woO 2007/028227 A1 |0 00 O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 March 2007 (15.03.2007)

(10) International Publication Number

WO 2007/028227 Al

(51) International Patent Classification:

GOG6F 11/36 (2006.01) GOGF 9/44 (2006.01)
(21) International Application Number:
PCT/CA2005/001380

(22) International Filing Date:
9 September 2005 (09.09.2005)

English
English

(71) Applicant (for all designated States except US): IBM
CANADA LIMITED - IBM CANADA LIMITEE
[CA/CA]; 3600 Steeles Avenue East, Markhan, Ontario
L3R 977 (CA).

Inventors; and

Inventors/Applicants (for US only): 1O, Grace, Hai,
Yan [CA/CA]; 68 Aberfeldy Crescent, Thornhill, Ontario
L3T 4C4 (CA). FUNG, Jane, Chi-Yan [CA/CA]; 44
Campbell Avenue, Thornhill, Ontario 1.4J AY2 (CA).
O’FARRELL, William, Gerald [CA/CA]; 115 Russell
Jarvis Drive, Markham, Ontario 1.3S 4B3 (CA). TAN,
Shu, Xia [CA/CA]; 94 Tarragona Boulevard, Toronto,
Ontario M6N 5C5 (CA).

Agent: HOICKA, Leonora, K.; IBM Canada Ltd., 3600
Steeles Avenue East, Markham, Ontario L.3R 927 (CA).

(25) Filing Language:
(26) Publication Language:

(72)
(75)

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: INTEGRATING DIFFERENT PROGRAMMING LANGUAGE DEBUG TOOLS FOR OBSERVING THREAD EX-

ECUTION

252
REGISTERDEBUG | __~
TOOLS
\ 4
RECEIVE SUSPENDED THREADS 254
AND STACK FRAMES FROM ¥
DEBUG TOOLS
\ 4
CORRELATE 296
PROVIDE COMMON | —— 258
SUSPENDED THREAD

(57) Abstract: Software developers working
on multi-language systems with various
debug tools (BPEL, AE, Java, etc.) can use
a common debug adaptor (CDA) apparatus.
The CDA implements a method of debugging

a multi-computer program language

250 in
environment. The method includes registering

various debug tools associated with different
programming languages in the multicomputer
program language environment, each one
of the plurality of debug tools providing
suspended threads and stack frames in re-
sponse to a debug event in the multi-computer
program language environment. The method
can further include receiving the suspended
threads and stack frames from the plurality of
debug tools. The method can further include
correlating the received suspended threads
and stack frames under a common suspended
thread; and providing the common suspended
thread in a debug view. Such a method can
have a number of attributes intended to assist
developers facing debugging problems in
multi-language systems.

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

COMMON DEBUG ADAPTOR

Field of the Invention
The present invention relates to the debugging of software and various software components and
more particularly to systems and methods for managing various debugging tools in integrated

development environments.

Background
A debugger (or debugging tool) is a computer program that is used to debug (and in some cases

test or optimize) other computer programs. When the computer program crashes, the debugger
generally shows the offending position or location in the original code (for source-level
debuggers). A crash occurs when the computer program cannot continue because of a
programming bug. Typically, debuggers offer functions such as running a program step by step

(single stepping), stopping (breaking) at a particular event and tracking the values of variables.

Many software systems (multi-threaded or distributed systems) are written in more than one
programming language. For example, a system may be implemented in Java™ with another
language running on top of Java that needs to be debugged. Further difficulties are presented
due to the lack of standardization in terms of internal structures, such as stack frames, between

different programming languages.

For example, in business integration tooling, there are often different language debugger tools
running on different debug runtime/test environments. In the tooling, each debugger would have
its own way to show its suspended thread and stack frame. Each debugger may not know the
existence of the other one. Thesé situations create significant difficulties for software developers

attempting to debug these systems.

Consequently, there exists an ongoing need for debugging technology that facilitates efficient
programming by way of language, debug tool, host application and operating environment

independence.

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

Summary
Methods and systems for use in a debugging environment that can be used by software

developers working on multi-computer program language environments are described. The
techniques used create a common debug adaptor that manages various debug tools (each
associated with a different computer language) to provide merged information from debug events

to enable debugging between multiple languages in a multi-language environment.

