(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/173895 A1

(43) International Publication Date 28 November 2013 (28.11.2013)

(51) International Patent Classification: C22B 1/24 (2006.01)

(21) International Application Number:

(22) International Filing Date:

17 May 2013 (17.05.2013)

(25) Filing Language:

English

(26) Publication Language:

English

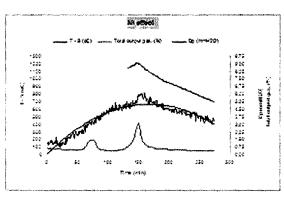
(30) Priority Data:

61/650,905

23 May 2012 (23.05.2012)

US

(71) Applicant: VALE S.A. [BR/BR]; Av. Graca Aranha 26, Centra, Rio de Janeiro, 20300-000, RJ (BR).


(72) Inventors; and

Applicants: BOTELHO, Marcus Eduardo Emrich (71)[BR/BR]; Rua dos Beija Flores 540, Alphaville - Lagoa dos Ingleses, Peninsula dos Passaros, Nova Lima, MG (BR). NOGUEIRA, Paulo Freitas [BR/BR]; Rua Juvenal de Melo Senra, 52 Apto 202, Bairro Belvedere, Belo Horizonte - MG (BR). POTTER, Stephen Michael [BR/BR]; Avenida Paulo Camilo Pena 585 / Ap 901, Belvedere, BH, MG - CEP 30320-380 (BR).

- PCT/BR2013/000175 (74) Agent: VEIRANO E ADVOGADOS ASSOCIADOS; Av. Brigadeiro Faria Lima 3477, 16° andar, Itaim Bibi, 04538-133, Sao Paulo, SP (BR).
 - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
 - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: PROCESS FOR THE IMPROVEMENT OF REDUCIBILITY OF IRON ORE PELLETS

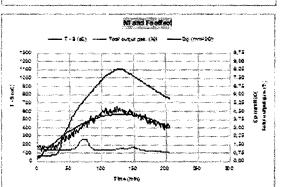
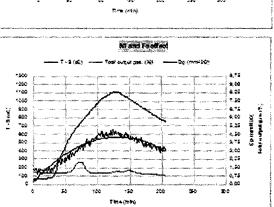



Fig. 1

(57) Abstract: The present invention discloses a new process for the improvement of reducibility of iron ore pellets comprising the steps of i) preparing a raw material mixture which contain metallic Ni powder; ii) pelletizing the said mixture obtained; iii) burning the said raw pellets and iv) reducing the said burnt pellets under reducing conditions with presence of CH₄.

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

"Process for the improvement of reducibility of iron ore pellets"

This application claims priority from U.S. Patent Application No. 61/650,905, titled "Process for the improvement of reducibility of ore pellets," filed on May 23, 2012, and which is incorporated herein by reference in its entirety.

FIELD OF INVENTION

5

10

15

20

25

The present invention refers to a process for the improvement of reducibility of ore pellets from a catalytic effect generated by the addition of metallic Fe and/or Ni.

DESCRIPTION OF THE RELATED ART

Reducibility is a determining factor for the performance of metallic loads in traditional processes of primary iron production (Blast Furnace and Direct Reduction).

Reducibility is highly sensitive to temperature increase and thus, it is an even more important property for the direct reduction reactors, where the metallic load is reduced while still in solid state. In the direct reduction reactors, the maximum temperatures reached are lower than the melting temperature of iron and, therefore, lower than the ones which exist in the blast furnace, where a liquid phase is formed.

Reducibility of iron ore pellets intended for these processes depend basically on the characteristics of the iron oxide grain and the slag phase and intergranular porosity of the pellet. The intrinsic characteristics of the ores and additives, as well as chemical composition and burning conditions of the pellets are important factors for the physical and metallurgical qualities of this agglomerate.

By observing the pellets after basket tests in direct reduction reactors, it was noted that the pellets in contact with the material of the basket (stainless steel) presented an increased degree of reduction, thereby suggesting a catalytic effect of metallic Fe and/or Ni on reducibility.

In the literature, most of the studies related to the effect of additions on the reducibility of iron ore agglomerates refer to the use of calcium and magnesium oxide and there is very little

information regarding the use of other materials to accelerate the reduction.

