发明名称

发电机组协调控制系统和方法

摘要

本申请公开了一种发电机组协调控制系统，包括：协调控制模块、多个局部控制模块以及前馈控制模块；其中，所述协调控制模块，用于根据负荷量分段标准值与负荷量进行比对，将所述发电机组的功率、压力给定值以及实际功率，压力值发送至所述局部控制模块，并将偏差数据发送至所述前馈控制模块，所述局部控制模块，用于生成协调控制信号发送至所述模糊控制模块；所述前馈控制模块，用于对所述偏差数据进行前馈算法处理生成前馈指令；所述模糊控制模块，用于对所述协调控制信号进行权值处理，以权值形式输出最终控制指令。本申请解决了对电网负荷需求的快速响应，在变负荷过程中机组的安全、稳定运行以及在变负荷过程中抑制各种干扰因素的问题。
1. 一种发电机组协调控制系统，其特征在于，包括：协调控制模块、多个局部控制模块、前馈控制模块以及模糊控制模块；其中，

所述协调控制模块，用于实时监测所述发电机组的负荷量，并根据所述协调控制模块内部预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，根据该比对结果数据将所述发电机组的功率、压力给定值以及实际功率、压力值发送至与不同负荷量分段区间对应的所述局部控制模块，以及用于将所述发电机组的功率、压力给定值以及实际功率、压力值的偏频数据及对应生成的控制信号发送至所述前馈控制模块；

所述局部控制模块，用于接收所述协调控制模块发送的所述发电机组的功率、压力给定值以及实际功率、压力值进行控制运算处理，生成协调控制信号发送至所述模糊控制模块；

所述前馈控制模块，用于接收所述协调控制模块发送的控制信号与所述发电机组的功率、压力给定值以及实际功率、压力值的偏频数据，根据所述控制信号与所述偏频数据进行前馈算法处理生成前馈指令发送至所述发电机组；

所述模糊控制模块，用于接收与不同负荷量分段区间对应的所述局部控制模块发送的所述协调控制信号，进行权值处理，以权值形式输出最终控制指令发送至所述发电机组中进行协调控制。

2. 如权利要求1所述的发电机组协调控制系统，其特征在于，所述协调控制模块，进一步用于根据所述比对结果数据相对应的所述负荷量分段区间，产生以0至1间的数值为权重的所述输出权值，且对应于不同所述负荷量分段区间所述输出权值的加和为1。

3. 如权利要求2所述的发电机组协调控制系统，其特征在于，所述负荷量分段区间，进一步为根据所述发电机组额定负荷量的50%、70%以及90%作为负荷量分段标准值所划分的负荷量分段区间，所述所述发电机组的状况进行动态调整划分的负荷量分段区间。

4. 如权利要求1所述的发电机组协调控制系统，其特征在于，所述局部控制模块，进一步为高负荷局部控制模块、中负荷局部控制模块以及低负荷局部控制模块；其中，

所述高负荷局部控制模块，与所述协调控制模块与模糊控制模块相耦接，用于在所述额定负荷量90%的负荷点处实现于额定负荷量90%的负荷量分段区间内进行协调控制；在所述额定负荷量70%至90%的负荷量分段区间内与所述中负荷局部控制模块共同进行协调控制；

所述中负荷局部控制模块，与所述协调控制模块与模糊控制模块相耦接，用于在所述额定负荷量70%的负荷点处实现于协调控制；在所述额定负荷量70%至90%的负荷量分段区间内与所述高负荷局部控制模块共同进行协调控制；在所述额定负荷量50%至70%的负荷量分段区间内与所述低负荷局部控制模块共同进行协调控制；

所述低负荷局部控制模块，与所述协调控制模块与模糊控制模块相耦接，用于在所述额定负荷量50%的负荷点处实现于额定负荷量50%的负荷量分段区间内进行协调控制；在所述额定负荷量50%至70%的负荷量分段区间内与所述中负荷局部控制模块共同进行协调控制；

5. 如权利要求1所述的发电机组协调控制系统，其特征在于，所述最终控制指令，进一步控制所述发电机组的主蒸汽调节阀开度调整、主蒸汽压力调整以及输出功率调整。

6. 一种发电机组协调控制方法，其特征在于，包括：
实时监测所述发电机组的负荷量，根据预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，同时根据功率、压力给定值以及实际功率、压力值的偏差数据生成相对应的控制信号。