Certain exemplary embodiments can provide a method of debugging in a multi-computer
program language environment, the method comprising: registering a plurality of debug tools
associated with different programming languages in the multi-computer program language
environment, each one of the plurality of debug tools providing suspended threads and stack
frames in response to a debug event in the multi-computer program language environment;
receiving the suspended threads and stack frames from the plurality of debug tools; correlating
the received suspended threads and stack frames under a common suspended thread; and

providing the common suspended thread in a debug view.

Certain exemplary embodiments can provide a system for debugging in a multi-computer
program language environment, the system comprising: a registry module for registering a
plurality of debug tools associated with different programming languages in the multi-computer
program language environment, each one of the plurality of debug tools providing suspended
threads and stack frames in response to a debug event in the multi-computer program language
environment; a correlation module for receiving the suspended threads and stack frames from the
plurality of debug tools and correlating the received suspended threads and stack frames under a
common suspended thread; and a user interface module for providing the common suspended

thread in a debug view.

Certain exemplary embodiments can provide a computer program product for debugging in a
multi-computer program language environment, the product comprising: a registry mechanism
that is executable on the computer program for registering a plurality of debug tools associated
with different programming languages in the multi-computer program language environment,

each one of the plurality of debug tools providing suspended threads and stack frames in

10

15

20

25

30

WO 2007/028227 . PCT/CA2005/001380

response to a debug event in the multi-computer program language environment; a correlation
mechanism that is executable on the computer program for receiving the suspended threads and
stack frames from the plurality of debug tools and correlating the received suspended threads and
stack frames under a common suspended thread; and a user interface mechanism that is

executable on the computer program for providing the common suspended thread.

Certain exemplary embodiments can provide an apparatus for debugging in a multi-computer
program language environment, the apparatus comprising: a processor; a memory coupled to the
processor; a computer program residing in the memory; a common debug adaptor residing in the
memory and executed by the processor; the common debug adaptor comprising: a registry
module for registering a plurality of debug tools associated with different programming
languages in the multi-computer program language environment, each one of the plurality of
debug tools providing suspended threads and stack frames in response to a debug event in the
multi-computer program language environment; a correlation module for receiving the
suspended threads and stack frames from the plurality of debug tools and correlating the received
suspended threads and stack frames under a common suspended thread; and a user interface

module for providing the common suspended thread.

Brief Description of the Drawings
Fig. 1 illustrates an example of a computing system environment in block diagram form

used to implement common debug adaptor technology according to various embodiments of the
present invention;

Fig. 2A illustrates an example of a common debug adaptor environment in block diagram
form;

Fig. 2B illustrates an overview of common debug adaptor operational steps in flow
diagram form;

Fig. 3 illustrates further details of common debug adaptor operational steps in flow
diagram form;

Fig. 4 illustrates a common debug adaptor architecture overview and operational example

in block diagram form; and

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

Fig. 5 illustrates an example debug view showing a common suspended thread (merged

stack frames).

Detailed Description
Computing System Environment — Fig. 1

Fig. 1 illustrates an example of a computing system environment 100 in which embodiments of
the present invention can be implemented. The computing system environment 100 is only one
example of a suitable computing environment and is not intended to suggest any limitation as to
the scope of use or functionality of the various embodiments described. Examples of other
computing system environments or configurations that may be suitable include: a general
purpose Personal Computer (PC); a hand-held or lap top computer; multi-processor based
systems; microprocessor based systems; programmable consumer electronics; network

computers, minicomputers, mainframe computers and distributed computing environments.

The computing system environment 100 includes a general purpose computing device 102.
Components of the computing device 102 include, but are not limited to, a processing unit 104,
an input/output interface 106, a system memory 108, and a system bus 110. The system bus 110
communicatively connects the aforementioned components and numerous other (not shown)
cooperatively interactive components. The input/output interface 106 interacts with external
components through an input/output unit 112 (which can include keyboard, mouse-type
controllers, monitors, media readers/writers and the like). The system memory 108 instantiates
various components and operations of a common debug adaptor 202 according to embodiments
of the present invention described in detail in subsequent figures. The computing system

environment 100 serves as an apparatus for performing common debug adaptor processes.