5

10

15

20

25

Khalafalla and Weston [1] studied the effect of alkaline metals and alkaline earth metals on FeO reduction in a CO atmosphere at the temperature of 1000°C, and they noted that small concentrations of these metals, approximately 0.7%, improved the reducibility of the FeO due to disturbances generated in the crystalline reticulate by interstitial ions with high atomic rays regarding Fe. Reducibility ratio with the quantity of additive was not linear, but it increased up to the maximum and then decreased. The maximum point depended on the nature and physical and chemical properties of the additive and the effect of those additions on the reducibility was directly proportional to the atomic ray and electrical load of the additive. The Ni atomic ray has the same magnitude as the Fe and, therefore, if any effect occurs, it should not be due to this mechanism of substitution.

Chinje and Jueffes [2] evaluated the effect of trivalent metallic oxides, more specifically of Cr and Al, in the reduction of pure iron oxide, in an atmosphere with 18%CO/82%CO2 at 960°C, and concluded that Cr has a positive effect on the reduction of Fe oxide with additions varying from 1.6 to 5% and that this effect increases as their concentration increases. The hypothesis formulated to explain this effect is that Cr acts as a catalyst of the CO absorption process in the surface of the oxide, which is a characteristic of transition metals such as Ni.

El-Geassy et al. [3] investigated the effect of NiO doping, varying from 1 to 10%, on the kinetics and reduction mechanisms of pure iron oxides in H₂ atmosphere and temperatures between 900 and 1100°C and noted a positive and significant effect of that addition on the reduction. The reducibility increased in the initial and final stages of the process throughout the temperature range and this increase has been imputed to the formation of a nickel ferrite (NiFe₂O₄) and the increase of porosity of the sintered material.

SUMMARY OF THE INVENTION

In light of the above described results observed, the present invention describes an advantageous and effective process for the improvement of reducibility of ore pellets from

5

10

15

an effect generated by the addition of metallic Fe and/or Ni.

More specifically, the present invention describes an advantageous and effective process for the improvement of reducibility of ore pellets comprising the following steps:

- a) Preparing the raw material mixture, wherein the said mixture comprises:
 - i. The iron ore powder of any kind;
 - ii. Adding 0,4 to 0,7% of bentonite per total mass of the mixture;
 - iii. Adding 1,00 a 5,00% of limestone per total mass of the mixture;
 - iv. Adding 0,025 a 0,100% of Ni per total mass of the mixture from any source;
 - v. Adding 0,025 a 0,100% of Fe per total mass of the mixture;
- b) Pelletizing the mixture obtained at the end of step a) in a pelleting disk with addition of water and drying s;
- c) Burning the raw pellet obtained from the step a) in a furnace under a oxidizing and temperature within the range of 1000°C to 1400°C;
- d) Reducing the burnt pellets obtained from the step c) under reducing conditions with presence of CH₄.

A first aspect of the present invention refers to a significant positive effect of the metallic Ni content on the degree of metallization of the pellets reduced.

A second aspect of the present invention concerns to the fact that the addition of metallic

Fe alone did not provide a significant effect on the degree of metallization of the pellets.

A third aspect of the present invention relates to the fact that the concomitant addition of metallic Fe and Ni has shown an additively property, the effect of the degree of metallization of pellets being the approximate average of the effects of individual elements.

Additional advantages and novel features of these aspects of the invention will be set forth
in part in the description that follows, and in part will become more apparent to those skilled in
the art upon examination of the following or upon learning by practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Various example aspects of the systems and methods will be described in detail, with reference to the following Figures but not limited to, wherein:

FIG. 1 is a graph illustrating the profiles of burning temperature, total output gas temperature and Dp of burnings of the Ni and Ni and Fe mixtures in the softening and melting furnace.

FIG. 2 is a chart regarding the effect of metallic %Fe and %Ni and interaction thereof.

FIG. 3 is a chart illustrating the effect of the addition of Ni on the GM of iron ore pellets DETAILED DESCRIPTION OF THE INVENTION

The following detailed description does not intend to, in any way, limit the scope, applicability or configuration of the invention. More exactly, the following description provides the necessary understanding for implementing the exemplary modalities. When using the teachings provided herein, those skilled in the art will recognize suitable alternatives that can be used, without extrapolating the scope of the present invention.

