

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
26 April 2007 (26.04.2007)

PCT

(10) International Publication Number
WO 2007/048021 A2

(51) International Patent Classification:

F16L 19/10 (2006.01)

(21) International Application Number:

PCT/US2006/041214

(22) International Filing Date: 20 October 2006 (20.10.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

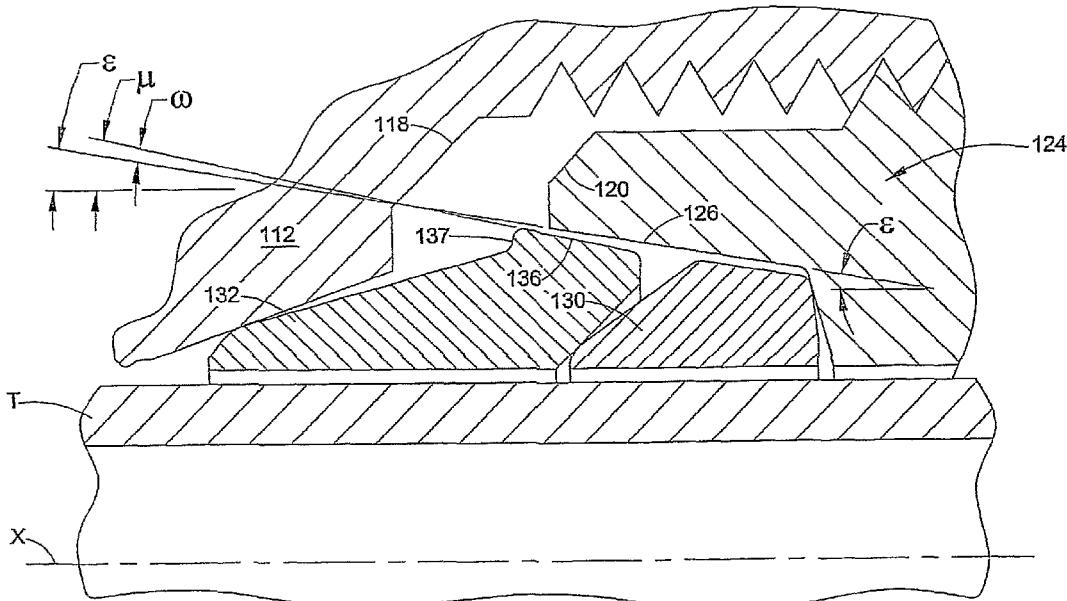
11/255,499	20 October 2005 (20.10.2005)	US
11/375,843	14 March 2006 (14.03.2006)	US

(71) Applicant (for all designated States except US):

SWAGELOK COMPANY [US/US]; 29500 SOLON ROAD, Solon, OH 44139 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILLIAMS, Peter, C. [US/US]; 3495 EDISON ROAD, Cleveland Heights, OH 44121 (US). MARSHALL, Andrew, P. [US/US]; 2208 SOUTH BELVOIR BLVD., University Heights, OH 44118 (US). CLASON, Mark, A. [US/US]; 10201 CHAFFEE DODGEVILLE ROAD,


Orwell, OH 44076 (US). FRUH, Jason, M. [US/US]; 32738 SOUTH ROUNDHEAD DRIVE, Solon, OH 44139 (US). KVARDA, Eric, M. [US/US]; 6490 BRYSON DRIVE, Mentor, OH 44060 (US). ANDERSON, Bret, M. [US/US]; 576 E. ARCHWOOD AVENUE, Akron, OH 44301 (US). FOTTA, Robert, A. [US/US]; 12098 SNOW ROAD, Burton, OH 44021 (US). HAYES, Charles, W., II [US/US]; 28921 RIDGE ROAD, Wickliffe, OH 44092 (US). NEDELKA, Harry, A. [US/US]; 7999 NICODEMUS ROAD, Ravenna, OH 44266 (US). PATIL, Appsahed, T. [US/US]; 7757 HUDSON PARK DRIVE, Hudson, OH 44236 (US). STUMP, J., D. [US/US]; 7856 CHAMPAIGN DRIVE, Mentor, OH 44060 (US).

(74) Agent: LEWIS, Leonard, L.; CALFEE, HALTER & GRISWOLD LLP, 800 SUPERIOR AVE., STE. 1400, Cleveland, OH 44114 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

[Continued on next page]

(54) Title: FITTING FOR TUBE AND PIPE

(57) **Abstract:** A fitting for a conduit has a first fitting component adapted to receive the conduit end; a conduit gripping device such as a ferrule or ferrules, and a second fitting component that can be joined to the first fitting component to cause the conduit gripping device to grip the conduit and seal when assembled. In one aspect of the invention, a portion of the second fitting component at least partially retains the conduit gripping device. The retaining portion can also be configured to retain the conduit gripping device to the second fitting component prior to installation and in a finger-tight condition. In another aspect of the invention, a tool is provided to retain a fitting component and a conduit gripping device prior to assembly of the fitting and conduit gripping device to a conduit end.

WO 2007/048021 A2

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

22188/07218

Fitting for Tube and Pipe

Related Applications

[0001] This application claims the benefit of United States Patent Application Publication No. 2006/0138774 (App. Serial No. 11/255,499), filed on October 20, 2005, for FITTING FOR TUBE AND PIPE WITH CARTRIDGE, the entire disclosure of which is fully incorporated herein by reference. This application also claims the benefit of United States Patent Application Serial No. 11/375,843, filed on March 14, 2006, for TOOL FOR PREPARING FITTING AND CONDUIT CONNECTION, the entire disclosure of which is fully incorporated by reference.

Background of the Invention

[0002] Flareless fittings have been in use for decades for conduits such as tubes and pipes. A flareless fitting is used to connect or join two tube or pipe ends or to connect a conduit end to another assembly such as a tank, a valve, a manifold and so on. The applications are as varied as the types of assemblies with which the fittings are used. One very common type of flareless fitting is a ferrule type fitting. In a ferrule type fitting, one or more ferrules are used to join or connect a conduit end to a fitting member, typically called a fitting body. The fitting body may then be joined to (or be part of) another assembly. In a ferrule type fitting, the ferrule or ferrules must establish a fluid tight seal, particularly under pressure, as well as adequate grip of the conduit and protection against vibration fatigue. High performance fittings, such as are available from Swagelok Company, Solon, Ohio, are capable of withstanding pressures many times the rated pressure of the fitting without leaking, without vibration fatigue and without conduit blow out to the point that the conduit will burst before a seal is compromised or the ferrule(s) can lose their grip on the conduit.

[0003] Ferrule style fittings have an advantage over other end connections in that they do not rely on any special preparation of the tube or pipe end, other than low cost squaring and deburring. This is because the ferrules create the seals and tube grip.

[0004] Flareless fittings that use ferrules are commonly used in sophisticated chemical processing apparatus because of their high reliability. For example, in the semiconductor industry, such fittings assure containment of expensive or toxic chemicals. Typically, these applications are high purity and therefore, rely on conduits made of stainless steel or other low corrosion, high strength alloys.

[0005] Lower cost markets, such as the automotive industry, have their own performance requirements for fluid connections. Most notably, automotive assembly requires simpler assembly procedures. The automotive industry has resisted using ferrule type fittings not only for cost reasons, but also for assembly needs. Ferrules are fairly small annular members that can be dropped or lost in low cost, high throughput facilities. Typical ferrule type fittings are also assembled by what is commonly known as pull-up by turns. Two threaded components, such as a nut and body, enclose the conduit end and one or more ferrules. The assembly is first tightened to a finger tight condition and then a prescribed number of turns, such as one and a quarter or one and a half turns, are used to pull-up the fitting to its final assembled condition. The number of turns is carefully prescribed to prevent over torque or inadequate pull-up. The automotive industry on the other hand typically wants to assemble parts by torque. This allows a simple torque wrench or tool to be used to make the final assembly with the assurance that the fitting has been properly assembled.

[0006] The next generation of motor vehicles, especially for passenger use, will likely be in the area of alternative fuels such as high pressure hydrogen. The pressure ratings that will be required significantly exceed current rated pressure for ferrule type, flareless fittings (although not the pressure capability of high performance ferrule type, flareless fittings.) For example, it is expected that gaseous hydrogen will need to be contained at a pressure of 15,000 psi (15ksi). Current flareless tube fittings are rated below 10ksi.

[0007] For current high pressure flareless fittings, the material used for the fluid components of the fitting, in at least some applications, must be hardened. To this end, the block of material from which the fitting body is made may be a material hardened by heat treating or, in the example of an austenite stainless steel, may be manufactured from work hardened bar stock. For a straight union fitting, manufacturing the fitting from work hardened bar stock is suitable. More complex configurations, such as elbows and tee shapes, however,

require substantially larger blocks of material. For these types of fittings, a substantial amount of material must be removed, which can drive up manufacturing costs.

[0008] Some threaded tube fittings, on the other hand are made from compact forgings which save material and cost. The use of forged fitting components is well accepted for low pressure applications. The forging process, however, can cause material annealing which eliminates any prior work hardening. Thus, forged components are typically unsuitable for high pressure applications.

Summary of the Invention

[0009] In accordance with an inventive aspect of the application, a fitting is provided with a first component that has a portion adapted to at least partially retain a conduit gripping device. In one embodiment, an exemplary tube fitting includes a male threaded nut and a female threaded body, a front ferrule and a back ferrule. The nut includes a socket at one end that at least partially retains the ferrules.

[0010] In accordance with another inventive aspect of the application, a fitting assembly may include a tool for retaining a conduit gripping device to a first fitting component as an assembly prior to joining the first fitting component to a second fitting component. In one embodiment, a tool provides a portion for retaining one or more components of a fitting assembly prior to assembly to a conduit end, and a portion for protecting or at least partially covering at least one of the fitting component or the conduit end after the fitting component has been assembled to the conduit end.

Brief Description of the Drawings

[0011] FIG. 1 is a half longitudinal cross-section of a fitting;

[0012] FIGS. 1A, 1B, and 1C illustrate different thread options for the fitting components of the exemplary fitting shown in FIG. 1;

[0013] FIG. 2 is an enlarged half longitudinal cross section of a first ferrule of the exemplary fitting shown in FIG. 1;

[0014] FIG. 3 is an enlarged half longitudinal cross section of a second ferrule of the exemplary fitting shown in FIG. 1;

[0015] FIG. 4 is a cross section of a nut of the exemplary fitting shown in FIG. 1;

[0016] FIG. 5 is a partial cross section of the nut of FIG. 4, enlarged in the area of the cartridge;

[0017] FIG. 6 is a partial cross section of a body of the exemplary fitting shown in FIG. 1;

[0018] FIG. 7 is a half longitudinal cross-section of the exemplary fitting shown in FIG. 1 in a finger tight condition, enlarged in the area of the ferrule;

[0019] FIG. 8 is a half longitudinal cross-section of the exemplary fitting shown in FIG. 1 in a pulled-up condition, enlarged in the area of the ferrule;

[0020] FIG. 9 is a graph of illustrative data for torque versus nut displacement for the exemplary fitting shown in FIG. 1;

[0021] FIG. 10 is a longitudinal cross section of the nut and two ferrules of the exemplary fitting shown in FIG. 1 where the nut and two ferrules are installed on a tool;

[0022] FIG. 11 is a perspective view of the tool shown in FIG. 10;

[0023] FIGS. 12A-B are partial side cross-sectional views of the exemplary fitting shown in FIG. 1 illustrating various steps in the use of the tool for making-up the fitting;

[0024] FIG. 13 is a half longitudinal cross-section a fitting shown in a finger tight condition;

[0025] FIG. 13A is a half longitudinal cross-section of another fitting shown in a finger-tight condition;

[0026] FIG. 14 is a half longitudinal cross-section of the exemplary fitting shown in FIG. 13 in a pulled-up condition, enlarged in the area of the ferrule;

[0027] FIG. 14A is a half longitudinal cross-section of the exemplary fitting shown in FIG. 13A in a pulled-up condition, enlarged in the area of the ferrules;

[0028] FIG. 15 is a cross section of a nut;

[0029] FIG. 16 is a partial cross section of the nut of FIG. 15, enlarged in the area of the cartridge;

[0030] FIG. 17 is an enlarged half longitudinal cross section of a first ferrule of the exemplary fitting shown in FIG. 13;

[0031] FIG. 18 is an enlarged half longitudinal cross section of a second ferrule of the exemplary fitting shown in FIG. 13;

[0032] FIG. 19 is a half longitudinal cross-section of a fitting shown in a finger tight condition;

[0033] FIG. 20 is a half longitudinal cross-section of the exemplary fitting shown in FIG. 19 in a pulled-up condition, enlarged in the area of the ferrule;

[0034] FIG. 21 is a half longitudinal cross-section of another fitting shown in a finger tight condition;

[0035] FIG. 22A is a top view of a drive tool for use with the exemplary fitting shown in FIG. 21;

[0036] FIG. 22B is a side view of the drive tool of FIG. 22B;

[0037] FIG. 22C is a perspective view of another drive tool for use with the exemplary fitting shown in FIG. 21;

[0038] FIG. 22D is a perspective view of the drive tool of FIG. 22C in an assembled condition;

[0039] FIG. 23 is a half longitudinal cross-section of another fitting shown in a pulled-up condition;

[0040] FIG. 24 is a half longitudinal cross-section of another fitting shown in a finger tight condition, enlarged in the area of the ferrule;

[0041] FIG. 25 is a half longitudinal cross-section of another fitting shown in a finger tight condition, enlarged in the area of the ferrule;

[0042] FIG. 26 is a half longitudinal cross-section of another fitting shown in a finger tight condition, enlarged in the area of the ferrule;

[0043] FIG. 27 is a half longitudinal cross-section of another fitting shown in a finger tight condition, enlarged in the area of the ferrule;

[0044] FIG. 28 is a cross section of a nut and ferrules assembled to a tool;

[0045] FIG. 29A is a perspective view of a tool for retaining one or more components of a fitting assembly;

[0046] FIG. 29B is a perspective view of another tool for retaining one or more components of a fitting assembly;

[0047] FIG 29C is a perspective view of another tool for retaining one or more components of a fitting assembly;

[0048] FIG. 30 is a cross sectional view of a nut and ferrules assembled to an exemplary tool similar to the tool of FIG. 29A;

[0049] FIG. 31 is a perspective view of a nut, ferrules, and tube end assembled to the exemplary tool of FIG. 29A;

[0050] FIG. 32 is a cross sectional view of a cover portion of the exemplary tool and fitting assembly of FIG. 31;

[0051] FIG. 33 is a cross sectional view of a nut and ferrules assembled to a tool;

[0052] FIG. 34 is a cross sectional view of a nut, ferrules and tube end assembled to a cover portion of the exemplary tool of FIG. 33;

[0053] FIG. 35 is a cross sectional view of a nut and ferrules assembled to a tool;

[0054] FIG. 36 is a cross sectional view of a nut, ferrules and tube end assembled to a cover portion of the exemplary tool of FIG. 35;

[0055] FIG 37 is a perspective view of a nut and ferrules assembled to a two piece tool;

[0056] FIG. 38 is a cross sectional view of the exemplary tool and nut and ferrules of FIG. 37; and

[0057] FIG. 39 is a cross sectional view of a nut, ferrules, and tube end assembled to one piece of the two piece tool of FIG. 37.

Detailed Description of the Invention

[0058] While the invention is described herein with specific reference to a variety of structural and material features, such descriptions are intended to be exemplary in nature and should not be construed in a limiting sense. A tool in accordance with the invention can be used with any fitting that includes fitting components to be held together for assembly, including but not limited to the fittings disclosed in the present application, such as, for example, single ferrule tube fittings, two ferrule tube fittings, male threaded tube fittings with female threaded nuts, and female threaded tube fittings with male threaded nuts. For example, the exemplary embodiments are described primarily in terms of a stainless steel tube fitting for automotive applications. Those skilled in the art, however, will readily appreciate that any one or more of the aspects and features of the invention may be used outside of the automotive industry, can be used with materials other than stainless steel and can be used with many conduits including, but not limited to, tube or pipe. Moreover, many of the aspects of the invention may be used for lower pressure fittings, or the higher rated pressure concepts disclosed herein may be used in a fitting even when the fitting itself will be used in a lower pressure application. Still further, the exemplary embodiments herein illustrate what is commonly known as a female-style fitting, meaning that a female (i.e. internally) threaded component receives and abuts the conduit end. Many aspects of the invention will find application in male-style fittings as will be apparent to those skilled in the art. The invention will also find application for fitting assemblies that do not require threaded connections between the fitting components, for example clamped or bolted fittings may be used. The invention will also find application far beyond the exemplary embodiments herein as to connections that can be made to a wide and ever

expansive variety of fluid components including, but not limited to, other conduits, flow control devices, containers, manifolds and so on. As such, the terms "tube" and "conduit" are used broadly herein and are intended to encompass all fluid components to which such fitting connections described herein may be assembled, including, but not limited to, metal tubing and pipe, plastic tubing and pipe, valve, fitting, and manifold end connections, and clamp ends.

[0059] While various aspects of the invention are described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects may be realized in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present invention. Still further, while various alternative embodiments as to the various aspects and features of the invention, such as alternative materials, structures, configurations, methods, devices, software, hardware, control logic and so on may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the aspects, concepts or features of the invention into additional embodiments within the scope of the present invention even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the invention may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present invention however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated.

[0060] Although various embodiments are described herein with specific reference to the fitting components being made of stainless steel, such description is intended to be exemplary in nature and should not be construed in a limiting sense. Those skilled in the art will readily appreciate that the invention may be realized using any number of different types of metals material for the fitting components, as well as metal tubing materials, including but not limited to 316, 316L, 304, 304L, any austenitic or ferritic stainless steel, any duplex stainless steel, any nickel alloy such as HASTALLOY, INCONEL, MONEL,

alloy 825, alloy 625, any precipitation hardened stainless steel such as 17-4PH for example, brass, copper alloys, any carbon or low allow steel such as 12L14 steel for example. An important aspect of the choice of materials is that the tube gripping device preferably should be case or through hardened to a ratio of at least 3.3 and preferably 4 or more times harder than the hardest tubing material that the fitting will be used with. Therefore, the tube gripping device need not be made of the same material as the tubing itself. For example, the tube gripping device may be selected from the stainless steel material noted above, or other suitable materials that can be case hardened, such as magnesium, titanium and aluminum, to name some additional examples.

[0061] In accordance with one inventive aspect of the application, an exemplary fitting may be provided for performance at a high pressure rating without compromising leakage, grip and vibration performance achieved by earlier two ferrule tube fittings, even while in some embodiments using lower cost manufacturing processes and materials. In one embodiment, a male fitting component, such as a nut, includes a structure, which constrains a tube gripping device, such as a ferrule or ferrules. As a result, the mating female fitting component need not be formed from a hardened material. The application thus contemplates, in accordance with additional aspects, a high pressure fitting that utilizes a fitting body of one material, with a mating nut that is made of a harder material. For example, the body may be annealed stainless steel and the nut may be work hardened stainless steel. This combination can be used in higher pressure applications that can have rated pressures greater than 8 ksi, even greater than 12 ksi. This in part arises from the use of a nut that has a hardness ratio relative to the body of about 1.3:1 to about 2:1 (Vickers scale) or greater. In another embodiment, the ferrules are case hardened, for example by a low temperature carburization process to provide very hard ferrules. In another embodiment, the nut provides a secondary pressure seal against a surface of the fitting body.

[0062] To facilitate proper assembly and installation of a fitting including multiple components, such as, for example, a ferrule style fitting connection, it may be advantageous to store one or more fitting components together as an assembly, such as, for example a cartridge nut and ferrule set as a cartridge nut assembly, thereby enabling quicker assembly of the nut and ferrules to a fitting body and ensuring inclusion of and proper orientation of the ferrule or ferrules. In some applications, it may be desirable to pre-assemble one or

more fitting components to a tube or conduit end, thereby preparing a conduit assembly to allow for quicker and/or easier pull-up of a fluid connection at the conduit end in the future. For example, in preparing a conduit for assembly to a ferrule style fitting connection, a corresponding fitting body or threaded tool may be tightened with the nut to partially or fully tighten the ferrules to the conduit, thereby retaining the nut and ferrules on the conduit as a conduit assembly. By preparing this conduit assembly in advance, the future assembly of a fitting body to the conduit, nut, and ferrules may be performed more quickly and with less torque applied. This pre-tightened conduit assembly, with nut and ferrules assembled to the tube end, may be stored or transported for future installation in a fluid system. Additionally, the conduit may be removed from a fluid system by disassembling the nut from the fitting body, with the nut and ferrules being retained on the conduit end. The removed conduit assembly may be stored or transported for future installation in the same fluid system or in a different fluid system. In either circumstance, it may be desirable to cover or protect at least a portion of the conduit assembly, either to protect the exposed surfaces from damage or contamination, or, in the case of a conduit assembly removed from service, to prevent fluid residue or other contaminants from leaking out of the conduit assembly.

[0063] With reference to FIG. 1, an exemplary fitting 10 includes a first fitting component 12 that can be realized in the form of a female threaded body having internal threads 14. The first fitting component 12 joins or connects with a second fitting component 16 that can be realized in the form of a male threaded nut having external threads 18 that threadably mate with the threads 14 of the first component 12 when the fitting 10 is made-up or assembled. Different thread options and non-threaded coupling designs may be used for the first and second fitting components.

[0064] FIGS. 1A, B and C illustrate different thread options for a threaded coupling between the body 12 and nut 16. Fig. 1A illustrates 30° from normal (i.e. 60 degrees included angle) symmetrical thread flanks 19a and 19b. Fig. 1B illustrates the optional use of a buttress thread design in which the thread flanks are asymmetrical with one flank 19a typically in the range of about 45 degrees and the adjacent flank in the range of about 3 degrees to about 7 degrees from normal. The buttress thread design provides high strength loading on one side to help reduce flaring of the nut during high torque assembly and in high pressure applications. Fig. 1C illustrates the use of acme threads wherein the flanks again are

symmetrical but of a steeper angle such as about 3 degrees to about 7 degrees from normal. The acme thread design provides higher strength loading uniformly compared to the 60 degrees threads.

[0065] The fitting 10 further includes a tube gripping device. Ferrules are an example of a tube gripping device and, in this example, two ferrules are included; a front or first ferrule 20 and a back or second ferrule 22. The fitting, however, can be designed for using a single ferrule or alternative tube gripping device. The nut 16 and ferrules 20, 22 fit onto a conduit end T that is received by the body 12.

[0066] FIG. 2 is an enlarged cross section of a first or front ferrule of the exemplary fitting shown in FIG. 1. The first ferrule 20 is a generally annular part with a generally cylindrical interior wall 24 that slips over the outer surface S of the tube end T (see FIG. 1). The first ferrule 20 has an outer surface 26 that tapers outwardly in a generally conical manner from a forward portion 28 to a rearward portion 30. The forward portion 28 may include a sharp front edge 32 and a rounded nose portion 34. The rearward portion 30 includes a frustoconical recess 36 that forms a camming surface 38. The tapered outer surface 26 may converge to an axially aligned flange 40 (wherein the axis X is the central longitudinal axis of the conduit and the fitting 10).

[0067] FIG. 3 is an enlarged cross section of a second or back ferrule of the exemplary fitting shown in FIG. 1. The second ferrule 22 is a generally annular part with a generally cylindrical interior wall 42 that slips over the outer surface S of the tube end T (see FIG. 1). The second ferrule 22 further includes a nose portion 46 and an axially extending outer surface 44 that extends about a rearward portion 48 of the ferrule. The nose portion 46 includes a sharp front edge 50 and a first tapered portion 52 that extends toward the rear portion 48 from the sharp edge 50 at a rake angle α of about fifteen degrees, for example. The first tapered portion 52 merges or blends to a second tapered portion 54 along a first curved portion 56 such as a radius, for example. The second tapered portion 54 merges or blends to the axial portion 44 at a corner or edge 58 which may alternatively be a radius. The second tapered portion 54 extends at an angle β , such as about thirty-five degrees, for example.

[0068] The second ferrule 22 further includes a back end portion 60 that has a driven surface 62. The driven surface 62 extends radially outwardly at an angle δ , such as about five

degrees (referenced from normal to the axis X), for example. The driven surface 62 merges or blends with the axial portion 44 along a second curved portion 64.