Architectural and Process Overview — Figs. 2A and 2B

Some embodiments will include one or more of the functional components/modules/mechanisms
or process steps described. Any particular embodiment may not require all of the components or
steps described, may use additional components or steps, or may use an entirely different

organization without change the functionality, scope or spirit.

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

Fig. 2A provides a schematic representation of a debug environment 200, which includes a
number of different language debug tools: debug tool A 204, debug tool B 206, and debug tool
C 208. Each debug tool 204-208 has its own way to show suspended threads and stack frames.
Further, each debug tool 204-208 need not be aware of the existence of any other tool. This
arrangement is common in business integration tooling environments where multiple computer
programming languages are used. Fig. 2B provides a flow chart of a process 250 used to manage
these various debug tools 204-208. A suspended thread is a virtual process that is paused for
debugging purposes. Stack frames are user interface representations of the calling stacks in a
suspended thread. For example, if a user has added a breakpoint at a line in a Java program,
when the breakpoint is hit, the user would see a suspended Java thread with several Java stack
frames under it. The Java stack frames would show how the line with the breakpoint is called

through the various Java classes and methods.

With reference to Figs. 2A and 2B, fhe debug tools 204-208 interact with the common debug
adaptor (CDA) 202 to register (step 252) the individual debug tools, through a registry module
210; receive (step 254) suspended threads and stack frames from the different debug tools 204-

208 (in response to a debug event); correlate (step 256) the received suspended threads and stack

frames, through a correlation module 212; and provide (step 258) a common suspended thread
(i.e., merge the stack frames and provide the relevant suspended threads for use by an operator
through a user interface (UI) module 214).

Debug Tools 204, 206, 208

Each debug tool 204-208 represents an external tool written to run on its own runtime (i.e.,
environment/software under test). Each debug tool 204-208 is identified by an identifier
(pluginID). Each debug tool 204-208 can also (a) identify a server (not shown) it is debugging
(EnginelD); (b) identify an original instance it is running from (Global Instance ID - GIID); and
(¢) identify a thread (a sequence of instructions) it is running at (ThreadID).

A debug view (native to each debug tool 204-208 and not shown in the drawings) would show (a)
a launcher, (b) a debug target, and (c) a thread and stack frame at which its breakpoint is

suspended.

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

Registry Module 210

The registry module 210 registers each debug tool 204-208 to the common debug adaptor 202 by
receiving pluginID type information through a receiving mechanism 216. In particular, each
participating debug tool 204-208 extends the common debug adapter 202 extension point. An
extension point is similar to a plug-in and adds an extra feature to a programming language or
system using well established techniques in the field of the invention. Each debug tool 204-208
creates and returns a debug target, suspended threads and stack frames to the common debug‘
adapter 202 for handling in response to one or more debug events originating from

environment/software under test.

Correlation Module 212

The correlation module 212 accommodates non-Java and Java debug tools 204-208 and enables
various types of stack frames to be correlated/merged. In general, the individual debug tools
204-208 routes debug events for mixed stack frame handling to the correlation module 212 of the
CDA 202. A debug event is a run-time altering condition, such as a breakpoint, that is set in an
application by a debugging environment user and managed by an active debugging environment
that controls the running of an application. Debug events are defined by the individual debug

tool 204-208.

The correlation module 212 groups the various suspended threads and stack frames from the
debug tools 204-208 using a grouping mechanism 218. The grouping is determined by one or
more of the EnginelD, the GIID and the ThreadID described above. In one particular example,
the correlation module 212: (i) creates a launcher for each EnginelD; (ii) creates a debug target
for each GIID; and (iii) groups debug events from the various debug tools 204-208 with the same

ThreadID into stack frames under a common suspended thread.