According to the present invention it is described an advantageous and effective process for the improvement of reducibility of iron ores. More specifically, the said ore pellets consist in a mixture of raw materials which include ore iron, calcite limestone, betonite and metallic Ni and Fe powders, whose base chemical compositions are shown in Table 1 below

	Compo	ounds (%	6)									
Ore	Fe	SiO ₂	Al ₂ O ₃	MgO	CaO	TiO ₂	Na ₂ O	K ₂ O	Mn	P	Ni	PF
Iron ore	66.12	1.97	0.61	0.03	0.01	0.04		-	0.13	0.04	-	1.34
Bentonite	5.41	60.71	14.80	0.024	1.181	2.44	1.92	0.676	0.024	0.024	-	6.599
Calcite limestone	0.25	1.66	0.51	0.22	53.3	-	-	_	-	-	-	42.26
Met. Ni powder.	0.09	-	-	-	-	-	-	-	-	-	99.81	-
Met. Fe powder.	99.91	0.09	-	-	-		-	-	-	-	-	-

20

5

10

15

Table 1: Raw material chemical composition (%).

Furthermore, the size fraction of the said materials which is lower than 0.044 mm is shown in Table 2 below.

i	Iron Ore	Bentonite	calcite limestone	Met. Ni powder	Met. Fe powder.
	85 to 95%	70 to 90%	70 to 90%	85 to 95%	85 to 95%

Table 2: % < 0,044 mm of raw materials.

10

20

In a preferred embodiment of the present invention, the percentage of iron ore which

has the size fraction lower than 0.044 mm is 91,2 %.

In another preferred embodiment of the present invention, the percentage of bentonite which has the size fraction lower than 0.044 mm is 74,4 %.

In another preferred embodiment of the present invention, the percentage of calcite limestone which has the size fraction lower than 0.044 mm is 75,8 %.

In another preferred embodiment of the present invention, the percentage of metallic Ni powder which has the size fraction lower than 0.044 mm is 91,0 %.

In another preferred embodiment of the present invention, the percentage of metallic Fe powder which has the size fraction lower than 0.044 mm is 91,0 %.

The present invention describes an advantageous and effective process for the improvement of reducibility of iron ore pellets comprising the following steps:

- a) Preparing the raw material mixture, wherein the said mixture comprises:
 - i. The iron ore powder of any kind;
 - ii. Adding 0,4 to 0,7% of bentonite per total mass of the mixture;
 - iii. Adding 1,00 a 5,00% of limestone per total mass of the mixture;
 - iv. Adding 0,025 a 0,100% of Ni per total mass of the mixture from any source;
 - v. Adding 0,025 a 0,100% of Fe per total mass of the mixture.
- b) Pelletizing the mixture obtained at the end of step a) in a pelleting disk with addition of water and kiln-drying at 1100°C for 2hs;
- 25 c) Burning the raw pellets obtained from the step b) are burned in a vertical

furnace RUL under a temperature within the range of 1000°C to 1400°C.;

d) Reducing the burnt pellets obtained from the step c) under ISO11257 test conditions.

In a first preferred embodiment, the final composition of the raw material mixture comprises the following:

Mixture (%)				
	Ore	96.47		
	Bentonite	0.50		
Pellet mixture	Ni powder	0.00		
Pell mix	Fe powder	0.10		
u 0	Fet	66.52		
positi	SiO ₂	2.31		
l com	AI_2O_3	0.70		
) mica	CaO	1.62		
et che	MgO	0.05		
ıt pell	P	0.04		
pare	Ni	0.00		
Estimated burnt pellet chemical composition	CaO/SiO ₂	0.70		
Estin	Ox. Bas./Ox.Aci.	0.72		

In a second preferred embodiment of the present invention, the dried raw pellets obtained at the end of the step b) have the size ranges from 5 to 18 mm. More preferably, the dried raw pellets obtained at the end of the step b) have the size from 10 to 12,5 mm.

