WO 2006/031:381 A2 |0 |00 000 0 000 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 March 2006 (23.03.2006)

(10) International Publication Number

WO 2006/031381 A2

(51) International Patent Classification:
GO6T 13/00 (2006.01)

(21) International Application Number:
PCT/US2005/029744

(22) International Filing Date: 19 August 2005 (19.08.2005)
English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
10/938,106 9 September 2004 (09.09.2004) US

(71) Applicant (for all designated States except US): SONY
ELECTRONICS INC. [US/US]; 1 Sony Drive, Park
Ridge, NJ 07656 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WIRTSCHAFTER,
Jenny, D. [US/US]; 3300 Zanker Road, San Jose, CA
95134 (US). MARRIN, Christopher, F. [US/US]; 3300
Zanker Road, San Jose, CA 95134 (US). BROADWELL,
Peter, G. [US/US]; 3300 Zanker Road, San Jose, CA
95134 (US).

(74) Agent: O’BANION, John, P.; O'Banion & Ritchey LLP,
400 Capital Mall, Suite 1550, Sacramento, CA 95814 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS AND APPARATUSES FOR AUTHORING DECLARATIVE CONTENT FOR A REMOTE PLATFORM

110

209
MEMORY
208
PROCESSOR

(57) Abstract: In one embodiment, the
methods and apparatuses transmit authored
content from an authoring device to a remote
device; directly play the authored content on
the remote device; and monitor a portion of
the authored content on the authoring device
while simultaneously playing the portion of
the authored content on the remote device,

120 wherein the authored content is scripted in
_ 110 a declarative markup language.
MEMORY
208
PROCESSOR
110
209,
MEMORY
130
208 3 MEMORY_ _ 212m, _
PROCESSOR | I
| |
] |
l l
| l
i |
| |
| |
_______________ 1
3 211y
1 7,»_‘9} L PROCESSOR

WO 2006/031381 A2 I} N0 A0VOH0 T 00 0000 A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2006/031381 PCT/US2005/029744

METHODS AND APPARATUSES FOR
AUTHORING DECLARATIVE CONTENT FOR A REMOTE
PLATFORM

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. nonprovisional application serial
number 10/938,106 filed on September 9, 2004: which is (i) a continuation-in-part of
U.S. nonprovisional application serial number 10/712,858 filed on November 12,
2003, incorporated herein by reference in its entirety, which is a continuation of U.S.
nonprovisional application serial number 09/632,351 filed on August 3, 2000, now
U.S. Patent No. 6,607,456, incorporated herein by reference in its entirety, which
claims priority to U.S. provisional application serial number 60/146,972 filed on
August 3, 1999, incorporated herein by reference in its entirety; and which is (i) a
continuation-in-part of U.S. nonprovisional application serial number 09/632,350 filed
on August 3, 2000, incorporated herein by reference in its entirety, which claims
priority to U.S. provisional application serial number 60/147,092 filed on August 3,
1999, incorporated herein by reference in its entirety. Priority is claimed to each of

the foregoing patents and patent applications.

FIELD OF INVENTION
The present invention relates generally to authoring declarative content and,

more particularly, to authoring declarative content for a remote platform.

BACKGROUND
Authoring content for a variety of target devices such as gaming consoles,

cellular phones, personal digital assistances and the like are typically done on an

10

15

20

WO 2006/031381 PCT/US2005/029744

authoring device platform. By utilizing a widely used platform such as a personal
computer running Windows®, the author is able to utilize widely available tools for
creating, editing, and modifying the authored content. In some cases, these

target devices have unique and proprietary platforms that are not

interchangeable with the authoring device platform. Utilizing a personal

computer as the authoring device to create content is often easier than authoring
content within the platform of the target device; many additional tools and
resources are typically available on a personal computer platform that is
unavailable on the platform of the target device.

Viewing the authored content on the actual target device is often needed
for debugging and fine-tuning the authored content. However, transmitting the
authored content from the authoring device platform to the target device platform
sometimes requires the authored content to be transmitted in the form of a binary
executable which is recompiled on the actual target device before the authored
content can be viewed on the actual target device. The additional step of
recompiling the binary executable code delays viewing the authored content on
the target device.

Debugging and fine-tuning the authored content on the authoring device
platform is often advantageous compared to modifying the authored content on
the target device platform. Unfortunately, utilizing a binary executable on the
target device hini:lers the author’s ability to debug and fine tune the authored

content on the authoring device platform.

10

WO 2006/031381 PCT/US2005/029744

SUMMARY

In one embodiment, the methods and apparatuses transmit authored
content from an authoring device to a remote device; directly play the authored
content on the remote device; and monitor a portion of the authored content on
the authoring device while simultaneously playing the portion of the authored
content on the remote device, wherein the authored content is scripted in a

declarative markup language.

10

15

20

WO 2006/031381 4 PCT/US2005/029744

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a
part of this specification, illustrate and explain one embodiment of the methods
and apparatuses for authoring declarative content for a remote platform. In the
drawings,

Figure 1 is a diagram illustrating an environment within which the methods
and apparatuses for authoring declarative content for a remote platform are
implemented;

Figure 2 is a simplified block diagram illustrating one embodiment in which
the methods and apparatuses for authoring declarative content for a remote
platform are implemented;

Figure 3 is a simplified block diagram illustrating a system, consistent with
one embodiment of the methods and apparatuses for authoring declarative
content for a remote platform;

Figure 4 is a simplified block diagram illustrating a system, consistent with
one embodiment of the methods and apparatuses for authoring declarative
content for a remote platform;

Figure 5 is a flow diagram consistent with one embodiment of the methods
and apparatuses for authoring and modifying declarative content for a remote

platform;

10

15

20

WO 2006/031381 PCT/US2005/029744

Figure 6 is a flow diagram consistent with one embodiment of the methods
and apparatuses for authoring and modifying declarative content for a remote
platform;

Figure 7A is a timing diagram illustrating one embodiment in which the
methods and apparatuses for authoring declarative content for a remote platform
are implemented;

Figure 7B is a timing diagram illustrating one embodiment in which the
methods and apparatuses for authoring declarative content for a remote platform
are implemented;

Figure 8 is a simplified block diagram illustrating one embodiment in which
the methods and apparatuses for authoring declarative content for a remote
pltatform are implemented,;

Figure 9 is a flow diagram consistent with one embodiment of the methods
and apparatuses for authoring and modifying declarative content for a remote
platform;

Figure 10 is a simplified block diagram illustrating one embodiment in
which the methods and apparatuses for authoring declarative content for a
remote platform are implemented; and

Figure 11 is a flow diagram consistent with one embodiment of the
methods and apparatuses for authoring and modifying declarative content for a

remote platform.

10

15

20

WO 2006/031381 ‘ PCT/US2005/029744

DETAILED DESCRIPTION

The following detailed description of the methods and apparatuses for
authoring declarative content for a remote platform refers to the accompanying
drawings. The detailed description is not intended to limit the methods and
apparatuses for authoring declarative content for a remote platform. Instead, the
scope of the methods and apparatuses for authoring declarative content for a
remote platform are defined by the appended claims and equivalents. Those
skilled in the art will recognize that many other implementations are possible,
consistent with the present invention.

References to a “device” include a device utilized by a user such as a
computer, a portable computer, a personal digital assistant, a cellular telephone, -
a gaming console, and a device capable of processing content.

References to “content” include graphical representations both static and
dynamic scenes, audio representations, and the like.

References to “scene” include a content that is configured to be presented
in a particular manner.

In one embodiment, the methods and apparatuses for authoring
declarative content for a remote platform allows an authoring device to create
content for use on a remote device. In one embodiment, the authoring device
utilizes well known tools and interfaces to create the content. For example,
exemplary authoring devices include personal computers such as Windows®,

Apple®, and Linux® based personal computers. In one embodiment, the remote

10

15

20

WO 2006/031381 PCT/US2005/029744

device is configured té utilize the content authored via the authoring device. For
example, exemplary remote devices are game consoles utilizing Sony
PlayStation® applications.

In one embodiment, the authoring device utilizes a declarative language to
create the authored content. One such declarative language is illustrated with
code snippets shown within the specification. Through the use of a declarative
language, the authored content may be scripted directly from the authoring
device. Further, fhe authored content that is created on the authoring device is
specifically developed for use on the remote device. In one example, the
authored content created on a personal computer is configured to be utilized on a
gaming console.

In one embodiment, the methods and apparatuses for authoring
declarative content for a remote platform allows the remote device to directly
utilize the authored content created on the authoring device. Further, the
authored content is transmitted from the authoring device and played directly on
the remote device without re-compiling on the remote device. For example, a
portion of the authored content may be simultaneously played while streaming
the authored content from the authoring deviée to the remote device. By playing
the authored content directly on the remote device, modifying and debugging the
authored content on the authoring device is possible.

