

HU000034370T2

(19) **HU**

(11) Lajstromszám: **E 034 370**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(21) Magyar ügyszám: **E 10 184462** (51) Int. Cl.: **C07K 16/28** (2006.01)
(22) A bejelentés napja: **2003. 11. 28.** **G01N 33/577** (2006.01)
C12N 15/85 (2006.01)
(96) Az európai bejelentés bejelentési száma: **G01N 33/564** (2006.01)
EP 20030184462 **C07K 16/00** (2006.01)
(97) Az európai bejelentés közzétételi adatai: **C12N 5/10** (2006.01)
EP 2383296 A1 **2011. 11. 02.**
(97) Az európai szabadalom megadásának meghirdetési adatai:
EP 2383296 B1 **2017. 02. 22.**

(30) Elsőbbségi adatai:	0227964	2002. 11. 29.	GB	(73) Jogosult(ak): RSR LIMITED, Pentwyn Cardiff CF23 8HE (GB)
	0302140	2003. 01. 29.	GB	
	0315147	2003. 06. 27.	GB	
(72) Feltaláló(k):	Sanders, Jane, Vale of Glamorgan, CF62 3AT (GB) Furmaniak, Jadwiga, Cardiff, CF14 9HX (GB) Smith, Bernard Rees, Cardiff, CF3 6XD (GB)			

(54) **Antitest a tirotropin receptorhoz, és ennek alkalmazásai**

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(19)

(11)

EP 2 383 296 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

22.02.2017 Bulletin 2017/08

(51) Int Cl.:

C07K 16/28 (2006.01)

C12N 15/85 (2006.01)

C12N 5/10 (2006.01)

C07K 16/00 (2006.01)

G01N 33/564 (2006.01)

G01N 33/577 (2006.01)

(21) Application number: 10184462.9

(22) Date of filing: 28.11.2003

(54) **ANTIBODY FOR THE THYROTROPIN RECEPTOR AND USES THEREOF**

Antikörper für den Thyrotropinrezeptor und Verwendungen dafür

Anticorps pour le récepteur de la thyrotropine et leurs utilisations

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 29.11.2002 GB 0227964

29.01.2003 GB 0302140

27.06.2003 GB 0315147

(43) Date of publication of application:

02.11.2011 Bulletin 2011/44

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

03778537.5 / 1 565 493

(73) Proprietor: RSR LIMITED

Pentwyn

Cardiff CF23 8HE (GB)

(72) Inventors:

- Sanders, Jane

Vale of Glamorgan, CF62 3AT (GB)

- Furmaniak, Jadwiga

Cardiff, CF14 9HX (GB)

- Smith, Bernard Rees

Cardiff, CF3 6XD (GB)

(74) Representative: Turner, Craig Robert

A.A. Thornton & Co.

10 Old Bailey

London EC4M 7NG (GB)

(56) References cited:

EP-A2- 1 078 986 WO-A-03/018632

WO-A1-99/64865 WO-A2-02/08723

- SANDERS ET AL: "Human monoclonal thyroid stimulating autoantibody", THE LANCET, LANCET LIMITED. LONDON, GB, vol. 362, no. 9378, 12 July 2003 (2003-07-12), pages 126-128, XP005017121, ISSN: 0140-6736, DOI: 10.1016/S0140-6736(03)13866-4
- KOHN L D ET AL: "Characterization of monoclonal thyroid-stimulating and thyrotropin binding-inhibiting autoantibodies from a Hashimoto's patient whose children had intrauterine and neonatal thyroid disease", JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, THE ENDOCRINE SOCIETY, US, vol. 82, no. 12, 1 December 1997 (1997-12-01), pages 3998-4009, XP002482177, ISSN: 0021-972X, DOI: 10.1210/JC.82.12.3998
- TAKASHI AKAMIZU ET AL: "Characterization of recombinant monoclonal antithyrotropin receptor antibodies (TSHRAbs) derived from lymphocytes of patients with Graves' disease: epitope and binding study of two stimulatory TSHRAbs.", ENDOCRINOLOGY, vol. 140, no. 4, 1 April 1999 (1999-04-01) , pages 1594-1601, XP55007638,
- AKAMIZU ET AL: "Molecular analysis of stimulatory anti-thyrotropin receptor antibodies (TSAbs) involved in Graves' disease. Isolation and reconstruction of antibody genes, and production of monoclonal TSAbs.", THE JOURNAL OF IMMUNOLOGY, vol. 157, no. 7, 1 October 1996 (1996-10-01), pages 3148-3152, XP55007640, ISSN: 0022-1767

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- YOSHIDA ET AL: "Monoclonal antibodies to the thyrotropin receptor bind to a 56-kDa subunit of the thyrotropin receptor and show heterogeneous bioactivities.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, no. 31, 1 November 1988 (1988-11-01), pages 16341-16347, XP55007639, ISSN: 0021-9258
- VALENTE W A ET AL: "Monoclonal antibodies to the thyrotropin receptor: stimulating and blocking antibodies derived from the lymphocytes of patients with Graves disease", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, WASHINGTON, DC; US, vol. 79, no. 21, 1 November 1982 (1982-11-01), pages 6680-6684, XP002482178, ISSN: 0027-8424, DOI: 10.1073/PNAS.79.21.6680
- RAPOPORT B ET AL: "The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies", ENDOCRINE REVIEWS, BALTIMORE, MD, US, vol. 19, no. 6, 1 December 1998 (1998-12-01), pages 673-716, XP002242223, DOI: 10.1210/ER.19.6.673

Description

[0001] The present invention is concerned with binding partners (such as monoclonal or recombinant antibodies) for the thyrotropin receptor (TSH receptor or TSHR) and uses thereof.

5 **[0002]** Thyrotropin or thyroid stimulating hormone (TSH) is a pituitary hormone which plays a key role in regulating the function of the thyroid. Its release is stimulated by the hormone TRH formed in the hypothalamus and TSH controls the formation and release of the important thyroid hormones thyroxine (T4) and tri-iodothyronine (T3). On the basis of a feedback mechanism, the thyroid hormone content of serum controls the release of TSH. The formation of T3 and T4 by thyroid cells is stimulated by TSH by a procedure in which the TSH released by the pituitary binds to the TSH receptor 10 of the thyroid cell membrane.

15 **[0003]** In Graves' disease (a common autoimmune disorder) TSH receptor antibodies (TRAb) are formed and these autoantibodies bind to the TSH receptor in such a way as to mimic the actions of TSH, stimulating the thyroid gland to produce high levels of thyroid hormones. These autoantibodies are described as having stimulating activity. In some patients, autoantibodies bind to the TSH receptor but do not stimulate thyroid hormone production and are described 20 as having blocking activity. (J Sanders, Y Oda, S-A Roberts, M Maruyama, J Furmaniak, B Rees Smith; "Understanding the thyrotropin receptor function-structure relationship" Balliere's Clinical Endocrinology and Metabolism; Ed TF Davies 1997; 11(3): 451-479; pub Balliere Tindall, London).

15 **[0004]** Measurements of TSH receptor antibodies are important in the diagnosis and management of Graves' disease and other thyroid disorders. Currently three types of assay are used to measure TSH receptor antibodies:-

20 (a) competitive binding assays which measure the ability of TSH receptor antibodies to inhibit the binding of TSH to preparations of TSH receptor;
 (b) bioassays which measure the ability of TSH receptor antibodies to stimulate cells expressing the TSH receptor in culture; and
 25 (c) immunoprecipitation of TSH receptor preparations with TSH receptor antibodies.

[0005] Measurement of TSH receptor antibodies using such assays are described in references:-

30 **[0006]** J Sanders, Y Oda, S-A Roberts, M Maruyama, J Furmaniak, B Rees Smith; "Understanding the thyrotropin receptor function-structure relationship" Balliere's Clinical Endocrinology and Metabolism; Ed TF Davies 1997; 11(3): 451-479; pub Balliere Tindall, London.

35 **[0007]** J Sanders, Y Oda, S Roberts, A Kiddie, T Richards, J Bolton, V McGrath, S Walters, D Jaskolski, J Furmaniak, B Rees Smith; "The interaction of TSH receptor autoantibodies with 125I-labelled TSH receptor"; Journal of Clinical Endocrinology and Metabolism 1999; 84(10): 3797-3802.

40 **[0008]** It has been recognised for many years that human monoclonal antibodies to the TSH receptor derived from patients' lymphocytes would be valuable reagents for understanding the pathogenesis of Graves' disease and for developing new methods of measuring TSH receptor antibodies for example as replacements for TSH in competitive binding assays. Also, as the patient's serum TSH receptor antibodies are usually powerful thyroid stimulators (TSH agonists) stimulating human monoclonal TSH receptor antibodies would be valuable for in vivo applications when tissue containing the TSH receptor (eg thyroid tissue or thyroid cancer tissue) required stimulation. Furthermore, as some patient serum TSH receptor antibodies are powerful TSH antagonists (blocking antibodies) human monoclonal TSH receptor antibodies which are TSH antagonists would be valuable for in vivo applications when the activity of tissue containing the TSH receptor (eg thyroid tissue or thyroid cancer tissue) required inactivation or to be made unresponsive to TSH, TSH receptor antibodies or other stimulators.

45 **[0009]** It has also been recognised that one of the major advantages of human monoclonal TSH receptor antibodies over TSH in such in vitro and / or in vivo applications would be the relative ease with which antibodies can be manipulated. For example, manipulation of the TSH receptor binding region of the monoclonal antibodies so as to change their characteristics, such as affinity and biological characteristics including their degree of TSH agonist or antagonist activities. Also, monoclonal antibodies will have a much longer half life than TSH in vivo and this may have considerable advantages 50 in certain in vivo applications. Furthermore, the half life of antibodies can be manipulated easily, for example antibody Fab fragments have a much shorter half life than intact IgG. These general properties of TSH receptor antibodies are described in the publications such as B Rees Smith, SM McLachlan, J Furmaniak; "Autoantibodies to the thyrotropin receptor"; Endocrine Reviews 1988; 9: 106-121; B Rees Smith, KJ Dorrington, DS Munro; "The thyroid stimulating properties of long-acting thyroid stimulator γ G-globulin subunits"; Biochimica et Biophysica Acta 1969; 192: 277-285; KJ Dorrington, DS Munro; "The long acting thyroid stimulator"; Clinical Pharmacology and Therapeutics 1966; 7: 788-806.

55 **[0010]** A still further advantage of human monoclonal TSH receptor antibodies could be in their use to identify and provide new types of TSH receptor antibody binding sites. For example by the generation of antibodies to the regions of the human monoclonal TSH receptor antibodies which bind the TSH receptor. Some of the anti-idiotypic antibodies produced in this way could have potential as new ligands for assays of TSH receptor antibodies, TSH and related

compounds. Also they may be effective agents in vivo for regulating the action of TSH receptor antibodies, TSH and related, compounds.

[0011] Other methods of identifying and providing new types of antibody binding sites using monoclonal antibodies are well known. For example by antibody screening of phage-displayed random peptide libraries as described by JC Scott and GP Smith; "Searching for peptide ligands with an epitope library"; *Science* 1990; 249(4967): 386-390 and MA Myers, JM Davies, JC Tong, J Whisstock, M Scealy, IR MacKay, MJ Rowley; "Conformational epitopes on the diabetes autoantigen GAD65 identified by peptide phage display and molecular modelling"; *Journal of Immunology* 2000; 165: 3830-3838. Antibody screening of non-peptide compounds and libraries of non-peptide compounds can also be carried out. New types of TSH receptor antibody binding sites identified and provided using these procedures may also be useful as new ligands in assays for TSH receptor antibodies, TSH and related compounds. Furthermore they may be effective agents in vivo for regulating the action of TSH receptor antibodies, TSH and related compounds. In view of the potential value of human monoclonal TSH receptor antibodies there have been considerable efforts over many years to produce such antibodies (see for example B Rees Smith, SM McLachlan, J Furmaniak; "Autoantibodies to the thyrotropin receptor"; *Endocrine Reviews* 1988; 9: 106-121. However, to date these efforts have been unsuccessful (see for example SM McLachlan, B Rapoport; "Monoclonal, human autoantibodies to the TSH receptor - The Holy Grail and why are we looking for it"; *Journal of Clinical Endocrinology and Metabolism* 1996; 81: 3152-3154 and JHW van der Heijden, TWA de Bruin, KAFM Gludemans, J de Kruif, JP Banga, T Logtenberg; "Limitations of the semisynthetic library approach for obtaining human monoclonal autoantibodies to the thyrotropin receptor of Graves' disease"; *Clinical and Experimental Immunology* 1999; 118: 205-212).

[0012] WO 02/08723 and EP 1078986 disclose monoclonal human antibodies targeting the human TSH receptor which inhibit TSH binding to the TSH receptor and uses thereof in competitive immunoassays for the detection of TSH receptor autoantibodies. It is an object of the present invention to provide a binding partner for the TSH receptor capable of interacting with the TSH receptor in a manner comparable to the interaction of TSH receptor autoantibodies with the TSH receptor, in particular it is an object of the present invention to provide human monoclonal antibodies to the TSH receptor exhibiting a comparable interaction therewith as seen with TSH receptor antibodies present in the sera of patients with hyperthyroid Graves' disease and also to provide recombinant preparations thereof. The considerable difficulties of producing human monoclonal TSH receptor antibodies have been overcome in the invention described herein. In particular the successful production of a human monoclonal TSH receptor antibody with the characteristics of the autoantibodies found in the sera of patients with hyperthyroid Graves' disease is described. The human TSH receptor monoclonal antibody we have produced (described herein as hMAb TSHR 1) binds to the TSH receptor with high affinity and in such a way that small amounts of the antibody inhibit labelled TSH binding to the TSH receptor and small amounts act as powerful thyroid stimulators. Fab fragments of the antibody and recombinant Fab preparations are similarly effective thyroid stimulators and inhibitors of labelled TSH binding as intact IgG. Monoclonal Fab and I or intact IgG can be labelled with ^{125}I or biotin and shown to bind to the TSH receptor. Such binding is inhibited by TSH receptor autoantibodies in patient sera.

[0013] The present invention provides methods according to any one of claims 1 to 2 or 7 to 10; and also provides kits according to any one of claims 3 to 10. There is provided by the present disclosure, therefore, a binding partner for the TSH receptor, which binding partner comprises, or is derived from, a human monoclonal or recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor.

[0014] In particular, there is provided by the present disclosure a binding partner for the TSH receptor, which binding partner comprises, or is derived from, a human monoclonal antibody, or one or more fragments thereof, reactive with the TSH receptor.

[0015] In particular, there is provided by the present disclosure a binding partner for the TSH receptor, which binding partner comprises, or is derived from, a human recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor.

[0016] In particular, there is provided by the present disclosure a human monoclonal antibody, or one or more fragments thereof, reactive with the TSH receptor.

[0017] In particular, there is provided by the present disclosure a human recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor. Particularly, the present invention provides one or more fragments of a human recombinant antibody reactive with the TSH receptor.

[0018] A binding partner according to the present disclosure, and in particular, a human monoclonal or recombinant antibody reactive with the TSH receptor according to the present invention can be further characterised by its ability to inhibit TSH binding to the TSH receptor, and / or its ability to stimulate the TSH receptor, both of which have been seen to be comparable to the respective inhibitory and stimulatory properties of TSH receptor autoantibodies present in sera obtained from patients with Graves' disease.

[0019] More particularly, a binding partner according to the present disclosure, and in particular a human monoclonal or recombinant antibody according to the present invention, can be characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more

preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or one or more fragments of such a monoclonal or recombinant antibody.

[0020] More particularly, a binding partner according to the present disclosure, and in particular a human monoclonal or recombinant antibody according to the present invention, can be further characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg, or one or more fragments of such a monoclonal or recombinant antibody.

[0021] In a preferred embodiment of the present invention, a binding partner according to the present disclosure, and in particular a human monoclonal or recombinant antibody according to the present invention, can be characterised by:

- 15 (i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg; and
- 20 (ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg;

or one or more fragments of such a monoclonal or recombinant antibody.

[0022] In the case where a binding partner according to the present disclosure comprises or is derived from one or more fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, in particular for example one or more Fab fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, it may be preferred that such a binding partner can be characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg.

[0023] It may also be preferred in the case where a binding partner according to the present disclosure comprises or is derived from one or more fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, in particular for example one or more Fab fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, that such a binding partner can be characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 50 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 100 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 200 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 400 units of International Standard NIBSC 90/672 per mg.

[0024] It may be still further preferred in the case where a binding partner according to the present disclosure comprises or is derived from one or more fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, in particular for example one or more Fab fragments of a monoclonal or recombinant antibody reactive with the TSH receptor, that such a binding partner can be characterised by:

- 45 (i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg; and
- 50 (ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 50 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 100 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 200 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 400 units of International Standard NIBSC 90/672 per mg.

[0025] In a preferred case the present disclosure provides a binding partner for the TSH receptor (typically a human monoclonal antibody), which binding partner is capable of binding to the TSH receptor preferably so as to stimulate the TSH receptor and which comprises an antibody VH domain selected from the group consisting of a VH domain as shown in SEQ ID NO. 1 and a VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 2, SEQ ID NO. 3 and SEQ ID NO. 4.

[0026] In a first embodiment of the present disclosure, there is, therefore, provided a binding partner for the TSH receptor (typically a human monoclonal antibody), which binding partner is capable of binding to the TSH receptor preferably so as to stimulate the TSH receptor and which comprises an antibody VH domain as shown in SEQ ID NO. 1.

5 [0027] In a second embodiment of the present disclosure there is, therefore, provided a binding partner for the TSH receptor (typically a human monoclonal antibody), which binding partner is capable of binding to the TSH receptor preferably so as to stimulate the TSH receptor and which comprises an antibody VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 2, SEQ ID NO. 3 and SEQ ID NO. 4.

10 [0028] It will be appreciated that a binding partner according to the present disclosure can comprise an antibody VH domain substantially as hereinbefore described in the absence of an antibody VL domain. It is known that single immunoglobulin domains, especially VH domains, are capable of binding target antigens in a specific manner. Alternatively, a binding partner according to the present disclosure can comprise an antibody VH domain paired with an antibody VL domain to provide an antibody binding site comprising both VH and VL domains for a TSH receptor employing techniques well known in the art (Biochim. Biophys. Acta, 192 (1969) 277-285; Proc. Natl. Acad. Sci. USA, Vol. 89, pp 10026-10030, November 1992).

15 [0029] In a preferred case the present disclosure provides, however, a binding partner for the TSH receptor, which binding partner is capable of binding to the TSH receptor preferably so as to stimulate the TSH receptor and which comprises:

an antibody VH domain selected from the group consisting of:

20 a VH domain as shown in SEQ ID NO. 1 and a VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 2, SEQ ID NO. 3 and SEQ ID NO. 4; and / or

25 an antibody VL domain selected from the group consisting of:

a VL domain as shown in SEQ ID NO. 6 and a VL domain comprising one or more VL CDRs with an amino acid sequence selected from SEQ ID NO. 7, SEQ ID NO. 8 and SEQ ID NO. 9.

30 [0030] It may be preferred according to the present disclosure that a binding partner substantially as hereinbefore described comprises an antibody VH domain substantially as hereinbefore described paired with an antibody VL domain substantially as hereinbefore described to provide an antibody binding site comprising both VH and VL domains for the TSH receptor, although as discussed further an antibody VH domain, or an antibody VL domain, may be independently used to bind a TSH receptor. It will be appreciated, therefore, that a binding partner substantially as hereinbefore described can comprise an antibody VH domain substantially as hereinbefore described in the absence of an antibody VL domain. It will also be appreciated, therefore, that a binding partner substantially as hereinbefore described can comprise an antibody VL domain substantially as hereinbefore described in the absence of an antibody VH domain. Alternatively, a binding partner substantially as hereinbefore described can comprise an antibody VH domain paired with an antibody VL domain substantially as hereinbefore described to provide an antibody binding site comprising both VH and VL domains for the TSH receptor.

40 [0031] Preferred embodiments according to the present disclosure can thus include a binding partner substantially as hereinbefore described comprising an antibody VH domain as shown in SEQ ID NO. 1 paired with an antibody VL domain as shown in SEQ ID NO. 6 to provide an antibody binding site, comprising both these VH and VL domains for the TSH receptor.

45 [0032] It is further envisaged according to the present disclosure that VH domains substantially as hereinbefore described may be paired with VL domains other than those specifically described herein. It is also further envisaged according to the present disclosure that VL domains substantially as hereinbefore described may be paired with VH domains other than those specifically described herein.

50 [0033] According to a further embodiment of the present disclosure there is provided a binding partner substantially as hereinbefore described for the TSH receptor, which binding partner is capable of binding to the TSH receptor so as to stimulate the TSH receptor and which can comprise:

an antibody VH domain comprising:

55 a VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 2, SEQ ID NO. 3 and SEQ ID NO. 4; and / or

an antibody VL domain comprising:

a VL domain comprising one or more VL CDRs with an amino acid sequence selected from SEQ ID NO. 7, SEQ ID NO. 8 and SEQ ID NO. 9.

[0034] One or more CDRs as referred to above may be taken from the hereinbefore described VH and VL domains and incorporated into a suitable framework. For example, the amino acid sequence of one or more CDRs substantially as hereinbefore described may be incorporated into framework regions of antibodies differing from hMAb TSHR 1 specifically disclosed herein, such antibodies thereby incorporating the one or more CDRs and being capable of binding to the TSH receptor, preferably to stimulate the TSH receptor substantially as hereinbefore described. Alternatively, the present invention may provide a polypeptide capable of binding to the TSH receptor so as to stimulate the TSH receptor substantially as hereinbefore described and comprising the primary structural conformation of amino acids as represented by one or more CDRs as specifically described herein, optionally together with further amino acids, which further amino acids may enhance the binding affinity of one or more CDRs as described herein for the TSH receptor or may have substantially no role in affecting the binding properties of the polypeptide for the TSH receptor.

[0035] The present disclosure, also encompasses variants, analogs, derivatives and fragments of the specific human monoclonal antibody described herein, VH domains, CDRs and polypeptides disclosed herein, which variants, analogs, derivatives and fragments retain the ability to interact with the TSH receptor (such as for example to stimulate the TSH receptor) substantially as hereinbefore described.

[0036] The terms "variants", "analog", "derivatives" and "fragments" as used herein can be characterised as antibodies, antibody fragments or polypeptides which retain essentially the same biological function or activity as a human monoclonal antibody having a VH domain as shown in SEQ ID NO.1 and a VL domain as shown in SEQ ID NO.6 and in particular in respect of the binding properties thereof for the TSH receptor. Suitably, variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments as described herein, have a primary structural conformation of amino acids in which several or a few (such as 5 to 10, 1 to 5 or 1 to 3) amino acid residues of a human monoclonal antibody having a VH domain as shown in SEQ ID NO.1 and a VL domain as shown in SEQ ID NO.6 are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions which do not alter or substantially alter the biological activity or function of a human monoclonal antibody having a VH domain as shown in SEQ ID NO.1 and a VL domain as shown in SEQ ID NO.6. Conservative substitutions can be preferred as hereinafter described in greater detail.

[0037] More particularly, variants, analogs or derivatives of a human monoclonal antibody having a VH domain as shown in SEQ ID NO.1 and a VL domain as shown in SEQ ID NO.6 according to the present disclosure may be ones in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), or ones in which one or more of the amino acid residues includes a substituent group or the like. Such variants, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

[0038] Most typically, variants, analogs or derivatives are those that vary from a reference human monoclonal antibody having a VH domain as shown in SEQ ID NO.1 and a VL domain as shown in SEQ ID NO.6 by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids A, V, L and I; among the hydroxyl residues S and T; among the acidic residues D and E; among the amide residues N and Q; among the basic residues K and R; and among the aromatic residues F and Y.

[0039] It will be appreciated that the term fragment as used herein in particular relates to fragments of antibodies specifically as herein described and form an important aspect of the present disclosure. In this way, a human monoclonal or recombinant antibody as provided by the present invention may be provided as any of the following fragments: (i) the Fab fragment consisting of VL, VH, C_L and C_H1 domains; (ii) the Fd fragment consisting of the VH and C_H1 domains; (iii) the Fv fragment consisting of the VL and VH domains; (iv) the dAb fragment which consists of a VH domain; (v) isolated CDR regions; (vi) F(ab')2 fragments, a bivalent fragment comprising two linked Fab fragments; and (vii) single chain Fv molecules (scFv), wherein a VH domain and a VL domain are linked by a peptide linker which allows the two domains to associate to form an antigen binding site.

[0040] Alternatively, a human monoclonal or recombinant antibody according to the present disclosure may comprise a whole IgG antibody, whereby the antibody includes variable and constant regions.

[0041] The present disclosure also provides a further binding partner capable of binding to the TSH receptor, which can compete for binding to the TSH receptor with a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described, which further binding partner does not comprise TSH. Preferably, this further binding partner may comprise a further antibody having a binding site for an epitope region of the TSH receptor, and which can compete for binding to the TSH receptor with a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described. A suitable such further binding partner can comprise a mouse monoclonal antibody, which can preferably be produced according to techniques substantially as described in the Examples, employing immunisation of mice with TSH receptor by techniques known in the art.

[0042] The present disclosure may also provide a further binding partner capable of binding to the TSH receptor, which can comprise, or is derived from, a human monoclonal or recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor. In particular this further binding partner may comprise a further antibody having a binding site for an epitope region of the TSH receptor, which further antibody is capable of binding to the TSH receptor, and can compete for binding to the TSH receptor with a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described. Suitably such a further binding partner can be derived from a specific binding partner as described herein, hMAb TSHR 1, by suitable mutagenesis techniques, such as spot mutations or the like, so as to obtain a further binding partner for the TSH receptor that can compete with a binding partner substantially as herein described (such as hMAb TSHR 1) for interaction with the TSH receptor.

[0043] Preferably a further binding partner for the TSH receptor can comprise a monoclonal or recombinant antibody and can be characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or one or more fragments of the antibody. It may also be preferred that such a further binding partner according to the present invention, can be characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg, or one or more fragments of the antibody.

[0044] It may also be even more preferred that such a further binding partner of the present disclosure, can be characterised by:

(i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg; and

(ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg;

or one or more fragments thereof.

[0045] A preferred mouse monoclonal antibody providing a further binding partner according to the present disclosure comprises 9D33 prepared further to the Examples and having amino acid and polynucleotide sequences as illustrated by Figures 9 to 12 and Sequence Listings 19 to 38. According to the present disclosure, there is, therefore, provided a further binding partner for the TSH receptor (typically a mouse monoclonal antibody), which comprises an antibody VH domain as shown in SEQ ID NO. 19.

[0046] A further binding partner as provided by the present disclosure can also be characterised as comprising an antibody VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 20, SEQ ID NO. 21 and SEQ ID NO. 22.

[0047] It will be appreciated that a further binding partner according to the present disclosure can comprise an antibody VH domain substantially as hereinbefore described in the absence of an antibody VL domain. It is known that single immunoglobulin domains, especially VH domains, are capable of binding target antigens in a specific manner. Alternatively, a further binding partner according to the present disclosure can comprise an antibody VH domain paired with an antibody VL domain to provide an antibody binding site comprising both VH and VL domains for a TSH receptor employing techniques well known in the art (Biochim. Biophys. Acta, 192 (1969) 277-285; Proc. Natl. Acad. Sci. USA, Vol. 89, pp 10026-10030, November 1992).

[0048] In a preferred case the present disclosure provides, however, a further binding partner for the TSH receptor, which further binding partner comprises:

an antibody VH domain selected from the group consisting of:

a VH domain as shown in SEQ ID NO. 19 and a VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 20, SEQ ID NO. 21 and SEQ ID NO. 22; and / or

an antibody VL domain selected from the group consisting of:

a VL domain as shown in SEQ ID NO. 24 and a VL domain comprising one or more VL CDRs with an amino acid sequence selected from SEQ ID NO. 25, SEQ ID NO. 26 and SEQ ID NO. 27.

[0049] It may be preferred according to the present disclosure that a further binding partner substantially as hereinbefore described comprises an antibody VH domain substantially as hereinbefore described paired with an antibody VL domain substantially as hereinbefore described to provide an antibody binding site comprising both VH and VL domains for the TSH receptor, although as discussed further an antibody VH domain, or an antibody VL domain, may be independently used to bind a TSH receptor. It will be appreciated, therefore, that a further binding partner substantially as hereinbefore described can comprise an antibody VH domain substantially as hereinbefore described in the absence of an antibody VL domain. It will also be appreciated, therefore, that a further binding partner substantially as hereinbefore described can comprise an antibody VL domain substantially as hereinbefore described in the absence of an antibody VH domain. Alternatively, a further binding partner substantially as hereinbefore described can comprise an antibody VH domain paired with an antibody VL domain substantially as hereinbefore described to provide an antibody binding site comprising both VH and VL domains for the TSH receptor.

[0050] Preferred embodiments according to the present disclosure can thus include a further binding partner substantially as hereinbefore described comprising an antibody VH domain as shown in SEQ ID NO. 19 paired with an antibody VL domain as shown in SEQ ID NO. 24 to provide an antibody binding site, comprising both these VH and VL domains for the TSH receptor.

[0051] It is further envisaged according to the present disclosure that VH domains substantially as hereinbefore described may be paired with VL domains other than those specifically described herein. It is also further envisaged according to the present disclosure that VL domains substantially as hereinbefore described may be paired with VH domains other than those specifically described herein.

[0052] According to a further embodiment of the present disclosure there is provided a further binding partner substantially as hereinbefore described for the TSH receptor, which further binding partner is capable of binding to the TSH receptor so as to inhibit stimulation of the TSH receptor and which can comprise:

an antibody VH domain comprising:

a VH domain comprising one or more VH CDRs with an amino acid sequence selected from SEQ ID NO. 20, SEQ ID NO. 21 and SEQ ID NO. 22; and / or

an antibody VL domain comprising:

a VL domain comprising one or more VL CDRs with an amino acid sequence selected from SEQ ID NO. 25, SEQ ID NO. 26 and SEQ ID NO. 27.

[0053] One or more CDRs as referred to above may be taken from the hereinbefore described VH and VL domains and incorporated into a suitable framework. For example, the amino acid sequence of one or more CDRs substantially as hereinbefore described may be incorporated into framework regions of antibodies differing from 9D33 specifically disclosed herein, such antibodies thereby incorporating the one or more CDRs and being capable of binding to the TSH receptor. Alternatively, the present disclosure may provide a polypeptide capable of binding to the TSH receptor comprising the primary structural conformation of amino acids as represented by one or more CDRs as specifically described herein, optionally together with further amino acids, which further amino acids may enhance the binding affinity of one or more CDRs as described herein for the TSH receptor or may have substantially no role in affecting the binding properties of the polypeptide for the TSH receptor.

[0054] It will be appreciated that the term fragment as used herein in particular relates to fragments of antibodies specifically as herein described and form an important aspect of the present disclosure. In this way, a further binding partner according to the present invention may be provided as any of the following fragments: (i) the Fab fragment consisting of VL, VH, C_L and C_{H1} domains; (ii) the Fd fragment consisting of the VH and C_{H1} domains; (iii) the Fv fragment consisting of the VL and VH domains; (iv) the dAb fragment which consists of a VH domain; (v) isolated CDR regions; (vi) F(ab')² fragments, a bivalent fragment comprising two linked Fab fragments; and (vii) single chain Fv molecules (scFv), wherein a VH domain and a VL domain are linked by a, peptide linker which allows the two domains to associate to form an antigen binding site.

[0055] Alternatively, a mouse monoclonal or recombinant antibody according to the present disclosure, such as 9D33, may comprise a whole IgG antibody, whereby the antibody includes variable and constant regions.

