whether the user device

identifier value is stored on another user device. Upon determining that a user device

WO 02/37245 PCT/US01/44971

10

15

20

25

-15-

identifier value is on a plurality of user devices, the receiver invalidates the user device

identifier value.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention will
be apparent from the following more particular description of preferred embodiments
of the invention, as illustrated in the accompanying drawings in which like reference
characters refer to the same parts throughout the different views. The drawings are not
necessarily to scale, emphasis instead being placed upon ilfustrating the principles of
the invention.

Fig. 1 illustrates a system for protecting information and privacy, system
including, a Vendor, a Guardian Center and a User Device;

Fig. 2 illustrates the software architecture of the User Device shown in Fig. 1
including a User Space, an operating system, a boot disk and a boot Programmable
Read Only Memory;

Fig. 3 illustrates components used in the load procedure according to an
embodiment of the present invention;

Fig. 4 is a flow chart illustrating the steps for performing a conforming load of
part of the operating system;

Fig. 5 illustrates the components for performing the conforming load procedure
for some software other than the operating system;

Fig. 6A illustrates a Watchdog structure;

Fig. 6B illustrates Watchdog protection for modules of the operating system
202 and Supervising Program;

Fig. 6C is a flowchart illustrating the steps for a Watchdog to check contents of
specified memory locations;

Fig. 6D illustrates a Watchdog field for any one of the Watchdogs shown in
Fig. 6B;

Fig. 6E illustrates the Watchdog subroutine and Watchdog subroutine calls in a

program in the User Device;

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-16-

Fig. 7 illustrates the Supervising Program and its relationships to the Tag
Table;

Fig. 8 is a flowchart illustrating the steps for purchasing or renting (hereafter
jointly referred to as purchasing) a copy of software in a manner that preserves the
privacy of the Purchaser;

Fig. 9is a flowchart illustrating the steps for decommissioning a tag;

Fig. 10 illustrates an alternate embodiment for the tag table shown in Fig. 7;

Figs. 11A and 11B is a flowchart illustrating the steps for performing a Privacy-
Preserving Call-Up;

Fig. 12 illustrates a flowchart for performing the UDDV check;

Figs. 13A-B is a flowchart illustrating another method for performing a
Privacy-Preserving Call-Up;

Fig. 14 illustrates the components of the clock event;

Fig. 15 is a flowchart illustrating the verification steps to check whether a copy
of software can be used. ‘

Figs. 16A-B is a flowchart illustrating the steps for yet another method for
performing a Call-Up;

DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the invention follows.

According to the present invention, use of a copy of software occurs on a user
device enabling the use. The user device includes and/or is connected to one or more
general or special purpose processors. This processor or these processors may share
the implementation of the use of a copy of software as well as the implementation of
all the protection mechanisms of the present invention.

Fig. 1 illustrates a system for protecting information and privacy, the system
including a Vendor 110, a Guardian Center 130 and a User Device 140. Thereis a
multiplicity of User Devices 140, operated by users who may attempt to pirate
software. When a user (not shown) at User Device 140 purchases software, the User
Device 140 sends a Purchase Order 101 to a Vendor 110. If the Purchase Order passes

certain tests, the vendor 110 signs the Purchase Order and sends the signed Purchase

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-17-

Order 102 back to the User Device 140. The User Device 140 installs the signed
Purchase Order 102 and other information as a Tag into a Tag Table. The Tag Table
will be described later in conjunction with Fig. 2.

Software is herein construed to be any digital information, including but not
limited to, computer programs, text, data, databases, audio, video, images, or any other
information capable of being represented digitally or as a signal, the software being
accessed by or used on devices such as computers or special purpose devices. Use of a
copy of software includes, but is not limited to, reading, displaying, storing, modifying,
broadcasting, or executing that software.

Periodically, the User Device 140 issues a Call-Up 103 in which it sends
information to the Guardian Center ("GC") 130. If the information sent to the
Guardian Center 130 in the Call-Up 103 passes certain tests to be described later, then
the Guardian Center 130 sends a Continuation Message 104 back to the User Device.
The received Continuation Message 104 is employed in the User Device 140 to
generate further tests during and after the Call-Up 103 to prevent use of copies of
software infringing on rights of legitimate Vendors in the User Device 140. The
detailed structure of Tags, the Call-Up message 103, the tests performed by the GC 130
and the User Device 140, and the contents of the Continuation message, are described
later. In the present invention, whenever the term message is used, it should be
understood that the message can be sent in parts and that every signed message can be
sent in parts with the parts separately signed.

Fig. 2 illustrates the software architecture of the User Device 140 shown in Fig.
1. The User Device 160 is a system including a User Space 201, an operating system
202, a Boot Disk Software 203 and a Boot Programmable Read Only Memory
("PROM") 204. Fig. 2 also illustrates components included in the operating system
202. The Supervising Program 211 is shown to be part of the operating system 202,
though this is not strictly necessary. Similarly, the Watchdogs 212 are also shown in
the operating system 212. However, the Watchdogs 212 may also be in User Space
201. The User Space 201 can be modified freely by the user. In one embodiment of
the invention, the operating system 202 further includes one or more Tag Tables 213

and a collection of Superfingerprints 215. In an alternative embodiment of the

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-18-

invention, the Tag Tables 213 and/or the Superfingerprints 215 are stored in User
Space 201. The operating system 202 cannot normally be modified, though pirates
may try to do so by using "patches”. A patch is a replacement of machine language
code. The patch can be a new device driver, a section of a device driver or operating
system kernel based on User commands. The invention includes mechanisms to
eliminate the danger of patches. The Boot PROM 204 loads the Boot Disk Sofiware
203. The Boot Disk Software 203 is responsible for loading the operating system 202.
Within the operating system 202, there is a kernel 210 that performs various

functions such as scheduling processes, controlling the file system, (not shown) and
other activities. The Supervising Program 211 verifies that a copy of software used on
a User Device 140 is legitimate by comparing fields in a Tag stored in the Tag Table
213 with the copy of software, as explained in co-pending U.S. patent application,
Serial Number 09/305,572 filed May 5, 1999, entitled " Methods and Apparatus for
Privacy Information" by Michael O Rabin, et. al., which is incorporated herein by
reference in its entirety, and by performing Superfingerprint checks which are
described later. A Supervising Program 211 is a program integrated into a User Device
140. The Supervising Program 211 provides the mechanisms described hereunder
which implement usage supervision for copies of software used on the User Device
140. The Supervising Program 211 is part of the operating system 202. This is not
mandatory as noted above, provided that the integrity of the Supervising Program 211
can be ensured for example, by a Watchdog 212, and it is capable of performing the
functions described herein. The would-be software pirate has no control over the
Vendor 110 (Fig. 1) or the Guardian Center 130 (Fig. 1) which are wholly owned by
the protection against piracy system. But the pirate may try to change the User Device
140 in order to circumvent the protection. The protection system's components within
the User Device 140 include the Supervising Program 211, the Tag Table 213 and the
Watchdogs 212.

~ Since protection against piracy mechanisms involve some monitoring and
control of the behavior of the User Device 140, a concern arises that the User's privacy
and possibly some freedoms of action may be impinged upon. The present invention

provides several mechanisms to ensure that a User's privacy is not impinged upon. At

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-19-

the same time, the present invention prevents a User Device 140 from using pirated
software and from using legitimately purchased or rented software not in accordance
with purchase or rental agreements, but imposes no other limitation on a User Device
140.

One or more Watchdogs 212 ensure that modules of the operating system 202
including the Supervising Program 211 have not been modified. One or more
Watchdogs 212 are dispersed throughout the operating system 202. The Watchdogs
212 check other portions of the operating system 202. Watchdogs 212 are discussed
later.

In one embodiment of the present invention, the methods described in relation
to the conforming load of software modules are also employed during use of the loaded
software modules. In another embodiment, the methods can be employed by a
dedicated processor that periodically checks each link using hash function value
matching or Stub Checking. This dedicated processor may have one or more public

keys etched into its hardware as does the Boot PROM 204 above.

PROTECTING THE INTEGRITY OF THE OPERATING SYSTEM UPON
LOADING: CONFORMING LOAD

The present invention provides mechanisms for ensuring that a copy of
software stored in a User Device's memory is authorized software. A presumed copy
of a Vendor's software is authorized if it is identical to the software originally produced
by the Vendor. Usually the copy of software is loaded into memory from a secondary
storage device or from a remote location. A load into memory that results in an
authorized copy is herein called a conforming load of a copy of software. A
conforming load of a software module results in a conformant software module; that is,
an authorized copy of the software module stored in memory. In this section
mechanisms for effecting a conforming load of an operating systems or portions
thereof are described. However, these mechanisms are not limited to a conforming
load of an operating system, these mechanisms apply to ensure the conforming load of

any software.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-20-

Fig. 3 illustrates components of the load procedure for an operating system 202
according to an embodiment of the present invention. The explanation of the various
components and their function is described later. The load procedure includes a
method called Linked Protection which performs a conforming load of one of a
plurality of operating systems 202, 202~. The Linked Protection method is not limited
to performing a conforming load of an operating system 202!, 202", the method also
applies to a conforming load of any other software.

The initial segment or module of the boot program is stored in a Programmable
Read-Only Memory (PROM) 204, present within, or attached, to the User Device 140.
The initial segment may also be stored in other similar storage devices, such as a
non-modifiable portion of flash memory or in a processor. The boot program is the
software employed to "boot" ; thatqis, start, a User Device 140 by loading an operating
system 202, or appropriate portions thereof, into memory. A PROM 204 is a storage
device that holds data or program text that can be written once and subsequently only
read. According to current technology, a PROM is considered to be difficult to modify
by software means in the sense that no generally available software program can be
employed on a user device 140 to modify the contents of the PROM. Such
modification can be implemented only by use of special hardware that must be .
attached to the user device 140.

The boot PROM 204 stores the software for implementing the initial stages of
the boot operation. The boot operation includes preparation of the User Device 140 for
operation by loading an operating system or portions thereof. The boot disk software
203. stores further software used in the boot operation and is loaded into memory from
a local or remote storage device (not shown). Subsequently, portions of one or more
operating systems 202" and 202" are loaded if their contents pass certain tests which
will be described later. A portion of an operating system or a copy of sofiware, refers
to all of the text or data of that instance, or to a sequence of parts of the text or data of
the copy of software. The parts need not be contiguous and may overlap with one
another. l

A conforming load may be performed by hash function value matching, by Stub
checking, or by any combination of hash function value matching and stub checking.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

21-

A software module is a portion of a copy of software. A conforming load of a software
module p2 by hash function value matching is effected by use of a conformant
software module p1, already in memory. Module pl contains at least one hash
function value computed by means of a publicly known hash function (or in an
alternative embodiment, computed by means of a hash function specified in p1). The
authentication of module p2 involves computing the hash function value of p2, or of
specified portions of p2, by the hash function and comparing the thus obtained value or
values with at least one hash function value present in pl. Only if the two values
agree, are the load of p2, and the continuation of the boot operation, allowed.

Stub Checking is another method used to ensure that a software module p2
loaded and stored in memory, is a conformant; that is, authorized, software module.
Stub Checking uses a stub digitally signed by a software manufacturer or by some
other authority within the system of the present invention. The digitally signed stub is
attached to the software module p2, and includes sufficient information to uniquely
identify the contents of the software module. The digital signature on the stub is
verified by use of a public key present in a software module p1 already conformingly
loaded, or else stored in a PROM or other nqn-modiﬁable memory within or attached
to the User Device. In one embodiment, the sufficient information is a hash function
value of the contents of the software module p2. The Stub Checking procedure
involves computing the identifying information for the software module p2 which is to
be loaded, compariﬂg the computed information with the information present in the
Stub attached to p2, and verifying the digital signature on the Stub by use of a public
key present in the above mentioned conformant software module pl. In the case of
hash function value matching and Stub Checking, the verification is successful if all
value comparisons show eqﬁality, and all digital signature verifications have
authenticated the claimed signatures.

Conforming load by Stub Checking allows flexibility in extending or modifying
authorized software systems. That is, since the conformant software module p1
contains the public key required for verifying the Manufacturer's or Vendor's digital
signature, the Manufacturer or Vendor can at any time create a new version of a next or

subsequent software module p2 with an authorizing stub signed by the Manufacturer or

WO 02/37245 PCT/US01/44971

10

15

20

25

30

22

Vendor. The new version p2, and the new software modules can be conformingly
loaded by stub checking, using the public key in pl. A conforming load by hash
function value matching is usually faster than a conforming load by stub checking. It
does not, however, provide the flexibility and extensibility provided by the use of stub
checking.

Fig. 4 is a flowchart illustrating the initial steps for performing a conforming
load of the Operating System. Fig. 4 is described in conjunction with Fig. 3.

At step 401, the User Device 140 or computer system is started or restarted.
Processing continues with step 402.

At step 402, the software stored in the Boot Programmable Read-Only Memory
204 performs a conforming load of data from the Boot Disk Software 203 into memory
(not shown), by use of hash function value matching dependent on a stored hash
function 316. In another embodiment of the present invention, the Boot program
stored in the PROM 210 also contains a plurality of public keys 318" - 318" one or
more of which is used to implement the conforming load of the Boot Disk Software
203 by Stub Checking. To perform a conforming load of software, the Boot program
stored in the PROM 204 ensures that a software module transferred (loaded) to
computer memory is an authorized software module. An authorized software module
provided by a system or application software Vendor, is a copy of the software module
that is identical to the software module originally produced by the Vendor 110.

The Boot Disk Software 203 includes a plurality of Public Keys 318" - 318",
each key to be used in the conforming load of an existing or future operating system
202! -202N. In addition, the Boot Disk Program 203 can contain a plurality of hash
function values 316, each to be used in the conforming load of an existing operating
system 202! -202%, or other existing software module, by hash function value
matching. The Private Keys corresponding to the Public Keys 318" - 318" are held by
a plurality of software Vendors 110 and/or are kept in safe escrow. A private key is
used by a Vendor 110 to create an authenticating stub attached to a software module or
system. The corresponding public key 318" - 318 is used by a recipient of the
software to perform a conforming load of the software by Stub Checking. Processing

. continues with step 403.

WO 02/37245 PCT/US01/44971

10

15

. 20

25

30

23-

At step 403 the Boot PROM program determines if verification by hash
function value matching has succeeded. If so, processing continues with step 404. If
not, processing continues with step 409.

At step 404, once the conforming load of the Boot Disk Software 203 (Fig. 3)
into memory has fully or partly occurred, the software offers the user of the User
Device 140 a choice to select from one or more operating systems 202" - 202, or else
selects by default a preset previously selected operating system 202" - 202",
Processing continues with step 405.