[0069] FIGS. 4-5 illustrate a cross section of a nut of the exemplary fitting shown in FIG. 1. The nut 16 has an overall cylindrical configuration defining a central bore 66 that receives the tube end T during assembly. The nut 16 has a front end 68 that defines a socket, recess or cage 70. The socket 70 is defined by a cylindrical first portion 72 and a frusto-conical portion 74 that tapers radially inwardly towards a back end 75 of the nut 16. The frusto-conical portion 74 forms a drive surface that contacts the driven surface 62 of the second or back ferrule during pull-up. The drive surface 74 is formed at an angle τ , such as about fifteen degrees, for example. Because the angle τ is different from the angle δ , the driven surface 62 of the back ferrule 22 initially contacts the drive surface 74 at the outer radius 64 (see FIG. 7). The difference angle Φ , where $\Phi = \tau - \delta$, assures that the initial contact between the nut 16 and the second ferrule 22 is radially spaced from the tube end T; thus, the contact between the driven and the drive surfaces 62, 74 is not flush.

[0070] The socket 70 is formed within an axially extending and generally cylindrical wall or cartridge 76. The cartridge 76 is sized to retain the back ferrule 22 and at least a portion of the rearward portion 30 of the front ferrule 20 therein, to form a nut and ferrule assembly or cartridge nut assembly 78 (see FIG. 10). The term cartridge as used herein is a shorthand reference to the concept of a fitting component, in this example a male threaded nut 16 having a structure that can retain one or more ferrules therewith even when the assembly is uninstalled with the mating fitting component. Thus, the cartridge nut assembly 78, which includes the cartridge nut 16 and one or more ferrules 20, 22, may be used to retain the ferrules and nut together when the assembly is either uninstalled or only installed in the body 12 in a finger tight condition.

[0071] Many different techniques may be used to retain the ferrule or ferrules 20, 22 within the cartridge nut 16 prior to final pull-up or even initial assembly into the mating fitting component. For example, a non-contaminating glue or adhesive may be used to hold the ferrules 20, 22 in place, with the glue releasing its grip under the force of pull-up. Alternatively, the cartridge wall 76 may be slightly crimped radially inwardly to retain the ferrules 20, 22 therein. Still further, an adhesive may be used that breaks down into a

lubricant upon pull-up to help reduce pull-up torque. In an embodiment disclosed herein, a tool is used to hold the parts together as a cartridge nut assembly 78 (see FIG. 10).

[0072] With reference to FIG. 5, the cartridge 76 may include a tapered portion 82 that tapers radially outwardly towards the back end 75 of the nut 16. The tapered portion 82 extends at an angle θ , such as for example about forty-five degrees.

[0073] The nut 16 further includes a tool engagement portion 80 that allows a torque wrench or other tool to be used to tighten and pull-up the fitting 10. The tool engagement portion 80 in the exemplary embodiment of FIG. 1 is realized as a hex portion 80. The tool engagement portion 80 can be formed in variety of ways. For example, the nut 16 may include a key hole that allows a corresponding keyed wrench to be used to tighten and pull-up the fitting, as described in relation to FIGS. 21 and 22A-D.

[0074] The nut 16 may further include a neck 77 of somewhat reduced outer diameter between the threads 18 and the tool engagement portion 80. The neck 77 may be used to provide an intrinsic gauging function to verify proper pull-up for both pull-up by torque and pull-up by turns. By intrinsic gauging is meant a structure or feature associated with the fitting itself (as contrasted with a separate tool or gauge) that provides an indication to the assembler that the fitting has been properly assembled and pulled up. A large variety of structures or features can perform the intrinsic gauging function, some examples of which are disclosed in International Application No. 03/07739 and U.S. Patent Application No. 10/711,353, and United States Patent No. 6,640,457 B2, the entire disclosures of which are fully incorporated herein by reference. A gap gauge may also be used in a known manner to confirm proper pull-up of the fitting 10.

[0075] With reference to FIG. 6, the female threaded body 12 is a generally cylindrical part centered on the axis X. The body 12 has an opening 83 at a forward end 84 adapted to receive the tube end T. A central bore 86 extends through the body 12 and forms a port 88 which defines a fluid flow path. The port 88 may be used to establish fluid communication with another part such as a valve, tee, elbow, manifold, etc. It should be noted that although the female threaded fitting component 12 is shown as a separate stand alone part, the features of the component by which it can make a fluid connection with the male threaded fitting component could, alternatively, be incorporated into a bulk body 85 such as a manifold, valve, pump, tank, and so on, commonly referred to as a fluid port.

[0076] The female body further includes a counterbore 89 that forms a shoulder 90. The tube end T bottoms against the shoulder 90 when received by the body 12. The counterbore 89 may have a slight taper to it to help form a seal about the tube end T upon pull-up of the fitting 10.

[0077] The female fitting component 12 further includes a first tapered surface, such as for example frusto-conical surface 92 and a second tapered surface, such as for example frusto-conical surface 94. The first frusto-conical surface 92 forms a first or ferrule camming surface in the body 12 and may be axially adjacent the forward end of the counterbore 89. The second frusto-conical surface 94 forms a second or cartridge camming surface in the body 12 and may be axially adjacent or near the forward end of the first camming surface 92. The first or ferrule camming surface is formed at an angle σ . The angle σ may be selected to optimize the camming action with the nose portion 34 of the first ferrule 20. In typical two ferrule and one ferrule fittings, this angle is about twenty degrees but may be any suitable value from about 10 degrees to about forty-five degrees.

[0078] The second or cartridge camming surface 94 is formed at an angle ρ . In this example, the angle is about forty-five degrees, but this angle is not required. The angles σ and ρ may be the same or different from each other. In the illustrations herein, the angles are different, therefore there is a radial step 96 that joins the two camming surfaces 92, 94. This step may be radial or may have its own angle or taper or other profile as needed.

[0079] The body 12 further includes female threads 14 which threadably mate with the threads 18 on the male nut 16. It should be noted that the body 84 may also be formed into a cap by closing off or eliminating the port 86, such as for example can be used to cap the end of a fluid line. The body 12 may be provided with hex flats to facilitate holding the body while the nut 16 is being tightened down during pull-up. Of course, pull-up involves relative axial translation between the fitting components, the nut 16 and body 12, in this case effected by relative rotation between the nut and body, regardless of which fitting component is being held and which is being turned. In a non-threaded coupling, pull-up involves relative axial translation between the two fitting components by means other than two threaded components, such as for example two components forced together by a clamping device.

[0080] The body 12 may also include a work hardened portion 81 formed generally radially outward of the ferrules 20, 22. In addition to being radially outward of the tube gripping device 20, 22, the amount and location of work-hardening can be selected, as appropriate, for a given application. The work hardened portion preferably extends from the forward end 84 of the fitting body 12 to at least a location radially outward of the radial step 96. The work hardening portion, however, may extend, for example, to a location radially outward of the rearward end of the first camming surface 92 or extend the entire length of the exterior surface of the body 12. The work hardening is accomplished by plastically deforming the material on an exterior portion of the fitting component 12. The material can be plastically deformed in a variety of ways. For example, the work hardening may be accomplished by creating a series of generally rolled circumferential ribs or by rolling an exterior male thread 98 on the fitting body 12.

[0081] FIGS. 7 and 8 illustrate the fitting 10, enlarged in the area of the ferrules, in a finger tight condition and a pulled-up condition, respectively. In the finger tight condition of FIG. 7, the first or front ferrule nose portion 28 is positioned partially within the camming mouth formed by the ferrule camming surface 92. Note that the back ferrule 22 engages the drive surface 74 of the nut 16 at the difference angle Φ . This assures that during pull-up the back end portion 60 of the second ferrule 22 will move or remain radially outward from the outer surface S of the tube end T. At the same time, the nose portion 46 of the back ferrule 22 is plastically deformed so that the sharp edge 50 bites or indents into the tube surface S, producing a strong tube gripping shoulder 100 and a fluid tight seal. The ferrule nose 46 also hinges so that a portion 102 of the cylindrical wall 42 is radially compressed against the tube wall surface S to swage or collet the back ferrule 22 against the surface axially spaced from the bite 100. This region of high radial compression and collecting of the back ferrule 22 provides excellent protection of the bite or indent 100 from vibration. The back ferrule 22 thus is designed to hinge in deformation and effect upon pull-up the collecting region 102 between the bite or indent 100 and the back end 60 of the ferrule while having the back end portion 60 moved radially outward or kept radially outward from the outer surface S of the tube end T. The exact location of the collecting region 102 will be determined by, among other things, the size of the ferrule 22. In some cases, the collet region 102 can be adjacent the bite or indent 100 while in other cases the collecting region may occur axially spaced from the bite or indent. The collet region 102 may in some case be further characterized by a convex profile that swages the tube end.

[0082] The relative axial translation between the two fitting components 12, 16 is performed so that the forward tapered surface 82 of the cartridge 76 contacts and cams against the second tapered surface 94 of the body 12. The contact between the cartridge 76 and the v surface 94 produces a coining like action so that the cartridge tapered surface 82 forms a strong fluid tight seal against the camming surface 94. At the same time, the front ferrule surface, especially at the radius 34, forms a seal against the first camming surface 92. The front ferrule 20 may optionally swage or bite into the tube wall S to provide tube grip.

[0083] The primary functions of the ferrules 20, 22 are to create fluid tight seals and tube grip, along with resistance to fatigue from outboard system induced vibration. The front ferrule 20 is used primarily to provide a fluid tight seal against the body 12 and the tube outer surface S, while the back ferrule 22 is used for a back-up seal against the tube outer surface S and to provide excellent tube grip. The particular geometry and operation of the ferrules, or a single ferrule in such applications, can be selected as required for a particular application and dependent on the types of materials being used. The back ferrule 22, for example, may be provided with one or more recesses in the interior cylindrical wall 42 of the ferrule, and the driven surface 62 of the ferrule may be contoured. Still further, one or both of the ferrules 20, 22 may be case hardened, for example by a low temperature carburization process to provide very hard ferrules that are corrosion resistant. The case hardening may be applied over a portion or all of the ferrule surface. A number of issued patents disclose such case hardening and geometry concepts that may be applied to the ferrules, such as United States Patent Nos. 6,629,708; 6,547,888; 6,165,597; and 6,093,303 issued to the assignee of the present invention, the entire disclosures of which are fully incorporated herein by reference, as well as PCT International Publication Nos. WO 02/063195A2 and WO 02/063194A3 also incorporated herein by reference. Such patents and the concepts therein, however, are exemplary in nature as to the present invention and should not be construed in a limiting sense. Many different case hardening processes and a wide variety of geometric configurations may be used to properly control the plastic deformation of the ferrules during pull-up to assure adequate seal and tube grip.

[0084] Under elevated pressures, for example 15 ksi, the tube wall will tend to be radially expanded, pushing outward on the ferrules 20, 22. The cartridge 76 serves to radially contain the ferrules 20, 22 and prevent loss of seal and tube grip. Note that the body 12 does not constrain much if any of the front ferrule 20. The stress of containing the front

ferrule 20 radially under pressure is achieved by the cartridge 76, as is the case with the back ferrule 22. This is significant for reasons that will be discussed hereinbelow. Note further, particularly in Fig. 1, that the optional work hardened exterior 81 will also function to contain higher pressure by radially constraining and supporting the cartridge 76 in an assembled condition.

[0085] Upon pull-up, when the cartridge 76 engages the second camming surface 94 in the body 12, not only will the cartridge form a seal against fluid pressure, but the assembler will also notice a sharp and dramatic increase in pull-up torque. FIG. 9 is a graph of illustrative data for torque versus nut 16 displacement. Note that in region A the torque rises somewhat slowly and steadily as a result of the ferrules 20, 22 plastically deforming while biting into the tube T and camming against the body camming surface 92 and the front ferrule camming surface 38. As soon as the cartridge 76 contacts the second camming surface 94 in the body 12, however, the torque in region B increases sharply and dramatically. By selecting an appropriate torque value that corresponds to proper pull-up, the fitting 10 can be pulled-up by torque rather than by turns. Thus, a simple torque wrench can be used to make-up the fitting 10. Note from FIG. 9 that the cartridge concept provides a very tight or steep torque to nut displacement ratio. This is in significant contrast to prior fittings wherein the torque gradually increases as the ferrules deform. Since too many factors can influence the gradual torque readings, torque cannot always be used to accurately gauge proper pull-up of prior fittings. Instead prior fittings typically are pulled-up by counting turns or displacement of the nut relative to the body. For example, region A in FIG. 9 shows that torque can increase rather little over significant displacement of the nut relative to the body, thus preventing torque from correlating well with turns or displacement.

[0086] Angling the camming surface 94, such as at the angle ρ , allows the fitting 10 to be re-made. Each remake of the fitting 10 progresses the cartridge subassembly further into the body for each re-make, even if only slightly. For very sharp torque increases, the angle ρ may approach ninety degrees (relative to the axis X). This alternative arrangement would provide a dramatic increase in torque for pull-up by torque, but in some cases may lessen the ability to remake the fitting 10 after the initial pull-up.

[0087] Referring to Fig. 8, as well as the alternative embodiment of Figs. 14 and 21 for example, the contact between the cartridge forward surface 82 and the body tapered surface 94 to effect pull-up by torque also produces a radial support of the body for the cartridge after pull-up. This feature of these embodiments when used further facilitates the use of the fitting at higher pressures along with the pull-up by torque functionality.

[0088] Other embodiments may be used to effect pull-up by torque rather than having the cartridge 76 engage the body 12. For example, a ferrule can be designed to engage the body in a manner to effect pull-up by torque, as described below with regard to FIGS. 19-20. In addition, any two generally radial surfaces of the nut 16 and the body 12 can be designed to engage upon proper pull-up of the fitting 10 to provide the sharp torque increase. For example, an exterior surface on the fitting body may be designed to engage an exterior surface of the nut upon complete pull-up. These surfaces, as with the camming surface 94 and cartridge tapered surface 82, may be angled to allow for remake of the fitting.

[0089] A fitting in accordance with the invention may be used in pressure applications below 12 ksi, even 8 ksi, but more notably may be used as a higher pressure rated fitting above 8 ksi, even above 12 ksi. A number of features and aspects of the invention relate to the ability of the fitting to withstand higher rated pressures, as will now be discussed.

[0090] Unlike traditional female style fittings, the invention provides a fitting 10 in which the ferrules 20, 22, and especially the front ferrule 20, are radially constrained against pressure by the male fitting component rather than the female fitting component. In other words, the front ferrule 20 engages with the camming surface 92 in a manner similar to prior female fitting designs, but is radially constrained and held against pressure by the cartridge 76.

[0091] For fittings that are made of stainless steel, the nut 16 can be a work hardened part, such as can be machined from bar stock, for example, because it must be strong enough to constrain the ferrules 20, 22 under higher pressures. The female body 12, however, does not need to be a formed from work hardened material because it is not necessarily utilized to protect the ferrules 20, 22 under pressure. Therefore, the body 12 may be formed from an annealed material, such as by forging or casting, for example. Forming the fitting body 12 by forging or casting, for example austenite stainless steel, can be significantly less expensive than forming it by machining from hardened bar stock. This is especially true if

the fitting body is (or is part of) a complex shape, such as a tee or an elbow. As a result, significant cost savings can be realized with the present invention. Further, austenite stainless steel, which cannot be hardened by heat treating, can be utilized to form the body without needing to work harden the steel. Forming the body from austenite stainless steel is advantageous in many applications due to its excellent corrosion resistance.

[0092] The ability to provide a fitting 10 that can function at higher pressure rating or working pressures with an annealed body also greatly expands its available applications. For example, the fitting body 12 can be formed by providing a female port in a variety of fluid components that are made of softer annealed metals, such as pump housings, cylinder heads, manifolds, tanks, and so on. Still a further alternative embodiment, however, provides that the body 12 may also be formed from work hardened material or have a portion of the body work hardened, if so required, particularly for even higher pressure ratings or working pressures.

[0093] Selectively work hardening a portion of the fitting body 12 makes the fitting withstand high internal pressures without deformation or damage that would cause leakage of the fitting 10. Thus, selectively work hardening the fitting body provides a similar advantage to not utilizing the body to protect the tube gripping device 20, 22 under pressure. Specifically, the body 12 may be formed from an annealed material, rather than hardened bar stock. Doing so results in a fitting 10 that can function at higher pressure rating or working pressures but be realized at a significant cost savings over prior high pressure fittings.

[0094] If, for example, the fitting 10 is to be rated at 15 ksi, then it is, by industry convention, tested typically under hydraulic pressure up to and exceeding four times that pressure rating (a 4-to-1 tube grip performance factor), or 60 ksi. A statistically significant number of fittings are tested up to and exceeding 60 ksi to reliably predict with high confidence that the fitting will go to at least four times the prospective working pressure without leakage. Applicants have found that the fitting 10 in accordance with the present invention can hold pressures up to about 75 ksi and greater, thus providing at least a 5-to-1 tube grip performance factor. Thus, selectively work hardening a portion of the fitting 10 also allows the use of a relatively soft forging for the fitting body 20.

[0095] As described hereinabove, the fitting 10 may be selectively work hardened by plastically deforming a portion 81 of the fitting. A portion of the fitting 10, radially outward of the ferrules 20, 22, is work hardened by rolling a set of circumferential ribs or an external male thread 98 on the fitting body 12. The work hardening can be performed concurrently with the machining of the fitting body 12 or other part. Specifically, a piece, such as the fitting body 12, is typically machined on a multiple spindle machine having multiple index positions at which various machining operations are done sequentially. With one of these operations being the rolling of the ribs or thread 98, to work harden the fitting body 12, the body need not be subjected to a separate work operation (off the one machine) to harden it. The part 12 can be loaded once onto the machine, machined including the work hardening to form the thread 98, then unloaded.

[0096] In addition, the male thread 98 that may be formed in the work hardening process can provide a more useful configuration to the fitting 10. In particular, the thread 98 can be used to attach certain fitting enhancements to the fitting 12. For example, one or more lock nuts can be threaded onto the male thread 98 to further strengthen the fitting 10. Additional examples can include using the thread 98 to mount the fitting body 12 to a panel or to attach a means that can support the tube T, assist retaining the tube in the fitting 10, assist attenuating the effects of outside tube vibration, or other functions.

[0097] The higher pressure rating, 15 ksi or higher, may be further achieved with the fitting 10 disclosed herein because of the ability to case harden or carburize the ferrules. This allows the ferrules 20, 22 to bite and seal against work hardened conduits such as for example heavy walled tubing or 1/8 hard or strain hardened material that is needed for higher pressure applications. The fitting 10 provides a back ferrule 22 that has substantial bulk material to make the ferrule stronger in gripping the conduit as well as being able to bite into the conduit. Still further, the seal formed by the cartridge 76 against the second camming surface 94 provides a secondary or backup seal to the body seal formed by the front ferrule 20 against the first camming surface 92. The cartridge seal against the second camming surface 94 may be facilitated by use of the softer annealed body.

[0098] The invention, however, is not limited to use with stainless steel materials. For example, the automotive industry, especially for alternative fuel vehicles, may decide to pursue carbon steel rather than stainless steel for various fittings and conduits. The

invention provides advantages in the use of carbon steel as well, even though carbon steel can be hardened by annealing. These advantages include but are not limited to the cartridge concept for easier assembly (to be described further hereinbelow), providing a seal with the cartridge against the body, and providing a fitting that can be pulled up to torque rather than by turns.

[0099] FIG. 10 is a longitudinal cross section of the nut 16 and two ferrules 20, 22 of the exemplary fitting shown in FIG. 1 where nut and two ferrules are installed on a tool 103. The tool 103 provides a convenient way to hold the cartridge nut 16 and one or more ferrules 20, 22 together as a single assembly 78 prior to make-up of a fitting 10. Thus, the assembly 78 and tool 103 together provide a single unit 104 that can be installed in a mating fitting component, such as for example the female fitting component 12, so that an assembler only needs to handle two fitting parts. As a result, there are no loose ferrules to assemble, and the ferrules can be installed at the manufacturer to avoid installation errors. Other techniques for providing a cartridge nut assembly such as the use of an adhesive have been described hereinabove.

[00100] FIG. 11 illustrates a perspective of an exemplary embodiment of the tool 103. With reference to FIGS 10 and 11, the tool 103 includes a head 105 that can be manually gripped or can be gripped by a simple tool such as pliers. The tool 103 is a single plastic element but other materials may be used as required. Flexible fingers 106a and 106b extend from the head 105 and include at their respective distal end, a raised lip 107a and 107b. The lips 107a,b and head 105 define a slot or carriage 108 onto which the cartridge nut 16 and the ferrules 20, 22 can be installed. The flexible fingers 106a,b radially compress enough to allow the nut 16 and then the ferrules 20, 22 to move over the lips 107a,b toward the head 105. Once past the lips 107a,b, the fingers 106a,b snap back outward, thus retaining the ferrules 20, 22 and nut 16 together on the tool 103 as a single assembly 78.

[00101] FIGS. 12A and 12B illustrate various steps in the use of the tool 103 to make up the fitting 10. To make up the fitting 10, the assembly 78 is inserted into the female body 12 and the assembler can easily use finger pressure to rotate and threadably engage the nut 16 and the body 12 (or rotate the nut into a female port in another body). As the nut 16 is threaded into the body 12, the lips 107a,b will engage a surface inside the body 12, in

in this case the first camming surface 92. Further axial displacement of the assembly 78 and tool 103 into the body 12 causes the fingers 106a,b to be radially compressed due to a camming action against the body 12.

[00102] The continued axial displacement of the assembly 78 and tool 103 causes the fingers 106a, 106b to compress sufficiently for the lips 107a, 107b to be dimensionally smaller than the inside diameter of the ferrules 20, 22 and the nut 16. The tool 103 thus self disengages from the ferrules. When this occurs, the tool 103 can be easily extracted from the assembly 78 and body 12. Note that the tool 103 can be easily adapted to any size fitting, and also can be color coded or provided with other indicia to indicate information about the assembly 78, such as the size, materials, pull-up torque and so on. For example, a groove 109 or other suitable marking, indicia or structure may be provided on the tool 103 to provide a visual indication to the user that the fitting has been adequately made up in the finger tight position to allow easy removal of the tool. As illustrated in Fig. 12B, the forward ends of the lips 107a and 107b of the tool may optionally engage a surface of the body 12 to retard further axial advancement of the tool into the body 12. This event will be readily identified by the operator as a significant increase in torque so that the operator tactually knows that the tool can be removed.

[00103] FIGS. 13-18 illustrate another exemplary fitting of the present invention. Many of the functional features of this embodiment are similar to the above embodiment except as otherwise noted. The exemplary fitting 110 of FIGS. 13-18 includes a female threaded body 112 and a male threaded nut 114. The body 112 includes a first camming surface 116 and a second camming surface 118. The second camming surface 118 engages with an angled surface 120 on the interior end 122 of a cartridge 124 formed as part of the nut 114 during pull-up (FIG. 14). The angle θ of the surface 120 may be about forty-five degrees relative to the central longitudinal axis X of the fitting 110, but other angles may be used as required. In this embodiment, however, the cartridge 124 includes a tapered or conical wall 126 that forms a tapered socket 128 for a back ferrule 130 and at least a portion of a front ferrule 132. The tapered socket 128 provides for easier withdrawal of the nut 114 during disassembly because the ferrules can disengage from contact with the wall 126 during withdrawal of the nut. The wall 126 may taper at an angle ϵ of about five to about twenty degrees relative to a central longitudinal axis X but other angles may be used as required. The back ferrule 130 may include a tapered outer wall portion 134 to facilitate

disassembly, and the front ferrule 132 may also include a tapered outer wall portion 136. The back and front ferrule tapered outer walls 134, 136 may be formed at an angle suitable to achieve the desired effect, for example, about five to about twenty degrees relative to the axis X, but other angles may be used as needed. Thus, the invention contemplates a cartridge design in which upon disassembly the entire assembly of the nut 114 and two ferrules 130, 132 can be withdrawn or where the nut can be separately removed. The inclusion of a tapered socket may be especially useful for higher pressure applications because the ferrules will not bind or "weld" to the socket wall upon pull-up or application of high pressure. The ferrules will disengage from the tapered socket wall as the nut is withdrawn so that torque will not be applied to the ferrules during disassembly. This will help assure that a proper remake of the fitting can be effected.