User Interface 214

The UI module 214 controls the display and management of information, such as the common
suspended thread, that is provided in a debug view (example provided in Fig.5). In particular, if
a user performs resume, step over, step into or step return on a target stack frame (under the

common suspended frame) of the CDA 202, all these actions would be delegated to one of the

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

debug tools 204-208. Delegation is performed by a delegating mechanism 220 and is defined as
follows: (i) the CDA 202 is notified of a user action to resume/step over/step into/step return; (ii)
the CDA 202 identifies the debug tool 204-208 that corresponds to the selected stack frame and
(iii) calls the same action on the debug tool 204-208 identified in step (ii). The UI module 212
defines various debug view elements (such as CDADebugTarget, CDAThread, CDAStackframe)
handles user interface based actions and delegates certain actions (resume, step over, step into

etc.) to an individual debug tool 204-208.

Process/System Example- Figs. 3 and 4
A process 300 (Fig. 3) and a system 400 (Fig. 4) of managing multiple debug tools 204-208

according to various embodiments will be described in conjunction with Figs. 3 and 4.

For the purpose of illustration in Fig. 4, the debug tools 204-208 are designated as language
specific tools: tool 204 is a Business Process Execution Language (BPEL) debugger; tool 206 is
a Business State Machine (BSM) debugger; and tool 208 is a transforms debugger. A Java
debug manager (JDM) 402 is also illustrated. The JDM 402 acts like another debug tool to the
CDA 202. The JDM 402 filters debug events, queries runtime execution for Java thread
information and routes source debug information to the CDA 202 as described in more detail

below.

BPEL is an XML-based language for standardizing business processes in a distributed or grid
computing environment that enables separate businesses to interconnect their applications and
share data. Platform-independent BPEL allows enterprises to keep internal business protocols
separate from cross-enterprise protocols so that internal processes can be changed without
affecting the exchange of data from enterprise to enterprise. A BPEL document, for example,
keeps track of all the business processes that are connected to a transaction and ensures that the

processes are executed in the correct order through the automation of messages.

The BSM and transforms debuggers, 206 and 208 respectively, are examples of other debuggers
that participate through the registry module 210 of the CDA 202 and are known in the art.

10

15

WO 2007/028227 PCT/CA2005/001380

The JDM 402 is mainly used to filter Java debug events that would be relevant. The JDM 402
forwards a current Java debug event (JDE) to the CDA 202 and determines whether the JDE is
from any of the debug tools 204-208. If so, the JDM 402 would receive correlation information
on the JDE to enable delegation (as discussed above) to one of the debug tools 204 to 208 to
handle the JDE and return the corresponding stack frames.

With reference to Figs. 3 and 4, when debug events are sent 302 from a test environment 404
(such as a multi-computer program language environment) through a communication gateway
406 each debug event is analyzed and routed 304 to one of the debug tools 204-208. The
analysis and routing step 304 is based on the pluginID information of the debug tool 204-208
associated with each event as described above. After routing to the appropriate debug tool (one
of tools 204-208) the CDA 202 is called and provided with information vectors 306 (details of
which are provided in Table A).

TABLE A
INFORMATION VECTOR ITEMS
(1) Instance (a) Engine identification (Engine ID) — used as a key to
keep track of its related server
(b) Global instance identification (GIID) - a key
indicator for a debug target
(c) Thread identification — a key indicator for a virtual
thread
(la-c) can be used by the CDA 202 to merge
stack frames across different servers, debug
targets and threads respectively
(d) List of virtual threads running on a server — helps
the CDA 202 and debuggers 204-208 to clear obsolete
threads
(2) Processed Stack Frame (a) Processed debug adapters/tools
(b) Plugin identification of the debug adapter/tool
(¢) Individual debug adapter identification

10

15

20

WO 2007/028227 PCT/CA2005/001380

INFORMATION VECTOR ITEMS

(d) Array of stack frames
(2a-d) contains results after the individual tools
204-208 process runtime information and create

their own debug target, thread and stack frame.

(3) Unprocessed debug runtime event | (a) List of remaining unprocessed runtime events -
contains the information from the runtime (test
environment 404) that is to be processed by one of the
debug tools 204-208

The correlation module 212 of the CDA 202 analyzes data from the information vectors 308 and
delegates event tasks 310 to the debug tools 204-208 as described above. The analysis step 308
involves grouping suspended threads and stack frames into a common stack frame based on one
or more of the EnginelD, the GIID and the ThreadID as discussed in conjunction with the

correlation module 212 of Fig. 2.