根据所述比对结果数据对相应的功率、压力给定值以及实际功率、压力值进行控制运算处理产生与不同负荷量分段区间相对应的不同的协调控制信号，对所述不同的协调控制信号进行权值处理，得到权值形式的最终控制指令对所述发电机组进行协调控制，并在所述控制信号的控制下对所述偏差数据进行前馈算法处理生成前馈指令对所述发电机组进行前馈控制。

7. 如权利要求6所述的发电机组协调控制方法，其特征在于所述输出权值，进一步为以0至1间的数值为权值的所述输出权值，且对应于不同所述负荷量分段区间间的所述输出权值的加权和为1。

8. 如权利要求7所述的发电机组协调控制方法，其特征在于所述负荷量分段区间，进一步为根据所述发电机组额定负荷量的50%、70%以及90%作为负荷量分段标准值所划分的负荷量分段区间或根据所述发电机组的状况进行动态调整划分的负荷量分段区间。

9. 如权利要求6所述的发电机组协调控制方法，其特征在于所述协调控制信号，进一步为高负荷协调控制信号、中负荷协调控制信号以及低负荷协调控制信号，其中：

所述高负荷协调控制信号，在所述额定负荷量90%的负荷点处大于该额定负荷量90%的负荷量分段区间内进行协调控制；在所述额定负荷量70%至90%的负荷量分段区间内与所述中负荷协调控制信号共同进行协调控制。

所述中负荷协调控制信号，在所述额定负荷量70%的负荷点处进行协调控制；在所述额定负荷量70%至90%的负荷量分段区间内与所述高负荷协调控制信号共同进行协调控制；在所述额定负荷量50%至70%的负荷量分段区间内与所述低负荷协调控制信号共同进行协调控制。

所述低负荷协调控制信号，在所述额定负荷量50%的负荷点处及小于该额定负荷量50%的负荷量分段区间内进行协调控制；在所述额定负荷量50%至70%的负荷量分段区间内与所述中负荷协调控制信号共同进行协调控制。

10. 如权利要求6所述的发电机组协调控制方法，其特征在于所述最终控制指令，进一步控制所述发电机组的主蒸汽调节阀开度调整，主蒸汽压力调整以及输出功率调整。
发电机组协调控制系统和方法

技术领域
[0001] 本申请涉及机械控制领域，具体地说，是涉及一种发电机组协调控制系统和方法。

背景技术
[0002] 电网的负荷需求受工农业生产、社会生活、气候条件等因素的影响很大，而上述因素的随机性很强（例如：夏季气温升高，空调负荷急速上升，加大电网负荷；春运期间客流量巨大，运输部门的用电负荷激增，加大电网负荷等等），同时目前大容量电能的经济存储问题又未得到有效地解决，这就意味着发电机组不仅要在确定的负荷点附近具有良好的性能，更需适应大范围变负荷的需求。
[0003] 目前，在规模化新能源电力大量接入的情况下，大型单元制火力发电机组更多地承担了快速响应负荷变化，保证电网能量供需动态平衡的任务。对于火电单元机组而言，负荷的大范围变化所引起的燃烧工况变化、传热性能变化、蒸汽流量和参数变化等势必对机组的动、静态特性产生显著影响，同时，各种辅助设备随负荷变化而产生的开/关、起/停等操作也对机组的正常运行造成较大的干扰。
[0004] 因此，如何解决对电网负荷需求的快速响应，保证在快速变负荷过程中机组的安全、稳定运行以及在变负荷过程中抑制各种干扰因素的不利影响，便成为亟待解决的技术问题。