Figure 1is a diagram illustrating an environment within which the methods
and apparatuses for authoring declarative content for a remote platform are

implemented. The environment includes an electronic device 110 (e.g., a

10

15

20

WO 2006/031381 PCT/US2005/029744

computing platform configured to act as a client device, such as a computer, a
personal digital assistant, and the like), a user interface 115, a network 120 (e.g.,
a local area network, a home network, the Internet), and a server 130 (e.g., a
computing platform configured to act as a server). |

In one embodiment, one or more user interface 115 components are
made integral with the electronic device 110 (e.g., keypad and video display
screen input and output interfaces in the same housing such as a personal digital
assistant. In other embodiments, one or more user interface 115 components
(e.g., a keyboard, a pointing device such as a mouse, a trackball, etc.), a
microphone, a speaker, a display, a camera are physically separate from, and
are conventionally coupled to, electronic device 110. In one embodiment, the
user utilizes interface 115 to access and control content and applications stored
in electronic device 110, server 130, or a remote storage device (not shown)
coupled via network 120.

In accordance with the invention, embodiments of authoring declarative
content for a remote platform below are executed by an electronic processor in
electronic device 110, in server 130, or by processors in electronic device 110
and in server 130 acting together. Server 130 is illustrated in Figure 1 as being a
single computing platform, but in other instances are two or more interconnected
computing platforms that act as a server.

In one embodiment, the electronic device 110 is the remote device

configured to receive authored content via the network 120. In another

10

15

20

WO 2006/031381 PCT/US2005/029744

embodiment, the electronic device 110 is an authoring device configured to
transmit authored content for the remote device via the network 120.

Figure 2 is a simplified diagram illustrating an exemplary architecture in
which the methods and apparatuses for authoring declarative content for a
remote platform are implemented. The exemplary architecture includes a
plurality of electronic devices 110, a server device 130, and a network 120
connecting electronic devices 110 to server 130 and each electronic device 110
to each other. The plurality of electronic devices 110 are each configured to
include a computer-readable medium 209, such as random access memory,
coupled to an electronic processor 208. Processor 208 executes program
instructions stored in the computer-readable medium 209. In one embodiment, a
unique user operates eaéh electronic device 110 via an interface 115 as
described with reférence to Figure 1.

The server device 130 includes a processor 211 coupled o a computer-
readable medium 212. In one embodiment, the server device 130 is coupled to
one or more additional external or internal devices, such as, without limitation, a
secondary data storage element, such as database 240.

In one i'nstance, processors 208 and 211 are manufactured by Intel
Corporation, of Santa Clara, California. In other instances, other
microprocessors are used.

In one embodiment, the plurality of client devices 110 and the server 130
include instructions for authoring declarative content for a remote platform. In

one embodiment, the plurality of computer-readable media 209 and 212 contain,

10

15

20

WO 2006/031381 ’ PCT/US2005/029744

in part, the customized application. Additionally, the plurality of client devices

" 110 and the server 130 are configured to receive and transmit electronic

messages for use WitH the customized application. Similarly, the network 120 is
configured to transmit electronic messages for use with the customized
application.

One or more user applications are stored in media 209, in media 212, or a
single user application is stored in part in one media 209 and in part in media
212. In one instance, a stored user application, regardless of storage location, is
made customizable based on authoring declarative content for a remote platform
as determined using embodiments described below.

Figure 3 illustrates one embodiment of a system 300. In one embodiment,
the system 300 is embodied within the server 130. In another embodiment, the
system 300 is embodied within the electronic device 110. In yet another
embodiment, the system 300 is embodied within both the electronic device 110
and the server 130.

In one embodiment, the system 300 includes a content transmission
module 310, a content detection module 320, a storage module 330, an interface
module 340, and a control module 350.

In one embodiment, the control module 350 communicates with the
content transmission module 310, the content detection module 320, a storage
module 330, and the interface module 340. In one embodiment, the control

module 350 coordinates tasks, requests, and communications between the

10

10

15

20

WO 2006/031381 PCT/US2005/029744

content transmission module 310, the content detection module 320, a storage
module 330, and the interface module 340.

In one embodiment, the content transmission module 310 detects
authored content created by an authoring device and transmits the authored
content to the detected remote device. In one embodiment, the remote device is
a device that is especially configured to utilize the authored content such as a
gaming console, a cellular telephone, a set top box, or other device.

In one embodiment, the content detection module 320 monitors the use of
the authored content as utilized by the remote device from the authoring device.
By monitoring the authored content while being utilized on the remote device,
refining and modifying the authored content with the authoring device is possible.
Further, 'monitoring the authored content in nearly real-time on the remote device
also makes refining and modifying the authored content on the authoring device
more convenient. For example, the remote device(m'ay simultaneously monitor
the authored content while additional authored content is streamed to the remote
device from the authoring device.

In one embodiment, the storage module 330 stores the authored content.
In one embodiment, the authored content is stored as a declarative language in
which the outcome of the scene is described explicitly. Further, the authored
content is compatible with the remote device and is utilized by the remote device
without re-compiling the authored content.

In one embodiment, the interface module 340 receives a signal from one

of the electronic devices 110 indicating transmission of the authored content from

11

10

15

20

WO 2006/031381 4 PCT/US2005/029744

the authoring device to the remote device via the system 300. In another
embodiment, the interface module 340 receives a signal from one of the
electronic devices 110 indicating use of the authored content on the remote
device. In yet another embodiment, the interface module 340 receives signals
responsive to monitoring the authored content on the authoring device while the
authored content is utilized on the remote device. Further, the inferface module
340 allows the authoring device to control the playback of the authored content
located on the remote device.

The system 300 in Figure 3 is shown for exemplary purposes and is
merely one embodiment of the methods and apparatuses for authoring
declarative content for a remote platform. Additional modules may be added to
the system 300 without departing from the scope of the methods and
apparatuses for authoring declarative content for a remote platform. Similarly,
modules may be combined or deleted without departing from the scope of the
methods and apparatuses for authoring declarative content for a remote platform.

Figure 4 illustrates an exemplary system 411 for utilizing a declarative
language for use as the authored content within the system 300.

In one embodiment, the system 411 includes a core runtime module 410
which presents various Application Programmer Interface (API hereafter)
elements and the object model to a set of objects present in the system 411. In
one instance, a file is parsed by parser 414 into a raw scene graph 416 and
passed on to the core runtime module 410, where its objects are instantiated and

a runtime scene graph is built.

12

10

15

20

WO 2006/031381 PCT/US2005/029744

The objects cén be stored within built-in objects 418, author defined
objects 420, native objects 424, or the like. In one embodiment, the objects use
a set of available managers 426 to obtain platform services 432. These platform
services 432 include event handling, loading of assets, playing of media, and the
like. In one embodiment, the objects use rendering layer 428 to compose
intermediate or final images for display.

In one embodiment, a page integration component 430 is used to interface
the authored content within the system 411 to an external environment, such as
an HTML or XML page. In another embodiment, the external environment
includes other platforms such as gaming consoles, cellular telephones, and other
hand-held devices.

In one embodiment, the system 411 contains a system object with
references to the set of managers 426. Each manager 426 provides the set of
APIs to control some aspect of system 411. An event manager 426D provides
access to incoming system events originated by user input or environmental

events. A load manager 426C facilitates the loading of the authored content files

~ and native node implementations. A media manager 426E provides the ability to

load, control and play audio, image and video media assets. A render manager
426G allows the creation and management of objects used to render scenes. A
scene manager 426A controls the scene graph. A surface manager 426F allows
the creation and management of surfaces onto which scene elements and other
assets may be composited. A thread manager 426B gives authors the ability to

spawn and control threads and to communicate between them.

13

10

15

20

WO 2006/031381 PCT/US2005/029744

Fig. 5 illustratés in a flow diagram, a conceptual description of the flow of
content through the system 411. The blocks within the flow diagram can be
performed in a different sequence without departing from the spirit of the
methods and apparatuses for posting messages to participants of an event.
Further, blocks can be deleted, added, or combined without departing from the
spirit of the methods and apparatuses for authoring declarative content for a
remote platform.

In Block 550, a presentation begins with a source which includes a file or
stream 434 (Fig. 4) of content being brought into parser 414 (Fig. 4). The source
could be in a native VRML-like textual format, a native binary format, an XML
based format, or the like. Regardless of the format of the source, in Block 555,
the source is converted into raw scene graph 416 (Fig. 4). The raw scene graph
416 represents the nodes, fields and other objects in the content, as well as field
initialization values. The raw scene graph 416 also can contain a descriptfon of
object prototypes, external prototype references in the stream 434, and route
statements.