If all the debug events received (at step 302) from the test environment 404 have not been
processed, as determined at step 312, then processing returns to step 304. If all the debug events
received (at step 302) from the test environment 404 have been processed, as determined at step
312, processing continues to step 314 to construct a debug tree, which includes the common

suspended thread.

The Ul module 214 constructs the debug tree in a debug view by showing a launcher with
EnginelD information. The launcher includes a debug target with GIID as the identifier. The
debug tree also includes various threads with the ThreadlDs and corresponding stack frames

under each ThreadlID (see Fig. 5 for an example).

When considering the JDM 402 (Fig. 4), the CDA 202 can also merge a Java stack frame with
other stack frames (for the debug tools 204-208) given a Java breakpoint suspended in a Java
thread. The test environment 404 can handle a Java match thread query to identify a suspended

Java thread that originates from business integration components (i.e., part of the test

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380
10

environment 404). When a Java debug event arrives, from the test environment 404, the JDM
402 will try to filter the event. In particular, the JDM 402 will send a query to the test
environment 404 to determine if the thread originated from one of the debug tools 204-208.

The result of the query is returned to the JDM 402 which combines the event with other debug
information (e.g., information vectors) and route the information to the CDA 202 for handling.
The CDA 202 would in-turn delegate any required handling back to one of the debug tools 204-
208 as required. The individual debug tools 204-208 handles the Java mixed stack frame by
identifying where the Java code is called from. The results from the debug tools 204-208 are
rerouted to the CDA 202 for further mixed stack frame handling if required. The CDA 202 then
provides the complete merged stack frame (as the common suspended stack frame) in the debug

view (through the UI module 214) as previously discussed.

Debug tree example- Fig. 5

Assuming a server (not shown) in the test environment 404 (e.g, business integration tool) is
started in a debug mode and appropriate breakpoints have been added, various breakpoints would
occur. If a breakpoint occurs at a first component (in the test environment 404) which is called
by a second component (in the test environment 404) a merged stack frame will be shown under
the wiring thread in a debug tree 500 shown in Fig. 5. In this example, a Wiring editor calls
Adaptive Entity (AE), which then calls Business Rule (BR). The merged stack frame has an
inner most layer as a BR stack frame (GuardBR), then followed by an AE stack frame
(AEExample) and then the Wiring stack frame (WiringExample) as an outermost layer.

The debug tree 500 illustrates that all stack frames from the debug tools (e.g., tools 204-208)
have the same GIID (not illustrated but'used internally) and ThreadID (e.g, 1234). If any stack
frame has a different ThreadID, those stack frames would appear under another thread in the
debug target. The Ul module 214 can progressively disclose such that only relevant debug
elements are shown in the debug tree 500. In the example of Fig. 5, the debug targets and
threads for AEExample and GuardBR are hidden. The server Java threads are also hidden as

they are not considered relevant to the business integration tool of this example.

10

WO 2007/028227 PCT/CA2005/001380

11

In summary, embodiments of the common debug adapter 202 are generic for different debug
tools 204-208 and test environments 404 (i.e., runtimes). In practical implementation, each

debug tool 204-208 implements an extension point to integrate with the system 400.

The detailed description does not limit the implementation of the embodiments of the present
invention to any particular computer programming language. The computer program product
may be implemented in many computer programming languages provided that the OS (Operating
System) provides the facilities that may support the requirements of the computer program
product. An exemplary embodiment of the present invention can be implemented in the C or
C++ computer programming language, or may be implemented in any other mix of supported
programming languages. Any limitations presented would be a result of a particular type of
operating system, computer programming language, or database management system and would

not be a limitation of the embodiments of the present invention described herein.

10

15

20

25

30

WO 2007/028227 PCT/CA2005/001380

12
CLAIMS:
1. A method of debugging in a multi-computer program language environment, the method
comprising:

registering a plurality of debug tools associated with different programming languages in
the multi-computer program language environment, each one of the plurality of debug tools
providing suspended threads and stack frames in response to a debug event in the multi-computer
program language environment;

receiving the suspended threads and stack frames from the plurality of debug tools;

correlating the received suspended threads and stack frames under a common suspended
thread; and

providing the common suspended thread in a debug view.