[00104] Figs. 13A and 14A illustrate an alternative embodiment of the invention. The embodiment shares some features with the embodiment of FIGS. 13-18 and like reference numerals are used to designate like features. In this case, there is a front ferrule 132 a back ferrule 130, a nut 114 and a body 112. The nut 114 includes a forward cartridge 124 having a tapered or conical wall 126. The cartridge wall 126 is formed at an angle ϵ relative to the central longitudinal axis X of the fitting. The front ferrule includes a contoured outer wall portion 136 which in this example is formed at an angle μ relative to the longitudinal axis X. The angle μ may be equal or about equal to the angle ϵ , but in some cases it will be desirable to have $\mu \neq \epsilon$. For example, typically the back end of the front ferrule tends to move radially away from the tube wall T during pull-up due to forces applied by the back ferrule 130. By including a difference angle $\omega = \mu - \epsilon$, the contoured surface 136 will contact the cartridge wall 126 over a greater surface area, thus reducing stress concentrations to help reduce the likelihood of the front ferrule galling the surface 126 and 'sticking' to the cartridge nut after re-makes. This is especially so when the front ferrule is a hardened part, such as having a case hardened surface. The angle ω may be any suitable angle, such as for example two degrees, but may be greater or less than two degrees for a particular design. The surface 136 thus acts as a load bearing surface to support the ferrules under high pressure and reduce galling with the cartridge nut 114.

[00105] The contoured surface 136 of the front ferrule may be formed as illustrated by a generally radially extending flange 137. This provides more bulk to the front ferrule and

hoop strain load, helping it to withstand higher pressures and to help contain the back ferrule at higher pressures.

[00106] In many applications, the body and nut may be strain hardened or annealed with selective strain hardening (as described herein above), in order for the fitting to support higher rated pressures. To further reduce galling and sticking, the cartridge nut, and in particular the interior surface 126 may be case hardened such as using the processes described herein above or other suitable case hardening process. The processes described herein above in the incorporated references are especially well suited as they provide excellent corrosion resistance and very hard surfaces to eliminate galling. In some applications the entire nut 114 may be case hardened. This has the benefit of helping to prevent the tube bore TB (see FIG. 14A) of the nut 114 from collapsing onto the tube end T during fitting remake. Up to fifty remakes or more without galling have been observed using a body 114 that has been case hardened as described herein. The case hardened surface 126, especially a low temperature carburized surface for example, may also eliminate the need for expensive lubricants because a simple oil or other suitable lubricant can be used with the oxide formed on the case hardened surfaces.

[00107] FIGS. 19 and 20 illustrate another embodiment of the present invention wherein FIG. 19 is a longitudinal cross-section of a fitting in a finger tight position and FIG. 20 illustrates the fitting in the pulled-up position. In this embodiment the fitting 150 includes a nut 152 and body 154 that may be similar in design to the embodiments described herein above. In this embodiment, however, the axial length 155 of the cartridge 156 is shortened because the cartridge 156 is only being used to retain the back ferrule 158. The front ferrule 160 is no longer contained within the cartridge 156. A tool, similar to the tool shown in FIGS. 10-12, may be used to maintain a single component assembly as in the above described embodiments.

[00108] In this example, the front ferrule 160 includes an enlarged radially extending flange 162. The flange 162 is sized to fit within a bore 164 of the fitting body 154. The flange 162 further includes a driven rear surface 166 and a seal surface 168 at a forward portion 169 of the flange. The seal surface 168 extends at an angle θ , such as about forty-five degrees, for example. The seal surface 168 engages a first camming surface 170 of the body 154 during pull-up. This provides a dependable secondary pressure seal and pull-up

to torque design similar in function to the engagement of the front end of the cartridge of the above embodiments.

[00109] The driven surface 166 in this example is generally radial and engages the front end 172 of the cartridge 156 during pull-up so that the cartridge directly drives the front ferrule 160 forward. The back ferrule 158 also drives the front ferrule 160 forward until the cartridge 156 engages the front ferrule flange 162. The front ferrule 160 further includes a tapered nose portion 174 that engages a second camming surface 176 of the body 154. The flange 162 may be appropriately dimensioned so that the flange is supported by the body wall 178, particularly under pressure. The body 154, thus, may be formed of work hardened raw material, or may have work hardening selectively applied to an annealed body.

[00110] FIG. 21 is a half longitudinal cross-section of another exemplary fitting of the present invention. In this embodiment, the fitting 180 includes a body 182 and ferrules 184, 186 that may be similar in design to the embodiments described hereinabove. In this embodiment, however, fitting 180 includes a different nut 188. The nut 188 has a generally cylindrical configuration that defines a passage 190 for receiving a tube end T. The nut 188 has an external thread 192 for engagement with the internal thread 194 of a female fitting component, such as the fitting body 182, for example. The nut 188 has a rear face or outer face 196 that includes one or more key holes 198. Each key hole 198 is adapted to receive and be driven by a key tab 200 of a keyed drive tool 202, 202'.

[00111] The keyed drive tool 202, 202' may take a wide variety of different forms. Examples of suitable drive tools include, but are not limited to, the drive tools 202, 202' shown in FIGS. 22A-D. Any drive tool that includes a keyed tab or tabs configured to engage the hole or holes 198 in a nut 188 may be used.

[00112] In the embodiment illustrated by FIGS. 22A and 22B, the drive tool is a keyed wrench 202 having an elongated handle portion 203 with a generally rectangular cross-section. The cross-sectional shape of the handle portion 203 can be other than rectangular. For example, the handle portion 203 could have an oval or circular cross section. The key tab 200 extends from the handle portion 203 at about a right angle. The key tab 200 may extend from the handle portion 203 at an angle other than a right angle, though a right angle

is preferred. The key tab 200 is adapted to mate with the key hole 198 to allow the keyed wrench 202 to rotate the nut 188 sufficiently to pull up the fitting 180.

[00113] The key wrench 202 also includes a clearance opening 204 extending along a central axis 206 of the handle portion 203. The clearance opening 204 is sized and positioned to allow the key wrench 202 to straddle the conduit and engage the nut 188 without the tube interfering.

[00114] In an embodiment illustrated by FIGS. 22C and 22D, the drive tool 202' is a hex tool adapted to engage with the key holes 198 on the nut 188. The hex tool 202' allows the nut 188 to be tightened or loosened with a more conventional hex wrench. The hex tool 202' of the illustrated embodiment includes two body halves 243a, 243b provided with corresponding alignment pins 246a, 246b and mating holes 245a, 245b for joining the two body halves 243a, 243b. When joined, the two body halves 243a, 243b define an internal bore or clearance opening 244 for receiving the tube T (see FIG. 21). The two-piece construction of the hex tool 202' allows the tool to be assembled around tubing for which a free tube end is not accessible, such as tubing that has already been installed in a fluid system. The alignment pins 246a, 246b and mating holes 245a, 245b may, but need not, be provided with a slight interference fit to allow the body halves 243a, 243b to remain joined once assembled around the circumference of the tube T. Both body halves are provided with protruding key tabs 240a, 240b that are adapted to align with and be inserted into corresponding key holes 198 in the nut 188, shown in FIG. 21.

[00115] To tighten or loosen the cylindrical nut 188, the body halves 243a, 243b are joined around the tube T and the tangs 240a, 240b are inserted into the key holes 198. A hex wrench (not shown) is then applied to the hex flats of the hex tool and turned in a tightening or loosening direction to adjust the nut 188 accordingly. Upon completing the adjustment, the hex tool 202' is removed from the fitting assembly to prevent subsequent adjustments of the nut 188.

[00116] The length of the nut 188 is selected so that, when the nut is fully screwed into the fitting body 182, the rear face 196 of the nut 96 is flush with the end of the body 182, or is recessed. There is no standard hex configuration projecting from the fitting body 182. As a result, the chance of inadvertent loosening or removal of the nut 188 is reduced since the ability to disassemble the fitting 180 is restricted to only those personnel that have the

specific keyed wrench 202. In addition, providing different positions for the key hole 198 on the nut 188 may allow specific products (sizes, etc.) to be manufactured in combination with specific wrenches.

[00117] Further, because the nut 188 does not project from the fitting body 182, the assembled fitting 180 is smaller. This can be beneficial in applications in which space is at a premium, for example, automotive applications. Finally, the nut 188 is also beneficial as it may allow for cost reduction, since the complete nut can be silver plated (for lubrication of the threads 192) without the need to selectively plate the threads or to strip plating off of the hex area (as is done for standard female nuts) for cosmetic effect. Thus, silver plating can be accomplished by dipping the entire nut 188.

[00118] FIG. 23 is a half longitudinal cross-section of another exemplary fitting of the present invention shown in the pulled-up condition. In this embodiment, the fitting 210 includes a body 212, a nut 216, and ferrules 220 and 222 that may be similar in design to the embodiments described hereinabove. In this embodiment, however, body 212 includes an exterior camming surface 224 that engages a tapered surface 226 on the nut 216 upon proper pull-up. The exterior camming surface 224 may be located on a forward end 228 of the body 212. The tapered surface 226 of the nut 216, tapers outward from the axis X away from the body 212. The tapered surface 226 may be located, for example, on a tool engagement portion such as a hex portion 230.

[00119] FIG. 24 is a half longitudinal cross-section of another exemplary fitting of the present invention shown in the finger tight condition. In this embodiment, the fitting 250 includes a body 252, a nut 256, and a first ferrule 260 that may be similar in design to the embodiments described hereinabove. In this embodiment, however, the nut 256 includes an integral ferrule 262 that can either replace the first ferrule 260 or, as shown in FIG. 24, function as a second ferrule. The geometry of the integral ferrule 262 (such as, for example, a tapered outer surface portion 264, radius portions 266 and 268, a nose portion 270, and so on) is selected so as to effect an appropriate radially inward hinging action of the integral ferrule in response to the nose portion being driven into a camming surface, such as a camming surface 272 on a rearward portion 274 of the first ferrule 260. The concept of a integral ferrule utilized in a fitting has been disclosed in International Publication Number WO 02/063194A2, the entire disclosure of which is fully incorporated

herein by reference. The publication and the concepts therein, however, are exemplary in nature as to the present invention and should not be construed in a limiting sense.

[00120] FIG. 25 is a half longitudinal cross-section of another exemplary fitting of the present invention shown in the finger tight condition. In this embodiment, the fitting 280 includes a body 282, a nut 286, and a first ferrule 290 that may be similar in design to the embodiments described hereinabove. In this embodiment, however, the nut 286 includes a separable ferrule 292 that can either replace the first ferrule 290 or, as shown in FIG. 25, function as a second ferrule. The separable ferrule 292 is attached to the nut 286 by a frangible web portion 294. Upon partial pull-up of the fitting 280, the separable ferrule 292 engages a camming surface, such as a camming surface 296 on a rearward portion 298 of the first ferrule 290, and breaks off or separates from the nut 286. Once separate, the separable ferrule 292 functions similar to the ferrules described in the embodiments hereinabove. The concept of a separable ferrule utilized in a fitting has been disclosed in International Publication Number WO 02/063195A2, the entire disclosure of which is fully incorporated herein by reference. The publication and the concepts therein, however, are exemplary in nature as to the present invention and should not be construed in a limiting sense.

[00121] With reference to FIGS. 26 and 27, the cartridge nut assembly concept may also be used with a single ferrule tube fitting 300. The illustrated embodiments are similar except that in the embodiment of FIG. 27 the interior surface that forms the cartridge socket is tapered. Thus in both embodiments a female threaded body 302 receives a male threaded nut 304. The nut 304 includes at one end a cartridge 306 formed by an axially extending generally cylindrical extension 308. The cartridge 306 thus forms a socket 310 that receives part or all of a ferrule 312. The ferrule 312 includes a tapered forward end that engages a tapered camming surface 314 during pull-up of the fitting so as to cause the ferrule to plastically deform into tight gripping and sealing engagement with a tube end (not shown) received in the body 302 and that bottoms against the counterbore 316. The socket 310 is defined by an interior surface 318 that is generally cylindrical in the embodiment of FIG. 26 and tapered in the embodiment of FIG. 27. The ferrule 312 may include a contoured outer surface 320 as described herein above and further may include a difference angle between the outer surface 320 and the inner surface of the socket 310 as described herein above. The ferrule and cartridge nut may be fully or selectively case hardened or

otherwise hardened for particular applications. The ferrule 312 may further include a driven surface 322 that engages a drive surface 324 in the socket 310 of the cartridge 306. The ferrule driven surface 322 may be contoured so as to facilitate deformation of the ferrule during final pull-up so that the ferrule exhibits a hinging effect to collet the tube end. The contoured surface 322 may for example be a convex shape. The driven surface 322 may also engage the drive surface 324 with a difference angle so as to further facilitate colleting and hinging of the ferrule.

[00122] FIG. 28 illustrates another embodiment of use of the tool or arbor 103. In this embodiment, the tool 400 is sized so as to receive and retain a female threaded nut 402 and associated front and back ferrules 404 and 406. The arrangement may also be used with a single ferrule design. The operation and use of the tool 400 may be as described herein before with the embodiment of FIG. 10. Use of the tool 400 allows the manufacturer to provide the end user with a nut and ferrule assembly with the ferrules and nut already combined properly in a single subassembly 410 of parts for installation onto a tube end having an associated male threaded body (not shown). The tool 400 may include a grip 408 to allow easier manual grasping of the tool for removing the tool after the nut 402 and ferrules have been assembled onto an associated body.

[00123] FIGS. 29A-C and 30-39 illustrate additional embodiments of a tool of the type shown in FIGS. 10 and 11, in which the tool is adapted to provide a protective device for protecting the nut, ferrules, and/or tube end after the ferrules have been at least partially tightened on the tube end. Often the nut and ferrules of a fitting assembly are pre-assembled with a tube end using a corresponding fitting body or a pre-tightening tool having threads for assembly with the nut, in order to facilitate future installation of the tube end in a fitting, as illustrated in FIG. 32. The protective device, such as, for example, a cap or protective cover, may at least partially cover the nut, the ferrules, and/or the tube end of this assembly, which may prevent damage to or contamination of the surfaces of these components during storage or transportation of the assembly prior to installation in a fluid system.

[00124] The tool contemplated by the invention may be used with any fitting that includes fitting components to be held together for assembly with a conduit or other connection, including but not limited to the fittings disclosed in the present application,

such as single ferrule tube fittings, two ferrule tube fittings, male threaded tube fittings with female threaded nuts, and female threaded tube fittings with male threaded nuts.

[00125] In the exemplary embodiments of FIGS. 29A, 29B, 29C, and 30, a tool 500 includes a head 505 that can be manually gripped or can be gripped by a tool such as, for example, pliers. The tool 500 may be a single plastic element, but other materials or combinations of components may be used as required. A retaining portion of the tool may be in any configuration that holds the nut and ferrules for future assembly to a tube end. In the examples, flexible fingers 506a and 506b extend from the head 505 to form a retaining portion or arbor 506. The fingers 506a, 506b may include at their respective distal ends, raised lips 507a, 507b. The lips 507a, 507b and head 505 define a slot or carriage 508 onto which the cartridge nut 16 and the ferrules 20, 22 can be installed, as shown in FIG. 30. The flexible fingers 506a, 506b radially compress enough to allow the nut 16 and then the ferrules 20, 22 to move over the lips 507a, 507b toward the head 505. Once past the lips 507a, 507b, the fingers 506a, 506b snap back outward, thus retaining the ferrules 20, 22 and nut 16 together on the tool.

[00126] In the exemplary embodiment, there is a protective portion. The protective portion may take a wide variety of different configurations. For example, the protective portion may be adapted to completely cover one or more of the nut, ferrules, and conduit end, or the protective portion may be adapted to partially cover one or more of the nut, ferrules and conduit end, which may provide sufficient protection for the fitting components by preventing damage or contamination resulting from contact with another surface. The tool 500 of the exemplary embodiments shown in FIGS. 29A, 30, 31, and 32 includes a pair of prongs 510a, 510b which extend from the head 505 to form a protective portion 510. The prongs 510a, 510b may include at their respective distal ends, inward protrusions or tangs 512a, 512b. The tangs 512a, 512b may be positioned and dimensioned to align with a recess in the external surface of the nut 16, such as the thread relief 17, or the space between the male threads and the nut hex, thereby preventing the protective portion from falling off when assembled to the nut 16, as shown in FIGS. 31 and 32. The prongs 510a, 510b may be in any orientation with respect to the retaining portion 506. For example, in the exemplary embodiment of FIG. 29A and 31, the prongs 510a, 510b are oriented perpendicular to the fingers 506a, 506b, while in the exemplary embodiment of FIG. 30, the prongs 510a, 510b are oriented parallel with the fingers 506a, 506b. The head

505 of the tool 500 may form an upper or covering surface of the protective portion 510. In the example illustrated by FIG. 29A, the head 505 may be provided with a bore 515 positioned to receive the tube end T when the protective portion 510 is assembled over the nut 16, ferrules 20, 22, and tube end T, as shown in FIGS. 31 and 32. It should be noted that the protective portion may comprise any structure that at least partially encloses, covers, or protects the nut 16, ferrules 20, 22, or tube end T, such as a cup-shaped extension 510' or plug 510'', as shown in FIGS. 29B and 29C, respectively. The cup-shaped extension 510' of the tool 500' of FIG 29B may be adapted to completely cover a nut 16 and ferrules 20, 22 assembled to a tube end T, and may be provided with female threads on an internal surface (not shown) for engaging the male threads of the nut 16. The plug 510'' of the tool 500'' of FIG. 29C may be sized to fit snugly in the tube bore, and/or may be surrounded by a lip or ridge 512'' adapted to engage or grip the outer diameter of the tube end T.

[00127] As with the tool 103 shown in FIGS. 10, 11, 12A, and 12B and described above, the assembly 78 may be inserted into the socket of a corresponding female fitting body 12, with the tool 500 self-disengaging from the assembly 78 upon finger-tight installation of the assembly 78 in the fitting body 12, allowing the tool 500 to be removed and the tube end T to be inserted into the assembly 78. By tightening the nut 16 into the fitting body 12, the ferrules are secured to the tube end T, as shown, for example, in FIG. 21. To assemble the nut and ferrules to the tube end T, the nut may be fully tightened to the fitting body, as if a fitting connection were being made up with the fitting body, or the nut may be only partially tightened to the fitting body, or not fully pulled up, with sufficient torque applied to deform the ferrules enough to grasp the tube end T. The fitting body 12 may then be disassembled from the pre-tightened conduit assembly 79, which includes the nut 16, ferrules 20, 22, and tube end T. In a method of preparing a conduit end for installation in a fitting according to exemplary embodiments shown in FIGS. 29A, 29B, 29C, and 30-32, a first fitting component or nut 16 and one or more tube gripping devices or ferrules 20, 22 are retained on a retaining portion or arbor 506 of the tool 500. The nut 16, ferrules 20, 22 and the retaining portion 506 are engaged with a second fitting component or fitting body 12 by threading the nut 16 and body 12 together, thus creating a single fitting assembly. As the nut 16 is threaded into the body 12, the lips 507a, 507b will engage a surface inside the body 12, in this case the first camming surface 92. Further axial displacement of the assembly 78 and tool 500 into the body 12 causes the fingers 506a,

506b to be radially compressed due to a camming action against the body 12. The continued axial displacement of the cartridge nut assembly 78 and tool 500 causes the fingers 506a, 506b to compress sufficiently for the lips 507a, 507b to be dimensionally smaller than the inside diameter of the ferrules 20, 22 and the nut 16. The tool 500 thus self disengages from the ferrules. When this occurs, the tool 500 can be easily extracted from the cartridge nut assembly 78 and body 12 while the ferrules are retained by the fitting body 12 and the nut 16.

[00128] Once the tool has been extracted from the single fitting assembly, a conduit end may be inserted through the nut 16 and into the body 12 for assembly with the nut 16 and ferrules 20, 22. By tightening the nut 16 and fitting body 12, the ferrules 20, 22 are deformed to grip the conduit end T, forming a conduit assembly 79 including the nut 16, ferrules 20, 22, and tube end T. This tightening may prepare the conduit end T, ferrules 20, 22, and nut 16 for future assembly to a fitting body 12, either the same body 12 used to secure the nut and ferrules to the conduit end T or a different body 12, such as a fitting body 12 already installed in a fluid system.

[00129] To protect this conduit assembly 79, the protective portion 510 of the tool 500 may be assembled over the tube end T, ferrules 20, 22, and/or nut 16, as shown in FIG. 14. The protective portion 510 may cover only portions of one or more of the conduit end T, ferrules 20, 22, and nut 16, as is shown in FIG. 29A. Alternatively, the protective portion may completely cover one or more of the conduit end T, ferrules 20, 22, and nut 16, as is shown in FIG. 29B. Also, the protective portion may serve to plug the tube end T to prevent contaminants from entering the conduit, as is shown in FIG. 12C. The tangs 512a, 512b of the exemplary embodiment of FIG. 31 align with the thread relief of the nut 16, holding the prongs 510a, 510b to the sides of the nut 16. The conduit end T is inserted in the bore 515, further aligning and securing the protective portion 510 on the conduit assembly 79. Additionally, the tool 500 may be provided with any type of separable connection between the protective portion and the retaining portion to allow the retaining portion to be separated from the protective portion by separating or dividing the tool at the separable connection. In the exemplary embodiment, the separable connection is a necked-down portion or groove 518 between the protective portion 510 and the retaining portion 506, which allows the retaining portion 506 to be separated or broken off from the protective portion 510 by fracturing the tool at the groove 518. In other embodiments (not

shown), this separable connection may include any type of a pinched, necked-down, or perforated cross-section, an adhesive or similar breakable joint, by fasteners, or a threaded connection (not shown). By separating the retaining portion 506 from the protective portion 510 after the nut 16 and ferrules 20, 22 have been assembled to the tube end T, the capped assembly may take up less space, making it easier to store and transport the conduit assembly 79. FIG. 32 shows a cross section of the capped conduit assembly 79 after the retaining portion 506 has been separated from the protective portion 510.

[00130] FIGS. 33-36 illustrate exemplary embodiments of a retaining tool configured to be used with a fitting assembly having a male threaded fitting body and a female threaded nut. However, it should be noted that the tool contemplated by the invention can be used with any fitting that includes fitting components to be held together for assembly, including but not limited to the fittings disclosed in the present application, such as single ferrule tube fittings, two ferrule tube fittings, male threaded tube fittings with female threaded nuts, and female threaded tube fittings with male threaded nuts.

[00131] In the exemplary embodiment of FIGS. 33 and 34, a tool 600 includes a head 605 that can be manually gripped or can be gripped by a simple tool such as pliers. The tool 600 may be a single plastic element, but other materials or combinations of components may be used as required. A retaining portion of the tool may be in any configuration that holds the nut and ferrules in a pre-assembled arrangement. In the example, flexible fingers 606a and 606b extend from the head 605 to form a retaining portion or arbor 606. The fingers 606a, 606b may include at their respective distal ends, raised lips 607a, 607b. The lips 607a, 607b and head 605 define a slot or carriage 608 onto which the female nut 402 and the ferrules 404, 406 can be installed, as shown in FIG. 33. The flexible fingers 606a, 606b radially compress enough to allow the nut 402 and then the ferrules 404, 406 to move over the lips 607a, 607b toward the head 605. Once past the lips 607a, 607b, the fingers 606a, 606b snap back outward, thus retaining the ferrules 404, 406 and nut 402 together on the tool 500 as a single assembly 678.

[00132] In the exemplary embodiment, there is a protective portion, which may be used to protect one or more of the nut, ferrules, and conduit end after the nut and ferrules have been secured to the conduit end to form a conduit assembly. The protective portion can take a wide variety of different configurations. For example, the protective portion can

completely cover one or more of the nut, ferrules, and conduit end, or the cap can partially cover one or more of the nut, ferrules and conduit end, which may provide sufficient protection for the fitting components by preventing damage or contamination resulting from contact with another surface. The tool of the exemplary embodiment shown in FIGS 33 and 34 includes a pair of prongs 610a, 610b which extend from the head 605 to form a protective portion 610. The prongs 610a, 610b may include at their respective distal ends, inward protrusions or tangs 612a, 612b. The tangs 612a, 612b may be positioned and dimensioned to align with a recess or shoulder in the external surface of the nut 402, such as the edge of the female nut hex 417, thereby preventing the protective portion from falling off when assembled to the nut 402, as shown in FIG. 34. The head 605 of the tool 600 may form an upper or covering surface of the protective portion 610. As such, the head 605 may be provided with a bore 615 positioned to receive the tube end T when the protective portion 610 is assembled over the nut 402, ferrules 404, 406, and tube end T.