发明内容
[0005] 本申请所要解决的技术问题是提供一种发电机组协调控制系统和方法，以解决对电网负荷需求的快速响应，保证在快速变负荷过程中机组的安全、稳定运行以及在变负荷过程中抑制各种干扰因素的不利影响的问题。
[0006] 为解决上述技术问题，本申请提供了一种发电机组协调控制系统，其特征在于，包括：协调控制模块、多个局部控制模块、前馈控制模块以及模糊控制模块；其中，
[0007] 所述协调控制模块，用于实时监测所述发电机组的负荷量，并根据所述协调控制模块内部预先设定的负荷量分段基础值与监测到的所述负荷量进行比对，生成比对结果数据，根据该比对结果数据将所述发电机组的功率、压力给定值以及实际功率、压力值发送至与不同负荷量段区间对应的所述局部控制模块，以及用于将所述发电机组的功率、压力给定值以及实际功率、压力值的偏差数据及对应生成的控制信号发送至所述前馈控制模块；
[0008] 所述局部控制模块，用于接收所述协调控制模块发送的所述发电机组的功率、压力给定值以及实际功率、压力值进行控制运算处理，生成协调控制信号发送至所述模糊控制模块；
[0009] 所述前馈控制模块，用于接收所述协调控制模块发送的控制信号与所述发电机组的功率、压力给定值以及实际功率、压力值的偏差数据，根据所述控制信号对该偏差数据进行前馈算法处理生成前馈指令发送至所述发电机组；
所述模块控制模块，用于接收与不同负荷量分段区间对应的所述局部控制模块发送的所述协调控制信号，进行权值处理，以权值形式输出最终控制指令发送至所述发电机组中进行协调控制。

进一步地，其中，所述协调控制模块，进一步用于根据所述比对结果数据相对应的所述负荷量分段区间，产生以 0 至 1 间的数值为权值的所述输出权值，且对应于不同所述负荷量分段区间的所述输出权值的加权和为 1。

进一步地，其中，所述负荷量分段区间，进一步为根据所述发电机组额定负荷量的 50%、70% 以及 90% 作为负荷量分段标准值所划分的负荷量分段区间或根据所述发电机组的状况进行动态调整划分的负荷量分段区间。

进一步地，其中，所述局部控制模块，进一步为高负荷局部控制模块、中负荷局部控制模块以及低负荷局部控制模块，其中；

所述高负荷局部控制模块，与所述协调控制模块和模糊控制模块相耦接，用于在所述额定负荷量 90% 的负荷点处及大于该额定负荷量 90% 的负荷量分段区间内进行协调控制；

所述额定负荷量 70% 至 90% 的负荷量分段区间内与所述高负荷局部控制模块共同进行协调控制；

所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述中负荷局部控制模块共同进行协调控制；

所述低负荷局部控制模块，与所述协调控制模块和模糊控制模块相耦接，用于在所述额定负荷量 50% 的负荷点处及小于该额定负荷量 50% 的负荷量分段区间内进行协调控制；

所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述中负荷局部控制模块共同进行协调控制。

进一步地，其中，所述最终控制指令，进一步控制所述发电机组的主蒸汽调节阀开度调整、主蒸汽压力调整以及输出功率调整。

为解决上述技术问题，本申请还提供了一种发电机组协调控制方法，其特征在于，包括；

实时监测所述发电机组的负荷量，根据预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，同时根据功率、压力给定值以及实际功率、压力值的偏差数据生成相对应的控制信号；

根据所述比对结果数据对相应的功率、压力给定值以及实际功率、压力值进行控制运算处理产生与不同负荷量分段区间对应的不同的协调控制信号，对所述不同的协调控制信号进行权值处理，得到权值形式的最终控制指令对所述发电机组进行协调控制，并在所述控制信号的控制下对所述偏差数据进行前馈算法处理生成前馈指令对所述发电机组进行前馈控制。

进一步地，其中，所述输出权值，进一步为以 0 至 1 间的数值为权值的所述输出权值，且对应于不同所述负荷量分段区间的所述输出权值的加权和为 1。

进一步地，其中，所述负荷量分段区间，进一步为根据所述发电机组额定负荷量的 50%、70% 以及 90% 作为负荷量分段标准值所划分的负荷量分段区间或根据所述发电机组的
状况进行动态调整划分的负荷量分段区间。

[0023] 进一步的，则所述协调控制信号，进一步为高负荷协调控制信号、中负荷协调控制信号以及低负荷协调控制信号；其中；

[0024] 所述高负荷协调控制信号，在所述额定负荷量 90% 的负荷点处及大于该额定负荷量 90% 的负荷量分段区间内进行协调控制：在所述额定负荷量 70% 至 90% 的负荷量 分段区间内与所述中负荷协调控制信号共同进行协调控制：

