Développement économique Canada

Office de la Propriété Intellectuelle du Canada

I*I Innovation, Sciences et

Innovation, Science and
Economic Development Canada

Canadian Intellectual Property Office

(86) Date de dépo6t PCT/PCT Filing Date: 2015/06/11

(87) Date publication PCT/PCT Publication Date: 2015/12/17

(45) Date de délivrance/lssue Date: 2023/08/29
(85) Entrée phase nationale/National Entry: 2016/12/07

(86) N° demande PCT/PCT Application No.: US 2015/035296
(87) N° publication PCT/PCT Publication No.: 2015/191834

(30) Priorités/Priorities: 2014/06/11 (US62/010,979);

2014/10/21 (US62/066,797), 2014/10/21 (US62/066,851),

2015/06/10 (US14/736,102)

(51) CLInt./Int.Cl. HO4N 19/82(2014.01),
HO4N 19/117(2014.01), HO4N 19/159(2014.01),
HO4N 19/176 (2014.01), HO4N 19/186 (2014.01),
HO4N 19/86(2014.01)

(72) Inventeurs/Inventors:
PU, WEI, US;
SOLE ROJALS, JOEL, US;
JOSHI, RAJAN LAXMAN, US;
KARCZEWICZ, MARTA, US

(73) Propriétaire/Owner:
QUALCOMM INCORPORATED, US

(74) Agent: SMART & BIGGAR LP

(54) Titre : DETERMINATION DE L'APPLICATION D'UN FILTRE DE DEGROUPAGE SUR DES BLOCS CODES PAR

PALETTE, DANS UN CODAGE VIDEO

(54) Title: DETERMINING APPLICATION OF DEBLOCKING FILTERING TO PALETTE CODED BLOCKS IN VIDEO

CA 2951569 C 2023/08/29

neEn 2 951 569

12 BREVET CANADIEN
CANADIAN PATENT
13 C

CODING
200
DETERMINE THAT FIRST BLOCK OF VIDEQ DATA IS J
PALETTE CODED BELOCK
i 202
DETERMINE PALETTE FOR FIRST BLOCK -)
* 204
DETERMINE COLOR VALUES FOR PIXELS OF FIRST _/
BLOCK WITH RESPECT TO THE PALETTE
* 206
RECONSTRUCT FIRST BLOCK OF VIDEO DATA BASED ON _/
THE PALETTE AND COLOR VALUES FOR FIRST BLOCK
BASED ON FIRST BLOCK BEING PALETTE CODED BLOCK, | 208
DISABLE DEBLOCKING FILTERING FOR FIRST PIXELS /’
WITHIN RECONSTRUCTED FIRST BLOCK AT BLOGCK
BOUNDARY WITH RECONSTRUCTED SECOND BLOCK
DETERMINE WHETHER TO APPLY DEBLOCKING 210
FILTERING FOR SECOND PIXELS WITHIN
RECONSTRUCTED SECOND BLOCK AT BLOCK BOUNDARY
WITH RECONSTRUCTED FIRST BLOCK
(57) Abrégé/Abstract:

Techniques are described for palette-based video coding. In palette-based coding, a video coder may form a so-called "palette” as
a table of colors for representing video data of a given block of video data. Rather than coding actual pixel values or their residuals
for the given block, the video coder may code index values for one or more of the pixels. The index values map the pixels to entries
in the palette representing the colors of the pixels. Techniques are described for determining the application of deblocking filtering
for pixels of palette coded blocks at a video encoder or a video decoder. In addition, techniques are described for determining
quantization parameter (QP) values and delta QP values used to quantize escape pixel values of palette coded blocks at the video

encoder or the video decoder.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2015/191834 A1 |1 IO OO0 A

(43) International Publication Date

CA 02951569 2016-12-07

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/191834 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

International Filing Date:
11 June 2015 (11.06.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/010,979 11 June 2014 (11.06.2014) US
62/066,797 21 October 2014 (21.10.2014) US
62/066,851 21 October 2014 (21.10.2014) US
14/736,102 10 June 2015 (10.06.2015) US

Applicant: QUALCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse
Drive, San Diego, CA 92121-1714 (US).

17 December 2015 (17.12.2015) WIPO | PCT
International Patent Classification: (72)
HO04N 19/159 (2014.01) HO04N 19/82 (2014.01)

HO04N 19/176 (2014.01) HO04N 19/86 (2014.01)
HO04N 19/117 (2014.01)
International Application Number:
PCT/US2015/035296
(74

(8D

Inventors: PU, Wei; 5775 Morchouse Drive, San Diego,
CA 92121-1714 (US). SOLE ROJALS, Joel; 5775 More-
house Drive, San Diego, CA 92121-1714 (US). JOSHI,
Rajan Laxman; 5775 Morehouse Drive, San Diego, CA
92121-1714 (US). KARCZEWICZ, Marta; 5775 More-
house Drive, San Diego, CA 92121-1714 (US).

Agent: SHUKLA, Darcy L., G.; Shumaker & Sietfert,
P.A., 1625 Radio Drive, Suite 300, Woodbury, MN 55125

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: DETERMINING APPLICATION OF DEBLOCKING FILTERING TO PALETTE CODED BLOCKS IN VIDEO COD-

ING

200
DETERMINE THAT FIRST BLOCK OF VIDEO DATA IS /
PALETTE CODED BLOCK
¢ 202
DETERMINE PALETTE FOR FIRST BLOCK J
¢ 204
DETERMINE COLOR VALUES FOR PIXELS OF FIRST _/
BLOCK WITH RESPECT TO THE PALETTE
¢ 206
RECONSTRUCT FIRST BLOCK OF VIDEO DATA BASED ON _/
THE PALETTE AND COLOR VALUES FOR FIRST BLOCK
BASED ON FIRST BLOCK BEING PALETTE CODED BLOCK, | 208
DISABLE DEBLOCKING FILTERING FOR FIRST PIXELS /
WITHIN RECONSTRUCTED FIRST BLOCK AT BLOCK
BOUNDARY WITH RECONSTRUCTED SECOND BLOCK
DETERMINE WHETHER TO APPLY DEBLOCKING 210
FILTERING FOR SECOND PIXELS WITHIN
RECONSTRUCTED SECOND BLOCK AT BLOCK BOUNDARY
WITH RECONSTRUCTED FIRST BLOCK

FIG. 5

(57) Abstract: Techniques are described for palette-based
video coding. In palette-based coding, a video coder may
form a so-called "palette” as a table of colors for represent-
ing video data of a given block of video data. Rather than
coding actual pixel values or their residuals for the given
block, the video coder may code index values for one or
more of the pixels. The index values map the pixels to
entries in the palette representing the colors of the pixels.
Techniques are described for determining the application of
deblocking filtering for pixels of palette coded blocks at a
video encoder or a video decoder. In addition, techniques
are described for determining quantization parameter (QP)
values and delta QP values used to quantize escape pixel
values of palette coded blocks at the video encoder or the
video decoder.

CA 02951569 2016-12-07

WO 2015/191834 A1 |IIWAT 00T VT O A

(84) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
kind of regional protection available). ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, .
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, Kz, RU, Tublished:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — with international search report (Art. 21(3))
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

81801011

1

DETERMINING APPLICATION OF DEBLOCKING FILTERING TO PALETTE
CODED BLOCKS IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application

No. 62/010,979 filed June 11, 2014, U.S. Provisional Application No. 62/066,797,
filed October 21, 2014, and U.S. Provisional Application No. 62/066,851, filed
October 21, 2014.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and decoding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard, and extensions of such standards. The video devices
may transmit, receive, encode, decode, and/or store digital video information more
efficiently by implementing such video compression techniques.
[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks. Video blocks in an intra-coded
() slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or
B) slice of a picture may use spatial prediction with respect to reference samples in
neighboring blocks in the same picture or temporal prediction with respect to reference
samples in other reference pictures. Pictures may be referred to as frames, and

reference pictures may be referred to as reference frames.

Date regue/date received 2021-10-21

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

2
[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicates the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and

entropy coding may be applied to achieve even more compression.

SUMMARY
[0006] In general, this disclosure describes techniques for palette-based video coding.
In palette-based coding, a video coder (e.g., a video encoder or video decoder) may
form a so-called “palette” as a table of colors for representing video data of a particular
area (e.g., a given block). Palette-based coding may be especially useful for coding
areas of video data having a relatively small number of colors. Rather than coding
actual pixel values or their residuals for the given block, the video coder may code
index values for one or more of the pixels. The index values map the pixels to entries in
the palette representing the colors of the pixels. In this disclosure, techniques are
described for determining the application of deblocking filtering for pixels of palette
coded blocks at a video encoder or a video decoder. In addition, techniques are
described for determining quantization parameter (QP) values and delta QP values used
to quantize escape pixel values of palette coded blocks at the video encoder or the video
decoder.
[0007] In onc cxample, this disclosure is dirccted to a method of processing vidco data,
the method comprising determining that a first block of video data is a palette coded
block; determining a palette for the first block; determining color values for pixels
within the first block with respect to the palette; reconstructing the first block of the
video data based on the palette and the color values for the first block; based on the first
block being a palette coded block, disabling deblocking filtering for first pixels within
the reconstructed first block at a block boundary formed between the reconstructed first

block and a reconstructed second block of video data; and determining whether to apply

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

3
the deblocking filtering for second pixels within the reconstructed second block at the
block boundary formed between the reconstructed first block and the reconstructed
second block.
[0008] In another example, this disclosure is directed to a video processing device
comprising a memory configured to store video data, and one or more processors in
communication with the memory. The one or more processors are configured to
determine that a first block of video data is a palette coded block; determine a palette for
the first block; determine color values for pixels within the first block with respect to
the palette; reconstruct the first block of the video data based on the palette and the
color values for the first block; based on the first block being a palette coded block,
disable deblocking filtering for first pixels within the reconstructed first block at a block
boundary formed between the reconstructed first block and a reconstructed second block
of video data; and determine whether to apply the deblocking filtering for second pixels
within the reconstructed second block at the block boundary formed between the
reconstructed first block and the reconstructed second block.
[0009] In another example, this disclosure is directed to a video processing device
comprising means for determining that a first block of video data is a palette coded
block; means for determining a palette for the first block; means for determining color
values for one or more pixels within the first block with respect to the palette; means for
reconstructing the first block of the video data based on the palette and the color values
for the first block; means for, based on the first block being a palette coded block,
disabling deblocking filtering for first pixels within the reconstructed first block at a
block boundary formed between the reconstructed first block and a reconstructed second
block of video data; and means for determining whether to apply the deblocking
filtering for second pixels within the reconstructed second block at the block boundary
formed between the reconstructed first block and the reconstructed second block.
[0010] In a further cxample, this disclosure is dirccted to a non-transitory computer-
readable medium having stored thereon instructions for processing video data that,
when executed, cause one or more processors to determine that a first block of video
data is a palette coded block; determine a palette for the first block; determine color
values for one or more pixels within the first block with respect to the palette;
reconstruct the first block of the video data based on the palette and the color values for
the first block; based on the first block being a palette coded block, disable deblocking

filtering for first pixels within the reconstructed first block at a block boundary formed

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

4
between the reconstructed first block and a reconstructed second block of video data;
and determine whether to apply the deblocking filtering for second pixels within the
reconstructed second block at the block boundary formed between the reconstructed
first block and the reconstructed second block.
[0011] In one example, this disclosure is directed to a method of processing video data,
the method comprising determining a palette for a palette coded block including zero or
more palette entries that indicate one or more respective color values; determining
whether at least one pixel within the palette coded block is coded as an escape pixel
having a color value that is not included in the palette; based on the at least one pixel
within the palette coded block being coded as an escape pixel, determining a palette
quantization parameter (QP) value for the palette coded block, the palette QP value
being adjusted from a predicted QP valuc; and based on the at least one pixel within the
palette coded block being coded as an escape pixel, determining the color value for the
escape pixel that is not included in the palette, and quantizing the color value for the
escape pixel according to the palette QP value.
[0012] In another example, this disclosure is directed to a video processing device
comprising a memory configured to store video data, and one or more processors in
communication with the memory. The one or more processors are configured to
determine a palette for a palette coded block including zero or more palette entries that
indicate one or more respective color values; determine whether at least one pixel within
the palette coded block is coded as an escape pixel having a color value that is not
included in the palette; based on the at least one pixel within the palette coded block
being coded as an escape pixel, determine a palette quantization parameter (QP) value
for the palette coded block, the palette QP value being adjusted from a predicted QP
value; and based on the at least one pixel within the palette coded block being coded as
an cscape pixel, determine the color value for the escape pixel that is not included in the
palette, and quantize the color value for the cscape pixcl according to the palctte QP
value.
[0013] In another example, this disclosure is directed to a video processing device
comprising means for determining a palette for a palette coded block including zero or
more palette entries that indicate one or more respective color values; means for
determining whether at least one pixel within the palette coded block is coded as an
escape pixel having a color value that is not included in the palette; means for, based on

the at least one pixel within the palette coded block being coded as an escape pixel,

81801011
5

determining a palette quantization parameter (QP) value for the palette coded block, the
palette QP value being adjusted from a predicted QP value; and means for, based on the at
least one pixel within the palette coded block being coded as an escape pixel, determining
the color value for the escape pixel that is not included in the palette, and quantizing the
color value for the escape pixel according to the palette QP value.

[0014] In a further example, this disclosure is directed to a non-transitory computer-
readable medium having stored thercon instructions for processing video data that, when
executed, cause one or more processors to determine a palette for a palette coded block
including zero or more palette entries that indicate one or more respective color values;
determine whether at least one pixel within the palette coded block is coded as an escape
pixel having a color value that is not included in the palette; based on the at least one pixel
within the palette coded block being coded as an escape pixel, determine a palette
quantization parameter (QP) value for the palette coded block, the palette QP value being
adjusted from a predicted QP value; and based on the at least one pixel within the palette
coded block being coded as an escape pixel, determine the color value for the escape pixel
that is not included in the palette, and quantizing the color value for the escape pixel
according to the palette QP value.

[0014a] According to one aspect of the present invention, there is provided a method of
processing video data, the method comprising: determining that a first block of video data
is a palette coded block; determining a palette for the first block; determining color values
for pixels within the first block with respect to the palette; reconstructing the first block of
the video data based on the palette and the color values for the first block; based on the
first block being a palette coded block, disabling deblocking filtering for first pixels within
the reconstructed first block at a block boundary formed between the reconstructed first
block and a reconstructed second block of video data; and determining whether to apply
the deblocking filtering for second pixels within the reconstructed second block at the
block boundary formed between the reconstructed first block and the reconstructed second
block.

[0014b] According to another aspect of the present invention, there is provided a video
processing device comprising: a memory configured to store video data; and one or more
processors in communication with the memory and configured to: determine that a first

block of video data is a palette coded block; determine a palette for the first block;

Date regue/date received 2021-10-21

81801011
5a

determine color values for one or more pixels within the first block with respect to the
palette; reconstruct the first block of the video data based on the palette and the color
values for the first block; based on the first block being a palette coded block, disable
deblocking filtering for first pixels within the reconstructed first block at a block boundary
formed between the reconstructed first block and a reconstructed second block of video
data; and determine whether to apply the deblocking filtering for second pixels within the
reconstructed second block at the block boundary formed between the reconstructed first
block and the reconstructed second block.

[0015] The details of one or more examples of the disclosure are sct forth in the
accompanying drawings and the description below. Other features, objects, and advantages

will be apparent from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS
[0016] FIG. 1 is a block diagram illustrating an example video coding system that may
utilize the techniques described in this disclosure.
[0017] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.
[0018] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.
[0019] FIG. 4 is a conceptual diagram illustrating an example of a four-pixel long vertical
block boundary formed between two adjacent blocks.
[0020] FIG. 5 is a flowchart illustrating an example operation of a video coder determining
whether to apply deblocking filtering to pixels along a block boundary formed by at least
one palette coded block.

Date regue/date received 2021-10-21

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

6
[0021] FIG. 6 is a flowchart illustrating an example operation of a video coder
determining a palette quantization parameter (QP) value used to quantize escape pixel

values of a palette coded block.