At step 405, a module of the selected operating system software, for example,
Operating System N 202%, is read into memory. If the module is denoted OS_N_1 310
and has a Stub 322 signed by the private key of the operating system vendor OS_N,
in one embodiment, the Stub 322 has the form Stub_OS_N_1 =
SGN_0OS_N(HASH(OS_N_1)). SGN_OS_N is the public key &igital signature
function associated with the operating system OS_N 202". HASH is a hash function
316 specified in the Boot Disk Software 203. Processing continues with step 406.

At step 406, the Boot Disk Software 203, (Fig. 3) computes the hash function
value HASH(OS_N_1) on the first module OS_N_1 310 of OS_N 202" loaded into
memory. Call the resulting hash function value H. Using the public key PK_N 318
associated with the operating system OS_N 202~ stored in the Boot Disk Software
203, the Boot Disk Software 203 applies the public key to H to verify the signature
value SGN_OS_N(H) read from the Stub 322 associated with the first module
OS_N_1 310. Processing continues with step 407.

At step 407, the Boot Disk Software 203 checks to see if the verification
succeeds.

If so, processing continues with step 408. Otherwise, processing continues
with step 409.

At step 408, the first phase of the Boot operation is successful. Whether the
User Device 140 is now ready to be used depends on the specific operating system
OS_N 202", For some operating systems, further modules need to be loaded for
rendering the device usable. The conforming load of possible subsequent modules (not

shown) of OS_N 310 is performed by OS_N 302" by Conformance Checking.

WO 02/37245 PCT/US01/44971

10

15

20

235

30

24-

Conformance Checking employs hash function value matching and Stub Checking. By
mixing hash function value matching and Stub Checking in the design of a software
system comprising numerous software modules, the speed and extensibility benefits of
both methods can be achieved. The software modules of OS_N 320 include a plurality
of public keys PK_ N_1,PK N 2, ..., and a plurality of hash function values H_1,

H 2, Let the next module of OS_N to be loaded be OS_N_1_35, the module being
chosen by the user, or by OS_N_1. The conforming load of OS_N_1_5 is performed
either by Stub Checking using a Stub attached to the software module OS_N_1_5 and
one of the above mentioned public keys present in the already loaded conformant
OS_N_1, or by hash function value matching using the one of the above mentioned
hash function values present in OS_N_1. In another embodiment of the invention,
some of the public keys and the hash function values employed in conforming loads of
software modules, can be present in the Boot PROM program or the Boot Disk
Program.

At step 409 the boot procedure is aborted.

The above process of conforming load of software modules can be repeated a
number of times, where each additional module of OS_N is loadéd by use of
conformance checking, employing a public key or a hash function value present in a
previously loaded conformant module.

Thus, the Boot Disk Software 203 (Fig. 3) is authorized because of hash
function value matching with respect to the Boot PROM 204 (Fig. 3). Each
subsequent module of the operating system is authorized based on conformance
checking performed by a previously authorized module of the operating system. For
each operating system 202" - 202~ the operating system Vendor 110 retains the
flexibility of changing any or all modules of the operating system 202" - 202", allowing
conforming loads of the modules by use of conformance checking employing
embedded public keys 318" - 318", Stubs, hash functions, and/or hash function values
in the modules.

Only the operating system Vendor can produce versions of modules of an
operating system that can be loaded in a conforming manner because only the Vendor

possesses the private key P_K N necessary for computing the digital signature

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-25-

function SGN_OS_N() employed in the conforming load. A private key is a private
secret key used by the Vendor for producing digital signatures. If a new Vendor
wishes to distribute new operating system software, the new Vendor is assigned one of
the as yet unused public keys present in the Boot Disk Software 203 (Fig. 3). The
private key corresponding to the public key is held in trusted escrow until required and
is securely given to the new Vendor. Efficiency considerations determine whether to
use Stub Checking or hash function value matching for conformance checking for any
given module of the Vendor's operating system.

In an alternative embodiment of conforming load, only certain sub-portions of a
module to be loaded are specified to be included in the hash function value calculation.
This allows the operating system Vendor the freedom to change certain portions of an
operating system from time to time, without disrupting the conforming load of the
module. An example of such a changeable portion is a data area.

A generalization of the above process for the conforming load of an operating
system, aliows the conforming load of any software or data (in general, text). In this
generalization, the Boot PROM 204 and the data stored therein are replaced by any
data and/or program code that is authorized by a trusted party. The other modules may
be modules of arbitrary software broadly construed in the sense of the present
invention.

Fig. 5 illustrates the components of a conforming load procedure for some
software that need not be the operating system. The root portion of text is stored in
module 804. The root portion is text whose conformance is initially assured. Linking
from module 804 may be done by hash function value matching or Stub Checking.
The programs required for performing the hash function value matching or the Stub
Checking are present in software that has been previously loaded using conforming
loading. As shown, hash function value matching is used for text stored in modules
803 and 802 and Stub Checking is used for text stored in module 8§30. Module 803
uses Stub Checking for text stored in modules 810 and 820. Thus, module 804 may
use hash function value matching for some text and Stub Checking for other text. The

software modules loaded subsequently to module 804 are each conformingly loaded by

WO 02/37245 PCT/US01/44971

10

15

20

25

30

226-

use of hash function values or public keys present in previously loaded conformant
software modules.

A further generalization of the above method employs a protocol in which a
module M is loaded only after conformance checking has taken place using a plurality
of Stubs and/or hash function values in a plurality of previously loaded modules (not
shown). For example, module M1 can have a public key P1 and there can be a Stub
associated with M that is signed by the owner of P1. In addition, module M2 can have
a hash function value H2. Both of these are used for a conforming load of module M.

The methods described in relation to the conforming load of software modules
can also be employed during use of the loaded software modules. For example, the
methods can be employed by a dedicated processor that periodically checks each link
using hash function value matching or Stub Checking.

PROTECTING THE INTEGRITY OF THE OPERATING SYSTEM WHILE
RUNNING : WATCHDOG PROTECTION

Even after software has been loaded using conforming loading, it is important
to extend the assurance that software is authorized throughout the period of the
software's execution on the User Device 140 while it is stored in memory. Two
possible attacks against some currently deployed operating systems involve forcing a
buffer overflow during a system call, or installing an improper kernel-level driver.

Watchdog Protection provides enhanced security. Watchdog protection
includes Watchdogs 212 and Watchdog checks. A Watchdog 212 is program code and
data embedded, preferably in a hard-to-detect manner, within a software module.

Fig 6A illustrates a Watchdog structure 530. A Watchdog structure 530
includes a sequence of not necessarily consecutive addresses to check 534, a plurality
of hash functions to use on the contents of those addresses 536, and a plurality of hash
function values 538. Addresses to be checked 534 may include absolute memory
locations, relative memory locations, and file names. The Watchdog structure 530 also
includes an optional need to check test 532 and Watchdog actions 530.

Fig. 6B illustrates Watchdog protection for modules of the operating system

202 and Supervising Program 211. However, Watchdog Protection is not limited to

WO 02/37245 PCT/US01/44971

10

15

20

25

30

27-

the Operating System, Watchdogs 212 a-c can be used to protect the integrity of any
program, including User application programs.

The Checking relationships scheme described in conjunction with Fig. 6B can
be readily generalized to software systems containing any number of software modules,
Watchdogs, and Checking relationships.

Three Watchdogs 212 a-c are shown in Fig. 6B. Watchdogs 212 a-c mutually
check one another and check module 202" of the operating system 202 (Fig.2) and
module 520 of the Supervising Program 211(Fig.2) to detect whether any of these
modules has been modified. Each arrow from a Watchdog 212a-c indicates a
Checking relationship, thus a Watchdog may check more than one software module.
As shown in Fig. 6B, Watchdog 212 a checks software modules 510 and 520. Also
Watchdogs may check each other. As shown in Fig. 6B, Watchdogs 212b and 212¢
check each other.

Fig. 6C is a flowchart illustrating the steps for a Watchdog to check contents of
specified memory locations. Fig. 6C is described in conjunction with Figs. 6A-6B.

Watchdogs may, as shown in Fig. 6B, check a plurality of portions of code.
The procedure described in Fig.-6C is repeated for each such check.

At step 901, a software module is executed. When Watchdog code is reached
processing continues with step 903.

At step 903, the Watchdog Protocol executes the Need-To-Check Test 532
(Fig. 6A) to determine, based on conditions specified in the Watchdog code, which
addresses, if any, should be checked by the Watchdog 211. One possibility is that
every time the Watchdog code is reached, all addresses to be checked 534 listed in the
Watchdog structure 530 are checked. If the Need-to-check test determines the
Watchdog not be executed processing continues with step 908. For example, a
Watchdog 212a-c can perform a check only whenever the value of the device's clock is
an even number and a specified memory location has a value within a specified range.
An arrangement where Watchdog Checking is infrequent has the advantage that the
Watchdog, its location and operation, are less likely to be detected by an adversary.

After the subset of the addresses to be checked 534 are determined by the
Need-To-Check Test 532, processing continues with step 904.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

98-

At step 904, the contents of the subset of addresses are read and the appropriate
hash functions 536 specified in the Watchdog structure 530 (Fig. 6A) are used to
compute hash function values on the contents of the addresses. Processing continues
with step 907.

At step 907 the resulting values are compared with the appropriate hash
function values 538 (Fig. 6A) listed in the Watchdog structure 530 (Fig. 6A). If the
values are unequal, processing continues with step 909. If the values are equal
processing continues with step 908.

At step 908, embedding software execution continues. In an alternative
embodiment, instead of checking that values are equal, a Watchdog 212a-c may check
that two memory locations bear some relationship to one another. For example,
suppose that some critical procedure takes less than a millisecond. Suppose further
that the software writes the time when it begins the procedure in memory location L1
and the time when it ends the procedure in memory location L2. In that case, the
Watchdog 212a-c can check that the value in L2 is no more than a few milliseconds
greater than the value in L1. Such a Watchdog 212a-c is called a Data Waichdog.
Another variant is to detect that some unauthorized code is present. Thus, the steps
904 and 907 may be replaced by other steps that determine whether some specified
memory locations have their authorized values.

At step 909, the Watchdog 212 a-c determines which actions to take based on
its respective Watchdog actions 540 (Fig. 6A). For example, a Watchdog 212 a-c
designed to detect unauthorized modification of a software module or data module can
halt execution of the Embedding software if a specified comparison detects inequality.
The actions to be taken upon detection of unauthorized modifications or unauthorized
code are specified within the Watchdog code and are called Watchdog actions 540
(Fig. 6A).

In yet another embodiment, Watchdogs 212a-c are further extended to include
programs that perform checks other than the matching and comparison checks
described above. An example of such a program that can be included in a Watchdog,
monitors behavioral characteristics of subprograms of the system software protected by

the Watchdog 212a-c and matches the observed characteristics to data included in the

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-29-

Watchdog. An example of behavioral characteristics of software which are specific
library and subsystem calls that the program is making, the frequency of such calls and
the conditions that trigger these calls. For appropriately selected characteristics, if the
monitored behavioral characteristics deviate from data listed in the Watchdog by more
than a parameter value listed in the Watchdog, the Watchdog takes a Watchdog action
540.

Another example of a Watchdog action is to insert an error in the executing
code that will take effect after the Watchdog Check has completed its execution. The
effect can be to halt the execution of the program.

In one embodiment, Watchdog procedures are interspersed with the operating
system code in order to escape detection. In an alternative embodiment, the Watchdog
procedures may be subroutines that move. The instruction sets of most processors,
including the Pentium III produced by Intel Corporétion@, contain a subroutine call
instruction. This instruction includes the address in memory where a subroutine code
begins, referred to as a Called Address. A subroutine is a portion of a program that
performs some function and then returns control to the instruction following the
subroutine calling instruction.

Similarly, the instruction sets of many processors contains No-Operation (“No-
Op) instructions. No-Op instructions, when they execute, do not change the state of
the processor. Therefore removing No-Op instructions has no effect on the values
produced by a computation.

Fig. 6D illustrates a Watchdog field 620 for any one of the Watchdogs 212 a-c
shown in Fig. 6B. A Watchdog Subroutine 630, is placed in a Watchdog Field 620
Fig. 6C that is larger than necessary to fit the Watchdog subroutine 630. For example,
if the Watchdog Subroutine 630 requires 100 bytes, the Watchdog Field 620 can be
1000 bytes. At load time, the Watchdog Subroutine 630 is placed in some consecutive
sequence of locations in the Watchdog Field 620, for examples (bytes 70 through 169)
dependent on conditions present at load time such as the time or the value of some
memory location. The other bytes 604, 642 in the Watchdog Field 620 may be No-Ops

or may never be executed.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-30-

Fig. 6F illustrates the Watchdog subroutine 630 and Watchdog subroutine calls
in a program 202 in the User Device 140. All subroutine calls 6317, 6317 to the
Watchdog Subroutine 630 have their Called Address set at load time to the starting
location of the Watchdog Subroutine 630. Because the placement of the Watchdog
Subroutine 630 within the Watchdog Field 620 (Fig. 6D) may change from one load to
another, the Watchdogs 202 a-c are said to “'slide." The previously described sliding
of Watchdogs 212 a-c may also be effected after the operating system 202 and the
included Watchdogs 212 a-c are loaded. In an alternative embodiment of the
invention, a Watchdog may include a program that slides Watchdogs 212 a-c and
copies Watchdogs 212 a-c into available contiguous locations in a Watchdog field 620
(Fig. 6D).

The subroutine calls 631 (Fig. 6D) to the Watchdog Subroutine are placed in a
subset of possible locations depending on conditions present at load time. In one
embodiment, the set of possible locations contain either subroutine calls 631', 631” or
No-Op instructions.

Watchdog programs 212 a-c need not be on the user device 140 that is to be
checked. In an alternative embodiment, when a user device 140 issues a request to a
site, a watchdog program at the site asks that the user device compute a function on a
sequence of locations in the user device 140 and then return that value to the site. The
site then compares the value returned with the value stored in the watchdog program
212a-c. If the two values disagree, the site sends a message to the user device 140 that

said user device's protected program has been compromised. Furthermore, the

_additional functions performed by a watchdog 212 a-c and described above are

performed by this embodiment by the watchdog at the site.

TAG TABLE

Fig. 7 illustrates the Supervising program 211 and its relationship to the Tag
Table 601. A Tag Table is a data structure which includes a Tag 605 (whose
composition will be specified in connection with purchases) for each copy of software
that has been purchased or rented for use on the User Device 140 . For each Tag 605
included in the Tag Table 601, the Tag table 601 contains at least one field indicating a

WO 02/37245 PCT/US01/44971

10

15

20

25

30

31-

Usage Status. The Usage Status field 609 can also indicate use statistics for the copy
of software associated with the tag 605. The Tag Table 601 also includes a Tag Table
header 603 that uniquely identifies the Tag Table 601. The Tag Table header 603 can
include information concerning User Device use statistics and can include a
Continuation Message 104 (Fig. 1). The Tag Table header 603 also includes a Tag
Table Identifier value ID 604. A User Device 140 can have one or more Tag Tables,
each with its own Tag Table Identifier value 604. The Tag Table 601,602 stores
information determining the permissibility of copies of software to be used on a User
Device 140, and records software usage statistics which may be employed for billing

by Vendors or Lessors of the software.