[0056] There is also provided by the present disclosure a polynucleotide comprising:

(i) a nucleotide sequence as shown in SEQ ID NO. 10, SEQ ID NO. 11, SEQ ID NO. 12, SEQ ID NO. 13, SEQ ID

NO. 15, SEQ ID NO. 16, SEQ ID NO. 17 or SEQ ID NO. 18, encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, as shown in SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 7, SEQ ID NO. 8 or SEQ ID NO. 9;

- 5 (ii) a nucleotide sequence encoding a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described, or encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, of a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described;
- 10 (iii) a nucleotide sequence differing from any sequence of (i) in codon sequence due to the degeneracy of the genetic code;
- (iv) a nucleotide sequence comprising an allelic variation of any sequence of (i);
- 15 (v) a nucleotide sequence comprising a fragment of any of the sequences of (i), (ii), (iii), or (iv) and in particular a nucleotide sequence comprising a fragment of any of the sequences of (i), (ii), (iii), (iv) or (v) and encoding a Fab fragment, a Fd fragment, a Fv fragment, a dAb fragment, an isolated CDR region, F(ab')2 fragments or a scFv fragment, of a human monoclonal antibody substantially as hereinbefore described;
- 20 (vi) a nucleotide sequence differing from the any sequence of (i) due to mutation, deletion or substitution of a nucleotide base and encoding a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described, or encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, of a binding partner for the TSH receptor (typically a human monoclonal antibody) substantially as hereinbefore described.

25 [0057] There is also provided by the present disclosure a polynucleotide comprising:

- (i) a nucleotide sequence as shown in SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32, SEQ ID NO. 34, SEQ ID NO. 35, SEQ ID NO. 36 or SEQ ID NO. 37, encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, as shown in SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26 or SEQ ID NO. 27;
- (ii) a nucleotide sequence encoding a further binding partner for the TSH receptor (typically a mouse monoclonal antibody) substantially as hereinbefore described, or encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, of a further binding partner for the TSH receptor (typically a mouse monoclonal antibody) substantially as hereinbefore described;
- (iii) a nucleotide sequence differing from any sequence of (i) in codon sequence due to the degeneracy of the genetic code;
- 40 (iv) a nucleotide sequence comprising an allelic variation of any sequence of (i);
- (V) a nucleotide sequence comprising a fragment of any of the sequences of (i), (ii), (iii), or (iv) and in particular a nucleotide sequence comprising a fragment of any of the sequences of (i), (ii), (iii), (iv) or (v) and encoding a Fab fragment, a Fd fragment, a Fv fragment, a dAb fragment, an isolated CDR region, F(ab')2 fragments or a scFv fragment, of a mouse monoclonal antibody substantially as hereinbefore described;
- 45 (vi) a nucleotide sequence differing from the any sequence of (i) due to mutation, deletion or substitution of a nucleotide base and encoding a further binding partner for the TSH receptor (typically a mouse monoclonal antibody) substantially as hereinbefore described, or encoding an amino acid sequence of an antibody VH domain, VL domain, or CDR, of a further binding partner for the TSH receptor (typically a mouse monoclonal antibody) substantially as hereinbefore described,

55 [0058] Variant polynucleotides according to the present disclosure are suitably at least 70% identical over their entire length to any polynucleotide sequence of (i), most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to any polynucleotide sequence of (i), polynucleotides at least 90% identical over their entire length to any polynucleotide sequence of (i) are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% identity are especially preferred.

[0059] The present disclosure further provides a biologically functional vector system which carries a polynucleotide substantially as hereinbefore described and which is capable of introducing the polynucleotide into the genome of a host organism.

5 [0060] The present disclosure also relates to host cells which are transformed with polynucleotides of the disclosure and the production of binding partners for the TSH receptor of the invention by recombinant techniques. Host cells can be genetically engineered to incorporate polynucleotides and express binding partners for the TSH receptor of the present disclosure.

10 [0061] The amino acid sequences of hMAb TSHR 1, a human monoclonal antibody according to the present disclosure, and nucleotide sequences coding therefor, the amino acid sequences of 9D33, a mouse monoclonal antibody which represents a further binding partner according to the present disclosure, and nucleotide sequences coding therefor, are shown in the Sequence listings as herein after described and can be assigned as follows.

For hMAb TSHR 1: Amino Acid Sequences

15 [0062]

	SEQ ID NO. 1	VH
	SEQ ID NO. 2	VH CDRI
20	SEQ ID NO. 3	VH CDRII
	SEQ ID NO. 4	VH CDRIII
	SEQ ID NO. 5	Heavy chain variable and adjacent constant region
	SEQ ID NO. 6	VL
25	SEQ ID NO. 7	VL CDRI
	SEQ ID NO. 8	VL CDRII
	SEQ ID NO. 9	VL CDRIII

Nucleotide Sequences

30 [0063]

	SEQ ID NO. 10	VH
	SEQ ID NO. 11	VH CDRI
35	SEQ ID NO. 12	VH CDRII
	SEQ ID NO. 13	VH CDRIII.
	SEQ ID NO. 14	Heavy chain variable and adjacent constant region
	SEQ ID NO. 15	VL
40	SEQ ID NO. 16	VL CDRI
	SEQ ID NO. 17	VL CDRII
	SEQ ID NO. 18	VL CDRIII

For 9D33:

45 Amino Acid Sequences

[0064]

50	SEQ ID NO. 19	VH
	SEQ ID NO. 20	VH CDRI
	SEQ ID NO. 21	VH CDRII
	SEQ ID NO. 22	VH CDRIII
	SEQ ID NO. 23	Heavy chain variable and adjacent constant region
55	SEQ ID NO. 24	VL
	SEQ ID NO. 25	VL CDRI
	SEQ ID NO. 26	VL CDRII

(continued)

SEQ ID NO. 27 VL CDRIII
 SEQ ID NO. 28 Light chain variable and adjacent constant region

5

Nucleotide Sequences

[0065]

10 SEQ ID NO. 29 VH
 SEQ ID NO. 30 VH CDRI
 SEQ ID NO. 31 VH CDRII
 SEQ ID NO. 32 VH CDRIII
 15 SEQ ID NO. 33 Heavy chain variable and adjacent constant region
 SEQ ID NO. 34 VL
 SEQ ID NO. 35 VL CDRI
 SEQ ID NO. 36 VL CDRII
 SEQ ID NO. 37 VL CDRIII
 20 SEQ ID NO. 38 Light chain variable and adjacent constant region

[0066] The above sequences for hMab TSHR1 can also be seen by reference to Figures 4, 5, 6 and 7, wherein:

25 Figure 4 shows the hMab TSHR1 heavy chain nucleotide sequence, along with the adjacent constant region, with -
 Figure 4a giving the nucleotide sequence *per se*;
 Figure 4b giving the nucleotide sequence annotated with the PCR primer, CDRI, CDRII, CDRIII and constant regions;
 30 Figure 5 shows the hMab TSHR1 heavy chain amino acid sequence, along with the adjacent constant region, with -
 Figure 5a giving the amino acid sequence *per se*;
 Figure 5b giving the amino acid sequence annotated with the CDRI, CDRII, CDRIII and constant regions;
 35 Figure 6 shows the hMab TSHR1 light chain nucleotide sequence, with -
 Figure 6a giving the nucleotide sequence *per se*;
 Figure 6b giving the nucleotide sequence annotated with the PCR primer, CDRI, CDRII and CDRIII regions;
 40 Figure 7 shows the hMab TSHR1 light chain amino acid sequence, with -
 Figure 7a giving the amino acid sequence *per se*;
 Figure 7b giving the amino acid sequence annotated with the CDRI, CDRII and CDRIII regions.

45 [0067] It will be appreciated from the above that for the VH chain of hMab TSHR1 the nucleotide sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 4b correspond to the VHCDRI, VHCDRII and VHCDRIII sequences shown in SEQ ID NO.s 11, 12 and 13 respectively, and that the amino acid sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 5b correspond to the VHCDRI, VHCDRII and VHCDRIII sequences shown in SEQ ID NO.s 2, 3 and 4 respectively. It will also be appreciated from the above that for the VL chain of hMab TSHR1 the nucleotide sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 6b correspond to the VLCDRI, VLCDRII and VLCDRIII sequences shown in SEQ ID NO.s 16, 17 and 18 respectively, and that the amino acid sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 7b correspond to the VLCDRI, VLCDRII and VLCDRIII sequences shown in SEQ ID NO.s 7, 8 and 9 respectively.

[0068] Analysis of the crystal structure of hMAb TSHR1 Fab (determined by techniques known in the art) enabled

refinement of the HC and LC nucleotide sequences determined using PCR primers which are degenerate. In particular, a HC sequencing artefact for nucleotides 115-120 was identified. Sequencing indicated cacgtg (transcribed to amino acids His Val), whereas the crystal structure more reliably indicated amino acids Gln Leu (corresponding bases being cagctg), with the refined sequences being shown in the accompanying Figures and Sequence listings. Crystal structure analysis also enabled refinement of the HC and LC derived amino acid sequences particularly in the degenerate PCR primer region. In the case of the LC aa 2 was found to be Pro by RT-PCR but was Thr from the crystal structure. In the case of the HC aa 2 was found to be Met by RT-PCR but was Val from the crystal structure. Again, these refined sequences are shown in the accompanying Figures and Sequence listings.

[0069] The above sequences for 9D33 can also be seen by reference to Figures 9, 10, 11 and 12, wherein:

Figure 9 shows the 9D33 heavy chain nucleotide sequence, along with the adjacent constant region, with -

Figure 9a giving the nucleotide sequence *per se*;

Figure 9b giving the nucleotide sequence annotated with the PCR primer, CDRI, CDRII, CDRIII and constant regions;

Figure 10 shows the 9D33 heavy chain amino acid sequence, along with the adjacent constant region, with -

Figure 10a giving the amino acid sequence *per se*;

Figure 10b giving the amino acid sequence annotated with the PCR primer, CDRI, CDRII, CDRIII and constant regions;

Figure 11 shows the 9D33 light chain nucleotide sequence, with -

Figure 11 a giving the nucleotide sequence *per se*;

Figure 11b giving the nucleotide sequence annotated with the PCR primer, CDRI, CDRII, CDRIII and constant regions;

Figure 12 shows the 9D33 light chain amino acid sequence, with -

Figure 12a giving the amino acid sequence *per se*;

Figure 12b giving the amino acid sequence annotated with the PCR primer, CDRI, CDRII, CDRIII and constant regions.

[0070] It will be appreciated from the above that for the VH chain of 9D33 the nucleotide sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 9b correspond to the VHCDRI, VHCDRII and VH_HCDRIII sequences shown in SEQ ID NO.s 30, 31 and 32 respectively, and that the amino acid sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 10b correspond to the VHCDRI, VHCDRII and VHCDRIII sequences shown in SEQ ID NO.s 20, 21 and 22 respectively. It will also be appreciated from the above that for the VL chain of 9D33 the nucleotide sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 11b correspond to the VLCDRI, VLCDRII and VLCDRIII sequences shown in SEQ ID NO.s 35, 36 and 37 respectively, and that the amino acid sequences of the CDRI, CDRII and CDRIII regions as shown in Figure 12b correspond to the VLCDRI, VLCDRII and VLCDRIII sequences shown in SEQ ID NO.s 25, 26 and 27 respectively.

[0071] The present disclosure also provides a process of providing a human monoclonal antibody to the TSH receptor substantially as hereinbefore described, which process comprises:

- (i) providing a source of lymphocytes from a subject, which subject has TSH receptor antibody activity of greater than about 0.04 units of NIBSC 90/672 per mL of serum with respect to inhibition of TSH binding to the TSH receptor;
- (ii) isolating lymphocytes from said lymphocyte source of (i);
- (iii) immortalising the isolated lymphocytes; and
- (iv) cloning the immortalised lymphocytes so as to produce an immortalised colony secreting a human monoclonal antibody to the TSH receptor substantially as hereinbefore described.

[0072] Alternatively, a process of providing a human monoclonal antibody to the TSH receptor substantially as hereinbefore described can be defined as a process which comprises:

- 5 (i) providing a source of lymphocytes from a subject, which subject has TSH receptor antibody activity of greater than about 0.1 units of NIBSC 90/672 per mL of serum with respect to stimulatory activity of cAMP production by cells expressing the TSH receptor;
- 10 (ii) isolating lymphocytes from said lymphocyte source of (i);
- (iii) immortalising the isolated lymphocytes; and
- (iv) cloning the immortalised lymphocytes so as to produce an immortalised colony secreting a human monoclonal antibody to the TSH receptor substantially as hereinbefore described.

15 [0073] Preferably a process according to the present disclosure comprises isolating lymphocytes from peripheral blood, thyroid tissue, spleen tissue, lymph nodes or bone marrow, most typically from peripheral blood. Typically, the source of lymphocytes for use in a method according to the present invention can be further characterised as being obtained from a subject having serum TSH receptor antibody levels of greater than about 0.1 units of NIBSC 90/672 per mL with respect to inhibition of TSH binding to the TSH receptor, or more typically greater than about 0.2 units of NIBSC 90/672 per mL with respect to inhibition of TSH binding to the TSH receptor, or more typically greater than about 0.3 units of NIBSC 90/672 per mL with respect to inhibition of TSH binding to the TSH receptor and preferably being in the range of about 0.3 to 0.5 units of NIBSC 90/672 per mL or greater with respect to inhibition of TSH binding to the TSH receptor. Alternatively, or additionally, the source of lymphocytes for use in a method according to the present disclosure can typically be further characterised as being obtained from a subject having serum TSH receptor antibody levels of greater than about 0.2 units of NIBSC 90/672 per mL with respect to stimulatory activity of cAMP production by cells expressing the TSH receptor, or more typically greater than about 0.5 units of NIBSC 90/672 per mL with respect to stimulatory activity of cAMP production by cells expressing the TSH receptor and preferably being in the range of about 0.5 to 1.0 units of NIBSC 90/672 per mL or greater with respect to stimulatory activity of cAMP production by cells expressing the TSH receptor. It will be appreciated from the above that the immune response to the TSH receptor of a subject from which lymphocytes are isolated should preferably be in a highly active phase.

30 [0074] Preferably a process according to the present disclosure comprises infecting the isolated lymphocytes with Epstein Barr virus, and suitably the thus immortalised lymphocytes are fused with a mouse / human cell line. Suitably a process according to the present disclosure further comprises screening the resulting clones for TSH receptor antibodies, for example by inhibition of ^{125}I -TSH binding to the TSH receptor in an assay system which has a sensitivity of at least about 1 unit/L of NIBSC 90/672.

35 [0075] The present disclosure further provides a process of preparing a human recombinant antibody, or one or more fragments thereof, to the TSH receptor, which process comprises cloning and expression of a human monoclonal antibody to the TSH receptor as provided by the present disclosure by a process substantially as hereinbefore described, or one or more fragments derived therefrom.

40 [0076] The present disclosure further provides a human monoclonal or recombinant antibody to the TSH receptor obtained by a process substantially as described above. Preferably such an obtained human monoclonal or recombinant antibody to the TSH receptor according to the present invention, can be characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or one or more fragments of such a human monoclonal or recombinant antibody.

45 [0077] More particularly, it may be preferred that such a human monoclonal or recombinant antibody according to the present disclosure, can be further characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg, or one or more fragments of such a human monoclonal or recombinant antibody.

50 [0078] In a preferred embodiment of the present disclosure, such a human monoclonal or recombinant antibody according to the present disclosure, can be characterised by:

- 55 (i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably

of at least about 120 units of International Standard NIBSC 90/672 per mg; and
 (ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg;

5 or one or more fragments of such a human monoclonal or recombinant antibody.

[0079] It may also be preferred that one or more fragments of a thus obtained human monoclonal or recombinant antibody according to the present disclosure, in particular for example one or more Fab fragments thereof, can be 10 characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more 15 preferably of at least about 240 units of International Standard NIBSC 90/672 per mg. It may also be preferred that such one or more fragments can be characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 50 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 100 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 200 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 400 units of International Standard NIBSC 90/672 per mg.

[0080] More preferably, such one or more Fab fragments can be characterised by:

20 (i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg; and

25 (ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 50 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 100 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 200 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 400 units of International Standard NIBSC 90/672 per mg.

30 **[0081]** A process substantially as described above may further comprise a further process stage whereby the obtained human monoclonal or recombinant antibody is subjected to suitable further processing techniques (such as suitable mutagenesis techniques, such as spot mutations or the like), so as to obtain a further binding partner for the TSH receptor that can compete with a binding partner substantially as herein described (such as hMAb TSHR1) for interaction with the TSH receptor. Such further processing techniques are well known to one of ordinary skill in the art. The present disclosure further provides a further binding partner to the TSH receptor obtained by such further processing techniques.

35 **[0082]** Preferably such a further binding partner for the TSH receptor can comprise a monoclonal or recombinant antibody and can be characterised by an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or one or more fragments thereof. It may also be preferred that such a further binding partner according to the present invention, can 40 be characterised by a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg, or one or more fragments thereof.

45 **[0083]** It may also be even more preferred that such a further binding partner of the present disclosure, can be characterised by:

50 (i) an inhibitory activity with respect to TSH binding to the TSH receptor, of at least about 15 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, or more preferably of at least about 120 units of International Standard NIBSC 90/672 per mg; and

55 (ii) a stimulatory activity with respect to cAMP production by cells expressing the TSH receptor, of at least about 30 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 60 units of International Standard NIBSC 90/672 per mg, more preferably of at least about 120 units of International Standard NIBSC 90/672

per mg, or even more preferably of at least about 240 units of International Standard NIBSC 90/672 per mg;

or one or more fragments thereof.

[0084] A binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure may have diagnostic and therapeutic applications.

[0085] Accordingly, a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure can be employed in screening methods for detecting autoantibodies to the TSH receptor in patient sera and also in diagnostic methods. In this way, a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure can be employed in place of, or in addition to, competitors hitherto described for use in screening methods for detecting autoantibodies to the TSH receptor and also in diagnostic methods. Similarly, a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure can be employed in place of, or in addition to, competitors hitherto described for use in kits for use in detecting autoantibodies to the TSH receptor.

[0086] The present disclosure also provides, therefore, a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to a TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

(b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present invention and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts;

(c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

(d) monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0087] A method according to the present disclosure for the detection of autoantibodies as described above is particularly advantageous in terms of the level of sensitivity that can be achieved by use thereof. This can be further illustrated by reference to the Examples and Figures, where Figure 3a shows a graphical representation of a comparison between an assay for TSHR autoantibodies based on hMAb TSHR1-biotin and earlier assays. The sensitivity of the assay based on hMAb TSHR1-biotin is clearly superior according to concentration of the international standard NIBSC 90/672 detectable. This was confirmed in a study of sera from 72 patients with Graves' disease shown in Figure 3b.

[0088] There is further provided by the present disclosure, therefore, a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

(b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure; and

(d) monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0089] The above sensitivity can also be achieved in an assay method or kit according to the present disclosure by the use of a human or non-human polyclonal antibody to the TSH receptor, TSH or one or more variants, analogs, derivatives or fragments thereof, or a binding partner for the TSH receptor which has an affinity for the TSH receptor of 10^{10} molar⁻¹ or greater, which generally exhibit a sufficient affinity for the TSH receptor so that a method or kit of the defined sensitivity is provided. The preparation of such polyclonal antibodies, TSH or one or more variants, analogs, derivatives or fragments thereof, is well known in the art. For example, superactive analogs of TSH are described in *Nature, Biotechnology*, Volume 14, October 1995, pages 1257-1263, although this article does not disclose the use of such superactive TSH in a method or kit as is now provided by the present disclosure.

[0090] There is further provided by the present disclosure, therefore, a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

(b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human or non-human polyclonal antibody to the TSH receptor and a second molecule of said binding pair comprises a binding region with which said polyclonal antibody interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said polyclonal antibody; and

(d) monitoring the interaction of said second molecule of said binding pair with said, autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0091] There is also provided by the present disclosure a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

(b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises TSH or one or more variants, analogs, derivatives or fragments thereof, and a second molecule of said binding pair comprises a binding region with which said TSH or one or more variants, analogs, derivatives or fragments thereof interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said TSH or one or more variants, analogs, derivatives or fragments thereof; and

(d) monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0092] There is also still further provided a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

(b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner for the TSH receptor which has an affinity for the TSH receptor of 10^{10} molar⁻¹ or greater and a second molecule of said binding pair comprises a binding region with which said binding partner interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner for the TSH; and

5 (d) monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

10 [0093] There is also provided by the present disclosure use of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure, for detecting autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, wherein the interaction of said binding partner or further binding partner with the TSH receptor is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable.

15 [0094] There is also provided use of a human or non-human polyclonal antibody to the TSH receptor, for detecting autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, wherein the interaction of said polyclonal antibody with the TSH receptor is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable.

20 [0095] There is also provided use of TSH or one or more variants, analogs, derivatives or fragments thereof, for detecting autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, wherein the interaction of said TSH or one or more variants, analogs, derivatives or fragments thereof with the TSH receptor is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable.

25 [0096] There is still further provided use of a binding partner for the TSH receptor which has an affinity for the TSH receptor of 10^{10} molar⁻¹ or greater, for detecting autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, wherein the interaction of said binding partner with the TSH receptor is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable.

30 [0097] It will be appreciated that binding molecules of the one or more binding pairs can be antigen-antibody (for example, [TSH receptor or epitope]-[monoclonal or recombinant TSH receptor antibody]), anti-idiotypic antibody-mono-
35 clonal or recombinant TSH receptor antibody or novel TSH receptor antibody binding member-monoclonal or recombinant TSH receptor antibody. Preferably, the binding

35 molecules of the binding pairs are antigen-antibody, namely, [TSH receptor or one or more epitopes thereof]-[monoclonal or recombinant TSH receptor antibody], where the epitopes may be "free standing" or present in a larger scaffold polypeptide or the like.

40 [0098] Preferably, the present disclosure provides a method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to a TSH receptor, said method comprising:

(a) providing said sample of body fluid from said subject;

45 (b) contacting said sample with (i) a full length TSH receptor, or one or more epitopes thereof or a polypeptide comprising one or more epitopes of a TSH receptor, and (ii) a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure, under conditions that allow interaction of the TSH receptor with autoantibodies produced in response to the TSH receptor, so as to permit said TSH receptor, or said one or more epitopes thereof or said polypeptide, to interact with either autoantibodies to the TSH receptor present in said sample, or said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

50 (c) monitoring the interaction of said TSH receptor, or said one or more epitopes thereof or said polypeptide, with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

55 [0099] In certain embodiments, a method according to the present disclosure may also employ one or more competitors that compete in the interaction of a polyclonal antibody, TSH or one or more variants, analogs, derivatives or fragments thereof, or a binding partner or further binding partner for the TSH receptor substantially as described above in the

specific embodiments of methods as provided by the present disclosure and the second molecule of the binding pair, or the TSH receptor, or the one or more epitopes thereof or the polypeptide. Such competitors may comprise TSH, or one or more monoclonals reactive with the TSH receptor, such as mouse monoclonals reactive with the TSH receptor.

[0100] Preferably, a method according to the present disclosure as referred to above, further comprises providing labelling means for a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and where appropriate one or more competitors as described above, suitable labelling means including enzymic labels, isotopic labels, chemiluminescent labels, fluorescent labels, dyes and the like.

[0101] The present disclosure also provides, a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to a TSH receptor, said kit comprising:

(a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts;

(b) means for contacting said sample of body fluid from said subject with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

(c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0102] The present disclosure also provides a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

(a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(b) means for contacting said sample of body fluid from said subject with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure; and

(c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0103] There is also provided a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

(a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human or non-human polyclonal antibody to the TSH receptor and a second molecule of said binding pair comprises a binding region with which said polyclonal antibody interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

(b) means for contacting said sample of body fluid from said subject with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor

present in said sample, or (ii) said polyclonal antibody; and

5 (c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0104] There is also provided a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

10 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises TSH or one or more variants, analogs, derivatives or fragments thereof, and a second molecule of said binding pair comprises a binding region with which said TSH or one or more variants, analogs, derivatives or fragments thereof interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

15 (b) means for contacting said sample of body fluid from said subject with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) TSH or one or more variants, analogs, derivatives or fragments thereof; and

20 (c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

25 [0105] There is also provided a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

30 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner for the TSH receptor which has an affinity for the TSH receptor of 10^{10} molar⁻¹ or greater and a second molecule of said binding pair comprises a binding region with which said binding partner interacts, wherein the interaction of said binding molecules is such that an autoantibody titer in said sample essentially corresponding to 0.4U/L of International Standard NIBSC 90/672 is detectable;

35 (b) means for contacting said sample of body fluid from said subject with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said binding partner for the TSH receptor; and

40 (c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

[0106] It will be appreciated that binding molecules of the one or more binding pairs can be antigen-antibody (for example, [TSH receptor or epitope]-[monoclonal or recombinant TSH receptor antibody]), anti-idiotypic antibody-monoclonal or recombinant TSH receptor antibody or novel TSH receptor antibody binding member-monoclonal or recombinant TSH receptor antibody. Preferably, the binding molecules of the binding pairs are antigen-antibody, namely, [TSH receptor or one or more epitopes thereof]-[monoclonal or recombinant TSH receptor antibody], where the epitopes may be "free standing" or present in a larger scaffold polypeptide or the like.

[0107] The present disclosure preferably provides a kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

55 (a) a full length TSH receptor, or one or more epitopes thereof or a polypeptide comprising one or more epitopes of the TSH receptor;

(b) a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure;

5 (c) means for contacting said sample of body fluid from said subject, said TSH receptor, or said one or more epitopes thereof or said polypeptide, and said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody), under conditions that allow interaction of the TSH receptor with autoantibodies produced in response to the TSH receptor, so as to permit said TSH receptor, or said one or more epitopes thereof or said polypeptide, to interact with either autoantibodies to a TSH receptor present in said sample, or said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

10 (d) means for monitoring the interaction of said TSH receptor, or said one or more epitopes thereof or said polypeptide, with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

15 [0108] In certain embodiments, a kit according to the present disclosure may further comprise one or more competitors that compete in the interaction of a polyclonal antibody, TSH or one or more variants, analogs, derivatives or fragments thereof, or a binding partner or further binding partner for the TSH receptor, as respectively defined above, and the second molecule of the binding pair, or the TSH receptor, or the one or more epitopes thereof or the polypeptide. Such competitors may comprise TSH, or one or more monoclonals reactive with the TSH receptor, such as mouse monoclonals reactive with the TSH receptor.

20 [0109] Suitably, a kit as referred to above further comprises labelling means for a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and where appropriate one or more competitors as described above, suitable labelling means being substantially as hereinbefore described.

25 [0110] In the presence of autoantibodies to the TSH receptor, binding of the TSH receptor to a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) in a method or kit as described above will be decreased.

[0111] A binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure can also be employed in assay methods and kits substantially as described above for TSH and related ligands.

30 [0112] The present disclosure also provides, therefore, a method of assaying TSH and related ligands, said method comprising:

(a) providing a sample suspected of containing or containing TSH or related ligands;

35 (b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts;

40 (c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) TSH or related ligands present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

45 (d) monitoring the interaction of said second molecule of said binding pair with TSH or related ligands present in said sample, thereby providing an indication of the presence of TSH or related ligands in said sample.

[0113] The present disclosure also provides a kit for assaying TSH or related ligands, said kit comprising:

50 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present invention and a second molecule of said binding pair comprises a binding region with which said binding partner or further binding partner interacts;

55 (b) means for contacting a sample suspected of containing or containing TSH or related ligands with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) TSH or related ligands present in said sample, or (ii) said binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody); and

(c) means for monitoring the interaction of said second molecule of said binding pair with TSH or related ligands

present in said sample, thereby providing an indication of the presence of TSH or related ligands in said sample.

[0114] The present disclosure also further provides a method of identifying a further binding partner for the TSH receptor, which further binding partner is capable of binding to the TSH receptor and which competes for binding to the TSH receptor with a binding partner for the TSH receptor substantially as hereinbefore described, which further binding partner does not comprise TSH, which method comprises:

- 5 (a) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner for the TSH receptor substantially as hereinbefore described and a second molecule of said binding pair comprises a binding region with which said binding partner interacts;
- 10 (b) providing a further binding molecule to be assayed as a potential further binding partner for the TSH receptor which competes for binding to the TSH receptor with said first molecule of said binding pair of (a);
- 15 (c) contacting said further binding molecule of (b) with said one or more pairs of binding molecules of (a) so as to permit said second molecule of said binding pair of (a) to interact with either (i) said further binding molecule of (b), or (ii) said first molecule of said binding pair of (a); and
- 20 (d) monitoring the interaction of said second molecule of said binding pair of (a) with said further binding molecule of (b), and thereby assessing whether said further binding molecule of (b) competes for binding to the TSH receptor with said first molecule of said binding pair of (a).

[0115] The present disclosure also provides a kit for identifying a further binding partner for the TSH receptor, which further binding partner is capable of binding to the TSH receptor and which competes for binding to the TSH receptor with a binding partner for the TSH receptor substantially as hereinbefore described, which further binding partner does not comprise TSH, which kit comprises:

- 30 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a binding partner for the TSH receptor substantially as hereinbefore described and a second molecule of said binding pair comprises a binding region with which said binding partner interacts;
- 35 (b) means for contacting said one or more pairs of binding molecules of (a) with a further binding molecule to be assayed as a potential further binding partner for the TSH receptor which competes for binding to the TSH receptor with said first molecule of said binding pair of (a), so as to permit said second molecule of said binding pair of (a) to interact with either (i) said further binding molecule, or (ii) said first molecule of said binding pair of (a); and
- 40 (c) means for monitoring the interaction of said second molecule of said binding pair of (a) with said further binding molecule, and thereby assessing whether said further binding molecule competes for binding to the TSH receptor with said first molecule of said binding pair of (a).

[0116] A further application of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure is its use to identify and provide new types of TSH receptor antibody binding sites. There is further provided by the present disclosure, therefore, a process of identifying one or more epitope regions of the TSH receptor, which process comprises contacting a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described with a full length TSH receptor, or one or more fragments thereof, so as to allow interaction of said binding partner or further binding partner for the TSH receptor with said full length TSH receptor, or said one or more fragments thereof, and identifying the amino acids of said full length TSH receptor, or said one or more fragments thereof, with which said binding partner or further binding partner interacts. Suitably, interaction of the binding partner or further binding partner with selected fragments of the TSH receptor and the full length TSH receptor, is analysed, so as to identify the amino acids of the TSH receptor with which the binding partner interacts.

[0117] Furthermore, the present disclosure allows for generation of antibodies to the regions of a monoclonal TSH receptor antibody according to the present disclosure which bind the TSH receptor. Such anti-idiotypic antibodies produced in this way could have potential as new ligands for assays of TSH receptor autoantibodies, TSH and related compounds. Also they may be effective agents in vivo for regulating the action of TSH receptor autoantibodies, TSH and related compounds. The present invention further provides, therefore, one or more anti-idiotypic antibodies generated to binding regions of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described, and the preparation thereof is further described by the

Examples.

[0118] Other methods of identifying and providing new types of antibody binding sites using monoclonal antibodies are well known. For example by antibody screening of phage- displayed random peptide libraries as described by JC Scott and GP Smith; "Searching for peptide ligands with an epitope library"; *Science* 1990; 249(4967): 386-390 and MA

5 Myers, JM Davies, JC Tong, J Whisstock, M Scealy, IR MacKay, MJ Rowley; "Conformational epitopes on the diabetes autoantigen GAD65 identified by peptide phage display and molecular modelling"; *Journal of Immunology* 2000; 165: 3830-3838. Antibody screening of non-peptide compounds and libraries of non-peptide compounds can also be carried out.