DETAILED DESCRIPTION
[0022] This disclosure describes techniques for video coding and compression. In
particular, this disclosure describes techniques to support coding of video content,
especially screen content with palette-based coding. This disclosure describes multiple
technical aspects of palette-based coding. In some examples, this disclosure describes
techniques for determining the design and application of in-loop filtering (e.g.,
deblocking filtering and/or sample adaptive offset (SAO) filtering) for pixels of palette
coded blocks. More specifically, techniques are described for determining the
application of deblocking filtering for pixels along a block boundary formed by at least
one palette coded block at a video encoder or a video decoder. In other examples, this
disclosure describes techniques for determining quantization parameter (QP) values and
delta QP values used to quantize escape pixel values of palette coded blocks at the video
encoder or the video decoder.
[0023] In traditional video coding, images are assumed to be continuous-tone and
spatially smooth. Based on these assumptions, various tools have been developed, such
as block-based transform, filtering, etc., and such tools have shown good performance
for natural content videos. In applications like remote desktop, collaborative work and
wireless display, however, computer generated screen content (¢.g., such as text or
computer graphics) may be the dominant content to be compressed. This type of
content tends to have discrete-tone, and feature sharp lines and high contrast object
boundaries. The assumption of continuous-tone and smoothness may no longer apply
for screen content, and thus traditional video coding techniques may not be efficient
ways to compress vidco data including screen content.
[0024] This disclosure describes palette-based coding, which may be particularly
suitable for screen generated content coding. For example, assuming a particular arca of
video data has a relatively small number of colors, a video coder (e.g., a video encoder
or video decoder) may form a so-called “palette” to represent the video data of the
particular area. The palette may be expressed as a table of colors for representing the
video data of the particular area (e.g., a given block). For example, the palette may

include the most dominant colors (i.e., pixel values) in the given block. In some cases,

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

7
the most dominant colors may include the one or more colors that occur most frequently
within the block. Additionally, in some cases, a video coder may apply a threshold
value to determine whether a color is to be included as one of the most dominant colors
in the block. The palette may be explicitly encoded and sent to a video decoder,
predicted from previous palette entries, or a combination thereof. According to various
agpects of palette-based coding, the video coder may code index values indicative of
one or more of the pixels of the current block, instead of coding the actual pixel values
or their residuals for the current block. In the context of palette-based coding, the index
values indicate respective entries in the palette that are used to represent the colors of
the individual pixels of the current block.
[0025] For example, the video encoder may encode a block of video data by
determining a palette for the block, locating an entry in the palette to represent colors of
one or more of the pixels of the block, and encoding the block with index values that
indicate the entries in the palette. For those pixels of the block with color values that
map to entries in the palette, the video encoder may encode the index values of the
entries for the respective pixels. For those pixels of the block with color values that do
not map to entries in the palette, the video encoder may encode a special index for the
pixel and encode the actual pixel value or its residual value (or a quantized version
thereof). These pixels are referred to as “escape pixels.” In some examples, a palette
may include zero entries representing no color values. In this example, all pixels of the
block have color values that do not map to entries in the palette and, thus, are encoded
as escape pixels.
[0026] In some examples, the video encoder may signal the palette, the index values,
and any escape pixels in an encoded bitstream. In turn, the video decoder may obtain,
from the encoded bitstream, the palette for the block, as well any index values for the
pixels of the block, and pixel values for any escape pixels of the block. The video
dccoder may map the index valucs to entrics of the palctte and decode the cscape pixcels
to reconstruct the pixel values of the block. The example above is intended to provide a
general description of palette-based coding.
[0027] The techniques for palette-based coding of video data may be used with one or
more other coding techniques, such as techniques for inter- or intra-predictive coding.
For example, as described in greater detail below, a video encoder or video decoder or
combined encoder-decoder (codec), may be configured to perform inter- and intra-

predictive coding, as well as palette-based coding.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

8
[0028] In some examples, the palette-based coding techniques may be configured for
use with one or more video coding standards. For example, High Efficiency Video
Coding (HEVC) is a video coding standard developed by the Joint Collaboration Team
on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and
ISO/TEC Motion Picture Experts Group (MPEG). The finalized HEVC standard,
hereinafter referred to as “HEVC Version 1,” is published as “ITU-T H.265, SERIES H:
AUDIOVISUAL AND MULTIMEDIA SYSTEMS Infrastructure of audiovisual
services — Coding of moving video - High efficiency video coding,”
Telecommunication Standardization Sector of International Telecommunication Union
(ITU), April 2013, and is available from http:/www.itu.int/rec/T-REC-H.265-201304-1.
[0029] The Range Extensions to HEVC, namely HEVC-Rext, is being developed by the
JCT-VC. A recent Working Draft (WD) of Range Extensions, hereinafter referred to as
“RExt WD7,” is available from http://phenix.int-
evry.fi/jct/doc_end user/documents/17 Valencia/wgl 1/JCTVC-0Q1005-v4.zip. The
JCT-VC is also developing HEVC Screen Content Coding (SCC), which is based on the
HEVC-Rext. A recent WD of the HEVC SCC extension, hereinafter referred to as SCC

WD1.0, is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/18 Sapporo/wgl1/JCTVC-R1005-v3.zip. A more
recent WD of the HEVC SCC extension, hereinafter referred to SCC WD2.0, 1s

available from http://phenix.int-

evry fr/jct/doc _end user/documents/19 Strasbourg/wgl1/JCTVC-S1005-v1.zip.

[0030] With respect to the HEVC framework, as an example, the palette-based coding
techniques may be configured to be used as a coding unit (CU) mode. In other
examples, the palette-based coding techniques may be configured to be used as a PU
mode in the framework of HEVC. Accordingly, all of the following disclosed processes
described in the context of a CU mode may, additionally or alternatively, apply to PU.
Howecver, these HEVC-based cxamples should not be considered a restriction or
limitation of the palette-based coding techniques described herein, as such techniques
may be applied to work independently or as part of other existing or yet to be developed
systems/standards. In these cases, the unit for palette coding can be square blocks,
rectangular blocks or even regions of non-rectangular shape.

[0031] The basic idea of palette-based coding is that, for each CU, a palette is derived
that includes the most dominant colors (i.e., pixel values) in the current CU, or in some

cases no colors. The palette size and the palette entries of the palette may be transmitted

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

9
from a video encoder to a video decoder. The palette size and entries of the palette may
be directly coded or predictively coded using the size and entries, respectively, of
palettes for one or more neighboring CUs (e.g. above and/or left coded CUs). The
pixels of the CU may then be encoded based on the palette according to a certain
scanning order.
[0032] For cach pixel location in the CU, a flag may be transmitted to indicate whether
the color of the pixel is included in the palette. For those pixels that map to an entry in
the palette, a palette index associated with that entry may be signaled for the given pixel
location in the CU. In some cases, run mode coding may be used such that the palette
index associated with the pixel location in the CU is signaled followed by a “run” of the
pixel value. In this case, neither the flag nor the palette index needs to be transmitted
for the following pixel locations that are covered by the “run” as they all have the same
pixel value. For those pixels with color values that do not map to entries in the palette
(i.c., escape pixels), a special index may be assigned to the pixel and the actual pixel
value or its residual value (or a quantized version thereof) may be transmitted for the
given pixel location in the CU. The escape pixel values may be quantized according to
a slice-level quantization parameter (QP) value or a coefficient QP value. The escape
pixels may be coded using any existing entropy coding method such as fixed length
coding, unary coding, etc.
[0033] Multiple different technical aspects of palette-based coding are described in
more detail below, including indicating a palette-based coding mode, determining a
palette for a given block, transmitting palette index values used to indicate pixel values
of the given block, and lossy coding of the palette and the palette index values.
[0034] For example, a syntax element, such as a flag “PLT Mode flag” or
“palette mode flag,” may be transmitted to indicate whether a palette-based coding
mode is to be used for a current CU (or a PU in other examples). In one example, a
value of the syntax clement palette mode flag may specify that the current CU is
encoded using the palette-based coding mode or that the current CU is encoded using a
mode other than the palette-based coding mode. For example, any of a variety of inter-
predictive, intra-predictive, or other coding modes may be used to decode the current
CU. The use of the palette mode flag is described for purposes of example. In other
examples, other syntax elements such as multi-bit codes may be used to indicate
whether the palette-based, inter-predictive, intra-predictor, or another coding mode is to

be used for a CU (or PU in other examples).

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

10
[0035] In some examples, the syntax element indicating the palette-based coding mode
may be signaled at the CU-level in an encoded bitstream, and then received by a video
decoder upon decoding the encoded bitstream. In other examples, the syntax element
may be transmitted at a higher level than the CU-level. For example, a flag indicating
the palette-based coding mode may be transmitted at slice-level to indicate whether all
of the CUs in the slice are to be encoded using the palette-based coding mode. In other
examples, a flag indicating the palette-based coding mode may be signaled at a picture
parameter set (PPS), sequence parameter set (SPS) or video parameter set (VPS) level.
[0036] In additional examples, a syntax element may be transmitted at one of the higher
levels, e.g., SPS, VPS, PPS or slice level, specifying whether the palette-based coding
mode is enabled for a particular video sequence, picture or slice, while the
palcttec mode flag indicates whether the palette-based coding mode is used for each
CU. In one example, if a flag or other syntax clement sent at the SPS, VPS, PPS or
slice level indicates that the palette-based coding mode is disabled, there may be no
need to additionally signal the palette mode flag for each CU. Again, as mentioned
above, application of these techniques for indicating the palette-based coding mode for a
current CU may additionally or alternatively be used to indicate the palette-based
coding mode for a PU.
[0037] A syntax element or flag indicating the palette-based coding mode may also or
alternatively be conditionally transmitted or inferred based on side information. The
side information used as conditions for transmitting or inferring the syntax element may
be, for example, one or more of the size of a current CU, a frame type, a color space, a
color component, a frame size, a frame rate, a layer ID in scalable video coding or a
view ID in multi-view coding.
[0038] The palette used by a video encoder for palette-based encoding may be
transmitted by the video encoder in an encoded bitstrcam for use by a video decoder for
palette-bascd decoding. A palette may be transmitted for cach CU, or possibly sharcd
among different CUs. In one example, a palette may be transmitted separately for each
color component of a current CU. For example, there may be a palette for a luma (Y)
component of the current CU, another palette for a first chroma (U) component of the
current CU, and yet another palette for a second chroma (V) component of the current
CU. In the palette for the Y component, cach entry in the palette may be a
representative luma value in the current CU. In each of the respective palettes for the U

and V components, each entry in the palette may be a representative chroma value in the

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

11
current CU. In another example, a single palette may be transmitted for all of the color
components of the current CU. In this example, the i-th entry in the palette may be
represented as a triple (Y1, Ui, Vi) that indicates a value for each of the color
components. In yet another example, a luma palette may be transmitted for the Y
component of the current CU, while a chroma palette may be transmitted for the U and
V components of the current CU.
[0039] A size of the palette, e.g., in terms of the number of color values included, can
be a fixed value or can be signaled by the encoder in an encoded bitstream. In the case
that separate palettes are defined for different color components of the current CU, the
size of the palette may be signaled separately for each of the different color components
or a single size may be signaled for all of the color components. A syntax element
defined to indicatc the size of the palette may be coded using unary codes, truncated
unary codes (e.g., that truncate at a maximum limit of the palette size), exponential-
Golomb, or Rice-Golomb codes. In some examples, the size of the palette may be
indicated by signaling a “stop” flag after signaling an entry of the palette. The size of
the palette may be conditionally transmitted or inferred based on side information.
[0040] In some examples, for each CU, a flag may be transmitted to indicate whether a
palette for the current CU is predicted or explicitly transmitted. The flag may be
transmitted separately for each of the different color components (e.g., three flags may
be transmitted for each of the YUV color components), or a single flag may be
transmitted for all of the color components. In some examples, a palette of a current CU
may be predicted by copying some or all of the entries from predictor palettes of one or
more previously coded neighboring CUs. For example, the predictor palette may be the
palette of the left neighboring CU or the top neighboring CU. The predictor palette may
also be a combination of palettes of two or more neighboring CUs. For example, one or
more formulas, functions, rules or the like may be applied to gencrate the predictor
palette bascd on palcttes of two or more of a plurality of ncighboring CUs. It is also
possible that a candidate list may be constructed, and one or more indexes may be
transmitted to indicate one or more candidate CUs from which the palette of the current
CU is to be at least partially copied.
[0041] In some examples, the palette of the current CU may be predicted on an entry-
wise basis. In one example, for each entry in the palette of the current CU, a flag is
transmitted to indicate whether the respective entry is to be copied from a corresponding

entry in a predictor palette, e.g., of a selected neighboring CU or a combination of one

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

12
or more neighboring CUs, or is to be explicitly transmitted from the video encoder to
the video decoder. In another example, for each entry in a predictor palette of a selected
neighboring CU or a combination of one or more neighboring CUs, a flag is transmitted
to indicate whether the respective entry is to be copied to the palette of the current CU.
The neighboring CU whose palette is used as the predictor palette or the rules for
constructing the predictor palette from a combination of two or more neighboring CUs
may be conditionally transmitted or inferred based on side information.
[0042] An alternative to that approach to explicitly transmitting or predicting the palette
is to construct the palette on-the-fly. In this case, at the beginning of the CU, there is no
entry in the palette, and as the encoder signals new values of the pixels for the positions
in the CU, these values are included in the palette. That is, the encoder adds color
values to the palette as they are generated and transmitted for positions in the CU.
Then, later positions in the CU that have the same values may refer to color values in
the palette, e.g., with index values, instead of having the encoder explicitly transmit the
color values. Similarly, when the decoder receives a new color value (e.g., signaled by
the encoder) for a position in the CU, it includes the color value in the palette
constructed by the decoder. When later positions in the CU have color values that have
been added to the palette, the decoder may receive information such as, e.g., index
values, that identify the corresponding color values in the palette for reconstruction of
the pixels in the CU.
[0043] Once the palette for a current CU has been determined, the CU may be coded
(i.e., encoded or decoded) by selecting and transmitting index values that map to color
values in the palette for one or more pixels within the CU. For example, the i-th entry
in an index value map may correspond to the i-th position in the CU. A value of the i-th
entry in the index value map equal to 1 may specify that the color value of the pixel at
this i-th location in the CU is onc of the color valucs in the palette, and a palette index
corresponding to the color value within the palette is further transmitted so that a video
decoder can reconstruct the CU. In the case where there is only one entry in the palette,
the transmission of palette index may be skipped. A value of the i-th entry in the index
value map equal to 0 may specify that the color value of the pixel at the i-th position in
the CU is not included in the palette (i.e., the pixel is an escape pixel), and the color
value of the escape pixel is explicitly transmitted to the video decoder.
[0044] If the color value at one position in the CU is a color value within the palette, it

is observed that there is a high probability that the neighboring positions in the CU have

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

13
the same color value. To take advantage of this probability, after encoding a palette
index (e.g., index j corresponding to color value s) for a position in the CU, a syntax
element “run” may be transmitted to indicate the number of consecutive pixels having
the same color value s that are included in the CU before the scan reaches a different
color value. For example, if the immediate next position in the CU has a value different
than s, then run=0 is transmitted. If the next position in the CU has value s but the next
following position does not have value s, then run = 1 is transmitted.
[0045] In some cases, where a run is not explicitly transmitted, a value of the run may
be implied to be a constant number of positions, ¢.g., 4, &, 16, ¢tc., or the implicit value
of the run may also be dependent on side information. In some additional cases,
wherein an index value map is not explicitly transmitted, a start position for the run may
be implicitly derived. For example, the run may only start at certain locations, ¢.g., the
beginning of each row, the beginning of every N rows, depending on a scan direction, or
depending on side information. It is also possible that the implicit start position
derivation and the implicit run derivation are combined. For example, the value of the
run may be implied to be equal to the distance between two neighboring start positions.
[0046] In some examples, the index value map may be transmitted by signaling line
copying. In the case where a current line of pixels in the CU has the same color values
as a previous line of pixels above or to the left within the CU, a video encoder may
indicate that the index values for the current line of pixels is to be copied from the index
values for the previous line of pixels above or to the left within the index value map. As
an example, a previous four lines within the index value map may be stored, and then
which previous line is to be copied to the current line and how many entries of that
previous line are to copied may be signaled.
[0047] A video encoder may perform palette-based coding either losslessly or with
some losses when the match between the entries in the palette and the actual color
values of pixels in the CU are not be exact. A video decoder may gencrally apply the
same process regardless of the video encoder performs lossless or lossy palette-based
coding. In the case of lossy palette-based coding, a quantized palette may be used such
that two or more entries with close color values may be merged (i.e. quantized) into a
single value in the palette. In one example, a new color value may be added to the
palette based on whether an absolute difference between the new color value and each
of the existing color values already included in the palette is greater than a threshold. If

the absolute difference is less than or equal to the threshold, the new color value may

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

14
not be added to the palette, and instead is either dropped or merged with an existing
color value included in the palette.
[0048] Similarly, in another example, a color value of a pixel within a current CU to be
encoded may be compared to the color values of each of the entries in the palette. If the
absolute difference between the color value of the pixel and one of the entries in the
palette is less than or equal to a threshold, the pixel value may be encoded as the index
value corresponding to the one of the entries in the palette. In some examples, the
palette entry that yields the smallest absolute difference from the color value of the pixel
may be selected to encode the pixel. If the absolute difference between the color value
of the pixel and all of the entries in the palette is greater than the threshold, the pixel
may be encoded as an escape pixel having a color value that is not included in the
palctte and is instead explicitly transmitted.
[0049] In HEVC version 1, after picture reconstruction, a deblocking filter process at a
video encoder or a video decoder attempts to detect artifacts at boundaries formed
between coded blocks, and to attenuate the artifacts by applying a selected deblocking
filter to pixels along the boundary. The video encoder or video decoder may make
deblocking filtering decisions separately for each block boundary having a four-pixel
length that lies on a grid dividing a picture into blocks of 8x8 pixels or samples.
[0050] FIG. 4 is a conceptual diagram illustrating an example of a four-pixel long
vertical block boundary 174 formed between two adjacent blocks 170, 172. For
purposes of explanation, a first block 170 may be referred to as block P and a second
block 172 may be referred to as block Q. As illustrated in FIG. 4, first block 170 (P)
includes 4x4 pixels, each labeled as p; i, with j indicating column numbers 0, 3 starting
from block boundary 174, and i indicating row numbers 0, 3 starting from the top of
first block 170. As further illustrated in FIG. 4, second block 172 (Q) includes 4x4
pixcls, cach labeled as qj;, with j indicating column numbers 0-3 starting from block
boundary 174, and 1 indicating row numbers 0-3 starting from the top of second block
172.
[0051] As an example, in the case that first block 170 and second block 172 are luma
blocks, the video encoder or video decoder may apply deblocking filtering to luma
pixels in each of first block 170 and second block 172 along block boundary 174 based
on the following three criteria being true: (1) block boundary 174 is a prediction unit
(PU) or transform unit (TU) boundary, (2) a boundary strength value for block boundary

174 is greater than zero, and (3) variation of pixels or samples on both sides of block

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

15
boundary 174 is below a specified threshold. In the case that certain additional
conditions, described below, are also true, a strong filter may be applied to the pixels in
each of first block 170 and second block 172 along the block boundary 174 instead of a
normal or weak deblocking filter.
[0052] The boundary strength value, Bs, for block boundary 174 may be determined
according to the conditions included in TABLE 1, below.