PRIVACY PRESERVING PURCHASES

In the present invention, Purchasers, Renters, and Users (collectively referred to
hereafter as Purchasers) of software preserve their privacy because they never reveal
their identity, neither during purchase of software, nor during use of software.

A Tag Table 601 is a table or file stored in a User Device 140 containing
information related to tags 605 associated with copies of software as well as
information relating to the use of copies of software.

A Tag Table Identifier value ID 604 (Fig. 8) is an identifier of a Tag Table,
stored in the Tag Table 601. The Tag Table identifier value ID 604 is generated either
by hardware, by the User, by a physical process such as thermal noise, or by some
combination of these and other means. A characteristic of the Tag Table identifier
value ID 604 is that its association with a particular Purchaser of a copy of software
can not be established by third parties. In one embodiment of the invention, the
Purchaser uses an anonymous channel, such as the one provided by the Freedom
product offered by Zero-Knowledge Systems Inc. of Montreal Canada, for all
communications, and creates the Tag Table Identifier value ID 604 for a Tag Table
601, 602 on his or her User Device 140. An anonymous channel is a communication
channel that does not reveal the identity of a message sender using the channel.

Fig. 8 is a flowchart illustrating the steps for purchasing or renting (hereafter

jointly referred to as purchasing) a copy of software in a manner that preserves the

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-32-

privacy of the Purchaser. Fig. 9 is described in conjunction with Fig. 8. The software
purchasing transaction may be executed by the Supervising Program 211 in the
Purchaser's User Device, or by a special Purchasing Program 205 (Fig. 2) in the
Purchaser's User Device or in some other User Device 140.

At step 1101, a connection for secure communication is established between
the Purchaser and the Vendor 110 using for example the SSL protocol offered by
Netscape Corporation. Secure communication is a way of sending a value X such that
only the intended recipient can see X in unencrypted form, though other agents may
observe the network protocol or see the package by which X is transported. A sealed
envelope delivered by a reliable courier is one way to securely transmit the contents of
an envelope. Sending a message by use of the NETSCAPE SSL protocols for secure
communication is a way to ensure secure communication over the communication
network. Communication 101 and 102 (Fig. 1) takes place through an anonymous
channel to avoid revealing the network identifier of the Purchaser. The Purchaser may
send payment over the secure connection for purchase or rental of a copy of software
SW according to some Usage Policy USAGE_POLICY, using any acceptable form of
payment such as a credit card or (preferred for privacy) some fon% of anonymous cash.
Anonymous cash is an electronic method of payment which does not reveal the identity
of the payer. Credit card companies such as the American Express Corporation
provide a limited form of anonymous credit in which the vendor does not know who
the purchaser is, though American Express does. Usage Policy for a copy of software
SW is a set of rules prescribed by a Vendor or some organization for governing the
manner in which the copy may be used. Examples of such rules include, but are not
limited to, unlimited usage, usage 200 times, or usage for one month from time of
purchase. The Usage Policy attached to a copy of software SW is enforced in the
present invention by the Supervising Program (“SP") 211. Processing continues with
step 1102.

At step 1102, the Purchaser creates a Software-Identifying Structure S =
(NAME_SW, ID, HASH(SW), USAGE_POLICY, NONCE), but does not reveal the
Structure S. NAME_SW is a name for the specific software SW a copy of which is
being purchased or rented. ID is a Tag Table Identifier value 604. SW is specific

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-33.

Vendor software protected by the invention, for example, the code of software named
Spread. HASH(SW) is a hash function value resulting from computing a specified
hash function H on specified portions of the software SW. A portion of a software
SW refers to the text or data comprising SW or to a collection of parts of the text or
data comprising SW, where the parts need not be contiguous and may overlap.
NONCE is used to protect the privacy of the Purchaser in case of a repurchase of the
same software. A NONCE is a randomly chosen number or string intended to occur
only once. This requires that the number or string be chosen from a sufficiently large
set to make duplications unlikely. The NONCE can be produced by methods such as,
through thermal noise as suggested by the design of the Pentium III produced by the
Intel Corporation®, it can depend on the time it is produced, or can depend on the
values of some memory locations in the User Device. Processing continues with step
1103.

At step 1103, the Purchaser sends to the Vendor 110, a Software Purchase
Order SPO_SW for a copy of SW including (HASH(S), NAME_SW, HASH(SW),
USAGE_POLICY). The NONCE and Tag Table identifier value ID 604, which are
masked in the hash function value HASH(S), are not revealed to the Vendor 110.
Processing continues with step 1104.

At step 1104, the Vendor 110 verifies that it has agreed to sell or lease a copy
of the software SW called NAME_SW, with the proposed USAGE_POLICY, and
whose contents SW produces the hash function value HASH(SW) to the Purchaser in
this secure session. In an alternate embodiment, a proof of payment may be sent by the
purchaser to the vendor 110. Processing continues with step 1105.

At step 1105, if the verification succeeds, then processing continues with step
1106, otherwise processing continues with step 1110.

At step 1106, the Vendor 110 digitally signs the message it received, producing
SGN_Vendor (HASH(S), NAME_SW, HASH(SW), USAGE_POLICY) and sends the
digitally signed message to the Purchaser. Processing continues with step 1107.

At step 1107, upon receiving the digitally signed message created by the
Vendor 110, the Supervising Program 211 in the Purchaser's User Device employs the
Vendor's public signature key 318 (Fig. 3) to verify that the received message was

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-34-

digitally signed by the Vendor and equals the message sent to the Vendor. Provided all
the previous verifications succeed, the Supervising Program 211 stores the
Software-Identifying Structure S, the Vendor's name and the Vendor's digitally signed
message in the Tag Table 601. Together, the Software Identifying Structure S, the
Vendor's name, and the Vendor's signed message constitute the Tag 605 associated
with the copy of SW in the User's Device. Verification of a digital signature on a
signed message is a computation using the claimed signer's public signature key which,
when producing a specified result, serves as proof that the digital signature was
produced by the claimed signer, in which case the verification is said to be successful.
Verifying a condition involving equalities and inequalities between corresponding
elements in two messages or two sequences of elements is said to be successful if all
comparisons that should yield equality and all comparisons that should yield
inequality, respectively, do so. Processing is complete and the secure communication
channel between the Purchaser and the Vendor closes.

At step 1110, the purchase protocol is stopped. Processing is complete.

The above privacy-protecting purchase protocol is structured so that the Vendor
110 knows neither the name of the Purchaser because of the anonymous channel and
the anonymous mode of payment, nor the Tag Table Identifier value ID 604 of the Tag
Table 601 on the Purchaser's User Device 140. The latter is assured by the fact that the
Tag Table Identifier value ID 604 is included in the Software-Identifying Structure S,
but the Vendor receives only the hash function value HASH(S) of the Software
Identifying Structure and this conceals the value of the Tag Table identifier value ID
604. At the same time, by mechanisms to be described later, the Vendor 110 is assured
that this purchased copy of software with its Tag 605 will run only on a User Device
140 whose Tag Table Identifier value ID 604 matches the value in the Tag's
Software-Identifying Structure.

DECOMMISSIONING AND RETURNING A TAG FOR A COPY OF SOFTWARE
In the course of use of a copy of software SW, the need may arise to return the
copy of software to the Vendor 110 and to obtain credit for this return. The use of a

copy of software includes, but is not limited to, installing, using, executing, running,

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-35-

connecting with, reading, otherwise retrieving from storage medium or modifying a
storage medium, displaying, playing, viewing, printing, copying, transmitting, or
accessing the copy of software by use of or on a User Device 140.

One need for returning a copy of software arises when the owner of a copy of
software wants to transfer this software to a User Device 140 having a different Tag
Table Identifier value 604. The owner returns the copy of software to the Vendor 110,
and obtains a certificate of credit which can be used for purchase of a new copy.

Assume that the software in question is called NAME_SW, that the copy of
software SW has a Tag TAG_SW 605 associated with it. The User Device 140 has a
Tag Table 601. The Tag Table 601 has a Tag Table Identifier value ID 604. The Tag
TAG-SW 605 is stored in the User Device 140's Tag Table 601 with Tag Table
Identifier value ID 604. The Software Identifying Structure used in purchasing the -
copy of software is S. -

Fig. 9 is a flowchart illustrating the steps for decommissioning a tag 605.

At step 1201, the Supervising Program 211 (Fig. 2) in the User Device 140
(Fig. 1) removes the Tag TAG_SW 605 from the Tag Table 601 with Tag Table
identifier value ID 604. Processing continues with step 1202.

At step 1202, the User Device 140 (Fig. 1) calls up the Vendor 110 (Fig. 1)
over a secure channel and sends the Tag TAG_SW 605 and the Software Identifying
Structure S. The call can be made either by the Supervising Program 211 (Fig.1) or, by
a Purchasing Program 205 (Fig. 2) executing in the User Device 140 (Fig. 1).
Processing continues with step 1203.

At step 1203, the Vendor 110 verifies that TAG_SW 605 and the Software
Identifying Structure S properly represents data created during a software purchasing
transaction. The Vendor 110 verifies its digital signature stored in the TAG_SW 605
and verifies that the hash function value HASH(S) equals to the corresponding value in
the digitally signed TAG_SW 605. The Vendor further reads the Tag Table Identifier
value ID 604 from the Software Identifying Structure S.

At step 1204, if all these verifications are successful, processing continues
with step 1206. If not, processing continues with step 1205.
At step 1205, the protocol is aborted. Processing is complete.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-36-

At step 1206, the Vendor 110 (Fig. 1) sends to the User Device 140 a
Certificate of Credit for an agreed upon sum of money or for some specified goods or
services. The goods can be a new copy of the decommissioned software, or some other
agreed upon software. Processing continues with step 1207.

At step 1207, the Véndor 110 sends TAG_SW 605 and the Tag Table Identifier
value ID 604, received from the User Device 140, to the Guardian Center 130. The
Guardian Center 130 stores TAG_SW 605 in a list associated with the Tag Table
Identifier value ID 604.

" During at least one subsequent Call-Up, to be described later, from a User
Device 140 involving the Tag Table 601 with Tag Table Identifier value ID 604, the
Guardian Center 130 will request the calling Supervising Program 211 to verify that
the Tag TAG_SW 605 has indeed been removed from the Tag Table 601. If this check
fails, then the Guardian Center 130 invalidates the Tag Table Identifier value ID 604.

PRIVACY-PRESERVING CALL-UP

Call-Ups initiated and executed by the Supervising Program 211 from a User
Device 140 to a Guardian Center 130 occur from time to time. Guardian Center 130
Call-Ups are initiated in accordance with a Call-Up Policy, depending on whether a
certain amount of usage of a copy of software has occurred, or a certain amount of time
has elapséd since the last Call-Up, or when a network connection is made, or some
combination of the above. A Call-Up may also be required soon after a Supervising
Program 211 has been booted. A Call-Up may be required when the difference
between the current time as measured by an absolute time counter and the time stored
in SGN_GC(HASH(Immediately Previous Tag Table, Time of Immediately Previous
Call-Up, ID) exceeds a value specified in the Call-Up Policy. Here SGN_GC denotes
the digital signature function of the Guardian Center 130. HASH(Immediately
Previous Tag Table) denotes the hash function value of the User Device's Tag Table
sent by the Supervising Program 211 to the Guardian Center 130 in the most recently
previously executed Call-Up and ID is the value of the Tag Table Identifier value 604
for that Tag Table.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

37-

Fig. 10 illustrates an alternate embodiment for the Tab Table 601 shown in Fig.
7. The Tag Table 601 in this embodiment includes a field storing the above digitally
signed message (not shown) SGN_GC(HASH(Immediately Previous Tag Table), Time
of Immediately Previous Call-Up, ID), which was sent by the Guardian Center to the
User Device 140 during the most recent Call-Up. The immediately previous Tag
Table, to be called herein TT PREV 601a, is also stored and available. If there is no
previous Tag Table with the Tag Table 601a Identifier value ID 604, then the
Supervising Program 211 performs a special initializing Call—UI; that creates a Tag
Table 601 with the Tag Table Identifier value ID 604. The Tag Table Header 603
includes further fields representing features of the User Device’s (internal)
environment which are given by User Device Descriptive Values “(UDDV)” 610.
Examples of User Device Descriptive Values 610 include, but are not limited to, a
User Device processor's unique serial number, the number of files of a specified kind
stored on the User Device's non-volatile storage device, features and numerical values
derived from the User Device's data structures describing the physical layout of the file
system and other data in the storage device. The UDDVs 610 are chosen so that they
are only slowly changing, if at all, during use of the User Device. Furthermore, the
UDDVs 610 are chosen so that it is not likely that they will change over time from a
configuration, call it C, into a markedly different configuration C_1, and then change
back into configuration C.

To protect the privacy of the caller's network location, Call-Ups may employ an
anonymous channel such as the one offered by Zero-Knowledge Systems Inc. of
Montreal Canada. The Privacy-Preserving Call-Up never reveals the association
between the software used on a User Device 140 and the identity of the owner or user
of the User Device 140.

Figs. 11A-B is a flowchart illustrating the steps for performing a
Privacy-Preserving Call-Up. Figs. 11A and 11B are described in conjunction with Fig.
10.

Referring first to Fig. 11A, at step 1500, a connection for secure

communication is established between the User Device 140 and the Guardian Center

WO 02/37245 PCT/US01/44971

10

15

20

25

-38-

130, using for example the SSL protocol offered by Netscape Corporation. Processing
continues with step 1502.

At step 1502, performing a Call-Up through the secure communications
channel, the Supervising Program 211 executing in the User Device 140 sends to the
Guardian Center 130 the following data: the hash function value HASH(TT) of the
current Tag Table 601, the hash function value HASH(TT PREV) of the Tag Table
601 as of the last Call-Up and the Tag Table Identifier value ID 604. Processing
continues with step 1503.

At step 1503, the Guardian Center 130 checks that HASH(TT_PREV) is equal
to the last value of HASH(TT) that the Guardian Center 130 received from the User
Device 140 associated with the Tag Table Identifier value ID 604. If they are equal,
processing continues with step 1505. If the check evaluates to "false", two Tag Tables
601 on different User Devices 140 have the same Tag Table Identifier value ID 604,
and possible piracy has occurred, processing continues with step 1504.