The top level of the raw scene graph 416 includes nodes, top level fields
and functions, prototypes and routes contained in the file. In one embodiment,
the system 411 allows fields and functions at the top level in addition to
traditional elements. In one embodiment, the top level of the raw scene graph
416 is used to provide an interface to an external environment, such as an HTML
page. In another embodiment, the top level of the raw scene graph 416 also

provides the object interface when a stream 434 is used as the authored content

14

10

15

20

WO 2006/031381 PCT/US2005/029744

of the remote device.

In one embodiment, each raw nodé includes a list of the fields initialized
within its context. In one embodiment, each raw field entry includes the name,
type (if given) and data value(s) for that field. In one embodiment, each data
value includes a number, a string, a raw node, and/or a raw field that can
represent an explicitly typed field value.

In Block 560, the prototypes are extracted from the top level of raw scene
graph 416 and used to populate the database of object prototypes accessible by
this scene.

The raw scene graph 416 is then sent through a build traversal. During
this traversal, each object is built (Block 565), using the database of object
prototypes.

' in Block 570, the routes in stream 434 are established. Subsequently, in
Block 575, each field in the scene is initialized. In one embodiment, the |
initialization is performed by sending initial events to non-default fields of objects.
Since the scene graph str_ucture is achieved through the use of node fields, Block
575 also constructs the scene hierarchy as well.

In one embodiment, events are fired using in order traversal. The first
node encountered enumerates fields in the node. If a field is a hode, that node is
traversed first. As a result of the node field being traversed, the nodes in that
particular branch of the tree are also initialized. Then, an eveni is sent to that
node field with the initial value for the node field.

After a given node has had its fields initialized, the author is allowed to

15

10

15

20

WO 2006/031381 . PCT/US2005/029744

add initialization logic (Block 580) to prototyped objects‘to ensure that the node is
fully initialized at call time. The Blocks described above produce a root scene. in
Block 585 the scene is delivered to the scene manager 426A (Fig. 4) created for
the scene.

In Block 590, the scene manager 426A is used to render and perform
behavioral processing either implicitly or under author control. In one
embodiment, a scene rendered by the scene manager 426A is constructed using
objects from the built-in objects 418, author defined objects 420, and native
objects 424. Exemplary objects are described below.

In one embodiment, objects may derive some of their functionality from
their parent objects that subsequently extend or modify their functionality. Atthe
base of the hierarchy is the object. In one embodiment, the two main classes of
objects are a node and a field. Nodes typically contain, among other things, a
render method, which gets called as part of the render traversal. The data
properties of nodes are called fields. Among the object hierarchy is a class of
objects called timing objects, which are described in detail below. The following
code portions are for exemblary purposes. It should be noted that the line
numbers in each code portion merely represent the line numbers for that
particular code portion and do not represent the line numbers in the original

source code.

SURFACE OBJECTS
A Surface Object is a node of type SurfaceNode. In one embodiment, a

SurfaceNode class is the base class for all objects that describe a two-

dimensional image as an array of color, depth, and opacity (alpha) values.

16

10

15

20

25

WO 2006/031381 PCT/US2005/029744

SurfaceNodes are used primarily to provide an image to be used as a texture
map. Derived from the SurfaceNode class are MovieSurface, ImageSurface,
MatteSurface, PixelSurface and SceneSurface.

The following code portion illustrates the MovieSurface node.

1) MovieSurface: SurfaceNode TimedNode AudioSourceNode {
2) field MF String url 1
3) field TimeBaseNode timeBase NULL

4) field Time duration 0
5) field Time loadTime 0
6) field String loadStatus “‘NONE”

A MovieSurface node renders a movie or a series of static images on a
surface by providing access to the sequence of images defining the movie. The
MovieSurface’s TimedNode parent class determines which frame is rendered
onto the surface at any given time. Movies can also be used as sources of
audio.

In line 2 of the code portion, (“Multiple Value Field) the URL field provides
a list of potential locations of the movie data for the surface. The list is ordered
such that element 0 describes the preferred source of the data. If for any reason
element O is unavailable, or in an unsupported format, the next element may be
used.

In line 3, the timeBase field, if specified, specifies the node that is to
provide the timing information for the movie. In particular, the timeBase field
provides the movie with the information needed to determine which frame of the
movie to display on the surface at any given instant. In one embodirﬁent, if no

timeBase is specified, the surface will display the first frame of the movie.

17

10

15

20

WO 2006/031381 PCT/US2005/029744

In line 4, the duration field is set by the MovieSurface node to the length of
the movie in seconds once the movie data has been fetched.

In lines 5 and 6, the loadTime and the loadStatus fields provide
information from the MovieSurface node concerning the availability of the movie
data. LoadStatus has five possible values, “NONE”, “REQUESTED", “FAILED”,
“ABORTED”, and “LOADED".

“NONE” is the initial state. A “NONE’ event is also sent if the node’s url is -
cleared by either setting the number of values to 0 or setting the first URL string
to the empty string. When this occurs, the pixels of the surface are set to black
and opaque (i.e. color is 0,0,0 and transparency is 0).

A “REQUESTED” event is sent whenever a non-empty url value is set.
The pixels of the surface remain unchanged after a “REQUESTED" event.

“FAILED” is sent after a “REQUESTED" event if the movie loading did not
succeed. This can happen, for example, if the UIRL refers to a non-existent file
or if the file does not contain valid data. The pixels of the surface remain
unchanged after a “FAILED" event.

An “ABORTED” event is sent if the current state is “REQUESTED" and
then the URL changes again. If the URL is changed to a non-empty value,
“ABORTED" is followed by a “REQUESTED” event. [f the URL is changed to an
empty value, “ABORTED" is followed by a “NONE" value. The pixels of the
surface remain unchanged after an “ABORTED"” event.

A “LOADED’ event is sent when the movie is ready to be displayed. Itis

followed by a loadTime event whose value matches the current time. The frame

18

10

15

20

25

30

WO 2006/031381 ' PCT/US2005/029744

of the movie indicated by the timeBase field is rendered onto the surface. If
timeBase is NULL, the first frame of the movie is rendered onto the surface.
The following code portion illustrates the imageSurface node.

1) ImageSurface: SurfaceNode{

2) field MF String url 0
3) field Time loadTime 0

4) field String loadStatus “NONE"

An ImageSurface node renders an image file onto a surface. In line 2 of
the code portion, the URL field provides a list of potential locations of the image
data for the surface. The list is ordered such that element 0 describes the most
preferred source of the data. If for any reason element 0 is unavailable, or in an
unsupported format, the next element may be used. Inlines 3 and 4, the
loadTime and the loadStatus fields provide information from the ImageSurface
node concerning the availability of the image data. LoadStatus has five possible
values such as “NONE”, “REQUESTED", “FAILED”, “ABORTED", and

“LOADED”.

The following code portion illustrates the MatteSurface node.

1) MatteSurface: SurfaceNode {

2) field SurfaceNode surfacel NULL

3) field SurfaceNode surface2 NULL

4) field String operation

5) field MF Float parameter 0

6) field Bool overwriteSurface2 FALSE
}

The MatteSurface node uses image compositing operations to combine
the image data from surface 1 and surface 2 onto a third surface. The result of
the compositing operation is computed at the resolution of surface 2. If the size of

surface | differs from that of surface 2, the image data on surface | is zoomed up

19

10

15

20

WO 2006/031381 PCT/US2005/029744

or down before performing the operation to make the size of surface 1 equal to
the size of surface 2.

In lines 2 and 3 of the code portion, the surface | and surface 2 fields
specify the two surfaces that provide the input image data for the compositing
operation. In line 4, the operation field specifies the compositing function to
perform on the two input surfaces. Possible operations include
“REPLACE_ALPHA", “MULTIPLY_ALPHA”, “CROSS_FADE”, and “BLEND".

“REPLACE_ALPHA" overwrites the alpha channel A of surface 2 with data
from surface I. If surface 1 has a component (grayscale intensity only), that
component is used as the alpha (opacity) values. If surface 1 has two or four
components (grayscale intensity + alpha or RGBA), the alpha channel A is used
to provide the alpha values. If surface 1 has three components (RGB), the
operation is undefined. This operation can be used to provide static or dynamic
alpha masks for static or dynamic images. For example, a SceneSurface could
render an animated James Bond character against a transparent background.
The alpha component of this image could then be used as a mask shape for a
video clip.

“MULTIPLY_ALPHA” is similar to REPLACE_ALPHA. except that the
alpha values from surface | are multiplied with the alpha values from surface 2.