TABLE 1: Definition of Boundary Strength Values for Block Boundary Formed
Between Two Neighboring Luma Blocks

1D Conditions Bs

1 At least one of the blocks is Intra
At least one of the blocks has non-zero coded residual 1
coefficient and boundary is a transform boundary

3 Absolute differences between corresponding spatial motion 1
vector components of the two blocks are >= 1 in units of integer
pixels

4 Motion-compensated prediction for the two blocks refers to 1
different reference pictures or the number of motion vectors is
different for the two blocks

5 Otherwise 0

[0053] In the case that block boundary 174 is a PU or TU boundary and the boundary
strength value, Bs, 18 positive (i.c., greater than 0), the pixel variation criteria further
used by the video encoder or video decoder to determine whether deblocking filtering is
enabled for block boundary 174 is as follows, with the pixel values indicated as
illustrated in FIG. 4.
|P20-2P10 + pool * |p23-2p13 + posl + 1420- 2910 + qool +

923~ 2415 T qos| <P (D
[0054] Based on the deblocking filtering being enabled for block boundary 174, the
additional criteria used by the video encoder or video decoder to determine a type of the
deblocking filtering, i.¢., normal or strong, is as follows, with the pixel values indicated

as illustrated in FIG. 4 and with /=0, 3.

|p2i-2p1i + poil +1q2i- 2q1: + G| < /8 (2)
|p3,i _p0,7'| + |q3,7‘ - q(},it < ﬂ/S (3)
|poi - qoi < 2.5t @)

[0055] In the case that a strong deblocking filter is selected, the deblocking filter may
be applied to three luma pixels on each side of block boundary 174, ¢.g., pa2i, P1,i> Posis

Qo> 914, 92.- In the case that a normal or weak filter is selected, the deblocking filter

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

16
may be applied to cither one or two luma pixels on each side of block boundary 174,
¢.g., po,i and qoji; Or Pui, Po,i> Qoiis q1,i-
[0056] Moreover, in the case that first block 170 and second block 172 are chroma
blocks, the video encoder or video decoder may apply deblocking filtering to chroma
pixels in each of first block 170 and second block 172 along block boundary 174 based
on a boundary strength value for block boundary 174 being equal to 2. Based on the
deblocking filtering being enabled for block boundary 174, the deblocking filter may be
applied to one chroma pixel on each side of block boundary 174, e.g., po,i and qg ;.
[0057] The deblocking filter decisions for horizontal block boundaries may be
determined similarly to the vertical block boundaries described above with respect to
FIG. 4. Deblocking filtering in HEVC is described in more detail in HEVC Version 1,
and A. Norkin, G. Bj¢ntcgaard, A. Fuldscth, M. Narroschke, M. Tkeda, K. Andersson,
M. Zhou, and G. V. der Auwera, “HEVC deblocking filter,” IEEE Trans. Cirt. & Sys.
Video Technol., vol. 22, no. 12, Dec. 2012.
[0058] In HEVC Version 1, after picture reconstruction, a video encoder or a video
decoder may apply two different classes of SAO filtering, namely Band Offset (BO) and
Edge Offset (EO). In one example, Band Offset filtering may be used to compensate for
systematic quantization errors. In this example, the video encoder or video decoder may
classify pixel values by their intensity, and signal one starting band position and four
offset values in a bitstream to correct pixel values in the consecutive four bands
including the starting band.
[0059] In another example, Edge Offset filtering may be used to compensate ringing
artifacts due to quantization. In this example, the video encoder or video decoder may
select one edge offset class out of four candidates (e.g., horizontal, vertical, 45 degree
diagonal, and 135 degree diagonal) based on a major ringing artifact direction in a
current coding tree unit (CTU). After determining the edge offset class, the video
encoder or video decoder may classify pixels in the CTU into five categories based on
relative intensities between neighbor pixels along the direction of the selected edge
offset class. Four out of the five categories may be associated with applying an offset to
reduce the ringing artifacts, and the fifth category may be associated with not applying
an offset or disabling the Edge Offset filtering.
[0060] In HEVC Version 1, a slice-level quantization parameter (QP) may be used to
quantize blocks in a slice of video data. A video encoder or a video decoder may adjust

the slice-level QP in order to quantize or inverse quantize a given block included in a

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

17
current quantization group in at least three different ways. In general, the QP values
described in this disclosure may include a luma palette QP value and at least one
chroma palette QP value. For example, a QP value may include a QPy value for a luma
(Y) component, a QP¢y, value for a first chroma (Cb or U) component, and a QP¢, value
for a second chroma (Cr or V) component.
[0061] As a first example, the video encoder or video decoder may adjust the slice-level
QP by a delta QP value (sometimes referred to as CuQpDeltaVal) that is signaled at
most once per quantization group. Each quantization group may include one or more
CUs. A delta QP value may be signaled for a first TU with a coded block flag (CBF)
equal to 1. The CBF may be either a luma (Y) CBF or a chroma (Cb or Cr) CBF. In
general, a CBF for a TU is set equal to 1 to indicate that the TU includes at least one
non-zero cocfficient, which may be quantized. A delta QP value, therefore, may only
be signaled in the case that a respective TU includes at least one quantized cocfficient in
the TU.
[0062] Signaling the delta QP value may include signaling an absolute level and sign of
the delta QP value at a CU-level in a bitstrem. In some examples, the absolute level and
sign of the delta QP value may be signaled if the delta QP mechanism is enabled for
CUs by cu_qgp_delta enabled flag. The cu qp_delta enabled flag may be signaled in
one of a SPS, VPS, PPS, or slice header in the bitstream to indicate whether delta QP
values are enabled for CUs such that the absolute level and sign of the delta QP value
may be signaled at a TU-level in the bistream.
[0063] A predicted QP value, which may be the slice-level QP value or a previous QP
value associated with a block in a previous quantization group, may be adjusted by the
delta QP value according to the following equation.
Opy = ((qPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%

(52 + QpBdOffsety)) — OpBdOffsety (5
In the above equation, Qpy 1s a variable, Py prep 18 the predicted luma QP value,
CuQpDeltaVal is the delta QP value, and QpBdOffsety is a luma quantization parameter
range offset value that is based on an input bitdepth for luma samples.
[0064] As a second example, the video encoder or video decoder may adjust the slice-
level QP by a QpBdOffset value to offset the slice-level QP value due to varying input
bitdepths. For example, the luma QP value, Qp’y , may be determined according to the
following equation.

Op’y = Opr + OpBdOffsety (6)

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

18
In the above equation, Qpy is the variable determined in equation (5) and QpBdOffsety
is the luma quantization parameter range offset value that is based on the input bitdepth
for luma samples. The input bitdepths may be different for each of the Y, Cb or Cr
components. As described in more detail below, chroma QP values may be determined
by further adjusting the luma QP value based at least in part on a chroma quantization
parameter range offset value, QpBdOffsetc, that is based on the input bitdepth for
chroma samples.
[0065] In a third example, video encoder or video decoder may determine chroma QP
values with respect to the luma QP value based on chroma offsct values. The chroma
offset values may include PPS level offsets, e.g., pps_cb_qp_offset and
pps_cr_qp_offset, and slice level offsets, e.g., slice ¢cb_qp_offset and
slice_cr_qgp_offset. The chroma offsct values may further include chroma QP offset
values, e.g., CuQpOffsetcy, and CuQpOffsete,. In some examples, the chroma QP offset
values may be signaled if the chroma QP offset mechanism is enabled for CUs by
cu_chroma qp_offset enabled flag. The cu_chroma qp offset enabled flag may be
signaled in one of a SPS, VPS, PPS, or slice header in the bitstream to indicate whether
chroma QP offset values are enabled for CUs such that the chroma QP offset values
may be signaled at a TU-level in the bistream.
[0066] For example, the chroma QP values, Qp’c, and Qp’cr, may be determined

according to the following equations.

GPicy = Clip3(—OpBdOffsetc, 57, Opy + pps_chb_qp offset + slice cb_gp offset

+ CuQpOffsetcy) (7)
qPic, = Clip3(—QOpBdOffsetc, 57, Opy + pps_cr_qp_offset + slice_cr_qp_offset

+ CuQpOffsetc,) (8)
Op'cy = gPcy, + OpBdOffset)

Qp'(/‘r =qPc, + QdeOfﬁetC (10)

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

19
In the above equations, qPic, and qPic;, are indexes used to determine respective
variables qPc, and qPc;, Qpy is the variable determined in equation (5), and
QpBdOffsetc is the chroma quantization parameter range offset value that is based on
the input bitdepth for chroma samples.
[0067] The video encoder and video decoder may determine the chroma QP values with
respect to the luma QP for high QP values (e.g., above 30) based on a non-linear
adjustment that depends on the input chroma format. The non-linear adjustment used to
determine a variable Qpc is specified in TABLE 2 below. As specified in TABLE 2, if
ChromaArrayType is equal to 1, the variables qP¢, and qP¢; are set equal to the value of
Qpc based on the index qPiequal to qPich, and qPicy, respectively. The variable
ChromaArrayType is set equal to 1 in the case that the color components (i.e., Y, Cb,
Cr) are coded together using a specific chroma format, c.g., 4:2:0.

TABLE 2: Specification of Qpc¢ as Function of qPi for ChromaArrayType=1

qPi | <30 [30|31|32|33|34(35(36(37|38/39(40|41|42|43|>43

Qpc |=qPi 2930313233 |33(34(34|35|35|36[36|37|37|=qPi—6

[0068] The complcte process of how the luma quantization paramcter valuc, Qp’y, and
the chroma quantization parameter values, Qp’c, and Qp’ ¢y, are derived is described in
more detail in HEVC Version 1. In some cases, the Qpy value may be used as a
quantization step for determining the application of deblocking filtering to pixels in a
given CU. If the deblocking filtering is applied to pixels in two different CUs, then the
average Qpy in both CUs may be used for the deblocking filtering determination.
[0069] In the case that a current CU is coded as a palette coded block, the in-loop
filtering (e.g., deblocking filtering and/or SAO filtering) processes designed for HEVC
coding modes may not provide good results for screen content coded using the palette-
based coding mode. Conventionally, palette coded blocks were treated the same as
inter-coded blocks and, as such, filtering was automatically applied to reconstructed
blocks prior to being stored in a decoded picture buffer. It may be desirable to change
the in-loop filtering processes according to the signal characteristics associated with the
palette-based coding mode. In some examples, this disclosure describes techniques for
determining the design and application of in-loop filtering (c.g., deblocking filtering
and/or SAO filtering) for pixels of palette coded blocks. More specifically, techniques

are described for determining the application of deblocking filtering for pixels along a

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

20
block boundary formed by at least one palette coded block at a video encoder or a video
decoder.
[0070] Various examples of determining the design and application of deblocking
filtering for pixels of palette coded blocks are described below. Each of the below
examples may be used jointly or separately with any of the other examples (unless they
are specifically presented as alternate examples). The below examples are described
with respect to first block 170, second block 172, and block boundary 174 from FIG. 4.
[0071] In one example of the disclosed techniques, in the case that first block 170
adjacent to block boundary 174 is coded using the palette coding mode, a video encoder
or a video decoder may apply deblocking filtering in a similar fashion as if first block
170 was coded as a lossless block (i.e., cu_transquant_bypass = 1 such that no transform
and no quantization is applied to the block). In other words, the disclosed techniques
include treating palette coded first block 170 the same as a lossless coded block by
disabling deblocking filtering for pixels within the palette coded first block 170 at block
boundary 174 formed with second block 172.
[0072] As an example, in the case that first block 170 and second block 172 comprise
luma blocks, the deblocking filtering may be disabled for first luma pixels within a
reconstructed version of first block 170 as follows. The video encoder or video decoder
may first determine whether the deblocking filtering is enabled for block boundary 174
formed between the reconstructed first block 170 and a reconstructed version of second
block 172. This determination may be based on the three criteria described above with
respect to deblocking filtering. Based on the deblocking filtering being enabled for
block boundary 174, the video encoder or video decoder may then determine a number
of the first luma pixels within the reconstructed first block 170 to be deblocking filtered.
As described above, the number of the first luma pixels to be deblocking filtered may
depend on the determined type of the deblocking filtering, i.c., normal or strong, to be
applied.
[0073] Based on the number of the first luma pixels to be deblocking filtered being
greater than zero and based on the first block 170 being a palette coded block, the video
encoder or video decoder may set the number of the first luma pixels to be deblocking
filtered equal to zero in order to disable the deblocking filtering for the first luma pixels
within the reconstructed first block 170. This is similar to the way in which deblocking

filtering is disabled for luma samples of lossless coded blocks in HEVC Version 1 such

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

21
that, according to the disclosed techniques, the luma palette coded blocks are treated the
same as lossless coded blocks for purposes of deblocking filtering.
[0074] As another example, in the case that first block 170 and second block 172
comprise chroma blocks, the deblocking filtering may be disabled for first chroma
pixels within the reconstructed first block 170 as follows. The video encoder or video
decoder may first determine whether the deblocking filtering is enabled for block
boundary 174. As described above, this determination may be based on the boundary
strength value for block boundary 174 being equal to two. Based on the deblocking
filtering being enabled for block boundary 174, the video encoder or video decoder may
then determine deblocking filtered values for one or more of the first chroma pixels
within the reconstructed first block 170.
[0075] Based on first block 170 being a palette coded block, the video encoder or video
decoder may set the deblocking filtered values for the one or more of the first chroma
pixels to be equal to original values for the one or more of the first chroma pixels in
order to disable the deblocking filtering for the first chroma pixels within the
reconstructed first block 170. This is similar to the way in which deblocking filtering is
disabled for chroma samples of lossless coded blocks in HEVC Version 1 such that,
according to the disclosed techniques, the chroma palette coded blocks are treated the
same as lossless coded blocks for purposes of deblocking filtering.
[0076] In another example of the disclosed techniques, in the case that first block 170
and second block 172 adjacent to block boundary 174 are both coded using the palette
coding mode, the video encoder or video decoder may disable deblocking filtering for
pixels in both first block 170 and second block 172 along block boundary 174. In some
examples, the deblocking filtering may be disabled for each of first block 170 and
second block 172 in the manner described above with respect to disabling deblocking
filtering for pixels in first block 170. In other examples, the deblocking filtering may be
disabled for cach of first block 170 and second block 172 by sctting the boundary
strength value for block boundary 174 equal to zero. In this way, deblocking filtering is
disabled for both luma and chroma pixels in first block 170 and second block 172 along
block boundary 174.
[0077] In a further example of the disclosed techniques, in the case that first block 170
is coded using the palette coding mode and second block 172 is coded using a non-
palette coding mode, e.g., inter-coding mode or intra-coding mode, etc., the video

encoder or video decoder may disable deblocking filtering only for pixels in first block

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

22
170 along block boundary 174. In this example, the deblocking filtering may be applied
to pixels in second block 172 along block boundary 174. As an example, the video
encoder or video decoder may determine whether the deblocking filtering is enabled for
block boundary 174 formed between the reconstructed first block 170 and the
reconstructed second block 172. Based on the deblocking filtering being enabled for
block boundary 174, the video encoder or video decoder may determine a type of the
deblocking filtering for the second pixels within the reconstructed second block 172,
and apply the determined type of the deblocking filtering to one or more of the second
pixels within the reconstructed second block 172. The deblocking filtering may be
applied to the second pixels within the second reconstructed block 172 without applying
the deblocking filtering to the first pixels within the reconstructed first block 170.
[0078] In another example of the disclosed techniques, in the casc that first block 170
adjacent to block boundary 174 is coded using the palette coding mode, the video
encoder or video decoder may disable deblocking filtering for pixels within both first
block 170 and second block 172 adjacent to block boundary 174, regardless of the
coding mode used to code second block 172. For example, the deblocking filtering may
be disabled by setting the boundary strength value for block boundary 174 equal to zero.
In this way, deblocking filtering is disabled for both luma and chroma pixels in first
block 170 and second block 172 along block boundary 174.
[0079] In an additional example of the disclosed techniques, in the case that first block
170 adjacent to block boundary 174 is coded using the palette coding mode, the video
encoder or video decoder may determine whether to apply the deblocking filtering to
pixels on both sides of block boundary 174 based on the QP value for the palette coded
first block 170 being set equal to zero.
[0080] In a further example of the disclosed techniques, in the case that only first block
170 is coded using the palette coding mode and second block 172 is coded using a non-
palette coding mode, the video encoder or video decoder may sct the boundary strength
value for block boundary 174 to a positive value (i.c., greater than 0) such that the
deblocking filtering may be enabled for pixels on either side of block boundary 174.
[0081] In one case of this example, if first block 170 is coded using the palette coding
mode and second block 172 is coded using the intra-coding mode, the boundary strength
value for block boundary 174 may be set equal to 2. Therefore, rule 1 in TABLE 1,
above, still holds in the case of the palette coding mode. In another case of this

example, if first block 170 is coded using the palette coding mode and second block 172

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

23

is coded using the intra block copy (IntraBC) coding mode, the boundary strength value
for block boundary 174 may be set equal to 1. Alternatively, certain restriction may be
applied. For example, if a motion vector associated with the IntraBC coded second
block 172 has an absolute value that is larger than a threshold (e.g., 1 in units of integer
pixels), the boundary strength value may be set equal to 1. Otherwise, the boundary
strength value may be set equal to O.
[0082] In a further case of this example, if first block 170 is coded using the palette
coding mode and second block 172 is coded using the inter-coding mode, the boundary
strength value for block boundary 174 may be set equal to 1. Alternatively, certain
restriction may be applied. For example, if a motion vector associated with the inter-
coded second block 172 has an absolute value that is larger than a threshold (e.g. | in
units of integer pixels), the boundary strength value may be sct equal to 1. Otherwise,
the boundary strength value may be set to 0.
[0083] In another example of the disclosed techniques, in the case that only first block
170 (P) is coded using the palette coding mode and second block 172 (Q) is coded using
a non-palette coding mode, the pixel variation criteria used by the video encoder or
video decoder to determine whether deblocking filtering is enabled for block boundary
174 may be changed from equation (1) above to the following equation.