2. The method of claim 1, wherein each one of the plurality of debug tools includes (i) a
debug tool identifier; (ii) a server under debug identifier; (iii) an instance identifier; and (iv) a

thread identifier.

3. The method of claim 2, wherein registering includes receiving the debug tool identifier

from each one of the debug tools.

4. The method of claim 2, wherein correlating includes grouping the suspended threads and
stack frames from the plurality of debug tools based on at least one of the server under debug

identifier, the instance identifier and the thread identifier.

5. The method of claim 2, wherein correlating includes: creating a launcher for each server
under debug identifier; creating a debug target for each instance identifier; and grouping debug
events from the plurality of debug tools having identical thread identifiers into stack frames

under the common suspended thread.

6. The method of claim 2, further comprising delegating a user instruction to one of the

plurality of debug tools.

10

15

20

25

WO 2007/028227 PCT/CA2005/001380

13
7. The method of claim 6, wherein the user instruction includes one of the following actions:
resume, step over, step into and step return.
8. The method of claim 7, wherein delegating includes: receiving the user instruction;

identifying one of the plurality of debug tools that corresponds to a selected stack frame; and

calling for execution of an identical action on the identified debug tool.

9. A system for debugging in a multi-computer program language environment, the system
comprising:

a registry module for registering a plurality of debug tools associated with different
programming languages in the multi-computer program language environment, each one of the
plurality of debug tools providing suspended threads and stack frames in response to a debug
event in the multi-computer pro gfarn language environment;

a correlation module for receiving the suspended threads and stack frames from the
plurality of d'ebug tools and correlating the received suspended threads and stack frames under a
common suspended thread; and

a user interface module for providing the common suspended thread in a debug view.

10. The system of claim 9, wherein each one of the plurality of debug tools includes (i) a
debug tool identifier; (ii) a server under debug identifier; (iii) an instance identifier; and (iv) a

thread identifier.

11. The system of claim 10, wherein the registry module includes a mechanism for receiving

the debug tool identifier from each one of the debug tools.

12. The system of claim 10, wherein the correlation module includes a mechanism for
grouping the suspended threads and stack frames from the plurality of debug tools based on at

least one of the server under debug identifier; the instance identifier and the thread identifier.

10

15

20

25

WO 2007/028227 PCT/CA2005/001380
14

13. The system of claim 10, wherein the correlation module includes a mechanism for:
creating a launcher for each server under debug identifier; creating a debug target for each
instance identifier; and grouping debug events from the plurality of debug tools having identical

thread identifiers into stack frames under the common suspended thread.

14. The system of claim 10, wherein the user interface module includes a mechanism for

delegating a user instruction to one of the plurality of debug tools.

15. The system of claim 14, wherein the user instruction includes one of the following

actions: resume, step over, step into and step return.

16. The system of claim 14, wherein the mechanism for delegating includes a mechanism for:
receiving the user instruction; identifying one of the plurality of debug tools that corresponds to a

selected stack frame; and calling for execution of an identical action on the identified debug tool.

17. A computer program product for debugging in a multi-computer program language
environment, the product comprising:

a registry mechanism that is executable on the computer program for registering a
plurality of debug tools associated with different programming languages in the multi-computer
program language environment, each one of the plurality of debug tools providing suspended
threads and stack frames in response to a debug event in the multi-computer program language
environment;

a correlation mechanism that is executable on the computer program for receiving the
suspended threads and stack frames from the plurality of debug tools and correlating the received
suspended threads and stack frames under a common suspended thread; and

a user interface mechanism that is executable on the computer program for providing the

common suspended thread.

WO 2007/028227 PCT/CA2005/001380

15
18. An apparatus for debugging in a multi-computer program language environment, the
apparatus comprising: '
a processor;
a memory coupled to the processor;
5 a computer program residing in the memory;

a common debug adaptor residing in the memory and executed by the processor;
the common debug adaptor comprising:
a registry module for registering a plurality of debug tools associated with
different programming languages in the multi-computer program language
10 environment, each one of the plurality of debug tools providing suspended threads
and stack frames in response to a debug event in the multi-computer program
language environment;
a correlation module for receiving the suspended threads and stack frames
from the plurality of debug tools and correlating the received suspended threads
15 . and stack frames under a common suspended thread; and

a user interface module for providing the common suspended thread.