“CROSS_FADE" fades between two surfaces using a parameter value to
control the percentage of each surface that is visible. This operation can
dynamically fade between two static or dynamic images. By animating the

parameter value (line 5) from O to 1 the image on surface 1 fades into that of

20

10

15

10

20

25

WO 2006/031381 ‘ PCT/US2005/029744

surface 2.

“BLEND” combines the image data from surface | and surface 2 using the
alpha channel! from surface 2 to control the blending percentage. This operation
allows the alpha channel of surface 2 to control the blending of the two images.
By animating the alpha channel of surface 2 by rendering a SceneSurface or
playing a MovieSurface, a complex traveling matte effect can be produced. If
R1, G1, B1, and Al represent the red, green, blue, and alpha values of a pixel of
surface | and R2, G2, B2, and A2 represent the red, green, blue, and alpha
values of the corresponding pixel of surface 2, then the resulting values of the
red, green, blue, and alpha components of that pixel are:

red =RI*(1-A2)+R2*A2

green =Gl*(1-A2)+G2*A2

blue =B1*(1-A2)+B2*A2

alpha =1
“ADD” and “SUBTRACT” add or subtract the ‘color channels of surface 1 and
surface 2. The alpha of the result equals the alpha of surface 2.

| In line 5, the parameter field provides one or more floating point

parameters that can altér the effect of the compositing function. The specific
interpretation of the parameter values depends upon which operation is
specified.

In line 6, the overwrite surface 2 field indicates whether the MatteSurface
node should allocate a new surface for storing the result of the compositing
operation (overwriteSurface2 = FALSE) or whether the data stored on surface 2
should be overwritten by the compbsiting operation (overwriteSurface2 = TRUE).

The following code portion illustrates the SceneSurface node.

21

(1)

(3)
4)

10

15

20

25

WO 2006/031381 PCT/US2005/029744

1) PixelSurface: SurfaceNode {
2)field Image image 000

}

A PixelSurface node renders an array of user-specified pixels onto a
surface. Inline 2, the image field describes the pixel data that is rendered onto
the surface.

The following code portion illustrates the use of SceneSurface node.

* SceneSurface: SurfaceNode {

field MF ChildNode children 1

field UInt32 width
field UInt32 height 1

R A

A SceneSurface node renders the specified children on a surface of the
specified size. The SceneSurface automatically re-renders itself to reflect the
current state of its children.

In line 2 of the code portion, the children field describes the ChildNodes to
be rendered. Conceptually, the children field describes an entire scene graph
that is rendered independently of the scene graph that contains the
SceneSLJrface node.

In lines 3 and 4, the width and height fields specify the size of the surface
in pixels. For example, if width is 256 and height is 512, the surface contains a
256 x 512 array of pixel values.

In some embodiments, the MovieSurface, ImageSurface, MatteSurface,
PixelSurface, and SceneSurface nodes are utilized in rendering a scene.

At the top level of the scene description, the output is mapped onto the

display, the “top level Surface.” Instead of rendering its results to the display, the

22

10

15

20

WO 2006/031381 PCT/US2005/029744

three dimensional rendered scene can generate its output onto a surface using
one of the above mentioned SurfaceNodes, where the output is available to be
incorporated into a richer scene composition as desired by the author. The
contents of the surface, generated by rendering the surface’s embedded scene
description, can include color information, transparency (alpha channel) and
depth, as part of the surface’s structured image organization. An image, in this
context is defined to include a video image, a still image, an animation ora
scene. |

A surface is also defined to support the specialized requirements of
various texture-mapping systems that are located internally, behind a common
image management interface. As a result, any surface producer in the system
can be consumed as a texture by the three dimensional rendering process.
Examples of such surface producers include an ImageSurface, a MovieSurface,
a MatteSurface, a SceneSurface, and an ApplicationSurface.

An ApplicationSurface maintains image data as rendered by its embedded
application process, such as a spreadsheet or word processor, a manner
analogous to the application window in a traditional windowing system.

The integration of surface model with rendering production and texture
consumption allows declarative authoring of decoupled rendering rates.
Traditionally, three dimensional scenes have been rendered monolithically,
producing a final frame rate to the viewer that is governed by the worst-case
performance due to scene complexity and texture swapping. In a real-time,

continuous composition framework, the surface abstraction provides a

23

10

15

20

25

WO 2006/031381 PCT/US2005/029744

mechanism for decoupling rendering rates for different elements on the same
screen. For example, it may be acceptable to portray a web browser that
renders slowly, at perhaps 1 frame per second, but only as long as the video
frame rate produced by another application and displayed alongside the output of
the browser can 'be sustained at a full 30 frames per second.

If the web browsing application draws into its own surface, then the screen
compositor can render unimpeded at full motion video frame rates, consuming
the last fully drawn image from the web browser’s surface as part of its fast

screen updates.

TIMING OBJECTS

Timing objects include a TimeBase node. This is included as a field of a
timed node and supplies a common set of timing semantics to the media.
Through node instancing, the TimeBase node can be used for a number of
related media nodes, ensuring temporal synchronization. A set of nodes
including the Score node is utilized for sequencing media events. The Score
node is a timed node and derives its timing from a TimeBase. The Score node
includes a list of Cue nodes, which emit events at the time specified. Various
timing objects, including Score, are described below.

The following code portion illustrates the TimeNode node. A description of
the functions in the node follows thereafter.

1) TimedNode ChildNode {

2) field TimeBaseNode timeBase NULL

3) function Time getduration()
4) function void updateStartTime(Time now, Time mediaTime, Float

24

10

15

20

25

WO 2006/031381 PCT/US2005/029744

rate)

5) function void updateStopTime(Time now, Time mediaTime, Float
rate)

6) function void updateMediaTime(Time now, Time mediaTime, Float
rate)

}

This object is the parent of all nodes controlled by a TimeBaseNode. In
line 2 of the code portion, the TimeBase field contains the controlling
TimeBaseNode, which makes the appropriate function calls listed below when
the time base starts, stops or advances.

In line 3, the getDuration function returns the duration of the TimedNode.
If unavailable, a value of -1 is returned. This function is typically overridden by
derived objects.

Line 4 lists the updateStartTime function. When called, this function starts
advancing its related events or controlled media, with a starting offset specified
by the mediaTime value. The updateStartTime function is typically overridden by
derived objects.

Line 5 lists the updateStopTime function, which when called, stops
advancing its related events or controlled media. This function is typically
overridden by derived objects.

In line 6, the updateMediaTime function is called whenever mediaTime is
updated by the TimeBaseNode. The updateMediaTime function is used by
derived objects to exert further control over their media or send additional events.

The following code portion illustrates the intervalSensor node.

1) IntervalSensor : TimedNode {

2) field Timecyclelnterval 1
3) field Float fraction O

25

WO 2006/031381 PCT/US2005/029744

4) field Floattime O
}
The IntervalSensor node generates events as time passes.

5 IntervalSensor node can be used for many purposes including but not limited to
drive continuous simulations and animations; to control periodic activities (e.g.,
one per minute); and to initiate single occurrence events such as an alarm clock.

The IntervalSensor node sends initial fraction and time events when its
updateStartTime() function is called. In one embodiment, this node also sends a

10 fraction and time event every time updateMediaTime() is called. Finally, final
fraction and time events are sent when the updateStopTimeO function is called.

In line 2 of the code portion, the cyclelnterval field is set by the author to
determine the length of time, measured in seconds, it takes for the fraction to go
from 0 to 1. This value is returned when the getDuration() function is called.

15 Line 3 lists the fraction field, which generates events whenever the

TimeBaseNode is running using equation (1) below:

fraction = max(min(mediaTime / cyclelnterval, 1), 0) Eqgn. (1)

20 Line 4 lists the time field, which generates events whenever the

TimeBaseNode is running. The value of the time field is the current wall clock

time.
The following code portion illustrates the Score node.
1) Score : TimedNode{
25 2) field ME CueNode cue []

26

10

15

20

25

WO 2006/031381 PCT/US2005/029744

}

This object calls each entry in the cue field for every updateStartTime(),
updateMediaTime(), and updateStopTime() call received. Calls to each cue entry
returns the currently accumulated relative time. This value is passed to
subsequent cue entries to allow relative offsets between cue entries to be
computed.

In line 2 of the code portion, the cuefield holds the list of CueNode entries
to be called 20 with the passage of mediaTime.

The following code portion illustrates the TimeBaseNode node.

1) TimeBaseNode : Node {
2) field Time mediaTime O

3) function void evaluate(Time time)
4) function void addClient(TimedNode node)
5) function void removeClient(TimedNode node)

6) function 1nt32 getNumClients 0
7) function TimedNode getClient(1nt32 index)

This object is the parent of all nodes generating mediaTime. Line 2 of the
code portion lists the mediaTime field, which generates an event whenever
mediaTime advances. MediaTime field is typically controlled by derived objects.