920~ 2410 + qool * 1923 - 2915+ qos| <c-f (11)
In the above equation, c is a constant, ¢.g., be set equal to 0.5, and f is a parameter that
depends on the QP value of the non-palette coded second block 172 (Q) only.
Alternatively, f may depend on the QP values of both first block 170 and second block
172, if the QP value of the palette coded first block 170 (P) is well defined, such as
being set equal to zero as in one of the above examples.
[0084] Similarly, the additional criteria used by the video encoder or video decoder to
determine a type of the deblocking filtering, i.c., normal or strong may be changed from

cquations (2), (3) and (4) abovc to the following cquations, with /=0, 3.

|g2:=2q1,: + qoil <c-p/8 (12)
g5 - qosl <c-p/8 (13)
|poi - qoil < c-2.5¢ (14)

[0085] In a further example of the disclosed techniques, the QP values for the palette-
based coding mode, which is used to calculate the £ and ¢, parameters used to design the
deblocking filtering, be defined as follows. For example, in the case that only first

block 170 (P) is coded using the palette coding mode and second block 172 (Q) is coded

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

24
using a non-palette coding mode, the QP value of the non-palette coded second block
172 (Q) may be assumed to be qpQ, and the QP value of the palette coded first block
170 (P) may be defined as qpP = qpQ + pltQPOffset. The parameter pltQPOffset may
be a predefined constant, a value signaled in a SPS, VPS, PPS or slice header, or
implicitly derived. In some examples, the parameter pltQPOffset may be a delta QP
value. Alternatively, the QP value of the palette coded first block 170 (P), i.e., qpP,
may also be derived from the QP values of one or more other neighbor blocks.
[0086] In another example of the disclosed techniques, a flag may be signaled in the
SPS, VPS, PPS, slice header, CTU, or CU to indicate whether deblocking filtering is
used at block boundary 174 adjacent to at least one palette coded block, e.g., first block
170.
[0087] Various cxamples of determining the design and application of SAO filtering for
palette coded blocks are described below. Each of the below examples may be used
jointly or separately with any of the other examples (unless they are specifically
presented as alternate examples).
[0088] In one example of the disclosed techniques, in the case that all of the CUs in a
CTU are coded using the palette coding mode, a video encoder or video decoder 30 may
disable SAO filtering for all of the CUs in the CTU.
[0089] In an alternative example of the disclosed techniques, if the percentage of CUs
in the CTU that are coded using the palette coding mode is higher than a threshold, the
video encoder or video decoder may disable the SAO filtering for all of the CUs in the
CTU. The percentage of palette coded CUs in the CTU may be calculated as the
number of palette coded pixels over the overall number of pixels in the CTU, or as the
number of palette coded CUs over the overall number of CUs in the CTU, or according
to some other criteria. In this alternative example, if SAO filtering is enabled in the
CTU, it is possible that the palette coded CUs and the non-palette coded CUs may have
different SAO filter parameters. For example, the palette coded CUs and the non-
palette coded CUs may have different SAO filter types, different SAQ filter classes, or
different SAO filter offsets. In addition, each of the palette coded CUs may have
different SAO filter parameters.
[0090] In another example of the disclosed techniques, the SAO filtering process for
palette coded blocks may be enhanced as follows. In one case, escape pixels and non-
escape pixels in a palette coded block may have different offset values. For example,

the SAO filtering may only be applied to escape pixels while non-escape pixels have

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

25
offset values set equal to zero. As an additional example, only Band Offset filtering
may be applied to escape pixels. In some examples, four bands may be corrected by
band offset values. In other examples, more or less than four bands may be corrected by
band offset values. In another case, because screen content typically has strong
horizontal and vertical patterns, Edge Offset filtering may be restricted to only the
horizontal and vertical directions.
[0091] In a further case, if a transition offset table, e.g., {(index, offset _index)}, is used
to determine an offset when a color transition occurs, a transition Edge Offset mode
may be applied. In this case, it may be assumed that the reconstructed color index block
in the palette coding mode is denoted as INDEX[x] in raster scanning order. If
INDEX][x-1] '= INDEX]x], a transition occurs at position [x] and an offset equal to
offsct INDEX([x] (if this value exists in the transition offsct table) is applicd to the
reconstructed pixel value at position [x]. The offset may propagate to the following
pixels in raster scanning order. In other words, the same offset applies to the pixels at
positions [x+1], [x+2], ... [x+k], until INDEX[x+k] != INDEX[x]. The transition offset
table may be signaled for each palette index or only a subset of the palette indexes. For
example, a transition offset may be coded and signaled into the bitstream only for up to
the first four palette indexes. If the transition offset for a specific index is not signalled,
a default value, e.g., 0, may be used. The three color components (e.g., Y, Cb, Cr) may
cither share the same offset values or have individual offset values.
[0092] In the case that a current CU is coded as a palette coded block, QP values may
be used for quantizing escape pixel values of the palette coded block. In some
examples, QP values and quantization may also be applied to the coding of new palette
entries. Conventionally, the palette coding mode does not include a mechanism to
adjust a slice-level QP value for each CU or each quantization group, which may
include onc or more CUs. A video encoder or video decoder, therefore, must operate at
a constant QP to quantize escape pixel values of palette coded blocks. In some
examples, this disclosure describes techniques for determining QP values and delta QP
values used to quantize escape pixel values of palette coded blocks.
[0093] Various examples of determining or deriving palette QP values for palette coded
blocks are described below. Each of the below examples may be used jointly or
separately with any of the other examples (unless they are specifically presented as

alternate examples).

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

26
[0094] In one example of the disclosed techniques, a video encoder or video decoder
may determine a palette QP (or corresponding quantization step size) value for a palette
coded block that is adjusted from a predicted QP value. The palette coded block may be
included in a current quantization group, which may include one or more other blocks
including other palette coded blocks and non-palette coded blocks. The predicted QP
value may by the slice-level QP value or a QP value that is associated with a block
included in a previous quantization group. The slice-level QP value is the QP value that
is used for quantizing blocks within a slice in HEVC Version 1.
[0095] For example, instead of using the slice-level QP value for a palette coded block,
the video encoder or video decoder may define a palette QP value for the palette coded
block as the slice-level QP + pltQPOffest. In other examples, the palette QP value may
be derived from a QP value associated with a block in a previous quantization group or
associated with a neighboring block in the current quantization group that also includes
the palette coded block. The parameter pltQPOffset may be a predefined constant, a
value signaled in a SPS, VPS, PPS or slice header, or implicitly derived. In some
examples, the parameter pltQPOffset may be a delta QP value.
[0096] In another example of the disclosed techniques, the video encoder or video
decoder may use two different QP values or corresponding offsets for the palette coded
block. In this example, a first pltQPOffset] may be used to quantize at least a portion of
any new palette entries for the palette coded block, and a second pltQPOffset2 may be
used to quantize at least a portion of the escape pixels within the palette coded block.
Each of pltQPOffsetl and pltQPOffset2 may be a predefined constant, a value signaled
in a SPS, VPS, PPS or slice header, or implicitly derived. In some cases, at least one of
the pltQPOffset values may indicate that no quantization is used (i.e., the palette coded
block is losslessly coded).
[0097] In a further example of the disclosed techniques, the video encoder or video
decoder may use several different QP values or corresponding offscts for the palette
coded block. In this example, a first pltQPOffset] may be used to quantize any new
palette entries until a flag indicates a switch point to start using a second pltQPOffset2
to quantize any additional new palette entries, and so on.
[0098] In an additional example of the disclosed techniques, different QP values or
corresponding offsets, i.c., pltQPOffsets, may be signaled or predefined for each index
value or each subset of index values coded for pixels within the palette coded block. In

some cases, a different pltQPOffset may also be used for pixels in each different palette

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

27
run mode. For example, pixels in a “copy from the left” run mode may have a different
QP value than pixels in a “copy from above” run mode. In other case, the pltQPOffset
may also depend on the run length.
[0099] Various examples of determining delta QP values used to determine or derive
palette QP values for palette coded blocks are described below. Each of the below
examples may be used jointly or separately with any of the other examples (unless they
are specifically presented as alternate examples). Conventionally, the palette coding
mode does not include a mechanism to adjust a slice-level QP value for each CU or
each quantization group. As described above, for non-palette coded blocks, the slice-
level QP value may be adjusted based on a delta QP value signaled once for each CU or
each quantization group if the non-palette coded block includes at least one non-zero
cocfficient, which may be indicated by an associated CBF being equal to 1.
[0100] In onc example of the disclosed techniques, a video encoder or video decoder
may determine whether at least one pixel within a palette coded block is coded as an
escape pixel having a color value that is not included in a palette for the palette coded
block, and based on the at least one pixel within the palette coded block being coded as
an escape pixel, determine a delta QP value for a current quantization group that
includes the palette coded block. The video encoder or video decoder may then adjust a
predicted QP value based on the delta QP value in order to determine the palette QP
value for the palette coded block. The palette coded block may be included in the
current quantization group. The predicted QP value may by the slice-level QP value or
a QP value that is associated with a block included in a previous quantization group.
[0101] For example, a delta QP value (sometimes referred to as CuQpDeltaVal) may be
signaled depending on a value of a CU-level escape flag that indicates whether a current
CU includes at least one pixel that is coded as an escape pixel value. One example of
this CU-level escape flag, i.c., palette_cscape val present flag, is described in U.S.
Application No. 14/719,215, filed May 21, 2015, which claims thc benefit of U.S.
Provisional Application No. 62/002,054 tiled May 22, 2014. If the CU-level escape
flag indicates that the current CU includes at least one escape flag, the delta QP value
may be signaled at the CU-level in the bitstream right after the CU-level escape flag.
As another example, a delta QP value may be signaled if at least one escape flag is
present for a pixel within in a CU coded using the palette coding mode. The delta QP

value may be signaled right after the first escape flag is signaled, or at the end of the

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

28
CU. Signaling the delta QP value may include signaling an absolute level and sign of
the delta QP value.
[0102] The above example may be used to determine a luma palette QP value used to
quantize luma pixels that are coded as escape pixels. In addition, based on the at least
one pixel within the palette coded block being coded as an escape pixel, the video
encoder and video decoder may determine a chroma QP offset value for the current
quantization group that includes the palette coded block, and adjust the luma palette QP
value determined for the palette coded block based on the chroma QP offset value in
order to determine a chroma palette QP value for the palette coded block.
[0103] In another example of the disclosed techniques, a delta QP value may be
signaled for each palette coded CU depending on a value of a syntax element that
indicates whether delta QP values arc cnabled for palette coded blocks. In this example,
the syntax element may be signaled in one of a SPS, VPS, PPS or slice header to
indicate whether delta QP values are signaled at the CU-level for the palette coded
blocks. In the case of luma pixels, the delta QP value may be signaled if the delta QP
mechanism is enabled for CUs by cu_qp_delta_enabled flag, signaled in one of a SPS,
VPS, PPS, or slice header in the bitstream. In the case of chroma pixels, chroma QP
offset values may be signaled if the chroma QP offset mechanism is enabled for CUs by
cu_chroma qp_offset enabled flag, signaled in one of a SPS, VPS, PPS, or slice
header in the bitstream.
[0104] As a further example of the disclosed techniques, a delta QP value may be
signaled for a palette coded CU depending on whether at least a portion of the new
palette entries are quantized.
[0105] Various examples of determining palette QP values for palette coding blocks
using a predicted QP value are described below. Each of the below examples may be
uscd jointly or separately with any of the other examples (unless they are specifically
presented as alternate cxamples).
[0106] In onc example of the disclosed techniques, a video encoder or video decoder
may determine whether a palette coded block is a first block in a current quantization
group or whether any previous non-palette coded blocks in the current quantization
group include non-zero coefficients. Based on the palette coded block being the first
block in the current quantization group or none of the previous non-palette coded blocks
in the current quantization group including non-zero coefficients, the video encoder or

video decoder may determine the palette QP value for the palette coded block adjusted

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

29
from the predicted QP value, e.g., qPy prep from equation (5) above. The palette QP
value may include luma and chroma QP values, i.e., Qpy, Qp’y, Qpc, Qp’c» and Qp’c:
from equations (6) and (11) and TABLE 2 above, which are used to quantize the escape
pixels within the palette coded coded block.
[0107] In this example, in some cases, no delta QP value may be signaled for the palette
coded block and may be assumed to be equal to zero. In other cases, the delta QP value
may be signaled for the palette coded block and the palette QP value may be determined
according to one or more of the techniques described above. In order to derive the
palette QP value for the palette coded block from a QP value of a block in a previous
neighboring quantization group, the predicted QP may be used. In this respect, the
palette coded block may be treated in a similar manner to a non-palette coded TU either
with no non-zcro coefficients (no delta QP value signaled) or with non-zero coefficients
(delta QP value signaled).
[0108] Alternatively, based on the palette coded block not being the first block in the
current quantization group and at least one of the previous non-palette coded blocks in
the current quantization group including non-zero coefficients, the video encoder or
video decoder may determine the palette QP value to be equal to a quantization group
QP value, including luma and chroma QP values, previously determined for the at least
one previous non-palette coded blocks in the current quantization group. In other
words, for palette coded blocks in the current quantization group that are coded after at
least one TU having non-zero coefficients in the current quantization group, the luma
and chroma QP values determined for the quantization group are used for the palette
coded blocks. These luma and chroma QP values may be the QP values that are also
used for the other non-palette coded TUs in the quantization group.
[0109] In the case of luma pixels, a palette delta QP value may be signaled for the
palette coded block only if a delta QP value has not been previously determined for a
block included in the current quantization group that also includes the palette coded
block. This may occur in the case that the palette coded block is a first block in the
current quantization group or in the case that no previous non-palette coded blocks in
the current quantization group include non-zero coefficients. In one example, a syntax
element, e.g., [sCuQpDeltaCoded, may indicate whether a delta QP value for a luma
block has been previously signaled for the current quantization group. In the case that a
delta QP value has not been previously determined for the current quantization group,

the palette delta QP value for the luma palette coded block is signaled. If the palette

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

30
delta QP value for the luma palette coded block is not signaled, it may be explicitly
derived to be equal to zero.
[0110] In the case of chroma pixels, a palette chroma QP offset value may be signaled
for the palette coded block only if a chroma QP offset value has not been previously
determined for a block included in the current quantization group that also includes the
palette coded block. This may occur in the case that the palette coded block is a first
block in the current quantization group or in the case that no previous non-palette coded
blocks in the current quantization group include non-zero coefficients. In one example,
a syntax element, e.g., IsSCuChromaQPOffsetCoded, may indicate whether a chroma QP
offset value for a chroma block has been previously signaled for the current quantization
group. In the case that a chroma QP offset value has not been previously determined for
the current quantization group, the palette chroma QP offsct value for the chroma
palette coded block is signaled. If the palette chroma QP offset value for the chroma
palette coded block is not signaled, it may be explicitly derived to be equal to zero.
[0111] In general, the palette QP values for palette coded blocks may be determined
according to the quantization parameter derivation process described above and in
HEVC Version 1, HEVC SCC WDI1.0 and HEVC SCC WD2.0. In another example of
the disclosed techniques, for a palette coded block, the video encoder or video decoder
may switch between determining or deriving palette QP values based on explicitly
signaled delta QP values and determining or deriving palette QP values based on the
predicted QP value with no delta QP values. This switch may be accomplished via a
flag signaled in the SPS, VPS, PPS, or slice header.
[0112] Various examples of specifying Qpc as a function of qPi for palette coded
blocks are described below. As illustrated in TABLE 2 above, a QP value used for
chroma components may be adjusted non-linearly as a function of the QP value used for
luma components. Since the palctte-based coding mode has different characteristics for
luma and chroma components, the non-linear adjustment may be simplified for the
palette-based coding mode. As an example, for palette coded blocks, the variable Qpe
may be set equal to the index qPi.
[0113] Various examples of a QP value used to determine application of deblocking
filtering for pixels within palette coded blocks are described below. For example, the
different QP values and the different adjustments described above may be used as the
QP value employed to determine the application of deblocking filtering for palette
coded blocks.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

31
[0114] Various examples of performing quantization of new palette entries for palette
coded blocks are described below. In one example of the disclosed techniques, in the
case of a current CU being coded as a palette coded block, new palette entries in a
palette for the palette coded block may be quantized. The signaling and the QP values
for quantizing the new palette entries may be as follows. In one case, the QP value for
new palette entries may be different than the QP value determined for quantizing escape
pixel values within the palette coded block. For example, the QP value for new palette
entries may be set as an offset from the escape pixel QP value.
[0115] In another case, a syntax element, e.g., a flag or position index, may indicate
which new entries in the palette for the palette coded block are quantized and which
ones are not. For example, the new palette entries may be split into two subsets with the
first subsct including those new entries that arc not quantized (i.c., losslessly coded) and
the second subset including those new entrics that are quantized. A flag may be
signaled after each new palette entry to indicate whether or not it is quantized.
Alternatively, a flag may be signaled after each new palette entry that is not quantized,
while another flag may be signaled to indicate that a given new palette entry and all
subsequent new palette entries are quantized. Several different levels of quantization
may be applied to the new palette entries.
[0116] FIG. 1 is a block diagram illustrating an example video coding system 10 that
may utilize the techniques of this disclosure. As used herein, the term “video coder”
refers generically to both video encoders and video decoders. In this disclosure, the
terms ““video coding” or “coding” may refer generically to video encoding or video
decoding. Video encoder 20 and video decoder 30 of video coding system 10 represent
examples of devices that may be configured to perform techniques for palette-based
video coding in accordance with various examples described in this disclosure. For
example, video encoder 20 and video decoder 30 may be configured to selectively code
various blocks of video data, such as CUs or PUs in HEVC coding, using cither palette-
based coding or non-palette based coding. Non-palette based coding modes may refer
to various inter-predictive temporal coding modes or intra-predictive spatial coding
modes, such as the various coding modes specified by HEVC Version 1.
[0117] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding

apparatus. Destination device 14 may decode the encoded video data generated by

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

32
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination
device 14 may be examples of video coding devices or video coding apparatuses.
[0118] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video
gaming consoles, in-car computers, or the like.
[0119] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise one or more media or devices capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, channel 16 may comprise onc or more communication media that cnable
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. In this example, source device 12 may modulate the encoded video data
according to a communication standard, such as a wirecless communication protocol, and
may transmit the modulated video data to destination device 14. The one or more
communication media may include wireless and/or wired communication media, such
as a radio frequency (RF) spectrum or one or more physical transmission lines. The one
or more communication media may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network (e.g., the Internet). The one or
more communication media may include routers, switches, base stations, or other
equipment that facilitate communication from source device 12 to destination device 14.
[0120] In another example, channel 16 may include a storage medium that stores
encoded video data generated by source device 12. In this example, destination device
14 may access the storage medium, ¢.g., via disk access or card access. The storage
medium may include a variety of locally-accessed data storage media such as Blu-ray
discs, DVDs, CD-ROMs, flash memory, or other suitable digital storage media for
storing encoded video data.
[0121] In a further example, channel 16 may include a file server or another
intermediate storage device that stores encoded video data generated by source device
12. In this example, destination device 14 may access encoded video data stored at the
file server or other intermediate storage device via streaming or download. The file
server may be a type of server capable of storing encoded video data and transmitting

the encoded video data to destination device 14. Example file servers include web