[0119] New types of TSH receptor antibody binding sites identified and provided using these procedures may also be 10 useful as new ligands in assays for TSH receptor autoantibodies, TSH and related compounds. Furthermore they may be effective agents *in vivo* for regulating the action of TSH receptor autoantibodies, TSH and related compounds.

[0120] A binding partner for the TSH receptor or further binding partner (typically a human monoclonal or recombinant antibody) according to the present disclosure substantially as hereinbefore described can also be usefully employed in 15 therapy. There is, therefore, further provided by the present disclosure methods of treatment comprising administration of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described, pharmaceutical compositions comprising a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described (together with one or more pharmaceutically acceptable carriers, diluents or excipients therefor), and use of 20 a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described in the manufacture of a medicament or composition.

[0121] A binding partner for the TSH receptor, in particular a human monoclonal antibody to the TSH receptor derived 25 from patients' lymphocytes according to the present disclosure, is a valuable reagent for understanding the pathogenesis of Graves' disease and for developing new methods of measuring TSH receptor autoantibodies, for example as replacements for TSH in competitive binding assays substantially as hereinbefore described. Also, a stimulating binding partner according to the present invention has *in vivo* applications when tissue containing the TSH receptor (eg thyroid tissue 30 or thyroid cancer tissue) requires stimulation. The present disclosure provides, therefore, a medicament or composition for use in stimulating thyroid tissue, and / or tissue containing the TSH receptor. In particular, a stimulating binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) according to the present disclosure can be employed in oncology, and in particular for use in the diagnosis, management and treatment of thyroid cancer.

[0122] Alternatively, a binding partner or further binding partner for the TSH receptor according to the present disclosure 35 can be a powerful TSH or autoantibody antagonist (blocking antibody) and such a blocking TSH receptor antibody according to the present disclosure is valuable for *in vivo* applications when the activity of tissue containing the TSH receptor (eg thyroid tissue or thyroid cancer tissue) requires inactivation or to be made unresponsive to TSH, TSH receptor autoantibodies or other stimulators.

[0123] There is also provided in combination, a binding partner or further binding partner for the TSH receptor substantially as hereinbefore described, together with one or more further agents capable of inactivating or rendering 40 unresponsive, tissue containing a TSH receptor, to TSH, TSH receptor autoantibodies or other stimulators. Typically, the one or more further agents act independently of the TSH receptor.

[0124] A particular therapeutic application where TSH receptor autoantibody binding requires inactivation or inhibition 45 is in the treatment of disease of the retro orbital tissues of the eye associated with autoimmunity to the TSH receptor, and the use of a blocking antibody which interacts with the TSH receptor, such as 9D33, so as to inhibit TSH receptor autoantibody binding, thus has important therapeutic utility in the treatment of such disease. Treatment of autoimmune disease which requires inhibition of TSH receptor autoantibody binding, such as the above discussed disease of the retro orbital tissues of the eye associated with autoimmunity to the TSH receptor, may alternatively employ an anti-idiotypic antibody to a binding partner or further binding partner as provided by the present invention, and such anti-idiotypic antibodies form a further aspect of the present disclosure as described herein and further preparatory details thereof are provided by the Examples.

[0125] More specifically, therefore, the present disclosure provides use in the treatment of disease of the retro orbital 50 tissues of the eye associated with autoimmunity to the TSH receptor, of a further binding partner to the TSH receptor, which further binding partner substantially inhibits binding to the TSH receptor of a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described. The present disclosure further provides use in the manufacture of a medicament for the treatment of disease of the retro orbital tissues of the eye associated with activation and / or stimulation of the TSH receptor, of a further binding partner to the TSH receptor, which further binding partner substantially inhibits binding to the TSH receptor of a binding partner for the TSH receptor 55 (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described. There is also provided a method of treating disease of the retro orbital tissues of the eye associated with autoimmunity to the TSH receptor, which method comprises administration to a patient suffering from or susceptible to such disease a therapeutically effective amount of a further binding partner to the TSH receptor, which further binding partner substantially inhibits

binding to the TSH receptor of a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described. A further binding partner for use in these embodiments of the present invention preferably comprises a blocking antibody which can substantially inhibit binding of a binding partner as provided by the present invention, and as such TSH receptor autoantibody binding, to the TSH receptor, and a preferred such antibody can comprise 9D33 as described herein.

[0126] The present disclosure also provides use of an anti-idiotypic antibody generated to a binding region of a binding partner or further binding partner according to the present disclosure, in the treatment of disease of the retro orbital tissues of the eye associated with autoimmunity to the TSH receptor. The present disclosure further provides use of an anti-idiotypic antibody generated to a binding region of a binding partner or further binding partner according to the present disclosure, in the manufacture of a medicament for the treatment of disease of the retro orbital tissues of the eye associated with activation and / or stimulation of the TSH receptor. There is also provided a method of treating disease of the retro orbital tissues of the eye associated with autoimmunity to the TSH receptor, which method comprises administration to a patient suffering from or susceptible to such disease a therapeutically effective amount of an anti-idiotypic antibody generated to a binding region of a binding partner or further binding partner according to the present disclosure.

[0127] One of the major advantages of a monoclonal antibody as provided by the present disclosure over TSH in such in vitro and / or in vivo applications is the relative ease with which such antibodies can be manipulated. For example, manipulation of the TSH receptor binding region of a monoclonal antibody according to the present disclosure so as to change the characteristics thereof, such as affinity and biological characteristics, including the degree of TSH agonist or antagonist activities. Also monoclonal antibodies according to the present disclosure have a much longer half life than TSH in vivo and this may have considerable advantages in in vivo applications. Furthermore, the half life of the antibodies can be manipulated, for example antibody Fab fragments have a much shorter half life than intact IgG.

[0128] Pharmaceutical compositions according to the present disclosure include those suitable for oral, parenteral and topical administration, although the most suitable route will generally depend upon the condition of a patient and the specific disease being treated. The precise amount of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described to be administered to a patient will be the responsibility of an attendant physician, although the dose employed will depend upon a number of factors, including the age and sex of the patient, the specific disease being treated and the route of administration substantially as described above.

[0129] There is further provided by the present disclosure a method of stimulating thyroid tissue, and / or tissue containing a TSH receptor, which method comprises administering to a patient in need of such stimulation a diagnostically or therapeutically effective, amount of a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described.

[0130] The present disclosure also provides in combination, a binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) substantially as hereinbefore described, together with one or more further agents capable of stimulating thyroid tissue, and / or tissue containing a TSH receptor, for simultaneous, separate or sequential use in stimulating thyroid tissue, and / or tissue containing a TSH receptor. Preferably the one or more further agents comprise recombinant human TSH and / or one or more variants, analogs, derivatives or fragments thereof, or variants, analogs or derivatives of such fragments. Alternatively, the one or more further agents can act independently of binding to the TSH receptor.

[0131] A binding partner for the TSH receptor or further binding partner (typically a human monoclonal or recombinant antibody) according to the present disclosure can also be employed as a replacement source for patient serum required to contain TSH receptor antibody or antibodies for use in commercial kits. Furthermore, a binding partner or further binding partner for the TSH receptor (typically a human monoclonal or recombinant antibody) can be provided according to the present disclosure in a preparation required to comprise a defined concentration of TSH receptor antibody or antibodies, and in this way there can be provided a preparation with a defined activity, such as stimulatory activity, with respect to the TSH receptor. Optionally, such a preparation may further comprise one or more further human monoclonal antibodies, such as monoclonal antibodies to GAD, TPO or the like.

[0132] The following illustrative explanations are provided to facilitate understanding of certain terms used herein. The explanations are provided as a convenience and are not limitative of the invention

[0133] BINDING PARTNER FOR A TSH RECEPTOR, describes a molecule having a binding specificity for the TSH receptor. A binding partner as described herein may be naturally derived or wholly or partially synthetically produced. Such a binding partner has a domain or region which specifically binds to and is therefore complementary to one or more epitope regions of the TSH receptor. In particular, a binding partner as described herein can be a monoclonal or recombinant antibody to the TSH receptor, and more particularly can be a human monoclonal or recombinant antibody to the TSH receptor.

[0134] C DOMAIN denotes a region of relatively constant amino acid sequence in antibody molecules.

[0135] CDR denotes complementarity determining regions which are present on both heavy and light chains of antibody

molecules and represent regions of most sequence variability. CDRs represent approximately 15 to 20% of variable domains and represent antigen binding sites of an antibody.

[0136] FR denotes framework regions and represent the remainder of the variable light domains and variable heavy domains not present in CDRs.

5 [0137] HC denotes part of a heavy chain of an antibody molecule comprising the heavy chain variable domain and the first domain of an IgG constant region.

[0138] HOST CELL is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.

10 [0139] IDENTITY, as known in the art, is the relationship between two or more polypeptide sequences, or two or more polynucleotide sequences, as determined by comparing the sequences.

[0140] LC denotes a light chain of an antibody molecule.

15 [0141] NIBSC 90/672 is an International Standard for thyroid stimulating antibody. The International Standard for thyroid stimulating activity consists of a batch of ampoules containing freeze dried plasma proteins from a single human patient with high TSH receptor autoantibodies. The preparation has been evaluated in an international collaborative study and shown to possess both thyroid stimulating and thyroid receptor binding activity. At the 46th meeting in 1995, the Expert Committee on Biological Standardization of WHO established the preparation coded 90/672 as the International Standard for thyroid stimulating antibody. Each ampoule contains freeze-dried residue, of 1.0ml of a solution containing 0.02M phosphate buffer, dialysed human plasma proteins and 0.1 International Units (100 milli-International Units) per ampoule by definition.

20 [0142] STIMULATION OF A TSH RECEPTOR by a human monoclonal antibody as described herein denotes the ability thereof to bind to a TSH receptor and to thereby effect, for example, production of cyclic AMP as a result of such binding to the TSH receptor. Such stimulation is analogous to the responses seen on binding of TSH, or TSH receptor autoantibodies, to the TSH receptor and in this way a human monoclonal antibody as described herein essentially provides the same or similar binding responses as seen with TSH, or TSH receptor autoantibody, binding to a TSH receptor.

[0143] V DOMAIN denotes a region of highly variable amino acid sequence in antibody molecules.

[0144] VH DOMAIN denotes variable regions or domains in heavy chains of antibody molecules.

[0145] VL DOMAIN denotes variable regions or domains in light chains of antibody molecules.

30 [0146] The present invention will now be illustrated by the following Figures and Examples, which do not limit the scope of the invention in any way.

Examples

MATERIALS & METHODS

Lymphocyte isolation and cloning of human monoclonal TSH receptor autoantibodies

35 [0147] Blood was obtained from a patient with Graves' disease and Type 1 diabetes mellitus who had high levels of serum autoantibodies to the TSH receptor (TRAb). Ethical Committee approval was obtained for the studies. Peripheral blood lymphocytes were isolated on Ficoll-Paque (Amersham Biosciences; Chalfont St Giles, HP8 4SP, UK) from a 20mL blood sample and then infected with Epstein Barr virus (EBV) (European Collection of Cell Cultures - ECACC; Porton Down, SP4 0JG, UK) and cultured on mouse macrophage feeder layers as described before (N Hayakawa, LDKE Premawardhana, M Powell, M Masuda, C Arnold, J Sanders, M Evans, S Chen, JC Jaume, S Baekkeskov, B Rees Smith, J Furmaniak; "Isolation and characterization of human monoclonal autoantibodies to glutamic acid decarboxylase"; Autoimmunity 2002; 35: 343-355). EBV immortalised B lymphocytes were then fused with the mouse/human hybrid cell line K6H6/B5 (WL Carroll, K Thilemans, J Dilley, R Levy; "Mouse x human heterohybridomas as fusion partners with human B cell tumors"; Journal of Immunological Methods 1986; 89: 61-72) and cloned two times by limiting dilution at 5 cells/well and a final time at 1/2 cell/well to obtain a single colony (BJ Bolton, NK Spurr. "B-lymphocytes" In: RI Freshney, MG Freshney (eds). Culture of immortalized cells. Wiley-Liss, New York 1996; 283-297). The original wells and subsequent clones were screened for TSH receptor autoantibody by inhibition of ¹²⁵I-TSH binding to solubilised TSH receptor (see below). The single clones producing TSH receptor autoantibodies were grown up in tissue culture flasks.

Production, purification and labelling of monoclonal TSH receptor antibody preparations

55 [0148] Mouse TSH receptor MAbs were produced as described before (Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith; "Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies"; Thyroid 2000; 10: 1051-1059) and were also prepared from mice immunised with full length TSHR cDNA cloned in pcDNA3.1 (UA Hasan, AM Abai, DR Harper, BW Wren, WJJ Morrow; "Nucleic

acid immunization: Concepts and techniques associated with third generation vaccines"; Journal of Immunological Methods 1999; 229: 1-22).

[0149] IgGs were purified from tissue culture supernatants using affinity chromatography on Prosep A (Millipore UK Ltd.; Watford, WD18 8YH, UK) according to the manufacturer's instructions and purity assessed by SDS-polyacrylamide gel electrophoresis (PAGE).

[0150] Human heavy chain isotype was determined using a radial diffusion assay (The Binding Site; Birmingham, B29 6AT, UK). Human light chain isotype was determined using Western blotting with anti-human kappa chain and anti human lambda chain specific mouse monoclonal antibodies (Sigma-Aldrich Company Ltd; Gillingham, SP8 4XT, UK).

[0151] The purified IgG preparations were treated with mercuripapain (Sigma-Aldrich) at an enzyme/protein ratio of between 1:10 and 1:100 (depending on the particular monoclonal antibody) and passed through a Prosep A column to remove any intact IgG or Fc fragment from the Fab preparation (Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M Perez, VB Petersen, N Wedlock, J Furmaniak, B Rees Smith; "Binding characteristics of antibodies to the TSH receptor"; Journal of Molecular Endocrinology 1998; 20: 233-244). Intact IgG was undetectable by SDS-PAGE in the Fab preparations. IgG and Fab preparations of the monoclonal antibodies were labelled with ^{125}I as described previously (Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M Perez, VB Petersen, N Wedlock, J Furmaniak, B Rees Smith; "Binding characteristics of antibodies to the TSH receptor"; Journal of Molecular Endocrinology; 1998; 20: 233-244). IgG preparations were labelled with biotin hydrazide (Pierce Rockford IL, 61105, USA) according to the manufacturer's instructions. Crystals of Fab fragments of the human monoclonal TSH receptor autoantibody were obtained and their crystal structure determined using standard techniques.

20 Patients

[0152] Sera from patients with Graves' disease of different disease duration were studied. The patients' sera studied showed inhibition of ^{125}I -labelled TSH binding to the TSH receptor (see below). In addition, sera from 2 patients with Addison's disease (A1 and A2) and high levels of autoantibodies to 21-OH (113 and 1970 units per mL, RSR kit) and sera from 2 patients with type 1 diabetes mellitus (D1 and D2) with high levels of GAD₆₅ (3700 and 37.5 units per mL; RSR kit) were studied. Informed consent for the study was obtained from the patients. Sera from healthy blood donors (purchased from Golden West Biologicals, Vista, CA 92083, USA) were also studied. TRAb first international standard preparation (90/672) was obtained from the National Institute for Biological Standards and Control (NIBSC; Potters Bar, EN6 3QH, UK).

Inhibition of ^{125}I -TSH and ^{125}I -mouse TSHR MAb binding to the TSH receptor

[0153] Binding inhibition assays were carried out using TSH receptor coated tubes as described previously (J Sanders, Y Oda, S Roberts, A Kiddie, T Richards, J Bolton, V McGrath, S Walters, D Jaskolski, J Furmaniak, B Rees Smith; "The interaction of TSH receptor autoantibodies with ^{125}I -labeled TSH receptor"; Journal of Clinical Endocrinology and Metabolism 1999; 84: 3797-3802) (reagents from RSR Ltd). Briefly, 100 μL of sample (tissue culture supernatant, purified IgG or Fab fragment, patient serum or NIBSC 90/672 standards) were incubated in TSH receptor coated tubes at room temperature for 2 hours with gentle shaking. After aspiration, the tubes were washed twice with 1 mL of assay buffer (50 mmol/L NaCl, 10 mmol/L Tris-HCl pH 7.8, 0.1% Triton X-100) before addition of 100 μL of ^{125}I -TSH or ^{125}I -MAb (5×10^4 cpm) and incubation at room temperature for 1 hour with shaking. The tubes were then washed twice with 1 mL of assay buffer, aspirated and counted in a gamma counter.

[0154] Inhibition of binding was calculated as:-

$$45 \quad 100 \quad x \quad 1 \quad - \quad \frac{\text{cpm bound in the presence of test material}}{\text{cpm bound in the presence of control material}}$$

[0155] Control materials used were culture medium, a pool of healthy blood donor sera or as otherwise indicated.

Analysis of thyroid stimulating activities

[0156] The ability of monoclonal autoantibody preparations and patient sera to stimulate the production of cyclic AMP (or cAMP) in CHO cells expressing hTSH receptor (approximately 50,000. receptors per cell) (Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M Perez, VB Petersen, N Wedlock, J Furmaniak, B Rees Smith; "Binding characteristics of antibodies to the TSH receptor"; Journal of Molecular Endocrinology 1998; 20: 233-244) were carried out according to the method of R Latif, P Graves, TF Davies; "Oligomerization of the human thyrotropin receptor"; Journal of Biological Chemistry 2001; 276: 45217-45224. Briefly, CHO cells were seeded into 96 well plates (30,000 cells per well) and

incubated for 24 hours in DMEM (Invitrogen Ltd; Paisley PA4 9RF, UK) containing 10% fetal calf serum. Culture was then continued in DMEM without fetal calf serum for a further 24 hours. The DMEM was then removed and test TSH, IgG, Fab and serum (100 µL diluted in NaCl free Hank's Buffered Salts solution containing 1 g/L glucose, 20 mmol/L Hepes, 222 mmol/L sucrose, 15 g/L bovine serum albumin (BSA) and 0.5 mmol/L 3 isobutyl-1-methyl xanthine pH 7.4) added and incubated for 1 hour at 37 °C. After removal of the test solutions, cells were lysed and assayed for cyclic AMP using a Biotrak enzyme immunoassay system from Amersham Biosciences; Chalfont St Giles, HP8 4SP, UK. In some experiments, the ability of patient sera and mouse monoclonal antibodies to the TSHR to inhibit the stimulating activity of TSH or hMAb TSHR1 was assessed. This was carried out by comparing (a) the stimulatory effects of TSH or hMAb TSHR1 alone with (b) the stimulatory effects of TSH or hMAb TSHR1 in the presence of patient sera or mouse monoclonal antibody.

Variable Region Gene Analysis

[0157] Total RNA was prepared from 1×10^7 cells of a TSH receptor autoantibody producing clone using the acid phenol guanidine method (P Chomczynski, N Sacchi; "Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction"; Analytical Biochemistry 1987; 162: 156-159) and mRNA prepared using oligo dT magnetic beads (Dynal Biotech Ltd; Wirral, CH62 3QL, UK). RT-PCR reactions were performed using reagents from Invitrogen Ltd; Paisley PA4 9RF, UK.

[0158] Sense strand oligonucleotide primers were designed using the sequences recommended by the Medical Research Council's V-base database (www.mrc-cpe.cam.ac.uk). Antisense primers specific for human IgG1 heavy chain and lambda light chain were based on constant region encoding DNA sequences. Both sense and antisense primers included additional 5' restriction endonuclease site sequences to facilitate cloning of PCR products. IgG1 heavy chain and lambda light chain RT-PCR reactions were performed using the complete panel of appropriate primers. All primers were synthesized by Invitrogen Ltd. The RT reaction took place at 50°C for 10 minutes followed immediately by 40 cycles of PCR (15 sec 94 °C, 30 sec 55 °C, 30 sec 72 °C). RT-PCR products were cloned into pUC18 and DNA prepared using the Wizard kit from Promega UK Ltd; Southampton SO16 7NS, UK and sequenced by the Sanger-Coulson method (F Sanger, S Nicklen, AR Coulson; "DNA sequencing with chain terminating inhibitors"; Proceedings of the National Academy of Sciences of the USA 1977; 74: 5463-5467). V region sequences were compared with available sequences of human Ig genes using Ig blast (www.ncbi.nlm.nih.gov/igblast/igblast.cgi).

Immunoprecipitation Assay IPA)

[0159] The cDNA encoding full length TSH receptor was placed downstream of the T7 promoter in pYES2 (Invitrogen) and used in an in vitro TnT system (Promega UK Ltd) to produce TSH receptor labelled with ^{35}S -methionine as previously described (L Prentice, J Sanders, M Perez, R Kato, J Sawicka, Y Oda, D Jaskolski, J Furmaniak, B Rees Smith; "Thyrotropin (TSH) receptor autoantibodies do not appear to bind to the TSH receptor produced in an in vitro transcription/translation system"; Journal of Clinical Endocrinology and Metabolism 1997; 82: 1288-1292). Briefly 50 µL ^{35}S -labelled TSH receptor (25 000 - 30 000 cpm) diluted in HSB (150 mmol/L Tris-HCl pH 8.3, 200 mmol/L NaCl and 10 mg/mL bovine serum albumin containing 1% Tween 20) were added to duplicate 50 µL aliquots of diluted test sample and incubated for 2 hours at room temperature. Immune complexes were then precipitated by addition of protein A sepharose (Sigma-Aldrich) and counted in a scintillation counter.

TSH receptor preparations and western blotting

[0160] Full-length human TSH receptor was expressed in CHO-K1 cells, extracted with 1% Triton X-100 and purified by TSH receptor monoclonal antibody affinity chromatography as described previously (Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith; "Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies"; Thyroid 2000; 10: 1051-1059).

[0161] The purified CHO cell produced TSH receptor was run on 9% SDS-PAGE gels, blotted onto nitrocellulose and reacted with test antibodies as described previously (Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith; "Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies"; Thyroid 2000; 10: 1051-1059).

Epitope analysis using TSH receptor peptides

[0162] Twenty six peptides each 25aa long covering the whole of the extracellular domain of the human TSH receptor were kindly provided by Dr J Morris (JC Morris, ER Bergert, DJ McCormick; "Structure-function studies of the human thyrotropin receptor. Inhibition of binding of labeled thyrotropin (TSH) by synthetic human TSH receptor peptides"; Journal

of Biological Chemistry 1993; 268: 10900-10905). A human 21-OH peptide (C1, SSSRVPYKDRARLPL) which binds to an M21-OH5 MAb (S Chen, J Sawicka, L Prentice, JF Sanders, H Tanaka, V Petersen, C Betterle, M Volpato, S Roberts, M Powell, B Rees Smith, J Furmaniak; "Analysis of autoantibody epitopes on steroid 21-hydroxylase using a panel of monoclonal antibodies"; Journal of Clinical Endocrinology and Metabolism 1998; 83: 2977-2986) was used as a positive control and a human monoclonal antibody to GAD₆₅ (N Hayakawa, LDKE Premawardhana, M Powell, M Masuda, C Arnold, J Sanders, M Evans, S Chen, JC Jaume, S Baekkeskov, B Rees Smith, J Furmaniak; "Isolation and characterization of human monoclonal autoantibodies to glutamic acid decarboxylase"; Autoimmunity 2002; 35: 343-355) was used as a negative control. The peptide ELISA was carried out as described previously (Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith; "Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies"; Thyroid 2000; 10: 1051-1059).

Interaction of monoclonal TSHR autoantibody preparations with the TSH receptor coated onto plastic tubes or ELISA plate wells

15 (a) ¹²⁵I-labelled autoantibody

[0163] Test samples including patient sera (100 µL) were incubated in TSH receptor coated tubes (RSR Ltd.) at room temperature for 2 hours with gentle shaking. After aspiration, the tubes were washed twice with 1 mL of assay buffer before addition of 100 µL of labelled autoantibody preparation (30,000 cpm) and incubation at room temperature for 1 hour with shaking. The tubes were then washed twice with 1 mL of assay buffer, aspirated and counted in a gamma counter. Inhibition of ¹²⁵I-labelled autoantibody binding was calculated using the formula as for inhibition of TSH binding (see above).

25 (b) Biotin labelled monoclonal autoantibody and biotin labelled TSH

[0164] The procedure described previously (J Bolton, J Sanders, Y Oda, C Chapman, R Konno, J Furmaniak and B Rees Smith; "Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA"; Clinical Chemistry, 1999; 45: 2285-2287) was used. Briefly, test samples including patient sera (75 µL) were incubated in TSH receptor coated ELISA plate wells (RSR Ltd) for 2 hours with shaking (200 shakes per minute) on an ELISA plate shaker. Test samples were then removed and the wells washed once with assay buffer. Biotin-labelled monoclonal TSH receptor autoantibody (1 ng in 100 µL) or biotin labelled porcine TSH (RSR Ltd; 5 ng in 100 µL) were then added and incubation continued for 25 minutes at room temperature without shaking. The wells were washed once, 100 µL of streptavidin-peroxidase (RSR Ltd; 10 ng in 100 µL) added and incubation continued for 20 minutes at room temperature without shaking. The wells were then washed 3 times, the peroxidase substrate tetramethyl benzidine (RSR Ltd; 100 µL) added. After incubation for 30 minutes at room temperature without shaking 50 µL of 0.5M H₂SO₄ was added to stop the substrate reaction and the absorbance of each well read at 450 nm on an ELISA plate reader. Inhibition of biotinylated MAb or TSH binding was expressed as an index calculated as:-

$$40 \quad \frac{100 \times 1 - \text{test sample absorbance at } 450 \text{ nm}}{\text{negative serum control absorbance at } 450 \text{ nm}}$$

Scatchard analysis of monoclonal autoantibody binding to TSH receptor coated tubes

[0165] Unlabelled IgG or Fab in 50 µL of assay buffer and 50 µL of ¹²⁵I-labelled hMAb IgG or Fab (30,000 cpm in assay buffer) were incubated for 2 hours at room temperature with gentle shaking, washed twice with 1 mL of assay buffer and counted in a gamma counter. The concentration of IgG or Fab bound vs bound/free was plotted (G Scatchard; "The attraction of proteins for small molecules and ions"; Annals of the New York Academy of Sciences 1949; 51: 660-672) to derive the association constants.

Binding of TSH receptor to tubes coated with monoclonal TSH receptor autoantibodies

[0166] Test samples including patient sera (100 µL) and detergent solubilised TSH receptor (20 µL) were incubated for 1 hour at room temperature. Duplicate 50 µL aliquots of the incubation mixture were then added to plastic tubes (Nunc Maxisorp) which had been coated with monoclonal TSH receptor autoantibody Fab (200 µL of 10 µg/mL overnight at 4 °C followed by washing and post coating). After incubation for 1 hour at room temperature with gentle shaking, the tubes were washed, 100 µL (40,000 cpm) of ¹²⁵I-labelled TSH receptor C terminal monoclonal antibody 4E31 (J Sanders,

Y Oda, A Kiddie, T Richards, J Bolton, V McGrath, S Walters, D Jaskolski, J Furmaniak, B Rees Smith; "The interaction of TSH receptor autoantibodies with ^{125}I -labelled TSH receptor"; Journal of Clinical Endocrinology and Metabolism 1999; 84: 3797-3802) added and incubation continued for a further 1 hour with gentle shaking. Then tubes were washed and counted for ^{125}I .

5

Cloning and expression of recombinant hMAb TSHR1 Fab in E coli

[0167] The hMAb TSHR1 heavy chain RT-PCR product (see Variable Region Gene Analysis section) was cut with Xhol and SpeI restriction endonucleases and the hMAb TSHR1 light chain PCR product was cut with SacI and XbaI restriction endonucleases and both heavy and light chain cDNAs cloned into the Immunozap H/L vector (Stratagene Europe; Amsterdam, Netherlands) (I Matthews; G Sims, S Ledwidge, D Stott, D Beeson, N Willcox, A Vincent; "Antibodies to acetylcholine receptor in parous women with myasthenia: evidence for immunization by fetal antigen"; Laboratory Investigation 2002; 82: 1-11) under the control of the lacZ promoter. Plasmid DNA was prepared using the Qiagen midi plasmid purification kit (Qiagen Ltd; Crawley, RH10 9AX, UK) and the presence of hMAb TSHR1 heavy and light chain cDNAs confirmed by sequencing using the Sanger-Coulson method (F Sanger, S Nicklen, AR Coulson; "DNA sequencing with chain terminating inhibitors"; Proceedings of the National Academy of Sciences of the USA 1977; 74: 5463-5467). Plasmid DNA was transformed into 2 different E coli strains (a) XL1-Blue MRF' (Stratagene) and (b) HB2151 (Amersham Biosciences) and grown overnight at 37 °C on LB ampicillin (Tryptone 10 g/L, Yeast Extract 5 g/L, NaCl 10 g/L, 100 µg/mL final concentration Ampicillin) agar plates (15 g/L agar). Precultures (one colony in 3 mL LB ampicillin + 1% glucose) were grown overnight at 37 °C with shaking. Production of the recombinant Fab is inhibited in the presence of glucose. Precultures after overnight incubation were diluted 1/100 (0.5 mL in 50 mL LB ampicillin) and grown at 37 °C until the OD600 was between 0.4-0.6. These cultures were placed at 30 °C with shaking for 20 minutes. Thereafter isopropyl-β (IPTG) was added to a final concentration of 1 mmol/L and cultures continued to be incubated overnight (16 hours) at 30 °C with shaking. The cultures were then centrifuged at 3000 rpm for 30 minutes at 4 °C and the culture supernatants and pellets recovered. The pellets were resuspended in 1 mL of ice cold TES buffer (0.2 mol/L Tris-HCl pH 8.0, 0.5 mol/L EDTA and 0.5 mol/L sucrose) by vortexing. A further 1.5 mL of ice cold TES buffer diluted 5x in H2O was added, the mixture vortexed again and incubated on ice for 30 minutes then re-centrifuged to give a second supernatant or periplasmic fraction (PF). The culture supernatant and PF were filtered through a 0.45 µm filter and dialysed overnight into 10 mmol/L Tris pH 7.5, 50 mmol/L NaCl. Culture supernatant or PF from untransformed XL1-Blue MRF' and HB2151 cells and XL1-Blue MRF' transformed with hMAb TSHR1 plasmid (XL1-Blue MRF'/hMAb TSHR1) and HB2151 transformed with hMAb TSHR1 plasmid (HB2151/hMAb TSHR1) grown with glucose without IPTG ie non-induced were also prepared. The culture supernatants and PF were assayed for (a) their ability to inhibit TSH binding to the TSHR, (b) their ability to stimulate cyclic AMP production in CHO cells expressing TSHR, and (c) total recombinant Fab concentration by radioimmunoassay. In this assay, calibrators and test materials including culture supernatants and PF (100 µL in duplicate) diluted in assay buffer (50 mmol/L NaCl, 10 mmol/L Tris-HCl pH 7.8, 0.1% Triton X-100) were incubated for 1 hour at room temperature in plastic tubes coated with Fab specific goat anti human IgG (from Sigma Aldrich, Poole, BH12 4QH, UK). The tubes were then washed with assay buffer (2 x 1 mL) and 100 µL of ^{125}I -labelled hMAb TSHR1 Fab (30,000 cpm) added followed by incubation at room temperature. After 1 hour, the tubes were washed again (2 x 1 mL) and counted for ^{125}I . The counts bound were plotted against concentration of Fab (hybridoma produced hMAb TSHR1 Fab) in the calibrators (5-500 ng/mL) and the concentration of recombinant Fab in the various test materials read off this calibration curve. The detection limit for this assay was 5-10 ng/mL of Fab.