[0025] 所述中负荷协调控制信号，在所述额定负荷量 70% 的负荷点处进行协调控制：在所述额定负荷量 70% 至 90% 的负荷量 分段区间内与所述高负荷协调控制信号共同进行协调控制；在所述额定负荷量 50% 至 70% 的负荷量 分段区间内与所述低负荷协调控制信号共同进行协调控制；

[0026] 所述低负荷协调控制信号，在所述额定负荷量 50% 的负荷点处及小于该额定负荷量 50% 的负荷量分段区间内进行协调控制：在所述额定负荷量 50% 至 70% 的负荷量 分段区间内与所述中负荷协调控制信号共同进行协调控制。

[0027] 进一步的，则所述最终指挥信号，进一步为控制所述发电机组的主蒸汽调节阀开度调整、主蒸汽压力调整以及输出功率调整。

[0028] 与现有技术相比，本申请所述的一种发电机组协调控制系统和方法，达到了如下效果：

[0029] 1）采用本申请技术方案的发电机组可以通过动态反馈的方式直接增加或减少燃料量，大幅度改变机组的能量输入水平，从而有效地控制电网负荷需求的快速响应，同时动态反馈具有良好的抗干扰特性，可以在变负荷过程中抑制各种干扰因素，避免干扰产生的不利影响；

[0030] 2）采用本申请技术方案的发电机组可以实现多控制器有效整合，针对不同工况选取最优控制器，且可实现控制器间的自然过渡，从而有效地在快速变负荷过程中机组的安全、稳定运行，同时加快了动态响应，并抑制超调；

[0031] 3）本申请所述的技术方案，还可以用于多种控制器及控制系统中，实用性强，且结构形式简单、控制参数直观，有很强的可操作性。

附图说明

[0032] 此处所说明的附图用来提供对本申请的进一步理解，构成本申请的一部分。本申请的示意性实施例及其说明用于解释本申请，并不构成对本申请的不当限定。在附图中：

[0033] 图 1 为本申请实施例一中所述的发电机组协调控制系统的设计框图；

[0034] 图 2 为本申请实施例一中所述的发电机组协调控制系统的优选结构框图；

[0035] 图 3 为本申请实施例二中所述的发电机组协调控制方法流程图。

具体实施方式

[0036] 如在说明书及权利要求书中使用了某些词汇来指称特定组件，本领域技术人员应可理解，硬件制造商可能会用不同名称来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式，而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书中所提及的“包含”为一开放式用语，故应解释成“包含但不限定
于”。“大致”是指在可接受的误差范围内，本领域技术人员能够在一定误差范围内解决所述技术问题，基本达到所述技术效果。此外，“耦接”一词在此包含任何直接及间接的电性耦接手段。因此，若文中描述一第一装置耦接于一第二装置，则代表所述第一装置可直接电性耦接于所述第二装置，或通过其他装置或耦接手段间接电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式，然所述描述乃以说明本申请的一般原则为目的，并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。

0037 以下结合附图对本申请作进一步详细说明，但不作为对本申请的限定。

0038 实施例一

0039 如图1所示，是本申请实施例一所述的一种发电机组协调控制系统，其特征在于，包括：协调控制模块101，多个局部控制模块102，前馈控制模块103以及模糊控制模块104；其中，

0040 所述协调控制模块101，分别与所述多个局部控制模块102，前馈控制模块103以及发电机组相耦接，用于实时监测所述发电机组的负荷量，并根据所述协调控制模块101内部预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，并根据该比对结果数据将所述发电机组的功率、压力给定值以及实际功率、压力值发送至与不同负荷量分段区间对应的所述局部控制模块102，以及用于将所述发电机组的功率、压力给定值以及实际功率、压力值的偏差数据及对应生成的控制信号发送至所述前馈控制模块103。

0041 所述局部控制模块102，与所述协调控制模块101和模糊控制模块104相耦接，用于接收所述协调控制模块101发送的所述发电机组的功率、压力给定值以及实际功率、压力值进行控制运算处理，生成协调控制信号发送至所述模糊控制模块104。

0042 所述前馈控制模块103，与所述协调控制模块101相耦接，用于接收所述协调控制模块101发送的控制信号与所述发电机组的功率、压力给定值以及实际功率、压力值的偏差数据，根据所述控制信号对该偏差数据进行运算算法处理生成前馈指令发送至所述发电机组。