At step 1504, the Guardian Center 130 sends a digitally signed message
SGN_GC("present identifier is bad", HASH(TT _PREV), HASH(TT), ID). Upon
receiving this message, the Supervising Program 211 verifies the Guardians Center's
digital signature and verifies that the hash function values and the Tag Table Identifier
value ID 604 included in the digitally message are equal to the corresponding values
sent by the Supervising Program 211 in the current Call-Up. If verification is
successful then the Supervising Program 211 declares the entire Tag Table 601 with
Tag Table Identifier value ID 604 to be invalid. Subsequently to this invalidation, no
Tag 605 with the Tag Table Identifier value ID 604 in its Software Identifying
Structure can be employed to enable the use of a copy of software. The Guardian
Center 130 rejects any future Call-Ups from a User Device 140 involving a Tag Table
601 with the Tag Table Identifier value ID 604. Processing is complete.

At step 1505, the Guardian Center 130 replaces its stored version of
HASH(TT) associated with the Tag Table Identifier value ID 604 by the value of
HASH(TT) received in the current Call-Up. Processing continues with step 1506.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-39-

At step 1506, the Guardian Center 130 sends a digitally signed Continuation
Message 104 (Fig. 1) to the User Device 140 including the received fields: SGN_GC(

* HASH(TT), TIME OF CALL-UP, ID). Processing continues with step 1507,

Continuing now with Fig. 11B, the Supervising Program 211 expects to receive
a Continuation Message 104 within some specified timeout period, for example, one
minute. At Step 1511, the Supervising Program 211 tests whether a Continuation
Message 104 has been received within the timeout period. If so, processing continues
with step 1507. If not, processing continues with step 1510.

At step 1507, upon receiving the digitally signed Continuation Message, the
Supervising Program 211 verifies that the value HASH(TT) received from the
Guardian Center 130 is equal to the corresponding value sent by the Supervising
Program 211 in its Call-Up message. The Supervising Program 211 also verifies that
the value ID received in the Continuation Message 104 (Fig. 1) equals the Tag Table
Identifier value ID 604 of the Tag Table 601 for which the Call-Up was made. Other
checks may be made as will be discussed in more detail in conjunction with Figs. 13A-
13B.

Furthermore, the Supervising Program 211 verifies the digital signature
received in the Continuation Message 104 from the Guardian Center 130, using the
Guardian Center's Public Key. A public key 318 (Fig. 2) is used by a recipient of data
purported to be digitally signed, to check and authenticate the signature. If all the
above verifications are successful, processing continues with step 1509 If not,
processing continues with step 1510. |

At step 1509, the Supervising Program 211 replaces HASH(TT_PREV) by
HASH(TT) and allows use of the software. The secure communication channel
between Supervising Program 211 in the User Device 140 and the Guardian Center
130 is closed. Processing is complete.

At step 1510, the Supervising Program 211 resends its Continuation message
and processing continues with step 1500.

It is possible that a Call-Up can not be completed due to, for example, a break
of communication between a User Device 140 and the Guardian Center 130. To

preserve, in this case, the proper meaning of HASH(TT) and HASH(TT_PREYV) for

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-40-

the Guardian Center 130 and the Supervising Program 211, the following rules are
adopted in embodiment of the invention. Once the Guardian Center 130 has sent the
Continuation Message 104, the Guardian Center 130 sets a new value for
HASH(TT_PREYV), without waiting for an acknowledgment message from the
Supervising Program 211. The Supervising Program 211 updates the values of
HASH(TT) and HASH(TT_PREV) it uses for Call-Up only if it receives a
Continuation Message 104. If the Supervising program 211 does not receive a
Continuation Message 104, it re-sends the original Call-Up Message 1510. The
Guardian Center 130, upon receiving a resent Call-Up Message, resends the
Continuation Message 104 it had sent in response to the resent Call-Up Message.
Whether the Supervising Program 211 will allow continued use of software with
associated Tags in the Tag Table 601 for which a Call-Up was made but not
completed, is specified in the above Call-Up Policy.

A possible attack on the protection mechanisms provided by the linkage
between a Tag 605 incorporating a Tag Table Identifier value ID 604 and a copy of
software, would be to have several User Devices including Tag Tables 601 with the
same Tag Table Identifier value ID 604. If a would-be software pirate could do that,
then he could use the above copy of software with its associated Tag 605 on multiple
User Devices 140. The Call-Up procedure explained in conjunction with Figs. 11A-
11B prevents such a direct attack because the comparison by the Guardian Center 130
between the hash function value HASH(TT PREV) sent by the Supervising Program
211, and the corresponding value stored by the Guardian Center 130 from the last
Call-Up for the Tag Table Identifier value ID 604, prevents interleaving of Call-Ups
for the same Tag Table Identifier value ID 604 from different User Devices 140.

The above attack can be refined by having each of the above pirating User
Devices 140 transfer ("haﬁd—off’) its hash function value HASH(TT _PREV) to the
next User Device 140 required to perform a Call-Up for the same Tag Table Identifier
value ID 604. The present invention provides a number of protection methods against
the hand-off attack.

In one embodiment of the invention the Tag Table Header 603 includes User

Device specific Descriptive Values (“UDDV”) 610. Examples of UDDV 610 features

WO 02/37245 PCT/US01/44971

10

15

20

25

30

41-

include but are not limited to: data derived from the User Device's file system, data
derived from the User Device's B-trees or other indexés and data structures related to
the User Device's specific layouts of data on disks or other storage devices. The
features employed in any implementation of a UDDV 610 have the property that they
are User Device specific and change slowly or not at all. If the User Device's
processors or other hardware or software components include unique serial numbers or
other readable unique identifiers, some or all of the numbers or identifiers may be
included in the UDDYV 610 features represented in a User Device's Tag Table Header
603.

In this embodiment the Supervising Program 211 stores and updates in the User
Device 140, a specified number k, for example k = 5, of Tag Tables 601 TT_PREV_1,
..., TT_PREV Kk, sent by the Supervising Program 211 in the last k Call-Ups for the
Tag Table Identifier value ID 604. The Guardian Center 130 stores and updates the list
of corresponding hash function values H_1 =HASH(TT_PREV_1),...,H k=
HASH(TT _PREV_k).

Returning to Fig. 11A, at step 1502, during Call-Up, the Supervising Program
211 sends to the Guardian Center 130 the following data: The hash function value
HASH(TT) of the current Tag Table 601, the hash function value
HASH(TT_PREV_1) of the Tag Table 601 as of the last Call-Up and the Tag Table
Identifier value ID 604. Processing continues with step 1503.

At step 1503, upon receiving the Call-Up message from Supervising Program
211, the Guardian Center 130 verifies that the received hash function value
HASH(TT _PREV _1) equals the above value H_1 it has stored. If verification fails
then processing continues with step 1504. If the above verification succeeds,
processing continues with step 1505.

At step 1505 the Guardian center 130 updates the list of the last k receive hash
function values by placing the currently received value at the top of the list and
removing the last value in the list. Processing continues with step 1506.

At step 1506, the Guardian Center 130 sends to the Supervising Program 211 a
digitally signed Continuation message 104 which now includes more information:

SGN_GC(H_1, ..., H k, TIME OF CALL-UP, ID). Because the Guardian Center 130

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-42-

has updated its list of received hash function values, now H_1 equals the hash function
value HASH(TT) received during the Call-Up. Processing continues with step 1511
(Fig. 11B).

Continuing with Fig. 11B, at step 1507, upon receiving the above Continuation
Message 104, the Supervising Program 211 verifies, using its list of the last k sent Tag
Tables, that H_1 =HASH(TT), H 2=HASH(TT PREV_1),...,H k=
HASH(TT _PREV_k-1). If verification succeeds procéssing continues with step 1508.
Otherwise, processing continues with step 1510.

At step 1507 the Supervising Program 211 verifies the Guardian Center's
digital signature on the Continuation Message 104. If verification fails then Processing
continues with step 1510. Otherwise processing continues with step 1509.

At step 1509, the Supervising Program 211 examines the User Device
Descriptive Values 610 included in the Headers of the Tag Tables TT, TT_PREV_1,
TT PREV_k-1, stored in the User Device 140. It then performs a UDDV check.

At step 1510, the received Continuation Message 104 cannot be a correct
response to the current Call-Up and the Supervising Program 211 restarts the Call-Up
process. ‘

Fig. 12 illustrates the UDDV check, at step 1000, if a specified number of
UDDVs are not expected to change in the time elapsed between two successive
Call-Ups, and the Supervising Program 211 does detect a change in that specified
number of values stored in the Headers of two successively sent previous Tag Tables
601, then the UDDYV check fails. Also, if the Supervising Program 211 detects three
previously sent Tag Tables 601 so that the Header of the earliest sent Tag Table
includes specified UDDVs whose configuration of values is C, a subsequently sent Tag
Table 601 where the corresponding stored UDDVs have a markedly different
configuration of values C_1, and a still later sent Tag Table 601 where the
corresponding stored UDDVs again have the configuration of values C, then the
UDDV check fails and the verifications fail.

At step 1003, the supervising program determines if either of the conditions
holds. If so, processing continues with step 1004. If not, processing continues with

step 1005.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-43-

At step 1004, the UDDV check has failed processing continues with step 1508
(Fig. 11B).

At step 1005, the UDDV check has succeeded processing continues with step
1508 (Fig. 11B).

Returning to Fig. 11B, at step 1508 if the UDDV verifications failed,
processing continues with step 1510. If the UDDV verifications succeed, processing
continues with step 1509.

At step 1510 the Supervising Program resends the Call-Up. In an alternate
embodiment, the Supervising Program can declare the entire Tag Table 601 with Tag
Table Identifier value ID 604 to be invalid. Subsequent to this invalidation, no Tag
with the Tag Table Identifier value ID 604 in its Software Identifying Structure can be

employed to enable the use of a copy of software.

ENHANCED PRIVACY-PRESERVING CALL-UP

Fig. 13A-B is a flowchart illustrating another method for performing
Privacy-Preserving Call-Up. The method shown in Fig. 16A-B adds further
mechanisms to the embodiment shown in Fig. 11A-B.

Referring to Fig. 13A, at step 1600, the Supervising Program 211 initiates a
Call-Up through an anonymous channel. Processing continues with step 1602.

At step 1602, the Supervising Program 211 sends a Call-Up message including
the hash function value HASH(TT) of the current Tag Table 601, the hash function
value HASH(TT PREV) of the Tag Table 601 as of the last Call-Up, and the Tag
Table Identifier value ID 604, the Current Time read from a clock within the User
Device 140, as well as other fields whose use will be explained later. In this
embodiment, the Tag Table 601 includes UDDVs 610. Processing continues with step
1603.

At step 1603, the Guardian Center 130 determines if this Call-Up message is
identical to one already received. If so, processing continues with step 1604. If not
processing continues with step 1605.

At step 1604, the Guardian Center 104 resends the previous sent continuation

message. Processing is complete.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

44-

At step 1605, the Guardian Center 130 checks whether the received Current
Time agrees with the time on the Guardian Center's clock. The Guardian Center 130
further checks whether the difference between the current Call-Up time and the last
Call-Up time for this Tag Table Identifier Value ID 604 is consistent with the Guardian
Center's 130 recording of time elapsed and whether it exceeds some policy-specified

maximum allowed time between Call-Ups or is smaller than a policy-specified

- minimum allowed time between Call-Ups. The Guardian Center 130 further checks

whether HASH(TT _PREV) is equal to the last value of HASH(TT) that the Guardian
Center 130 received from the User Device 140 associated with the Tag Table Identifier
value ID 604. Processing continues with step 1606.

At step 1606, if all the verifications succeed, then processing continues with
step 1608. If not, processing continues with step 1607.

At step 1607, the Guardian Center sends a message indicating that the sending
Tag Table Identifier value ID 604 is bad. Processing is complete.

At step 1608, the Guardian Center 130 replaces its stored version of
HASH(TT) associated with the Tag Table Identifier value ID 604 by the value of
HASH(TT) that it received in the current Call-Up. Processing continues with step
1609.

At step 1609, the Guardian Center 130 sends a digitally signed Continuation
Message 104 including a hash function value HASH(AIl Superfingerprints) of the
sequence of all the currently and previously sent Superfingerprints (to be described
later), a sequence of hash function values of current and previous Tag Tables H_1, ...,
H_k, where H_1 = HASH(TT), the Tag Table Identifier value ID 604, the Current
Time as read from the Guardian Center’s clock, and the decommissioned tags (if any)
for the Tag Table identifier value ID 604 to the User Device 140. The unsigned part of
the Continuation Message 104 is a list of currently sent new of Superfingerprints, to be
described later on.

Continuing with Fig. 13B at step 1610, upon receiving a Continuation Message
104, the Supervising Program 211 verifies that the value H_1 = HASH(TT) received
from the Guardian Center 130 is equal to the corresponding value sent by the

Supervising Program 211 in its Call-Up message. The Supervising Program 211 also

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-45-

verifies that the Tag Table identifier value ID 604 received in the Continuation
Message 104 (Fig. 1) equals the Tag Table Identifier value ID 604 of the Tag Table
601 for which the Call-Up was made. The Supervising Program 211 further verifies,
using its list of the last k sent Tag Tables 601 associated with ID, that H_1 =
HASH(TT), H 2=HASH(TT PREV 1),...,H k=HASH(TT_PREV _k-1). The
Supervising Program 211 further performs a User Device Descriptive Value (UDDV)
check based on the User Device Descriptive values in those Tag Tables. The
Supervising Program 211 further verifies that decommissioned tags included in the
Continuation Message 104 are not in the current Tag Table TT. The Supervising
Program 211 further checks that the Tag Tables 610 over time indicate a
non-decreasing amount of consumption. That is, the usage value in the Tag Table 610
associated with each Tag is non-decreasing (i.e., either increases or stays the same).
Finally, the Supervising Program 211 verifies the Guardian Center's digital signature
on the signed portion of the Continuation Message 104, using the Guardian Center's
public digital signature key stored in the User Device 140. Processing continues with
step 1611.

At step 1611, if all the verifications succeed, processing proceeds with step
1613. If not, processing continues with step 1612.

At step 1612, the Call-Up message is sent again. In an alternative embodiment,
the Tag Table Identifier Value ID can be invalidated, thus disabling the software being
used on the User Device 140.

At step 1613 the Supervising program 211 assigns HASH(TT) to
HASH(TT PREV), updates the list of Superfingerprints, and sets the User Device’s

clock to the received Current Time. Processing is complete.

CLOCKS

Fig. 14 illustrates the components of the clock event. One criterion for a
Call-Up procedure to be executed is that a certain amount of time has elapsed since the
last Call-Up procedure took place. A pirate may attempt to circumvent this criterion
by resetting the system clock. A mechanism to stop this attack is to transform

advances in the clock to events. For example, suppose that at most N minutes should

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-46-

elapse between one Call;Up execution and the next. Then there will be an event
generated every time the system clock 1420 in the User Device 140 passes the minute
mark and this event will increment a Minute Event Counter 1410. After a

Continuation Message 104 is received, the Minute Event Counter 1410 is reset to 0. In -
this way, even if the pirate resets the time to some previous hour, the Minute Event
Counter 1410 will count every minute (or most minutes). Time intervals other than
minutes may be used to update other event counters.