PCT/CA2005/001380

WO 2007/028227

8?/)

l OId

4TS
1INN
1Nd1NO/LNdNI

N
-—

J3IA3A ONILNJNOD

801
AHOW3IW INILSAS

N
N

d01dvav ©Ng3d NOWINOD

!

SNg WALSAS

H

901

—»1 3OVJd3LNI

1Nd1NO/LNdNI

0L
1INN
ONISS300dd

o/

WO 2007/028227

2/6

PCT/CA2005/001380

202

COMMON DEBUG ADAPTOR (CDA)
USER INTERFACE MODULE
DELEGATING 214
MECHANISM | 220 -
CORRELATION MODULE 912
|~
GROUPING | 54g
MECHANISM
REGISTRY MODULE o
1
RECEIVING | __ 216 o
MECHANISM
DEBUG TOOL A DEBUG TOOL B DEBUG TOOL C
204 206 208

FIG. 2A

™

200

WO 2007/028227

3/6

:

PROVIDE COMMON
SUSPENDED THREAD

FIG. 2B

PCT/CA2005/001380

252
REGISTERDEBUG | -
TOOLS
/550
\ 4
RECEIVE SUSPENDED THREADS 254
AND STACK ERAMES FROM 1
DEBUG TOOLS
\ 4
CORRELATE 256

258

WO 2007/028227

4/6

PCT/CA2005/001380

DEBUG EVENTS SENT FROM TEST
ENVIRONMENT THROUGH
COMMUNICATION GATEWAY

302

A 4

ANALYZE AND ROUTE A DEBUG

EVENT TO APPROPRIATE
DEBUG TOOL

A 4

\ 4

CALL CDA AND PROVIDE
INFORMATION VECTORS

:

ANALYZE INFORMATION
VECTORS

:

"///300

304

306

308

DELEGATE EVENT TASK TO
DEBUG TOOL

L —— 310

ALL DEBUG EVENTS

NO PROCESSED

?

CONSTRUCT DEBUG
TREE

FIG. 3

312

314

PCT/CA2005/001380

WO 2007/028227

ooy

oy

-

v Old

14004

INIJNNOYHIANT 1S31

e

a0y

/

LININNOYHIANT

1531 O1 AVM3ILYO NOILVIINNIWNOD

80¢

-

90¢

.

(warl
HIOVNYN ©NgG3A VAVr

[4399N930 SWHOASNVYY 1]
21001 95n93a

[¥399ng3a wsgl
g 7001 5ng3d

¥0c

-~

d401dvav 9Ng3d NOWNOD

%

[AV74
9/

[¥399n934a 1344]
Vv 1001 ©9ng3a

PCT/CA2005/001380

WO 2007/028227

G Ol

[LSOH Tv001 Lv] 43AY3S-X @

o|dwex33y :o/dwex3BuIM |qyIyHL

A

LpJenb :jpuonisuely :aidwexggy |QvIHHL le—

[AYLNZ] Z 8Ny :ygpiens |aQvIyHL [e—

(IAYLNZ] 2 8Ny :ygpiens > 1Y d3AN34SNS) [vezLlavayHL

[LSOH 1v201 LV] ¥3AY3IS-X

[Y3aAY3S] YaAYTIS-X

9/9

INTERNATIONAL SEARCH REPORT ternational application No.

PCT/CA2005/001380

A CLASSIFICATION OF SUBJECT MATTER

IPC: GOG6F 11/36 (2006.01), GO6F 9/44 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(7): GO6F-11/36, GO6F-9/44

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

'

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

WEST, QPAT, DELPHION, IEEE, CANADIAN PATENT DATABASE (keywolrds included: debug, environment, thread, languages, tools,
modules, interface, connect, plug, stack frame, trace, instance, step, register, name, identify, server, common thread, correlate, merge,

synchronize, view and display)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6,353,923 (BOGLE PHILIP (US); KATZENBERGER GARRY (US); 1-18