Cloning and expression of recombinant 4B4 (a human MAb to glutamic acid decarboxylase or GAD) and recombinant hybrid Fabs (mixed HC and LC of hMAb TSHR1 and 4B4)

45

[0168] Recombinant 4B4 Fab (4B4 is described in detail by N Hayakawa, LDKE Premawardhana, M Powell, M Masuda, C Arnold, J Sanders, M Evans, S Chen, JC Jaume, S Baekkeskov, B Rees Smith, J Furmaniak. Isolation and characterization of human monoclonal antibodies to glutamic acid decarboxylase. Autoimmunity 2002 volume 35 pp 343-355) and recombinant hybrid Fabs were produced by cloning the respective HC and LC into Immunozap H/L vector and expressed in HB2151 cells as described for recombinant hMAb TSHR1 Fab. The culture supernatants and periplasmic fraction were assayed for their ability to (a) inhibit TSH binding to the TSHR (b) to stimulate cyclic AMP production in CHO cells expressing the TSHR and (c) for total recombinant Fab concentration as described above. In addition, GAD Ab activity was assessed as described below.

55

Measurement of recombinant GAD Ab Fab activity in culture supernatants and periplasmic fractions

[0169] An assay based on the ability of GAD Ab Fab preparation to inhibit the binding of ^{125}I -labelled GAD (from RSR Ltd, Cardiff, CF23 8HE, UK) to the human monoclonal antibody to GAD (4B4) was used. In the assay, test samples

diluted in GAD Ab assay buffer (150 mmol/L NaCl, 50 mmol/L Tris-HCl pH 8.0, 1% v/v Tween 20, 1 g/L bovine serum albumin and 0.5 g/L NaN3) were incubated (50 µL in duplicate with ^{125}I -labelled GAD (30,000 cpm in 50 µL of GAD Ab assay buffer) for 1 hour at room temperature. Then, 50 µL of 4B4 IgG (0.1 µg/mL in GAD Ab assay buffer) was added and incubation continued for 24 hours at room temperature. Solid phase protein A (50 µL in GAD Ab assay buffer; from RSR Ltd) was then added to precipitate complexes of 4B4 IgG- ^{125}I -labelled GAD (protein A does not react with complexes of Fab and ^{125}I -labelled GAD). After allowing the reaction with protein A to proceed for 1 hour at room temperature, the precipitates were pelleted by centrifugation (1500 g for 30 minutes at 4 °C), washed with 1 mL of GAD Ab assay buffer and counted for ^{125}I . ^{125}I -labelled GAD binding in the absence of 4B4 IgG was 4-5% of the total cpm added.

10 Production of anti-idiotypic antibodies to hMAb TSHR1

[0170] 6-8 week old BALB/c mice were immunised intraperitoneally with 50 µg hMAb TSHR1 Fab in complete Freunds adjuvant followed by a second injection with 50 µg hMAb TSHR1 Fab in incomplete Freunds adjuvant after 25 days and a further injection of 50 µg hMAb TSHR1 Fab 4 days before removal of the spleen. The spleen cells from antibody positive mice (see below) were fused with a mouse myeloma cell line and monoclonal antibodies isolated as above for TSHR MAbs. The levels of anti-idiotypic antibody in the mouse sera and cell culture wells were measured by inhibition of ^{125}I -hMAb TSHR1 Fab binding to TSHR coated tubes. In particular, duplicate 60 µL aliquots of test sample (diluted in assay buffer: 50 mmol/L NaCl, 10 mmol/L Tris-HCl pH 7.8, 0.1% Triton X-100) were incubated with 60 µL of ^{125}I -hMAb TSHR1 Fab (30 000 cpm diluted in assay buffer) for 1 hour at room temperature. 100 µL of the mixture was transferred to duplicate TSHR coated tubes (RSR Ltd) with 20 µL, start buffer (see above) and incubation continued for a further two hours at room temperature with shaking. The tubes were then washed with 2 x 1 mL of assay buffer and counted for ^{125}I . The presence of anti-idiotypic antibodies reactive with hMAb TSHR1 was evident from the ability of test samples to inhibit the binding of labelled hMAb TSHR1 Fab to the TSHR coated tubes.

25 RESULTS

[0171] Lymphocytes (30 x 10⁶) obtained from 20 mL of patient's blood were plated out at 1 x 10⁶ per well on a 48 well plate with 200 200 µL of EBV supernatant on feeder layers of mouse macrophages. On day 11 post EBV infection the supernatants were monitored for inhibition of ^{125}I -TSH binding. One well was found to be positive for inhibition of binding, the levels of inhibition increasing to greater than 90% inhibition by day 16 and stayed at that level until day 24, after which time they decreased. The cultures were expanded and fused with K6H6/B5 cells on day 21, 23, 26 and 27 post EBV infection; in total 7 fusion experiments were carried out. Each fusion was plated across 3 x 96 well plates (ie 21 plates in total) and one well, stably producing antibodies with ^{125}I -TSH binding inhibiting activity was obtained. This was followed by 3 rounds of re-cloning to yield a single clone producing a human monoclonal antibody which inhibited labelled TSH binding to the TSH receptor. This human monoclonal TSH receptor autoantibody was designated hMAb TSHR1 and was of subclass IgG1 with a lambda light chain.

[0172] The ability of different concentrations of hMAb TSHR1 IgG and Fab to inhibit labelled TSH binding to the TSH receptor is shown in Figure 1. As can be seen in Figure 1 as little as 1 ng/mL of these preparations inhibited TSH binding with more than 90% inhibition being obtained with 1000 ng/mL. TSMAb TSHR1 IgG and Fab also stimulated cyclic AMP production in CHO cells transfected with the TSH receptor as shown in Figure 2. As little as 1 ng/mL of hMAb TSHR1 IgG or Fab caused strong stimulation of cyclic AMP. Similar levels of stimulation were observed with 0.1 ng/mL porcine TSH and 10 ng/mL of human TSH. Comparison of the ability of the serum from the original lymphocyte donor (taken at the same time as the blood sample for lymphocyte isolation) to inhibit labelled TSH binding to the TSH receptor and to stimulate cyclic AMP production in TSH receptor transfected CHO cells is shown in Figure 3. Inhibition of TSH binding could be detected with serum diluted 500x whereas stimulation of cyclic AMP could be detected with serum diluted 5000x.

[0173] ^{125}I -labelled hMAb TSHR1 IgG bound to TSH receptor coated tubes and Scatchard analysis indicated an association constant of 5×10^{10} molar⁻¹. This binding was inhibited by sera from patients with Graves' disease who had TSH receptor autoantibodies (detectable by inhibition of labelled TSH binding) (Table 1). ^{125}I -labelled hMAb TSHR1 Fab also bound to TSH receptor coated tubes (association constant by Scatchard analysis = 4.5×10^{10} molar⁻¹) and this binding was inhibited by TSH receptor autoantibody positive Graves' sera (Table 2). In addition, detergent solubilised preparations were able to bind to plastic tubes coated with hMAb TSHR1 and this binding could be inhibited by sera containing TSH receptor autoantibodies (Table 3).

[0174] As shown in Table 4 hMAb TSHR1-biotin bound to TSH receptor coated ELISA plates and the binding was inhibited by the international reference preparation NIBSC 90/672 and serum from patients with Graves' disease. Inhibition of binding was not observed by sera from healthy blood donors. Figure 3a shows a graphical representation of a comparison between an assay for TSHR autoantibodies based on hMAb TSHR1-biotin and earlier assays. The sensitivity of the assay based on hMAb TSHR1-biotin is clearly superior according to concentration of the international standard NIBSC 90/672 detectable. This was confirmed in a study of sera from 72 patients with Graves' disease shown in Figure

3b. Healthy blood donor sera (n = 100) and sera from subjects with non-thyroid diseases (n = 43) gave respectively values of up to 10% inhibition of hMAb TSHR1 binding and up to 11% inhibition of TSH binding in this study.

[0175] hMAb TSHR1 IgG did not react with full length TSH receptor preparations on Western blot analysis nor did it react well with 35S-labelled full length TSH receptor in the immunoprecipitation assay nor in the TSH receptor peptide ELISA. This lack of reactivity indicates that hMAb TSHR1 reacts with conformational rather than linear epitopes on the TSH receptor.

[0176] Sequence analysis of the genes coding for hMAb TSHR1 indicated that the heavy chain V region genes were of the VH5 family, the D gene of the D6-13 family and the J gene of the JH5 family and for the light chain the V-gene region is from the VL1-11 germline and the J-gene region is from the JL3b germline. The heavy chain nucleotide and amino acid sequences are shown in Figures 4 and 5 respectively and the light chain nucleotide and amino acid sequences are shown in Figures 6 and 7 respectively. These sequences are a refinement of the HC and LC nucleotide sequences determined using PCR primers which are degenerate. In particular a HC sequencing artefact for nucleotides 115-120 was identified. Sequencing indicated cacgtg (transcribed to amino acids His Val) whereas the crystal structure more reliably indicated amino acids Gln Leu (corresponding bases being cagctg). Crystal structure analysis also enabled refinement of the HC and LC derived amino acid sequences particularly in the degenerate PCR primer region. In the case of the LC amino acid 2 was found to be Pro by RT-PCR but was Thr from the crystal structure. In the case of the HC amino acid 2 was found to be Met by RT-PCR but was Val from the crystal structure.

[0177] Comparison of the activities of hMAb TSHR1 IgG preparations and the international standard for TSH receptor autoantibodies in terms of inhibition of labelled TSH binding are shown in Table 5. This enabled a specific activity of hMAb TSHR1 IgG to be estimated as 138 units of NIBSC 90/672 per mg of protein when the assays were carried out in serum and 163 units per mg when the assays were carried out in assay buffer (mean of the 2 values = 150 units/mg). hMAb TSHR1 Fab preparations were 288 and 309 units per mg in serum and assay buffer respectively (mean of the 2 values = 300 units/mg). Table 6 shows a similar analysis of the lymphocyte donor serum and the donor serum IgG. As can be seen the donor serum contains a mean of 0.38 units/mL of NIBSC 90/672 (0.36 and 0.4 in serum and assay buffer respectively) and the donor serum IgG has a mean specific activity of 0.059 units per mg of protein. These results are summarised in Table 7 and comparison with the specific activity of hMAb TSHR1 IgG (150 units/mg) indicates that the monoclonal autoantibody IgG is 2500 times more active than the lymphocyte donor serum IgG in terms of inhibition of TSH binding.

[0178] Initial assessment of the activities of the various IgG and serum preparations in terms of stimulation of cyclic AMP in CHO cells transfected with the TSH receptor are also shown in Table 7. The stimulation of cyclic AMP assay is characterized by considerable within assay and between assay variability. This relates to several factors including variation in the number and quality of cells initially seeded into the 96 well plates and variation in growth rate of the seeded cells over the subsequent 48 hours. Consequently the assays of hMAb TSHR1 IgG and Fab, lymphocyte donor serum and serum IgG and NIBSC 90/672 were carried out repeatedly and the results are summarized in Table 8. The specific activity of the hMAb TSHR1 IgG was 318 units per mg in the stimulation assay compared with 0.1 units per mg for the lymphocyte donor serum IgG ie the monoclonal autoantibody IgG was about 3000 times as active as the donor serum IgG in terms of stimulation of cyclic AMP production. This value is in reasonable agreement with the value of 2500 times observed for inhibition of TSH binding measurements (see above and Tables 5 and 6). Table 9 shows a further analysis of the TSH receptor stimulating effects of hMAb TSHR1 IgG and Fab and the lymphocyte donor serum IgG.

[0179] The effects of porcine TSH and hMAb TSHR1 IgG on stimulation of cyclic AMP production in CHO cells expressing the TSH receptor were additive as can be seen in the results shown in Table 10.

[0180] Typical results observed in the stimulation of cyclic AMP assay with the reference preparation NIBSC 90/672 are shown in Table 11.

[0181] Tables 12 and 13 show the effects of the various E.coli culture supernatants in terms of inhibition of labelled TSH binding and stimulation of cyclic AMP production respectively. Transformed (with hMAb TSHR1 plasmid) and IPTG induced cultures of both strains of E.coli produced sufficient amounts of recombinant hMAb TSHR1 Fab to act as potent inhibitors of TSH binding (Table 12) and powerful stimulators of cyclic AMP production (Table 13). Control culture supernatants (from untransformed cells and transformed but non-induced cells) did not produce detectable levels of binding inhibition (Table 12) or stimulating (Table 13) activities.

[0182] In further control experiments, a recombinant human antibody Fab produced by cloning and expression of the HC and LC of a human monoclonal antibody to GAD (4B4) were analysed. Assays of culture supernatants and periplasmic fractions indicated that recombinant 4B4 Fab did not have detectable inhibition of TSH binding activity (Tables 14 and 15) or TSHR stimulating activity (Tables 16 and 17). Furthermore, hybrid Fabs consisting of (a) hMAb TSHR1 HC and 4B4 LC (b) hMAb TSHR1 LC and 4B4 HC did not show interaction with the TSHR in either assay (Tables 14-17). Assays for GAD Ab activity in these various recombinant Fab preparations were only able to detect GAD Ab expression in cells transformed with 4B4 HC and 4B4 LC (Tables 18 and 19). Recombinant hMAb TSHR1 Fab did not show detectable GAD Ab activity and neither did recombinant Fab hybrids consisting of mixtures of 4B4 and hMAb TSHR1 HC and LC (Tables 18 and 19).

[0183] The ability of hMAb TSHR1 to stimulate cyclic AMP production in CHO cells transfected with the TSHR was inhibited by patient sera containing TSHR autoantibodies which acted as TSH antagonists (Figure 8). In addition, a mouse monoclonal antibody to the TSHR (9D33) was able to block hMAb TSHR1 stimulating activities (Table 20) whereas another TSHR mouse MAb (2B4) was ineffective (Table 20). However 2B4 was able to block the stimulating activities of TSH as was 9D33 (Table 21). Table 22 shows the ability of 2B4 and 9D33 to inhibit the binding of ^{125}I -labelled TSH and ^{125}I -labelled hMAb TSHR1 to TSHR plastic tubes. 9D33 was able to inhibit labelled TSH binding and labelled hMAb TSHR1 binding quite effectively (more than 50% inhibition at 10 $\mu\text{g/mL}$). 2B4 was an effective inhibitor of labelled TSH binding to the TSHR (more than 80% inhibition at 1 $\mu\text{g/mL}$) but had only a minor effect on hMAb TSHR1 binding (11% inhibition at 1 $\mu\text{g/mL}$) or on 9D33 binding (22% inhibition at 1 $\mu\text{g/mL}$). The binding of labelled 9D33 to TSHR coated tubes was inhibited by sera from patients with Graves' disease containing TSHR autoantibodies (as measured by inhibition of labelled TSH binding to the TSHR) whereas healthy blood donor sera and sera from patients with other autoimmune diseases had little or no effect (Table 23). Labelled 9D33 binding to the TSHR was inhibited by TSHR autoantibodies with TSH agonist or antagonist properties (Table 24) and by the international standard NIBSC 90/672 (Table 25). Scatchard analysis indicated that 9D33 and 2B4 had affinities of 2×10^{10} molar $^{-1}$ and 1×10^{10} molar $^{-1}$ respectively for TSH receptors coated onto plastic tubes.

[0184] Immunisation of mice with hMAb TSHR1 Fab resulted in production of antibodies in the mice sera (polyclonal antibodies) which were capable of binding to hMAb TSHR1 Fab in such a way as to inhibit the ability of the Fab to bind to the TSHR (Table 26). Furthermore, a monoclonal antibody produced from the spleen cells of a mouse immunised with hMAb TSHR1 Fab was also able to inhibit the Fab binding to the TSHR (Table 27).

[0185] Overall our analysis indicates that the human monoclonal autoantibody hMAb TSHR1 the TSH receptor binding and thyroid stimulating characteristics of the TSH receptor autoantibodies in the serum of the lymphocyte donor. As detailed above, the monoclonal antibody was also produced as a recombinant Fab preparation.

CONCLUSIONS

[0186]

- (a) We have produced a human monoclonal autoantibody to the TSH receptor which has similar properties to the TSH receptor autoantibody in the donor patient's serum. The monoclonal antibody was also produced as a recombinant Fab preparation.
- (b) The monoclonal antibody IgG and Fab and recombinant Fab preparations are powerful thyroid stimulators and effective inhibitors of labelled TSH binding to the TSH receptor.
- (c) Binding of labelled MAb IgG and Fab preparations to the TSH receptor is inhibited by TSH receptor autoantibody positive sera from patients with Graves' disease but not by healthy blood donor sera or sera from patients with other autoimmune diseases. Assay systems for TSHR autoantibodies based on inhibition of labelled hMAb TSHR1 binding to the TSH receptor are more sensitive than other assays so far described.
- (d) TSH receptor autoantibodies which act as TSH antagonists as well as TSH receptor autoantibodies which act as TSH agonists inhibit labelled hMAb TSHR1 binding to the TSH receptor.
- (e) hMAb TSHR1 preparations coated onto plastic tubes bind TSH receptor and this binding is inhibited by TSH receptor autoantibodies in different patient sera.
- (f) A mouse monoclonal antibody (9D33) which inhibits hMAb TSHR1 binding to the TSHR was also found to block the stimulating activity of hMAb TSHR1 and TSH.
- (g) Mouse polyclonal and monoclonal antibodies to hMAb TSHR1 have been produced which bind to hMAb TSHR1 in such a way as to prevent it binding to the TSH receptor. These anti-idiotypic antibodies compete therefore with the TSHR for hMAb TSHR1 and as such they may be useful alternatives to the TSHR in applications where a binding partner for TSHR autoantibodies is required.
- (h) These results indicate that hMAb TSHR1 and/or its derivatives and/or its competitors can be used as a replacement for TSH in
 - (i) assays for TSH receptor autoantibodies, TSH and related ligands

(ii) various in vivo applications involving provision of TSH agonist or TSH antagonist activities.

(iii) identification and provision of new types of TSH receptor autoantibody binding site

5

Table 1 Effect of patient sera on ^{125}I -labelled hMAb TSHR1 IgG binding to the TSH receptor and comparison with effect on ^{125}I -labelled TSH binding to the TSH receptor

Test material	inhibition of labelled hMAb TSHR1 binding	inhibition of TSH binding	Test material	inhibition of labelled hMAb TSHR1 binding	inhibition of TSH binding
G1	62	80	N1	3.1	7.7
G2	91	93	N2	2.4	2.6
G3	91	76	N3	-1.0	4.5
G4	94	92	N4	-11	6.5
G5	93	94	N5	1.7	5.0
G6	76	85	N6	2.8	1.7
G7	87	90	N7	5.2	-0.8
G8	65	45	N8	3.5	0.2
G9	88	90	N9	2.8	-0.6
G10/10	83	59	N10	4.5	2.2
G10/20	69	43	D1	-4.8	2.2
G10/40	56	29	A1	-3.1	1.3
G10/80	42	19	A2	-3.5	-3.0
G11/10	75	73			
G11/20	59	54			
G11/40	39	33			
G11/80	22	18			
<p>G1-G11 are sera from patients with a history of Graves' disease. G9 serum has high levels of TSH blocking (ie TSH antagonist activity). G10 and G11 have high levels of thyroid stimulating activity. G10 is the lymphocyte donor serum. /10, /20 etc indicate dilution factor in a pool of healthy blood donor sera. N1-N10 are sera from healthy blood donors. D1 is from a patient with type 1 diabetes mellitus (positive for autoantibodies to glutamic acid decarboxylase). A1 and A2 are from patients with Addison's disease (positive for steroid 21-hydroxylase autoantibodies).</p>					

45

[0187] In the presence of the pool of healthy blood donor sera about 25% of ^{125}I -labelled MAb IgG bound to the TSHR coated tubes.

50

Table 2 Effect of patient sera on ^{125}I -labelled hMAb TSHR1 Fab binding to the TSH receptor and comparison with effect on ^{125}I -labelled TSH binding to the TSH receptor

Test material	inhibition of labelled Fab binding	inhibition of TSH binding
NIBSC 90/672 diluted in a pool of healthy blood donor serum		
to 1 U/L	17	13
to 2 U/L	27	24

(continued)

Test material	inhibition of labelled Fab binding	inhibition of TSH binding
to 4 U/L	47	44
to 8 U/L	61	65
Healthy blood donor serum A	-3	<10
Healthy blood donor serum B	3	<10
Healthy blood donor serum C	4	<10
Healthy blood donor serum D	-4	<10
Healthy blood donor serum E	0	<10
Graves' serum F	64	78
Graves' serum G	42	54
Graves' serum H	49	69
Graves' serum I	24	36
Graves' serum J	76	88

Table 3 Binding of TSHR to plastic tubes coated with hMAb TSHR 1 Fab and inhibition of TSHR binding by sera containing TSHR autoantibodies

Test material	cpm bound ¹
Healthy blood donor serum A	8406
Healthy blood donor serum B	8430
TSHR autoantibody positive serum 1	1527
TSHR autoantibody positive serum 2	1131
TSHR autoantibody positive serum 3	1199

¹ TSHR binding was detected using a ¹²⁵I-labelled mouse monoclonal antibody to the TSHR C terminus; total cpm = 39,000 per tube.

Table 4 Effect of patient serum samples on binding of biotin labelled hMAb TSHR1 and biotin labelled TSH to ELISA plate wells coated with TSHR

	hMAb TSHR1 biotin		TSH biotin	
	OD ₄₅₀	% inhibition	OD ₄₅₀	% inhibition
HBD pool	1.852	0	1.778	0
HBD pool plus 1U/mL	1.46	21	1.489	16
HBD pool plus 2U/mL	1.168	37	1.304	27
HBD pool plus 4U/mL	0.792	57	0.947	47
HBD pool plus 8U/mL	0.539	71	0.492	72
HBD pool plus 40U/mL	0.118	94	0.233	87
Serum P1	1.415	24	1.397	21
Serum P2	1.264	32	1.256	29
Serum P3	0.558	70	0.408	77

(continued)

	hMAb TSHR1 biotin		TSH biotin		
	OD ₄₅₀	% inhibition	OD ₄₅₀	% inhibition	
5	Serum P4	0.763	59	0.907	49
Serum P5	1.047	43	-		
Serum P6	0.843	55	-		
10	Serum P7	1.429	23	-	
HBD 1	1.745	6	1.713	4	
HBD 2	1.807	2	-		
15	HBD 3	1.779	4	1.626	9
HBD 4	1.821	2	-		
HBD 5	1.841	1	1.660	7	
20	HBD 6	1.762	5	1.777	0
HBD 7	1.799	3	1.767	1	
HBD 8	1.783	4	1.703	4	
25	HBD 9	1.792	3	1.669	3
HBD = healthy blood donor serum U/mL are units of NIBSC 90/672 Serum P1-P7 are from patients with Graves' disease					

30 **Table 5** Inhibition of TSH binding by WHO reference preparation NIBSC 90/672 and by hMAb TSHR1 IgG and Fab preparations

Sample	Samples diluted in serum ¹				Samples diluted in assay buffer			
	% inhibition	units/L	units/mg	mean units/mg	% inhibition	units/L	units/mg	mean units/mg
35	NIBSC 90/672							
40	0.125 units/L				2			
45	0.25 units/L				4			
50	0.5 units/L				11			
55	1.0 units/L	15			19			
	2.0 units/L	28			38			
	4.0 units/L	48			64			
	8.0 units/L	69			83			
	40.0 units/L	95			94			

(continued)

5	Sample	Samples diluted in serum ¹				Samples diluted in assay buffer			
		% inhibition	units/L	units/mg	mean units/mg	% inhibition	units/L	units/mg	mean units/mg
10	hMAb TSHR1 IgG								
15	0 ng/mL	1				0			
20	0.3 ng/mL	1				2			
25	1 ng/mL	3				3			
30	3 ng/mL	7				10	0.46		
35	10 ng/mL	21	1.48	148		33	1.73	173	
40	30 ng/mL	46	3.9	130	138	70	4.8	160	163
45	100 ng/mL	81	13.5	135		92	15.6	156	
50	300 ng/mL	92				95	>40		
55	hMAb TSHR1 Fab								
60	0.3 ng/mL	5				-2			
65	1 ng/mL	5				1			
70	3 ng/mL	16	1.05	351		16	0.8	265	
75	10 ng/mL	36	2.77	277		52	2.9	291	309
80	30 ng/mL	69	8.0	267	288	86	9.6	372	
85	100 ng/mL	89	23.7	237		92	16.9		
90	300 ng/mL	93				94			
95	2G4 IgG ²								
100	0.3 ng/mL	2				-3			
105	3 ng/mL	1				-6			
110	30 ng/mL	0				-5			

(continued)

Sample	Samples diluted in serum ¹				Samples diluted in assay buffer			
	% inhibition	units/L	units/mg	mean units/mg	% inhibition	units/L	units/mg	mean units/mg
300 ng/mL	3				-4			
2G4 Fab ²								
0.3 ng/mL	4				-5			
3 ng/mL	4				-6			
30 ng/mL	1				-5			
300 ng/mL	2				-6			

1 Pool of healthy blood donor serum, 14.9% of total cpm bound to the TSHR in the presence of this serum pool only.
 14.7% of total cpm bound to the TSHR in the presence of buffer only.
 2 2G4 is a human monoclonal autoantibody to thyroid peroxidase.

25

30

35

40

45

50

55

Table 6 Inhibition of TSH binding by lymphocyte donor serum and donor serum IgG

Sample	Samples diluted in serum ¹			Samples diluted in assay buffer				
	% inhibition	units/L ²	units/mg or (units/mL in undiluted serum)	mean units/mg or (units/mL)	% inhibition	units/L ²	units/mg or (units/mL in undiluted serum)	mean units/mg or (units/mL)
Donor serum								
diluted 1000x	6				10			
diluted 300x	18	1.2	(0.36)		28	1.3	(0.39)	
diluted 100x	42	3.2	(0.32)	(0.36)	62	3.9	(0.39)	(0.40)
diluted 30x	78	11.3	(0.39)		91	13.5	(0.41)	
diluted 10x	93	34			95	>40		
Donor serum IgG								
0 mg/mL	0	0			0			
0.01 mg/mL	7				19	0.87		
0.03 mg/mL	23	1.6	0.053		37	1.9	0.063	
0.1 mg/mL	57	5.1	0.051	0.054	78	6.4	0.064	0.063
0.3 mg/mL	85	17	0.057		93	19	0.063	
1 mg/mL	96	43			96	>40		
Healthy blood donor pool serum								
diluted 1000x	0					3		
diluted 100x	1					4		
diluted 10x	1					11		

(continued)

Healthy blood donor pool serum IgG						
0.01 mg/mL	2			2		
0.1 mg/mL	1			5		
1 mg/mL	3			7		

1 Pool of healthy blood donor serum, 14.7% of total cpm bound to the TSHR in the presence of this serum pool only. 16.3% of total cpm bound to the TSHR in the presence of buffer only.

2 Units shown are NIBSC 90/672 International TSHR autoantibody reference preparation.

Table 7 Specific activities of hMAb TSHR1 and lymphocyte donor serum and IgG preparations

Preparation	Inhibition of TSH binding assays		Stimulation of cyclic AMP assay	
	Units/mg ^{1,2}	Units/nmole ^{1,2}	Units/mg ¹	Units/nmole ¹
hMAb TSHR1 IgG	150	22	180	26
hMAb TSHR1 Fab	300	15	700	35
Donor serum IgG	0.059	0.009	0.33	0.048
Donor serum units/mL	0.38		1.8	

1 Units shown are NIBSC 90/672.
2 Values are a mean of results obtained in serum and in assay buffer (see Tables 5 and 6)

Table 8 Summary of specific activities of hMAb TSHR1 and lymphocyte donor serum and serum IgG determined in several stimulation of cyclic AMP assays

Preparation	Mean Units per mg	Number of determinations	Standard Deviation
hMAb TSHR1 IgG	318	16	189
hMAb TSHR1 Fab	492	10	184
Donor serum IgG	0.10	10	0.08
Donor serum units/mL	0.9	4	0.6

Table 9 Further analysis of the effects of hMAb TSHR1 IgG and Fab and lymphocyte donor serum IgG in the cyclic AMP stimulation assay

Sample	Mean cyclic AMP per well (pmols)	number of determinations	Standard Deviation
<u>hMAb TSHR1 IgG</u>			
0ng/mL	0.96	6	0.048
0.3ng/mL	1.25	6	0.12
1ng/mL	1.84	6	0.16
3ng/mL	3.4	5	0.37
10ng/mL	6.6	5	0.62
<u>hMAb TSHR1 Fab</u>			
0ng/mL	0.60	6	0.068
0.3ng/mL	1.11	6	0.11
1ng/mL	1.99	6	0.39
3ng/mL	4.9	6	0.44
10ng/mL	10.6	6	0.86
<u>Control human MAb (2G4)¹</u>			
IgG 0ng/mL	0.72	11	0.19
IgG 10ng/mL	0.61	11	0.16
Fab 10ng/mL	0.61	4	0.044
<u>Lymphocyte donor serum IgG</u>			

(continued)

Sample	Mean cyclic AMP per well (pmols)	number of determinations	Standard Deviation
3 μ g/mL	1.67	6	0.38
10 μ g/mL	4.20	6	0.93
30 μ g/mL	6.22	6	0.73
<u>Healthy blood donor pool serum IgG</u>			
30 μ g/mL	0.38	6	0.10

1 2G4 is a human monoclonal autoantibody to thyroid peroxidase

Table 10 Additive effect of TSH and hMAb TSHR1 IgG in stimulation of cyclic AMP assays

Experiment 1		Experiment 2	
Sample	cyclic AMP ¹ (pmols per well)	Sample	cyclic AMP ¹ (pmols per well)
A Buffer only	0.57	A Buffer only	0.42
B Porcine TSH 0.1ng/mL	1.07	B Porcine TSH 0.05ng/mL	1.07
C hMAb TSHR1 1ng/mL	1.41	C hMAb TSHR1 0.5ng/mL	0.92
B plus C	2.08	B plus C	1.92

1 Values shown are means of closely agreeing duplicate determinations

Table 11 Effects of NIBSC 90/672 in the cyclic AMP stimulation assay

Sample	Mean cyclic AMP per well (pmols)	number of determinations	Standard Deviation
Buffer only	0.60	6	0.068
0.1 units/L	1.09	6	0.085
0.3 units/L	1.49	5	0.11
1.0 units/L	3.52	5	0.46
3.0 units/L	8.16	6	1.39

Table 12 Inhibition of ^{125}I -TSH binding to TSHR coated tubes by recombinant hMAb TSHR1 Fab expressed in 2 different *E coli* strains (XL1-Blue MRF¹ and HB2151 cells)

Sample	Culture supernatant dilution ²	% binding	% inhibition ³
Assay buffer only ¹		12.1	0

(continued)

Sample	Culture supernatant dilution ²	% binding	% inhibition ³
Untransformed XL1-Blue MRF' cell culture supernatant	4x		3.9
	8x	11.5	4.5
	16x	11.9	1.5
	32x	11.9	1.5
	64x	11.9	1.0
	128x	12.1	-0.5
Transformed but non-induced XL1-Blue MRF' cell culture supernatant	4x	11.5	5.0
	8x	11.6	4.2
	16x	11.8	2.2
	32x	11.1	8.4
	64x	11.7	3.4
	128x	11.1	8.0
Transformed and induced XL1-Blue MRF' cell culture supernatant	4x	1.5	87.4
	8x	2.3	81.3
	16x	4.7	60.9
	32x	7.2	40.2
	64x	8.9	26.4
	128x	10.3	14.8
Untransformed HB2151 cell culture supernatant	x4	11.2	7.3
	x8	11.1	8.1
	x16	10.9	9.7
	x32	10.8	10.2
	x64	10.8	10.2
	x128	10.6	12.3
Transformed but non-induced HB2151 cell culture supernatant	4x	10.7	11.6
	8x	10.5	13.3
	16x	10.6	11.8
	32x	10.7	11.4
	64x	10.9	9.6
	128x	10.6	11.8