In an alternative embodiment, the Guardian Center 130 includes in its
Continuation Message 104 to a User Device 140 a Current Time value read from the
Guardian Center's clock. Upon receiving and verifying the Continuation Message 104,
the Supervising Program 211 sets a Minute Event Counter 1410 in the User Device
140 to the received Current Time value. After the Minute Event Counter 1410 is

advanced as described above.

SUPERFINGERPRINT USE AND DOWNLOADS

A user may write his or her own software or receive other software that may be
free and install such copies of software which have no associated tags 605 on User
Devices 140. This poses the danger that Users may install pirated copies of Vendor
created software on a User Device 140 after removing their associated Tags 605,
under the guise of user-generéted or free software. Furthermore, an unscrupulous
Vendor may pirate software, possibly modify it, and issue the pirated software with
that Vendor's Tags. Either form of pirated software is herein referred to as "infringing
software". In addition to using infringing software, a User Device 140 may infringe on
a Vendor's rights in a copy of software which was legitimately purchased or rented
from the Vendor for use on the User Device 140, by using the copy of software not in
accordance with the Usage Policy included in the Tag associated with that copy of
software; we call such use an "infringing use of software". An example of an
infringing use is when the Usage Policy associated with a rented video game allows
only five plays of the game and the User Device 140 attempts a sixth play. Another
example of infringing use arises when the copy of software is a digitized image and the

User Device 140 attempts to print out a hard copy of the image when this is not

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-47-

allowed in the associated Usage Policy. In the present invention, all of the above
infringements are detected through the use of Superfingerprint mechanisms.
According to the present invention, a Superfingerprint is a collection of data
and computer programs designed to enable the detection and subsequent prevention of
use of an infringing copy of software or of an infringing use of a legitimate copy of
software, on a User Device 140. In one embodiment of the present invention, a
Superfingerprint further includes location information which is employed to specify
portions of a copy of software on which a program included in the Superfingerprint
computes a value. An example of location information is a specification of every
instruction including the operation code "Add" or a "Multiply". The program included
in the Superfingerprint first extracts, in accordance with the location information, the
sequence of instructions containing the "Add" and "Multiply" operation codes present
in a copy of softiware and then executes a routine on the sequence, but excluding the
address or register portions of the instructions. In one embodiment, a Superfingerprint |
further includes a value and a condition relating the value computed by the program on
the portion of the copy of software to a value included in the Superfingerprint. For
example, the included values may be 15 and 32 and the condition may be that the
number of detected "Add" instructions exceeds 15 and the number of "Multiply"
instructions exceeds 15 and is less than 32. A program within the Superfingerprint
verifies that the specified condition is verified. A Vendor or some agency acting on
behalf of a Vendor may discover that copies of software infringing on that Vendor's
rights are circulating amongst users. The Vendor may get an appropriate legal
injunction against the use of that infringing software. The Vendor then prepares an
appropriate Superfingerprint, using some or all of the mechanisms detailed below, and
deposits the Superfingerprint with a Guardian Center 130. During Call-Ups from a
User Device 140 to the Guardian Center 130, the Guardian Center 130 sends the
Superfingerprint to the User Device 140. The Supervising Program 211 within the
User Device 140 performs computations and checks specified in the Superfingerprint
which detect the use of a copy of the infringing software, when such a use occurs, and
halts that use. Similarly, a Vendor can prepare a Superfingerprint designed to detect

and subsequently enable prevention of an infringing use of a legitimate copy of the

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-48-

Vendor's software and deposit it with a Guardian Center 130. A User Device 140
receives the Superfingerprint during a Call-Up, and the Supervising Program 211
within the User Device 140 employs the Superfingerprint to detect and halt infringing
use of the copy of software.

One type of data included in a Superfingerprint is a list of hash function values
computed on portions of the infringing software SW. Let H be a hash function
specified in the Superfingerprint. LHASH(SW) is a list of hash function values
resulting from computing the specified hash function H on specified portions of the
software SW. A portion of a software SW refers to the text or data comprising SW or
to a collection of parts of the text or data comprising SW, where the parts need not be
contiguous and may overlap.

A hash function F is a mathematical function for mapping data X to data F(X)
such that if X and Y are unequal, then it is highly likely that F(X) and F(Y) are
unequal. In an example hash function, X can be a sequence of bytes. Letp be a
randomly chosen, but henceforth-kept fixed, 64 bit prime number. The sequence X of
bytes is viewed as a number (written to the base 256, where the bytes are the digits of
that number) and F(X) = X mod p. Thus the value F(X) is a 64 bit string, no matter
how long X is. Another example of a hash function is the identity function I(X) =X
which simply reproduces the string X.

If LHASH(SW) is a list of hash function values included in a Superfingerprint
sent by the Guardian Center 130 to a User Device 140, the Supervising Program 211
employs this list to detect an infringing copy of software or an infringing use of a copy
of the software SW by performing hash function value checking. In a same-location
hash function value checking, the Supervising Program 211 computes, by use of the
hash function H specified in the Superfingerprint, hash function values of portions of a
copy of software SW_1 used on the User Device 140, where these portions correspond
to the portions of SW for which hash function values were computed in preparing
LHASH(SW). For example, if SW is an array of words and a portion of SW was
specified as the sequence of the first letters of each word of SW starting with the
1000-th word of SW and ending with the 2000-th word of SW, then the corresponding
portion of SW_1 is the sequence of the first letters of each word of SW_1 starting with

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-49-

the 1000-th word of SW and ending with the 2000-th word of SW_1. The
same-location computed list of hash function values for SW_1 is LHASH(SW_1). The
same-location hash function value checking continues by comparing the hash function
values in the lists LHASH(SW) and LHASH(SW_1) at corresponding locations; that
is, the first value in LHASH(SW) with the first value in LHASH(SW_1), the second
with the second, etc. If more than a number specified in the Superfingerprint of these
compared values are equal then the Supervising Program continues processing on the
assumption that SW and SW_1 are equal or that SW_1 is a slightly modified form of
SW.

In general-location hash function value checking, the Supervising Program 211
selects, based on rules specified in the Superfingerprint, portions of the copy of
software SW_1 used on the User Device 140 and computes a list L(SW_1) of the hash
function values by H, of the selected portions. For example, the selected portions may
be all sequences of the first letters of sequences of consecutive words in SW_1, each
sequence of words comprising 1000 words. The general-location hash function value
check continues by counting the number of hash function values common to the lists
LHASH(SW _1 and L(SW_1), irrespective of location within the lists. The
Supervising Program 211 then checks whether that counted number is greater than a
number specified in the Superfingerprint and if so the Supervising Program 211
continues processing on the assumption that SW and SW_1 are equal or that SW_1isa
slightly modified form of SW.

A Superfingerprint also includes a weight value (“w”) and rules specifying
when various checks included in the Superfingerprint should actually be performed by
the Supervising Program 211. If two Superfingerprints SPT_1 and SPT_2 are stored in
a User Device 140 and have respectively associated weights w=1 and w=7 then for
every 7 times that the Supervising Program 211 in that User Device 140 performs the
checks and runs the programs included in SPT 2 (executes SPT_2), the Supervising
Program 211 executes SPT_1 once. If a Superfingerprint includes a program P, then a
rule in the Superfingerprint may specify conditions that must hold for the Supervising

Program to execute P while executing the Superfingerprint. An example of such a rule

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-50-

is that P is executed only if the copy of software SW_1 examined for being infringing
software, is larger in size than a number specified in the rule.

A Superfingerprint also includes computer programs called by the Supervising
Program 211 in order to detect whether a copy of software SW_1 used on the User
Device 140 is infringing software or, in other cases, legitimate Vendor software used
on the User Device 140 not in accordance with the Usage Policy attached to that
software. Examples of such detection software include, but are not limited to the
following.

A pirating Vendor may infringe on another Vendor's rights by taking that
Vendor's legitimate software SW and distributing it in an encrypted form SW_1 where
each installed copy is encrypted by a different encryption key. This at’Eack would
defeat the straightforward use of the hash function value checking mechanisms
described above. To counter this attack, the legitimate Vendor creates a
Superfingerprint which includes an appropriate list LHASH(SW) of hash function
values of portions of the software SW, and a decryption program (“DEC’”’). When the
User Device 140 uses the infringing software SW_1, the Supervising Program 211
calls the program DEC that identifies the decryption key used to turn SW_1 into
executable code, and then uses the decryption keyto decrypt SW_1. Once SW_1 has
been decrypted, the Supervising Program 211 performs a hash function value check in
the manner detailed above, using the list LHASH(SW) included in the
Superfingerprint.

Other types of programs that may be included in a Superfingerprint, monitor
behavioral characteristics of the copy of software SW_1 used on a User Device 140
and match those observed characteristics to data included in the Superfingerprint. An
example of behavioral characteristics of software which an application program are the
specific library calls that the application program is making, the frequency of such calls
and the conditions that trigger these calls. For appropriately selected characteristics, if
the behavioral profile observed for the copy of software SW_1 used on the User
Device 140 is closer to the behavioral profile of the legitimate Vendor's software SW
than a parameter specified in the Superfingerprint, this is proof that SW_1 is an
infringing copy of SW.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-51-

Another example of an infringement detecting program applies to the detection
of infringing video game software. In this example, the legitimate video game SW
involves an image of a dragon. The infringing software SW_1 is a rewritten version of
the game SW that looks identical to the user. Thus the dragon depicted by SW_1 is
identical or almost identical to the dragon depicted by the legitimate SW. In this case
the infringement detecting program included in a superfingerprint monitors the
execution of the game software SW_1 on the User Device 140 and captures frame
buffer contents created by SW_1. The captured frame buffer contents is compared by
the infringement detecting program with a pixel array stored in the superfingerprint,
which is a representation of the dragon image in the game software SW. If the frame
buffer contents and the stored pixel array are closer to each other than a parameter
specified in the superfingerprint then the infringement detecting program continues
processing under the assumption that SW_1 is infringing software.

In an alternative embodiment, a superfingerprint can include a program to
check whether a given copy of software C is a variant of protected software SW. An
example of such a program is one that compﬁtes some statistical property of SW such
as the number of loops, the number of procedures, or the number of floating point
instructions and determines whether the copy of software C has that same number. If
so, this may be evidence that software C is a variant of protected software SW

The Guardian Center 130 sends Superfingerprints in the Continuation Message
140. These sent Superfingerprints are called NewSuperfingerprints. The
Superfingerprints previously sent to or installed on a User Device are called
PreviousSuperfingerprints. Altogether, they are called AllSuperfingerprints. The
Guardian Center 130 furthermore computes a hash function value of
AllSuperfingerprints, denoted HASH(AllSuperfingerprints).

An unaliasable hash function H is a fingerprinting function having the further
property that given X, it is easy to compute H(X), but it is intractable to produce a pair
X and Y such that H(X) = H(Y) and X and Y are different. The term "intractable"
means that the computational time required is practically unfeasible in the size of X,
according to the present state of the art. An example of a class of unaliasable hash

functions is provided by the SHA-1 Federal Information Processing standard,

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-52-

published by the National Institute of Standards. In this embodiment a publicly known
unaliasable hash function is denoted simply as HASH.

The Supervising Program 211 accepts the Continuation Message 104 only if
the hash function value and the result of the computation of the hash function value on
the received Superfingerprints together with the Superfingerprints already present in
the device are equal. In an alternative embodiment, the expression
HASH(NewSuperfingerprints)) is sent, and the Guardian Center 130 instructs the User
Device 140 to delete previously kept Superfingerprints. In that case, the Supervising
Program 211 accepts the Continuation Message 104 only if the received hash function
value HASH(NewSuperfingerprints) and the result of the computation of the hash
function on the received Superfingerprints are equal.

Several variants of these mechanisms are included in the present invention.
One variant is to omit specification of weight from Superfingerprints, so all
Superfingerprints are chosen for execution by the Supervising Program 211 with equal
probability.

In another variant, the User Device's Supervising Program 211 can request a
Superfingerprint for a copy of software SW used on the User Device 140 from the
Guardian Center 130, based on indications that the copy of software SW is infringing.
This variant can be employed only if considered not to impinge on privacy, since it
identifies software that a given User Device 140 may be using illegally.

In yet another variant, when preparing a Superfingerprint for software which is
a computer program, the hash function value computation may treat several operation
codes as being equivalent. This is useful when different operation codes have
essentially the same functionality depending on the arguments. In addition, the
program associated with the Superfingerprint can ignore no-operation instructions or
can ignore certain parts of instructions such as the memory or register locations
included in the instructions.

An action taken by the Supervising Program 211 upon detecting use of an
infringing copy of software or of infringing use of a legitimate copy of software on a
User Device 140, can be to halt the use. A multiplicity of forms of actions upon

detection of infringing software on a User Device 140, are available as described in

WO 02/37245 PCT/US01/44971

10

15

20

25

-53-

co-pending U.S. patent application, Serial Number 09/305,572 filed May 5, 1999
incorporated herein by reference in its entirety. The actions range from sending a
warning message to shutting down the User Device 140. One variant is to ask the
Guardian Center 130 for guidance. In one embodiment, legal action against a User
employing infringing software is not possible because the anonymity of every User
Dévice 140 during Guardian Center 130 Call-Ups is preserved. Furthermore, the
detection of the presence of infringing software on a User Device 140 is effected

within the User Device 140 and is not revealed to any outside entity.

PUNITIVE ACTIONS

There may be times when a User Device 140 cannot reach the Guardian Center
130 (the Guardian Center 130 should be highly distributed, so this eventuality should
occur only when there is a network failure). In these situations, even though a User
Device 140 fails to perform a Call-Up when it should, the measures taken by the
Supervising Program 211 should fall short of halting processing on the User Device
140, though increasing in severity. To this end, the following punitive actions can be
implemented for use by the Supervising Program 211: (1) Disable volume; (2) Disable
color on the display unit; (3) Reduce the size of virtual memory; and, (4) Fill the disk
with many small files.

For any of these punitive actions, the method to undo the punitive action is
recorded in a file called LOCFILE, encrypted with the public key of the Guardian
Center 130. At the next Call-Up, the Guardian Center 130 decrypts LOCFILE and
sends it back as part of the Continuation Message 104. The Supervising Program 211
applies the undo methods in LOCFILE to bring the User Device 140 back to peak

operation.

ENABLING THE USE OF A COPY OF SOFTWARE
Fig. 15 is a flowchart illustrating the verification steps to check whether a copy

of software can be used.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-54-

At step 1301, a User Device 140 uses a copy of software SW (for example,
executing the software if the software is a program). Processing continues with step
1302.