5 March 2002 (05-03-2002)

<Abstract,

Column 3, line 20 to Column 4, line 35
Column 7, lines 18 to 45

Column 10, lines 23 to 34

Column 10, line 47 to Column 12, line 61
Column 13, lines 5 to 10 and lines 54 to 59
Column 14, lines 25 to 28 and lines 42 to 46>

MCKELVIE SAMUEL (US); WELLAND ROBERT (US);)

X US 6,480,818 (ALVERSON GAIL (US); SMITH BURTON (US); KAPLAN 1-18

LAURENCE (US); NIEHAUS MARK (US);)
12 November 2002 (12-11-2002)

<Abstract,

Column 7, line 1 to Column 12, line 67>

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents :
“A” document defining the general state of the art which is not considered
to be of particular relevance
“E” %?;lier application or patent but published on or after the international
ing date

“L” document which may throw doubts on riorig claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other means
“p” document published prior to the international filing date but later than
the priority date claimed

“™ later document published after the international filing date or priority
date and not in conflict with the aptRliqation but cited to understand
thé principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

5 December 2005 (05-12-2005)

Date of mailing of the international search report

03 February 2006 (03-02-2006)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - Ist Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001(819)953-2476

Authorized officer

Niall Zelem (819) 953-9814

Form PCT/ISA/210 (second sheet) (April 2005)

Page 2 of 4

INTERNATIONAL SEARCH REPORT

*\temational application No.
CT/CA2005/001380

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the re]'evant passages |Relevant to claim No.

A US 6,721,941 (MORSHED FAROKH (US); MEAGHER ROBERT (US);)

13 April 2004 (13-04-2004)

<Abstract,

Column 37, lines 41 to 67 .
Column 49, lines 51 to 67> : \

A EP 1,220,099 A2 (TABE TETSUYA (JP); NAGAO YOSHIHIRO (JP);)
03 July 2002 (03-07-2002) '
<ENTIRE DOCUMENT>

A GAZDZINSKI ROBERT (US);)
20 September 2001 (20-09-2001)
<ENTIRE DOCUMENT>

A

US 5,953,530 (RISHI ALOK (US); MASAMITSU JON (US))
14 September 1999 (14-09-1999)
<ENTIRE DOCUMENT>

WO 01/69390 A2 (PENNELLO THOMAS (US); DAVIS HENRY (US);

1-18

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

Page 3 of 4

INTERNATIONAL SEARCH REPORT

ternational application No.

CT/CA2005/001380
Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date
US6353923 05-03-2002 US6275868 B1 14-08-2001
US6353923 B1 05-03-2002
US2001005852 A1 28-06-2001
US6480818 12-11-2002 UsS6480818 B1 12-11-2002
UsS6848097 B1 25-01-2005
US2005034024 A1 10-02-2005
US6721941 13-04-2004 AT222007T T 15-08-2002
AU3366400 A 04-09-2000
AU7796498 A 08-12-1998
CA2289024 A1 19-11-1998
DE69807088D D1 12-09-2002
EP1012722 A1 28-06-2000
EP1155367 A1 21-11-2001
US5987249 A 16-11-1999
US6016466 A 18-01-2000
US6186677 B1 13-02-2001
US6314558 B1 06-11-2001
US6332213 B1 18-12-2001
US6643842 B2 04-11-2003
US6701519 B1 02-03-2004
US6721941 B1 13-04-2004
US6760903 B1 06-07-2004
US2001047510 A1 29-11-2001
US2004133882 A1 08-07-2004
WO00049502 A1 24-08-2000
WQ09852122 A1 19-11-1998
EP1220099 03-07-2002 EP1220099 A2 03-07-2002
JP2002202899 A 19-07-2002
US2002087952 A1 04-07-2002
WQ001/69390 20-09-2001 AU5580801 A 24-09-2001
US2001056341 A1 27-12-2001
WO0169390 A2 20-09-2001
US5953530 14-09-1999 EP0729097 A1 28-08-1996
JP9022370 A 21-01-1997
US5953530 A 14-09-1999
Form PCT/ISA/210 (patent family annex) (April 2005) Page 4 of 4

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - wo-search-report
	Page 24 - wo-search-report
	Page 25 - wo-search-report