[00133] It should be noted that the protective portion may comprise any structure that at least partially encloses, covers, or protects the nut 402, ferrules 404, 406, or tube end T. One such alternative exemplary embodiment is the tool 600' illustrated in FIGS. 35 and 36. While the exemplary retaining portion 606' functions in the same manner as the exemplary retaining portion 606 of the exemplary tool 600 of FIGS. 33 and 34, the exemplary protective portion 610' is a plug type configuration provided with a male threaded portion 612' adapted to threadably engage with the female threads of the nut 402. A socket 614' in the protective portion 610' provides clearance for the ferrule 404, while a bore 615' in the head 605' at the base of the socket 614' is positioned to receive the tube end T.

[00134] As with the tool 500 of FIGS. 29A-32, the tools 600, 600' of FIGS. 33-34 and 35-36, respectively, may be provided with a necked-down portion or groove 618, 618' between the respective protective portions 610, 610' and the retaining portions 606, 606', which allows the retaining portion 606, 606' to be separated or broken off from the protective portion 610, 610' by fracturing the tool at the groove 618, 618'. This groove 618, 618' may include any type of a pinched, necked-down, or perforated cross-section of the tool 600, 600' as would facilitate such a fracture. Alternatively, the protective portion and retaining portion of the tool may be separably attached by other separable connections, such as, for example, by fasteners, adhesive, break-away tabs, or a threaded connection (not shown). By breaking the retaining portion 606, 606' from the protective portion 610, 610'

after the nut 402 and ferrules 404, 406 have been assembled to the tube end T, the capped conduit assembly may take up less space, as shown in FIG. 34 for tool 600 and in FIG. 36 for tool 600', making it easier to store and transport the conduit assembly.

[00135] FIGS. 37-39 illustrate yet another embodiment of a fitting assembly and retaining tool. This exemplary embodiment employs a two piece arrangement in which the retaining portion is provided on a separate retaining piece 700A and the protective portion is provided on a separate protective piece 700B. The retaining piece 700A and the protective piece 700B may each be provided with flush end surfaces 701A, 701B for easier storage and stacking of the nut 16 and ferrule 20, 22 sets. A retaining portion of the retaining piece 700A may be in any configuration that holds the nut 16 and ferrules 20, 22 in a pre-assembled arrangement. In the example, as shown in FIG. 38, flexible fingers 706a and 706b extend from a head 705A to form a retaining portion or arbor 706. The fingers 706a, 706b may include at their respective distal ends, raised lips 707a, 707b. The lips 707a, 707b and head 705 define a slot or carriage 708 onto which the cartridge nut 16 and the ferrules 20, 22 can be installed, as shown in FIG. 38. The flexible fingers 706a, 706b radially compress enough to allow the nut 16 and then the ferrules 20, 22 to move over the lips 707a, 707b toward the head 705. Once past the lips 707a, 707b, the fingers 706a, 706b snap back outward, thus retaining the ferrules 20, 22 and nut 16 together on the retaining piece as a single assembly 78.

[00136] The protective piece of the exemplary embodiment of the invention can take a wide variety of different configurations. For example, the protective portion can completely cover one or more of the nut, ferrules, and conduit end, or the cap can partially cover one or more of the nut, ferrules and conduit end, which may provide sufficient protection for the fitting components by preventing damage or contamination resulting from contact with another surface. The protective piece 700B of the exemplary embodiment shown in FIGS 37-39 includes a pair of prongs 710a, 710b which extend from the head 705B to form a protective portion 710. The prongs 710a, 710b may include at their respective distal ends, inward protrusions or tangs 712a, 712b. The tangs 712a, 712b may be positioned and dimensioned to align with a recess in the external surface of the nut 16, such as the thread relief 17, or the space between the male threads and the nut hex, thereby preventing the protective portion from falling off when assembled to the nut 16, as shown in FIGS. 37-39. The head 705B of the protective piece 700B may form an upper or

covering surface of the protective portion 710. As such, the head 705B may be provided with a bore 715 positioned to receive the conduit end T when the protective portion 710 is assembled over the nut 16, ferrules 20, 22, and tube end T, as shown in FIG. 39. It should be noted that the protective portion may comprise any structure that at least partially encloses, covers, or protects the nut 16, ferrules 20, 22, or tube end T, such as a cup-shaped extension or plug (not shown). As with the tool 500 of FIGS. 29A-32, the retaining piece 700A may be discarded after the nut 16 and ferrules 20, 22 have been assembled to the tube end and the protective piece 700B has been assembled to the conduit assembly, as shown in FIG. 39. In an alternative embodiment, the retaining piece 700A and the protective piece 700B may be provided as an integral plastic component with adjoining flush breakaway ends to maintain a reduced size for either the retained cartridge nut assembly 78 or the capped conduit assembly 79.

[00137] The invention has been described with reference to the preferred embodiments. Modification and alterations will occur to others upon a reading and understanding of this specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

CLAIMS:

1. A tube fitting, comprising:

a male threaded nut and a female threaded body, a front ferrule and a back ferrule, said nut having a socket at one end thereof that at least partially retains said ferrules, said socket defined by a tapered surface, said front ferrule having an outer surface at a rearward portion thereof that engages said tapered surface when the fitting is assembled onto a tube end, wherein said front ferrule outer surface forms a difference angle with said tapered surface when the fitting is in a finger tight position.

2. The tube fitting of claim 1 wherein said front ferrule is case hardened and bites a tube end outer surface after the tube fitting is installed on the tube end in a pulled-up condition.

3. The tube fitting of claim 1 wherein said front ferrule outer surface tapers at an angle relative to a central longitudinal axis of the tube fitting.

4. The tube fitting of claim 1 wherein said socket tapered surface is case hardened.

5. A tube fitting component assembly, comprising:

a male threaded nut and at least one ferrule, said nut having a socket at one end thereof that at least partially receives said ferrule, wherein said nut is case hardened stainless steel at least in the region of said socket.

6. The assembly of claim 5 wherein said socket is defined in part by a tapered surface that tapers relative to a central longitudinal axis of the nut.

7. The assembly of claim 5 wherein said ferrule is case hardened.

8. The assembly of claim 5 comprising a tool that releasably retains said ferrule with said nut as an assembly.

9. A tube fitting, comprising:

a male threaded nut and a female threaded body, a front ferrule and a back ferrule, said nut having a socket at one end thereof that at least partially retains said ferrules, said socket defined by a tapered surface, said front ferrule having an outer surface at a rearward

portion thereof that engages said tapered surface when the fitting is assembled onto a tube end, wherein said socket tapered surface is case hardened.

10. The tube fitting of claim 9 wherein said front ferrule is case hardened and bites a tube end outer surface after the tube fitting is installed on the tube end in a pulled-up condition.

11. The tube fitting of claim 9 wherein said front ferrule outer surface tapers at an angle relative to a central longitudinal axis of the tube fitting.

12. An assembly of a female threaded nut adapted to join to a second fitting component of a fitting, and a tube gripping device, the assembly comprising:

a tool for retaining the tube gripping device to the female threaded nut as an assembly.

13. The assembly of claim 12 wherein said tube gripping device comprises two ferrules.

14. The assembly of claim 12 wherein said tube gripping device comprises at least one ferrule.

15. The assembly of claim 12 wherein said tube gripping device comprises a ferrule and said nut and ferrule comprise metal.

16. The assembly of claim 15 wherein said tool is plastic and includes flexible members that receive said ferrule that slides onto said members and is releasably retained thereon.

17. A tool for holding one or more fitting components together prior to assembly of the fitting components to a conduit end and for protecting at least one of the one or more fitting components and the conduit end after assembly of the one or more fitting components to the conduit end, the tool comprising:

a retaining portion adapted to retain the one or more fitting components on the tool; and

a protective portion adapted to at least partially cover at least one of the one or more fitting components and the conduit end after the fitting components have been assembled to the conduit end.

18. The tool of claim 17, wherein the retaining portion and the protective portion extend in opposite directions.

19. The tool of claim 17, wherein the protective portion further comprises a bore adapted to receive the conduit end.

20. The tool of claim 17, wherein the tool is adapted such that the retaining portion may be separated from the protective portion.

21. The tool of claim 20, further comprising a groove between the retaining portion and the protective portion, wherein the retaining portion may be separated from the protective portion by fracturing the tool at the groove.

22. The tool of claim 17, wherein the cap comprises a plurality of prongs, adapted to engage an external surface of the fitting component.

23. The tool of claim 22, wherein each of the plurality of prongs comprises a tang for gripping the external surface of the fitting component.

24. The tool of claim 17, wherein the protective portion comprises a cup adapted to completely cover at least one of the fitting component and the tube gripping device.

25. The tool of claim 17, wherein the protective portion is adapted to at least partially cover male threads on the fitting component.

26. The tool of claim 17, wherein the protective portion is adapted to at least partially cover female threads on the fitting component.

27. A tool for holding a fitting component having a central through bore together with a tube gripping device as a single assembly prior to assembly of the fitting component and tube gripping device to a conduit end, and for at least partially covering at least one of the fitting component, tube gripping device, and conduit end after assembly of the fitting component and tube gripping device to the conduit end, the tool comprising:

retaining means for retaining the fitting component and the tube gripping device on the tool as a single assembly; and

covering means for receiving and at least partially covering at least one of the fitting component and the tube gripping device after the fitting component and tube gripping device have been assembled to the conduit end.

28. A system for installing a fitting on a conduit end, the system comprising:

- a first fitting component having a bore for receiving the conduit end;
- a tube gripping device;
- a second fitting component having a socket for receiving the tube gripping device and at least part of the first fitting component, the first and second fitting components being adapted to secure the tube gripping device to the conduit end when the conduit end is inserted in the bore of the first fitting component and the first fitting component is tightened into the second fitting component; and
- a tool, comprising a retaining portion and a protective portion; wherein the retaining portion is adapted to retain the first fitting component and the tube gripping device; the retaining portion is further adapted to insert the first fitting component and the tube gripping device into the socket; and the protective portion is adapted to at least partially cover at least one of the first fitting component and the tube gripping device after the first fitting component and the tube gripping device have been assembled to the conduit end.

29. The system of claim 28, wherein the retaining portion and the protective portion extend in opposite directions.

30. The system of claim 28, wherein the protective portion further comprises a bore adapted to receive the conduit end.

31. The system of claim 28, wherein the tool is adapted such that the retaining portion may be separated from the protective portion.

32. The system of claim 28, wherein the tool further comprises a groove between the retaining portion and the protective portion, wherein the retaining portion may be separated from the protective portion by fracturing the tool at the groove.

33. The system of claim 28, wherein the protective portion of the tool comprises a plurality of prongs.

34. The system of claim 33, wherein each of the plurality of prongs comprises a tang for gripping the fitting component.

35. A system for installing a fitting on a conduit end, the system comprising:

a first fitting component having a bore for receiving the conduit end;

a tube gripping device;

a second fitting component having a socket for receiving at least a portion of the tube gripping device and the conduit end, the first and second fitting components being adapted to secure the tube gripping device to the conduit end when the conduit end is inserted in the bore of the first fitting component and the first fitting component is tightened onto the second fitting component; and

a tool, comprising a retaining portion and a protective portion;

wherein the retaining portion is adapted to retain the first fitting component and the tube gripping device;

the retaining portion is further adapted to insert the tube gripping device into the socket when the first fitting component is assembled to the second fitting component; and

the protective portion is adapted to at least partially cover at least one of the first fitting component and the tube gripping device after the first fitting component and the tube gripping device have been assembled to the conduit end.

36. A method of preparing a conduit end for installation in a fitting having a tube gripping device, a first fitting component, and a second fitting component, the method comprising:

retaining the first fitting component and the tube gripping device together;

engaging the first fitting component and the tube gripping device with the second fitting component;

inserting the conduit end through the first fitting component and the tube gripping device and into the second fitting component;

tightening the first fitting component with the second fitting component to secure the tube gripping device to the conduit end;

disassembling the second fitting component from the first fitting component, the tube gripping device, and the conduit end; and

covering at least one of the conduit end, the tube gripping device, and the first fitting component.

37. The method of claim 36, further comprising providing a tool with a retaining portion for retaining the first fitting component and the tube gripping device together.

38. The method of claim 37 further comprising providing a protective portion on the tool, wherein covering at least one of the conduit end, the tube gripping device, and the first fitting component comprises assembling the protective portion over at least one of the conduit end, the tube gripping device, and the first fitting component.

39. The method of claim 38, further comprising separating the retaining portion from the protective portion after the first fitting component and the tube gripping device have been engaged with the second fitting component.

40. The method of claim 39, further comprising providing a separable connection between the retaining portion and the protective portion of the tool, wherein separating the retaining portion from the protective portion comprises separating the tool at the separable connection.

41. The method of claim 38, further comprising providing a bore in the protective portion of the tool, wherein assembling the protective portion over at least one of the conduit end, the tube gripping device, and the first fitting component comprises receiving the conduit end in the bore.

42. The method of claim 38, further comprising providing a plurality of prongs in the protective portion of the tool, wherein assembling the protective portion over at least one of the conduit end, the tube gripping device, and the first fitting component comprises engaging the prongs with an external surface of the first fitting component.

1/29

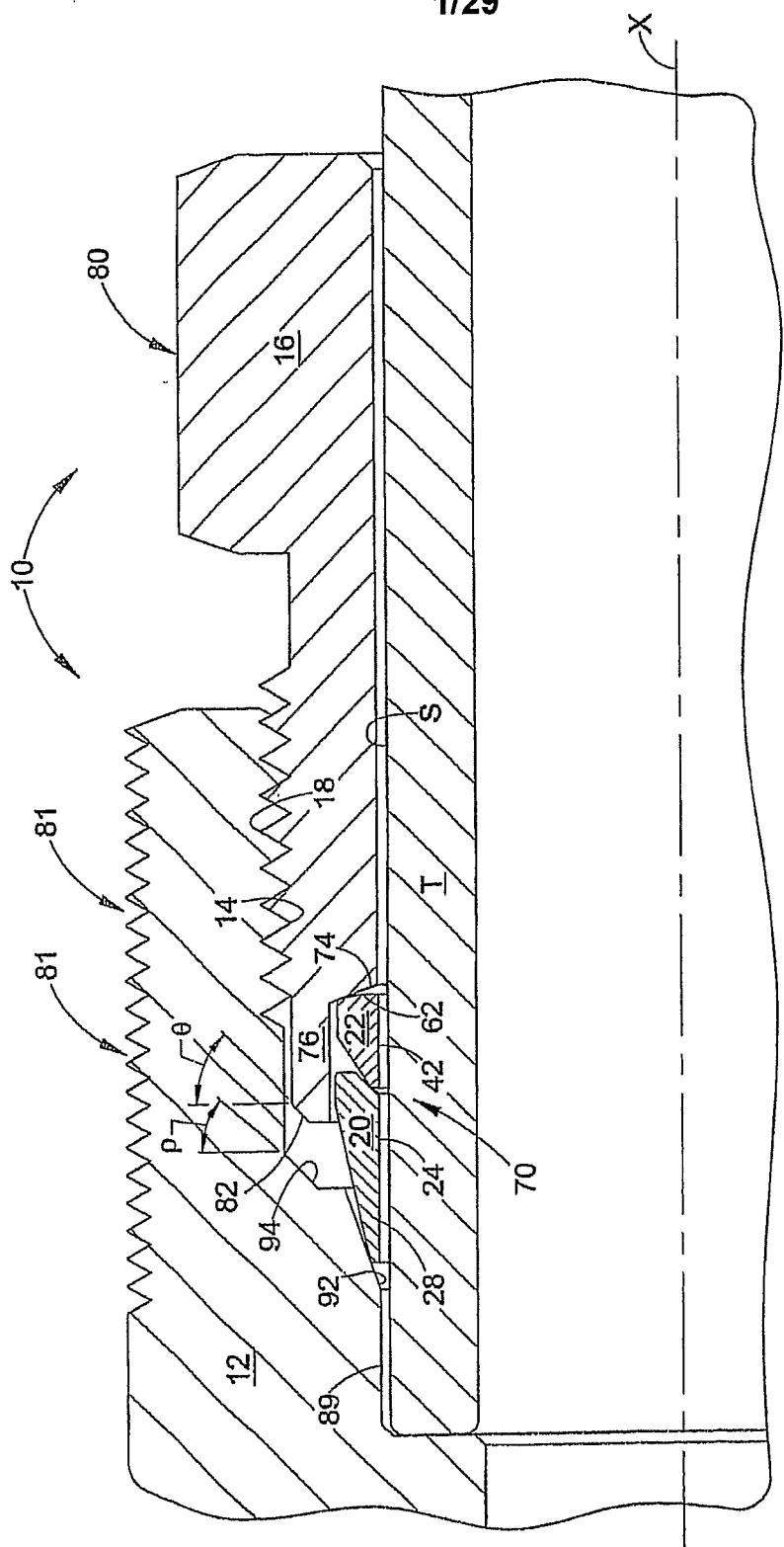


FIG. 1

2/29

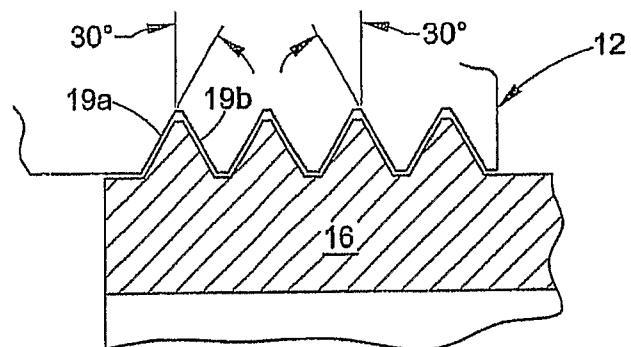


FIG. 1A

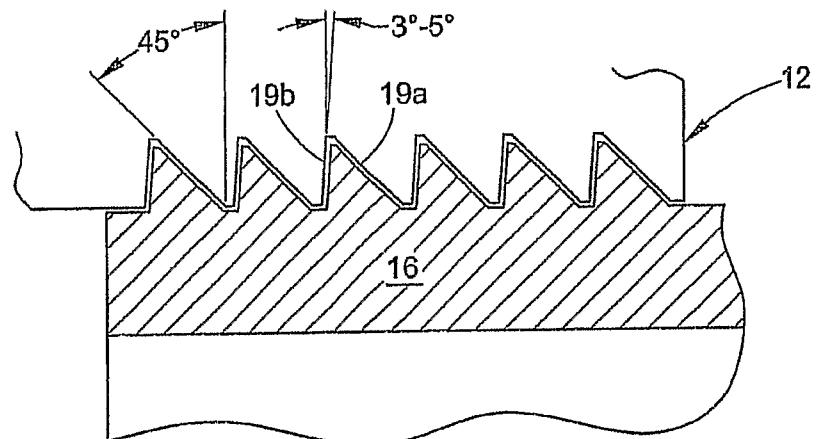


FIG. 1B

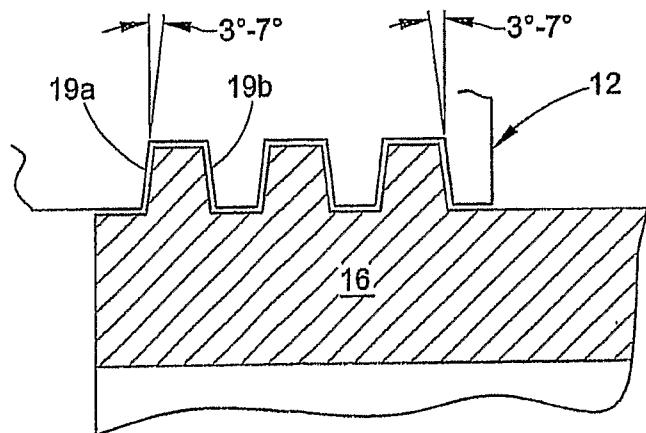
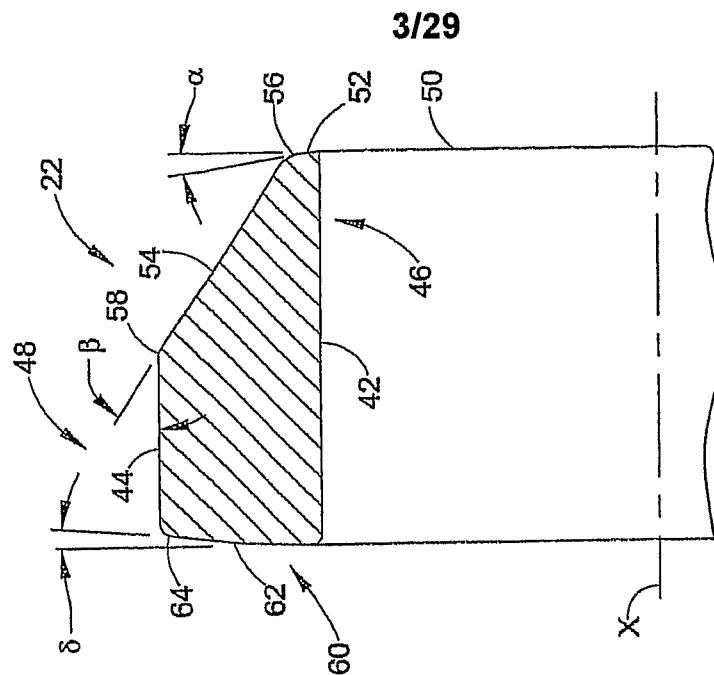



FIG. 1C

६३

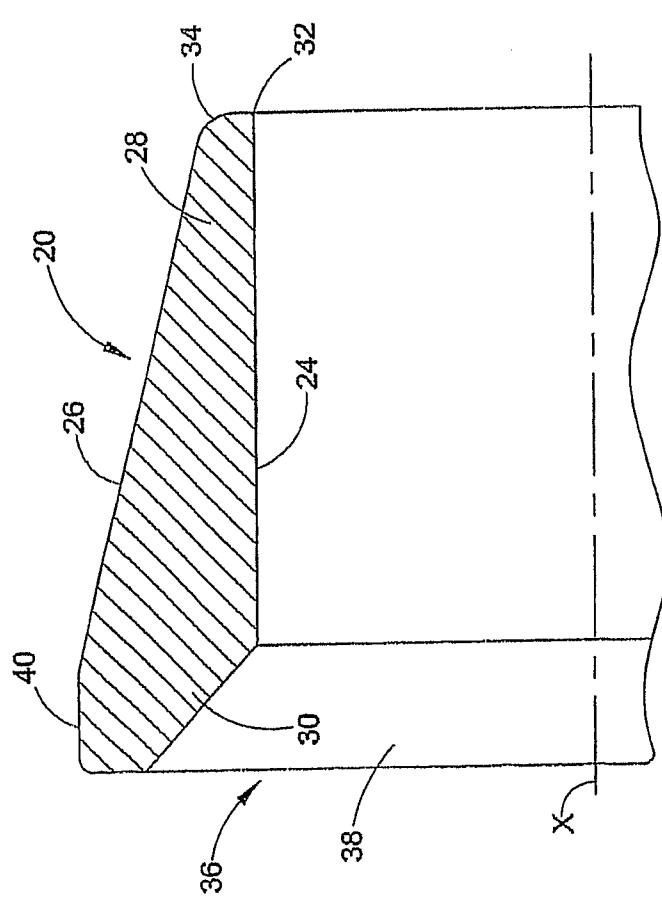


FIG. 2

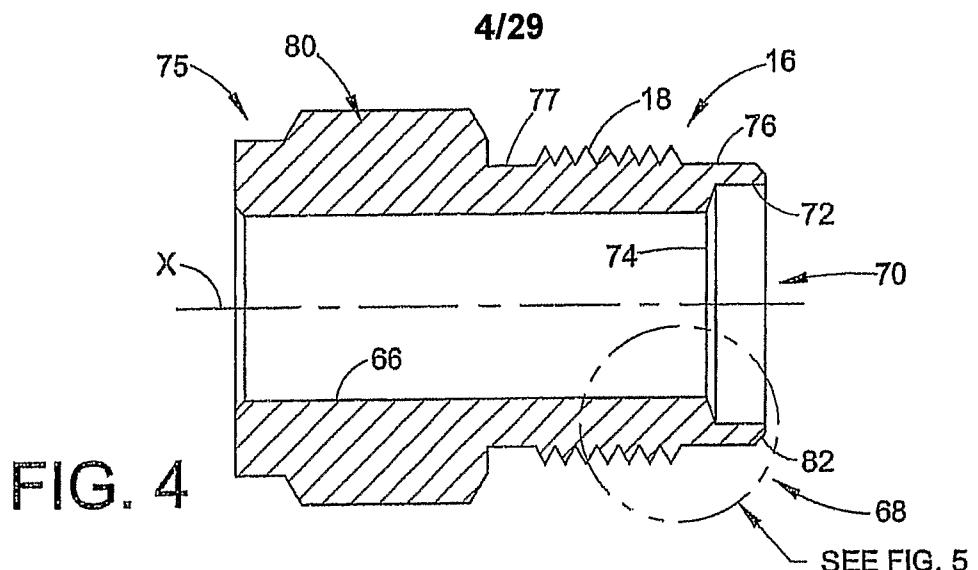


FIG. 5

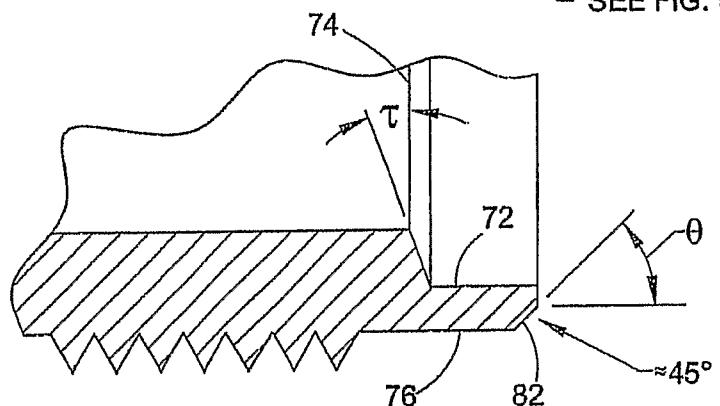
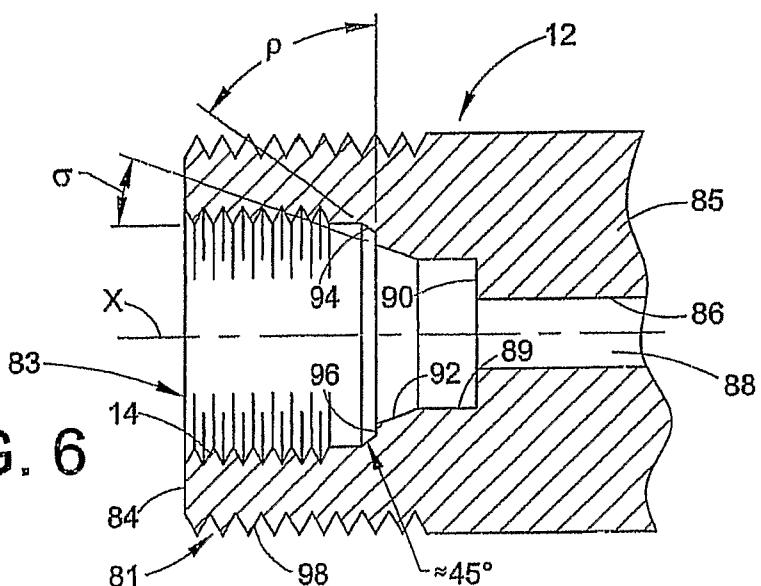