50

55

(continued)

Sample	Culture supernatant dilution ²	% binding	% inhibition ³
Transformed and induced HB2151 cell culture supernatant	4x	1.0	92.0
	8x	1.0	91.4
	16x	1.3	89.0
	32x	2.2	82.0
	64x	4.3	64.1
	128x	6.7	44.8

1 Assay buffer = 50mmol/L NaCl, 10mmol/L Tris-HCl pH 7.8
 2 All dilutions were in assay buffer
 3 Inhibition of binding was calculated using the formula:

$$\% \text{ inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

where A = binding in the presence of test sample
 B = binding in the presence of assay buffer

Table 13 Stimulation of cAMP production in CHO cells transfected with the TSHR by recombinant hMAb TSHR1 Fab expressed in 2 different *E coli* strains (XL1-Blue MRF' and HB2151 cells)

Sample	Culture supernatant dilution ²	pmol/cell well	mean	x basal ³
Assay buffer only ¹		0.54	0.49	1
		0.44		
Untransformed XL1-Blue MRF' cell culture supernatant	10x	0.32	0.33	0.68
		0.35		
Transformed but non-induced XL1-Blue MRF' cell culture supernatant	10x	0.52	0.62	1.3
		0.73		
	50x	0.50	0.49	0.99
		0.48		
Transformed and induced XL1-Blue MRF' cell culture supernatant	10x	>6.4	>6.4	>13.1
		>6.4		
	50x	3.5	3.6	7.3
		3.6		
Untransformed HB2151 cell culture supernatant	10x	0.39	0.37	0.76
		0.35		
Transformed but non-induced HB2151 cell culture supernatant	10x	0.29	0.37	0.76
		0.45		
	50x	0.37	0.37	0.76
		0.37		

(continued)

Sample	Culture supernatant dilution ²	pmol/cell well	mean	x basal ³
Transformed and induced HB2151 cell culture supernatant	10x	>6.4	>6.4	>13.1
		>6.4		
	50x	>6.4	>6.4	>13.1
		>6.4		
1 Assay buffer = Hanks' buffered salt solution (NaCl free) containing 1 g/L glucose, 20 mmol/L HEPES, 222 mmol/L sucrose, 15 g/L bovine serum albumin (BSA) and 0.5 mmol/L 2 isobutyl-1-methyl xanthine pH 7.4				
2 Dilutions in assay buffer				
3 Basal = cAMP produced in the presence of assay buffer only				

Table 14 Inhibition of ^{125}I -TSH binding to TSHR coated tubes by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab (a human MAb to GAD) and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E coli* HB2151 cells

ASSAYS OF PERIPLASMIC FRACTIONS				
Test sample	Periplasmic fraction (PF) dilution and (total Fab concentration in undiluted PF)	% ^{125}I -TSH binding	% inhibition ¹	
Assay buffer only		11.5	0	
Untransformed cells	4x	11.8	-2.7	
	8x (ud)	11.8	-2.7	
	16x	12.2	-5.9	
hMAb TSHR1 HC/LC transformed but non-induced cells	4x	1.6	86 ^a	
	8x (177 ng/mL)	3.6	68	
	16x	6.4	45	
hMAb TSHR1 HC/LC transformed and induced cells	4x	0.95	92	
	8x (364 ng/mL)	1.4	88	
	16x	2.7	77	
hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	4x	12.0	-3.9	
	8x (ud)	12.1	-4.8	
	16x	12.4	-7.8	
hMAb TSHR1 HC/4B4 LC transformed and induced cells	4x	11.4	0.9	
	8x (83 ng/mL)	11.8	-2.1	
	16x	11.7	-1.8	
4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	4x	11.9	-3.5	
	8x (ud)	12.2	-6.1	
	16x	12.4	-7.8	
4B4 HC/hMAb TSHR1 LC transformed and induced cells	4x	11.8	-2.8	
	8x (850 ng/mL)	11.2	3.1	
	16x	11.9	-3.2	
4B4 HC/LC transformed but non induced cells	4x	12.1	-5.4	
	8x (ud)	12.0	-4.0	
	16x	12.1	-4.8	

(continued)

ASSAYS OF PERIPLASMIC FRACTIONS			
Test sample	Periplasmic fraction (PF) dilution and (total Fab concentration in undiluted PF)	% ^{125}I -TSH binding	% inhibition ¹
4B4 HC/LC transformed and induced cells	4x 8x (265 ng/mL) 16x	11.7 11.7 12.0	-1.2 -1.4 -4.2

¹Inhibition of binding was calculated using the formula:

$$\% \text{ inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

where A = % ^{125}I -TSH binding in the presence of test sample

B = % ^{125}I -TSH binding in the presence of assay buffer

^aDetection of TSHR Ab activity in the non-induced cells was due to constitutive activity of the promoter giving low level expression of Fab in the absence of IPTG.

ud = undetectable

Table 15 Inhibition of ^{125}I -TSH binding to TSHR coated tubes by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab (a human MAb to GAD) and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E coli* HB2151 cells

ASSAYS OF CULTURE SUPERNATANTS			
Test sample	Culture supernatant dilution and (total Fab concentration in undiluted supernatant)	% ^{125}I -TSH binding	% inhibition ¹
Assay buffer only		11.1	0
Untransformed cells	4x 8x (ud) 16x	11.8 13.1 11.1	-6.5 -18 -0.3
hMAb TSHR1 HC/LC transformed but non-induced cells	4x 8x (ud) 16x	10.8 12.1 11.9	2.1 -9.8 -8.1
hMAb TSHR1 HC/LC transformed and induced cells	4x 8x (421 ng/mL) 16x	1.1 1.2 1.1	91 90 90
hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	4x 8x (ud) 16x	11.8 12.5 12.0	-7.0 -13.0 -1.3
hMAb TSHR1 HC/4B4 LC transformed and induced cells	4x 8x (262 ng/mL) 16x	10.8 11.1 11.3	2.7 -0.4 -2.6
4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	4x 8x (ud) 16x	11.9 12.7 11.8	-7.4 -15 -7.0

(continued)

ASSAYS OF CULTURE SUPERNATANTS			
Test sample	Culture supernatant dilution and (total Fab concentration in undiluted supernatant)	% ^{125}I -TSH binding	% inhibition ¹
4B4 HC/hMAb TSHR1 LC transformed and induced cells	4x	10.5	4.8
	8x (84 ng/mL)	10.8	2.4
	16x	11.2	-0.9
4B4 HC/LC transformed but non-induced cells	4x	11.9	-7.5
	8x (ud)	12.6	-14
	16x	12.0	-9.0
4B4 HC/LC transformed and induced cells	4x	10.5	-4.7
	8x (522 ng/mL)	11.0	0.7
	16x	11.0	0.5

¹see footnote to Table 14
ud = undetectable

20

Table 16 Stimulation of cyclic AMP production in CHO Cells transfected with the TSHR by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab (a human MAb to GAD) and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E coli* HB2151 cells

ASSAYS OF CULTURE SUPERNATANTS				
Test sample ¹	Dilution ² of culture supernatant and (total Fab concentration in undiluted supernatants)	pmol cyclic AMP /cell well	mean pmol cyclic AMP /cell well	x basal stimulation ³
Assay buffer ¹ only		0.35 0.25 0.33	0.31	1
Untransformed cells	10x (ud)	0.51 0.67 0.48	0.55	1.8
hMAb TSHR1 HC/LC transformed but non-induced cells	10x (ud)	0.84 1.80 2.13	1.59	5.1 ^a
hMAb TSHR1 HC/LC transformed and induced cells	10x (421 ng/mL)	>6.4 >6.4 >6.4	>6.4	>20
hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	10x (ud)	0.55 0.63 0.58	0.59	1.9
hMAb TSHR1 HC/4B4 LC transformed and induced cells	10x (262 ng/mL)	0.47 0.47 0.52	0.48	1.6
4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	10x (ud)	0.65 0.59 0.60	0.61	2.0

55

(continued)

ASSAYS OF CULTURE SUPERNATANTS					
5	Test sample ¹	Dilution ² of culture supernatant and (total Fab concentration in undiluted supernatants)	pmolcyclic AMP /cell well	mean pmol cyclic AMP /cell well	
10	4B4 HC/hMAb TSHR1 LC transformed and induced cells	10x (84 ng/mL)	0.51 0.37 0.38	0.42	1.4
15	4B4 HC/LC transformed but non induced cells	10x (ud)	0.65 0.73 0.64	0.67	2.2
20	4B4 HC/LC transformed and induced cells	10x (522 ng/mL)	0.55 0.41 0.35	0.44	1.4

¹Assay buffer: Hanks' buffered salt solution (NaCl free) containing 1 g/L glucose, 20 mmol/L HEPES, 222 mmol/L sucrose, 15 g/L bovine serum albumin (BSA) and 0.5 mmol/L 2 isobutyl-1-methyl xanthine pH 7.4

²Dilutions in assay buffer

³Basal = cyclic AMP production in the presence of assay buffer only

^aDetection of cyclic AMP stimulation activity in the non-induced cells was due to constitutive activity of the promoter giving low level expression of Fab in the absence of IPTG. Total recombinant Fab levels were undetectable (detection limit = 5-10 ng/mL) whereas the stimulation of cyclic AMP assay can detect as little as 0.3 ng/mL of hMAb TSHR1 Fab.

ud = undetectable

30 **Table 17** Stimulation of cyclic AMP production in CHO Cells transfected with the TSHR by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab (a human MAb to GAD) and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E coli* HB2151 cells

ASSAYS OF PERIPLASMIC FRACTIONS					
35	Test sample	Periplasmic fraction (PF) dilution ² and (total Fab concentration in undiluted PF)	pmol cyclic AMP/cell well	mean pmol cyclic AMP /cell well	
40	Assay buffer ¹ only		0.35 0.25 0.33	0.31	1
45	Untransformed cells	10x (ud)	0.31 0.22 0.35	0.29	0.9
50	hMAb TSHR1 HC/LC transformed but non-induced cells	10x (177 ng/mL)	>6.4 >6.4 >6.4	>6.4	>20.6 ^a
55	hMAb TSHR1 HC/LC transformed and induced cells	10x (364 ng/mL)	>6.4 >6.4 -	>6.4	>20.6
	hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	10x (ud)	0.40 0.33 0.33	0.35	1.1

(continued)

ASSAYS OF PERIPLASMIC FRACTIONS					
5	Test sample	Periplasmic fraction (PF) dilution ² and (total Fab concentration in undiluted PF)	pmol cyclic AMP/cell well	mean pmol cyclic AMP /cell well	x basal stimulation ³
10	hMAb TSHR1 HC/4B4 LC transformed and induced cells	10x (83 ng/mL)	0.31 0.31 0.41	0.34	1.1
15	4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	10x (ud)	0.29 0.31 0.29	0.30	1.0
20	4B4 HC/hMAb TSHR1 LC transformed and induced cells	10x (850 ng/mL)	0.23 0.25 0.24	0.24	0.8
25	4B4 HC/LC transformed but non induced cells	10x (ud)	0.33 0.35 0.29	0.32	1.0
30	4B4 HC/LC transformed and induced cells	10x (265 ng/mL)	0.40 0.38 0.32	0.37	1.2
35	hMAb TSHR1 IgG 1 ng/ml (hybridoma produced)		2.0 2.0 2.0	2.0	6.4

ud = undetectable; 1,2,3see footnote to Table 16

^aDetection of TSHR Ab activity in the non-induced cells was due to constitutive activity of the promoter giving low level expression in the absence of IPTG.

Table 18 Inhibition of 4B4 IgG (a hybridoma produced human MAb to GAD) binding to ¹²⁵I-GAD by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E coli* HB2151 cells

ASSAYS OF PERIPLASMIC FRACTIONS				
40	Test sample added with 4B4 IgG and ¹²⁵ I-GAD	Periplasmic fraction (PF) dilution and (total Fab concentration in undiluted PF)	% ¹²⁵ I-GAD binding	% inhibition ¹
45	GAD Ab Assay buffer		28	0
50	4B4 F(ab') ₂ (hybridoma produced) 1 µg/ml 0.1 µg/ml 0.01 µg/ml 0.001 µg/ml		5.5 12 24 29	80 57 14 -3.9
55	Untransformed cells	4x 8x (ud) 16x	27 28 29	0.9 -1.7 -6.3
	hMAb TSHR1 HC/LC transformed but non-induced cells	4x 8x (177 ng/mL) 16x	28 28 28	-2.6 -0.5 -0.8

(continued)

ASSAYS OF PERIPLASMIC FRACTIONS				
			% ^{125}I -GAD binding	% inhibition ¹
5	Test sample added with 4B4 IgG and ^{125}I -GAD	Periplasmic fraction (PF) dilution and (total Fab concentration in undiluted PF)		
10	hMAb TSHR1 HC/LC transformed and induced cells	4x 8x 16x	(364 ng/mL) 27 27 29	0.7 1.4 -4.2
15	hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	4x 8x 16x	(ud) 28 28 27	-1.1 -0.2 1.1
20	hMAb TSHR1 HC/4B4 LC transformed and induced cells	4x 8x 16x	(83 ng/mL) 28 28 28	-1.4 -0.7 -2.4
25	4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	4x 8x 16x	(ud) 28 28 28	-2.9 -3.2 -3.1
30	4B4 HC/hMAb TSHR1 LC transformed and induced cells	4x 8x 16x	(850 ng/mL) 27 28 28	1.7 -0.2 -1.0
35	4B4 HC/LC transformed but non induced cells	4x 8x 16x	(ud) 29 28 27	-4.4 -1.5 1.7
40	4B4 HC/LC transformed and induced cells	4x 8x 16x	(265 ng/mL) 21 24 26	23.2 12.5 5.6

¹Inhibition of binding was calculated using the formula:

$$\text{% inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

where A = ^{125}I -GAD binding in the presence of test sample

B = ^{125}I -GAD binding in the presence of assay buffer ud = undetectable

Table 19 Inhibition of 4B4 IgG (a hybridoma produced human MAb to GAD) binding to ^{125}I -GAD by recombinant hMAb TSHR1 Fab, recombinant 4B4 Fab and recombinant hybrid Fabs (mixed HC and LC of the 2 Fabs). Expression in *E. coli* HB2151

ASSAYS OF CULTURE SUPERNATANTS				
			% ^{125}I -GAD binding	% inhibition ¹
50	Test sample added with 4B4 IgG and ^{125}I -GAD	Culture supernatant dilution and (total Fab concentration in undiluted supernatant)		
55	Assay buffer		26	0
	4B4F(ab') ₂ (hybridoma produced)	1 $\mu\text{g}/\text{ml}$ 0.1 $\mu\text{g}/\text{ml}$ 0.01 $\mu\text{g}/\text{ml}$ 0.001 $\mu\text{g}/\text{ml}$	5.2 11 22 28	80 58 15 -5.2

(continued)

ASSAYS OF CULTURE SUPERNATANTS				
5	Test sample added with 4B4 IgG and ^{125}I -GAD	Culture supernatant dilution and (total Fab concentration in undiluted supernatant)	% ^{125}I -GAD binding	% inhibition ¹
10	Untransformed HB2151 cells	4x	28	-5.5
		8x (ud)	29	-9.1
		16x	28	-6.3
15	hMAb TSHR1 transformed but non-induced cells	4x	28	-7.0
		8x (ud)	29	-9.5
		16x	28	-5.2
20	hMAb TSHR1 HC/LC transformed and induced cells	4x	28	-7.0
		8x (421 ng/mL)	28	-6.4
		16x	28	-5.6
25	hMAb TSHR1 HC/4B4 LC transformed but non-induced cells	4x	29	-9.0
		8x (ud)	29	-7.9
		16x	28	-7.6
30	hMAb TSHR1 HC/4B4 LC transformed and induced cells	4x	27	-2.2
		8x (262 ng/mL)	28	-5.5
		16x	28	-5.1
35	4B4 HC/hMAb TSHR1 LC transformed but non-induced cells	4x	28	-4.4
		8x (ud)	28	-7.0
		16x	28	-5.5
40	4B4 HC/hMAb TSHR1 LC transformed and induced cells	4x	27	-2.0
		8x (84 ng/mL)	28	-5.7
		16x	27	-2.5
45	4B4 HC/LC transformed but non-induced cells	4x	28	-4.8
		8x (ud)	28	-4.8
		16x	27	-1.7
50	4B4 HC/LC transformed and induced cells	4x	11	59
		8x (522 ng/mL)	14	46
		16x	17	34
1see footnote to Table 18 ud = undetectable				

Table 20 Effects of mouse monoclonal antibodies to the TSHR on hMAb TSHR1 induced stimulation of cyclic AMP production in CHO cells expressing the TSHR

5	Test sample ¹	pmol cyclic AMP/cell well	mean pmol cyclic AMP/cell well	SD	x basal stimulation ²
50	hMAb TSHR1 Fab 5 ng/mL plus:-				
(a)	Assay buffer ¹	3.252			
		2.418	2.835	-	3.9
55	(b) 2G2 ³	4.278 3.392	3.595	0.496	4.9

(continued)

Test sample ¹	pmol cyclic AMP/cell well	mean pmol cyclic AMP/cell well	SD	x basal stimulation ²
	3.116			
(c) 2B4 ⁴	3.320 2.632 2.864	2.939	0.286	4.0
(d) 9D33 ⁴	0.506 0.394 0.428	0.443	0.047	0.61
Assay buffer alone ¹	0.696 0.742 0.742	0.727	0.02	1
2G2 alone ³	0.252 0.306 0.376	0.311	0.051	0.43
2B4 alone ⁴	0.298 0.318 0.376	0.331	0.033	0.46
9D33 alone ⁴	0.280 0.318 0.340	0.313	0.025	0.43
¹ All dilutions were made in assay buffer (Hanks' buffered salt solution (NaCl free) containing 1 g/L glucose, 20 mmol/L HEPES, 222 mmol/L sucrose, 15 g/L bovine serum albumin (BSA) and 0.5 mmol/L 2 isobutyl-1-methylxanthine pH 7.4) ² Basal = cyclic AMP production in the presence of assay buffer only ³ 2G2 is a mouse monoclonal antibody to thyroglobulin (100 µg/mL of IgG preparation) ⁴ 2B4 and 9D33 are mouse monoclonal antibodies to the TSHR (100 µg/mL of IgG preparations)				

Table 21 Effects of mouse monoclonal antibodies to the TSHR on pTSH induced stimulation of cyclic AMP production in CHO cells expressing the TSHR

Test sample ¹	pmol cyclic AMP/cell well	mean pmol cyclic AMP/cell well	SD	x basal stimulation ²
pTSH 0.5 ng/mL plus:-				
(a) Assay buffer ¹	4.016 2.746 4.960	3.91	0.91	11.5
(b) 2B4 ⁴	0.878 0.710 0.742	0.78	0.07	2.3
(c) 9D33 ⁴	0.436 0.436 0.410	0.43	0.01	1.3
Assay buffer alone ¹	0.384 0.318 0.318	0.34	0.03	1
2B4 alone ⁴	0.446			

(continued)

Test sample ¹	pmol cyclic AMP/cell well	mean pmol cyclic AMP/cell well	SD	x basal stimulation ²
	0.486 0.552	0.49	0.04	1.4
9D33 alone ⁴	0.332 0.362 0.304	0.33	0.02	0.97
	1,2,4 See footnotes for Table 20. In a separate experiment a control mouse MAb to thyroglobulin (2G2 IgG 100 µg/mL) was shown to have no effect on pTSH (0.5 ng/mL) stimulation of cyclic AMP production (pTSH plus assay buffer = 12.7 x basal; pTSH plus 2G2 = 11.7 x basal)			

Table 22 Inhibition by various MAbs of ^{125}I -TSH, ^{125}I -hMab TSHR1 or ^{125}I -9D33 binding to TSHR coated tubes

Test IgG and concentration (µg/mL) ¹		Inhibition of ^{125}I -TSH binding ²	Inhibition of ^{125}I -hMab TSHR1 binding ²	Inhibition of ^{125}I -9D33 binding ²
9D33 IgG	0.001	0	0	4
	0.01	17	3	9
	0.1	34	21	35
	1	58	44	64
	10	68	56	71
2B4 IgG	0.001	15	0	4
	0.01	36	0	5
	0.1	62	0	15
	1	83	11	22
	10	85	18	22
hMab TSHR1 IgG	0.001	13	41	1.1
	0.01	60	70	18
	0.1	89	88	72
	1	94	93	90
	10	95	94	93

¹All dilutions were in a pool of healthy blood donor sera (HBD pool)²Inhibition of binding was calculated using the formula:

$$\% \text{ inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

where A = % binding in the presence of test sample

B = % binding in the presence of HBD pool

[0188] The control mouse MAb to thyroglobulin (2G2 0.001-100 µg/mL) had no effect on the binding of labelled TSH, hMab TSHR1 or 9D33

Table 23 Effect of patient sera on ^{125}I -9D33 binding and ^{125}I -TSH binding to TSHR coated tubes

Test serum ¹	^{125}I -9D33 bound (% total counts added)	Inhibition of ^{125}I -9D33 binding (%) ²	Inhibition of ^{125}I -TSH binding (%) ²
HBD pool	11	0	0
G1	2.2	79	90

(continued)

Test serum ¹	¹²⁵ I-9D33 bound (% total counts added)	Inhibition of ¹²⁵ I-9D33 binding (%) ²	Inhibition of ¹²⁵ I-TSH binding (%) ²
5 G2	4.3	74	59
G3	3.2	69	78
G4	5.8	45	50
10 G5	4.0	62	78
G6	5.1	67	51
G7	5.9	44	74
15 G8	2.6	75	82
G9	2.0	81	90
20 G10	5.5	48	62
G11	3.1	62	59
25 G12	4.0	43	51
G13	6.0	50	59
G14	5.3	71	80
30 G15	3.1	77	98
G16	2.4	80	93
G17	2.1	84	94
G18	1.7	73	83
35 G19	2.9	80	94
G20	2.1	71	80
A1	10	1.9	0
35 A2	10	2.3	0
D1	11	0	0
40 D2	10	4.5	0
N1	12	-15	6.7
N2	7.9	25	4.1
N3	11	0	6.3
45 N4	11	-5.0	6.5
N5	9.1	14	6.3
N6	11	-2.1	7.2
N7	14	-37	-1.4
50 N8	11	-2.1	5.9

(continued)

Test serum ¹	¹²⁵ I-9D33 bound (% total counts added)	Inhibition of ¹²⁵ I-9D33 binding (%) ²	Inhibition of ¹²⁵ I-TSH binding (%) ²
N9	12	-9.8	6.7

5 ¹HBD pool = pool of healthy blood donor sera

G1-G20 are sera from patients with Graves' disease

10 D1 and D2 are from patients with type 1 diabetes mellitus (positive for autoantibodies to glutamic acid decarboxylase)

A1 and A2 are from patients with Addison's disease (positive for steroid 21-hydroxylase autoantibodies)

N1-N9 are from individual healthy blood donors

15 ²Inhibition of binding was calculated using the formula:

$$\% \text{ inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

20 where A = % binding in the presence of test serum

B = % binding in the presence of a pool of healthy blood donor sera

Table 24 Effect of patient sera with TSH agonist and TSH antagonist activities on ¹²⁵I-9D33 binding to TSHR coated tubes

Test sample and dilution ¹	¹²⁵ I-9D33 bound (% total counts added)	Inhibition of ¹²⁵ I-9D33 binding (%) ²
HBD pool	11	0
Serum A		
1:320	6.4	39
1:160	4.7	55
1:80	3.3	69
1:40	2.8	73
1:20	2.4	77
1:10	2.0	82
Serum B		
1:320	9.1	13
1:160	8.3	21
1:80	6.4	39
1:40	4.9	53
1:24	3.8	64
1:10	2.5	76
Serum C		
1:320	9.7	7.6
1:160	8.9	15
1:80	8.0	24
1:40	6.3	40
1:20	5.1	51
1:10	3.7	65

(continued)

5	Test sample and dilution ¹	125I-9D33 bound (% total counts added)	Inhibition of 125I-9D33 binding (%) ²
10	Serum D 1:320	9.4	11
	1:160	8.2	22
	1:80	7.2	32
15	1:40	5.2	51
	1:20	4.3	59
	1:10	3.3	69

¹HBD pool = pool of healthy blood donor sera, test sera were diluted in this pool sera A and B have TSH antagonist activity sera C and D have TSH agonist activity
²Inhibition of binding was calculated with the formula used in Table 23

Table 25 Effect of NIBSC 90/672 on 125I-9D33 binding and 125I-TSH binding to TSHR coated tubes

Concentration of 90/672 ¹	125I-9D33 bound (% total counts added)	Inhibition of 125I-9D33 binding ² (%)	Inhibition of 125I-TSH binding ² (%)
40 U/L	4.1	72	92
8 U/L	7.1	52	68
2 U/L	11	28	23
1 U/L	13	10	12
0 U/L	15	0	0

¹90/672 diluted in a pool of healthy blood donor sera
²Inhibition of binding was calculated with the formula used in Table 23

Table 26 Inhibition of 125I-hMAb TSHR1 Fab binding to TSHR coated tubes by polyclonal hMAb TSHR1 anti idiotypic antibodies in sera from a mouse immunised with hMAb TSHR1 Fab

Test sample	Dilution ¹ of test sample	% inhibition ² of 125I-hMAb TSHR1 Fab binding to the TSHR
Assay buffer		0
Sera from a mouse immunised with hMAb TSHR1 Fab	1:100 000	1.3
	1:50 000	7.9
	1:10 000	49.8
	1:5 000	73.0
	1:1 000	94.8

(continued)

5 Test sample	Dilution ¹ of test sample	% inhibition ² of ^{125}I -hMAb TSHR1 Fab binding to the TSHR
Non-immunised mouse serum	1:500	-0.8

¹Test samples diluted in assay buffer. Binding in the presence of assay buffer was 43%

²Inhibition of binding was calculated using the formula:

$$10 \quad \text{% inhibition} = 100 - \left[\frac{A}{B} \times 100 \right]$$

where A = % ^{125}I -hMAb TSHR1 Fab binding in the presence of test sample

15 B = % ^{125}I -hMAb TSHR1 Fab binding in the presence of assay buffer

Table 27 Inhibition of ^{125}I -hMAb TSHR1 Fab binding to TSHR coated tubes by a mouse monoclonal anti idiotypic antibody 7E51 IgG

20 Test sample	% binding of ^{125}I -hMAb TSHR1 Fab to the TSHR	% inhibition ¹ of ^{125}I -hMAb TSHR1 Fab binding
Assay buffer alone	16.3	0
7E51 IgG diluted in assay buffer	1 μg/mL 10 μg/mL 100 μg/mL	14.5 6.4 1.7
		11.0 60.7 89.4

¹see footnote to Table 26

SEQUENCE LISTING

[0189]

35 <110> RSR Limited

<120> Binding Partners for the Thyrotropin Receptor and uses thereof

40 <130> P452347WO

<150> GB 0227964.4

<151> 2002-11-29

45 <150> GB 0302140.9

<151> 2003-01-29

<150> GB 0315147.9

<151> 2003-06-27

50 <160> 38

<170> PatentIn version 3.1

55 <210> 1

<211> 121

<212> PRT

<213> human

<400> 1

5 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
 1 5 10 15

10 Ser Leu Lys Ile Ser Cys Arg Gly Ser Gly Tyr Arg Phe Thr Ser Tyr
 20 25 30

15 Trp Ile Asn Trp Val Arg Gln Leu Pro Gly Lys Gly Leu Glu Trp Met
 35 40 45

20 Gly Arg Ile Asp Pro Thr Asp Ser Tyr Thr Asn Tyr Ser Pro Ser Phe
 50 55 60

25 Lys Gly His Val Thr Val Ser Ala Asp Lys Ser Ile Asn Thr Ala Tyr
 65 70 75 80

30 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Gly Met Tyr Tyr Cys
 85 90 95

35 Ala Arg Leu Glu Pro Gly Tyr Ser Ser Thr Trp Ser Val Asn Trp Gly
 100 105 110

40 Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

<210> 2

<211> 5

<212> PRT

<213> human

<400> 2

Ser Tyr Trp Ile Asn

40 1 5

<210> 3

<211> 17

<212> PRT

<213> human

<400> 3

45 Arg Ile Asp Pro Thr Asp Ser Tyr Thr Asn Tyr Ser Pro Ser Phe Lys
 1 5 10 15

Gly

55

<210> 4

<211> 12

<212> PRT

EP 2 383 296 B1

<213> human

<400> 4

5 Leu Glu Pro Gly Tyr Ser Ser Thr Trp Ser Val Asn
1 5 10

<210> 5

<211> 131

<212> PRT

<213> human

<400> 5

15 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
1 5 10 15

20 Ser Leu Lys Ile Ser Cys Arg Gly Ser Gly Tyr Arg Phe Thr Ser Tyr
25
30

Trp Ile Asn Trp Val Arg Gln Leu Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

25
Gly Arg Ile Asp Pro Thr Asp Ser Tyr Thr Asn Tyr Ser Pro Ser Phe
50 55 60

30 Lys Gly His Val Thr Val Ser Ala Asp Lys Ser Ile Asn Thr Ala Tyr
65 70 75 80

Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Gly Met Tyr Tyr Cys
85 90 95

Ala Arg Leu Glu Pro Gly Tyr Ser Ser Thr Trp Ser Val Asn Trp Gly
100 105 110

40 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 115 120 125

45 Val Phe Pro
130

<210> 6

<211> 111

<212> PRT

<213> human

<400> 6

Leu Thr Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Arg Gln
 1 5 10 15

5 Arg Val Thr Ile Ser Cys Ser Gly Asn Ser Ser Asn Ile Gly Asn Asn
 20 25 30

10 Ala Val Asn Trp Tyr Gln Gln Leu Pro Gly Lys Ala Pro Lys Leu Leu
 35 40 45

Ile Tyr Tyr Asp Asp Gln Leu Pro Ser Gly Val Ser Asp Arg Phe Ser
 50 55 60

15 Gly Ser Arg Ser Gly Thr Ser Ala Ser Leu Ala Ile Arg Gly Leu Gln
 65 70 75 80

20 Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Thr Ser Trp Asp Asp Ser Leu
 85 90 95

Asp Ser Gln Leu Phe Gly Gly Thr Arg Leu Thr Val Leu Gly
 100 105 110

25 <210> 7
 <211> 13
 <212> PRT
 <213> human

30 <400> 7

Ser Gly Asn Ser Ser Asn Ile Gly Asn Asn Ala Val Asn
 1 5 10

35 <210> 8
 <211> 7
 <212> PRT
 <213> human

40 <400> 8

45 Tyr Asp Asp Gln Leu Pro Ser
 1 5

50 <210> 9
 <211> 11
 <212> PRT
 <213> human

<400> 9

55 Thr Ser Trp Asp Asp Ser Leu Asp Ser Gln Leu
 1 5 10

<210> 10

<211> 363
 <212> DNA
 <213> human

5 <400> 10

caa^{tttt}atgc^{tttt}agc tgg^{tttt}tc^{tttt}tc^{tttt} tggagcagag gtgaaaaagc ccggggagtc tctgaagatc 60
 tcctgttaggg gttctggata caggtttacc agctactgga tcaactgggt ggc^{tttt}ccagctg 120
 cccgggaaag gcctagagt^{tttt} gatgggcagg attgatccta ctgactctta taccaactac 180
 agtccatcct tcaaaggcca cgtcaccgtc tcagctgaca agtccatcaa cactgcctac 240
 ctgcagtgga gcagcctgaa ggc^{tttt}tcggac accggcatgt attactgtgc gaggctcgaa 300
 ccgggctata gcagcacctg gtccgtaaat tggggccagg gaaccctgg^t taccgtctcc 360
 tca . 363