Line 3 lists the evaluate function, which is called by the scene manager
when time advances if this TimeBaseNode has registered interest in receiving
time events.

Line 4 lists addClient function, which is called by each TimedNode when
this TimeBaseNode is set in their timeBase field. When mediaTime starts,

advances or stops, each client in the list is called. If the passed node is already a

27

10

15

20

25

30

WO 2006/031381 PCT/US2005/029744

client, this function performs no operations.

Line 5 lists the removeClient function, which is called by each TimedNode

when this TimeBaseNode is no longer set in their timeBase field. If the passed

node is not in the client list, this function performs no operations.

Line 6 lists the getNumClients function, which returns the number of

clients currently in the client list.

index.

Line 7 lists the getClient function, which returns the client at the passed

If the index is out of range, a NULL value is returned.

The following code portion illustrates the TimeBase node.

TimeBase : TimeBaseNode {

field Bool loop false

field Time startTime 0

field Time playTimeO

field Time stopTime 0

field Time mediastartTime O
field Time mediaStopTime O
field Float rate 1

field Time duration O

field Bool enabled true

field fool isActive false

This object controls the advancement of mediaTime. TimeBase can start,

stop and resume this value, as well as make mediaTime loop continuously. Time

Base allows mediaTime to be played over a subset of its range.

In line 2 of the code portion, the loop field controls whether or not

mediaTime repeats its advancement when mediaTime reaches the end of its

travel.

In line 3, the startTime field controls when mediaTime starts advancing.

When startTime, which is in units of wall clock time, is reached the TimeBase

28

10

15

20

WO 2006/031381 PCT/US2005/029744

begins running. This is true as long as stopTime is less than startTime. When
this occurs mediaTime is set to the value of mediastartTime if rate is greater than
or equal to 0. If mediaStartTime is out of range (see mediaStartTime for a
description of its valid range), mediaTime is setto 0. If the rate is less than 0,
mediaTime is set to mediaStopTime. If mediaStopTime'is out of range,
mediaTime is set to duration. The TimeBase continues to run until stopTime is
reached or mediaStopTime is reached (mediastartTime if rate is less thah 0).Ifa
startTime event is received while the TimeBase is running, it is ignored.

| In lines 4 and 5, the playTime field behaves identically to startTime except
that mediaTime is not reset upon activation. The playTime field allows
mediaTime to continue advancing after the TimeBase is stopped with stopTime.
If both playTime and startTime have the same value, startTime takes
precedence. If a playTime event is received while the TimeBase is running, the
event is ignored. The stopTime field controls when the TimeBase stops. .

In line 6, the mediastartTime field sets the start of the sub range of the
media duration over which mediaTime shall run. The range of mediastartTime is
from zero to the end of the duration (0..duration). If the value of mediaStartTime
field is out of range, 0 is used in its place.

In line 7, the mediaStopTime field sets the end of the sub range of the
media duration over which mediaTime runs. The range of mediaStopTime is
from zero to the end of the duration (0..duration). If the value of mediaStopTime
is out of range, the duration value is used in its place.

In line 8, the rate field allows mediaTime to run at a rate other than one

29

10

15

20

25

30

WO 2006/031381 PCT/US2005/029744

second per second of wall clock time. The rate provided in the rate field is used
as an instantaneous rate. When the evaluate function is called, the elapsed time
since the last céll is multiplied by rate and the result is added to the current
mediaTime.

In line 9, the duration field generates an event when the duration of all
clients of this TimeBase have determined their duration. The value of the
duration field is the same as the client with the longest duration.

In line 10, the enabled field enables the TimeBase. When enabled goes
false, isActive goes false if it was true and mediaTime stops advancing. While
false, startTime and playTime are ignored. When enabled field goes true,
startTime and playTime are evaluated to determine if the TimeBase should begin
running. If so, the behavior as described in startTime or playTime is performed.

Line 11 lists the isActive field, which generates a true event when the
TimeBase becomes active and a false event when the timefalse becomes
inactive.

The following code snippet illustrates the CueNode node.

1) CueNode: Node {

2) field Float offset -1

3) field float delay O

4) field Bool enabled true

5) field Int32 direction O

6) function void updateStartTime(Time now, Time mediaTime, Float
e 7) function void updateStopTime(Time now, Time mediaTime, Float
e 8) function Time evaluate(Time accumulated, Time now, Time
mediaTime, Float rate)

9) function Time getAccumulatedTime(Time accumulated)
10) function void fire(Time now, Time mediaTime)

30

10

15

20

WO 2006/031381 4 PCT/US2005/029744

This object is the parent for all objects in the Score’s cue list. In line 2 of
the code portion, the offset field establishes a 0 relative offset from the beginning
of the sequence. For instance, a value of 5 will fire the CueNode when the
incoming mediaTime reaches a value of 5.

In line 3, the delay field establishes a relative delay before the CueNode
fires. If offset is a value other than -1 (the default), this delay is measured from
offset. Otherwise the delay is measured from the end of the previous CueNode
or from 0 if this is the first CueNode. For instance, if offset has a value of 5 and
delay has a value of 2, this node will fire when mediaTime reaches 7. If offset
has a value of -1 and delay has a value of 2, this node will fire 2 seconds after
the previous CueNode ends.

In line 4, if the enabled field is false, the CueNode is disabled. The
CueNode behaves as though offset and delay were their default values and it
does not fire events. Ifit is true, the CueNode behaves normally.

In line 5, the direction field controls how this node fires relative to the
direction of travel of mediaTime. If this field is 0, this node fires when this node’s
offset and/or delay are reached, whether mediaTime is increasing (rate greater
than zero) or decreasing (rate less than zero). If direction field is less than zero,
this node fires only if its offset and/or delay are reached when mediaTime is
decreasing. If direction field is greater than zero, this node fires only if this
node’s offset and/or delay are reached when mediaTime is increasing.

Line 6 lists the updateStartTime function, which is called when the parent

Score receives an updateStartTime() function call. Each CueNode is called in

31

10

15

20

25

WO 2006/031381 PCT/US2005/029744

sequence.

Line 7 lists the updateStopTime function, which is called when the parent
Score 25 receives an updateStopTime() function 6a|l. Each CueNode is called in
sequence.

Line 8 lists the evaluate function, which is called when the parent Score
receives an updateMediaTime function call. Each CueNode is called in
sequence and must return its accumulated time. For instance, if offset is 5 and
delay is 2, the CueNode would return a value of 7. If offset is -1 and delay is 2,
the CueNode would return a value of the incoming accumulated time plus 2.

This is the default behavior. Some CueNodes (such as IntervalCue) have a well
defined duration as well as a firing time.

In line 9, the getAccumulatedTime function returns the accumulated time
using the same calculation as in the evaluate() function.

Line 10 lists the fire function, which is called from the default evaluate()
function when the CueNode reaches its firing time. The fire function is intended
to be overridden by the specific derived objects to perform the appropriate action.

The following code portion illustrates the MediaCue node.

1) MediaCue CueNode TimeBaseNode {
2) field Time mediastartTime O
3) field Time mediaStopTime 0

4) field Time duration 0
5) field Bool isActive false

}

This object controls the advancement of mediaTime when this CueNode is

active. MediaCue allows mediaTime to be played over a subset of its range.

32

10

15

20

25

WO 2006/031381 ‘ PCT/US2005/029744

MediaCue is active from the time determined by the offset and/or delay fieid for a
length of time determined by mediaStopTime minus mediaStartTime. The value
MediaCue returns from getAccumulatedTime() is the value computed by adding
the default function to the mediaStopTime and subtracting the mediaStartTime.
This node generates mediaTime while active, which is computed by subtracting
the firing time plus mediaStartTime from the incoming mediaTime. MediaCue
therefore advances mediaTime at the same rate as the incoming mediaTime.

In line 2 of the code portion, the mediaStartTime field sets the start of the
sub range of the media duration over which mediaTime runs. The range of
mediaStartTime is from zero to the end of the duration (0..duration). If the value
of mediaStartTime field is out of range, 0 is utilized in its place.

In line 3, the mediastopTime field sets the end of the sub range of the
media duration over which mediaTime runs. The range of mediaStopTime is
from zero to the end of the duration (0..duration). If the value of mediaStopTime
field is out of range, duration is utilized in its place.

In line 4, the duration field generates an event when the duration of all
clients of this TimeBaseNode have determined their duration. The value of
duration field is the same as the client with the longest duration.

Line 5 lists the isActive field, which generates a true event when this node
bécomes active and a false event when this node becomes inactive.

The following code portion illustrates the IntervalCue node.