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

33
servers (e.g., for a website), file transfer protocol (FTP) servers, network attached
storage (NAS) devices, and local disk drives.
[0122] Destination device 14 may access the encoded video data through a standard
data connection, such as an Internet connection. Example types of data connections
may include wireless channels (e.g., Wi-Fi connections), wired connections (¢.g., DSL,
cable modem, etc.), or combinations of both that are suitable for accessing encoded
video data stored on a file server. The transmission of encoded video data from the file
server may be a streaming transmission, a download transmission, or a combination of
both.
[0123] The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satcllite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of video data for storage on a data storage medium, decoding of
video data stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.
[0124] Video coding system 10 illustrated in FIG. 1 is merely an example and the
techniques of this disclosure may apply to video coding settings (e.g., video encoding or
video decoding) that do not necessarily include any data communication between the
encoding and decoding devices. In other examples, data is retrieved from a local
memory, streamed over a network, or the like. A video encoding device may encode
and store data to memory, and/or a video decoding device may retrieve and decode data
from memory. In many examples, the encoding and decoding is performed by devices
that do not communicate with onc another, but simply encode data to memory and/or
retricve and decode data from memory.
[0125] In the example of FIG. 1, source device 12 includes a video source 18, a video
encoder 20, and an output interface 22. In some examples, output interface 22 may
include a modulator/demodulator (modem) and/or a transmitter. Video source 18 may
include a video capture device, e.g., a video camera, a video archive containing
previously-captured video data, a video feed interface to receive video data from a video
content provider, and/or a computer graphics system for generating video data, or a

combination of such sources of video data.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

34
[0126] Video encoder 20 may encode video data from video source 18. In some
examples, source device 12 directly transmits the encoded video data to destination
device 14 via output interface 22. In other examples, the encoded video data may also
be stored onto a storage medium or a file server for later access by destination device 14
for decoding and/or playback.
[0127] In the example of FIG. 1, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some examples, input interface 28
includes a receiver and/or a modem. Input interface 28 may receive encoded video data
over channel 16. Display device 32 may be integrated with or may be external to
destination device 14. In general, display device 32 displays decoded video data.
Display device 32 may comprise a variety of display devices, such as a liquid crystal
display (LCD), a plasma display, an organic light emitting diode (OLED) display, or
another type of display device.
[0128] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application-specific integrated circuits (ASICs), field-programmable
gate arrays (FPGAs), discrete logic, hardware, or any combinations thereof. If the
techniques are implemented partially in software, a device may store instructions for the
software in a suitable, non-transitory computer-readable storage medium and may
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Any of the foregoing (including hardware, software, a
combination of hardware and software, ¢tc.) may be considered to be one or more
processors. Each of video encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated as part of a combined
encoder/decoder (CODEC) in a respective device.
[0129] This disclosure may generally refer to video encoder 20 “signaling” or
“transmitting” certain information to another device, such as video decoder 30. The
term “signaling” or “transmitting” may generally refer to the communication of syntax
elements and/or other data used to decode the compressed video data. Such
communication may occur in real- or near-real-time. Alternately, such communication
may occur over a span of time, such as might occur when storing syntax elements to a
computer-readable storage medium in an encoded bitstream at the time of encoding,
which then may be retrieved by a decoding device at any time after being stored to this

medium.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

35
[0130] In some examples, video encoder 20 and video decoder 30 operate according to
a video compression standard, such as HEVC standard mentioned above, and described
in HEVC Version 1. In addition to the base HEVC standard, there are ongoing efforts
to produce scalable video coding, multiview video coding, and 3D coding extensions for
HEVC. In addition, palette-based coding modes, ¢.g., as described in this disclosure,
may be provided for extension of the HEVC standard. In some examples, the
techniques described in this disclosure for palette-based coding may be applied to
encoders and decoders configured to operation according to other video coding
standards, such as theITU-T-H.264/AVC standard or future standards. Accordingly,
application of a palette-based coding mode for coding of coding units (CUs) or
prediction units (PUs) in an HEVC codec is described for purposes of example.
[0131] In HEVC and other video coding standards, a video sequence typically includes
a series of pictures. Pictures may also be referred to as “frames.” A picture may
include three sample arrays, denoted St, Sc, and S¢r. St is a two-dimensional array
(i.e., a block) of luma samples. Scy, is a two-dimensional array of Cb chrominance
samples. Sc; 1s a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.
[0132] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUSs may be a coding tree
block of luma samples, two corresponding coding tree blocks of chroma samples, and
syntax structures used to code the samples of the coding tree blocks. A coding tree
block may be an NxN block of samples. A CTU may also be referred to as a “tree
block” or a “largest coding unit” (LCU). The CTUs of HEVC may be broadly
analogous to the macroblocks of other standards, such as H.264/AVC. However, a
CTU is not necessarily limited to a particular size and may include one or more coding
units (CUs). A slice may include an integer number of CTUs ordered consccutively in
the raster scan.
[0133] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” A coding block is an NxN block of
samples. A CU may be a coding block of luma samples and two corresponding coding
blocks of chroma samples of a picture that has a luma sample array, a Cb sample array

and a Cr sample array, and syntax structures used to code the samples of the coding

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

36
blocks. Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)
block of samples on which the same prediction is applied. A prediction unit (PU) of a
CU may be a prediction block of luma samples, two corresponding prediction blocks of
chroma samples of a picture, and syntax structures used to predict the prediction block
samples. Video encoder 20 may generate predictive luma, Cb and Cr blocks for luma,
Cb and Cr prediction blocks of each PU of the CU.
[0134] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU.
[0135] If video encoder 20 uses inter prediction to gencrate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded
samples of one or more pictures other than the picture associated with the PU. Video
encoder 20 may use uni-prediction or bi-prediction to generate the predictive blocks of a
PU. When video encoder 20 uses uni-prediction to generate the predictive blocks for a
PU, the PU may have a single motion vector (MV). When video encoder 20 uses bi-
prediction to generate the predictive blocks for a PU, the PU may have two MVs.
[0136] After video encoder 20 generates predictive luma, Cb and Cr blocks for one or
more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.
Each sample in the CU’s luma residual block indicates a difference between a luma
sample in one of the CU’s predictive luma blocks and a corresponding sample in the
CU’s original luma coding block. In addition, video encoder 20 may generate a Cb
residual block for the CU. Each sample in the CU’s Cb residual block may indicate a
difference between a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block. Video encoder 20 may
also gencrate a Cr residual block for the CU. Each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks
and a corresponding sample in the CU’s original Cr coding block.
[0137] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
luma, Cb and Cr residual blocks of a CU into one or more luma, Cb and Cr transform
blocks. A transform block may be a rectangular block of samples on which the same
transform is applied. A transform unit (TU) of a CU may be a transform block of luma

samples, two corresponding transform blocks of chroma samples, and syntax structures

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

37
used to transform the transform block samples. Thus, each TU of a CU may be
associated with a luma transform block, a Cb transform block, and a Cr transform block.
The luma transform block associated with the TU may be a sub-block of the CU’s luma
residual block. The Cb transform block may be a sub-block of the CU’s Cb residual
block. The Cr transform block may be a sub-block of the CU’s Cr residual block.
[0138] Video encoder 20 may apply one or more transforms to a luma transform block
of a TU to generate a luma coefficient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform coefficient may be a
scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform
block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may
apply one or more transforms to a Cr transform block of a TU to generate a Cr
cocfficient block for the TU.
[0139] After gencrating a coefficient block (e.g., a luma cocfticient block, a Cb
cocefficient block or a Cr coefticient block), video encoder 20 may quantize the
cocfficient block. Quantization generally refers to a process in which transform
cocfficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may entropy encoding syntax elements indicating
the quantized transform coefficients. For example, video encoder 20 may perform
Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients. Video encoder 20 may output the
entropy-encoded syntax elements in a bitstream.
[0140] Video encoder 20 may output a bitstream that includes the entropy-encoded
syntax elements. The bitstream may include a sequence of bits that forms a
representation of coded pictures and associated data. The bitstream may comprise a
sequence of network abstraction layer (NAL) units. Each of the NAL units includes a
NAL unit header and encapsulates a raw byte sequence payload (RBSP). The NAL unit
header may include a syntax element that indicates a NAL unit type code. The NAL
unit type code specified by the NAL unit header of a NAL unit indicates the type of the
NAL unit. A RBSP may be a syntax structure containing an integer number of bytes
that is encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.
[0141] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate an RBSP for a picture parameter set

(PPS), a second type of NAL unit may encapsulate an RBSP for a coded slice, a third

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

38
type of NAL unit may encapsulate an RBSP for SEI, and so on. NAL units that
encapsulate RBSPs for video coding data (as opposed to RBSPs for parameter sets and
SEI messages) may be referred to as video coding layer (VCL) NAL units.
[0142] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to decode syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements decoded from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20.
[0143] For instance, video decoder 30 may use MVs of PUs to determine predictive
blocks for the PUs of a current CU. In addition, video decoder 30 may inverse quantize
transform cocfficient blocks associated with TUs of the current CU. Video decoder 30
may perform inverse transforms on the transform coefficient blocks to reconstruct
transform blocks associated with the TUs of the current CU. Video decoder 30 may
reconstruct the coding blocks of the current CU by adding the samples of the predictive
blocks for PUs of the current CU to corresponding samples of the transform blocks of
the TUs of the current CU. By reconstructing the coding blocks for each CU of a
picture, video decoder 30 may reconstruct the picture.
[0144] In some examples, video encoder 20 and video decoder 30 may be configured to
perform palette-based coding. For example, in palette based coding, rather than
performing the intra-predictive or inter-predictive coding techniques described above,
video encoder 20 and video decoder 30 may code a so-called palette as a table of colors
for representing the video data of the particular area (e.g., a given block). Each pixel
may be associated with an entry in the palette that represents the color of the pixel. For
example, video encoder 20 and video decoder 30 may code an index that relates the
pixel value to the appropriate value in the palette.
[0145] In the cxample above, video encoder 20 may encode a block of video data by
determining a palette for the block, locating an entry in the palette to represent the value
of each pixel, and encoding the palette with index values for the pixels relating the pixel
value to the palette. Video decoder 30 may obtain, from an encoded bitstream, a palette
for a block, as well as index values for the pixels of the block. Video decoder 30 may
relate the index values of the pixels to entries of the palette to reconstruct the pixel

values of the block.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

39
[0146] In some examples, video encoder 20 may encode one or more syntax elements
indicating a number of consecutive pixels in a given scan order that have the same pixel
value. The string of like-valued pixel values may be referred to herein as a “run.” In an
example for purposes of illustration, if two consecutive pixels in a given scan order have
different values, the run is equal to zero. If two consecutive pixels in a given scan order
have the same value but the third pixel in the scan order has a different value, the run is
equal to one. Video decoder 30 may obtain the syntax elements indicating a run from
an encoded bitstream and use the data to determine the number of consecutive pixel
locations that have the same index value.
[0147] In some examples, video encoder 20 and video decoder 30 may perform line
copying for one or more entries of a map of index values. For example, video encoder
20 may indicate that a pixel value for a particular entry in an index map is equal to an
entry in a line above the particular entry. Video encoder 20 may also indicate, as a run,
the number of indices in the scan order that are equal to the entry in the line above of the
particular entry. In this example, video encoder 20 and or video decoder 30 may copy
index values from the specified neighboring line and from the specified number of
entries for the line of the map currently being coded.
[0148] According to the techniques of this disclosure, video encoder 20 and video
decoder 30 may determine the design and application of in-loop filtering (e.g.,
deblocking filtering and/or SAO filtering) for pixels of palette coded blocks. More
specifically, video encoder 20 and video decoder 30 may determine the application of
deblocking filtering for pixels along a block boundary formed by at least one palette
coded block. In addition, video encoder 20 and video decoder 30 may determine QP
values and delta QP values used to quantize escape pixel values of palette coded blocks.
For example, based on at least one pixel within a palette coded block being coded as an
escapc pixel, video encoder 20 and video decoder 30 may determing a palette QP valuc
for the palctte coded block, the palctte QP valuc being adjusted from a predicted QP
value. In particular, in some examples, video encoder 20 and video decoder 30 may be
configured to perform techniques of this disclosure that are described in more detail
with respect to FIGS. 4-6.
[0149] FIG. 2 is a block diagram illustrating an example video encoder 20 that may
implement the techniques of this disclosure. FIG. 2 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly

exemplified and described in this disclosure. For purposes of explanation, this

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

40
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods.
[0150] Video encoder 20 represents an example of a device that may be configured to
perform techniques for palette-based video coding in accordance with various examples
described in this disclosure. For example, video encoder 20 may be configured to
selectively code various blocks of video data, such as CUs or PUs in HEVC coding,
using either palette-based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal coding modes or intra-
predictive spatial coding modes, such as the various coding modes specified by HEVC
Version 1. Video encoder 20, in one example, may be configured to generate a palette
having entries indicating pixel values, select pixel values in a palette to represent pixels
values of at least some pixel locations in a block of video data, and signal information
associating at least some of the pixel locations in the block of video data with entries in
the palette corresponding, respectively, to the selected pixel values in the palette. The
signaled information may be used by video decoder 30 to decode video data.
[0151] In the example of FIG. 2, video encoder 20 includes a video data memory 98, a
prediction processing unit 100, a residual generation unit 102, a transform processing
unit 104, a quantization unit 106, an inverse quantization unit 108, an inverse transform
processing unit 110, a reconstruction unit 112, a filter unit 114, a decoded picture buffer
116, and an entropy encoding unit 118. Prediction processing unit 100 includes an
inter-prediction processing unit 120 and an intra-prediction processing unit 126. Inter-
prediction processing unit 120 includes a motion estimation unit and a motion
compensation unit (not shown). Video encoder 20 also includes a palette-based
encoding unit 122 configured to perform various aspects of the palette-based coding
techniques described in this disclosure. In other examples, video encoder 20 may
include more, fewer, or different functional components.
[0152] Video data memory 98 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 98 may be obtained, for
example, from video source 18. Decoded picture buffer 116 may be a reference picture
memory that stores reference video data for use in encoding video data by video
encoder 20, e.g., in intra- or inter-coding modes. Video data memory 98 and decoded
picture buffer 116 may be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

41
devices. Video data memory 98 and decoded picture buffer 116 may be provided by the
same memory device or separate memory devices. In various examples, video data
memory 98 may be on-chip with other components of video encoder 20, or off-chip
relative to those components.
[0153] Video encoder 20 may receive video data. Video encoder 20 may encode each
CTU in a slice of a picture of the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.
As part of encoding a CTU, prediction processing unit 100 may perform quad-tree
partitioning to divide the CTBs of the CTU into progressively-smaller blocks. The
smaller block may be coding blocks of CUs. For example, prediction processing unit
100 may partition a CTB associated with a CTU into four equally-sized sub-blocks,
partition onc or more of the sub-blocks into four equally-sized sub-sub-blocks, and so
on.
[0154] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 100 may partition the coding blocks associated with the CU among one
or more PUs of the CU. Thus, each PU may be associated with a luma prediction block
and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30
may support PUs having various sizes. As indicated above, the size of a CU may refer
to the size of the luma coding block of the CU and the size of a PU may refer to the size
of a luma prediction block of the PU. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or
similar for inter prediction. Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N for inter
prediction.
[0155] Inter-prediction processing unit 120 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include predictive blocks of the PU and motion information for the PU. Inter-prediction
unit 121 may perform different operations for a PU of a CU depending on whether the
PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs are intra predicted.
Hence, if the PU is in an I slice, inter-prediction unit 121 does not perform inter

prediction on the PU. Thus, for blocks encoded in I-mode, the predicted block is

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

42
formed using spatial prediction from previously-encoded neighboring blocks within the
same frame.
[0156] If a PU is in a P slice, the motion estimation unit of inter-prediction processing
unit 120 may search the reference pictures in a list of reference pictures (e.g.,
“RefPicList0”) for a reference region for the PU. The reference region for the PU may
be a region, within a reference picture, that contains sample blocks that most closely
corresponds to the sample blocks of the PU. The motion estimation unit may generate a
reference index that indicates a position in RefPicList0 of the reference picture
containing the reference region for the PU. In addition, the motion estimation unit may
generate an MV that indicates a spatial displacement between a coding block of the PU
and a reference location associated with the reference region. For instance, the MV may
be a two-dimensional vector that provides an offset from the coordinates in the current
decoded picture to coordinates in a reference picture. The motion estimation unit may
output the reference index and the MV as the motion information of the PU. The
motion compensation unit of inter-prediction processing unit 120 may generate the
predictive blocks of the PU based on actual or interpolated samples at the reference
location indicated by the motion vector of the PU.
[0157] If a PU is in a B slice, the motion estimation unit may perform uni-prediction or
bi-prediction for the PU. To perform uni-prediction for the PU, the motion estimation
unit may search the reference pictures of RefPicList0 or a second reference picture list
(“RefPicList1”) for a reference region for the PU. The motion estimation unit may
output, as the motion information of the PU, a reference index that indicates a position
in RefPicList0 or RefPicList1 of the reference picture that contains the reference region,
an MV that indicates a spatial displacement between a prediction block of the PU and a
reference location associated with the reference region, and one or more prediction
direction indicators that indicate whether the reference picture is in RefPicList0 or
RefPicListl. The motion compensation unit of inter-prediction processing unit 120 may
generate the predictive blocks of the PU based at least in part on actual or interpolated
samples at the reference region indicated by the motion vector of the PU.
[0158] To perform bi-directional inter prediction for a PU, the motion estimation unit
may search the reference pictures in RefPicList0 for a reference region for the PU and
may also search the reference pictures in RefPicList] for another reference region for
the PU. The motion estimation unit may generate reference picture indexes that indicate

positions in RefPicList0 and RefPicList] of the reference pictures that contain the