20 <210> 11

<211> 15
 <212> DNA
 <213> human

25 <400> 11

agctactgga tcaac 15

<210> 12

<211> 51

30 <212> DNA
 <213> human

<400> 12

aggattgatc ctactgact^t t^ttataccaac tacagtccat ccttcaaagg c 51

35 <210> 13

<211> 36

<212> DNA
 <213> human

40 <400> 13

ctcgaaccgg gctatagcag cacctggtcc gt^taaaat 36

<210> 14

<211> 394

<212> DNA
 <213> human

<400> 14

50

55

5	caaatgcagc tggcagtc tggagcagag gtgaaaaagc cggggagtc tctgaagatc tcctgttaggg gttctggata caggttacc agctactgga tcaactgggt gcgccagctg cccggaaag gcctagatg gatgggcagg attgatccta ctgactctta taccaactac agtccatcct tcaaaggcca cgtcaccgtc tcagctgaca agtccatcaa cactgcctac ctgcagtgga gcagcctgaa ggcctcggac accggcatgt attactgtgc gaggctcgaa	60 120 180 240 300
10	ccgggctata gcagcacctg gtccgtaaat tggggccagg gaaccctgggt caccgtctcc tcagcctcca ccaaggccc atcggtcttc cccc	360 394
15	<210> 15 <211> 333 <212> DNA <213> human	
20	<400> 15	
25	ctgcctgtgc tgactcagcc accctcggtg tctggagccc ccaggcagag ggtcaccatc tcctgttctg gaaacagctc caacatcgga aataatgctg taaactggta ccagcagctc ccagggaaagg ctcccaaact cctcatttat tatgatgatc aactgccctc aggggtctct gaccgattct ctggctccag gtctggcacc tccgcctccc tggccatccg tgggctccag	60 120 180 240
30	tctgaggatg aggctgatta ttactgtaca tcatggatg acagcctgga tagtcaactg ttcggcggag ggaccaggct gaccgtccta ggt	300 333
35	<210> 16 <211> 39 <212> DNA <213> human	
40	tctggaaaca gctccaacat cgaaataat gctgttaac 39	
45	<210> 17 <211> 21 <212> DNA <213> human	
50	<400> 17 tatgatgatc aactgccctc a 21	
55	<210> 18 <211> 33 <212> DNA <213> human	
	<400> 18 acatcatggg atgacagccct ggatagtcaa ctg 33	
	<210> 19	

<211> 119
 <212> PRT
 <213> mouse

5 <400> 19

Asp Val Gln Ile Gln Gln Pro Gly Thr Glu Leu Val Lys Pro Gly Ala
 1 5 10 15

10 Ser Val Arg Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr
 20 25 30

15 Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Glu Ile Asp Pro Ser Asp Ser Tyr Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

20 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
 65 70 75 80

25 Met His Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95

30 Ser Arg Asn Tyr Gly Ser Gly Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

35 Thr Thr Leu Thr Val Ser Ser
 115

<210> 20
 <211> 5
 <212> PRT
 <213> mouse

40 <400> 20

45 Thr Tyr Trp Met His
 1 5

45 <210> 21
 <211> 17
 <212> PRT
 <213> mouse

50 <400> 21

Glu Ile Asp Pro Ser Asp Ser Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
 1 5 10 15

55 Gly

<210> 22

<211> 10
 <212> PRT
 <213> mouse

5 <400> 22

Asn Tyr Gly Ser Gly Tyr Tyr Phe Asp Tyr
 1 5 10

10 <210> 23
 <211> 124
 <212> PRT
 <213> mouse

15 <400> 23

Asp Val Gln Ile Gln Gln Pro Gly Thr Glu Leu Val Lys Pro Gly Ala
 1 5 10 15

20

Ser Val Arg Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr
 20 25 30

25 Trp Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

30 Gly Glu Ile Asp Pro Ser Asp Ser Tyr Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

35 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
 65 70 75 80

40 Met His Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95

45 Ser Arg Asn Tyr Gly Ser Gly Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly
 100 105 110

50 Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro
 115 120

45 <210> 24
 <211> 106
 <212> PRT
 <213> mouse

50 <400> 24

55

1 Gly Val Glu Met Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
 5 10 15

5 Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
 20 25 30

10 His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
 50 55 60

15 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Thr Glu
 65 70 75 80

20 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Trp Thr
 85 90 95

Phe Gly Gly Thr Lys Leu Glu Ile Lys
 100 105

25 <210> 25
 <211> 10
 <212> PRT
 <213> mouse

30 <400> 25

35 Ser Ala Ser Ser Ser Val Ser Tyr Met His
 1 5 10

40 <210> 26
 <211> 7
 <212> PRT
 <213> mouse

45 <400> 26

Asp Thr Ser Lys Leu Ala Ser
 1 5

50 <210> 27
 <211> 9
 <212> PRT
 <213> mouse

55 <400> 27

Gln Gln Trp Ser Ser Asn Pro Trp Thr
 1 5

<210> 28

<211> 110
 <212> PRT
 <213> mouse

5 <400> 28

Gly Val Glu Met Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
 1 5 10 15

10 Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
 20 25 30

15 His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser
 50 55 60

20 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Thr Glu
 65 70 75 80

25 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Trp Thr
 85 90 95

Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg Leu Met Leu
 100 105 110

30 <210> 29
 <211> 357
 <212> DNA
 <213> mouse

35 <400> 29

40 gacgtccaga tccagcagcc tgggactgag cttgtgaagc ctggggcttc agtgagactg 60
 tcctgcaagg cttctggcta caccttcacc acctactgga tgcactgggt gaagcagagg 120
 cctggacaag gccttgagtg gatcggagag attgatcctt ctgatagtt tactaactat 180
 aatcaaaagt tcaaggc aa ggccacattg actgtagaca aatcctccag cacagcctac 240
 45 atgcacctca gcagcctgac atctgaggac tctgcggctt attactgttc aagaaactac 300
 ggttagtggct actacttga ctactgggc caaggcacca ctctcacagt ctcctca 357

50 <210> 30
 <211> 15
 <212> DNA
 <213> mouse

55 <400> 30
 acctactgga tgcac 15

<210> 31
 <211> 51

<212> DNA
 <213> mouse

5 <400> 31
 gagattgatc cttctgatag ttatactaac tataatcaaa agttcaaggg c 51

10 <210> 32
 <211> 30
 <212> DNA
 <213> mouse

15 <400> 32
 aactacggta gtggctacta ctttgactac 30

20 <210> 33
 <211> 373
 <212> DNA
 <213> mouse

25 <400> 33

30 gacgtccaga tccagcagcc tgggactgag cttgtgaagc ctggggcttc agtgagactg 60
 tcctgcaagg cttctggcta caccttcacc acctactgga tgcactgggt gaagcagagg 120
 cctggacaag gccttgagtg gatcggagag attgatcctt ctgatagtt tactaactat 180
 aatcaaaaagt tcaaggcCAA ggccacattt actgttagaca aatcctccag cacagcctac 240
 atgcacctca gcagcctgac atctgaggac tctgcggctt attactgttc aagaaactac 300
 ggttagtggct actacttga ctactggggc caaggcacca ctctcacagt ctcctcagcc 360
 aaaacaacac ccc 373

35 <210> 34
 <211> 318
 <212> DNA
 <213> mouse

40 <400> 34

45 ggcgttgaga tgacacagtC gCcagcaatC atgtctgcat ctccaggggA gaaggTCacc 60
 atgacctgca gtgccagctC aagtgtaaGT tacatgcact ggtaccagca gaagTCaggC 120
 acctccccca aaagatggat ttatgacaca tccaaactgg cttctggagt ccctgctcgc 180
 ttcagtggca gtgggtctgg gacctcttac tctctcacaa tcagcagcat ggagactgaa 240
 gatgctgcca cttattactg ccagcagtgg agtagtaacc cgtggacgtt cggtggaggc 300
 accaaactgg aaatcaaa 318

55 <210> 35
 <211> 30
 <212> DNA
 <213> mouse

<400> 35

5	agtgccagct caagtgtaa ttacatgcac	30
	<210> 36	
	<211> 21	
	<212> DNA	
	<213> mouse	
10	gacacatcca aactggctc t	21
	<210> 37	
	<211> 27	
	<212> DNA	
	<213> mouse	
15	cagcagtgga gtagtaaccc gtggacg	27
	<210> 37	
20	ggcgttgaga tgacacagtgc gccagcaatc atgtctgcat ctccagggga gaaggtcacc	60
	atgacctgca gtgccagctc aagtgtaaat tacatgcaact ggtaccagca gaagtcaggc	120
30	acctccccca aaagatggat ttatgacaca tccaaactgg cttctggagt ccctgctcgc	180
	ttcagtgca gtgggtctgg gacctcttac tctctcacaa tcagcagcat ggagactgaa	240
	gatgctgcca cttattactg ccagcagtgg agtagtaacc cgtggacgtt cggtggaggc	300
35	acccaaactgg aaatcaaacg gctgatgctg c	331

Claims

40 1. A method of screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said method comprising:

45 (a) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human monoclonal or recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor, or a further antibody or fragment thereof for the TSH receptor which competes for binding to the TSH receptor with said human monoclonal or recombinant antibody or fragment thereof, wherein said first molecule is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes of at least 15 units of International Standard NIBSC 90/672 per mg; and a second molecule of said binding pair is a full length TSH receptor, one or more epitopes of a TSH receptor or a polypeptide comprising one or more epitopes of a TSH receptor;

50 (b) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said human monoclonal or recombinant antibody or one or more fragments thereof, or said further antibody or fragment thereof for the TSH receptor, and

55 (c) monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

2. An *in vitro* method of assaying TSH and related ligands, said method comprising:

(a) providing a sample suspected of containing, or containing TSH or related ligands;

5 (b) providing one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human monoclonal or recombinant antibody or one or more fragments thereof, reactive with the TSH receptor, or a further antibody or fragment thereof for the TSH receptor and which competes for binding to the TSH receptor with said human monoclonal or recombinant antibody or fragment thereof, wherein said first molecule is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes of at least 15 units of International Standard NIBSC 90/672 per mg; and a second molecule of said binding pair is a full length TSH receptor, one or more epitopes of a TSH receptor or a polypeptide comprising one or more epitopes of a TSH receptor;

10 (c) contacting said sample with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) TSH or related ligands present in said sample, or (ii) said human monoclonal or recombinant antibody, or one or more fragments thereof, or said further antibody or fragments thereof for the TSH receptor and;

15 (d) monitoring the interaction of said second molecule of said binding pair with TSH or related ligands present in said sample, thereby providing an indication of the presence of TSH or related ligands in said sample.

20 3. A kit for screening for autoantibodies to the TSH receptor in a sample of body fluid obtained from a subject suspected of suffering from, susceptible to, having or recovering from autoimmune disease associated with an immune reaction to the TSH receptor, said kit comprising:

25 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human monoclonal or recombinant antibody or one or more fragments thereof, reactive with the TSH receptor, or a further antibody or fragment thereof for the TSH receptor and which competes for binding to the TSH receptor with said human monoclonal or recombinant antibody or fragment thereof wherein said first molecule is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes of at least 15 units of International Standard NIBSC 90/672 per mg; and a second molecule of said binding pair is a full length TSH receptor, one or more epitopes of a TSH receptor or a polypeptide comprising one or more epitopes of a TSH receptor;

30 (b) means for contacting said sample of body fluid from said subject, with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) autoantibodies to the TSH receptor present in said sample, or (ii) said human monoclonal or recombinant antibody, or one or more fragments thereof, or said further antibody or fragment thereof for the TSH receptor and;

35 (c) means for monitoring the interaction of said second molecule of said binding pair with said autoantibodies present in said sample, thereby providing an indication of the presence of said autoantibodies to the TSH receptor in said sample.

40 4. A kit according to claim 3 wherein the first molecule of said binding pair comprises a human monoclonal or recombinant antibody for the TSH receptor or fragment thereof, which has an affinity for the TSH receptor of 10^{10} molar $^{-1}$ or greater.

5. A kit for assaying TSH or related ligands, said kit comprising:

45 (a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human monoclonal antibody or one or more fragments thereof, reactive with the TSH receptor, or a further antibody or a fragment thereof, for the TSH receptor and which competes for binding to the TSH receptor with said human monoclonal or recombinant antibody or fragment thereof wherein said first molecule is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes of at least 15 units of International Standard NIBSC 90/672 per mg; and a second molecule of said binding pair is a full length TSH receptor, one or more epitopes of a TSH receptor or a polypeptide comprising one or more epitopes of a TSH receptor;

50 (b) means for contacting a sample suspected of containing or containing TSH or related ligands with said one or more pairs of binding molecules so as to permit said second molecule of said binding pair to interact with either (i) TSH or related ligands present in said sample, or (ii) human monoclonal or recombinant antibody, or one or more fragment, thereof, or said further antibody or fragments thereof for the TSH receptor and;

55 (c) means for monitoring the interaction of said second molecule of said binding pair with TSH or related ligands present in said sample, thereby providing an indication of the presence of TSH or related ligands in said sample.

6. A kit for identifying a further antibody or fragment thereof for the TSH receptor, which further antibody or fragment thereof is capable of binding to the TSH receptor and which competes for binding to the TSH receptor with a human monoclonal or recombinant antibody, or one or more fragments thereof, reactive with the TSH receptor, which kit comprises:

(a) one or more pairs of binding molecules, wherein a first molecule of said binding pair comprises a human monoclonal or recombinant antibody or fragment thereof for the TSH receptor, wherein said first molecule is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes of at least 15 units of International Standard NIBSC 90/672 per mg; and a second molecule of said binding pair is a full length TSH receptor, one or more epitopes of a TSH receptor or a polypeptide comprising one or more epitopes of a TSH receptor;

(b) means for contacting said one or more pairs of binding molecules of (a) with a further binding molecule to be assayed as a potential further antibody for the TSH receptor which competes for binding to the TSH receptor with said first molecule of said binding pair of (a), so as to permit said second molecule of said binding pair of (a) to interact with either (i) said further binding molecule, or (ii) said first molecule of said binding pair of (a); and

(c) means for monitoring the interaction of said second molecule of said binding pair of (a) with said further binding molecule, and thereby assessing whether said further binding molecule competes for binding to the TSH receptor with said first molecule of said binding pair of (a).

7. A method according to any one of claims 1 to 2 or a kit according to any one of claims 3 to 6 wherein the human monoclonal or recombinant antibody or one or more fragments thereof is **characterised by** an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes, of at least 30 units of International Standard NIBSC 90/672 per mg, or wherein the inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor is at least 120 units of International Standard NIBSC 90/672 per mg.

8. A method according to any one of claims 1 to 2 or a kit according to any one of claims 3 to 6 wherein the human monoclonal or recombinant antibody or one or more fragments thereof is **characterised by** a stimulatory activity with respect to cAMP production by CHO cells expressing approximately 50,000 human TSH receptors per cell of at least 30 units of International Standard NIBSC 90/672 per mg, or wherein the stimulatory activity with respect to cAMP production by CHO cells expressing approximately 50,000 TSH receptors per cell is at least 240 units of International Standard NIBSC 90/672 per mg.

9. A method according to any one of claims 1 to 2 or a kit according to any one of claims 3 to 6 wherein the human monoclonal or recombinant antibody or one or more fragments thereof is **characterised by**:

(a) an inhibitory activity with respect to ^{125}I labelled TSH binding to the TSH receptor determined using TSH receptor-coated tubes, of at least 30 units of International Standard NIBSC 90/672 per mg; and

(b) a stimulatory activity with respect to cAMP production by CHO cells expressing approximately 50,000 human TSH receptors per cell of at least 50 units of International Standard NIBSC 90/672 per mg.

10. A method according to any one of claims 1 to 2 or a kit according to any one of claims 3, 4, 5 or 6, wherein the further antibody or fragment thereof comprises the characteristics as defined for the human monoclonal or recombinant antibody in any one of claims 1 to 3 or 5 to 6.

Patentansprüche

1. Verfahren zum Screening auf Autoantikörper gegen den TSH-Rezeptor in einer Körperflüssigkeitsprobe, erhalten von einem Patienten, der vermutlich an einer mit einer Immunreaktion gegen den TSH-Rezeptor assoziierten Autoimmunkrankheit leidet, dafür anfällig ist, daran leidet oder sich davon erholt, wobei das Verfahren Folgendes umfasst:

(a) Bereitstellen von einem oder mehr Bindungsmolekülpaar(en), wobei ein erstes Molekül des Bindungspaares Folgendes umfasst: einen humanen monoklonalen oder rekombinanten Antikörper oder ein oder mehr Fragment(e) davon, reaktiv mit dem TSH-Rezeptor, oder einen weiteren Antikörper oder ein Fragment davon für den TSH-Rezeptor, der/das um eine Bindung an den TSH-Rezeptor mit dem humanen monoklonalen oder rekombinanten Antikörper oder Fragment davon konkurriert, wobei das erste Molekül **gekennzeichnet ist durch** eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor,

bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 15 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und ein zweites Molekül des Bindungspaars ein TSH-Rezeptor voller Länge, ein oder mehr Epitop(e) von einem TSH-Rezeptor oder ein Polypeptid, umfassend ein oder mehr Epitop(e) von einem TSH-Rezeptor, ist;

5 (b) Inkontaktbringen der Probe mit dem einen oder mehr Bindungsmolekülpaar(en) dergestalt, um dem zweiten Molekül des Bindungspaars zu erlauben, mit entweder (i) Autoantikörpern gegen den in der Probe vorliegenden TSH-Rezeptor, oder (ii) dem humanen monoklonalen oder rekombinanten Antikörper oder einem oder mehr Fragment(en) davon, oder dem weiteren Antikörper oder Fragment davon für den TSH-Rezeptor zu interagieren, und

10 (c) Überwachen der Interaktion des zweiten Moleküls des Bindungspaars mit den in der Probe vorliegenden Autoantikörpern, wodurch ein Hinweis auf das Vorliegen von den Autoantikörpern gegen den TSH-Rezeptor in der Probe bereitgestellt wird.

2. *In-vitro*-Verfahren zur Bestimmung von TSH und verwandten Liganden, wobei das Verfahren Folgendes umfasst:

15 (a) Bereitstellen einer Probe, die vermutlich TSH oder verwandte Liganden enthält, oder TSH oder verwandte Liganden enthält;

20 (b) Bereitstellen von einem oder mehr Bindungsmolekülpaar(en), wobei ein erstes Molekül des Bindungspaars Folgendes umfasst: einen humanen monoklonalen oder rekombinanten Antikörper, oder ein oder mehr Fragment(e) davon, reaktiv mit dem TSH-Rezeptor, oder einen weiteren Antikörper oder ein Fragment davon für den TSH-Rezeptor, und der/das um eine Bindung an den TSH-Rezeptor mit dem humanen monoklonalen oder rekombinanten Antikörper oder Fragment davon konkurriert, wobei das erste Molekül **gekennzeichnet ist durch** eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 15 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und ein zweites Molekül des Bindungspaars ein TSH-Rezeptor voller Länge, ein oder mehr Epitop(e) von einem TSH-Rezeptor oder ein Polypeptid, umfassend ein oder mehr Epitop(e) von einem TSH-Rezeptor, ist;

25 (c) Inkontaktbringen der Probe mit dem einen oder mehr Bindungsmolekülpaar(en) dergestalt, um dem zweiten Molekül des Bindungspaars zu erlauben, mit entweder (i) dem in der Probe vorliegenden TSH oder verwandten Liganden, oder (ii) dem humanen monoklonalen oder rekombinanten Antikörper oder einem oder mehr Fragment(en) davon, oder dem weiteren Antikörper oder Fragmenten davon für den TSH-Rezeptor zu interagieren, und

30 (d) Überwachen der Interaktion des zweiten Moleküls des Bindungspaars mit dem in der Probe vorliegenden TSH oder verwandten Liganden, wodurch ein Hinweis auf das Vorliegen von TSH oder verwandten Liganden in der Probe bereitgestellt wird.

3. Kit zum Screening auf Autoantikörper gegen den TSH-Rezeptor in einer Körperflüssigkeitsprobe, erhalten von einem Patienten, der vermutlich an einer mit einer Immunreaktion gegen den TSH-Rezeptor assoziierten Autoimmunkrankheit leidet, dafür anfällig ist, daran leidet oder sich davon erholt, wobei das Kit Folgendes umfasst:

40 (a) ein oder mehr Bindungsmolekülpaar(e), wobei ein erstes Molekül des Bindungspaars Folgendes umfasst: einen humanen monoklonalen oder rekombinanten Antikörper oder ein oder mehr Fragment(e) davon, reaktiv mit dem TSH-Rezeptor, oder einen weiteren Antikörper oder ein Fragment davon für den TSH-Rezeptor, und der/das um eine Bindung an den TSH-Rezeptor mit dem humanen monoklonalen oder rekombinanten Antikörper oder Fragment davon konkurriert, wobei das erste Molekül **gekennzeichnet ist durch** eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 15 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und ein zweites Molekül des Bindungspaars ein TSH-Rezeptor voller Länge, ein oder mehr Epitop(e) von einem TSH-Rezeptor oder ein Polypeptid, umfassend ein oder mehr Epitop(e) von einem TSH-Rezeptor, ist;

45 (b) Mittel zum Inkontaktbringen der Körperflüssigkeitsprobe von dem Patienten mit dem einen oder mehr Bindungsmolekülpaar(en) dergestalt, um dem zweiten Molekül des Bindungspaars zu erlauben, mit entweder (i) Autoantikörpern gegen den in der Probe vorliegenden TSH-Rezeptor, oder (ii) dem humanen monoklonalen oder rekombinanten Antikörper oder einem oder mehr Fragment(en) davon oder dem weiteren Antikörper oder Fragment davon für den TSH-Rezeptor zu interagieren, und

50 (c) Mittel zum Überwachen der Interaktion des zweiten Moleküls des Bindungspaars mit den in der Probe vorliegenden Autoantikörpern, wodurch ein Hinweis auf das Vorliegen von Autoantikörpern gegen den TSH-Rezeptor in der Probe bereitgestellt wird.

4. Kit nach Anspruch 3, wobei das erste Molekül des Bindungspaares einen humanen monoklonalen oder rekombinanten Antikörper für den TSH-Rezeptor oder das Fragment davon umfasst, der/das eine Affinität zum TSH-Rezeptor von 10^{10} mol⁻¹ oder größer aufweist.

5. Kit zur Bestimmung von TSH oder verwandten Liganden, wobei das Kit Folgendes umfasst:

(a) ein oder mehr Bindungsmolekülpaar(e), wobei ein erstes Molekül des Bindungspaares Folgendes umfasst: einen humanen monoklonalen Antikörper oder ein oder mehr Fragment(e) davon, reaktiv mit dem TSH-Rezeptor, oder einen weiteren Antikörper oder ein Fragment davon, für den TSH-Rezeptor, und der/das um eine Bindung an den TSH-Rezeptor mit dem humanen monoklonalen oder rekombinanten Antikörper oder Fragment davon konkurriert, wobei das erste Molekül **gekennzeichnet ist durch** eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 15 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und ein zweites Molekül des Bindungspaares ein TSH-Rezeptor voller Länge, ein oder mehr Epitop(e) von einem TSH-Rezeptor oder ein Polypeptid, umfassend ein oder mehr Epitop(e) von einem TSH-Rezeptor, ist;

(b) Mittel zum Inkontaktbringen einer Probe, die vermutlich TSH oder verwandte Liganden enthält oder TSH oder verwandte Liganden enthält, mit dem einen oder mehr Bindungsmolekülpaar(en) dergestalt, um dem zweiten Molekül des Bindungspaares zu erlauben, mit entweder (i) dem in der Probe vorliegenden TSH oder verwandten Liganden, oder (ii) dem humanen monoklonalen oder rekombinanten Antikörper oder einem oder mehr Fragment(en) davon oder dem weiteren Antikörper oder Fragmenten davon für den TSH-Rezeptor zu interagieren, und

(c) Mittel zum Überwachen der Interaktion des zweiten Moleküls des Bindungspaares mit dem in der Probe vorliegenden TSH oder verwandten Liganden, wodurch ein Hinweis auf das Vorliegen von TSH oder verwandten Liganden in der Probe bereitgestellt wird.

6. Kit zum Identifizieren eines weiteren Antikörpers oder Fragments davon für den TSH-Rezeptor, welcher weitere Antikörper oder welches Fragment davon zum Binden an den TSH-Rezeptor fähig ist, und der/das um eine Bindung an den TSH-Rezeptor mit einem humanen monoklonalen oder rekombinanten Antikörper, oder einem oder mehr Fragment(en) davon, reaktiv mit dem TSH-Rezeptor, konkurriert, welches Kit Folgendes umfasst:

(a) ein oder mehr Bindungsmolekülpaar(e), wobei ein erstes Molekül des Bindungspaares Folgendes umfasst: einen humanen monoklonalen oder rekombinanten Antikörper, oder ein Fragment davon für den TSH-Rezeptor, wobei das erste Molekül **gekennzeichnet ist durch** eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 15 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und ein zweites Molekül des Bindungspaares ein TSH-Rezeptor voller Länge, ein oder mehr Epitop(e) von einem TSH-Rezeptor oder ein Polypeptid, umfassend ein oder mehr Epitop(e) von einem TSH-Rezeptor, ist;

(b) Mittel zum Inkontaktbringen des einen oder mehr Bindungsmolekülpaars/Bindungsmolekülpaaren von (a) mit einem weiteren Bindungsmolekül zur Bestimmung als einen potenziellen weiteren Antikörper für den TSH-Rezeptor, der um eine Bindung an den TSH-Rezeptor mit dem ersten Molekül des Bindungspaares von (a) dergestalt konkurriert, um dem zweiten Molekül des Bindungspaares von (a) zu erlauben, mit entweder (i) dem weiteren Bindungsmolekül, oder (ii) dem ersten Molekül des Bindungspaares von (a) zu interagieren; und

(c) Mittel zum Überwachen der Interaktion des zweiten Moleküls des Bindungspaares von (a) mit dem weiteren Bindungsmolekül, und **dadurch** Beurteilung, ob das weitere Bindungsmolekül um die Bindung an den TSH-Rezeptor mit dem ersten Molekül des Bindungspaares von (a) konkurriert.

7. Verfahren nach einem der Ansprüche 1 bis 2 oder ein Kit nach einem der Ansprüche 3 bis 6, wobei der humane monoklonale oder rekombinante Antikörper oder ein oder mehr Fragment(e) davon gekennzeichnet ist/sind durch eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 30 Einheiten des Internationalen Standards NIBSC 90/672 pro mg, oder wobei die inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor bei mindestens 120 Einheiten des Internationalen Standards NIBSC 90/672 pro mg liegt.

8. Verfahren nach einem der Ansprüche 1 bis 2 oder ein Kit nach einem der Ansprüche 3 bis 6, wobei der humane monoklonale oder rekombinante Antikörper oder ein oder mehr Fragment(e) davon gekennzeichnet ist/sind durch eine stimulatorische Aktivität bezogen auf die cAMP-Produktion durch CHO-Zellen, die ca. 50000 humane TSH-Rezeptoren pro Zelle von mindestens 30 Einheiten des Internationalen Standards NIBSC 90/672 pro mg exprimieren, oder wobei die stimulatorische Aktivität bezogen auf die cAMP-Produktion durch CHO-Zellen, die ca. 50000 TSH-

Rezeptoren pro Zelle exprimieren, bei mindestens 240 Einheiten des Internationalen Standards NIBSC 90/672 pro mg liegt.

5. 9. Verfahren nach einem der Ansprüche 1 bis 2 oder ein Kit nach einem der Ansprüche 3 bis 6, wobei der humane monoklonale oder rekombinante Antikörper oder ein oder mehr Fragment(e) davon gekennzeichnet ist/sind durch:

(a) eine inhibitorische Aktivität bezogen auf die mit ^{125}I markierte TSH-Bindung an den TSH-Rezeptor, bestimmt mit TSH-Rezeptor beschichteten Röhrchen von mindestens 30 Einheiten des Internationalen Standards NIBSC 90/672 pro mg; und

10. (b) eine stimulatorische Aktivität bezogen auf die cAMP-Produktion durch CHO-Zellen, die ca. 50000 humane TSH-Rezeptoren pro Zelle von mindestens 50 Einheiten des Internationalen Standards NIBSC 90/672 pro mg exprimieren.

15. 10. Verfahren nach einem der Ansprüche 1 bis 2 oder ein Kit nach einem der Ansprüche 3, 4, 5 oder 6, wobei der weitere Antikörper oder das Fragment davon die Merkmale wie für den humanen monoklonalen oder rekombinanten Antikörper nach einem der Ansprüche 1 bis 3 oder 5 bis 6 definiert umfasst.

Revendications

20. 1. Procédé de criblage d'auto-anticorps dirigés contre le récepteur TSH dans un échantillon de liquide biologique obtenu chez un sujet suspecté de souffrir de, prédisposé à, ayant ou se rétablissant d'une maladie auto-immune associée à une réaction immunitaire au récepteur TSH, ledit procédé comprenant :

25. (a) l'obtention d'une ou de plusieurs paires de molécules de liaison, dans lesquelles une première molécule de ladite paire de liaison comprend un anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, réactifs avec le récepteur TSH, ou un autre anticorps ou un fragment de celui-ci dirigé contre le récepteur TSH qui entre en compétition pour la liaison au récepteur TSH avec ledit anticorps monoclonal ou recombinant humain ou un fragment de celui-ci, ladite première molécule étant **caractérisée par** une activité inhibitrice relativement à la TSH marquée à l' ^{125}I se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH à raison d'au moins 15 unités de la norme internationale du NIBSC 90/672 par mg ; et une seconde molécule de ladite paire de liaison étant un récepteur TSH pleine longueur, un ou plusieurs épitopes d'un récepteur TSH, ou un polypeptide comprenant un ou plusieurs épitopes d'un récepteur TSH ;

30. (b) la mise en contact dudit échantillon avec ladite ou lesdites paires de molécules de liaison de manière à permettre à ladite seconde molécule de ladite paire de liaison d'interagir avec soit (i) des auto-anticorps dirigés contre le récepteur TSH présents dans ledit échantillon, soit (ii) ledit anticorps monoclonal ou recombinant humain ou un ou plusieurs fragments de celui-ci, ou ledit autre anticorps ou un fragment de celui-ci dirigé contre le récepteur TSH, et

35. (c) la surveillance de l'interaction de ladite seconde molécule de ladite paire de liaison avec lesdits auto-anticorps présents dans ledit échantillon, ce qui fournit une indication de la présence desdits auto-anticorps dirigés contre le récepteur TSH dans ledit échantillon.