1) IntervalCue CueNode {

2) field Float period 1

3) field Bool rampup true
4) field Float fraction O

33

10

15

20

25

WO 2006/031381 ' PCT/US2005/029744

5) field Bool isActive false
}

This object sends fraction events from 0 to 1 (or 1 to O if rampup is false)
as time advances. Line 2 of the code snippet lists the period field, which
determines the time, in seconds, over which the fraction ramp advances.

In line 3, if the rampUp field is true (the default) the fraction goes up from 0
to 1 over the duration of the IntervalCue. If false, the fraction goes down from 1
to 0. If mediaTime is running backwards (when the rate is less than zero), the
fraction goes down from 1 to 0 when rampUp field is true, and the fraction goes
up from O to | when the rampUp field is false.

In line 4, the fraction field sends an event with each call to evaluate() while
this node is active. If mediaTime is moving forward, fraction starts to output
when this node fires and stops when this nodes reaches its firing time plus

period. The value of fraction is described as:

fraction = (mediaTime - firing time) * period Eqgn. (2)

Line 5 lists the isActive field, which sends a true event when the node
becomes active and false when the node becomes inactive. If mediaTime is
moving forward, the node becomes active when mediaTime becomes greater
than or equal to firing time. This node becomes inactive when mediaTime
becomes greater than or equal to firing time plus period. If mediaTime is moving
backward, the node becomes active when mediaTime becomes less than or

equal to firing time plus period and inactive when mediaTime becomes less than

34

10

15

20

25

WO 2006/031381 4 PCT/US2005/029744

or equal to firing time. The firing of these events is affected by the direction field.
The following code portion illustrates the FieldCue node.
1) FieldCite : CueNode {

2) field Field cueValue NULL
3) field Field cueOut NULL

}

This object sends cueValue as an event to cueOut when FieldCue fires.
FieldCue allows any field type to be set and emitted. The cueOut value can be
routed to a field of any type. Undefined results can occur if the current type of
cueValue is not compatible with the type of the destination field.

In line 2 of the code portion, the cue Value field is the authored value that
will be emitted when this node fires. Line 3 lists the cueOut field, which sends an
event with the value of cueValue when this node fires.

The following code portion illustrates the TimeCue node.

1) Timecue: CueNode {
2) field Time cueTime O

}

This object sends the current wall clock time as an event to cueTirﬁe when
TimeCue fires. Line 2 of the code portion lists the cueTime field, which sends an
event with the current wall clock time when this node fires.

The scoring construct within the context of real-time scene composition
enables the author to declaratively describe temporal control over a wide range
of presentation and playback techniques, including: image flipbooks and image .
composite animations (e.g., animated GIF); video and audio clips and streams;
geometric animation clips and streams, such as joint transformations, geometry

morphs, and texture coordinates; animation of rendering parameters, such as

35

10

15

20

25

30

35

WO 2006/031381 PCT/US2005/029744

lighting, fog, and transparency; modulation of parameters for behaviors,
simulations, or generative systems; and dynamic control of asset loading, event
muting, and logic functions. For instance, the following example emits a string to
pre-load an image asset, then performs an animation using that image, then runs
a movie. The string in the following example can also be run in reverse (i.e., first
the movie plays backwards then the animation plays backward and then the

image disappears).

1) Score {

2) timeBase DEF TB TimeBase {}
3) cue[

4) Fieldcue {

5) cueValue String " “
6) cueout TO ISURF.URL
7) direction -1

)
9) FieldCue {
10) cueValue String “imagel.png”
11) cutOut TO ISURF.url
12) direction —10

13) }
14) IntervalCue{
15) delay 0.5

16) period 2.5 # 2.5 second animation
17) Fraction TO Plfraction

18) }

19) DEF MC MediaCue {
20) offset2

21)

-
22) Fieldcue {
23) cueValue String ™
24) cueOut TO ISURF.URL
25) direction -1
26) delay-0.5

}
28) Fieldcue {

29) cue Value String “imagel.png”
30) cueOut TO ISURF.URL

36

10

15

20

25

30

35

40

WO 2006/031381

31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
50)
51)
52)
53)
54)
55)
56)
57)
58)
59)
60)
61)
62)
63)

PCT/US2005/029744

direction -1
delay -0.5

}
]

Slide out image

DEFT Transform {

children Shape {

appearance Appearance {

texture Texture {

surface' DEF ISURF ImageSurface {}

}

geometry IndexedFaceSet {...}
}

DEF P1 Positioninterpolator
key...

keyValue...

value TO T.translation

}

Movie

Shape {

appearance Appearance {
texture Texture {

surface MovieSurface {
url “myMovie.mpg”
timeBase USE MC

eometry IndexedFaceSet {...}

}
}
}
g
}

In one embodiment, the Cue nodes in a Score fire relative to the media

time of the TimeBase, providing a common reference and thereby resulting in an

accurate relationship between timing of various media assets. In the code

snippet above, the FieldCue (line 9) fires as soon as the TimeBase starts

because this FieldCue has default offset and delay fields thereby making the

image appear. Lines 35-45 of the code portion loads the image (500, Fig. 5)on a

37

10

15

20

WO 2006/031381 PCT/US2005/029744

surface. The IntervalCue (line 13) then starts 0.5 seconds later and runs for the
next 2.5 seconds, increasing its fraction output from 0 to 1. The firing of the
IntervalCue starts the animation (502, Fig. 5) of the image. Lines 46-50 control
the animation. The MediaCue (line 18) starts 2 seconds e;fter the TimeBase
starts, or when the IntervalCue is 1.5 seconds into its animation thereby starting
the movie.

Lines 51-62 load the first frame (504, Fig. 5) of the movie on the surface.
When this string is played backwards, first the movie plays in reverse. Then 0.5
seconds later the image appears, and 0.5 seconds after the image appears the
animation starts. Animation is played in reverse for 2.5 seconds, when it stops
and 0.5 seconds after that the image disappears. This example shows the ability
of the Cues to be offset from each other or from the TimeBase and shows that a
su(bsequent Cue can start before the last one has finished.

In one embodiment, the MediaCue gives a synchronization tool to the
author. A MediaCue is a form of a Cue, which behaves similar to a TimeBase.
In fact, in some instances, a MediaCue can be used where a TimeBase can, as
shown in the above example. However, since a MediaCue is embedded in a
timed sequence of events, an implementation has enough information to request
pre-loading on an asset.

Fig. 6 illustrates synchronization of the media sequence of Fig. 5 utilizing a
preloading function. For instance, in the above example, if the implementation
knows that a movie takes 0.5 seconds to pre load and play instantly, after waiting

(Block ‘610') 1.5 seconds after the start of the TimeBase, in Block 615, a “get

38

10

15

20

WO 2006/031381 PCT/US2005/029744

ready” signal is sent to the MovieSurface. Upon receipt of get ready signal, in
Block 620 the movie is pre-loaded. This would provide they requested 0.5
seconds to pre-load.

In Block 625, a request to start is received, and upon receipt of the
request to start, Block 630 starts the movie instantly.

The combination of the TimeBase and media sequencing capabilities
allowed in the system 411 makes it possible o create presentations with complex
timing. Figure 7A shows time relationships of various components of the system
411. A viewer, upon selecting news presentation (760), sees a screen wherein
he can select a story (762). Upon the user selecting story S3 from a choice of
five stories S1, S2, S3, S4 and S5, a welcome screen with an announcer is
displayed (764). On the welcome screen the viewer can choose to switch to
another story (774) thereby discontinuing story S3. After the welcome statement,
the screen transitions to the site of the story (766) and the selected story is
played (768). At this point, the viewer can go to the next story, the previous
story, rewind the present story or select to play an extended version of story
(770) S3 or jump to (772), for example, another story S5. After the selected story
is played the user can make the next selection.

The integration of surface model with rendering production and texture
consumption allows nested scenes to be rendered declaratively. Recomposition
of subscenes rendered as images enables open-ended authoring. In particular,
the use of animated sub-scenes, which are then image-blended into a larger

video context, enables a more relevant aesthetic for entertainment computer

39

10

15

20

WO 2006/031381 PCT/US2005/029744

graphics. For example, the image blending approach provides visual artists with
alternatives to the crude hard-edged clipping of previous generations of
windowing systems.

Figure 7B shows time relationships of various components of the system
411. Similar to Figure 7A, a viewer, upon selecting news presentation (760),
sees a screen wherein he can select a story (762). The welcome screen with an
announcer is displayed (764). On the welcome screen the viewer can choose to
switch to another story (774) thereby discontinuing story S3. After the welcome
statement, the screen transitions to the site of the story (766) and the selected
story is played (768). At this point; the viewer can go to the next story, the
previous story, rewind the present story or select to play an extended version of
story (770) S3 orjﬁmp to (772), for example, another story S5. After the selected
story is played the user can make the next selection.