FIG. 6

5/29

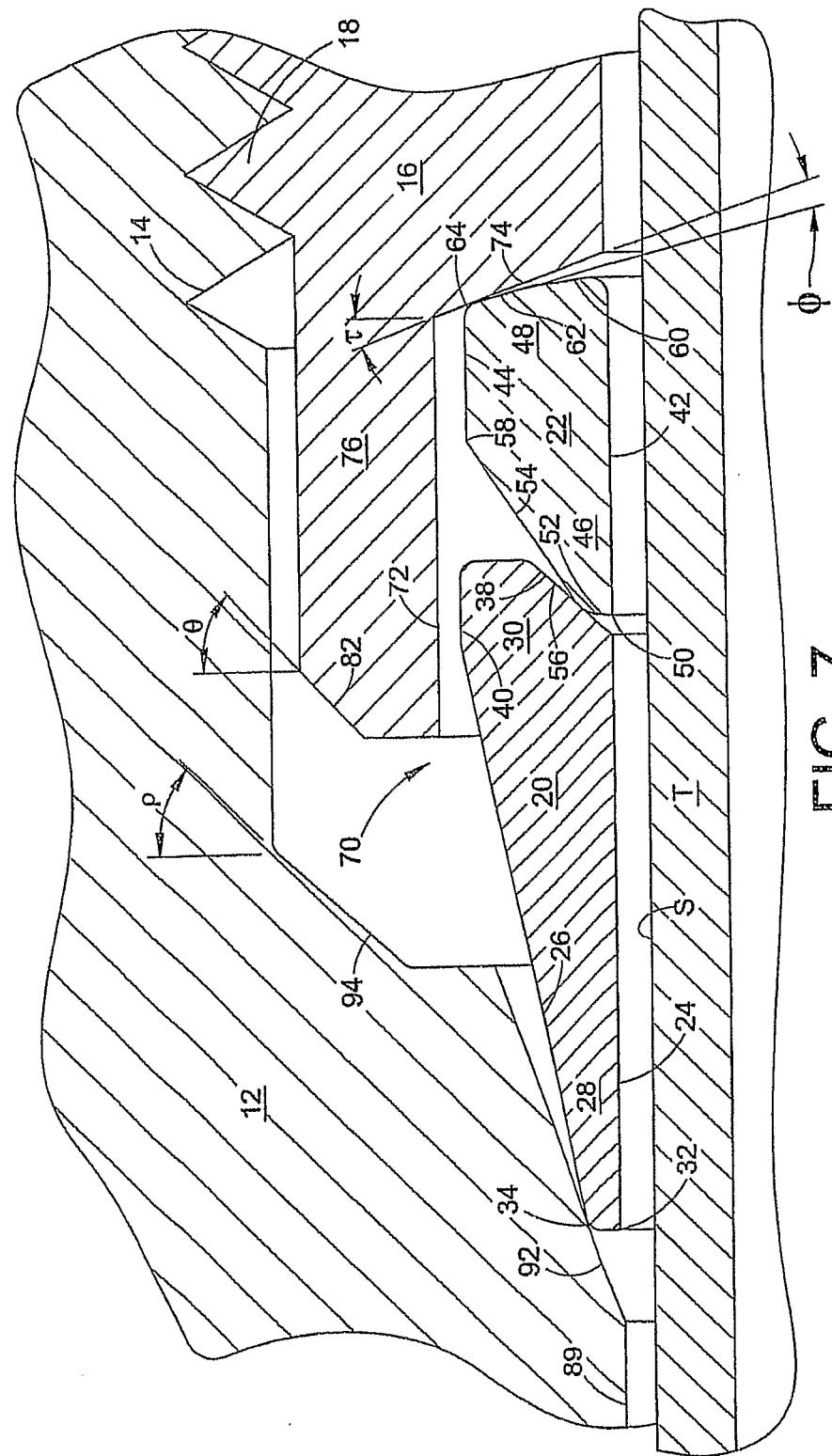


FIG. 7

6/29

FIG. 8

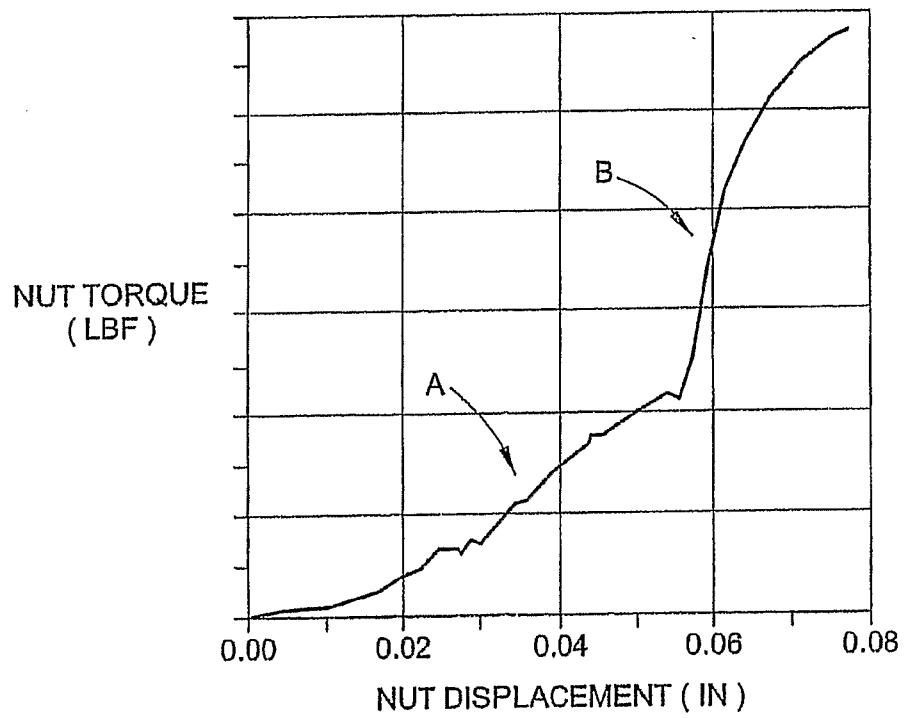
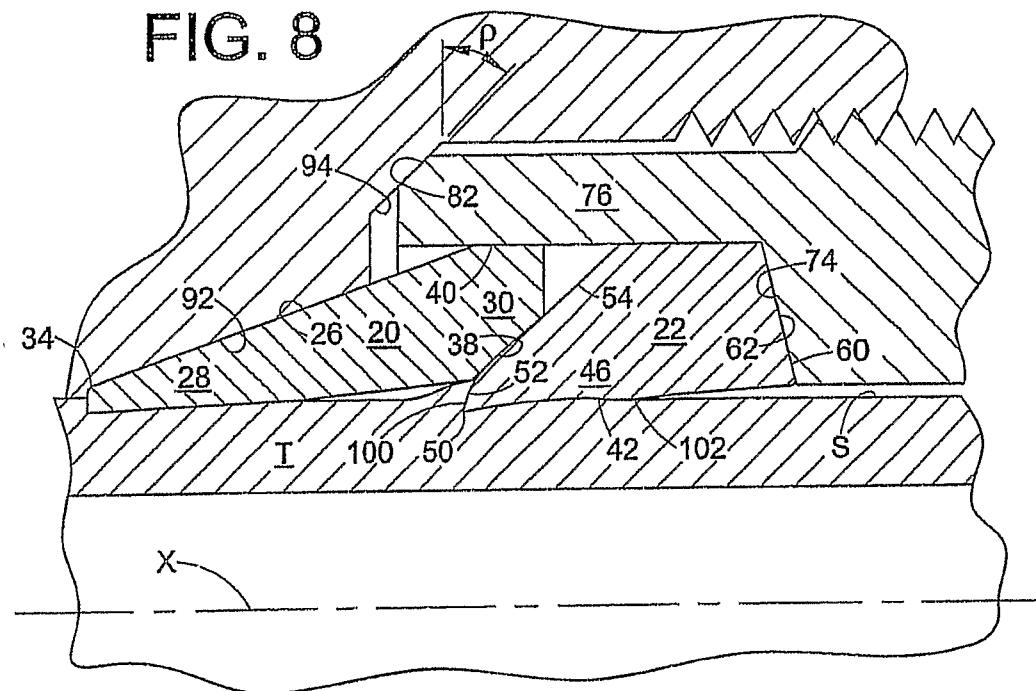