In a third preferred embodiment, the raw pellets obtained from the step b) in a vertical furnace RUL under a temperature within the range of 1000°C to 1400°C. More preferably, the raw pellets obtained from the step b) are burned in a vertical furnace RUL under a temperature within the range of 1000 to 1100°C.

The reducing step d) consists in submit the burnt pellets obtained from the step c) to ISO11257 pattern reducing conditions, as follows:

STAN	DARD		ISO11257
	Reduction pipe	Horizontal	
	Internal pipe	200 x 130	
	Heating/Stab. Gas	N2	
	Temperature (°C)		760 ± 10
		H2	55%
	Gaseous mixture composition (%)	со	38%
SNC		CO2	5%
)ITI(СН4	4%
ONE		H2	0%
TEST CONDITIONS	Total Flow (L/min)		13
TE	Cooling Gas		N2

One of the advantages of the present invention consist that adding metallic Ni powder in order to improve the reducibility of the iron ore.

5 REFERENCES

- 1. S.E. Khafalla and P.L. Weston, Jr.; Promoters for Carbon Monoxide Reduction of Wustite; Transactions of Metallurgical Society of AIME; pgs. 1484 a 1499, Vol. 239; October 1967.
- 2. U.F. Chinje e J.H.E. Jueffes; Effects of chemical composition of iron oxides on
 their rates of reduction: Part 1 Effect of trivalent metal oxides on reduction of hematite to
 lower iron oxides; Iromaking and Steelmaking; Pgs. 90 a 95; Vol. 16; No 2, 1989.
 - 3. El-Geassy et al. Effect of nickel oxide dopping on the kinetics and mechanism of iron oxide reduction; ISIJ International; pgs. 1043 a 1049; Vol. 35; No9, 1995.

CLAIMS

- 1. Process for the improvement of reducibility of iron ore pellets comprising the following steps:
 - a) Preparing the raw material mixture, wherein the said mixture comprises:

5

10

- i. The iron ore powder of any kind;
- ii. Adding 0,4 to 0,7% of bentonite per total mass of the mixture;
- iii. Adding 1,00 a 5,00% of limestone per total mass of the mixture;
- iv. Adding 0,025 a 0,100% of Ni per total mass of the mixture from any source;
 - v. Adding 0,025 a 0,100% of Fe per total mass of the mixture.
- b) Pelletizing the mixture obtained at the end of step a) in a pelleting disk with addition of water and drying;
 - c) Burning the raw pellets obtained from the step b) in a furnace under oxidizing condition and temperature within the range of 1000°C to 1400°C.
- d) Reducing the burnt pellets obtained from the step c) under reducing conditions with presence of CH₄.
 - 2. Process, according to the claim 1, wherein the final composition of the raw material mixture comprises the following:

Mixture (%)		
	Ore	96.47
re	Bentonite	0.50
Pellet mixture	Ni powder	0.00
	Fe powder	0.10
let	Fet	66.52
pellet	SiO ₂	2.31
u c	AI ₂ O ₃	0.70
burnt positio	CaO	1.62
	MgO	0.05
	P	0.04
Estimated chemical (Ni	0.00
ifim emi	CaO/SiO ₂	0.70
Esa	Ox. Bas./Ox.Aci.	0.72

WO 2013/173895 PCT/BR2013/000175

3. Process, according to claims 1 to 3 wherein the raw pellets obtained from the step b) are burned in a vertical furnace RUL under a temperature within the range of 1000 to 1100°C.