0043 所述模糊控制模块104，分别与所述多个局部控制模块102和发电机组相耦接，用于接收与不同负荷量分段区间对应的所述局部控制模块102发送的所述协调控制信号，进行加权处理，以加权形式输出最终控制指令发送至所述发电机组中进行协调控制。

0044 进一步地，所述协调控制模块101可以是中央处理器，单片机或任意具有良好处理功能的处理芯片或终端。所述协调控制模块101内部预先设定的所述负荷量分段标准值可以由模糊隶属度函数得到。进一步来说，根据所述发电机组预先设定负荷量的50%、70%以及90%作为负荷量分段标准值，从而由此标准值将所述负荷量划分为不同的分段区间，优选地，所述负荷量分段区间分为高、中、低三段。所述协调控制模块101根据所述负荷量分段区间，将产生[0, 1]之间的数值为权重（在区间内，包括0和1的值）的所述输出权重，而且对应于不同所述负荷量分段区间的所述输出权重的加权和为1。所述协调控制模块101利用模糊隶属度函数可以实现多个所述局部控制模块102的有效整合，可以针对不同工况采用最适合当前工况的所述局部控制模块102对被控对象实施有效控制，又可以实现多个所述局部控制模块102之间的自然过渡、无扰切换。

0045 进一步地，所述局部控制模块102可以是中央处理器、单片机或任意具有良好处
理功能的处理芯片，所述局部控制模块 102 的数量具体将根据所述负荷量分段区间进行设置，作为优选地，如图 2 所示，所述局部控制模块 101 为三个（为了方便说明，对三个所述局部控制模块分别标号）；进一步为高负荷局部控制模块 1011，中负荷局部控制模块 1012 以及低负荷局部控制模块 1013；其中，

所述高负荷局部控制模块 1011，与所述协调控制模块 101 和模糊控制模块 104 相耦接，用于在所述额定负荷量 90% 的负荷点处及大于该额定负荷量 90% 的负荷量分段区间内进行协调控制；在所述额定负荷量 70% 至 90% 的负荷量分段区间内与所述中负荷局部控制模块 1012 共同进行协调控制；

所述中负荷局部控制模块 1012，与所述协调控制模块 101 和模糊控制模块 104 相耦接，用于在所述额定负荷量 70% 的负荷点处进行协调控制；在所述额定负荷量 70% 至 90% 的负荷量分段区间内与所述高负荷局部控制模块 1011 共同进行协调控制；在所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述低负荷局部控制模块 1013 共同进行协调控制；

所述低负荷局部控制模块 1013，与所述协调控制模块 101 和模糊控制模块 104 相耦接，用于在所述额定负荷量 50% 的负荷点处及小于该额定负荷量 50% 的负荷量分段区间内进行协调控制；在所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述中负荷局部控制模块 1012 共同进行协调控制。

进一步地，上述区间划分的负荷量值可以根据机组状况进行动态调整。

进一步地，所述前馈控制模块 103 是具有动态前馈特性的控制模块，具体可以是控制芯片，所述前馈控制模块 103 能够根据负荷量的变化直接增加（或减少）进入锅炉的燃料量，较大幅度地改变机组的能量输入水平，加速机组的能量平衡进程，保证负荷快速跟随主蒸汽压力的相对稳定。

进一步地，所述模糊控制模块 104 将不同负荷量分段区间对应的所述局部控制模块发送的所述协调控制信号进行权值处理产生的所述最终控制指令，进一步控制所述发电机组的主蒸汽调节阀开度调整、主蒸汽压力调整以及输出功率调整，所述最终控制指令仍然以权值的方式表示，且其加权与所述输出权值保持一致，即加权和为 1。

实施例二

如图 3 所示，是本申请实施例二所述的一种发电机组协调控制方法，包括：

步骤 301，实时监测所述发电机组的负荷量，根据预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，同时根据功率、压力给定值以及实际功率、压力值的偏差数据生成相对应的控制信号。

步骤 302，根据所述比对结果数据对相应的功率、压力给定值以及实际功率、压力值进行控制运算处理产生与不同负荷量分段区间对应的不同的协调控制信号，对所述不同的协调控制信号进行权值处理，得到权值形式的最终控制指令对所述发电机组进行协调控制，并在所述控制信号的控制下对所述偏差数据进行前馈算法处理生成前馈指令对所述发电机组进行前馈控制。