At step 1302, the copy of software SW is checked by the Supervising Program
211 in the User Device 140 using one or more of the Superfingerprints stored in the
User Device 140. A Superfingerprint is said to match a copy of software SW if the
hash function value checks specified in the Superfingerprint and the execution of the
programs included in the Superfingerprint result in the determination that SW is an
infringing copy of software or that SW is a copy of legitimate Vendor supplied
software. If there is no Superfingerprint match, execution proceeds to step 1304. If
there is at least one Superfingerprint that matches the copy of software SW, then '
execution proceeds to step 1303.

At step 1303, a check is made to determine if a tag 605 (Fig. 7) associated with
the copy of software SW is present in the User Device's Tag Table 601 (Fig. 7). If not,
processing continues with step 1306. If a tag associated with the copy of software SW
is found in step 1303, then execution proceeds to step 1307.

At step 1304, a check is made to determine if a Tag)605 (Fig. 7) associated with
the copy of software SW is present in the User Device's Tag Table 601 (Fig. 7). If not,
processing continues with step 1305. If a tag associated with the copy of software SW
is found, then execution proceeds to step 1310.

At step 1305, the Supervising Program allows use of the copy of software SW.
Processing is complete

At step 1306, the copy of software is treated as infringing software, use of
software is disallowed. Processing is complete.

At step 1307 the Vendor's name included in the Tag (or the owner of the digital
signature used to sign the purchase order in the Tag) is checked against the Vendor
names included in all matching Superfingerprints. If any one of these names does not
match, the copy of software SW is treated as incorrectly tagged and processing
continues with step 1306. If all the Vendor names included in matching
Superfingerprints are equal to the Vendor name included in the Tag, then execution

proceeds to step 1310.

WO 02/37245 PCT/US01/44971

10

15

20

25

-55-

At step 1310, several tests are performed. First the hash function value of the
copy of software SW is computed and is compared with the hash function value found
in the Tag. Next the Usage Policy in the Tag is checked to confirm that the current use
of the copy of software SW is allowed. Processing continues with step 1315.

At step 1315, the result of the tests are verified. If all the verifications succeed,

processing continues with step 1305. If not, processing continues with step 1306.

SUPERVISING PROGRAMS OUTSIDE OF OPERATING SYSTEM

In one embodiment, the Supervising Program 211 is either part of the operating
system or linked to the operating system. In an alternative embodiment, one or more
Supervising Programs 211 may reside outside of the operating system. A Supervising
Program 211 must be present to make possible a use of a copy of software protected by
the present invention, on a User Device 140. This is achieved by incorporating
procedures into the Supervising Program 211 required by the copy of software. For
example, a procedure' within the Supervising program 211 may execute a collection of
operating system calls required for use of the copy of software. In addition, each
Supervising Program 211 performs tag checking. Purchasing and Decommissioning

do not change since they are independent of the operating system.

ZERO INFORMATION CALL-UP

Figs. 16A-B are a flowchart illustrating the steps for another method for
performing a Call-Up. The alternative embodiment shown in Figs. 16A-B sends less
information during a Call-Up than the embodiment described in conjunction with Fig.
11A-B. In the embodiment shown in Figs. 16A-B, the information sent from the User
Device 140 to the Guardian Center 130 during a Call-Up is independent of the
software installed and the state of the data in the User Device ' 140.

This embodiment assumes that there is a Tag Table Identifier value ID 604 that
the Supervising Program 211 can read reliably. The Tag Table Identifier value ID 604
comes from a sparse set to avoid a denial of service attack. Call-Ups occur according

to a Call-Up policy as described above. Purchases, decommissioning, and enabling the

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-56-

use of a copy of software, all occur as described above. The only protocol that changes
is the Call-Up itself. Like Privacy-Preserving Call-Ups, Zero Information Call-Ups
take place through secure and anonymous communication channels.

A concept that is specific to this protocol is the notion of an "early Call-Up."
An early Call-Up occurs when a Call-Up message with Tag Table Identifier value ID
604 occurs earlier than MinDif minutes after the previous Call-Up message with the
same Tag Table Identifier value ID 604, where MinDif is a parameter of the Call-Up
policy. '

Turning to Fig. 16A, at step 1700, a secure communication channel is
established between the User Device 140 and the Guardian Center 130, using, for
example, the SSL protocol offered by Netscape Corporation already described in
conjunction with Figs. 11A-B. Processing continues with step 1702.

At step 1702 the Supervising Program 211 in the User Device 140 sends a Tag
Table Identifier value ID 604 and the current time CurT to the Guardian Center 130.
The Supervising Program 211 retains this current time CurT. In an alternate
embodiment, the Supervising Program 211 may also send a NONCE value N.
Processing continues with step 1703.

At step 1703, the Guardian Center 130 verifies that the time CurT is close to
the time recorded at the Guardian Center 130 and that the last time a Call-Up message
with the Tag Table Identifier value ID 604 was received by the Guardian Center 130
was not too recent, i.e., was at least MinDif minutes earlier than CurT where MinDif is
a parameter of the Call-Up policy. If so, processing continues with step 1706. If not,
processing continues with step 1704.

In an alternate embodiment, processing may continue with step 1706 even if the
current Call-Up message with the Tag Table Identifier value ID 604 is an early
Call-Up. In this embodiment, every User Device 140 has an allocation of early
Call-Ups, for example, 5 per day. If the number of early Call-Ups does not exceed this
allocation, then the Guardian Center 130 treats the Call-Up as if it were not early by
continuing with step 1706.

At step 1704 the Guardian Center 130 does not return a Continuation Message

104 to the User Device 140. Processing is complete.

WO 02/37245 PCT/US01/44971

10

15

20

25

30

-57-

At step 1706 the Guardian Center 130 records the time of the current Call-Up
and associates the time with the Tag Table identifier value ID 604. The Guardian
Center 130 forms a digitally signed message SGN_GC(ID, CurT, N,
HASH(AllSuperfingerprints)), where AllSuperfingerprints are as specified in the
Section Superfingerprint Use and Download. The Guardian Center's Continuation
Message to the Supervising Program 211 includes the digitally signed message and
NewSuperfingerprints. Processing continues with step 1707 (Fig. 16B).

Continuing with Fig, 16B, at step 1707, upon receiving the signed Continuation
Message 104 (Fig. 1), the Supervising Program 211 verifies the digital signature of the
Guardian Center 130 received in the Continuation Message 140, using the Public Key
318 (Fig. 3) of the Guardian Center 130. The Supervising Program 211 verifies that
the Tag Table Identifier value ID 604, the NONCE value N, and CurT received from
the Guardian Center 130 are equal to the corresponding values prepared by the
Supervising Program 211 when preparing its Call-Up. The Supervising Program 211
may optionally check that CurT is close to the time as recorded in the Supervising
Program 211. Finally, the Supervising Program 211 computes the hash function value
of all its already received Superfingerprints, including the currently received
NewSuperfingerprints, and verifies that the fourth field HASH(AllSuperfingerprints) in
the Continuation Message 104 equals the computed hash function value. Processing
continues with Step 1708.

At step 1708, if all the above verifications are successful, processing continues
with step 1709. If the verifications fail, processing continues with step 1710.

At step 1709, the Supervising Program 211 appends the NewSuperfingerprints
to its existing Superfingerprints in the Tag Table 601 and continues execution.

At step 1710, the Supervising Program 211 takes punitive action. The secure
communication channel between the Supervising Program 211 and the Guardian
Center 130 is closed.

If the Supervising Program 211 never receives a Continuation Message 104 in
response to a given Call-Up Message, it simply sends a new one with a new current
time CurT. (It does not repeat the previous Call-Up Message as was the case with the

Privacy-Preserving Call-Up method.) When using this protocol the only data that

WO 02/37245 PCT/US01/44971

-58-

needs to be saved in case of failures is the Tag Table Identifier 604 and the tags 605
that are purchased. The next Call-Up message in this case includes an indication that a
full set of Superfingerprints are required as all the old ones have been lost. There can
be an allocation of the number of failures allowed to a given Tag Table Identifier ID
5 604.

While this invention has been particularly shown and described with references
to preferred embodiments thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein without departing from the

scope of the invention encompassed by the appended claims.

WO 02/37245 PCT/US01/44971

-59-

CLAIMS

What is claimed is:

1. A method for linking a first software module with a second software module
5 comprising the steps of:

storing a public key in said first software module;

associating a stub digitally signed by an owner of said public key with
said second software module;

computing a hash function value on a portion of said second software

10 module; and

linking said first software module with said second software module
upon verifying by use of said public key said digital signature on said stub and
that saidcomputed hash function value equals a hash function value included in

said digitally signed stub.

15 2. The method of claim 1 wherein said second sofiware module is one of a
plurality of software modules to be linked and said first software module

includes a plurality of previously linked software modules.

3. The method of claim 1 wherein the steps of computing and verifying are
20 performed by a dedicated processor.
4. A method for linking a first software module with a second software module

comprising the steps of:
storing a first hash function value in said first software module;
computing a second hash function value on a portion of said contents of
25 said second software module; and
linking said first software module with said second software module
upon verifying that said second hash function value is equal to said first hash

function value.

WO 02/37245

5.
6.
5
7.
10
8.
15 9.
20
10.
25

PCT/US01/44971

-60-

The method of claim 4 wherein said second software module is one of a
plurality of software modules to be linked and wherein said first sofiware

module includes a plurality of previously linked software modules.

The method of claim 4 wherein the steps of computing and verifying are

performed by a dedicated processor.

A user device comprising:

a first storage module; and

a second storage module into which a software module is stored,
verification software stored in said first storage module which verifies that a
portion of said software module is authorized by computing a hash function
value on said portion and comparing said computed hash function value with a

hash function value stored in said verification software.

The user device of claim 7 wherein said first storage module is difficult to

modify by software means.

The user device of claim 7 further comprising:

a public key within said first storage module;

an additional verification software within said first storage module; and

a digitally signed stub within said second storage module associated
with said second software module, said additional verification software
computes a hash function value on a portion of said second software module
and verifies by use of said public key that said digitally signed stub includes a
digital signature on said computed hash function value.

A user device comprising:

a first storage module having a public key and verification software

' stored therein; and

WO 02/37245

5
11.

10
12.

15
13.

20
14.

25

PCT/US01/44971

61-

a second storage module into which a software module is stored, a
digitally signed stub associated with said second software module, said
verification software computes a hash function value on a portion of said
second software module and verifies by use of said public key that said digitally
signed stub associated with said second software module includes a digital

signature on said computed hash function value.

The user device of claim 10 further comprising:

a hash function value within said first storage module wherein said
verification software further verifies that a portion of said second software
module is authorized by computing a hash function value on said portion and
comparing said computed hash function value with a hash function value stored

in-said verification software.

A watchdog program comprising:

a value;

a function to compute; and

means for verifying a software module stored in memory by computing
said function on a sequence of locations in said software module and

comparing said result of said computation with said value.

The watchdog program of claim 12 wherein said function is a hash function and
said means for verifying computes said hash function value on said sequence of

locations and compares said result of said computation with said value.

The watchdog program of claim 12 further comprising:
a watchdog action; and
means for performing said watchdog action dependent on said result of

said comparison.

WO 02/37245

10

15

20

25

15.

16.

17.

18.

19.

20.

PCT/US01/44971

-62-

The watchdog program of claim 14 wherein said watchdog action includes
halting said operation of a user device on which said watchdog program is

executing.

The watchdog program of claim 12 further comprising:
a plurality of watchdog actions; and
means for performing at least one watchdog action dependent on said

result of said comparison.

The watchdog program of claim 12 further comprising:

means for performing a need-to-check test; and

means for determining whether to perform said function on said
sequence of locations in said software module dependent on said result of said

need-to-check test.

The watchdog program of claim 12 further comprising:
a plurality of sequences of locations; and

a plurality of stored values.

The watchdog program of claim 18 further comprising:

a plurality of watchdog actions; and

means for performing at least one said watchdog action dependent on
said result of a comparison between values computed by said function on said

plurality of sequences of locations and said stored values.

The watchdog program of claim 18 further comprising:
a plurality of memory locations;
means for selecting a software module; and
means for storing a start execution time and an end execution time for

said software module in said memory locations.

WO 02/37245 PCT/US01/44971

-63-

21. The watchdog program of claim 12 wherein said watchdog program is a

subroutine stored in a watchdog field in another program.

22. The watchdog program of claim 21 wherein said subroutine is placed within
said watchdog field in a location dependent on conditions present when said

5 another program is loaded.

23. The watchdog program of claim 21 wherein said location of said subroutine is

changed after said subroutine is loaded.

24. The watchdog program of claim 21 wherein said placement of calls to said
subroutine is determined based on conditions present when said another

10 program is loaded.

25. The watchdog program of claim 21 wherein said placement of calls to said

subroutine is changed after said subroutine is loaded.

26. The watchdog action of claim 14 wherein said watchdog action includes

moving other watchdog subroutines within a watchdog field.

15 27. A tagtable comprising:
a tag table identifier having a value;
a tag for a copy of software, said tag comprising said tag table identifier
value and a hash function value of a portion of said copy of software; and
a digitally signed message, said digitally signed message comprising

20 said tag table identifier value and said hash function value.

28. The tag table of claim 27 wherein said tag further comprises a usage policy and

said digitally signed message further comprises a usage policy.

WO 02/37245 PCT/US01/44971

-64-

29. The tag table of claim 27 wherein said tag further comprises a name and said

digitally signed message further comprises a name.

30. The tag table of claim 27 further comprising:
a hash function value for said tag table sent from a guardian center in a

5 previous guardian center call-up.

31. The tag table of claim 27 further comprising:
a header, said header including a continuation message sent from a

guardian center in a previous guardian center call-up.

32. The tag table of claim 27 further comprising:

10 usage statistics for said copy of software.

33.. A method for purchasing software comprising the steps of:
creating, by a purchaser, a data structure including a tag table identifier
value associated with a tag table in a user device and an identification of said
software;
15 computing, by said purchaser, a hash function value of said data
structure;
sending, by said purchaser, a message to a vendor, said message

comprising said hash function value and said identification of said software.

34. The method of claim 33 further comprising the steps of:
20 upon receiving said message, said vendor digitally signing said message
and returning said signed message to said purchaser;
verifying by a supervising program on said user device said digital
signature on said signed message by use of said vendor's public key; and
verifying by said supervising program that said signed message includes

25 said message sent by said purchaser.

WO 02/37245

35.
36.

5
10 37.
38.

15
39.
40.
20 41.

PCT/US01/44971

-65-

The method of claim 33 comprising the step of:
establishing a secure communication channel between said purchaser

and said vendor before sending said message.

The method of claim 34 further comprising the steps of:

storing a hash function value of a portion of said software in said
identification of software; and

verifying, by said supervising program, that said hash function value in
said identification of said software equals a computed hash function value on

said portion of said software.