40. 2. Procédé *in vitro* de dosage de TSH et de ligands apparentés, ledit procédé comprenant :

45. (a) l'obtention d'un échantillon suspecté de contenir, ou contenant TSH ou des ligands apparentés ;

(b) l'obtention d'une ou de plusieurs paires de molécules de liaison, dans lesquelles une première molécule de ladite paire de liaison comprend un anticorps monoclonal ou recombinant humain ou un ou plusieurs fragments de celui-ci, réactifs avec le récepteur TSH, ou un autre anticorps ou un fragment de celui-ci dirigé contre le récepteur TSH et qui entre en compétition pour la liaison au récepteur TSH avec ledit anticorps monoclonal ou recombinant humain, ou un fragment de celui-ci, ladite première molécule étant **caractérisée par** une activité inhibitrice relativement à TSH marquée à l' ^{125}I se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH à raison d'au moins 15 unités de la norme internationale du NIBSC 90/672 par mg ; et une seconde molécule de ladite paire de liaison étant un récepteur TSH pleine longueur, un ou plusieurs épitopes d'un récepteur TSH, ou un polypeptide comprenant un ou plusieurs épitopes d'un récepteur TSH ;

50. (c) la mise en contact dudit échantillon avec ladite ou lesdites paires de molécules de liaison de manière à permettre à ladite seconde molécule de ladite paire de liaison d'interagir avec soit (i) TSH ou des ligands apparentés présents dans ledit échantillon, soit (ii) ledit anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, ou ledit autre anticorps ou des fragments de celui-ci dirigés contre le récepteur

TSH et ;

(d) la surveillance de l'interaction de ladite seconde molécule de ladite paire de liaison avec TSH ou des ligands apparentés présents dans ledit échantillon, ce qui fournit une indication de la présence de TSH ou de ligands apparentés dans ledit échantillon.

5

3. Kit de criblage d'auto-anticorps dirigés contre le récepteur TSH dans un échantillon de liquide biologique obtenu chez un sujet suspecté de souffrir de, prédisposé à, ayant ou se rétablissant d'une maladie auto-immune associée à une réaction immunitaire au récepteur TSH, ledit kit comprenant :

10 (a) une ou plusieurs paires de molécules de liaison, dans lesquelles une première molécule de ladite paire de liaison comprend un anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, réactifs avec le récepteur TSH, ou un autre anticorps ou un fragment de celui-ci dirigé contre le récepteur TSH et qui entre en compétition pour la liaison au récepteur TSH avec ledit anticorps monoclonal ou recombinant humain ou un fragment de celui-ci, ladite première molécule étant **caractérisée par** une activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH à raison d'au moins 15 unités de la norme internationale du NIBSC 90/672 par mg ; et une seconde molécule de ladite paire de liaison étant un récepteur TSH pleine longueur, un ou plusieurs épitopes d'un récepteur TSH, ou un polypeptide comprenant un ou plusieurs épitopes d'un récepteur TSH ;

15 (b) un moyen de mise en contact dudit échantillon de liquide biologique dudit sujet, avec ladite ou lesdites paires de molécules de liaison de manière à permettre à ladite seconde molécule de ladite paire de liaison d'interagir avec soit (i) des auto-anticorps dirigés contre le récepteur TSH présents dans ledit échantillon, soit (ii) ledit anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, ou ledit autre anticorps ou un fragment de celui-ci dirigé contre le récepteur TSH et ;

20 (c) un moyen de surveillance de l'interaction de ladite seconde molécule de ladite paire de liaison avec lesdits auto-anticorps présents dans ledit échantillon, ce qui fournit une indication de la présence desdits auto-anticorps dirigés contre le récepteur TSH dans ledit échantillon.

25 4. Kit selon la revendication 3, dans lequel la première molécule de ladite paire de liaison comprend un anticorps monoclonal ou recombinant humain dirigé contre le récepteur TSH ou un fragment de celui-ci, qui possède une affinité pour le récepteur TSH de 10¹⁰ molaire⁻¹ ou plus.

30 5. Kit de dosage de TSH ou de ligands apparentés, ledit kit comprenant :

35 (a) une ou plusieurs paires de molécules de liaison, dans lesquelles une première molécule de ladite paire de liaison comprend un anticorps monoclonal humain ou un ou plusieurs fragments de celui-ci, réactifs avec le récepteur TSH, ou un autre anticorps ou un fragment de celui-ci, dirigé contre le récepteur TSH, et qui entre en compétition pour la liaison au récepteur TSH avec ledit anticorps monoclonal ou recombinant humain ou un fragment de celui-ci, ladite première molécule étant **caractérisée par** une activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH à raison d'au moins 15 unités de la norme internationale du NIBSC 90/672 par mg ; et une seconde molécule de ladite paire de liaison étant un récepteur TSH pleine longueur, un ou plusieurs épitopes d'un récepteur TSH, ou un polypeptide comprenant un ou plusieurs épitopes d'un récepteur TSH ;

40 (b) un moyen de mise en contact d'un échantillon suspecté de contenir ou contenant TSH ou des ligands apparentés avec ladite ou lesdites paires de molécules de liaison de manière à permettre à ladite seconde molécule de ladite paire de liaison d'interagir avec soit (i) TSH ou des ligands apparentés présents dans ledit échantillon, soit (ii) l'anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, ou ledit autre anticorps ou des fragments de celui-ci dirigés contre le récepteur TSH et ;

45 (c) un moyen de surveillance de l'interaction de ladite seconde molécule de ladite paire de liaison avec TSH ou des ligands apparentés présents dans ledit échantillon, ce qui fournit une indication de la présence de TSH ou de ligands apparentés dans ledit échantillon.

50 55 6. Kit d'identification d'un autre anticorps ou d'un fragment de celui-ci dirigé contre le récepteur TSH, lequel autre anticorps ou fragment de celui-ci est capable de se lier au récepteur TSH et entre en compétition pour la liaison au récepteur TSH avec un anticorps monoclonal ou recombinant humain, ou un ou plusieurs fragments de celui-ci, réactifs avec le récepteur TSH, ledit kit comprenant :

(a) une ou plusieurs paires de molécules de liaison, dans lesquelles une première molécule de ladite paire de liaison comprend un anticorps monoclonal ou recombinant humain ou un fragment de celui-ci dirigé contre le

récepteur TSH, ladite première molécule étant **caractérisée par** une activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH à raison d'au moins 15 unités de la norme internationale du NIBSC 90/672 par mg ; et une seconde molécule de ladite paire de liaison étant un récepteur TSH pleine longueur, un ou plusieurs épitopes d'un récepteur TSH, ou un polypeptide comprenant un ou plusieurs épitopes d'un récepteur TSH ;

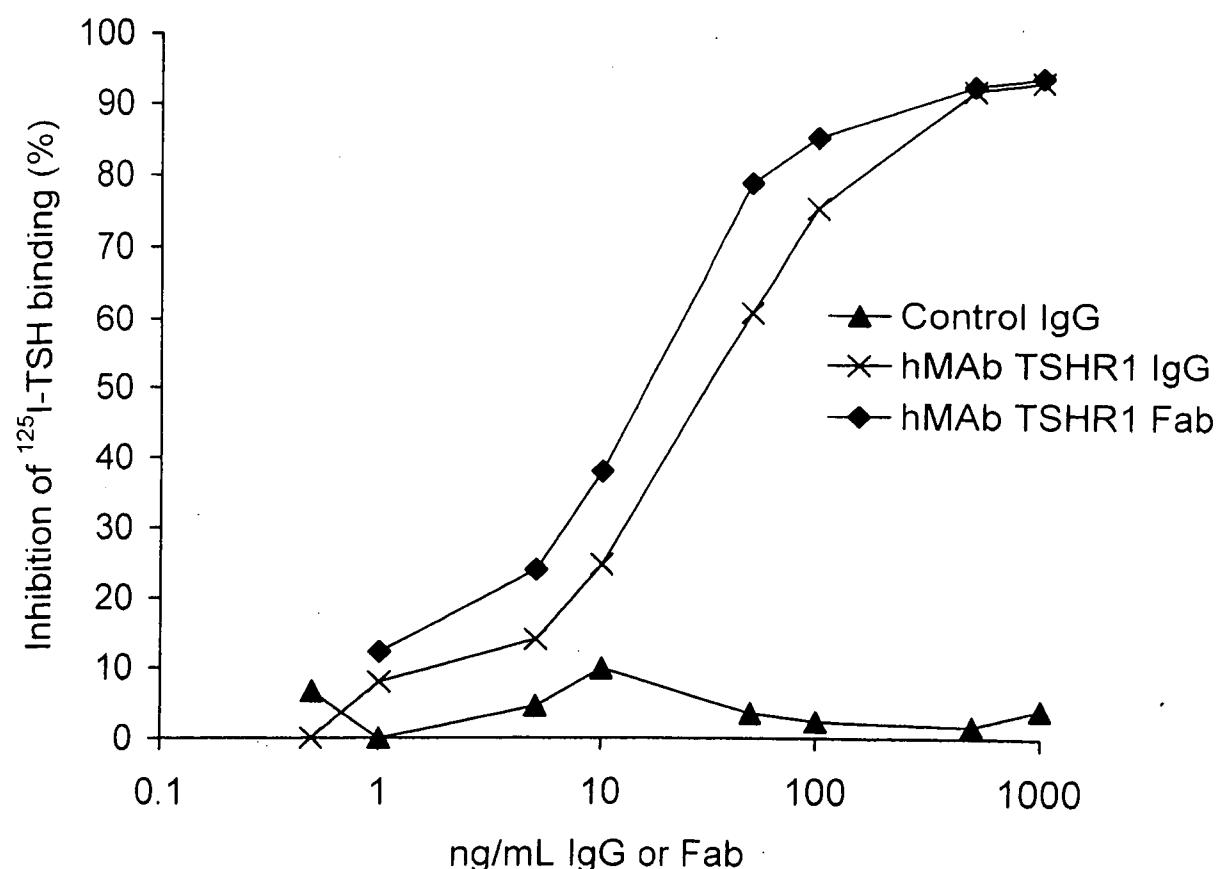
(b) un moyen de mise en contact de ladite ou desdites paires de molécules de liaison de (a) avec une autre molécule de liaison à doser en tant qu'autre anticorps potentiel dirigé contre le récepteur TSH qui entre en compétition pour la liaison au récepteur TSH avec ladite première molécule de ladite paire de liaison de (a), de manière à permettre ladite seconde molécule de ladite paire de liaison de (a) d'interagir avec soit (i) ladite autre molécule de liaison, soit (ii) ladite première molécule de ladite paire de liaison de (a) ; et
(c) un moyen de surveillance de l'interaction de ladite seconde molécule de ladite paire de liaison de (a) avec ladite autre molécule de liaison, ce qui permet d'évaluer si ladite autre molécule de liaison entre en compétition pour la liaison au récepteur TSH avec ladite première molécule de ladite paire de liaison de (a).

15 7. Procédé selon l'une quelconque des revendications 1 à 2 ou kit selon l'une quelconque des revendications 3 à 6, dans lequel l'anticorps monoclonal ou recombinant humain ou un ou plusieurs fragments de celui-ci sont **caractérisés par** une activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH, à raison d'au moins 30 unités de la norme internationale du NIBSC 90/672 par mg, ou dans lequel l'activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH est d'au moins 120 unités de la norme internationale du NIBSC 90/672 par mg.

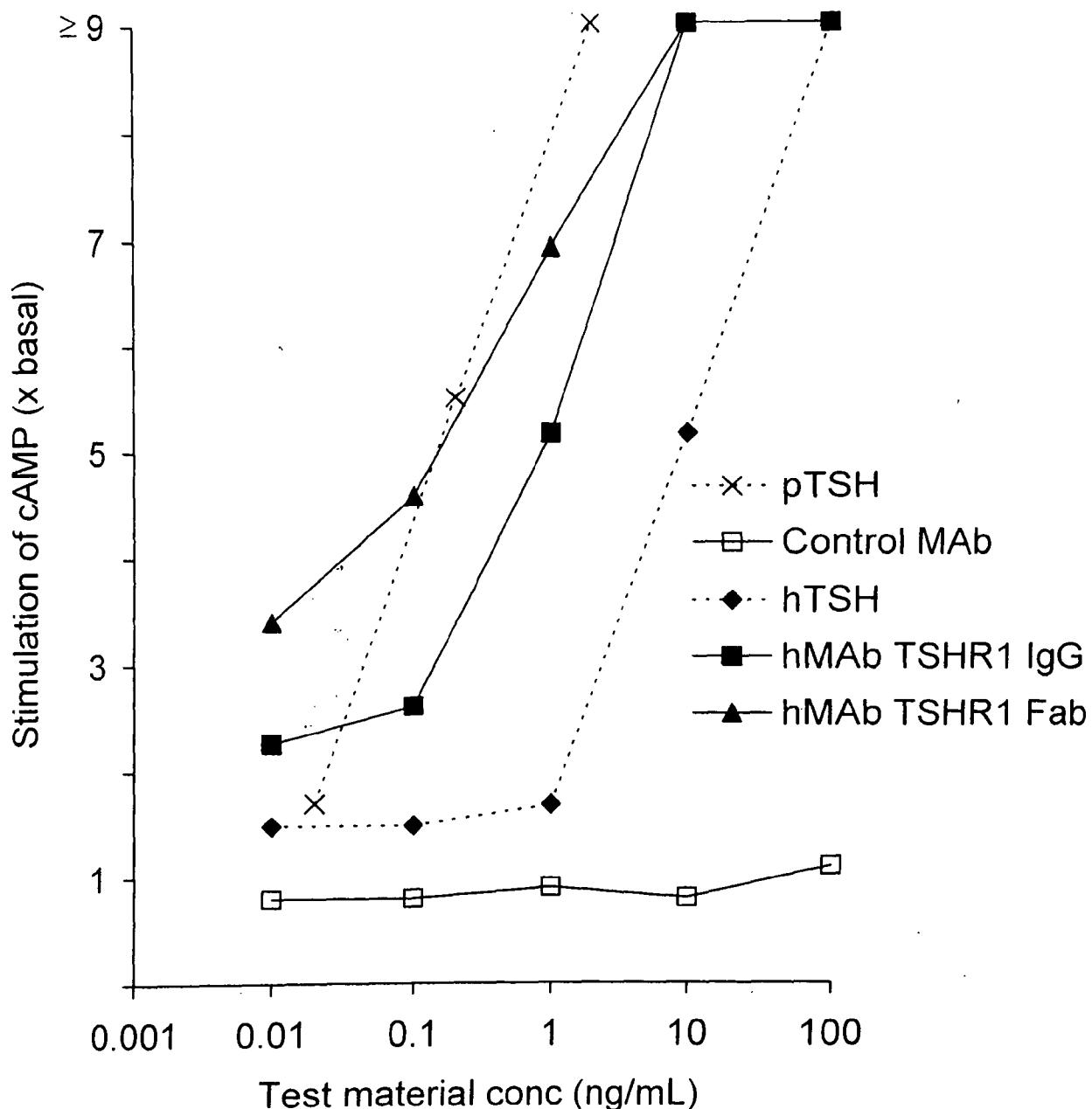
20 8. Procédé selon l'une quelconque des revendications 1 à 2 ou kit selon l'une quelconque des revendications 3 à 6, dans lequel l'anticorps monoclonal ou recombinant humain ou un ou plusieurs fragments de celui-ci sont **caractérisés par** une activité de stimulation relativement à la production d'AMP cyclique par des cellules CHO exprimant approximativement 50 000 récepteurs TSH humains par cellule à raison d'au moins 30 unités de la norme internationale du NIBSC 90/672 par mg, ou dans lequel l'activité de stimulation relativement à la production d'AMP cyclique par des cellules CHO exprimant approximativement 50 000 récepteurs TSH par cellule est d'au moins 240 unités de la norme internationale du NIBSC 90/672 par mg.

25 9. Procédé selon l'une quelconque des revendications 1 à 2 ou kit selon l'une quelconque des revendications 3 à 6, dans lequel l'anticorps monoclonal ou recombinant humain ou un ou plusieurs fragments de celui-ci sont **caractérisés par** :

30 (a) une activité inhibitrice relativement à TSH marquée à l'I¹²⁵ se liant au récepteur TSH, déterminée au moyen de tubes à essai revêtus du récepteur TSH, à raison d'au moins 30 unités de la norme internationale du NIBSC 90/672 par mg ; et
(b) une activité de stimulation relativement à la production d'AMP cyclique par des cellules CHO exprimant approximativement 50 000 récepteurs TSH humains par cellule à raison d'au moins 50 unités de la norme internationale du NIBSC 90/672 par mg.


35 10. Procédé selon l'une quelconque des revendications 1 à 2 ou kit selon l'une quelconque des revendications 3, 4, 5 ou 6, dans lequel l'autre anticorps ou un fragment de celui-ci comprend les caractéristiques telles que définies pour l'anticorps monoclonal ou recombinant humain dans l'une quelconque des revendications 1 à 3 ou 5 à 6.

40


45

50

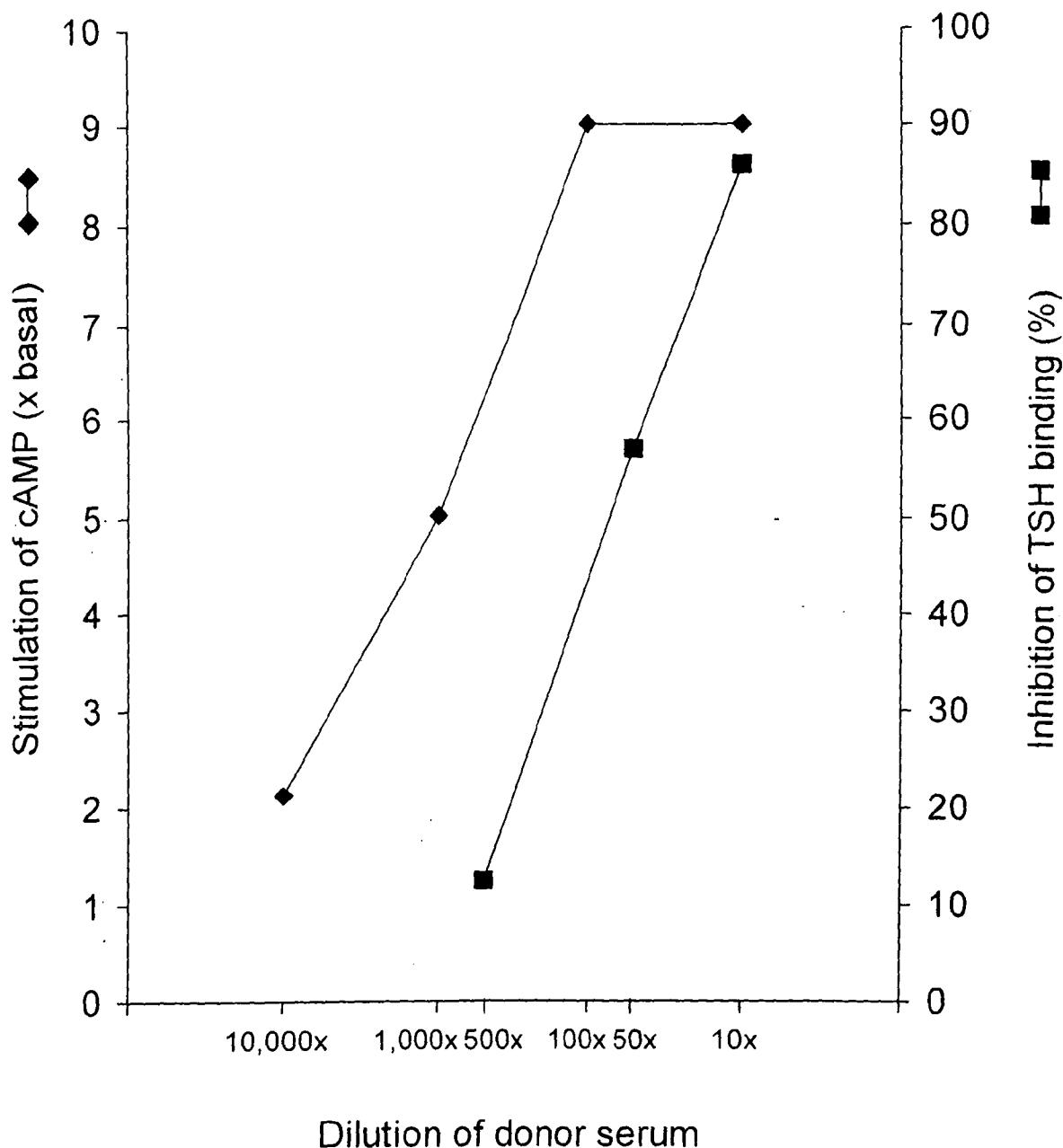

55

Figure 1 Inhibition of labelled TSH binding to TSHR coated tubes by hMAb TSHR1 IgG and Fab. The control IgG was a human monoclonal autoantibody to GAD₆₅.

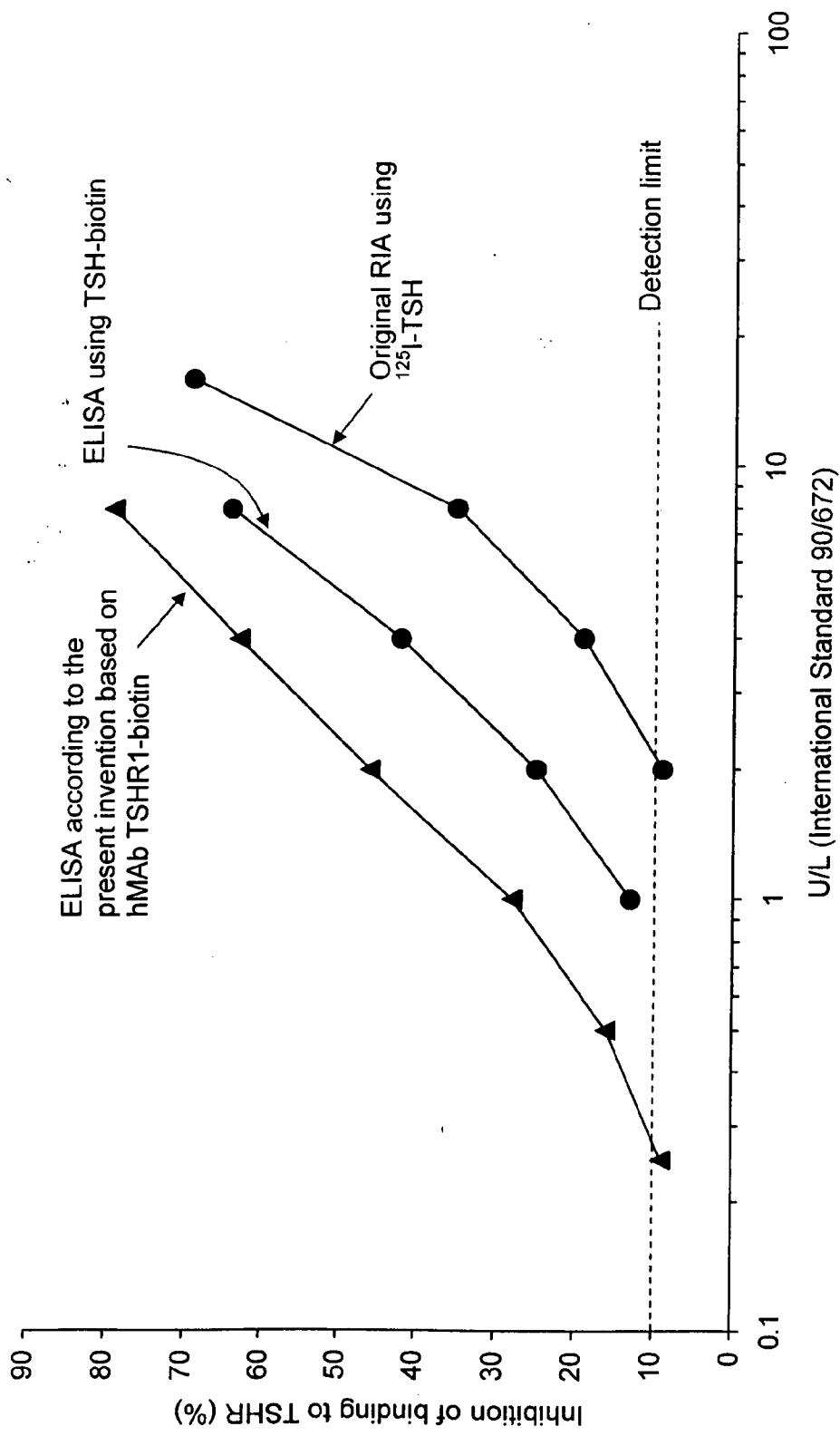


Figure 2 Thyroid stimulating activities of hMAb TSHR1 IgG and Fab, porcine TSH (70 units/mg; pTSH), recombinant human TSH (6.7 units/mg; hTSH) and a control monoclonal antibody (MAb: a human monoclonal autoantibody to thyroid peroxidase (2G4)). Basal = cAMP produced in the presence of NaCl free Hanks Buffered Salt Solution only.

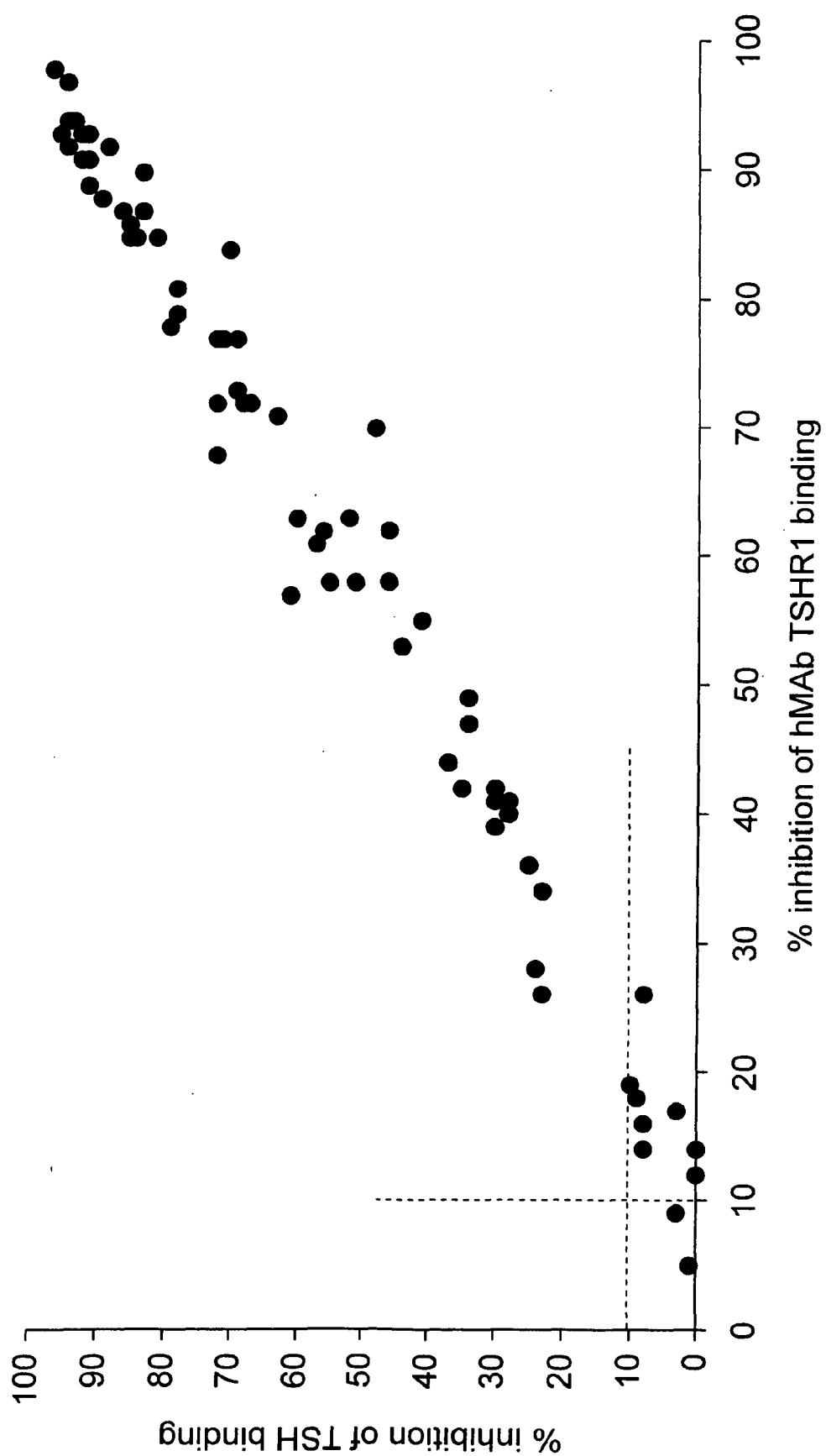


Figure 3 Effect of lymphocyte donor serum on inhibition of TSH binding to the TSHR and on stimulation of cyclic AMP in TSHR transfected CHO cells. In the case of the binding inhibition assay the serum was diluted in a pool of healthy blood donor sera. For the stimulation assay, the serum was diluted in NaCl free Hanks Buffered Salt Solution. Healthy blood donor sera ($n = 3$) gave responses ranging from $1.1 - 1.3 \times$ basal.

Figure 3a Comparison of an ELISA for TSHR autoantibodies according to the present invention with earlier assays. In particular an ELISA based on TSH-biotin described by J Bolton, J Sanders, Y Oda, C Chapman, R Konno, J Furmaniak, B Rees Smith. "Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA." Clinical Chemistry 1999 volume 45 pp 2285-2287 and the original RIA described by K Southgate, FM Creagh, M Teece, C Kingswood, B Rees Smith. "A receptor assay for the measurement of TSH receptor antibodies in unextracted serum" 1984. Clinical Endocrinology volume 20 pp 539-543.

Figure 3b Comparison of an ELISA for TSHR autoantibodies according to the present invention and an ELISA based on TSH-biotin described by J Bolton, J Sanders, Y Oda, C Chapman, R Konno, J Furmaniak, B Rees Smith. "Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA." Clinical Chemistry 1999 volume 45 pp 2285-2287. Sera from 72 patients with Graves' disease were compared. $y = 1.1154x - 13.032$, $r = 0.99$.