进一步地，对于步骤 301，所述负荷量分段标准值可以由模糊隶属度函数得到，具体根据所述发电机组额定负荷量的 50%、70% 以及 90% 作为负荷量分段标准值，从而以此标准值将所述负荷量划分为不同的分段区间，优选地，所述负荷量分段区间分为高、中、低三段。所述协调控制模块 101 根据所述负荷量分段区间，将产生 [0, 1] 之间的数值为权值（闭
区间，包括 0 和 1 的值）的所述输出权值，而且对应于不同所述负荷量分段区间的所述输出权值的加权和为 1。

[0057] 采用所述模糊隶属度函数将所述负荷量分段，可以实现对多个控制器的有效整合，可以针对不同工况采用最适合当前工况的控制器对被控对象实施有效控制，又可以实现多个控制器之间的自然过渡、无扰切换。

[0058] 具体来说，在步骤 301 中，所述协调控制信号根据所述负荷量分段区间进行分类，进一步分为高负荷协调控制信号、中负荷协调控制信号以及低负荷协调控制信号；其中：

[0059] 所述高负荷协调控制信号，在所述额定负荷量 90% 的负荷点处及大于该额定负荷量 90% 的负荷量分段区间进行协调控制；在所述额定负荷量 70% 至 90% 的负荷量分段区间内与所述中负荷协调控制信号共同进行协调控制；

[0060] 所述中负荷协调控制信号，在所述额定负荷量 70% 的负荷点处进行协调控制；在所述额定负荷量 70% 至 90% 的负荷量分段区间内与所述高负荷协调控制信号共同进行协调控制；在所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述低负荷协调控制信号共同进行协调控制；

[0061] 所述低负荷协调控制信号，在所述额定负荷量 50% 的负荷点处及小于该额定负荷量 50% 的负荷量分段区间内进行协调控制；在所述额定负荷量 50% 至 70% 的负荷量分段区间内与所述中负荷协调控制信号共同进行协调控制。

[0062] 进一步地，对于步骤 302，采用所述前馈控制能够根据负荷量的变化直接增加（或减少）进入锅炉的燃料量，较大幅度地改变机组的热量输入水平，加速机组的能量平衡进程，保证负荷快速跟踪到主蒸汽压力的相对稳定。

[0063] 进一步地，所述最终控制指令，具体控制所述发电机组的主蒸汽调节阀开度调整，主蒸汽压力调整以及输出功率调整。

[0064] 与现有技术相比，本申请所述的一种发电机组协调控制系统和方法，达到了如下效果：

[0065] 1）采用本申请技术方案的发电机组可以通过动态前馈的方式直接增加或减少燃料量，大幅度改变机组的热量输入水平，从而有效实现对电网负荷需求的快速响应，同时动态前馈有着良好的抗干扰特性，可以在变负荷过程中抑制各种干扰因素，避免干扰产生的不利影响；

[0066] 2）采用本申请技术方案的发电机组可以实现多控制器有效整合，针对不同工况选取最优控制器，且可实现控制器间的自然过渡，从而有效保证了在快速变负荷过程中机组的安全、稳定运行；

[0067] 3）本申请所述的技术方案，还可以用于多种控制器及控制系统中，实用性强，且结构形式简单，控制参数直观，有很强的可操作性。

[0068] 上述说明示出并描述了本申请的若干优选实施例，但如前所述，应当理解本申请并非局限于本文所披露的形式，不应看作是对其它实施例的排除，而可用于各种其他组合、修改和环境，并能够在本文所述申请构思范围内，通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围，则都应在本申请所附权利要求的保护范围内。
图 2
实时监测所述发电机组的负荷量，根据预先设定的负荷量分段标准值与监测到的所述负荷量进行比对，生成比对结果数据，同时根据功率、压力给定值以及实际功率、压力值的偏差数据生成相对应的控制信号

根据所述比对结果数据对相应的功率、压力给定值以及实际功率、压力值进行控制运算处理，产生与不同负荷量分段区间对应的不同的协调控制信号，对所述不同的协调控制信号进行权值处理，得到权值形式的最终控制指令对所述发电机组进行协调控制，并在所述控制信号的控制下对所述偏差数据进行前馈算法处理生成前馈指令对所述发电机组进行前馈控制

图3