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

43
reference regions. In addition, the motion estimation unit may generate MVs that
indicate spatial displacements between the reference location associated with the
reference regions and a sample block of the PU. The motion information of the PU may
include the reference indexes and the MVs of the PU. The motion compensation unit
may generate the predictive blocks of the PU based at least in part on actual or
interpolated samples at the reference regions indicated by the motion vectors of the PU.
[0159] Intra-prediction processing unit 126 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include
predictive blocks for the PU and various syntax elements. Intra-prediction processing
unit 126 may perform intra prediction on PUs in I slices, P slices, and B slices.
[0160] To perform intra prediction on a PU, intra-prediction processing unit 126 may
usc multiple intra prediction modes to gencrate multiple scts of predictive data for the
PU. Intra-prediction processing unit 126 may use samples from sample blocks of
neighboring PUs to generate a predictive block for a PU. The neighboring PUs may be
above, above and to the right, above and to the left, or to the left of the PU, assuming a
left-to-right, top-to-bottom encoding order for PUs, CUs, and CTUs. Intra-prediction
processing unit 126 may use various numbers of intra prediction modes, e.g., 33
directional intra prediction modes. In some examples, the number of intra prediction
modes may depend on the size of the region associated with the PU.
[0161] Prediction processing unit 100 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.
In some examples, prediction processing unit 100 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive
sample blocks of the selected predictive data may be referred to herein as the selected
predictive sample blocks.
[0162] Residual generation unit 102 may gencrate, bascd on the luma, Cb and Cr
coding block of a CU and the selected predictive luma, Cb and Cr blocks of the PUs of
the CU, a luma, Cb and Cr residual blocks of the CU. For instance, residual generation
unit 102 may generate the residual blocks of the CU such that each sample in the
residual blocks has a value equal to a difference between a sample in a coding block of
the CU and a corresponding sample in a corresponding selected predictive sample block

of a PU of the CU.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

44
[0163] Transform processing unit 104 may perform quad-tree partitioning to partition
the residual blocks associated with a CU into transform blocks associated with TUs of
the CU. Thus, a TU may be associated with a luma transform block and two chroma
transform blocks. The sizes and positions of the luma and chroma transform blocks of
TUs of a CU may or may not be based on the sizes and positions of prediction blocks of
the PUs of the CU. A quad-tree structure known as a “residual quad-tree” (RQT) may
include nodes associated with each of the regions. The TUs of a CU may correspond to
leaf nodes of the RQT.
[0164] Transform processing unit 104 may generate transform coefficient blocks for
each TU of a CU by applying one or more transforms to the transform blocks of the TU.
Transform processing unit 104 may apply various transforms to a transform block
associated with a TU. For example, transform processing unit 104 may apply a discrete
cosine transform (DCT), a directional transform, or a conceptually similar transform to
a transform block. In some examples, transform processing unit 104 does not apply
transforms to a transform block. In such examples, the transform block may be treated
as a transform coefficient block.
[0165] Quantization unit 106 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an »-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where # is greater than m.
Quantization unit 106 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information, thus quantized transform coefficients may have lower
precision than the original ones.
[0166] Inverse quantization unit 108 and inverse transform processing unit 110 may
apply inverse quantization and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block. Reconstruction unit 112 may
add the reconstructed residual block to corresponding samples from one or more
predictive sample blocks generated by prediction processing unit 100 to produce a
reconstructed transform block associated with a TU. By reconstructing transform
blocks for each TU of a CU in this way, video encoder 20 may reconstruct the coding

blocks of the CU.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

45
[0167] Filter unit 114 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer
116 may store the reconstructed coding blocks after filter unit 114 performs the one or
more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 120 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 126 may use reconstructed coding blocks in decoded picture buffer 116
to perform intra prediction on other PUs in the same picture as the CU.
[0168] Entropy encoding unit 118 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 118 may receive coefficient
blocks from quantization unit 106 and may receive syntax elements from prediction
processing unit 100. Entropy encoding unit 118 may perform onc or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 118 may perform a context-adaptive variable length coding
(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
Video encoder 20 may output a bitstream that includes entropy-encoded data generated
by entropy encoding unit 118. For instance, the bitstream may include data that
represents a RQT for a CU.
[0169] In accordance with various examples of this disclosure, video encoder 20 may be
configured to perform palette-based coding. With respect to the HEVC framework, as
an example, the palette-based coding techniques may be configured to be used as a
coding unit (CU) mode. In other examples, the palette-based coding techniques may be
configured to be used as a PU mode in the framework of HEVC. Accordingly, all of the
disclosed processes described herein (throughout this disclosure) in the context of a CU
mode may, additionally or alternatively, apply to PU. However, these HEVC-based
examples should not be considered a restriction or limitation of the palette-based coding
techniques described herein, as such techniques may be applied to work independently
or as part of other existing or yet to be developed systems/standards. In these cases, the
unit for palette coding can be square blocks, rectangular blocks or even regions of non-

rectangular shape.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

46
[0170] Palette-based encoding unit 122, for example, may perform palette-based
encoding when a palette-based encoding mode is selected, e.g., for a CU or PU. For
example, palette-based encoding unit 122 may be configured to generate a palette
having entries indicating pixel values, select pixel values in a palette to represent pixels
values of at least some pixel locations in a block of video data, and signal information
associating at least some of the pixel locations in the block of video data with entries in
the palette corresponding, respectively, to the selected pixel values in the palette.
Although various functions are described as being performed by palette-based encoding
unit 122, some or all of such functions may be performed by other processing units, or a
combination of different processing units.
[0171] In accordance with the techniques of this disclosure, video encoder 20 may be
configured to determine the design and application of in-loop filtering (c.g., deblocking
filtering and/or SAO filtering) for pixels of reconstructed palette coded blocks by filter
unit 114 prior to storing the reconstructed blocks in decoded picture buffer 116. More
specifically, palette-based encoding unit 122 of video encoder 20 may be configured to
determine the application of deblocking filtering by filter unit 114 for pixels along a
block boundary formed by at least one palette coded block. For example, based on a
first block of video data being a palette coded block, palette-based encoding unit 122
may disable deblocking filtering by filter unit 114 for pixels within a reconstructed
version of the first block at a block boundary formed between the reconstructed first
block and a reconstructed second block of the video data. Palette-based encoding unit
122 may also determine whether or not to apply the deblocking filtering by filter unit
114 for pixels within the reconstructed second block at the block boundary formed
between the reconstructed first block and the reconstructed second block. The
techniques for determining the application of deblocking filtering of palette coded
blocks arc described in more detail with respect to FIGS. 4 and 5.
[0172] In further accordance with the techniques of this disclosure, video encoder 20
may be configured to determine QP values and delta QP values used by quantization
unit 106 to quantize escape pixel values of palette coded blocks. For example, video
encoder 20 may be configured to encode a first syntax element in a bitstream indicating
whether at least one pixel within a palette coded block is encoded as an escape pixel
having a color value that is not included in a palette for the palette coded block. Video

encoder 20 may be further configured to, based on the at least one pixel within the

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

47
palette coded block being encoded as an escape pixel, determine a palette QP value for
the palette coded block, the palette QP value being adjusted from a predicted QP value.
[0173] In one example, based on the at least one pixel within the palette coded block
being encoded as an escape pixel and in the case that a delta QP value has not been
previously determined for a current quantization group that includes the palette coded
block, video encoder 20 may determine the palette QP value for the palette coded block,
determine a palette delta QP value as a difference between the palette QP value and the
predicted QP value, and encode a second syntax element in the bitstream indicating the
palette delta QP value. Video encoder 20 may then quantize the color value for the
escape pixel according to the palette QP value, and encode the quantized color value for
the escape pixel in the bitstream. The techniques for determining the palette QP value
for a palette coded block are described in more detail with respect to FIG. 6.
[0174] FIG. 3 is a block diagram illustrating an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 3 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.
[0175] Video decoder 30 represents an example of a device that may be configured to
perform techniques for palette-based video coding in accordance with various examples
described in this disclosure. For example, video decoder 30 may be configured to
selectively decode various blocks of video data, such as CUs or PUs in HEVC coding,
using either palette-based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal coding modes or intra-
predictive spatial coding modes, such as the various coding modes specified by HEVC
Version 1. Video decoder 30, in onc example, may be configured to gencrate a palette
having entries indicating pixel values, receive information associating at least some
positions of a block of video data with entries in the palette, select pixel values in the
palette based on the information, and reconstruct pixel values of the block based on the
selected pixel values.
[0176] In the example of FIG. 3, video decoder 30 includes a video data memory 148,
an entropy decoding unit 150, a prediction processing unit 152, an inverse quantization
unit 154, an inverse transform processing unit 156, a reconstruction unit 158, a filter

unit 160, and a decoded picture buffer 162. Prediction processing unit 152 includes a

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

48
motion compensation unit 164 and an intra-prediction processing unit 166. Video
decoder 30 also includes a palette-based decoding unit 165 configured to perform
various aspects of the palette-based coding techniques described in this disclosure. In
other examples, video decoder 30 may include more, fewer, or different functional
components.
[0177] Video data memory 148 may store video data, such as an encoded video
bitstream, to be decoded by the components of video decoder 30. The video data stored
in video data memory 148 may be obtained, for example, from computer-readable
medium 16, e.g., from a local video source, such as a camera, via wired or wireless
network communication of video data, or by accessing physical data storage media.
Video data memory 148 may form a coded picture buffer (CPB) that stores encoded
video data from an encoded video bitstream. Decoded picture buffer 162 may be a
reference picture memory that stores reference video data for use in decoding video data
by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 148 and
decoded picture buffer 162 may be formed by any of a variety of memory devices, such
as dynamic random access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 148 and decoded picture buffer 162 may be
provided by the same memory device or separate memory devices. In various examples,
video data memory 148 may be on-chip with other components of video decoder 30, or
off-chip relative to those components.
[0178] Video data memory 148, i.e., a CPB, may receive and store encoded video data
(e.g., NAL units) of a bitstream. Entropy decoding unit 150 may receive encoded video
data (e.g., NAL units) from video data memory 148 and parse the NAL units to decode
syntax elements. Entropy decoding unit 150 may entropy decode entropy-encoded
syntax clements in the NAL units. Prediction processing unit 152, inverse quantization
unit 154, inverse transform processing unit 156, reconstruction unit 158, and filter unit
160 may generate decoded video data based on the syntax clements extracted from the
bitstream.
[0179] The NAL units of the bitstream may include coded slice NAL units. As part of
decoding the bitstream, entropy decoding unit 150 may extract and entropy decode
syntax elements from the coded slice NAL units. Each of the coded slices may include

a slice header and slice data. The slice header may contain syntax elements pertaining

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

49
to a slice. The syntax elements in the slice header may include a syntax element that
identifies a PPS associated with a picture that contains the slice.
[0180] In addition to decoding syntax elements from the bitstream, video decoder 30
may perform a reconstruction operation on a non-partitioned CU. To perform the
reconstruction operation on a non-partitioned CU, video decoder 30 may perform a
reconstruction operation on each TU of the CU. By performing the reconstruction
operation for each TU of the CU, video decoder 30 may reconstruct residual blocks of
the CU.
[0181] As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 154 may inverse quantize, i.e., de-quantize, coefficient blocks
associated with the TU. Inverse quantization unit 154 may use a QP value associated
with the CU of the TU to determine a degree of quantization and, likewisc, a degree of
inverse quantization for inverse quantization unit 154 to apply. That is, the compression
ratio, i.e., the ratio of the number of bits used to represent original sequence and the
compressed one, may be controlled by adjusting the value of the QP used when
quantizing transform coefficients. The compression ratio may also depend on the
method of entropy coding employed.
[0182] After inverse quantization unit 154 inverse quantizes a coefficient block, inverse
transform processing unit 156 may apply one or more inverse transforms to the
coefficient block in order to generate a residual block associated with the TU. For
example, inverse transform processing unit 156 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational
transform, an inverse directional transform, or another inverse transform to the
coefficient block.
[0183] If a PU is encoded using intra prediction, intra~-prediction processing unit 166
may perform intra prediction to gencrate predictive blocks for the PU. Intra-prediction
processing unit 166 may use an intra prediction mode to gencrate the predictive luma,
Cb and Cr blocks for the PU based on the prediction blocks of spatially-neighboring
PUs. Intra-prediction processing unit 166 may determine the intra prediction mode for
the PU based on one or more syntax elements decoded from the bitstream.
[0184] Prediction processing unit 152 may construct a first reference picture list
(RefPicList0) and a second reference picture list (RefPicList]) based on syntax elements
extracted from the bitstream. Furthermore, if a PU is encoded using inter prediction,

entropy decoding unit 150 may extract motion information for the PU. Motion

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

50
compensation unit 164 may determine, based on the motion information of the PU, one
or more reference regions for the PU. Motion compensation unit 164 may generate,
based on samples blocks at the one or more reference blocks for the PU, predictive
luma, Cb and Cr blocks for the PU.
[0185] Reconstruction unit 158 may use the luma, Cb and Cr transform blocks
agsociated with TUs of a CU and the predictive luma, Cb and Cr blocks of the PUs of
the CU, i.e., either intra-prediction data or inter-prediction data, as applicable, to
reconstruct the luma, Cb and Cr coding blocks of the CU. For example, reconstruction
unit 158 may add samples of the luma, Cb and Cr transform blocks to corresponding
samples of the predictive luma, Cb and Cr blocks to reconstruct the luma, Cb and Cr
coding blocks of the CU.
[0186] Filter unit 160 may perform a deblocking operation to reduce blocking artifacts
associated with the luma, Cb and Cr coding blocks of the CU. Video decoder 30 may
store the luma, Cb and Cr coding blocks of the CU in decoded picture buffer 162.
Decoded picture buffer 162 may provide reference pictures for subsequent motion
compensation, intra prediction, and presentation on a display device, such as display
device 32 of FIG. 1. For instance, video decoder 30 may perform, based on the luma,
Cb, and Cr blocks in decoded picture buffer 162, intra prediction or inter prediction
operations on PUs of other CUs. In this way, video decoder 30 may extract, from the
bitstream, transform coefficient levels of the significant luma coefficient block, inverse
quantize the transform coefficient levels, apply a transform to the transform coefficient
levels to generate a transform block, generate, based at least in part on the transform
block, a coding block, and output the coding block for display.
[0187] In accordance with various examples of this disclosure, video decoder 30 may be
configured to perform palette-based coding. Palette-based decoding unit 165, for
cxample, may perform palette-based decoding when a palctte-based decoding mode is
sclected, ¢.g., for a CU or PU. For example, palctte-bascd decoding unit 165 may be
configured to generate a palette having entries indicating pixel values, receive
information associating at least some pixel locations in a block of video data with
entries in the palette, select pixel values in the palette based on the information, and
reconstruct pixel values of the block based on the selected pixel values in the palette.
Although various functions are described as being performed by palette-based decoding
unit 165, some or all of such functions may be performed by other processing units, or a

combination of different processing units.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

51
[0188] In accordance with the techniques of this disclosure, video decoder 30 may be
configured to determine the design and application of in-loop filtering (e.g., deblocking
filtering and/or SAO filtering) for pixels of reconstructed palette coded blocks by filter
unit 160 prior to storing the reconstructed blocks in decoded picture buffer 162 or
outputting the reconstructed blocks for display. More specifically, palette-based
decoding unit 165 of video decoder 30 may be configured to determine the application
of deblocking filtering by filter unit 160 for pixels along a block boundary formed by at
least one palette coded block. For example, based on a first block of video data being a
palette coded block, palette-based decoding unit 165 of may disable deblocking filtering
by filter unit 160 for pixels within a reconstructed version of the first block at a block
boundary formed between the reconstructed first block and a reconstructed second block
of the vidco data. Palette-based decoding unit 165 of may also determine whether or
not to apply the deblocking filtering by filter unit 160 for pixels within the reconstructed
second block at the block boundary formed between the reconstructed first block and
the reconstructed second block. The techniques for determining the application of
deblocking filtering of palette coded blocks are described in more detail with respect to
FIGS. 4 and 5.
[0189] In further accordance with the techniques of this disclosure, video decoder 30
may be configured to determine QP values and delta QP values used by inverse
quantization unit 154 to quantize escape pixel values of palette coded blocks. For
example, video decoder 30 may be configured to decode a first syntax element from a
received bitstream indicating whether at least one pixel within a palette coded block is
to be decoded as an escape pixel having a color value that is not included in a palette for
the palette coded block. Video decoder 30 may be further configured to, based on the at
least one pixel within the palette coded block being decoded as an escape pixel,
determince a palette QP value for the palette coded block, the palette QP value being
adjusted from a predicted QP valuc.
[0190] In one example, based on the at least one pixel within the palette coded block
being decoded as an escape pixel and in the case that a delta QP value has not been
previously determined for a current quantization group that includes the palette coded
block, video decoder 30 may decode a second syntax element from the received
bitstream indicating a palette delta QP value for the palette coded block, and adjust the
predicted QP value based on the palette delta QP value in order to determine the palette
QP value for the palette coded block. Video decoder 30 may then decode the quantized