The method of claim 34 further comprising the step of:
storing, by said supervising program, a tag for said software in said tag
table wherein said tag includes said tag table identifier value, said

purchaser-created data structure, and said signed message.

The method of claim 33 wherein said data structure further includes a usage

policy and said message further comprises said usage policy.

The method of claim 33 wherein said data structure further includes a new

randomly chosen value occurring only once.

The method of claim 33 wherein said message further includes a proof of

payment for said software.

A method for decommissioning a copy of software in a user device comprising
the steps of:

removing, by a supervising program, a tag associated with said copy of
software from a tag table in said user device, said tag including a digitally

signed portion and a tag table identifier value;

WO 02/37245

5
42.
10 43.

15
44.

20
45.
46.

25

PCT/US01/44971

-66-

establishing a communications channel from said user device to a
vendor;

sending, by said user device said tag to said vendor on said
communication channel;

verifying, by said vendor, said digital signature on said digitally signed
portion by use of said public key of said vendor; and

reading, by said vendor, said tag table identifier value.

The method of claim 41 further comprising the step of:

sending by said vendor a certificate of credit to a purchaser of said tag.

The method of claim 41 further comprising the steps of:

sending, by said vendor said digitally signed portion and said tag table
identifier value to a guardian center;

storing by said guardian center said digitally signed portion of said tag;
and

linking, by said guardian center, said digitally signed portion of said tag

to said tag table identifier value.

The method of claim 43 further comprising the step of:
transmitting, by said guardian center, a continuation message to said
supervising program in said user device, said continuation message including

said digitally signed portion of said tag and said tag table identifier value.

The method of 44 further comprising the step of:
verifying, by said supervising program that said digitally signed portion

of said tag having said tag table identifier value is not stored in said tag table.

A method for supervising usage of software on a user device comprising the

steps of:

WO 02/37245 PCT/US01/44971

-67-

computing, by a supervising program within said user device, a first
hash function value of a tag table;
sending, by said supervising program, a call-up message to a guardian
center, said call up message comprising said first hash function value, an
5 identifier value of said tag table, and a second hash function value of said tag
table sent in a previous call-up message;
verifying, by said guardian center, that said hash function value of said
tag table sent in said previous call-up message is a most recently stored value in
a list of hash function values stored by said guardian center and associated with
10 said identifier value of said tag table;
upon successful verification by said guardian center, appending said
received first tag table hash function value to said list of hash function values
associated with said identifier value of said tag table; and
sending, by said guardian center, a digitally signed continuation
15 message to said supervising program, said continuation message comprising a

portion of said call-up message.

47. The method of claim 46 further comprising the step of:
verifying, by said supervising program, that a portion of said digitally
signed guardian center message is equal to said corresponding portion sent in

20 said call-up message.

48. The method of claim 47 further comprising the step of:
upon failure of said verification, initiating by said supervising program

anew call-up to said guardian center.
49. The method of claim 46 wherein said guardian center stores said received
25 call-up message and said continuation message and associates said stored

messages with said tag table identifier value.

50. The method of claim 49 further comprising the step of:

WO 02/37245 PCT/US01/44971

-68-

upon receiving a call-up message from said supervising program,
sending, by said guardian center, said stored continuation message upon

verifying that said received call-up message equals said stored call-up message.

51. The method of claim 46 wherein the step of verifying further comprises the step
5 of:
upon failure of said verification, sending, by said guardian center, a
digitally signed message to said calling supervising program indicating said

failure.

52. The method of claim 51 further comprising the step of:
10 upon receiving said digitally signed message from said guardian center,

invalidating said tag table by said supervising program.

53. The method of claim 46 wherein the step of verifying further comprises the step
of:
15 upon failure of said verification, rejecting, by said guardian center

future call-ups including said tag table identifier value.

54. The method of claim 47 further comprising the step of:
replacing, by said supervising program, within said tag table said hash
function value of said tag table sent in said previous call-up message by said

20 hash function value of said tag table sent in said current call-up message.

55. The method of claim 47 comprising the further step of:
replacing, by said supervising program, within said tag table said
continuation message received in said previous call-up by said continuation

message received in said current call-up.

WO 02/37245

10

15

20

25

56.

57.

58.

59.

60.

PCT/US01/44971

-69-

The method of claim 46 wherein said call-up to a guardian center occurs each
time an operating system or said supervising program are loaded into memory

in said user device.

The method of claim 47 further comprising the step of:
measuring, by said supervising program, an elapsed time between a first
call-up to a guardian center and a second call-up to a guardian center, by use of

one or more event counters.

The method of claim 57 wherein said event counters are updated periodically as

recorded by a clock.

The method of claim 57 further comprising the steps of:
| storing by said guardian center, a current time value in said continuation
message; and
setting, by said supervising program, an event counter to said current

time.

The method of claim 47 further comprising the steps of:

storing user device descriptive values in said tag table;

storing by said supervising program, a plurality of tag tables, said tag
tables having said tag table identifier value of said tag table whose hash
function values were sent to said guardian center in a plurality of most recent
call-ups;

storing, by said guardian center, in said continuation message, a
plurality of said hash function values of said tag tables sent in said plurality of
said most recent call-ups; and

upon receiving said continuation message, said supervising program,
computing said hash function values of said stored plurality of tag tables and
further verifying that said hash function values are equal to said corresponding

values in said continuation message.

WO 02/37245 PCT/US01/44971

-70-

61 The method of claim 60 further comprising the step of:
checking, by said supervising program, whether said user device
descriptive values in said tag tables sent in said plurality of most recent call-ups

belong to a plurality of user devices.

5 62. Themethod of claim 61 wherein the step of checking further comprises the step
of:
searching said plurality of tag tables for two successive tag tables
including user device descriptive valﬁes which differ by more than a specified

number of corresponding values.

10 63. The method of claim 62 wherein the step of checking further comprises the step

of:
searching said plurality of tag tables for a first tag table, a second tag

table and a third tag table, the second tag table sent in a call-up that occurred
later than a call-up in which said first tag table was sent and said third tag table

15 sent in a call-up that occurred later than said call-up in which said second tag
table was sent and wherein said user device descriptive values stored in said
first tag table and in said second table differ in more than a specified number of
corresponding values and said user device descriptive values stored in said first.
tag table and in said third tag table differ in fewer than a specified number of

20 corresponding values.

64. The method of claim 61 further comprising the steps of:
forwarding, by said supervising program, said result of said verification
to said guardian center; and
disabling future call-up messages including said tag table identifier
25 value by said guardian center upon determining that said tag tables sent in said

plurality of most recent call-ups belong to a plurality of user devices.

WO 02/37245

65.

66.

5 67.
10
15

68.

69.
20

70.

PCT/US01/44971

71-

The method of claim 47 wherein said call-up message includes a new randomly

chosen value occurring only once.

The method of claim 46 wherein said continuation message includes a

superfingerprint.

The method of claim 66 further comprising the step of:

computing, by said guardian center, a hash function value of a portion
of superfingerprints included in continuation messages sent to said supervising
program in previous call-ups and in said continuation message;

storing, by said guardian center, said hash function value in said
continuation message forwarded to said supervising program;

verifying by said supervising program, that a hash function value of a
corresponding portion of said superfingerprints stored on the user device and
included in said continuation message is equal to said received hash function
value; and

appending, by said supervising program, on said user device said new

superfingerprint to said superfingerprints stored on said user device.

The method of claim 46 wherein said call-up message includes said current

user device time on said user device.

The method of claim 68 wherein the step of verifying further comprises the step
of:
verifying, by said guardian center whether said current user device time

is within a specified tolerance of a clock time on said guardian center.

The method of claim 46 wherein the step of verifying further comprises the step
of:

WO 02/37245 PCT/US01/44971

-72-

verifying, by said guardian center that a time difference between said
arrival of said call-up message and said previous call-up message exceeds a

specified minimum.

71. The method of claim 46 wherein the step of verifying further comprises the step
5 of:
verifying by said guardian center that a time difference between said
arrival of said call-up message and said previous call-up message is below a

specified maximum.

72. The method of claim 47 further comprising the step of:
10 upon receiving said continuation message, verifying by said supervising
program, that said total usage measured across all items in said tag table
exceeds said total usage measured across all items in said tag table sent

associated with said previous 'call-up message.

73. A user device comprising:
15 user device descriptive values; and
a supervising program which records said user device descriptive

values.

74. The user device of claim 73 wherein said user device descriptive values include

processor-identifying information.

20 75. The user device of claim 73 wherein said user device descriptive values include

non-volatile storage device-identifying information.

76. The user device of claim 73 wherein said user device descriptive values include

directory structure identifying information.

WO 02/37245 PCT/US01/44971

-73-

77. The user device of claim 73 wherein said user device descriptive values include

file identifying information.

78. A software checker comprising:
a superfingerprint, said superfingerprint including data and a computer
5 program;
a guardian center which sends a plurality of superfingerprints for a copy
of software to a user device; and
a supervising program executing in said user device which stores the

plurality of superfingerprints.

10 79. The software checker of claim 78 wherein said superfingerprint further
comprises a copy of software name, said copy of software name indicating said

copy of software to be checked.

80. The software checker of claim 78 wherein said superfingerprint further
comprises a weight, said weight determining said frequency of use of said

15 superfingerprint for checking said copy of software.

81. The software checker of claim 78 wherein said superfingerprint further

comprises a list of hash function values of portions of a copy of software.
82. The superfingerprint of claim 81 further comprising a hash function.

83. The software checker of claim 78 further comprising:
20 a decryption program within said superfingerprint.

84. The software checker of claim 78 wherein said superfingerprint includes a
monitoring program which monitors said behavioral characteristics of a copy of

software.

WO 02/37245 PCT/US01/44971

-74-

85. The software checker of claim 78 wherein said superfingerprint further

comprises a public key of a vendor associated with said copy of software.

86. The software checker of claim 78 wherein said guardian center sends said

superfingerprint in a digitally signed message to said supervising program.

5 87. The software copy checker of claim 86 wherein said supervising program
verifies said digital signature and stores said superfingerprint if said verification

is successful.

88. A method for examining a copy of software used in a user device comprising

the steps of:

10 providing a plurality of superfingerprints, a superfingerprint including a
value, a program, a condition, and location information;

executing said program on a portion, said portion specified by said

location information, of said contents of a copy of software and computing a
value; and

15 verifying that said pair of said computed value and said included value

satisfies said condition.

89. The method of claim 88 further comprising the steps of:
storing a weight in said superfingerprint; and

selecting said superfingerprint to test dependent on said weight.

20 90. The method of claim 88 further comprising the step of:
providing at least one tag wherein said tag is digitally signed by a
vendor; and
verifying that a copy of software used in a user device has an associated

tag.

WO 02/37245 PCT/US01/44971

-75-

91. The method of claim 90 further comprising the step of:
taking a punitive action upon said successful verification of said
condition and said failure of said verification of said copy of software having

an associated tag.

5 92. The method of claim 88 further comprising the further step of:
taking a punitive action upon said successful verification of said

condition and an absence of any tag on said user device.

93. The method of claim 90 wherein said associated tag includes said name of said

copy of software.

10 94. The method of claim 90 wherein said associated tag includes a hash function

value of a portion of said copy of software.

95. The method of claim 88 wherein said program includes a hash function, said
value is a list of hash function values, and the step of verifying of said

condition further comprises general-location hash function value checking.

15 96. The method of claim 88 wherein said program includes a hash function, said
value is a list of hash function values, and the step of verifying said condition

further comprises same-location hash function value checking.

97. The method of claim 88 wherein said program monitors behavior of a used
copy of software, said value includes a list of actions, and the step of verifying
20 said condition further comprises comparing said monitored behavior against

said list.

98. The method of claim 88 wherein said program evaluates intermediate results

produced by software, said value includes a list of results, and the step of

WO 02/37245 PCT/US01/44971

-76- .

verifying said condition further comprises comparing said evaluated

intermediate results with said list.

99. The method of claim 88 wherein said copy of software is a computer program
and said location information specifies a sequence of counts of bytes starting at

5 said beginning of said computer program.

100. The method of claim 88 wherein said copy of software is a computer program

and said value is a list including an instruction.

101. The method of claim 99 wherein no-operation instructions are excluded from

said counts.

10 102. The method of claim 100 wherein location information in said superfingerprints

excludes certain portions of instructions.

103. The method of claim 102 wherein said excluded portions of instructions

comprise memory locations.

104. The method of claim 102 wherein said excluded portions of instructions

15 comprise register locations.

105. A method for examining a copy of software used in a user device comprising
the steps of:
providing a superfingerprint, said superfingerprint including a program
using said copy of software;
20 tracking, by said program, said use of said copy of software; and

recording data related to said use.

106. A method for allowing use of a copy of software on a user device, said copy of

software having a tag, comprising the steps of:

WO 02/37245 PCT/US01/44971

-77-

obtaining said tag from a tag table in said user device;
computing a hash function value of a portion of said copy of software;
comparing said computed hash function value with a hash function
value stored in said tag; and
5 allowing said use of said copy of software upon successful verification

of equality of said values.

107. The method of claim 106 wherein the step of comparing further comprises the
step of:
checking that said use of said copy of software is allowed by comparing
10 said use with a usage policy stored in said tag; and

said verification further comprises success of said check.

108. The method of claim 106 wherein the step of comparing further comprises the
step of:
comparing a tag table identifier value included in said tag with a tag

15 table identifier value for said tag table.

109. The method of claim 106 wherein the step of allowing further comprises the
step of:

recording usage statistics for said copy of software.

110. The method of claim 106 further comprising the steps of:
20 checking whether a superfingerprint stored in said user device matches
said copy of software;
upon detecting a match, verifying that a vendor name and a public key
included in said superfingerprint are equal to a vendor name and a public key
included in said tag; and
25 upon failure of said verification, disallowing said use of said copy of

software.

WO 02/37245 PCT/US01/44971

-78-

111. The method of claim 106 further comprising the steps of:
checking whether a superfingerprint stored in said user device matches
said copy of software;

upon not finding any such match, allowing use of said copy of software.

5 112. A method for supervising use of software on a user device comprising the steps

of:

providing a tag table in said user device, said tag table including a tag
table identifier value;

sending, by said user device, a call-up message to a guardian center,

10 said call-up message including said tag table identifier value; and

verifying, by said guardian center that said difference between a time of

said call-up message and a time of a last call-up message including said tag

table identifier value exceeds a specified minimum value.

113. The method in claim 112 further comprising the steps of:

15 upon successful verification by said guardian center, generating a
digitally signed continuation message, said digitally signed continuation
message including said call-up message;

storing, by said guardian center, said call-up message; and
sending, by said guardian center, said digitally signed continuation

20 message to said user device.