In addition, TimeBase also allows a “stopping time” function that pauses
the current actions to occur. By pausing the current actions, the clock is
temporarily stopped. In one embodiment, pausing the current action allows
debugging operatidns to be performed. In another embodiment, pausing the
current actions allows the viewer to experience the current actions at a slower
pace.

In one embodiment, a stop block (779) is utilized to pause the display of
various selections after the selection of the news presentation (760) and prior to
the display of the screen to select the story (762). In another embodiment, a

stop block (789) is utilized to pause the display of a user's choice prior to a

40

10

15

20

WO 2006/031381 ' PCT/US2005/029744

selection being made. For example, the stop block (789) allows the possible
selections to be presented on the welcome screen (764) and prevents the
selection of the story (774) or the story (766). In another embodiment, a stop
block (787) is utilized to pause the display content (772) after the choice for the
content (772) has been selected.

In one embodiment, the stop blocks (779, 789, and 787) pauses the action
for a predetermined amount of time. |n another embodiment, the stop blocks
(779, 789, and 787) pauses the action until additional input is received to resume
the action.

Figure 8 depicts a nested scene including an animated sub-scene. Figure
9 is a flow diagram showing acts performed to render the nested scene of Figure
7. Block 910 renders a background image displayed on screen display 800, and
block 915 places a cube 802 within the background image displayed on screen
display 800. The area outside of cube 802 is part of a surface that forms the
background for cube 802 on display 800. A face 804 of cube 802 is defined as a
third surface. Block 920 renders a movie on the third surface using a
MovieSurface node. Thus, face 804 of the cube displays a movie that is
rendered on the third surface. Face 806 of cube 802 is defined as a fourth
surface. Block 925 renders an image on the fourth surface using an
ImageSurface node. Thus, face 806 of the cube displays an image that is
rendered on the fourth surface. In block 930, the entire cube 802 is defined as a
fifth surface and in block 935 this fifth surface is translated and/or rotated thereby

creating a moving cube with a movie playing on face 804 and a static image

41

10

15

20

WO 2006/031381 ‘ PCT/US2005/029744

displayed on face 806. A different rendering can be displayed on each face of
cube 802 by following the procedure described above. It should be noted that
blocks 910 to 935 can be done in any sequence including starting all the blocks
910 to 935 at the same time.

Figure 10 illustrates an exemplary block diagram illustrating an exemplary
architecture in which a system 1000 for authoring declarative content for a
remote platform is implemented. In one embodiment, the system 1000 includes
an authoring device 1010, a target device 1020, an interface device 1030, and a
network 1040. In one embodiment, the network 1040 allows the authoring device
1010, the target device 1020, and the interface device 1030 to communicate with
each other.

In one embodiment, the authoring device 1010 includes an authoring
application that allows the user to create the authored content through a
declarative language as illustrated by the code snippets above. In one
embodiment, a file server (such as Apache and Zope) runs on the authoring
device 1010 and supports a local file system.

In one embodiment, the target device 1020 communicates with the
authoring device 1010 and receives the authored content that is scripted on the
authoring device 1010.

In one embodiment, the interface device 1030 plays the authored contént
through the remote device 1020. The interface ’device 1030 may include a visual

display screen and/or audio speakers.

42

10

15

20

WO 2006/031381 PCT/US2005/029744

In one embodiment, the network 1040 is the internet. In one embodiment,
the communication between the authoring device 1010 and the remote deVice
1020 is acdomplished through TCP/IP sockets. In one embodiment, the
authored content is requested by the remote device 1020 from the authoring
device 1010 via TCP/IP and are provided to the target through HTTP.

The flow diagram as depicted in Figure 11 is one embodiment of the
methods and apparatuses for authoring declarative content for a remote platform.
The blocks within the flow diagram can bé performed in a different sequence
without departing from the spirit of the methods and apparatuses for posting
messages to participants of an event. Further, blocks can be deleted, added, or
combined without departing from the spirit of the methods and apparatuses for
authoring declarative content for a remote platform. In addition, blocks can be
performed simultaneously with other blocks.

The flow diagram in Figure 11 illustrates authoring declarative content for
a remote platform according to one embodiment of the invention.

In Block 1110, authored content is modified or created on an authoring
device. In one embodiment, the authoring device is a personal computer utilizing
an operating system such as Windows®, Unix®, Mac 0S®, and the like. In one
embodiment, the authoring device utilizes a declarative language to create the
authored content. One such declarative language is illustrated with code
shippets shown above within the specification. Further, the authored content that

is created on the authoring device is specifically developed for use on the remote

43

10

15

20

WO 2006/031381 PCT/US2005/029744

devicé such as a gaming console, a cellular telephone, a personal digital
assistant, a set top box, and the like.

In one example, the authored content is configured to display visual
images on the remote device. In another example, the authored content is
configured to play audio signals on the remote device. In yet another
embodiment, the authored content is configured to play both the visual images
and audio signals simultaneously.

In Block 1120, the remote device is detected. In one embodiment,
communication parameters of the remote device are detected such as the
specific TCP/IP socket(s).

In Block 1130, the authoring device is in communication with the remote
device. In one embodiment, the authoring device directly communicates with the
remote device through a direct, wired connection such as a cable. In another
embodiment, the authoring device communicates with the remote device through
a network such as the Internet, a wireless network, and the like.

In Block 1140, the authored content is transmitted from the authoring
device to the remote device. In one embodiment, the authored content is
transmitted to the remote device as a data stream.

In Block 1150, the authored content is utilized through the remote device.
In one embodiment, the remote device visually displays the authored content
utilizing the remote device. In another embodiment, the remote device plays the
audio signal of the authored content. In one embodiment, the authored content

is utilized on the interface device 1030. In one embodiment, the remote device

44

10

15

20

WO 2006/031381 PCT/US2005/029744

commences utilizing the authored content as the authored content is streamed to
the remote device. In another embodiment, the remote device utilizes the
authored content after the authored content is transmitted to the remote device.

In one embodiment, a portion of the authored content is utilized on the
remote device simultaneously as the remaining authored content is being
transmitted to the remote device in the Block 1140.

In Block 1160, the authoring device monitors the authored content as the
authored content is utilized by the remote device. For example, the authoring
device tracks a specific portion of the authored content that corresponds with the
authored content displayed on the remote device. In another example, the
authoring device monitors the authored content utilized by the remote device
sifnultaneously as a portion of the authored content is still being transmitted to
the remote device in the Block 1140.

In Block 1170, the authoring device controls the playback of the authored
content on the remote device. For example, the authoring device is capable of
pausing, rewinding, forwarding, and initiating the playback of the authored
content on the remote device remotely from the authoring device.

In Block 1180, the authoring device debugs the authored content. In one
embodiment, the authoring device debugs the authored content by viewing the
scripting of the authored content on the authoring device while experiencing the
playback of the authored content on the remote device. In another embodiment,
the authoring device pauses the playback of the authored content on the remote

device while debugging the corresponding scripting of the authored content on

45

10

15

WO 2006/031381 PCT/US2005/029744

the authoring device. For example, while the authored content is paused on the
remote device, the corresponding authored content is monitored and available on
the authoring device to be modified and/or debugged.

The foregoing descriptions of specific embodiments of the invention have
been presented for purposes of illustration and descripﬁon. The invention may
be applied to a variety of other applications.

They are not intended to be exhaustive or to limit the invention to the
precise embodiments disclosed, and naturally many modifications and variations
are possible in light of the above teaching. The embodiments were chosen and
described in order to explain the principles of the invention and its practical
application, to thereby enable others skilled in the art to best utilize the invention
and various embodiments with various modifications as are suited to the
particular use contemplated. It is intended that the scope of the invention be

defined by the Claims appended hereto and their equivalents.

46

WO 2006/031381 ‘ PCT/US2005/029744

WHAT IS CLAIMED:

1. A method comprising:
transmitting authored content from an authoring device to a remote
5 device; |

directly playing the authored content on the remote device; and
monitoring a portion of the authored content on the authoring

device while simultaneously playing the portion of the authored content on

the remote device,

10 wherein the authored content is scripted in a declarative markup

language.
2. The method according to Claim 1 further comprising modifying the portion
of the authored content on the authoring device while simultaneously playing the

15 portion of the authored content on the remote device.

3. The method according to Claim 1 wherein directly playing further

comprises displaying a plurality of images corresponding to the authored content.

20 4. The method according to Claim 1 wherein directly playing further

comprises playing an audio signal corresponding to the authored content.