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

52
color value for the escape pixel from the received bitstream, and inverse quantize the
color value for the escape pixel according to the palette QP value. The techniques for
determining the palette QP value for a palette coded block are described in more detail
with respect to FIG. 6.
[0191] FIG. 5 is a flowchart illustrating an example operation of a video coder
determining whether to apply deblocking filtering to pixels along a block boundary
formed by at least one palette coded block. The example operation of FIG. 5 is
described with respect to applying the deblocking filtering to pixels along block
boundary 174 formed between first block 170 and second block 172 from FIG. 4. The
example operation illustrated in FIG. 5 may be performed by either video encoder 20
from FIG. 2 or video decoder 30 from FIG. 3.
[0192] The example operation of FIG. 5 will first be described with respect to video
decoder 30. Video decoder 30 receives an encoded bitstream from a video encoder,
such as video encoder 20. The encoded bitstream includes representations of encoded
blocks of video data for at least one picture and one or more syntax elements associated
with the video data. Video decoder 30 determines that first block 170 of the video data
to be decoded is a palette coded block (200). In some examples, video decoder 30 may
receive at least one syntax element (e.g., a flag) in the bitstream that indicates whether
or not each block of the video data is a palette coded block. In other examples, video
decoder 30 may receive one or more syntax elements indicating a type of coding used to
code cach block of the video data, e.g., whether each block is a palette coded block, an
inter-coded block, or an intra-coded block, etc.
[0193] When first block 170 is a palette coded block, palette-based decoding unit 165 of
video decoder 30 determines a palette for first block 170 (202). The palette for first
block 170 includes zero or more palette entries that indicate one or more respective
color values. As described in more detail above, the respective color values included in
the palette may be the major color values that occur most frequently in first block 170.
Palette-based decoding unit 165 may determine the palette according to a palette size
and palette entries received in the encoded bitstream. Palette-based decoding unit 165
then determines color value for pixels of first block 170 with respect to the palette
(204).
[0194] In the case that the palette includes zero palette entries, all of the pixels within
first block 170 are to be decoded as escape pixels having color values that are not

included in the palette, and palette-based decoding unit 165 determines the color values

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

53
for the escape pixels received in the encoded bitstream. In the case that the palette
includes one or more palette entries, palette-based decoding unit 165 determines index
values for one or more pixels within first block 170 received in the encoded bitstream,
each of the index values corresponding to one of the palette entries that indicates a color
value for one of the pixels within first block 170, and determines color values for any of
the pixels within the first block that are decoded as escape pixels.
[0195] Video decoder 30 reconstructs first block 170 of the video data based on the
determined palette and the determined color values for first block 170 (206). Video
decoder 30 may then store the video data of the reconstructed first block 170 in decoded
picture buffer 162 and subsequently output the video data of the reconstructed first
block 170 for display.
[0196] Conventionally, palette coded blocks were treated the same as inter-coded
blocks and, as such, filtering was automatically applied to the reconstructed blocks prior
to being stored in the decoded picture buffer or output for display. According to the
disclosed techniques, the palette coded blocks are instead treated in a similar fashion as
lossless coded blocks for purposes of deblocking filtering. In other words, the disclosed
techniques include disabling deblocking filtering for pixels within palette coded blocks.
[0197] Based on first block 170 being a palette coded block, palette-based decoding unit
165 disables the deblocking filtering for first pixels within the reconstructed first block
170 at block boundary 174 formed between the reconstructed first block 170 and the
reconstructed second block 172 (208). In this way, no deblocking filtering may be
applied to the first pixels in the reconstructed first block 170 prior to storing or
outputting the reconstructed first block 170.
[0198] In the case that the reconstructed first block 170 and the reconstructed second
block 172 comprise luma blocks, palette-based decoding unit 165 may disable the
deblocking filtering for the first luma pixels within the reconstructed first block 170 as
follows. Palette-based decoding unit 165 may first determine whether the deblocking
filtering is enabled for block boundary 174 formed between the reconstructed first block
170 and the reconstructed second block 172. This determination may be based on block
boundary 174 being a PU or TU boundary, a boundary strength value for block
boundary 174 being greater than zero, and variation of the first and second luma pixels
along both sides of block boundary 174 being below a threshold.
[0199] Based on the deblocking filtering being enabled for block boundary 174, palette-

based decoding unit 165 may then determine a number of the first luma pixels within

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

54
the reconstructed first block 170 to be deblocking filtered. The number of the first luma
pixels to be deblocking filtered may depend on whether strong or normal deblocking
filtering is to be applied to the first luma pixels and, in the case of normal deblocking
filtering, a strength of the normal deblocking filtering to be applied to the first luma
pixels. Based on the number of the first luma pixels to be deblocking filtered being
greater than zero and based on the first block 170 being a palette coded block, palette-
based decoding unit 165 may set the number of the first luma pixels to be deblocking
filtered equal to zero in order to disable the deblocking filtering for the first luma pixels
within the reconstructed first block 170. This is similar to the way in which deblocking
filtering is disabled for luma samples of lossless coded blocks in HEVC Version 1 such
that, according to the disclosed techniques, the palette coded blocks are treated the same
as lossless coded blocks for purposes of deblocking filtering.
[0200] In the case that the reconstructed first block 170 and the reconstructed second
block 172 comprise chroma blocks, palette-based decoding unit 165 may disable the
deblocking filtering for the first chroma pixels within the reconstructed first block 170
as follows. Palette-based decoding unit 165 may first determine whether the deblocking
filtering is enabled for block boundary 174 formed between the reconstructed first block
170 and the reconstructed second block 172. This determination may be based on a
boundary strength value for block boundary 174 being equal to two. Based on the
deblocking filtering being enabled for block boundary 174, palette-based decoding unit
165 may then determine deblocking filtered values for one or more of the first chroma
pixels within the reconstructed first block 170. Based on first block 170 being a palette
coded block, palette-based decoding unit 165 may set the deblocking filtered values for
the one or more of the first chroma pixels to be equal to original values for the one or
more of the first chroma pixels in order to disable the deblocking filtering for the first
chroma pixels within the reconstructed first block 170. This is similar to the way in
which deblocking filtering is disabled for chroma samples of lossless coded blocks in
HEVC Version 1 such that, according to the disclosed techniques, the palette coded
blocks are treated the same as lossless coded blocks for purposes of deblocking filtering.
[0201] In addition, palette-based decoding unit 165 determines whether to apply the
deblocking filtering for second pixels within the reconstructed second block 172 at
block boundary 174 formed between the reconstructed first block 170 and the
reconstructed second block 172 (210). In one example, palette-based decoding unit 165

may determine that second block 172 is also a palette coded block. After reconstructing

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

55
second block 172, based on second block 172 being a palette coded block, palette-based
decoding unit 165 disables the deblocking filtering for the second pixels within the
reconstructed second block 172 at block boundary 174 formed between the
reconstructed first block 170 and the reconstructed second block 172. In this way, no
deblocking filtering may be applied to the second pixels in the reconstructed second
block 172 prior to storing or outputting the reconstructed second block 172.
[0202] In another example, palette-based decoding unit 165 may determine that second
block 172 is not a palette coded block, but is an inter-coded block or an intra-coded
block, etc. After reconstructing second block 172, palette-based decoding unit 165
determines whether the deblocking filtering is enabled for block boundary 174 formed
between the reconstructed first block 170 and the reconstructed second block 172.
Based on the deblocking filtering being enabled for block boundary 174, palette-based
decoding unit 165 determines a type of the deblocking filtering for the second pixels
within the reconstructed second block 172, and applies the determined type of the
deblocking filtering to one or more of the second pixels within the reconstructed second
block 172, without applying the deblocking filtering to the first pixels within the
reconstructed first block 170. In this way, deblocking filtering may be applied to the
second pixels in the reconstructed second block 172 prior to storing or outputting the
reconstructed second block 172.
[0203] The example operation of FIG. 5 will now be described with respect to video
encoder 20. Video encoder 20 determines that first block 170 of the video data is to be
encoded as a palette coded block (200). In some examples, video encoder 20 may
signal at least one syntax element (e.g., a flag) in an encoded bitstream that indicates
whether or not cach block of the video data is a palette coded block. In other examples,
video encoder 20 may signal one or more syntax elements in the encoded bitstream
indicating a type of coding used to code cach block of the video data, ¢.g., whether cach
block is a palette coded block, an intcr-coded block, or an intra-coded block, cte.
[0204] When first block 170 is to be encoded as a palette coded block, palette-based
encoding unit 122 of video encoder 20 determines a palette for first block 170 (202).
The palette for first block 170 includes zero or more palette entries that indicate one or
more respective color values. As described in more detail above, the respective color
values included in the palette may be the major color values that occur most frequently
in first block 170. Palette-based encoding unit 122 may determine a palette size and

palette entries of the palette using a pixel value clustering method.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

56
[0205] After determining the palette, palette-based encoding unit 122 determines color
values for pixels of first block 170 with respect to the palette (204). In the case that the
palette includes zero palette entries, all of the pixels within first block 170 are encoded
as escape pixels having color values that are not included in the palette, and palette-
based encoding unit 122 encodes the escape pixels in the encoded bitstream. In the case
that the palette includes one or more palette entries, palette-based encoding unit 122
encodes index values for one or more pixels within first block 170 in the encoded
bitstream, each of the index values corresponding to one of the palette entries that
indicates a color value for one of the pixels within first block 170, and encodes color
values for any of the pixels within the first block that are encoded as escape pixels.
[0206] Video encoder 20 may signal the palette and the color values for first block 170
in the encoded bitstream to a video decoder, such as video decoder 30. Video encoder
20 then reconstructs first block 170 of the video data based on the determined palette
and the determined color values for first block 170 in a decoding loop (206). Video
encoder 20 may then store the video data of the reconstructed first block 170 in decoded
picture buffer 116.
[0207] According to the disclosed techniques, based on first block 170 being a palette
coded block, palette-based encoding unit 122 disables the deblocking filtering for first
pixels within the reconstructed first block 170 at block boundary 174 formed between
the reconstructed first block 170 and the reconstructed second block 172 (208). In this
way, no deblocking filtering may be applied to the first pixels in the reconstructed first
block 170 prior to storing the reconstructed first block 170 in decoded picture buffer
116. In addition, palette-based encoding unit 122 determines whether to apply the
deblocking filtering for second pixels within the reconstructed second block 172 at
block boundary 174 formed between the reconstructed first block 170 and the
reconstructed sccond block 172 (210). This determination may be based, at least in part,
on whether second block 172 is a palctte coded block, an inter-coded block, or an intra-
coded block, etc.
[0208] FIG. 6 is a flowchart illustrating an example operation of a video coder
determining a palette QP value used to quantize escape pixel values of a palette coded
block. The example operation illustrated in FIG. 5 may be performed by either video
encoder 20 from FIG. 2 or video decoder 30 from FIG. 3.
[0209] The example operation of FIG. 6 will first be described with respect to video

decoder 30. Video decoder 30 receives an encoded bitstream from a video encoder,

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

57
such as video encoder 20. The encoded bitstream includes representations of encoded
blocks of video data for at least one picture and one or more syntax elements associated
with the video data. In some examples, video decoder 30 may receive at least one
syntax element (e.g., a flag) in the bitstream that indicates whether or not each block of
the video data is a palette coded block. In other examples, video decoder 30 may
receive one or more syntax elements indicating a type of coding used to code each block
of the video data, e.g., whether each block is a palette coded block, an inter-coded
block, or an intra-coded block, etc.
[0210] When a current block to be decoded is a palette coded block, palette-based
decoding unit 165 of video decoder 30 determines a palette for the palette coded block
where the palette includes zero or more palette entries that indicate one or more
respective color values (220). Palette-based decoding unit 165 determines whether at
least one pixel within the palette coded block is to be decoded as an escape pixel having
a color value that is not included in the palette (224). In some examples, video decoder
30 may receive at least one syntax clement (e.g., a flag) at a CU-level in the bitstream
that indicates whether or not the palette coded block includes at least one escape pixel.
In other examples, video decoder 30 may receive a syntax element (e.g., a flag) for each
pixel within the palette coded block that indicates whether the pixel is to be decoded
based on the palette or as an escape pixel.
[0211] In some examples, video decoder 30 may also receive a syntax element in the
bitstream that indicates a slice-level QP value. The slice-level QP value is the QP value
that is used for quantizing blocks within a slice in HEVC Version 1. For non-palette
coded blocks, the slice-level QP value may be adjusted based on a delta QP value,
which may be signaled once for each CU or once for each quantization group that
includes multiple CUs. The delta QP may be signed for a given non-palette coded block
in the case that the non-palette coded block includes at least one non-zero cocfficient.
Conventionally, the palette-based coding mode does not include a mechanism to adjust
the slice-level QP value for cach CU or each quantization group such that video decoder
30 must operate at a constant QP to inverse quantize escape pixel values of palette
coded blocks.
[0212] According to the techniques of this disclosure, based on the at least one pixel
within the palette coded block being decoded as an escape pixel, video decoder 30
determines a palette QP value for the palette coded block, the palette QP value being
adjusted from a predicted QP value (226). The palette coded block may be included in a

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

58
current quantization group, which may include one or more other blocks including other
palette coded blocks and non-palette coded blocks. In some examples, the predicted QP
value that is adjusted to determine the palette QP value may be the slice-level QP value.
In other examples, the predicted QP value that is adjusted to determine the palette QP
value may be a QP value that is associated with a block included in a previous
quantization group. Although primarily described in this disclosure as a singular palette
QP value, the palette QP value may include a luma palette QP value and at least one
chroma palette QP value. For example, the palette QP value may include a palette QPy
value, a palette QP value, and a palette QP¢; value.
[0213] In one example, based on the at least one pixel within the palette coded block
being decoded as an escape pixel, video decoder 30 may determine a delta QP value for
the current quantization group that includes the palette coded block, and adjust the
predicted QP value based on the delta QP value in order to determine the palette QP
value for the palette coded block.
[0214] In some cases, based on the at least one pixel within the palette coded block
being decoded as an escape pixel and in the case that a delta QP value has not been
previously determined for a block included in the current quantization group that also
includes the palette coded block, video decoder 30 may receive a syntax element that
indicates a palette delta QP value for the palette coded block, and adjust the predicted
QP value based on the palette delta QP value in order to determine the palette QP value
for the palette coded block. In other cases, based on the at least one pixel within the
palette coded block being decoded as an escape pixel and in the case that a delta QP
value has been previously determined for a block included in the current quantization
group, video decoder 30 may adjust the predicted QP value based on the previously
determined delta QP value in order to determine the palette QP value for the palette
coded block without receiving a delta QP value for the palette coded block.
[0215] In some examples, video decoder 30 may receive the syntax clement indicating
the palette delta QP value for the palette coded block only if delta QP values are enabled
for palette coded blocks. For example, video decoder 30 may receive a syntax element
in one of a SPS, VPS, PPS or slice header that indicates whether delta QP values are
signaled at the CU-level for palette coded blocks.
[0216] The above examples may be used to determine a luma palette QP value used to
quantize luma pixels that are decoded as escape pixels. In addition, based on the at least

one pixel within the palette coded block being decoded as an escape pixel, video

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

59
decoder 30 may determining a chroma QP offset value for the current quantization
group that includes the palette coded block, and adjust the luma palette QP value
determined for the palette coded block based on the chroma QP offset value in order to
determine a chroma palette QP value for the palette coded block.
[0217] In some cases, based on the at least one pixel within the palette coded block
being decoded as an escape pixel and in the case that a chroma QP offset value has not
been previously determined for a block included in the current quantization group that
also includes the palette coded block, video decoder 30 may receive a syntax element
that indicates a palette chroma QP offset value for the palette coded block, and adjust
the luma palette QP value based on the palette chroma QP offset value in order to
determine the chroma palette QP value for the palette coded block. In other cases,
based on the at Ieast onc pixel within the palette coded block being decoded as an
escape pixel and in the case that a chroma QP offsct value has been previously
determined for a block included in the current quantization group, video decoder 30
may adjust the luma palette QP value based on the previously determined chroma QP
offset value in order to determine the chroma palette QP value for the palette coded
block without receiving a chroma QP offset value for the palette coded block
[0218] In some examples, video decoder 30 may receive the syntax element indicating
the palette chroma QP offset value for the palette coded block only if chroma QP offset
values are enabled for palette coded blocks. For example, video decoder 30 may
receive a syntax element in one of a SPS, VPS, PPS or slice header that indicates
whether chroma QP offset values are signaled at the CU-level for palette coded blocks.
[0219] As another example, in order to determine the palette QP value for the palette
coded block, video decoder 30 may be configured to determine whether the palette
coded block is a first block in the current quantization group or whether any previous
non-palette coded blocks in the current quantization group include non-zero
cocfficients. Based on the palctte coded block being the first block in the current
quantization group or none of the previous non-palette coded blocks in the current
quantization group including non-zero coefficients, video decoder 30 may determine the
palette QP value, including luma and chroma QP values, adjusted from the predicted QP
value. Alternatively, based on the palette coded block not being the first block in the
current quantization group and at least one of the previous non-palette coded blocks in
the current quantization group including non-zero coefficients, video decoder 30 may

determine the palette QP value to be equal to a quantization group QP value, including

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

60
luma and chroma QP values, previously determined for the at least one previous non-
palette coded blocks in the current quantization group.
[0220] Furthermore, based on the at least one pixel within the palette coded block being
decoded as an escape pixel and upon determining the palette QP value for the palette
coded block, video decoder 30 determines the color value for the escape pixel that is not
included in the palette, and quantizes the color value for the escape pixel according to
the palette QP value (228). More specifically, video decoder 30 decodes from the
received bitstream a quantized color value for the escape pixel, and inverse quantizes
the color value for the escape pixel according to the palette QP value.
[0221] Video decoder 30 then reconstructs the palette coded block of the video data
based on the determined palette, the determined index values, and the inverse quantized
color values of escape pixels for the palette coded block. For example, video decoder
30 may map the determined index values to entries of the palette to reconstruct the pixel
values of the palette coded block. Video decoder 30 may then store the video data of
the reconstructed palette coded block in decoded picture buffer 162 and subsequently
output the video data of the reconstructed palette coded block for display.
[0222] The example operation of FIG. 6 will now be described with respect to video
encoder 20. Video encoder 20 may signal at least one syntax element (e.g., a flag) in an
encoded bitstream that indicates whether or not each block of the video data is a palette
coded block. In other examples, video encoder 20 may signal one or more syntax
elements in the encoded bitstream indicating a type of coding used to code each block of
the video data, e.g., whether each block is a palette coded block, an inter-coded block,
or an intra-coded block, etc.
[0223] When a current block is to be encoded as a palette coded block, palette-based
encoding unit 122 of video encoder 20 determines a palette for the palette coded block
where the palette includes zero or more palette entries that indicate onc or more
respective color values (220). Palctte-bascd encoding unit 122 determines whether at
least one pixel within the palette coded block is encoded as an escape pixel having a
color value that is not included in the palette (224). In some examples, video encoder
20 may signal at least one syntax clement (e.g., a flag) at a CU-level in the bitstream
that indicates whether or not the palette coded block includes at least one escape pixel.
In other examples, video encoder 20 may signal a syntax element (e.g., a flag) for each

pixel within the palette coded block that indicates whether the pixel is encoded based on