FIG. 9

7/29

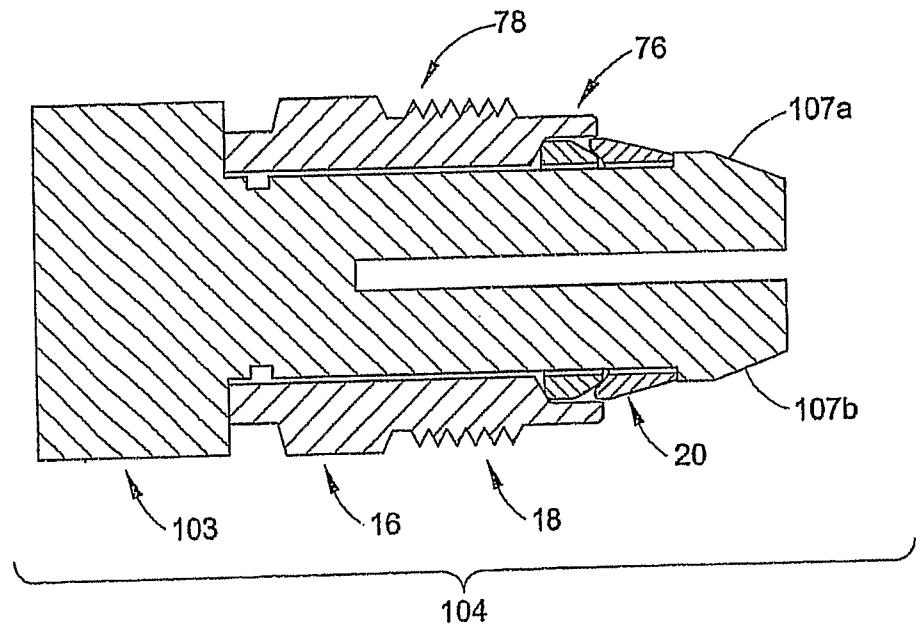


FIG. 10

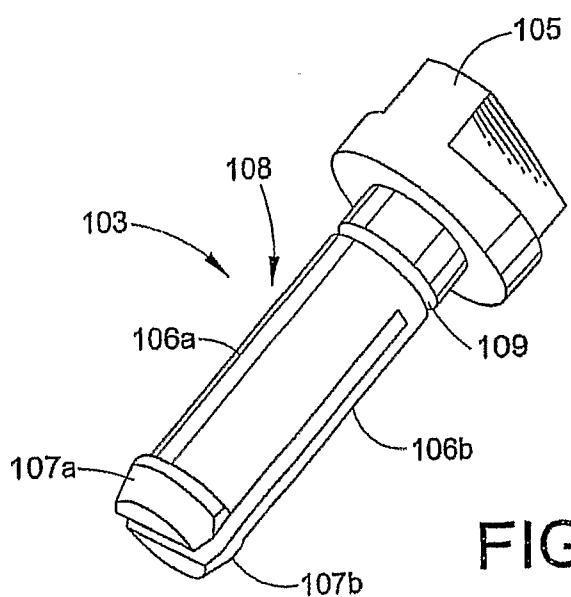


FIG. 11

8/29

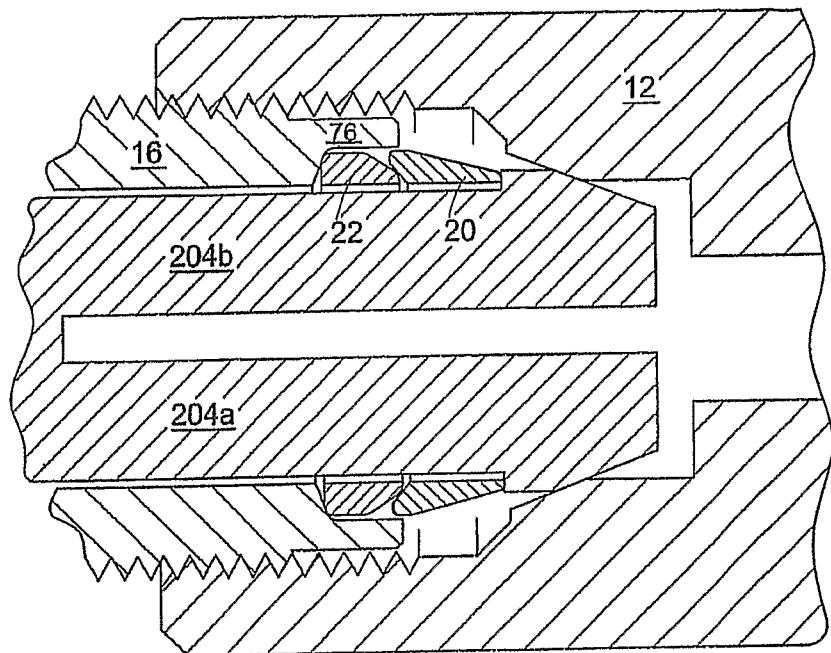


FIG. 12A

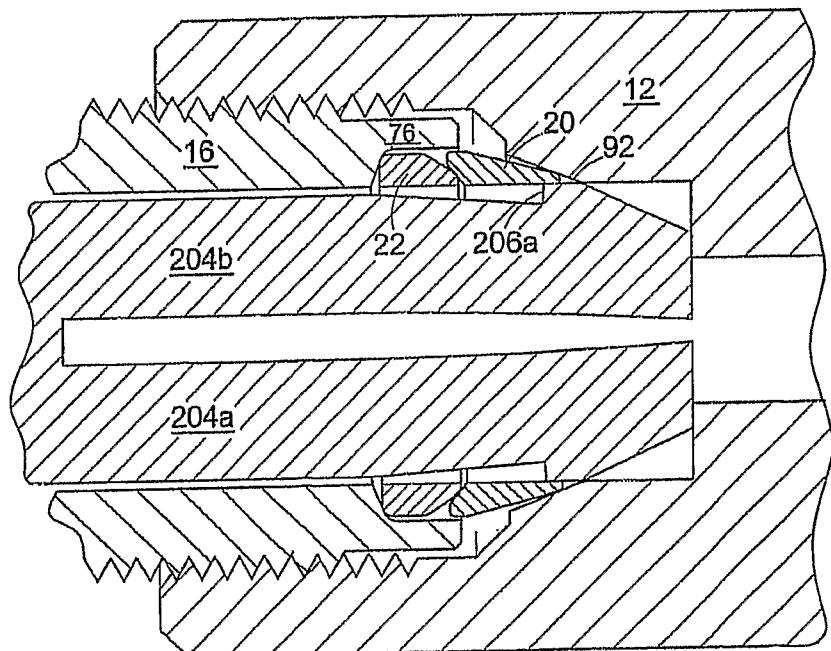


FIG. 12B

9/29

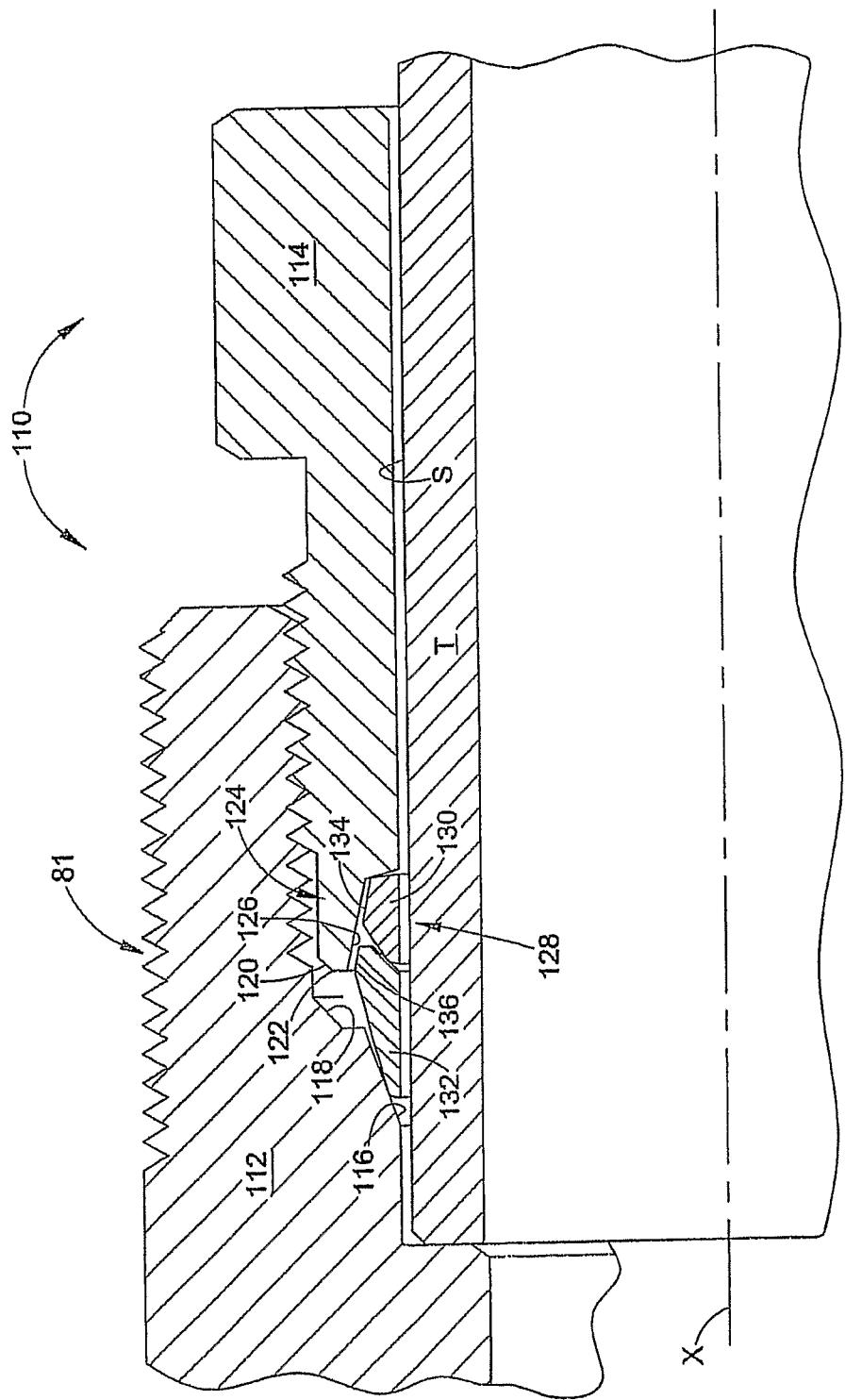


FIG. 13

10/29

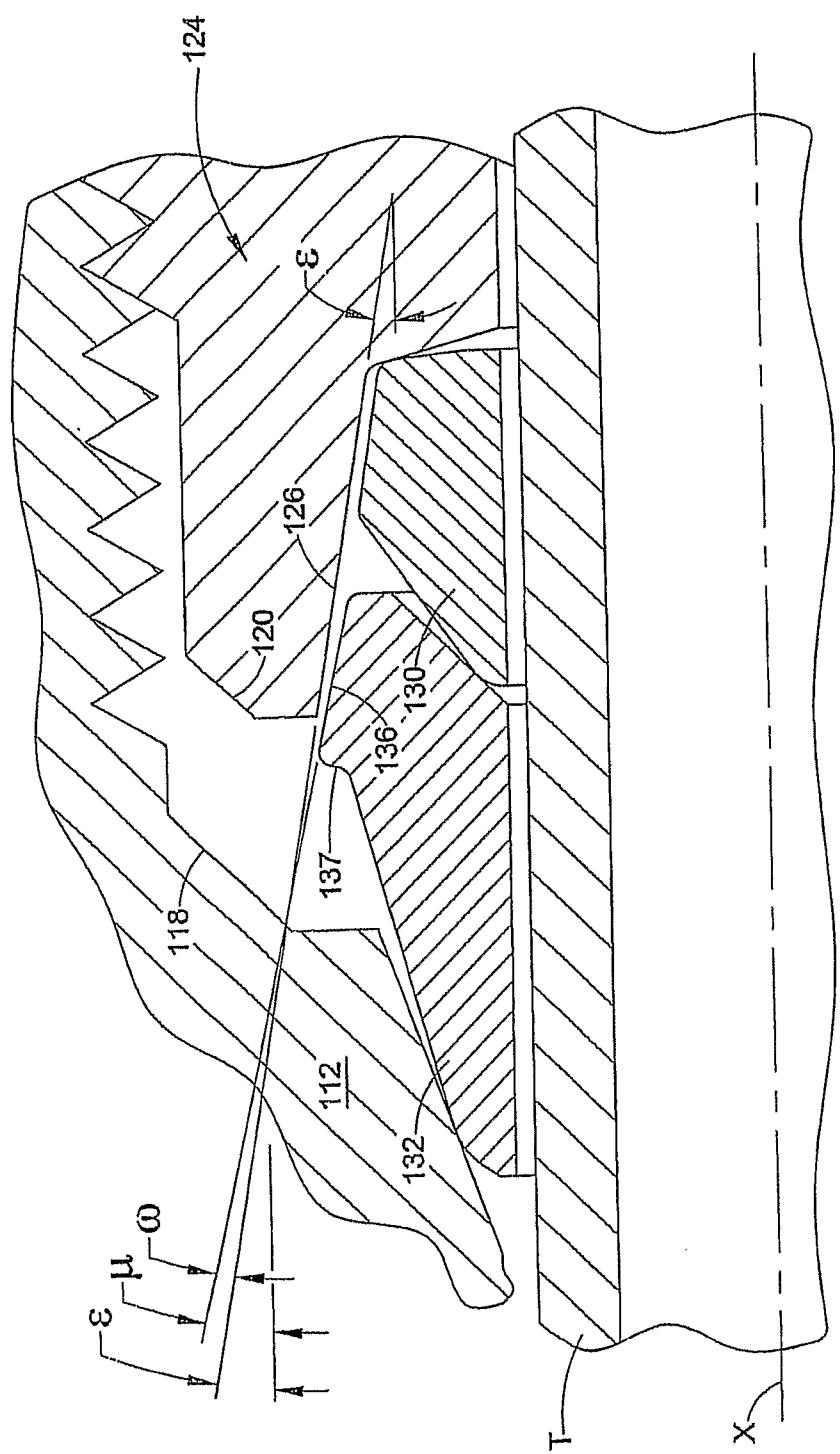


FIG. 13A

11/29

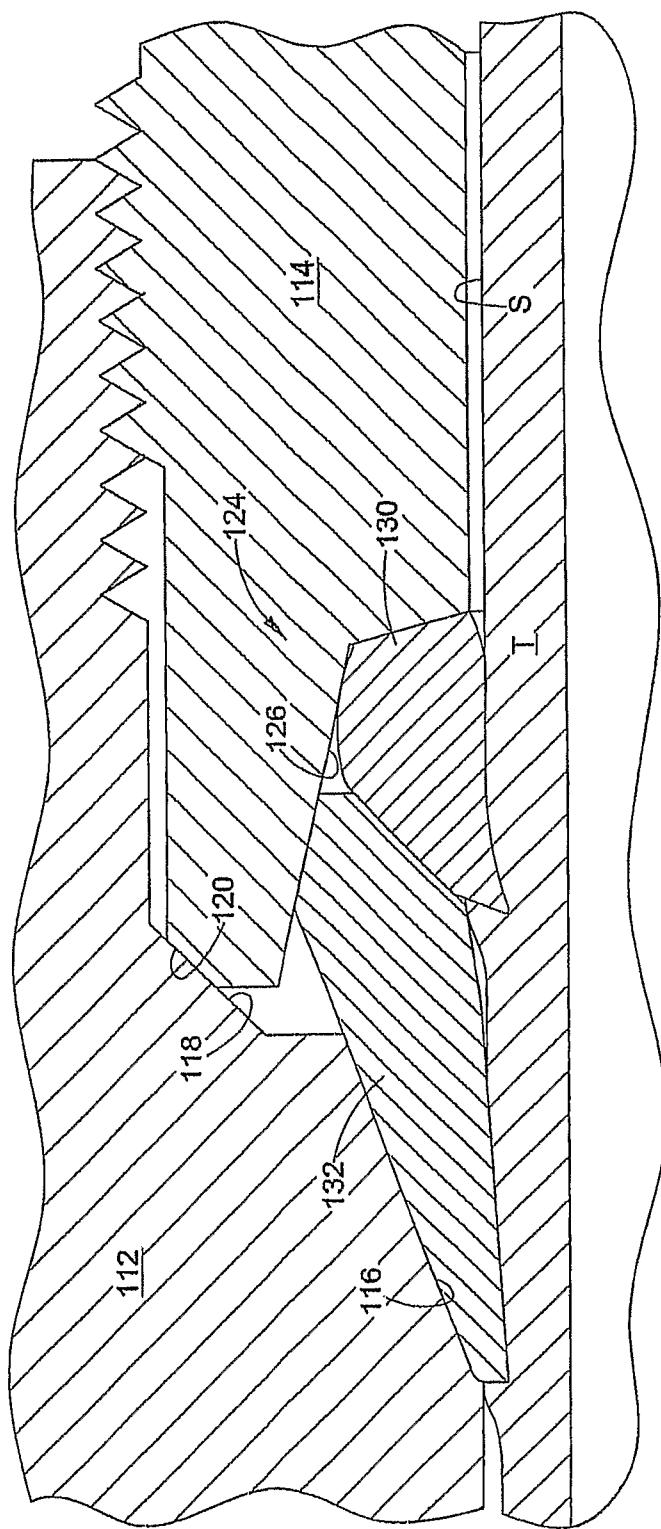


FIG. 14

12/29

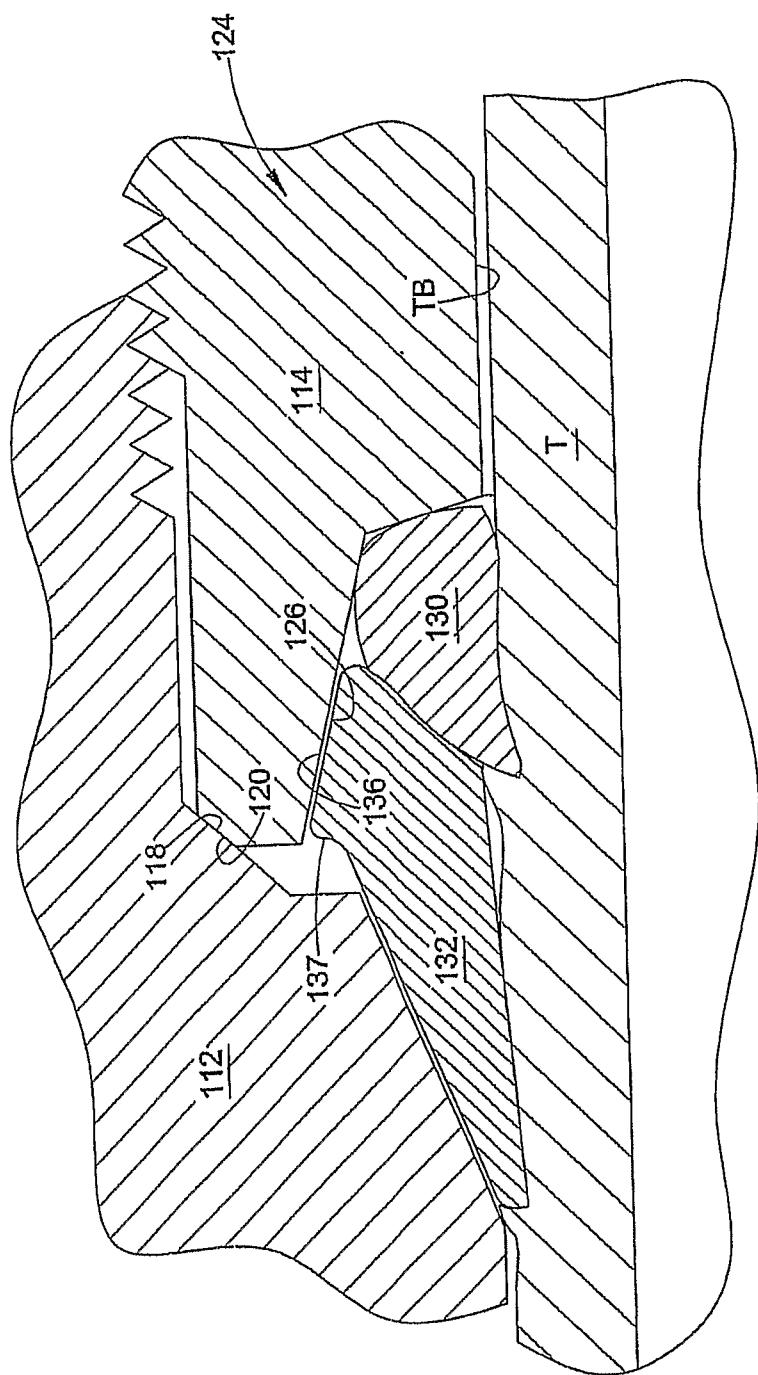
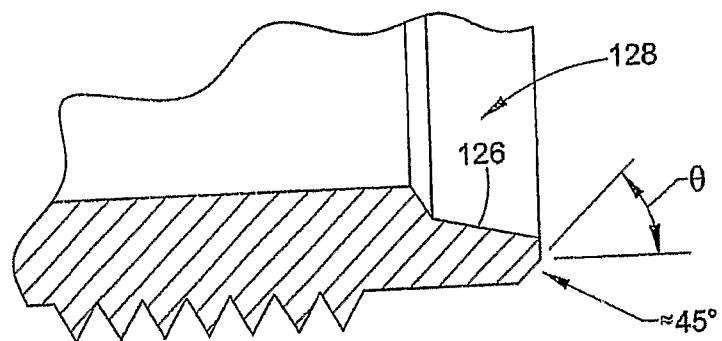
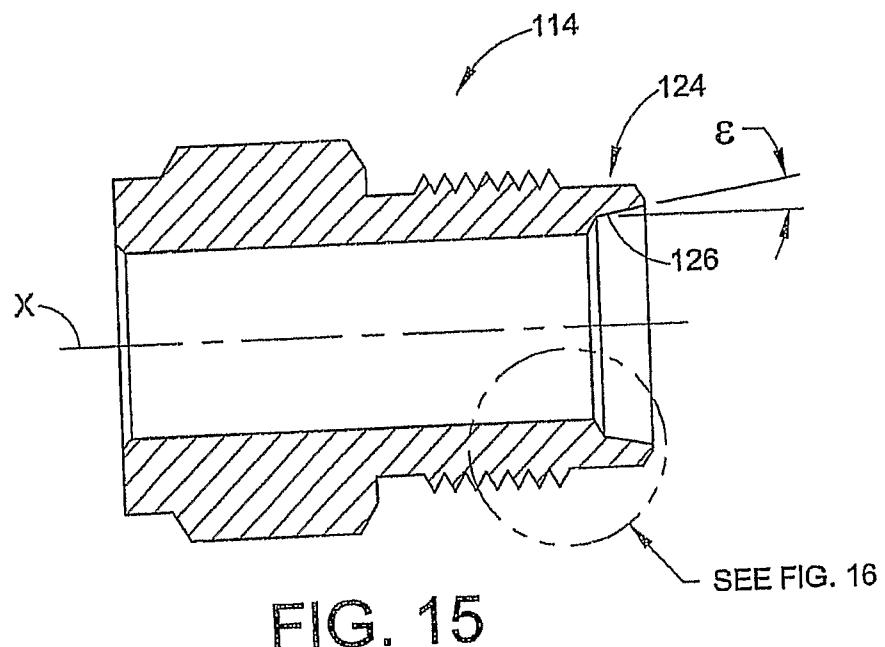




FIG. 14A

13/29

14/29

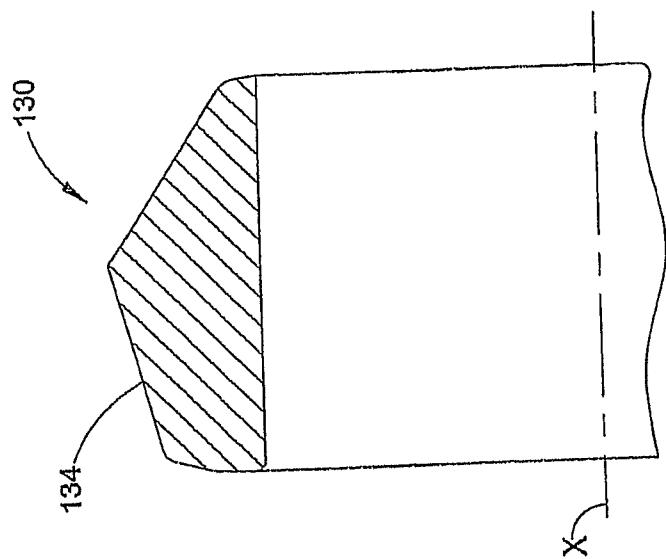


FIG. 18

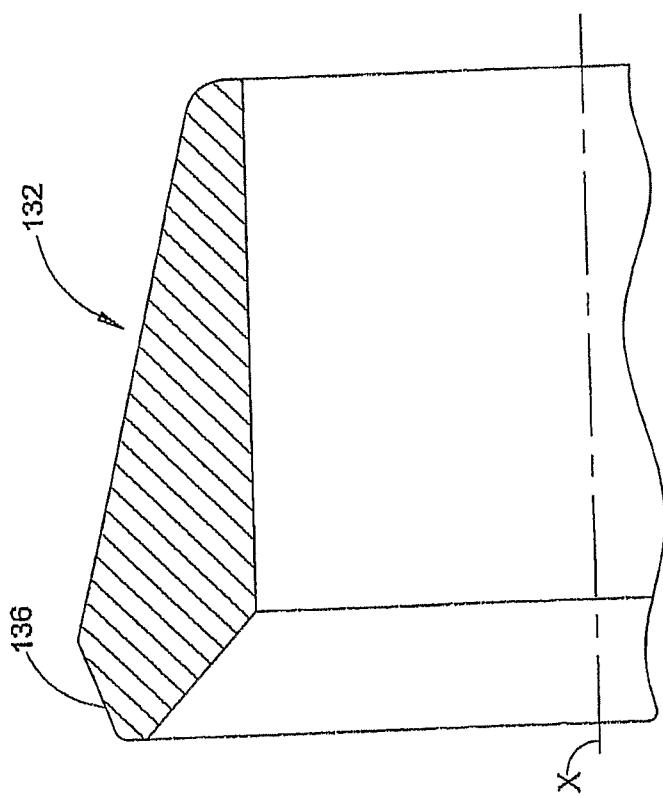


FIG. 17

15/29

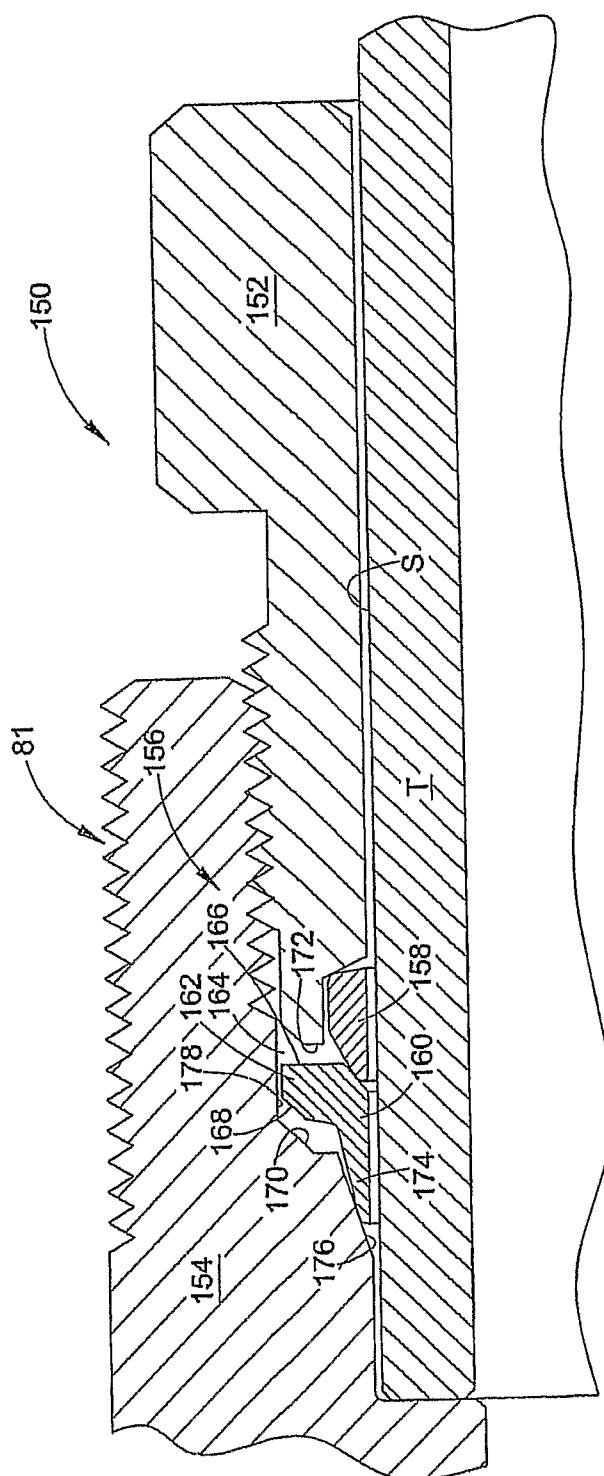


FIG. 19

16/29

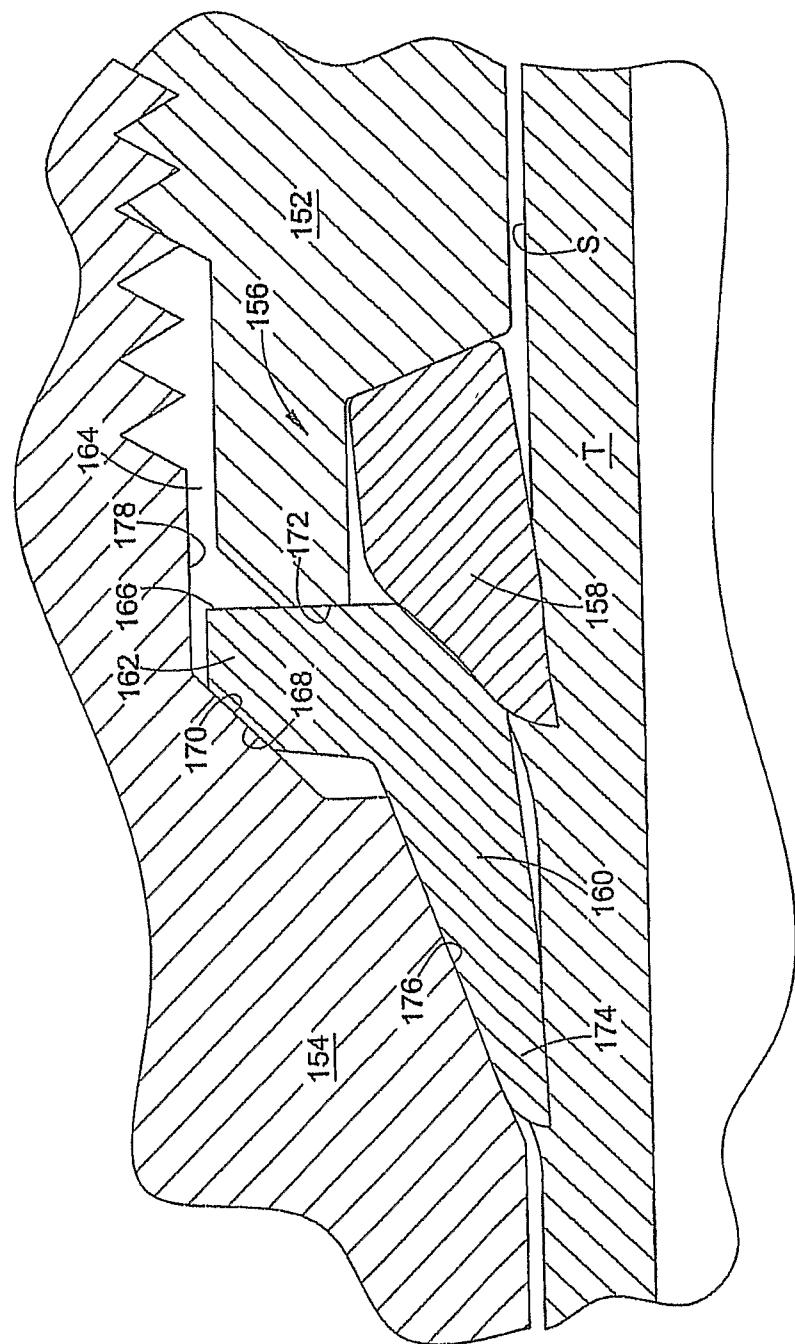


FIG. 20

17/29

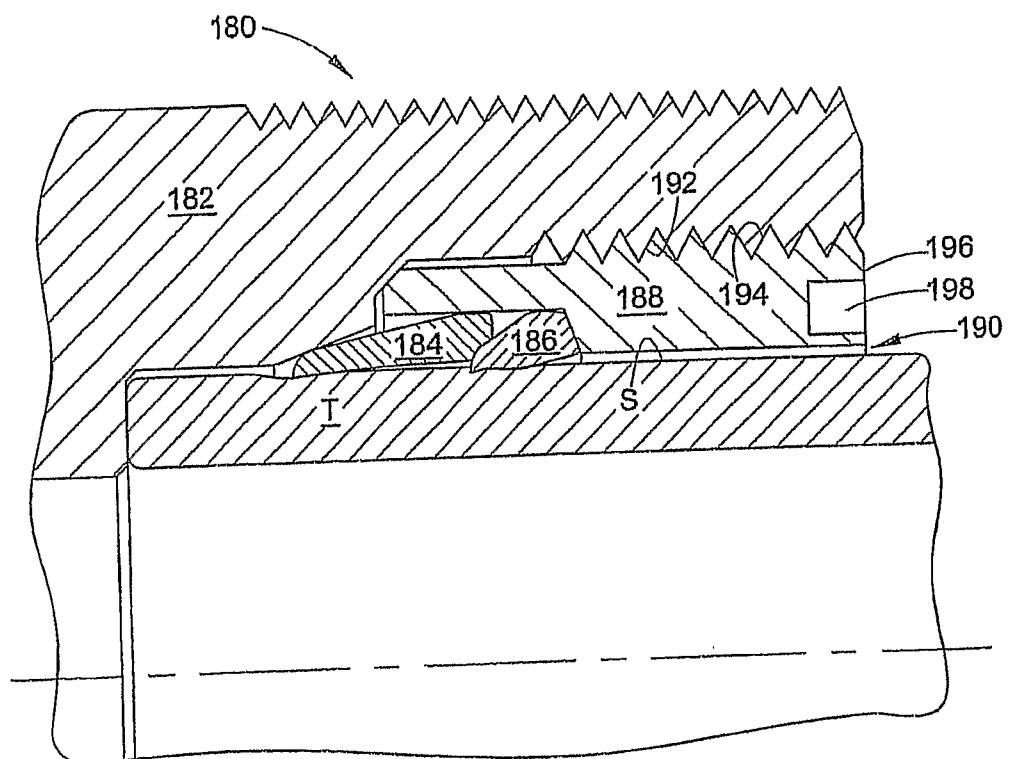


FIG. 21

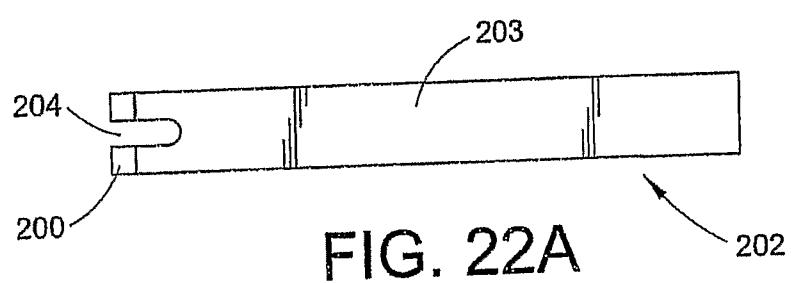


FIG. 22A

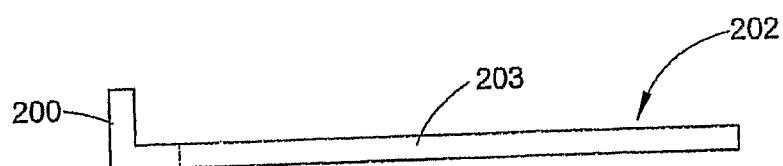
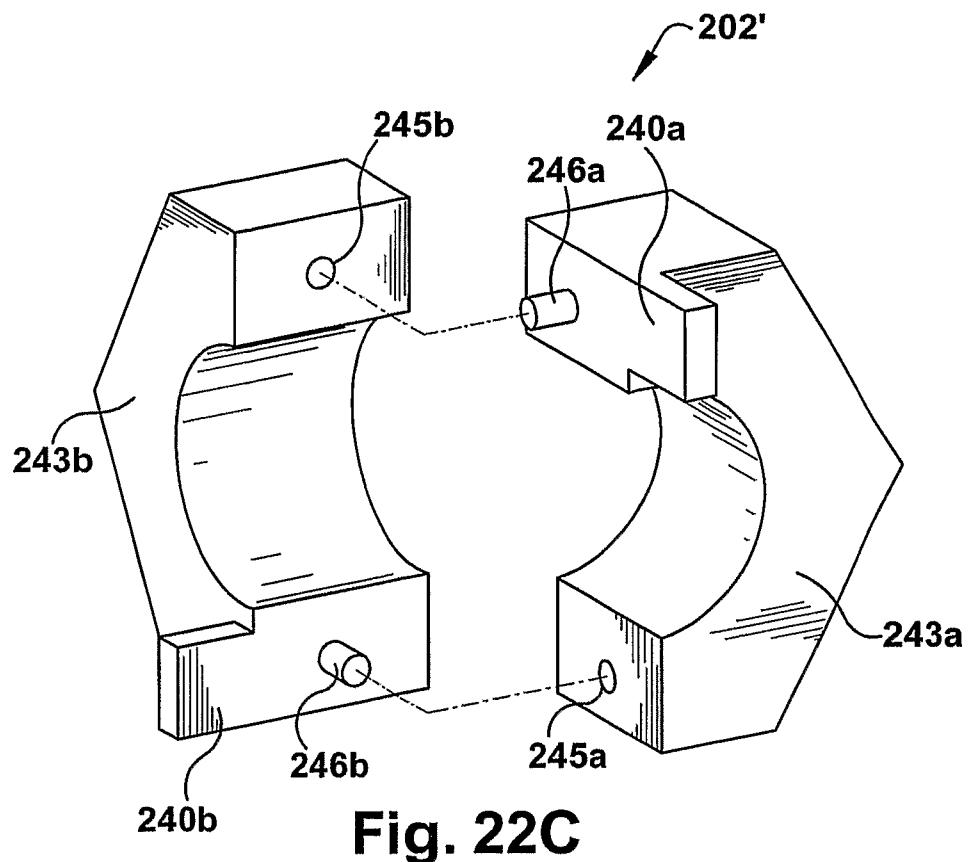
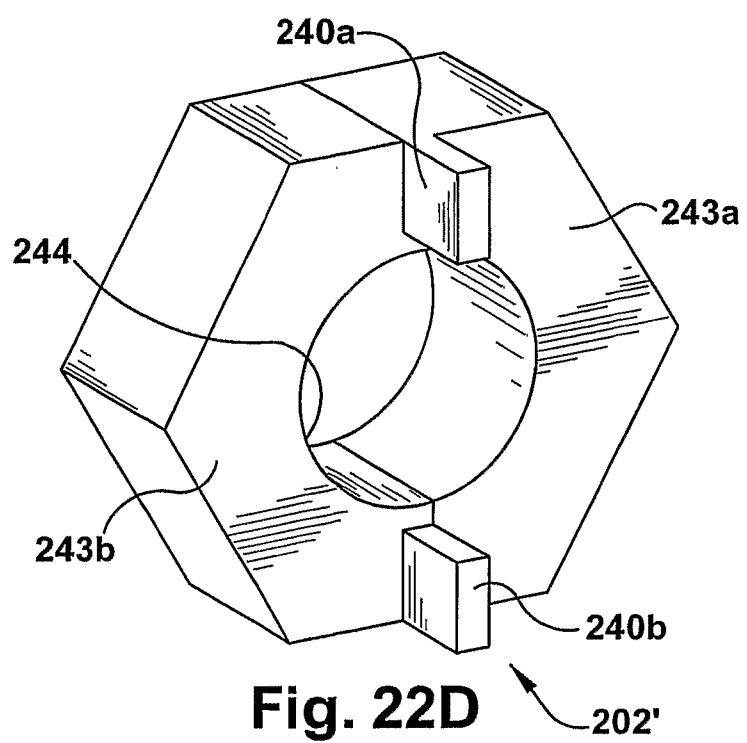