FIGURES

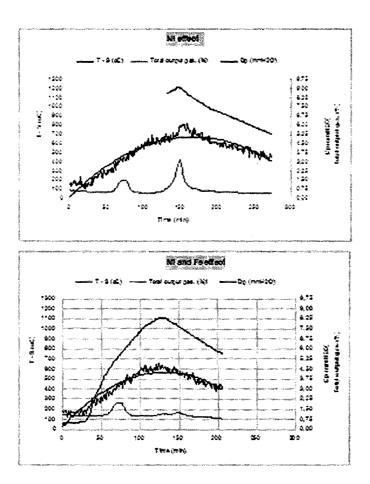


Fig. 1

WO 2013/173895 PCT/BR2013/000175

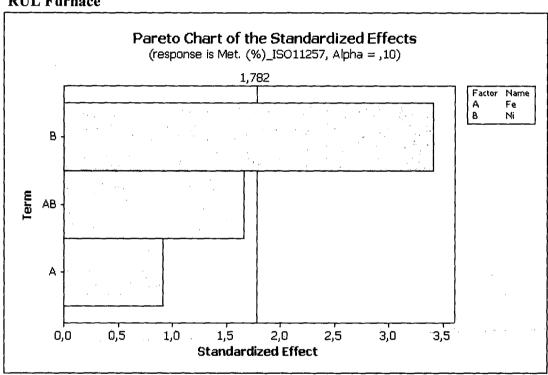


Fig. 2

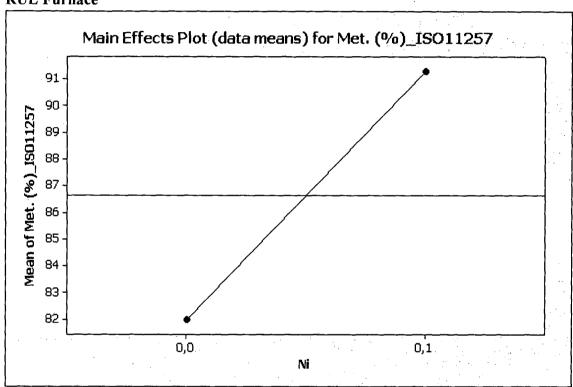


Fig.3

INTERNATIONAL SEARCH REPORT

International application No PCT/BR2013/000175

A OLASSICATION OF SUBJECT MATTER							
A. CLASSIFICATION OF SUBJECT MATTER INV. C22B1/24 ADD.							
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS	SEARCHED						
Minimum do C22B	ocumentation searched (classification system followed by classification	on symbols)					
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic da	ata base consulted during the international search (name of data bas	se and, where practicable, search terms use	ed)				
EPO-In	EPO-Internal, WPI Data						
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.				
A	NASR M I ET AL: "Effect of nicked doping on the kinetics and mechaniron oxide reduction", ISIJ INTERNATIONAL, IRON AND STEINSTITUTE OF JAPAN, TOKYO, JP, vol. 35, no. 9, 1 January 1995 (1995-01-01), page 43-1049, XP009171479,	nism of EL	1-3				
	ISSN: 0915-1559 cited in the application the whole document						
А	US 2010/206131 A1 (YASUDA EISAKU AL) 19 August 2010 (2010-08-19) the whole document	[JP] ET	1-3				
А	US 4 350 523 A (TAGUCHI KAZUMASA 21 September 1982 (1982-09-21) the whole document	ET AL)	1-3				
Furth	ner documents are listed in the continuation of Box C.	X See patent family annex.					
* Special ca	* Special categories of cited documents : "T" later document published after the international filing date or priority						
	"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand						
"E" earlier a	to be or particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance: the claimed invention cannot be						
cited to	nt which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	considered novel or cannot be conside step when the document is taken alon	ered to involve an inventive e				
	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art						
"P" docume	ent published prior to the international filing date but later than ority date claimed	'&" document member of the same patent family					
Date of the a	Date of the actual completion of the international search Date of mailing of the international search report						
1	9 August 2013	28/08/2013					
Name and n	Name and mailing address of the ISA/ Authorized officer						
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Swiatek, Ryszard					

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/BR2013/000175

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2010206131 A1	19-08-2010	CN 101896627 A EP 2239344 A1 JP 4418836 B2 JP 2009149942 A KR 20100084576 A TW 200948979 A US 2010206131 A1 WO 2009081784 A1	24-11-2010 13-10-2010 24-02-2010 09-07-2009 26-07-2010 01-12-2009 19-08-2010 02-07-2009
US 4350523 A	21-09-1982	AU 536226 B2 AU 5742380 A BR 8002291 A CA 1149617 A1 DE 3013922 A1 NL 8002138 A SE 438511 B SE 8002716 A US 4350523 A	03-05-1984 16-10-1980 02-12-1980 12-07-1983 23-10-1980 14-10-1980 22-04-1985 13-10-1980 21-09-1982