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

61
the palette or as an escape pixel. In some examples, video encoder 20 may also signal a
syntax element in the bitstream that indicates a slice-level QP value.
[0224] According to the techniques of this disclosure, based on the at least one pixel
within the palette coded block being encoded as an escape pixel, video encoder 20
determines a palette QP value for the palette coded block, the palette QP value being
adjusted from a predicted QP value (226). The palette coded block may be included in a
current quantization group, which may include one or more other blocks including other
palette coded blocks and non-palette coded blocks. The predicted QP value that is
adjusted to determine the palette QP value may be the slice-level QP value or a QP
value that is associated with a block included in a previous quantization group. The
palette QP value may include a luma palette QP value and at least one chroma palette
QP value.
[0225] In onc example, based on the at least one pixel within the palette coded block
being encoded as an escape pixel, video encoder 20 may determine a delta QP value for
the current quantization group that includes the palette coded block, and adjust the
predicted QP value based on the delta QP value in order to determine the palette QP
value for the palette coded block.
[0226] In some cases, based on the at least one pixel within the palette coded block
being encoded as an escape pixel and in the case that a delta QP value has not been
previously determined for a block included in the current quantization group that also
includes the palette coded block, video encoder 20 may determine the palette QP value
for the palette coded block, determine a palette delta QP value as a difference between
the palette QP value and the predicted QP value, and signal a syntax element that
indicates the palette delta QP value for the palette coded block. In other cases, based on
the at least one pixel within the palette coded block being encoded as an escape pixel
and in the case that a delta QP value has been previously determined for a block
included in the current quantization group, video encoder 20 may adjust the predicted
QP value based on the previously determined delta QP value in order to determine the
palette QP value for the palette coded block without signaling a delta QP value for the
palette coded block.
[0227] In another example, in order to determine the palette QP value for the palette
coded block, video encoder 20 may be configured to determine whether the palette
coded block is a first block in the current quantization group or whether any previous

non-palette coded blocks in the current quantization group include non-zero

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

62
cocfficients. Based on the palette coded block being the first block in the current
quantization group or none of the previous non-palette coded blocks in the current
quantization group including non-zero coefficients, video encoder 20 may determine the
palette QP value, including luma and chroma QP values, adjusted from the predicted QP
value. Alternatively, based on the palette coded block not being the first block in the
current quantization group and at least one of the previous non-palette coded blocks in
the current quantization group including non-zero coefficients, video encoder 20 may
determine the palette QP value to be equal to a quantization group QP value, including
luma and chroma QP values, previously determined for the at least one previous non-
palette coded blocks in the current quantization group.
[0228] Based on the at least one pixel within the palette coded block being encoded as
an escape pixel and upon determining the palette QP value for the palette coded block,
video encoder 20 determines the color value for the escape pixel that is not included in
the palette, and quantizes the color value for the escape pixel according to the palette
QP value (228). More specifically, video encoder 20 quantizes the color value for the
escape pixel according to the palette QP value, and encodes in the bitstream the
quantized color value for the escape pixel.
[0229] Video encoder 20 then reconstructs the palette coded block of the video data
based on the determined palette, the determined index values, and inverse quantized
color values of escape pixels for the palette coded block in a decoding loop. For
example, video encoder 20 may map the determined index values to entries of the
palette to reconstruct the pixel values of the palette coded block. Video encoder 20 may
then store the video data of the reconstructed palette coded block in decoded picture
buffer 116.
[0230] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or Icft out altogether (c.g., not all described acts or cvents arc necessary
for the practice of the techniques). Morcover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially. In addition, while certain
aspects of this disclosure are described as being performed by a single module or unit
for purposes of clarity, it should be understood that the techniques of this disclosure may

be performed by a combination of units or modules associated with a video coder.

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

63
[0231] Certain aspects of this disclosure have been described with respect to HEVC
Version 1 and HEVC SCC WD1.0 and WD2.0 for purposes of illustration. However,
the techniques described in this disclosure may be useful for other video coding
processes, including other standard or proprietary video coding processes not yet
developed.
[0232] The techniques described above may be performed by video encoder 20 (FIGS.
1 and 2) and/or video decoder 30 (FIGS. 1 and 3), both of which may be generally
referred to as a video coder. Likewise, video coding may refer to video encoding or
video decoding, as applicable.
[0233] While particular combinations of various aspects of the techniques are described
above, these combinations are provided merely to illustrate examples of the techniques
described in this disclosure. Accordingly, the techniques of this disclosure should not
be limited to these example combinations and may encompass any conceivable
combination of the various aspects of the techniques described in this disclosure.
[0234] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
ONe Or MOre computers or one or more processors to retricve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.
[0235] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

64
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.
[0236] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.
[0237] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0238] Various examples have been described. These and other examples are within the

scope of the following claims.

81801011
65

CLAIMS:
1. A method of processing video data, the method comprising:

determining that a first block of video data is a palette coded block;

determining a palette for the first block;

determining color values for pixels within the first block with respect to the palette;
reconstructing the first block of the video data based on the palette and the color values
for the first block;

based on the first block being a palette coded block, disabling deblocking filtering for
first pixels within the reconstructed first block at a block boundary formed between the
reconstructed first block and a reconstructed second block of video data; and
determining whether to apply the deblocking filtering for second pixels within the
reconstructed second block at the block boundary formed between the reconstructed
first block and the reconstructed second block.

2. The method of claim 1,
wherein disabling the deblocking filtering for the first pixels within the reconstructed first
block comprises, if the reconstructed first block and the reconstructed second block are luma
blocks:

1) determining whether the deblocking filtering is enabled for the block boundary
formed between the reconstructed first block and the reconstructed second block;

ii) based on the deblocking filtering being enabled for the block boundary, determining
a number of the first pixels within the reconstructed first block to be deblocking filtered,;
and

iii) based on the number of the first pixels to be deblocking filtered being greater than
zero and based on the first block being a palette coded block, setting the number of the
first pixels to be deblocking filtered equal to zero in order to disable the deblocking
filtering for the first pixels within the reconstructed first block.

wherein disabling the deblocking filtering for the first pixels within the reconstructed first
block comprises, if the reconstructed first block and the reconstructed second block are

chroma blocks:

Date Recue/Date Received 2022-07-11

81801011
66

1) determining whether the deblocking filtering is enabled for the block boundary
formed between the reconstructed first block and the reconstructed second block;

ii) based on the deblocking filtering being enabled for the block boundary, determining
deblocking filtered values for one or more of the first pixels within the reconstructed
first block; and

iii) based on the first block being a palette coded block, setting the deblocking filtered
values for the one or more of the first pixels to be equal to original values for the one or
more of the first pixels in order to disable the deblocking filtering for the first pixels
within the reconstructed first block.

3. The method of claim 1, wherein reconstructing the first block comprises reconstructing the
first block of the video data by a video decoder, the method further comprising, based on the
deblocking filtering being disabled for the first pixels within the reconstructed first block, at
least one of outputting the video data by the video decoder for display or storing the video
data by the video decoder in a decoded picture buffer without applying the deblocking
filtering for the first pixels within the reconstructed first block of the video data.

4. The method of claim 1, wherein reconstructing the first block comprises reconstructing the
first block of the video data by a video encoder, the method further comprising, based on the
deblocking filtering being disabled for the first pixels within the reconstructed first block,
storing the video data by the video encoder in a decoded picture buffer without applying the
deblocking filtering for the first pixels within the reconstructed first block of the video data.

5. A video processing device comprising:

a memory configured to store video data; and

one or more processors in communication with the memory and configured to:

determine that a first block of video data is a palette coded block;

determine a palette for the first block;

determine color values for one or more pixels within the first block with respect to the
palette;

reconstruct the first block of the video data based on the palette and the color values for
the first block;

Date Recue/Date Received 2022-07-11

81801011
67

based on the first block being a palette coded block, disable deblocking filtering for first
pixels within the reconstructed first block at a block boundary formed between the
reconstructed first block and a reconstructed second block of video data; and

determine whether to apply the deblocking filtering for second pixels within the
reconstructed second block at the block boundary formed between the reconstructed
first block and the reconstructed second block.

6. The video processing device of claim 5,
wherein disabling the deblocking filtering for the first pixels within the reconstructed first
block comprises, if the reconstructed first block and the reconstructed second block are luma
blocks:

1) determining whether the deblocking filtering is enabled for the block boundary
formed between the reconstructed first block and the reconstructed second block;

ii) based on the deblocking filtering being enabled for the block boundary, determining
a number of the first pixels within the reconstructed first block to be deblocking filtered,;
and

iii) based on the number of the first pixels to be deblocking filtered being greater than
zero and based on the first block being a palette coded block, setting the number of the
first pixels to be deblocking filtered equal to zero in order to disable the deblocking
filtering for the first pixels within the reconstructed first block

wherein disabling the deblocking filtering for the first pixels within the reconstructed first
block comprises, if the reconstructed first block and the reconstructed second block

comprise chroma blocks:

1) determining whether the deblocking filtering is enabled for the block boundary
formed between the reconstructed first block and the reconstructed second block;

ii) based on the deblocking filtering being enabled for the block boundary, determining
deblocking filtered values for one or more of the first pixels within the reconstructed
first block; and

iii) based on the first block being a palette coded block, setting the deblocking filtered

values for the one or more of the first pixels to be equal to original values for the one or

Date Recue/Date Received 2022-07-11

81801011
68

more of the first pixels in order to disable the deblocking filtering for the first pixels
within the reconstructed first block.

7. The video processing device of claim 5, wherein the one or more processors are configured

to determine that the reconstructed second block of video data is a palette coded block.

8. The video processing device of claim 5, further comprising means for, based on the second
block being a paletic coded block, disabling the deblocking filtering for the second pixels
within the reconstructed second block at the block boundary formed between the

reconstructed first block and the reconstructed second block.

9. The video processing device of claim 5, wherein the one or more processors are configured

to:

determine that the reconstructed second block of video data is not a palette coded block;
determine whether the deblocking filtering is enabled for the block boundary formed
between the reconstructed first block and the reconstructed second block;

based on the deblocking filtering being enabled for the block boundary, determine a
type of the deblocking filtering for the second pixels within the reconstructed second
block, the determined type being one of: normal deblocking filtering, and strong
deblocking filtering; and

apply the determined type of the deblocking filtering to one or more of the second
pixels within the reconstructed second block, without applying the deblocking filtering
to the first pixels within the reconstructed first block.

10. The video processing device of claim 5, wherein the palette for the first block includes zero
or more palette entries that indicate one or more respective color values, and wherein, to
determine the color values for the pixels within the first block with respect to the palette, the

one or more processors arc conﬁgured to:

in the case that the palette includes no palette entries, determine that all pixels within the
first block are coded as escape pixels having color values that are not included in the

palette, and determine the color values for the escape pixels; and

Date Recue/Date Received 2022-07-11

81801011
69

in the case that the palette includes one or more palette entries, determine index values
for one or more pixels within the first block, each of the index values corresponding to
one of the palette entries that indicates a color value for one of the pixels within the first
block, and determine the color values for any of the pixels within the first block that are

coded as escape pixels.

11. The video processing device of claim 5, wherein the video processing device comprises a
video decoder, and wherein the one or more processors are configured to, based on the
deblocking filtering being disabled for the first pixels within the reconstructed first block, at
least one of output the video data by the video decoder for display or store the video data by
the video decoder in a decoded picture buffer without applying the deblocking filtering for
the first pixels within the reconstructed first block of the video data.

12. The video processing device of claim 5, wherein the video processing device comprises a
video encoder, and wherein the one or more processors are configured to, based on the
deblocking filtering being disabled for the first pixels within the reconstructed first block,
store the video data by the video encoder in a decoded picture buffer without applying the
deblocking filtering for the first pixels within the reconstructed first block of the video data.

13. The video processing device of claim 5, wherein the video processing device comprises at

least one of’

an integrated circuit;
a microprocessor; and

a wireless commumication device.

14. A non-transitory computer-readable medium having stored thereon instructions for
processing video data that, when executed, cause one or more processors to perform a

method according to any one of claims 1 to 4.

Date Recue/Date Received 2022-07-11

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

Page 1/6
/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT
INTERFACE > INPUT INTERFACE
28
2z ,
16

FIG. 1

CA 02951569 2016-12-07

PCT/US2015/035296

WO 2015/191834

Page 2/6

NWv3dlslig

sil
1INN
ONIGOON3
AdO¥.1INS

9t
d344n9
FdNLOId
a3aood3a

!

LINN {31114

vil

801
1INN

NOILVZILNVNO

JSYUIANI

901
1INN

NOILVZILNVNO

ONISS300dd
NHMO4SNVYL

ort
1INN

JASYUIANI

SLINIINTT13 XVLINAS

vor

1INN
ONISS3O0™d
NHMO4SNVYL

<ol

|| €-cccmcmcmccanaaas

0¢
J3dOON3 O3dIA

9cl
1INN
ONISS3O0™d
NOILOIa3¥d
“VLNI

ocl
1INN
ONISS3O0¥d
NOILOIa3dd
~d3.1NI

(443
LINN ONIAQOONH
a3sva-i1131vd

00}
L1INN ONISS3IO0ud
NOILOIa3¥d

* 86 AMONAN

v1iva O3diA

CA 02951569 2016-12-07

PCT/US2015/035296

WO 2015/191834

-

€ Old

O3daiIA
a3aoo3d

Page 3/6

291
d344n9
FdNLOId

a3aood3a

091
1INN
b-ENNIE]

¢

8G1

A

9c1
1INN
ONISS3O0™d
NHMO4SNVYL
JASYUIANI

-

¥al
1INN
NOILVZILNVNO
JSYUIANI

0¢
d3d093d O3dIA

991
1INN
ONISS3O0dd
NOILOId3¥d
“VLNI

91
1INN
NOILVSN3dINOD
NOILOW

ool
1INN ONIAOO3a
a3svdg

-31137vd

[
L1INN ONISS3IO0ud
NOILOIa3dd

A

051
1INN
ONIOO3a
AdO¥.1INS

q

871 AMOWIN
v1ivdad O3diA

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296
Page 4/6
170 172
\ (- 174 /
Pso | P2o | P1o | Poo | Yoo | 910 | G20 | U30
P31 | P21 | P11 | Po1 | Yo | 911 | U241 | G341
P32 | P22 | P12 | Po2 | o2 | G12 | Uz22 | Q32
P33 | P23 | P13 | Po3s | o3 | 913 | U253 | U3

FIG. 4

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

Page 5/6

200
DETERMINE THAT FIRST BLOCK OF VIDEO DATA IS _/
PALETTE CODED BLOCK

¢ 202

DETERMINE PALETTE FOR FIRST BLOCK -/

¢ 204

DETERMINE COLOR VALUES FOR PIXELS OF FIRST _/
BLOCK WITH RESPECT TO THE PALETTE

¢ 206

RECONSTRUCT FIRST BLOCK OF VIDEO DATA BASED ON _/
THE PALETTE AND COLOR VALUES FOR FIRST BLOCK

!

BASED ON FIRST BLOCK BEING PALETTE CODED BLOCK, | 208
DISABLE DEBLOCKING FILTERING FOR FIRST PIXELS _/
WITHIN RECONSTRUCTED FIRST BLOCK AT BLOCK

BOUNDARY WITH RECONSTRUCTED SECOND BLOCK

'

DETERMINE WHETHER TO APPLY DEBLOCKING 210
FILTERING FOR SECOND PIXELS WITHIN _/
RECONSTRUCTED SECOND BLOCK AT BLOCK BOUNDARY
WITH RECONSTRUCTED FIRST BLOCK

FIG. 5

CA 02951569 2016-12-07

WO 2015/191834 PCT/US2015/035296

Page 6/ 6

220
DETERMINE PALETTE FOR PALETTE CODED BLOCK /

INCLUDING ZERO OR MORE PALETTE ENTRIES THAT
INDICATE COLOR VALUES

¢ 224

DETERMINE WHETHER AT LEAST ONE PIXEL OF PALETTE /
CODED BLOCK IS CODED AS ESCAPE PIXEL HAVING A
COLOR VALUE THAT IS NOT INCLUDED IN THE PALETTE

!

BASED ON AT LEAST ONE PIXEL BEING CODED AS 226
ESCAPE PIXEL, DETERMINE PALETTE QP VALUE FOR _/
PALETTE CODED BLOCK ADJUSTED FROM PREDICTED QP
VALUE

!

BASED ON AT LEAST ONE PIXEL BEING CODED AS 228
ESCAPE PIXEL, DETERMINE THE COLOR VALUE FOR _/
ESCAPE PIXEL, AND QUANTIZE THE COLOR VALUE FOR
ESCAPE PIXEL ACCORDING TO PALETTE QP VALUE

FIG. 6

DETERMINE THAT FIRST BLOCK OF VIDEQ DATA IS
PALETTE CODED BLOCK

200

L/

'

DETERMINE PALETTE FOR FIRST BLOCK

202

'

DETERMINE COLOR VALUES FOR PIXELS OF FIRST
BLOCK WITH RESPECT TO THE PALETTE

204

L/

'

206

RECONSTRUCT FIRST BLOCK OF VIDEQ DATA BASED ON
THE PALETTE AND COLOR VALUES FOR FIRST BLOCK

L/

v

BASED ON FIRST BLOCK BEING PALETTE CODED BLOCK,
DISABLE DEBLOCKING FILTERING FOR FIRST PIXELS
WITHIN RECONSTRUCTED FIRST BLOCK AT BLOCK
BOUNDARY WITH RECONSTRUCTED SECOND BLOCK

208

!

DETERMINE WHETHER TO APPLY DEBLOCKING
FILTERING FOR SECOND PIXELS WITHIN
RECONSTRUCTED SECOND BLOCK AT BLOCK BOUNDARY
WITH RECONSTRUCTED FIRST BLOCK

210

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - CLAIMS
	Page 70 - CLAIMS
	Page 71 - CLAIMS
	Page 72 - CLAIMS
	Page 73 - CLAIMS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - REPRESENTATIVE_DRAWING