114. The method of claim 112 wherein the step of verifying further comprises the
step of:
computing a difference between a time as recorded on said user device
| included in said call-up message and said time as recorded in said guardian

25 center.

115. The method of claim 113 wherein said digitally signed continuation message

sent by said guardian center further includes a hash function value of a portion

WO 02/37245

10

15

20

25

116.

117.

118

119.

120.

121.

PCT/US01/44971

-79-

of superfingerprints previously sent by said guardian center in response to a

call-up message including said tag table identifier value.

The method of claim 113 wherein said continuation message includes a new

superfingerprint provided by said guardian center.

The method of claim 113 further comprising the step of:
verifying, by said user device said signature of said guardian center and

said tag table identifier value included in said continuation message.

The method of claim 117, further comprising the steps of:
storing a user device time as recorded on said user device in said call-up
message;
storing said user device time in said continuation message; and
verifying that said time is earlier than by less than a specified value

from said user device time upon receiving said continuation message.

The method of claim 115 further comprising the step of:
verifying, by said user device, that said hash function value of said
portion of previously sent superfingerprints stored in said user device is equal

to said hash function value included in said continuation message.

The method of claim 116 wherein said digitally signed continuation message
sent by said guardian center further includes a hash function value of a portion
of said superfingerprints previously sent by said guardian center in response to
a call-up message including said tag table identifier value and a

superfingerprint sent in said continuation message.

The method of claim 120 further comprising the step of:
verifying, by said user device, that said hash function value of said

portion of previously superfingerprints sent by said guardian center and stored

WO 02/37245 PCT/US01/44971

-80-

in said user device is equal to said hash function value included in said

continuation message.

122. The method of claim 116 further comprising the step of:

installing by said user device a new superfingerprint in said tag table.

5 123. A method for ensuring that a user-specified user device identifier value is
present on only one user device comprising the steps of:
sending a message from said user device to a receiver, said message
including said device identifier value associated with said user device;
searching, by said receiver, a data structure associated with each
10 possible user device identifier value; and
determining by an ID-checking procedure whether said user device

identifier value is stored on another user device.

124. The method of claim 123 further comprising the step of:
upon determining that a user device identifier value is on a plurality of

15 user devices, invalidating by said receiver said user device identifier value.

WO 02/37245 PCT/US01/44971

1/21
Vendor:
110
A
P
: 102
101 ~—’/ Signed .
Purchase Purchase
Order ' Order
) : ¢ i
User Device ———’f? 03.Call-Up — | Guardian
140 — ' Center
<—— 104 Continuation —— 130
Message

Fig. 1

WO 02/37245 PCT/US01/44971

. 2/21
o
1201
| User Space
205
Purchasing
Program
202 Operating System
—
212 213 Exeli
Watchdogs Tag Table- UPETVISINg -
: Program
| |
Kernel Superﬁnge;pmﬁs
203 Boot Disk Software
204 Boot PROM

Fig. 2

WO 02/37245

Boot Prog.
Read Only

Memory R

204

3/21

203
Boot Disk
Software

| 316
Hash
Function

FIG. 3

PCT/US01/44971

202

Cperating System 1 — first portion

312
Stub OS 1 1= 320
SgnOS 1(Hash(OS 1 1))|

Operating System N — first portion
1322
|Stub. OS_N_1= 3o
SenOS N(Hash(OS N 1))

oM

WO 02/37245

PCT/US01/44971

4/21

- ho!

S'tart Machine or Restart

l : /l{.oz,

Boot PROM program loads data from boot disk and
verifies it by hash function value matching

i

~LD2

* * Verification No

suceeds?

noy

Boot disk software contains the public keys of one or more
operating systems. User selects an operating system or one is
selected by default.

Fle. b

02
/34

Jv /amr
7

First software module of selected operating system is
loaded, containing a stub digitally signed by
operating system vendor of hash fimction value of
said module.

: e

Boot disk software verifies digital signature in stub by
vendor’s public key and computes hash finction value
of software module and compares with hash function
value in stub.

v ' Lmé

Boot
continues

-~ v .

Verification ~=——p Abort boot..

succeeds?

WO 02/37245

Conformant
Software
Textl, PKY

Stub
Checking

804] l

Conformant Software
TextY

StubY=

Sgn3 N(HASH(ProgY))
830

Stub checking

Conformant
Software
Text 4

802

PCT/US01/44971

5/21

Conformant Software Text 3.1

7| Stb3.L = Sgn3.1(HASH(Prog3.1)

Conformant
Software 810
Text2
PK1, ... PKn
803
Conformant Software Text 3.N
Hash function value mgtching Stub3.N = Sgn3 N(HASH(Prog3.N))

820

FIG. 5

WO 02/37245 PCT/US01/44971

6/21

K
Supervisory
Program
Module

202!
Operating System
Module

212B
Watchdog

230,

Watchdog Structure

Optional need-to-check test 532
Addresses to be checked 534
Hash functions 536

Hash function values 538
Watchdog actions 540

Fig. 6A

WO 02/37245 PCT/US01/44971

.i 3!

gof
g{

Embedding software
module is executing,
Watchdog code is reached

Need-to-check
Perform Watchdog
check?

<| Read contents of specified memory locations.
Compute values of hash function on the contents of

said specified locations. Compare with corresponding hash
function values listed in Watchdog.

1.

v .
i f:)'
! A%
Every computed hash Yes | Brbedding
fumction value equals 4 : software .
corresponding listed value? execution.
continues

Take specified action.

FIG. GC

WO 02/37245

8/21
G20
P
unused
&40
Fig. 6 Watchdog
' subroutine
630
unused G2
Fig. 6E
| Watchdog
subroutine
call 631 630
Watchdog
Watchdog Subroutine .
subroutine
feall 631%

location

' Unused calling

PCT/US01/44971

WO 02/37245

211
Supervising
Program

\»" [Tao.’m BE WEVTIFER VALUE. DU
\ 6035 Tag for software SW
‘ TAG SW ,

Fig. 7

PCT/US01/44971

9/21

601
Tag Table in main memory

603 Tag Table Header

609 Usage statistics for
software SW

WO 02/37245 PCT/US01/44971

10/21
1ot

Fig. &

Establish a secure connection between Pur.chés’er and Vendor.
Purchaser pays for goods.

Jo? :

Purchaser creates a Software-Identifying
| Structure S. 8 = (NAME_SW, ID,
HASH(SW), USAGE POLICY, NONCE)

- |10

v

Purchaser sends HASH(S), the name of the software
NAME: SW, the hash of the contents of the software
HASH(SW), and USAGE_POLICY to Vendor as purchase order

e)

Vendor verifies that Vendor has agreed to sell a copy of NAME_SW with the
proposed USAGE_POLICY having HASH(SW) to Purchaser.

v ‘
1110
No Discontinue

~ This was agreed? ~————> -protocol. -

/“Oé’

Vendor sends SGN | Vendor(HASH(S), NAME_SW, HASH(SW), USAGE POLICY‘) to
\\@ Purchaser.

/ ¥

User Device’s Supervising Program verifies that it has received the Vendor’s digital signature
on purchase order. If verification succeeds, then Supervisory Program places S and digitally

signed message together forming the tag into the Tag Table having Tag Table Idenﬁﬁer Value
ID. Otherwise, the Supervising Program aborts the protocol.

wO 02/3724? PCT/US01/44971

11/21

/\10\

User Device’s Supervising Program removes tag TAG_SW from
the Tag Table having identifier value ID.

1

A\ | l

T
v

The User Device calls up the Vendor over an anonymous channel and |
sends Tag TAG_SW.

¢ \Uﬂ v

! E
Vendor verifies that the Tag TAG_SW properly represents data created
during a software purchase transaction and verifies said Vendor’s digital
sighature on TAG_SW

\"ZOL{' &
/

2065

/|

No :
Abort
Verification protocol.

succeeds?

700 Y
/\ & es

Vendor sends a certificate of credit to the user device.

A1

4

Vendor sends TAG_SW and ID to Guardian Center.
Guardian Center places TAG_SW in a linked list associated with the Tag Table

Tdentifier value ID.

FIG-. 9

WO 02/37245 PCT/US01/44971

12/21
601
Tag Table in main memory
211 , 603 Tag Table Header
Supervising ' :] :
Program 604 Tag Table Identifien

Value ID

610 User Device
Descriptive Values

605 Tag for software SW
TAG_SW

609 Usage statistics for
software SW

TT PREV

PCT/US01/44971

WO 02/37245

13/21 °

A | ®

1

Supervising Program initiates Callup through anonymous channel using SSL.

T

Supervising Program sends HASH(TT), HASH(TT PREV)

and Tag Table identifier valueID to Guardian Center. P 1SoY
v —
Ny Guardian Center
" NO sends
HASH(TT PREV) = —Pcontinuation
HASH(TT) previous? message
Lndicating that ID
is bad. After
' _ verification,
Guardian Center replaces its copy of Supervising
SH(TT) for ID by the sent HASH(TT). - Program declares
Tag Table to be
invalid. |

1St N -

with the assertion that the Call-Up is good.

Guardian Center sends signed continuation message

FIG. 1Tk ®

PCT/US01/44971

WO 02/37245

14/21°

CM
Received within
_timeout?

o7 // \M. | |
A , /

Supervising Program verifies that HASH(TT) and HASH(TT PREV) received from
the Guardian Center are the ones the SP sent, and that the ID is equal. The
Supervising Program performs a User Device Descriptive Value check.

]
. |

. 0
o sl r
‘ s0g

HASH(TT PREYV)

—f Yes

Supervising No 1§upervising

Program assigns ’ rogram

HA%TI—I(TT) t(%n Verifications > resends the
succeed? Callup.

FlG.1l 8

WO 02/37245 PCT/US01/44971

15/211

1000
e l

Check the following conditions:

1) User Device Descriptiwe Values that are not expected to change in the time
elapsed between two successive Call-Ups have changed.

2) User Device Descriptive Values that may change undergo the following changes:
three previously sent Tag Tables have the property that the Header of the earliest
sent '['ag Table contains changeable UDDVs whose configuration of values is C,
a subsequently sent Tag Table where the corresponding stored UDDVs have a
markedly different configuration of values C_1, and a still later sent Tag Table
where the corresponding stored UDDVs again have the configuration of values C

' [00 1

L . The UDDV
Either condition —plcheck fails.

holds?

005

I

The UDDV check succeeds.

Flg. 12

WO 02/3
/37245 PCT/US01/44971

16/21

1600
Supervising Program initiates

Call-Up throngh anonymous channel using SSL.

A4

1602
Supervising Program sends HASH(TT), HASH(TT_PREV), Tag Table Identifier Value ID,

Current Time ,

1603 C - Yes 160
all-Up message esend previously.
already received at + lsent Continuation
sssage.

‘Guardian Center?

1605 o .
Guardizn Center verifies: 1) received time agrees with time o

snd thet the inter-Call-Up interval is neither too short nor too
 value of HASH(TT) from previous Callup.

n Guardian Center’s clock
long. 2) HASH(TT_PREV)

No -
— ﬁ607
Guardian Center

sends continuation
message
indicating that ID

Fi1G 134 . 1608 ~ A is bad.

Guardian Center replaces its copy of
HASH(TT) by the sent HASH(TT).

v
1609
Guardizn Center sends 2 continuation message consisting of a signed portion including ID,

.., H_k, HASH(AllSuperfingerprints), and the Current Time in the Guardian Center,

1606
Verifications
succeed?

H I,.
nd decommissioned tags for this ID, if any and the unsigned portion consists of
NewSuperfingerprints.

©

WO 02/37245 PCT/US01/44971

1%3/21

1610

Upon receiving the Continuation Message, Supervising Program verifies that HASH(TT)
(=H_1) and HASH(TT PREV) (= H_2) received from the Guardian Center are the ones the SP
sent, and that the Tag Table Identifier Value ID is equal to the Tag Table Identifier Value
associated with this Supervising Program. The Supervising Program further verifies that the
lhash finction values of previous Tag Tables correspond to previously held Tag Tables in the
User Device. The Supervising Program also performs a User Device Descriptive Value check.
The Supervising Program also verifies that the consumption recorded in the Tag Table
sequence is non-decreasing in time. SP also verifies that decommissioned tags sent from the -

NewSuperfingerprints sent and the ones already present on User Device are consistent with
HASH(AllSuperfingerprints).

Guardian Center are absent from Tag Table. The Supervising Program also verifies that the

1613

Supervising Program

assigns HASH(TT) to. 1612
HASH(TT PREV) and isi
updateg - e Yes 1611 No gllf ga\;lifmg
Superfingerprints. Set ¢) . — 5 [resends the
the User Device Clock to Verifications ‘ Callup.

succeed?

the time received in the
continuation message.

WO 02/37245 PCT/US01/44971

. 18/21

Event sent every

minute.
1410

Event Counter -——

1420

WO 02/37245 PCT/US01/44971

v 19/21 o

130t

User Device uses copy of software J

\

}’2792

/

Atleast one
superfingerprint X
matches SW?

7 Yes

Tag present
with name SW?

Tag present
with name SW?

Vendorname
in Tag = Vendor
name in
Superfingerprint?

.. Yes
Allow Use <

/)2,(_‘0 2

Verify that (1) H(SW) = hash value found in tag (2) Usage N
policy in tag allows usage at current time.

Yes No .

Verifications .
succeed?

PCT/US01/44971

WO 02/37245

20/21°

0

|

Supervising Program initiates Call-Up through anonymous channel using SSL.

Ryile l

Table Identifier value ID to Guardian Center.

Supervising Program sends timgS CurT, Nonce N, and Tag

CurT is current
time and previous
"Call-Up not too
recent?

1106

PULLTE

1704
Guardian Center
lhalts protocol.

Guardian Center associates CurT with Tag Table Identifier value ID.

Guardian Center creates a continuation message by forming a digitally signed

message SGN_GC(ID, CurT, N, HASH(AllSuperfingerprints)) and associating
that with NewSuperfingerprints.

®)

Figlg A

WO 02/37245 PCT/US01/44971

21/21

}3707 | b

|Supervising Program verifies the digital signature of the Guardian Center received in the
Continuation ‘Message. The Supervising Program further verifies that the Tag Table
[dentifier vatue ID, the NONCE value N, and CurT received from the Guardian Center are
equal to the corresponding values prepared by the Supervising Program for its Call-Up. The
Supervising Program may optionally check that CurT is close to the time as recorded in the
Supervising Program. Finally, the Supervising Program compuies the hash function value of
all its already received Superfingerprints, including the currently received
NewSuperfingerprints, and verifies that the corresponding field in the Continuation Message
equals the computed hash function value.

Rylk
A AT
f"‘
Supervising Program : 1708 .
appends said N Supervising
i Yee 0
NewSuperfingerprints s Program starts a
fo its existing. D Verifications ——ppew Call-Up.
Superfingerprints quccead?
continues executing,

Flc. 1B

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