FIG. 22B

18/29

Fig. 22C**Fig. 22D**

19/29

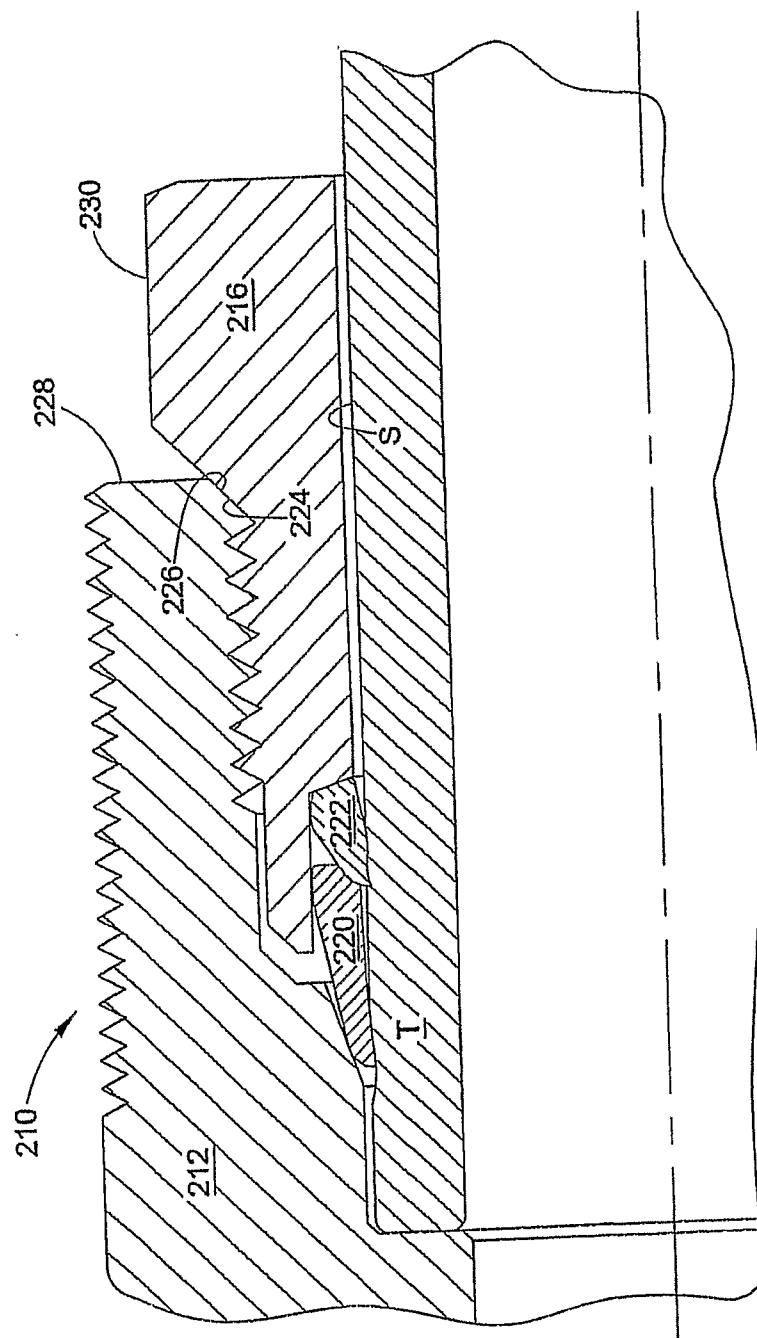


FIG. 23

20/29

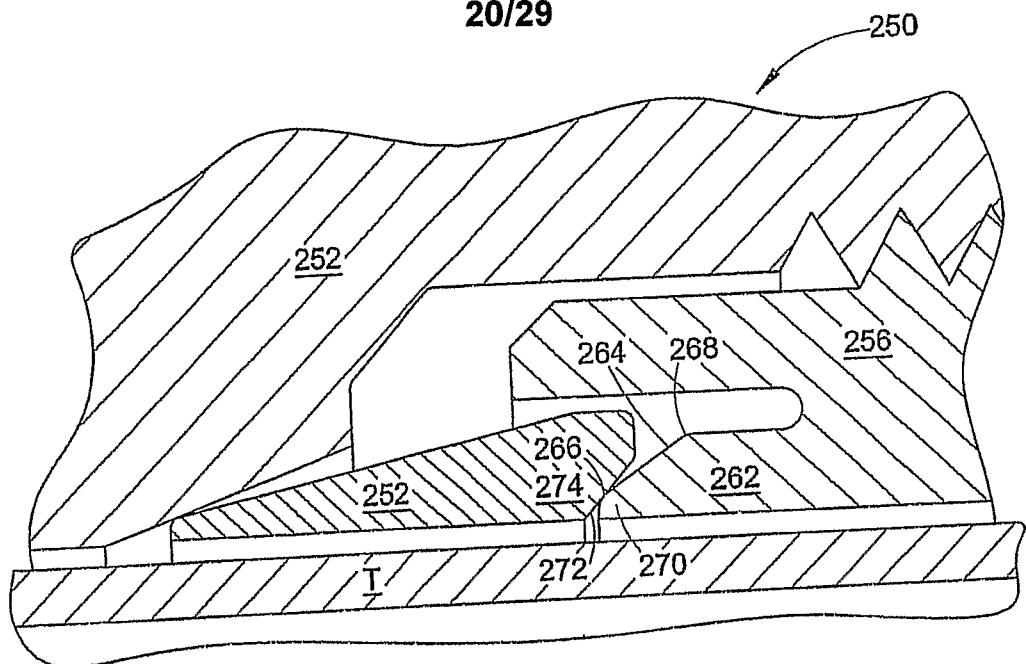


FIG. 24

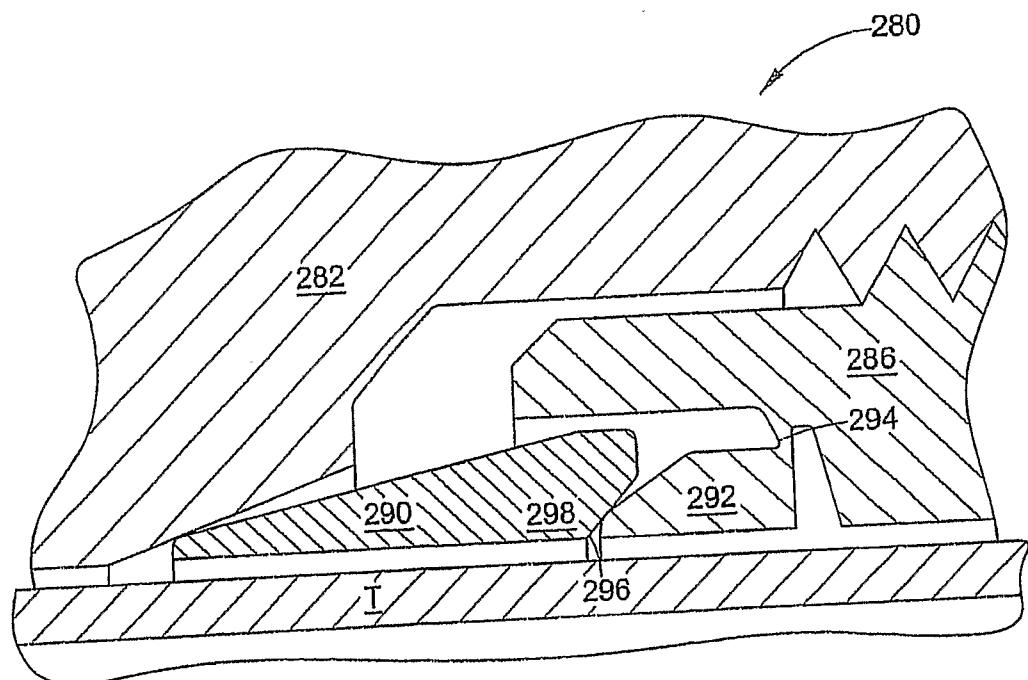


FIG. 25

21/29

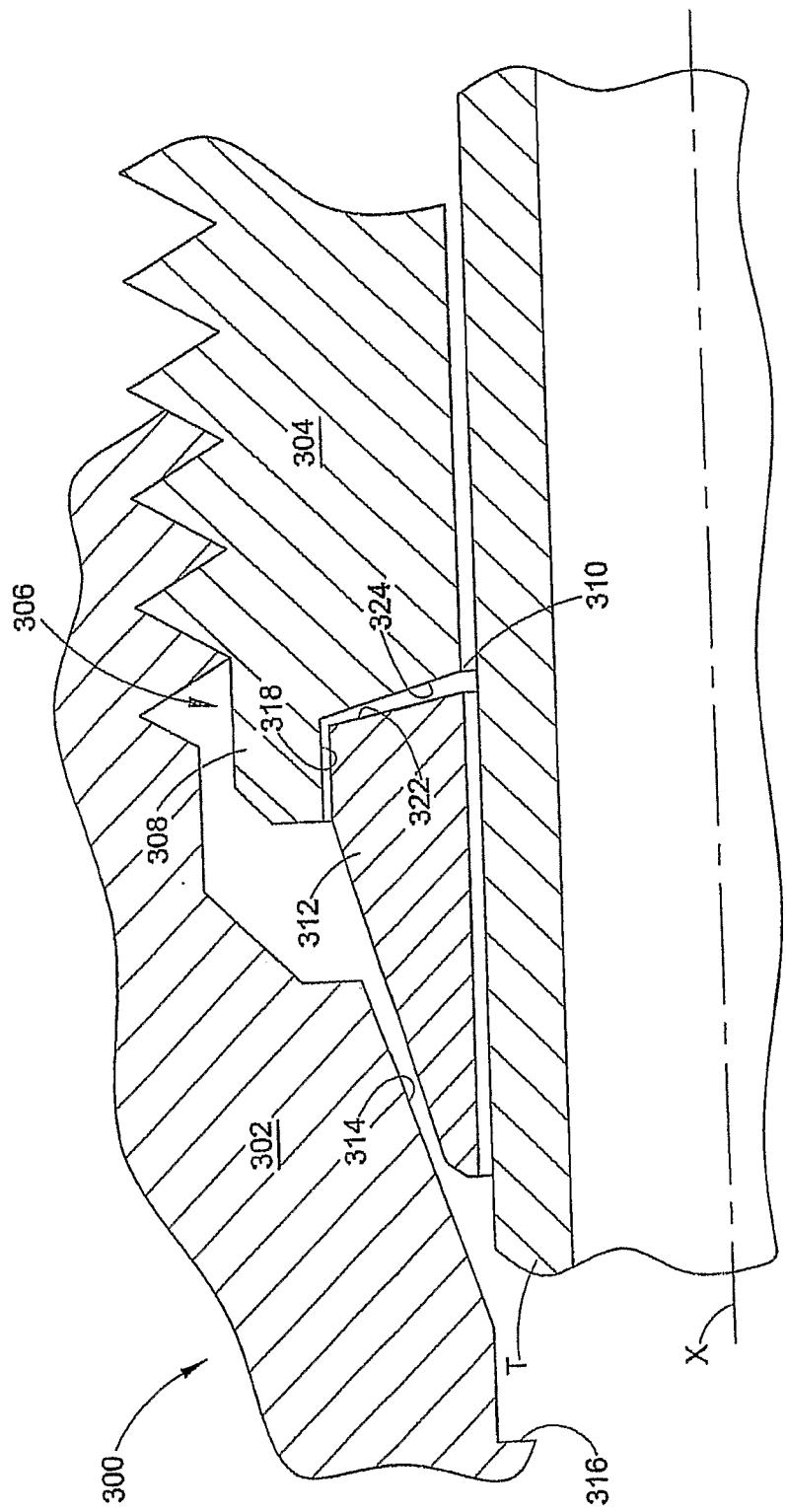


FIG. 26

22/29

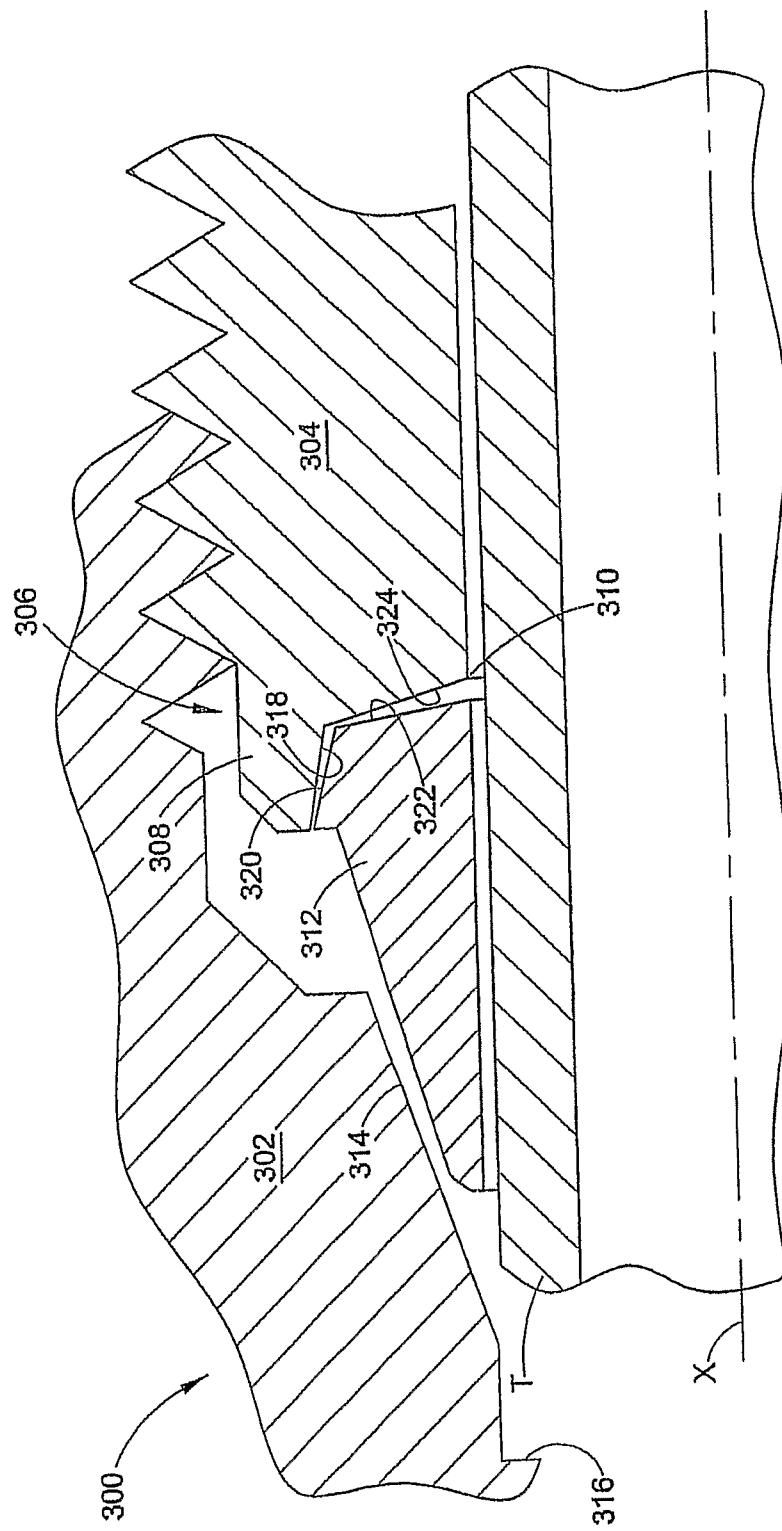


FIG. 27

23/29

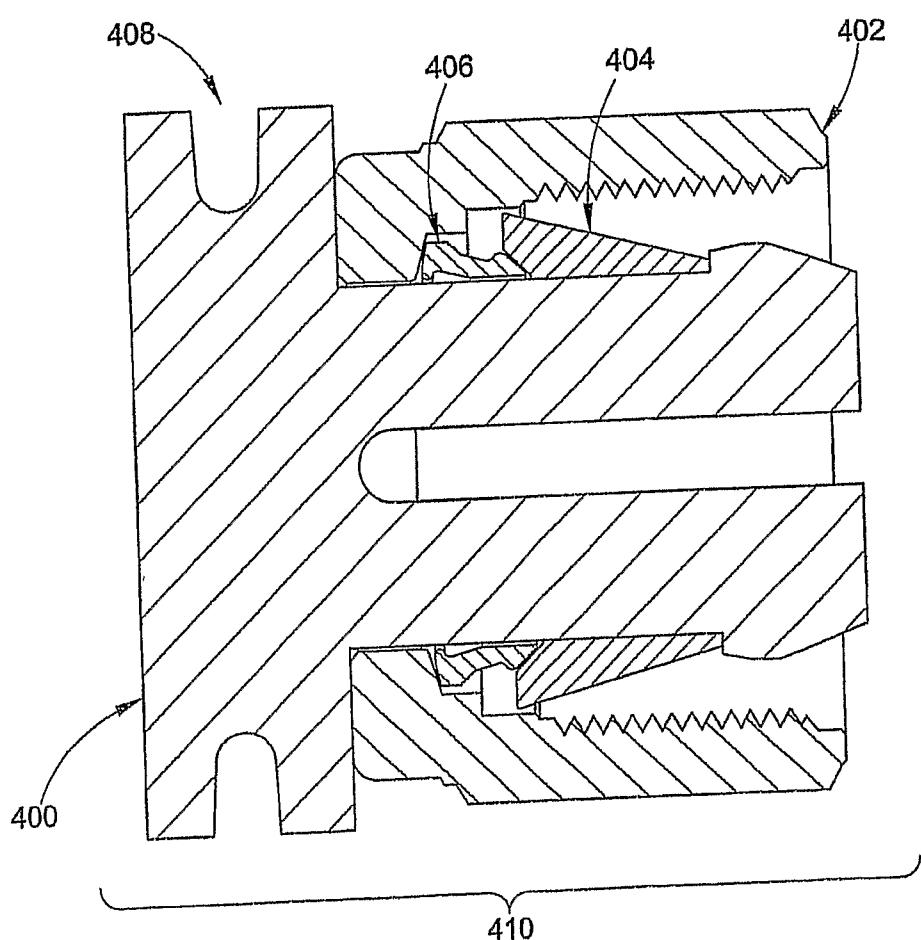


FIG. 28

24/29

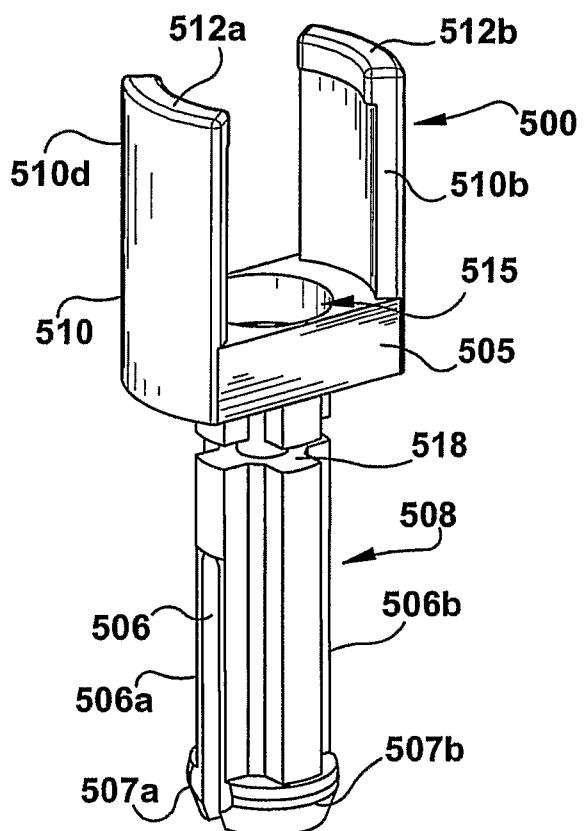
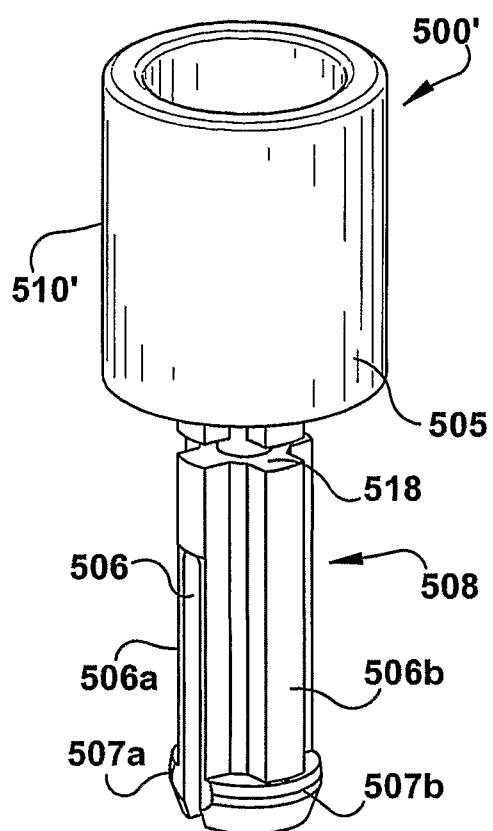
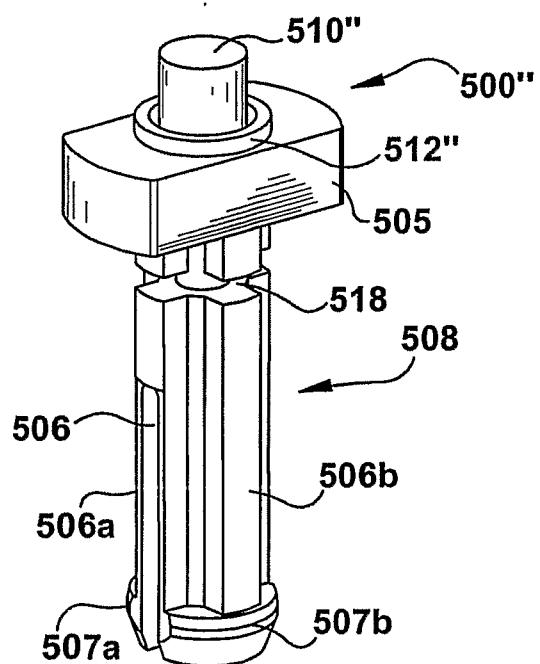