47

10

15

20

WO 2006/031381 PCT/US2005/029744

5. The method according to Claim 1 further comprising creating the authored

content on the authoring device.

6. The method according to Claim 5 wherein creating the authored content
further comprises utilizing a tool resident on the authoring device to create the

authored content.

7. The method according to Claim 6 wherein the tool is a (example here).

8. The method according to Claim 1 further comprising debugging the portion
of the authored content on the authoring device while simultaneously playing the

portion of the authored content on the remote device.

9. The method according to Claim 1 further comprising controlling the

authored content on the remote device from the authoring device.

10. The method according to Claim 9 wherein controlling the authored content
further comprises initiating playback of the authored content on the remote

device.

11. The method according to Claim 9 wherein controlling the authored content
further comprises pausing playback of the authored content on the remote

device.

48

10

15

20

WO 2006/031381 PCT/US2005/029744

12. The method according to Claim 9 wherein controlling the authored content
further comprises fast forwarding a playback location of the authored content on

the remote device.

13. The method according to Claim 9 wherein controlling the authored content
further comprises rewinding a playback location of the authored content on the

remote device.

14. The method according to Claim 1 wherein the remote device is one of a
gaming console, a cellular telephone, a personal digital assistant, a set top box,

and a pager.

15. The method according to Claim 1 wherein the authoring device is a

personal computer.

16. A system comprising:
means for transmitting authored content from an authoring device
to a remote device;
means for directly playing the authored content on the remote

device; and

49

10

15

20

17.

18.

WO 2006/031381 PCT/US2005/029744

means ;r'or monitoring a bortion of the authored content on the
authoring device while simuitaneously playing the portion of the authored
content on the remote device,

wherein the authored content is scripted in a declarative markup

language.

A method comprising:

modifying authored content on an authoring device wherein the
authored content is scripted in a declarative markup language;

transmitting the authored content from the authoring device to a
remote device; and

playing a portion of the authored content on the remote device
while simultaneously transmitting the authored content from the authoring

device to the remote device.

The method éccording to Claim 17 further comprising monitoring the

portion of the authored content on the aUthoring device while simultaneously

playing the portion of the authored content on the remote device.

19.

The method according to Claim 17 further comprising debugging the

portion of the authored content on the authoring device while simultaneously

playing the portion of the authored content on the remote device.

50

10

15

20

WO 2006/031381 PCT/US2005/029744

20. The method according to Claim 17 wherein playing further comprises

displaying a plurality of images corresponding to the authored content.

21. The method according to Claim 17 wherein directly playing further

comprises playing an audio signal corresponding to the authored content.

22. - The method according to Claim 1 further comprising creating the authored

content on the authoring device.

23. The method according to Claim 22 wherein creating the authored content
further comprises utilizing a tool resident on the authoring device to create the
authored content.

24. The method according to Claim 23 wherein the tool is a (example here).

25. The method according to Claim 17 further comprising controlling the

authored content on the remote device from the authoring device.
26. The method according to Claim 25 wherein controlling the authored

content further comprises initiating playback of the authored content on the

remote device.

51

10

15

20

WO 2006/031381 PCT/US2005/029744

27. The method according to Claim 25 whérein controll'ing the authored

content further comprises pausing playback of the authored content on the

remote device.

28. The method according to Claim 25 wherein controlling the authored
content further comprises fast forwarding a playback location of the authored

content on the remote device.

29. The method according to Claim 25 wherein controlling the authored
content further comprises rewinding a playback location of the authored content

on the remote device.

30. The method according to Claim 17 wherein the remote device is one of a
gaming console, a cellular telephone, a personal digital assistant, a set top box,

and a pager.

31. The method according to Claim 17 wherein the authoring device is a

personal computer.

32. A system, comprising:
an authoring device to modify authored content wherein the
authored content is scripted in a declarative markup language;

a remote device configured to play the authored content; and

52

10

15

20

WO 2006/031381 PCT/US2005/029744

a network configured to stream the authored content from the
authoring device to the remote device,

wherein an initial portion of the authored content is simultaneously
utilized by the remote device while a remaining portion of the authored

content is streamed to the remote device.

33. The system according to Claim 32 further comprising a storage module
within the remote device to buffer the authored content received by the remote

device.

34. The system according to Claim 32 wherein the remote device is one ofa
gaming console, a cellular telephone, a personal digital assistant, a set top box,

and a pager.

35. The system according to Claim 32 wherein the authoring device is a

personal computer.

36. The system according to Claim 32 wherein the network is the internet.

37. A computer-readable medium having computer executable instructions for
performing a method comprising:
modifying authored content on an authoring device wherein the

authored content is scripted in a declarative markup language;

53

WO 2006/031381 PCT/US2005/029744

transmitting the authored content from the authoring device to a
remote device; and

playing a portion of the authored content on the remote device
while simultaneously transmitting the authored content from the authoring

device to the remote device.

54

PCT/US2005/029744

WO 2006/031381

112

| 2inbi4

|

fenr
&)
P

FETNETS

WO 2006/031381 PCT/US2005/029744

2/12

110

209~
MEMORY -

S

208\ Y
PROCESSOR

110

209
MEMORY

A

208\ v
PROCESSOR

110

209
MEMORY

1301

s——y

208~ i P e — MEMORY_ _ _212~
PROCESSOR :

Figure 2

\u@! PROCESSOR D

WO 2006/031381 PCT/US2005/029744

3/12

...

Content
Transmission
Moduie

310

—_— 1.‘ SR B
v Participant ' 5

i Selection | i Control Module Imigﬁﬁ:

| Modue [> 350 340

| 320 ; ‘ !
-) ! R

gy A g O S VP UG VY e

Storage .
i Module i
330

Figure 3

1
3
3
It
1
i
i

WO 2006/031381 PCT/US2005/029744

4/12

34

Incoming ’ 4
Stream //h
Parsers
/ e
To
Raw Scene Graph /BO Page
Page
"] Integration
—~ M8 Moo
____//‘ /’1) / /"26 A
Built-In ™ A
2 Scerie Mgr.
Objects Ao
\\ i P —) /Waes
e, gr.
26C
420 \C P Load Mgr. //i
[\ Author] /qgeg
s Defined pd " 3
Ob]'ects T Core Runtime > § Event Mgr. -
> =
N @ Media Mgr. //M
424 . /‘(ZGF
S A
e Native urface Mgr. A o
Objects
Render Mgr. ,/Q

428 \\ L Y /‘,‘ a2
Rendering Platform /]
Layer . Setvices
0s

WO 2006/031381 PCT/US2005/029744

5/12

Bring a file or strean{34 of content from a -~ 550
source into a parser

Convert to a raw scene graph 4

Extract prototypes and populate database |
of object prototypes

Build each object A

Establish all routes in streami34 4

Initialize each field in the scene 1
580

Add initialization logic /
/585

Deliver to scene manager g
5 70

Perform behavioral processing d

Fig. 5

WO 2006/031381 PCT/US2005/029744

6/12

£
Wait for 1.5 seconds after start of / G610
TimeBase /]

Send get ready signal 1.5 seconds after /615
start of TimeBase A

: 620
Pre-load the movie /

625

Request to start?
No

Yes

: 630
Start movie instantly /

WO 2006/031381 PCT/US2005/029744

7/12

0

l/ ol
>

n——

» 7
‘/ T4 t ,

770
e

72

AN

Fig. 7 A

WO 2006/031381

#7780 el malt Wl wadb o fiGe TR B T TS

8/12

/ 764

T¥9

Fig.7b

NG

PCT/US2005/029744

174

766

-

768

770

=

172

2
>4
.

WO 2006/031381

9/12

00

762

g0t

$ob

Fig. 3

PCT/US2005/029744

WO 2006/031381 PCT/US2005/029744

10/12

Ao

Render a background %

U\

Place a cube in the background ,/ a

Render movie on one face (third surface) / CIZ.O
of the cube using MovieSurface node 4

Render an image on another face (fourth / 925
surface) of the cube using ImageSurface 4 :
node

A%0

Define the entire cube as a surface (fifth A
surface)

el

Translate and/or rotate the entire cube

Fig. 9

WO 2006/031381 PCT/US2005/029744

11/12

Authoring Device

1010

7
. Network Target Device
\ 1040 1020

Interface Device

1030

Figure 10

WO 2006/031381 PCT/US2005/029744

12/12

1110
Modify/Create
Content on
Authoring Device

! !

1120 ‘ 1150

Locate Remote Utilize Content on
Device Remote Device

1130 : 1160

Authoring Device
Com. with Remote
Device

v v

1140 1170

Transmit Content
"to Remote Device

Monitor Content on
Authoring Device

Control Playback

v
1180

Debug Content on
Authoring Device

Figure 11

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