Figure 4 hMAb TSHR1 Heavy Chain V, D and J region nucleotide sequence

Figure 4a

```
caa atgcagctggtg cagtctggagcagaggtaaaaaggccggggagtc  
tctgaagatctcctgt taggggttctggatacaggttaccagctactgga  
tcaactgggtgcgccagctgcccggaaaggcctagagtggatggcagg  
attgatcctactgactcttataccaactacagtccatccttcaaaggcca  
cgtcaccgtctcagctgacaagtccatcaacactgcctacctgcagtgg  
gcagcctgaaggcctcgacaccggcatgtattactgtgcaggctcgaa  
ccgggctatacgacacctggtccgtaaattggggccagggaaaccctgg  
caccgtctcctcagcctccaccaaggcccacgcgtttcccc
```

Figure 4b

caaatgcagctgggtgcagtctggagcagaggtaaaaagccggggagtc	50
PCR primer	
tctgaagatctcctgttagggttctggatacaggttaccagctactgga	100
	CDR I
tcaacttgggtgcgccagctgccggaaaggcctagagtggatggcagg	150
	CDR II
attgatcctactgactcttataccaaactacagtcacatccttcaaaggcca	200
cgtcaccgtctcagctgacaagtcacatcaacactgcctacctgcagtgga	250
gcagcctgaaggcctcgacaccggcatgtattactgtgcgaggctcgaa	300
	CDR III
ccgggctatagcagcacctggtccgtaaattggggccagggAACCTGGT	350
constant region	
caccgtctcctcagcctccaccaagggccatcggtcttcccc	394

Figure 5 hMAb TSHR1 Heavy Chain V, D and J region amino acid sequence

Figure 5a

QVQLVQSGAEVKKPGESLKISCRGSGYRFTSYWINWVRQLPGKGLEWMGR

IDPTDSYTNYSPSFKGHVTVSADKSINTAYLQWSSLKASDTGMYYCARLE

PGYSSTWSVNWGQGTLTVSSASTKGPSVFP

Figure 5b

QVQLVQSGAEVKKPGESLKISCRGSGYRFT **SYWIN** WVRQLPGKGLEWMGR 50
CDR I

IDPTDSYTNYSPS EKG HVTVSADKSINTAYLQWSSLKASDTGMYYCARLE 100
CDR II

PGYSSTWSVN WGQGTLTVSS **ASTKGPSVFP** 131
constant region
CDR III

Figure 6 hMAb TSHR1 Light Chain DNA sequence

Figure 6a

ctgcctgtgctgactcagccaccctcggtgtctggagcccccaggcagag
 ggtcaccatctcctgttctggaaacagctccaacatcgaaataatgctg
 taaactggtaccagcagctcccaggaaaggctccaaactcctcatttat
 tatgatgatcaactgcctcaggggtctctgaccgattctctggctccag
 gtctggcacctccgcctccctggccatccgtggctccagtctgaggatg
 aggctgatttactgtacatcatggatgacagcctggatagtcaactg
 ttcggcggagggaccaggctgaccgtccttaggt

Figure 6b

<u>ctgcctgtgctgactcagccaccctcggtgtctggagcccccaggcagag</u>	50
PCR primer	
ggtcaccatctcctgt <u>tctggaaacagctccaacatcgaaataatgctg</u>	100
CDR I	
<u>taaactggtaccagcagctcccaggaaaggctccaaactcctcatttat</u>	150
<u>tatgatgatcaactgcctcaggggtctctgaccgattctctggctccag</u>	200
CDR II	
gtctggcacctccgcctccctggccatccgtggctccagtctgaggatg	250
<u>aggctgatttactgt<u>acatcatggatgacagcctggatagtcaactg</u></u>	300
CDR III	
ttcggcggagggaccaggctgaccgtccttaggt	333

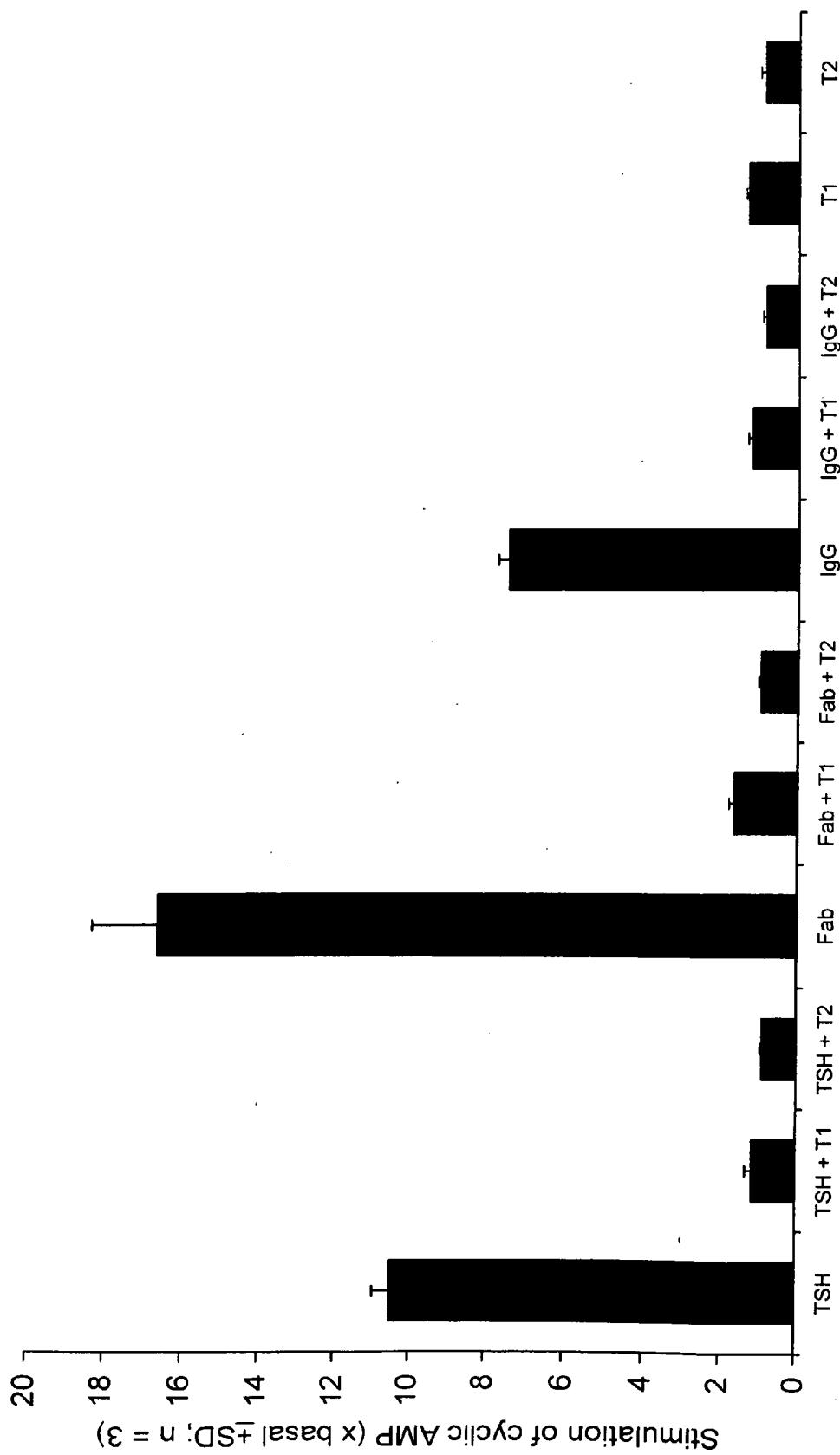
Figure 7 hMAb TSHR1 Light Chain protein sequence

Figure 7a

LTVLTQPPSVSGAPRQRTISCSGNSSNIGNNAVNWYQQLPKGAPKLLIY

YDDQLPSGVSDRFSGSRSGTSASLAIRGLQSEDEADYYCTSWDDSLDSQL

FGGGTRLTVLG


Figure 7b

LTVLTQPPSVSGAPRQRTISCSGNSSNIGNNAVNWYQQLPKGAPKLLIY 50
CDR I

YDDQLPSGVSDRFSGSRSGTSASLAIRGLQSEDEADYYCTSWDDSLDSQL 100
CDR II CDR III

FGGGTRLTVLG 111

Figure 8 Effects of 2 patient sera (T1 and T2 with TSH antagonist activity) on stimulation of cyclic AMP production (in CHO cells transfected with the TSHR) by pTSH (0.5 ng/mL) and hMAb TSHR1 IgG (10 ng/mL) and Fab (5 ng/mL)

Figure 9 9D33 Heavy Chain nucleotide sequence

Figure 9a

```
gacgtccagatccagcagcgtggactgagcttgtgaagcctgggcttc  
agtgagactgtcctgcaaggcttctggctacaccccttaccacactgga  
tgcactgggtgaagcagaggcctggacaaggccttgagtggatcggagag  
attgatccttctgatagttatactaactataatcaaaagttcaaggc  
ggccacattgactgttagacaaatcctccagcacagcctacatgcac  
gcagcctgacatctgaggactctgcggcttattactgttcaagaaactac  
ggtagtggtactactttgactactggggccaaggcaccactctcac  
ctcctcagccaaaacaacaccccc
```

Figure 9b

<u>gacgtccagatccaggcagcctggactgagcttgtgaagcctggggcttc</u>	50
PCR primer	
agtgagactgtcctgcaaggcttctggctacacccacc <u>acctactgga</u>	100
CDR I	
<u>tgcactgggtgaagcagaggcctggacaaggccttgagtggtcgga</u> <u>gag</u>	150
CDR II	
<u>attgatccttctgatagttataactaactataatcaaaagttcaagggc</u> aa	200
ggccacattgactgtagacaaatcctccagcacagcctacatgcaccta	250
CDR III	
gcagcctgacatctgaggactctgcggctattactgttcaaga <u>aactac</u>	300
<u>ggtagtgctactactttgactact</u> tggggccaaggcaccactctcacagt	350
ctcctca <u>gcca</u> aaaacaacacccc	373
constant region	

Figure 10 9D33 Heavy Chain amino acid sequence

Figure 10a

DVQIQQPGTELVKPGASVRLSCKASGYTFTTYWMHWVKQRPGQGLEWIGE

IDPSDSYTNYNQKFKGKATLTVDKSSSTAYMHLSSLTSEDSAVYYCSRNY

GSGYYFDYWGQGTTLTVSSAKTTP

Figure 10b

DVQIQQPGTELVKPGASVRLSCKASGYTFT **TYWMHWVKQRPGQGLEWIGE** 50
PCR primer **CDR I**

IDPSDSYTNYNQKFKGKATLTVDKSSSTAYMHLSSLTSEDSAVYYCSRNY 100
CDR II **CDR III**

GSGYYFDYWGQGTTLTVSS**AKTTP** 124
constant region

Figure 11 9D33 Light Chain nucleotide sequence

Figure 11a

ggcggtgagatgacacagtcggcagcaatcatgtctgcacatccagggga
 gaaggtcaccatgacacctgcagtgccagctcaagtgttaagttacatgcact
 ggtaccagcagaagtcaaggcacctccccaaaagatggatttatgacaca
 tccaaactggcttctggagtcctgctcgcttcagtggcagtgggtctgg
 gacctcttactctcacaatcagcagcatggagactgaagatgctgcca
 cttattactgccagcagtggagtagtaaccctggacgttcgggtggaggc
 accaaactggaaatcaaacggctgatgctgc

Figure 11b

ggcggtgagatgacacagtcggcagcaatcatgtctgcacatccagggga	50
PCR primer	
gaaggtcaccatgacacctgcagtgccagctcaagtgttaagttacatgcact	100
CDR I	
ggtaccagcagaagtcaaggcacctccccaaaagatggatttatgacaca	150
CDR II	
tccaaactggcttctggagtcctgctcgcttcagtggcagtgggtctgg	200
gacctcttactctcacaatcagcagcatggagactgaagatgctgcca	250
CDR III	
cttattactgc[cagcagtggagtagtaaccctggacgttcgggtggaggc	300
accaaactggaaatcaaacggctgatgctgc	331
constant region	

Figure 12

9D33 Light Chain amino acid sequence

Figure 12a

GVEMTQSPAAMSASPGEKVTMTCASSSVSYMHWYQQKSGTSPKRWIYDT

SKLASGVPARFSGSGSGTSYSLTISSMETEDAATYYCQQWSSNPWTFGGG

TKLEIKRLML

Figure 12b

GVEMTQSPAAMSASPGEKVTMTC **SASSSVSYMHWYQQKSGTSPKRWIYDT** 50
PCR primer

CDR I

SKLASGVPARFSGSGSGTSYSLTISSMETEDAATYYC**QQWSSNPWT**FGGG 100
CDR II

CDR III

TKLEIK**RLML** 110
constant region

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0208723 A [0012]
- EP 1078986 A [0012]
- WO P452347 A [0189]
- GB 0227964 A [0189]
- GB 0302140 A [0189]
- GB 0315147 A [0189]

Non-patent literature cited in the description

- Understanding the thyrotropin receptor function-structure relationship. **J SANDERS ; Y ODA ; S-A ROBERTS ; M MARUYAMA ; J FURMANIAK ; B REES SMITH.** *Balliere's Clinical Endocrinology and Metabolism*. Balliere Tindall, 1997, vol. 11, 451-479 [0003] [0006]
- **J SANDERS ; Y ODA ; S ROBERTS ; A KIDDIE ; T RICHARDS ; J BOLTON ; V MCGRATH ; S WALTERS ; D JASKOLSKI ; J FURMANIAK.** The interaction of TSH receptor autoantibodies with I-labelled TSH receptor. *Journal of Clinical Endocrinology and Metabolism*, 1999, vol. 84 (10), 3797-3802 [0007]
- **B REES SMITH ; SM MCLACHLAN ; J FURMANIAK.** Autoantibodies to the thyrotropin receptor. *Endocrine Reviews*, 1988, vol. 9, 106-121 [0009] [0011]
- **B REES SMITH ; KJ DORRINGTON ; DS MUNRO.** The thyroid stimulating properties of long-acting thyroid stimulator γ G-globulin subunits. *Biochimica et Biophysica Acta*, 1969, vol. 192, 277-285 [0009]
- **KJ DORRINGTON ; DS MUNRO.** The long acting thyroid stimulator. *Clinical Pharmacology and Therapeutics*, 1966, vol. 7, 788-806 [0009]
- **JC SCOTT ; GP SMITH.** Searching for peptide ligands with an epitope library. *Science*, 1990, vol. 249 (4967), 386-390 [0011] [0118]
- **MA MYERS ; JM DAVIES ; JC TONG ; J WHISSTOCK ; M SCEALY ; IR MACKAY ; MJ ROWLEY.** Conformational epitopes on the diabetes autoantigen GAD65 identified by peptide phage display and molecular modelling. *Journal of Immunology*, 2000, vol. 165, 3830-3838 [0011] [0118]
- **SM MCLACHLAN ; B RAPOPORT.** Monoclonal, human autoantibodies to the TSH receptor - The Holy Grail and why are we looking for it. *Journal of Clinical Endocrinology and Metabolism*, 1996, vol. 81, 3152-3154 [0011]
- **JHW VAN DER HEIJDEN ; TWA DE BRUIN ; KAFM GLUDEMANS ; J DE KRUIF ; JP BANGA ; T LOGTENBERG.** Limitations of the semisynthetic library approach for obtaining human monoclonal autoantibodies to the thyrotropin receptor of Graves' disease. *Clinical and Experimental Immunology*, 1999, vol. 118, 205-212 [0011]
- *Biochim. Biophys. Acta*, 1969, vol. 192, 277-285 [0028] [0047]
- *Proc. Natl. Acad. Sci. USA*, November 1992, vol. 89, 10026-10030 [0028] [0047]
- *Nature, Biotechnology*, October 1995, vol. 14, 1257-1263 [0089]
- **N HAYAKAWA ; LDKE PREMAWARDHANA ; M POWELL ; M MASUDA ; C ARNOLD ; J SANDERS ; M EVANS ; S CHEN ; JC JAUME ; S BAEKKESKOV.** Isolation and characterization of human monoclonal autoantibodies to glutamic acid decarboxylase. *Autoimmunity*, 2002, vol. 35, 343-355 [0147] [0162]
- **WL CARROLL ; K THILEMANS ; J DILLEY ; R LEVY.** Mouse x human heterohybridomas as fusion partners with human B cell tumors. *Journal of Immunological Methods*, 1986, vol. 89, 61-72 [0147]
- **B-lymphocytes. BJ BOLTON ; NK SPURR.** Culture of immortalized cells. Wiley-Liss, 1996, 283-297 [0147]
- **Y ODA ; J SANDERS ; M EVANS ; A KIDDIE ; A MUNKLEY ; C JAMES ; T RICHARDS ; J WILLS ; J FURMANIAK ; B REES SMITH.** Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies. *Thyroid*, 2000, vol. 10, 1051-1059 [0148] [0160] [0161] [0162]
- **UA HASAN ; AM ABAI ; DR HARPER ; BW WREN ; WJW MORROW.** Nucleic acid immunization: Concepts and techniques associated with third generation vaccines. *Journal of Immunological Methods*, 1999, vol. 229, 1-22 [0148]

- Y ODA ; J SANDERS ; S ROBERTS ; M MARUYAMA ; R KATO ; M PEREZ ; VB PETERSEN ; N WEDLOCK ; J FURMANIAK ; B REES SMITH. Binding characteristics of antibodies to the TSH receptor. *Journal of Molecular Endocrinology*, 1998, vol. 20, 233-244 [0151] [0156]
- J SANDERS ; Y ODA ; S ROBERTS ; A KIDDIE ; T RICHARDS ; J BOLTON ; V MCGRATH ; S WALTERS ; D JASKOLSKI ; J FURMANIAK. The interaction of TSH receptor autoantibodies with I-labeled TSH receptor. *Journal of Clinical Endocrinology and Metabolism*, 1999, vol. 84, 3797-3802 [0153]
- R LATIF ; P GRAVES ; TF DAVIES. Oligomerization of the human thyrotropin receptor. *Journal of Biological Chemistry*, 2001, vol. 276, 45217-45224 [0156]
- P CHOMCZYNSKI ; N SACCHI. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Analytical Biochemistry*, 1987, vol. 162, 156-159 [0157]
- F SANGER ; S NICKLEN ; AR COULSON. DNA sequencing with chain terminating inhibitors. *Proceedings of the National Academy of Sciences of the USA*, 1977, vol. 74, 5463-5467 [0158]
- L PRENTICE ; J SANDERS ; M PEREZ ; R KATO ; J SAWICKA ; Y ODA ; D JASKOLSKI ; J FURMANIAK ; B REES SMITH. Thyrotropin (TSH) receptor autoantibodies do not appear to bind to the TSH receptor produced in an in vitro transcription/translation system. *Journal of Clinical Endocrinology and Metabolism*, 1997, vol. 82, 1288-1292 [0159]
- JC MORRIS ; ER BERGERT ; DJ MCCORMICK. Structure-function studies of the human thyrotropin receptor. Inhibition of binding of labeled thyrotropin (TSH) by synthetic human TSH receptor peptides. *Journal of Biological Chemistry*, 1993, vol. 268, 10900-10905 [0162]
- S CHEN ; J SAWICKA ; L PRENTICE ; JF SANDERS ; H TANAKA ; V PETERSEN ; C BETTERLE ; M VOLPATO ; S ROBERTS ; M POWELL. Analysis of autoantibody epitopes on steroid 21-hydroxylase using a panel of monoclonal antibodies. *Journal of Clinical Endocrinology and Metabolism*, 1998, vol. 83, 2977-2986 [0162]
- J BOLTON ; J SANDERS ; Y ODA ; C CHAPMAN ; R KONNO ; J FURMANIAK ; B REES SMITH. Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA. *Clinical Chemistry*, 1999, vol. 45, 2285-2287 [0164]
- G SCATCHARD. The attraction of proteins for small molecules and ions. *Annals of the New York Academy of Sciences*, 1949, vol. 51, 660-672 [0165]
- J SANDERS ; Y ODA ; A KIDDIE ; T RICHARDS ; J BOLTON ; V MCGRATH ; S WALTERS ; D JASKOLSKI ; J FURMANIAK ; B REES SMITH. The interaction of TSH receptor autoantibodies with I-labelled TSH receptor. *Journal of Clinical Endocrinology and Metabolism*, 1999, vol. 84, 3797-3802 [0166]
- J MATTHEWS ; G SIMS ; S LEDWIDGE ; D STOTT ; D BEESON ; N WILLCOX ; A VINCENT. Antibodies to acetylcholine receptor in parous women with myasthenia: evidence for immunization by fetal antigen. *Laboratory Investigation*, 2002, vol. 82, 1-11 [0167]
- F SANGER ; S NICKLEN ; AR COULSEN. DNA sequencing with chain terminating inhibitors. *Proceedings of the National Academy of Sciences of the USA*, 1977, vol. 74, 5463-5467 [0167]
- N HAYAKAWA ; LDKE PREMAWARDHANA ; M POWELL ; M MASUDA ; C ARNOLD ; J SANDERS ; M EVANS ; S CHEN ; JC JAUME ; S BAEKKESKOV. Isolation and characterization of human monoclonal antibodies to glutamic acid decarboxylase. *Autoimmunity*, 2002, vol. 35, 343-355 [0168]

ANTITEST A TIROTROPIN RECEPTORHOZ, ÉS ENNEK ALKALMAZÁSAI
SZABADALMI IGÉNYPONTOK

SZTNH-100026045

1. Eljárás átvizsgálatához (screening) autoantitestekre a TSH receptorhoz a testfolyadéknak egy mintájában, ahol a testfolyadékot olyan egyénekből (subject) nyerjük, akik gyanúsak arra, hogy szenvednek egy autoimmun betegségből, vagy hajlamosak arra, vagy rendelkeznek azzal, vagy visszaszerzik (recover) azt, ahol a nevezett belegsgég egy immunreakcióval társul a TSH receptorhoz; az említett eljárás a következő lépésekkel áll:

- (a) szolgáltatjuk kötő (binding) molekulák egy vagy több párját, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális vagy rekombináns antitestet, vagy egy vagy több fragmentumát, amelyek reakciókat a TSH receptorral, vagy egy további antitestet vagy fragmentumát TSH receptorhoz, amely verseng (compete) a TSH receptorhoz való kötéshez az említett humán monoklonális vagy rekombináns antitesttel vagy fragmentumával, ahol az említett első molekulát inhibitor aktivitás jellemzi a ^{125}I -vel jelölt (labelled) TSH kötésre tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 15 egység TSH receptorral bevont (coated) csöveket alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és az említett kötő párnak második molekulája teljes hosszúságú TSH receptor, egy TSH receptor egy vagy több epitópja, vagy egy olyan polipeptid, amely tartalmazza a TSH receptor egy vagy több epitópját;
- (b) érintkezésbe hozzuk (contact) az említett mintát a kötő molekulák említett egy vagy több párával úgy, hogy lehetővé váljék az említett kötő pár említett második molekulája számára, hogy kölcsönhatásba lépjen (interact) vagy (i) az említett mintában jelen levő TSH receptorhoz szolgáló autoantitestekkel, vagy (ii) az említett humán monoklonális vagy rekombináns antitesttel, vagy egy vagy több fragmentumával, vagy a TSH receptorhoz szolgáló említett további antitesttel vagy fragmentumával;
- (c) ellenőrizzük (monitoring) az említett kötő pár említett második molekulájának kölcsönhatását az említett mintában jelen levő említett autoantitestekkel, ezáltal szolgáltatunk jelzést (indication) a TSH receptorhoz szolgáló említett autoantitestek jelenlétéiről az említett mintában.

2. In vitro eljárás TSH-nak és rokon (related) ligandumainak vizsgálatához (assay), ahol az említett eljárás a következő lépéseket tartalmazza:

- (a) szolgáltatunk egy mintát, amely gyanús arra, hogy tartalmaz TSH-t vagy rokon ligandumokat, vagy tartalmaz TSH-t vagy rokon ligandumokat;
- (b) szolgáltatjuk kötő molekulák egy vagy több párját, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális vagy rekombináns antitestet, vagy egy vagy több fragmentumát, amelyek reakciókat a TSH receptorral, vagy egy további antitestet vagy fragmentumát TSH receptorhoz, és amely verseng a TSH receptorhoz való kötéshez az említett humán monoklonális vagy rekombináns antitesttel vagy fragmentumával, ahol az említett első molekulát inhibitor aktivitás jellemzi a ^{125}I -vel jelölt TSH kötésre tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 15 egység TSH receptorral bevont csöveket alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és az említett kötő párnak második molekulája teljes hosszúságú TSH receptor, egy TSH receptor egy vagy több epitópja, vagy egy olyan polipeptid, amely tartalmazza a TSH receptor egy vagy több epitópját;
- (c) érintkezésbe hozzuk az említett mintát a kötő molekulák említett egy vagy több párával úgy, hogy így lehetővé váljék az említett kötő pár említett második molekulája számára, hogy kölcsönhatásba lépjen vagy (i) a TSH-val vagy az említett mintában jelen levő rokon ligandumaival, vagy (ii) az említett humán monoklonális vagy rekombináns antitesttel vagy egy vagy több fragmentumával, vagy az említett TSH receptorhoz szolgáló további antitesttel vagy fragmentumával; és
- (d) ellenőrizzük az említett kötő pár említett második molekulájának kölcsönhatását TSH-val, vagy az említett

mintában jelen levő rokon ligandumokkal.

3. Készlet (kit) átvizsgáláshoz (screening) autoantitestekre a TSH receptorhoz a testfolyadéknak egy mintájában, ahol a testfolyadékot olyan egyénekből nyerjük, aikik gyanúsak arra, hogy szenvednek egy autoimmun betegségből, vagy hajlamosak arra, vagy rendelkeznek azzal, vagy visszaszerzik azt, ahol a nevezett betegség egy immunreakcióval társul a TSH receptorhoz; ahol az említett készlet a következőket tartalmazza:

- (a) kötő molekulák egy vagy több párja, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális antitestet vagy egy vagy több fragmentumát, amelyek reaktivák a TSH receptorral, vagy egy további antitestet vagy fragmentumát TSH receptorhoz, és amely verseng a TSH receptorhoz való kötéshez az említett humán monoklonális vagy rekombináns antitesttel vagy fragmentumával, ahol az említett humán első molekulát inhibitor aktivitás jellemzi a ^{125}I -vel jelölt TSH kölcsönhatásra tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 15 egység TSH receptorral bevont csöveget alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és az említett kötő párnak második molekulája teljes hosszúságú TSH receptor, egy TSH receptor egy vagy több epitópja, vagy egy olyan polipeptid, amely tartalmazza a TSH receptor egy vagy több epitópját;
- (b) eszközök az említett egyén testfolyadékjából való említett minta érintkezésbe hozásához a kötő molekulák említett egy vagy több párrával, úgy, hogy lehetővé váljék az említett kötő pár említett második molekulája számára, hogy kölcsönhatásba lépjen vagy (i) az említett mintában jelen levő TSH receptorhoz szolgáló autoantitestekkel, vagy (ii) az említett humán monoklonális vagy rekombináns antitesttel vagy egy vagy több fragmentumával, vagy az említett TSH receptorhoz szolgáló további antitesttel vagy fragmentumával; és
- (c) eszközök az említett kötő pár említett második molekulájának az említett mintában jelen levő említett autoantitestekkel való kölcsönhatásának ellenőrzésére, ezáltal szolgáltatunk jelzést a TSH receptorhoz szolgáló említett autoantitestek jelenlétééről az említett mintában.

4. A 3. igénypont szerinti készlet, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális vagy rekombináns antitestet a TSH receptorhoz vagy fragmentumához, amelynek affinitása van 10^{10} mo^{-1} vagy nagyobb TSH receptorhoz.

5. Készlet TSH-nak vagy rokon ligandumainak vizsgálatához (assay), ahol az említett készlet a következőket tartalmazza:

- (a) kötő molekulák egy vagy több párja, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális antitestet, vagy egy vagy több fragmentumát, amelyek reaktivák a TSH receptorral, vagy egy további antitestet vagy fragmentumát a TSH receptorhoz, és amely verseng a TSH receptorhoz való kötéshez az említett humán monoklonális vagy rekombináns antitesttel vagy fragmentumával, ahol az említett első molekulát inhibitor aktivitás jellemzi a ^{125}I -vel jelölt TSH kölcsönhatásra tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 15 egység TSH receptorral bevont csöveget alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és az említett kötő párnak második molekulája teljes hosszúságú TSH receptor, egy TSH receptor egy vagy több epitópja, vagy egy olyan polipeptid, amely tartalmazza a TSH receptor egy vagy több epitópját;
- (b) eszközök egy minta, amely gyanús arra, hogy tartalmaz TSH-I, vagy valóban tartalmaz TSH-I vagy rokon ligandumait, érintkezésbe hozására a kötő molekulák említett egy vagy több párrával, úgy, hogy lehetővé váljék az említett kötő pár említett második molekulája számára, hogy kölcsönhatásba lépjen vagy (i) az említett mintában jelen levő TSH-val, vagy (ii) humán monoklonális vagy rekombináns antitesttel vagy egy vagy több fragmentumával, vagy az említett TSH receptorhoz szolgáló további antitesttel vagy fragmentumáival; és
- (c) eszközök az említett kötő pár említett második molekulája kölcsönhatásának ellenőrzésére TSH-val, vagy az említett mintában jelen levő rokon ligandumokkal, ezáltal szolgáltatjuk a TSH vagy rokon ligandumai jelentlétének jelzését az említett mintában.

6. Készlet egy további antitestnek vagy fragmentumának azonosítására (identifying) TSH receptorhoz, amely további antitest vagy fragmentum képes kölcsönhatásba lépni a TSH receptorhoz, és amely verseng a kötéséért a TSH receptorhoz egy humán monoklonális vagy

rekombináns antitesttel, vagy egy vagy több olyan fragmentumával, amely reaktiv a TSH receptorral, ahol a készlet a következőket tartalmazza:

- (a) kötő molekulák egy vagy több párra, ahol az említett kötő pár első molekulája tartalmaz egy humán monoklonális vagy rekombináns antitestet a TSH receptorhoz, ahol az említett első molekulát inhibitor aktivitás **jellemzi** tekintettel a ^{125}I -vel jelölt TSH kötésre a TSH receptorhoz, meghatározva milligrammonként legalább 15 egység TSH receptorral bevont csöveket alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és az említett kötő párnak második molekulája teljes hosszúságú TSH receptor, egy TSH receptor egy vagy több epitópja, vagy egy cíyan polipeptid, amely tartalmazza a TSH receptor egy vagy több epitópját;
- (b) eszközök az (a) lépés kötő molekulái említett egy vagy több párnának érintkezésbe hozásához egy további kötő molekulával, amely vizsgálandó (assayed), mint potenciális további antitest ahhoz a TSH receptorhoz, amely verseng a kötéshez a TSH receptorhoz az (a) lépés említett kötő párnának említett első molekulájával úgy, hogy lehetővé válik az (a) lépés említett kötő pára említett második molekulája számára, hogy kölcsönhatásba lépjen vagy (i) az említett további kötő molekulával, vagy (ii) az (a) lépés említett kötő párnak említett első molekulájával, és
- (c) eszközök az (a) lépés említett kötő pára említett második molekulája kölcsönhatásának ellenőrzésére, és ezáltal annak megbecsülésére (assess), vajon az említett további kötő molekula verseng-e a kötésért a TSH receptorhoz az (a) lépés említett kötő párnak említett első molekulájával.

7. Az 1. vagy 2. igénypont szerinti eljárás, vagy a 3-6. igénypontok bármelyike szerinti készlet, ahol a humán monoklonális vagy rekombináns antitestet vagy egy vagy több fragmentumát inhibitor aktivitás **jellemzi** a ^{125}I -vel jelölt (labelled) TSH kötésre tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 30 egység TSH receptorral bevont csöveket alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint, vagy ahol az inhibitor aktivitás a ^{125}I -vel jelölt TSH kötésre tekintettel a TSH receptorhoz milligrammonként legalább 120 egység az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint.

8. Az 1. vagy 2. igénypont szerinti eljárás, vagy a 3-6. igénypontok bármelyike szerinti készlet, ahol a humán monoklonális vagy rekombináns antitestet vagy egy vagy több fragmentumát stimulátor aktivitás **jellemzi** a CHO sejtek általi cAMP termelésre tekintettel, amely aktivitás expresszál sejtenként mintegy 50000 humán TSH receptor milligrammonként legalább 30 egységgel az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint, vagy ahol a stimulátor aktivitás a CHO sejtek általi cAMP termelére tekintettel expresszál sejtenként mintegy 50000 TSH receptor milligrammonként mintegy 240 egységgel az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint.

9. Az 1. vagy 2. igénypont szerinti eljárás, vagy a 3-6. igénypontok bármelyike szerinti készlet, ahol a humán monoklonális vagy rekombináns antitestet vagy egy vagy több fragmentumát a következők **jellemzik**:

- (a) inhibitor aktivitás a ^{125}I -vel jelölt (labelled) TSH kötésre tekintettel a TSH receptorhoz, meghatározva milligrammonként legalább 30 egység TSH receptorral bevont csöveket alkalmazva az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint; és
- (b) stimulátor aktivitás CHO sejtek általi cAMP termelésre tekintettel, amely aktivitás expresszál sejtenként mintegy 50000 humán TSH receptor milligrammonként legalább 30 egységgel az NIBSC 90/672 nemzetközi szabvány (International Standard) szerint.

10. Az 1. vagy 2. igénypont szerinti eljárás, vagy a 3-6. igénypontok bármelyike szerinti készlet, ahol a további antitest vagy fragmentuma tartalmazza azokat a jellemzőket, ahogyan ezek meg vanak határozva a humán monoklonális vagy rekombináns antitestekhez az 1-3. és 5-6. igénypontok bármelyikében.