Fig. 29A

Fig. 29B

Fig. 29C

25/29

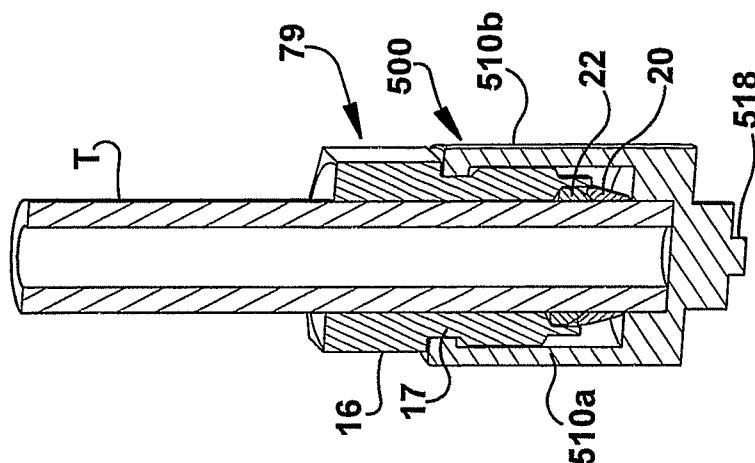


Fig. 32

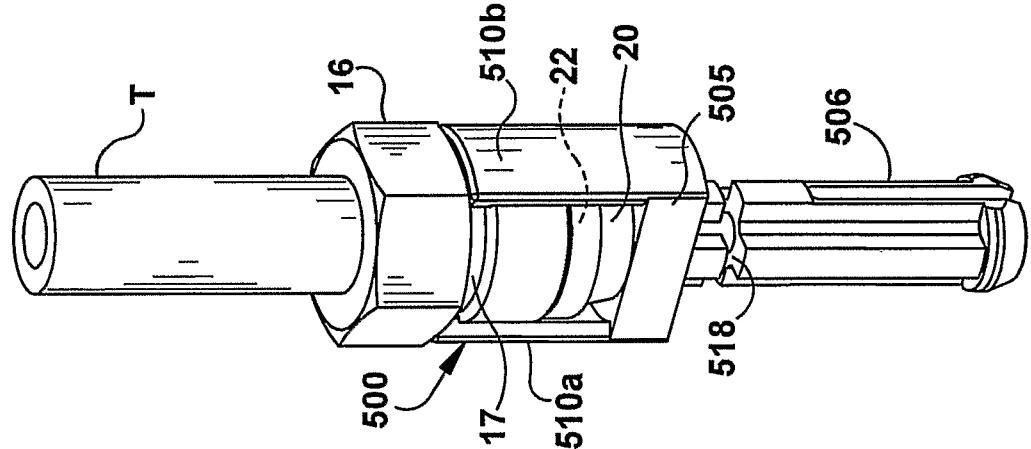


Fig. 31

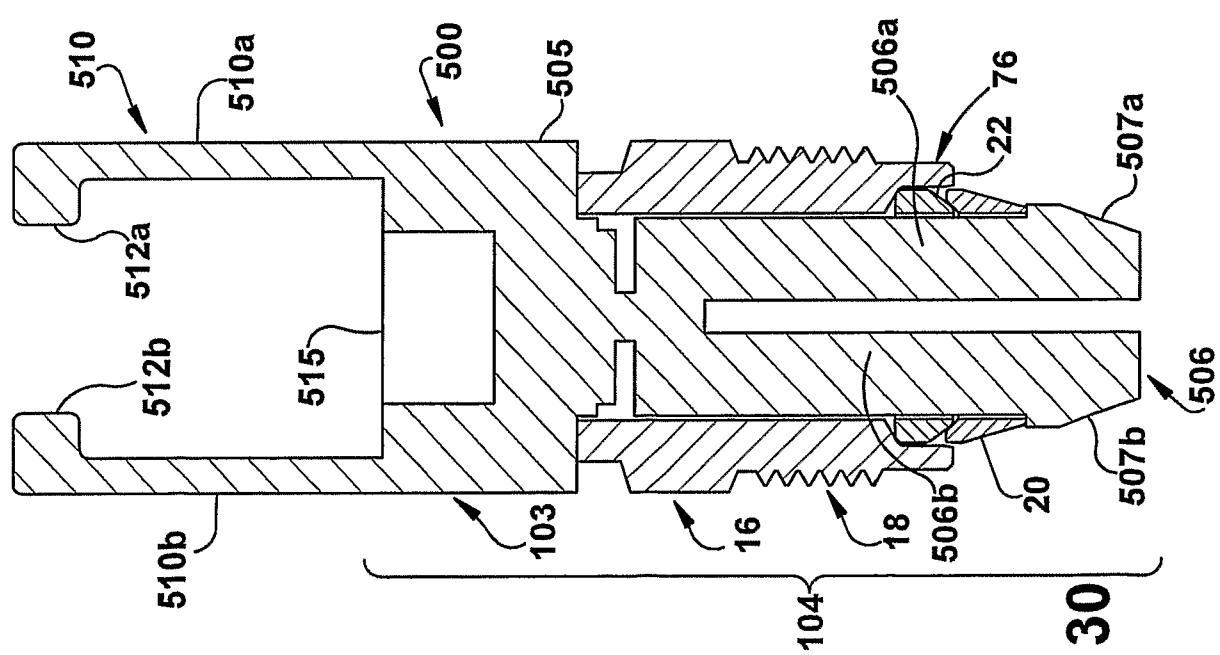
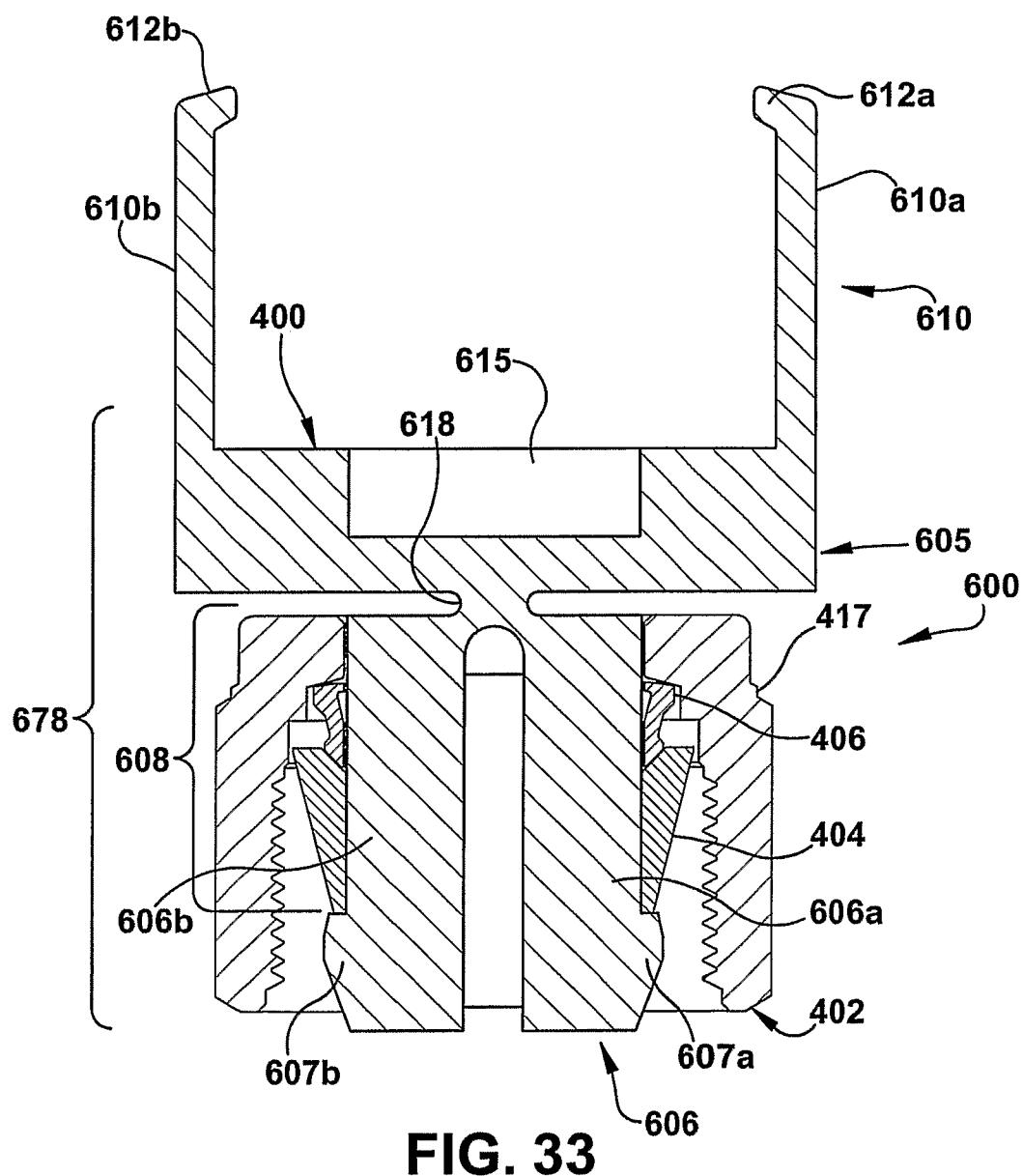
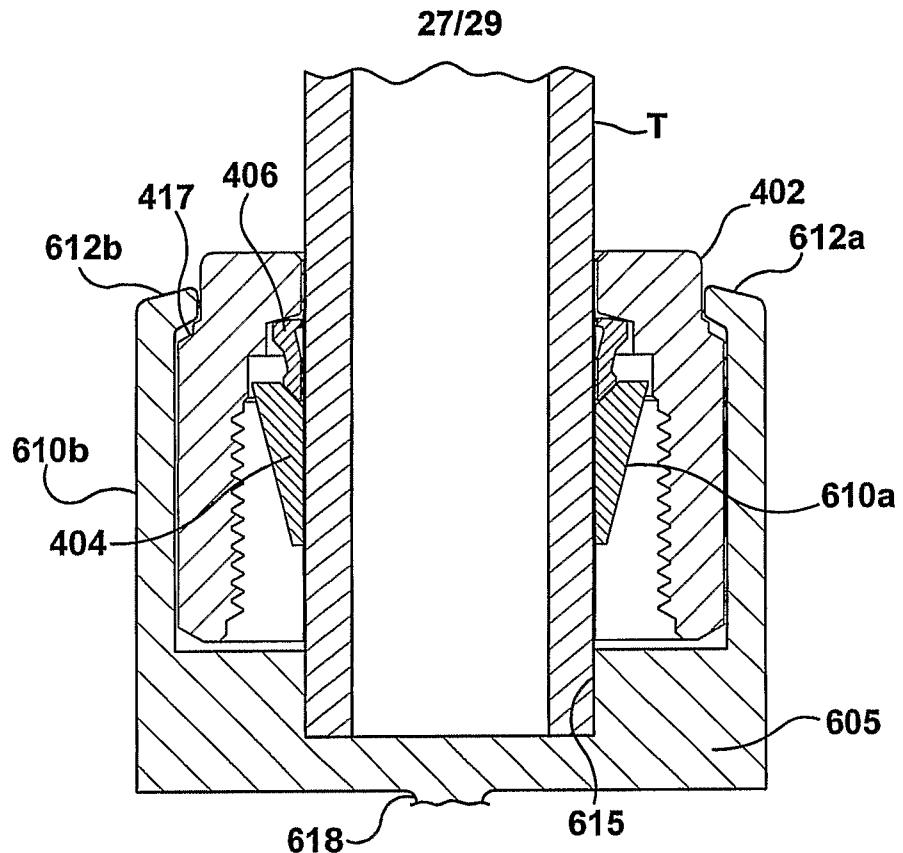
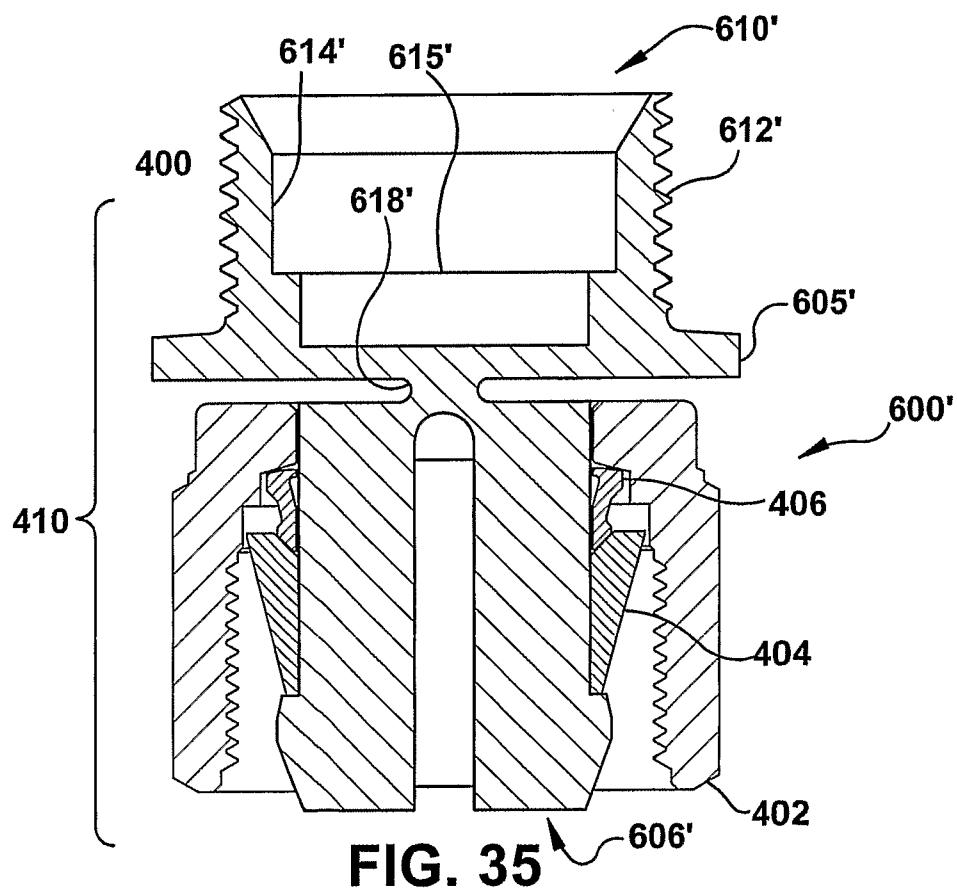
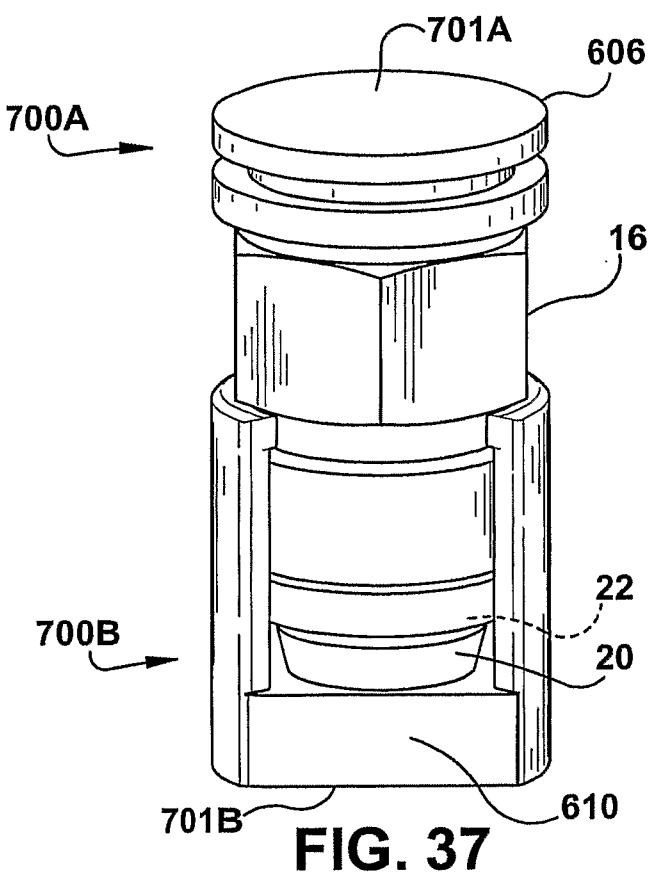
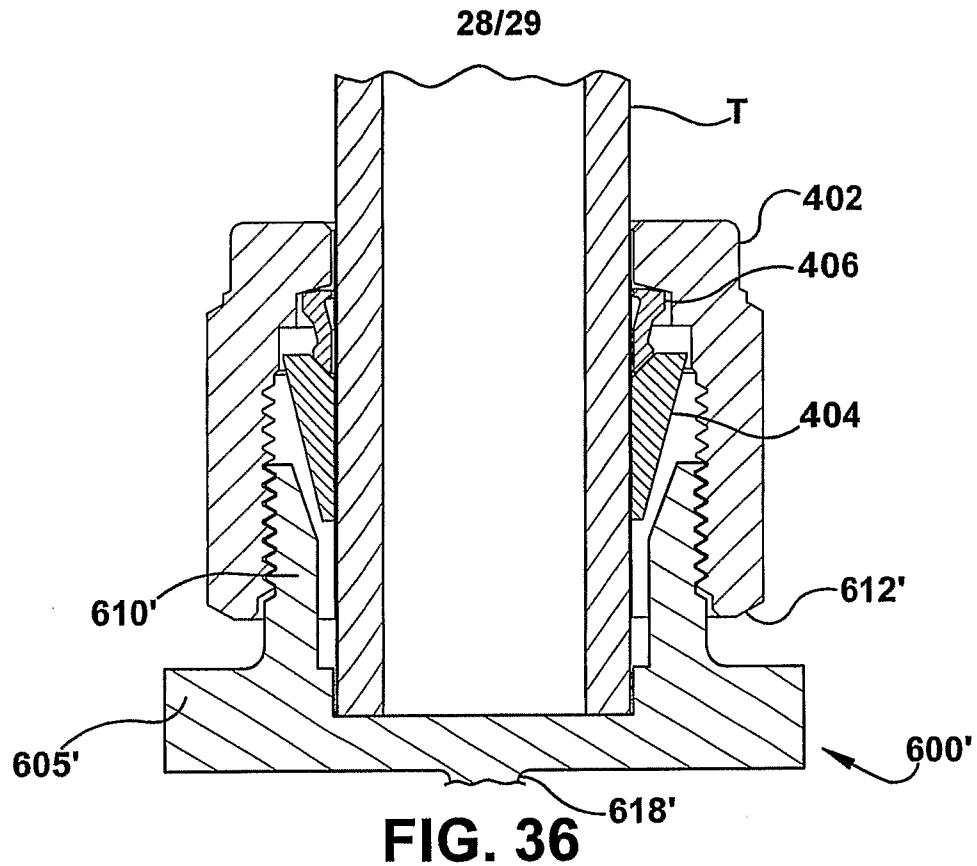
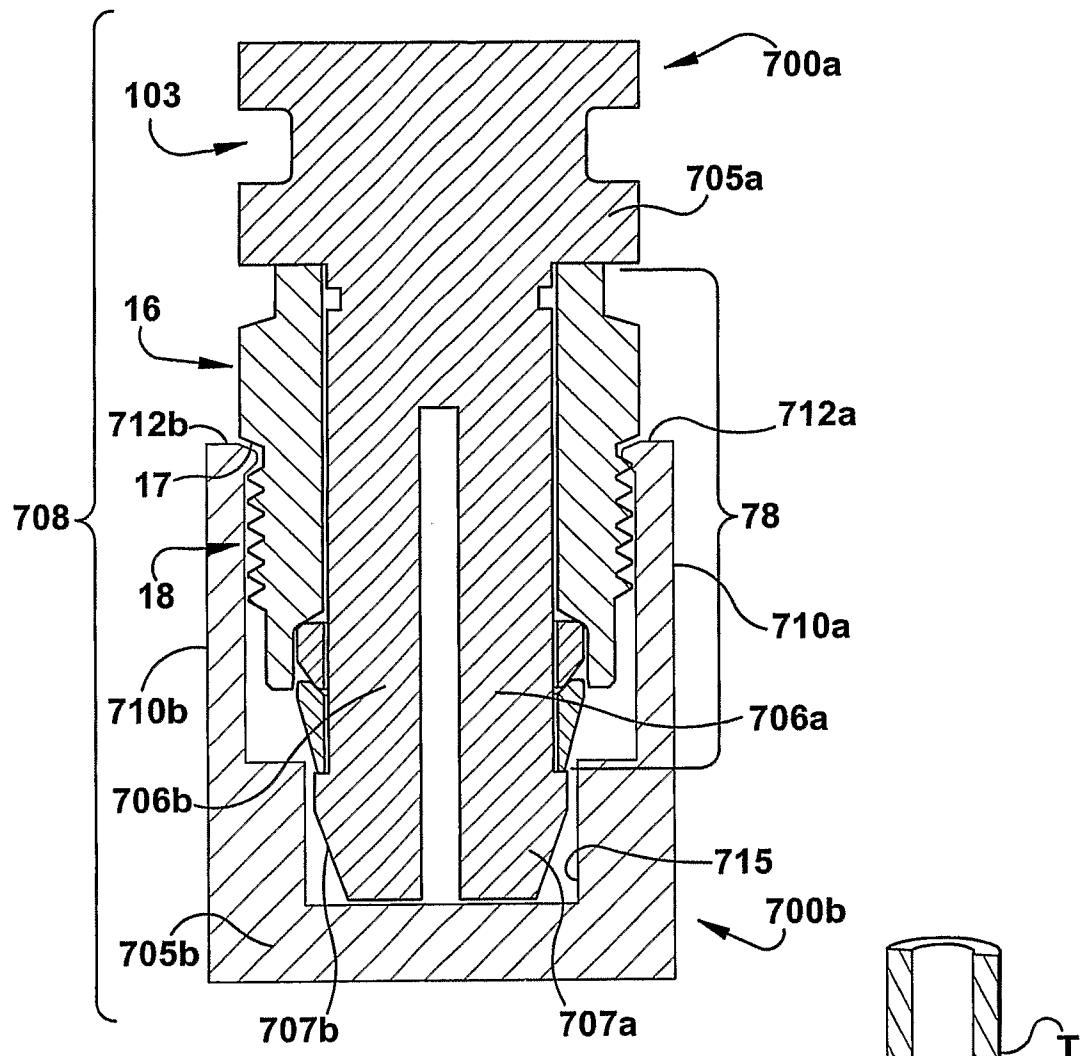
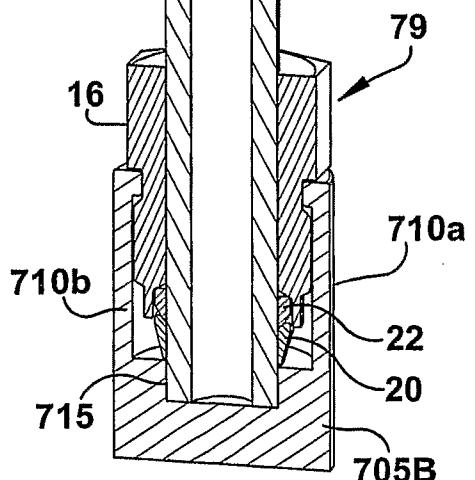







FIG. 30


26/29


FIG. 34**FIG. 35**

29/29

FIG. 38

FIG. 39